diff options
Diffstat (limited to 'drivers/net/e1000')
-rw-r--r-- | drivers/net/e1000/e1000.h | 13 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_ethtool.c | 141 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 1819 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.h | 386 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_main.c | 456 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_osdep.h | 13 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_param.c | 199 |
7 files changed, 2585 insertions, 442 deletions
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h index 3042d33e2d4d..d304297c496c 100644 --- a/drivers/net/e1000/e1000.h +++ b/drivers/net/e1000/e1000.h | |||
@@ -68,7 +68,6 @@ | |||
68 | #ifdef NETIF_F_TSO | 68 | #ifdef NETIF_F_TSO |
69 | #include <net/checksum.h> | 69 | #include <net/checksum.h> |
70 | #endif | 70 | #endif |
71 | #include <linux/workqueue.h> | ||
72 | #include <linux/mii.h> | 71 | #include <linux/mii.h> |
73 | #include <linux/ethtool.h> | 72 | #include <linux/ethtool.h> |
74 | #include <linux/if_vlan.h> | 73 | #include <linux/if_vlan.h> |
@@ -111,6 +110,9 @@ struct e1000_adapter; | |||
111 | #define E1000_MIN_RXD 80 | 110 | #define E1000_MIN_RXD 80 |
112 | #define E1000_MAX_82544_RXD 4096 | 111 | #define E1000_MAX_82544_RXD 4096 |
113 | 112 | ||
113 | /* this is the size past which hardware will drop packets when setting LPE=0 */ | ||
114 | #define MAXIMUM_ETHERNET_VLAN_SIZE 1522 | ||
115 | |||
114 | /* Supported Rx Buffer Sizes */ | 116 | /* Supported Rx Buffer Sizes */ |
115 | #define E1000_RXBUFFER_128 128 /* Used for packet split */ | 117 | #define E1000_RXBUFFER_128 128 /* Used for packet split */ |
116 | #define E1000_RXBUFFER_256 256 /* Used for packet split */ | 118 | #define E1000_RXBUFFER_256 256 /* Used for packet split */ |
@@ -143,6 +145,7 @@ struct e1000_adapter; | |||
143 | 145 | ||
144 | #define AUTO_ALL_MODES 0 | 146 | #define AUTO_ALL_MODES 0 |
145 | #define E1000_EEPROM_82544_APM 0x0004 | 147 | #define E1000_EEPROM_82544_APM 0x0004 |
148 | #define E1000_EEPROM_ICH8_APME 0x0004 | ||
146 | #define E1000_EEPROM_APME 0x0400 | 149 | #define E1000_EEPROM_APME 0x0400 |
147 | 150 | ||
148 | #ifndef E1000_MASTER_SLAVE | 151 | #ifndef E1000_MASTER_SLAVE |
@@ -254,7 +257,6 @@ struct e1000_adapter { | |||
254 | spinlock_t tx_queue_lock; | 257 | spinlock_t tx_queue_lock; |
255 | #endif | 258 | #endif |
256 | atomic_t irq_sem; | 259 | atomic_t irq_sem; |
257 | struct work_struct watchdog_task; | ||
258 | struct work_struct reset_task; | 260 | struct work_struct reset_task; |
259 | uint8_t fc_autoneg; | 261 | uint8_t fc_autoneg; |
260 | 262 | ||
@@ -339,8 +341,14 @@ struct e1000_adapter { | |||
339 | #ifdef NETIF_F_TSO | 341 | #ifdef NETIF_F_TSO |
340 | boolean_t tso_force; | 342 | boolean_t tso_force; |
341 | #endif | 343 | #endif |
344 | boolean_t smart_power_down; /* phy smart power down */ | ||
345 | unsigned long flags; | ||
342 | }; | 346 | }; |
343 | 347 | ||
348 | enum e1000_state_t { | ||
349 | __E1000_DRIVER_TESTING, | ||
350 | __E1000_RESETTING, | ||
351 | }; | ||
344 | 352 | ||
345 | /* e1000_main.c */ | 353 | /* e1000_main.c */ |
346 | extern char e1000_driver_name[]; | 354 | extern char e1000_driver_name[]; |
@@ -348,6 +356,7 @@ extern char e1000_driver_version[]; | |||
348 | int e1000_up(struct e1000_adapter *adapter); | 356 | int e1000_up(struct e1000_adapter *adapter); |
349 | void e1000_down(struct e1000_adapter *adapter); | 357 | void e1000_down(struct e1000_adapter *adapter); |
350 | void e1000_reset(struct e1000_adapter *adapter); | 358 | void e1000_reset(struct e1000_adapter *adapter); |
359 | void e1000_reinit_locked(struct e1000_adapter *adapter); | ||
351 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); | 360 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
352 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter); | 361 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
353 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); | 362 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c index d19664891768..88a82ba88f57 100644 --- a/drivers/net/e1000/e1000_ethtool.c +++ b/drivers/net/e1000/e1000_ethtool.c | |||
@@ -109,7 +109,8 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | |||
109 | SUPPORTED_1000baseT_Full| | 109 | SUPPORTED_1000baseT_Full| |
110 | SUPPORTED_Autoneg | | 110 | SUPPORTED_Autoneg | |
111 | SUPPORTED_TP); | 111 | SUPPORTED_TP); |
112 | 112 | if (hw->phy_type == e1000_phy_ife) | |
113 | ecmd->supported &= ~SUPPORTED_1000baseT_Full; | ||
113 | ecmd->advertising = ADVERTISED_TP; | 114 | ecmd->advertising = ADVERTISED_TP; |
114 | 115 | ||
115 | if (hw->autoneg == 1) { | 116 | if (hw->autoneg == 1) { |
@@ -203,11 +204,9 @@ e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | |||
203 | 204 | ||
204 | /* reset the link */ | 205 | /* reset the link */ |
205 | 206 | ||
206 | if (netif_running(adapter->netdev)) { | 207 | if (netif_running(adapter->netdev)) |
207 | e1000_down(adapter); | 208 | e1000_reinit_locked(adapter); |
208 | e1000_reset(adapter); | 209 | else |
209 | e1000_up(adapter); | ||
210 | } else | ||
211 | e1000_reset(adapter); | 210 | e1000_reset(adapter); |
212 | 211 | ||
213 | return 0; | 212 | return 0; |
@@ -254,10 +253,9 @@ e1000_set_pauseparam(struct net_device *netdev, | |||
254 | hw->original_fc = hw->fc; | 253 | hw->original_fc = hw->fc; |
255 | 254 | ||
256 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { | 255 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { |
257 | if (netif_running(adapter->netdev)) { | 256 | if (netif_running(adapter->netdev)) |
258 | e1000_down(adapter); | 257 | e1000_reinit_locked(adapter); |
259 | e1000_up(adapter); | 258 | else |
260 | } else | ||
261 | e1000_reset(adapter); | 259 | e1000_reset(adapter); |
262 | } else | 260 | } else |
263 | return ((hw->media_type == e1000_media_type_fiber) ? | 261 | return ((hw->media_type == e1000_media_type_fiber) ? |
@@ -279,10 +277,9 @@ e1000_set_rx_csum(struct net_device *netdev, uint32_t data) | |||
279 | struct e1000_adapter *adapter = netdev_priv(netdev); | 277 | struct e1000_adapter *adapter = netdev_priv(netdev); |
280 | adapter->rx_csum = data; | 278 | adapter->rx_csum = data; |
281 | 279 | ||
282 | if (netif_running(netdev)) { | 280 | if (netif_running(netdev)) |
283 | e1000_down(adapter); | 281 | e1000_reinit_locked(adapter); |
284 | e1000_up(adapter); | 282 | else |
285 | } else | ||
286 | e1000_reset(adapter); | 283 | e1000_reset(adapter); |
287 | return 0; | 284 | return 0; |
288 | } | 285 | } |
@@ -577,6 +574,7 @@ e1000_get_drvinfo(struct net_device *netdev, | |||
577 | case e1000_82572: | 574 | case e1000_82572: |
578 | case e1000_82573: | 575 | case e1000_82573: |
579 | case e1000_80003es2lan: | 576 | case e1000_80003es2lan: |
577 | case e1000_ich8lan: | ||
580 | sprintf(firmware_version, "%d.%d-%d", | 578 | sprintf(firmware_version, "%d.%d-%d", |
581 | (eeprom_data & 0xF000) >> 12, | 579 | (eeprom_data & 0xF000) >> 12, |
582 | (eeprom_data & 0x0FF0) >> 4, | 580 | (eeprom_data & 0x0FF0) >> 4, |
@@ -631,6 +629,9 @@ e1000_set_ringparam(struct net_device *netdev, | |||
631 | tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; | 629 | tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; |
632 | rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; | 630 | rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; |
633 | 631 | ||
632 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
633 | msleep(1); | ||
634 | |||
634 | if (netif_running(adapter->netdev)) | 635 | if (netif_running(adapter->netdev)) |
635 | e1000_down(adapter); | 636 | e1000_down(adapter); |
636 | 637 | ||
@@ -691,9 +692,11 @@ e1000_set_ringparam(struct net_device *netdev, | |||
691 | adapter->rx_ring = rx_new; | 692 | adapter->rx_ring = rx_new; |
692 | adapter->tx_ring = tx_new; | 693 | adapter->tx_ring = tx_new; |
693 | if ((err = e1000_up(adapter))) | 694 | if ((err = e1000_up(adapter))) |
694 | return err; | 695 | goto err_setup; |
695 | } | 696 | } |
696 | 697 | ||
698 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
699 | |||
697 | return 0; | 700 | return 0; |
698 | err_setup_tx: | 701 | err_setup_tx: |
699 | e1000_free_all_rx_resources(adapter); | 702 | e1000_free_all_rx_resources(adapter); |
@@ -701,6 +704,8 @@ err_setup_rx: | |||
701 | adapter->rx_ring = rx_old; | 704 | adapter->rx_ring = rx_old; |
702 | adapter->tx_ring = tx_old; | 705 | adapter->tx_ring = tx_old; |
703 | e1000_up(adapter); | 706 | e1000_up(adapter); |
707 | err_setup: | ||
708 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
704 | return err; | 709 | return err; |
705 | } | 710 | } |
706 | 711 | ||
@@ -754,6 +759,7 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | |||
754 | toggle = 0x7FFFF3FF; | 759 | toggle = 0x7FFFF3FF; |
755 | break; | 760 | break; |
756 | case e1000_82573: | 761 | case e1000_82573: |
762 | case e1000_ich8lan: | ||
757 | toggle = 0x7FFFF033; | 763 | toggle = 0x7FFFF033; |
758 | break; | 764 | break; |
759 | default: | 765 | default: |
@@ -773,11 +779,12 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | |||
773 | } | 779 | } |
774 | /* restore previous status */ | 780 | /* restore previous status */ |
775 | E1000_WRITE_REG(&adapter->hw, STATUS, before); | 781 | E1000_WRITE_REG(&adapter->hw, STATUS, before); |
776 | 782 | if (adapter->hw.mac_type != e1000_ich8lan) { | |
777 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | 783 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); |
778 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); | 784 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); |
779 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); | 785 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); |
780 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); | 786 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); |
787 | } | ||
781 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); | 788 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); |
782 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | 789 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
783 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); | 790 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); |
@@ -790,20 +797,22 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | |||
790 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); | 797 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); |
791 | 798 | ||
792 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); | 799 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); |
793 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); | 800 | before = (adapter->hw.mac_type == e1000_ich8lan ? |
801 | 0x06C3B33E : 0x06DFB3FE); | ||
802 | REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); | ||
794 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); | 803 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); |
795 | 804 | ||
796 | if (adapter->hw.mac_type >= e1000_82543) { | 805 | if (adapter->hw.mac_type >= e1000_82543) { |
797 | 806 | ||
798 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); | 807 | REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); |
799 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | 808 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
800 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | 809 | if (adapter->hw.mac_type != e1000_ich8lan) |
810 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | ||
801 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | 811 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
802 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); | 812 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); |
803 | 813 | value = (adapter->hw.mac_type == e1000_ich8lan ? | |
804 | for (i = 0; i < E1000_RAR_ENTRIES; i++) { | 814 | E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES); |
805 | REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, | 815 | for (i = 0; i < value; i++) { |
806 | 0xFFFFFFFF); | ||
807 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, | 816 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, |
808 | 0xFFFFFFFF); | 817 | 0xFFFFFFFF); |
809 | } | 818 | } |
@@ -817,7 +826,9 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | |||
817 | 826 | ||
818 | } | 827 | } |
819 | 828 | ||
820 | for (i = 0; i < E1000_MC_TBL_SIZE; i++) | 829 | value = (adapter->hw.mac_type == e1000_ich8lan ? |
830 | E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE); | ||
831 | for (i = 0; i < value; i++) | ||
821 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); | 832 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); |
822 | 833 | ||
823 | *data = 0; | 834 | *data = 0; |
@@ -889,6 +900,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) | |||
889 | /* Test each interrupt */ | 900 | /* Test each interrupt */ |
890 | for (; i < 10; i++) { | 901 | for (; i < 10; i++) { |
891 | 902 | ||
903 | if (adapter->hw.mac_type == e1000_ich8lan && i == 8) | ||
904 | continue; | ||
892 | /* Interrupt to test */ | 905 | /* Interrupt to test */ |
893 | mask = 1 << i; | 906 | mask = 1 << i; |
894 | 907 | ||
@@ -1246,18 +1259,33 @@ e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | |||
1246 | } else if (adapter->hw.phy_type == e1000_phy_gg82563) { | 1259 | } else if (adapter->hw.phy_type == e1000_phy_gg82563) { |
1247 | e1000_write_phy_reg(&adapter->hw, | 1260 | e1000_write_phy_reg(&adapter->hw, |
1248 | GG82563_PHY_KMRN_MODE_CTRL, | 1261 | GG82563_PHY_KMRN_MODE_CTRL, |
1249 | 0x1CE); | 1262 | 0x1CC); |
1250 | } | 1263 | } |
1251 | /* force 1000, set loopback */ | ||
1252 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); | ||
1253 | 1264 | ||
1254 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1255 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | 1265 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); |
1256 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | 1266 | |
1257 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | 1267 | if (adapter->hw.phy_type == e1000_phy_ife) { |
1258 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | 1268 | /* force 100, set loopback */ |
1259 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | 1269 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100); |
1260 | E1000_CTRL_FD); /* Force Duplex to FULL */ | 1270 | |
1271 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1272 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
1273 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1274 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1275 | E1000_CTRL_SPD_100 |/* Force Speed to 100 */ | ||
1276 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1277 | } else { | ||
1278 | /* force 1000, set loopback */ | ||
1279 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); | ||
1280 | |||
1281 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1282 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | ||
1283 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
1284 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1285 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1286 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | ||
1287 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1288 | } | ||
1261 | 1289 | ||
1262 | if (adapter->hw.media_type == e1000_media_type_copper && | 1290 | if (adapter->hw.media_type == e1000_media_type_copper && |
1263 | adapter->hw.phy_type == e1000_phy_m88) { | 1291 | adapter->hw.phy_type == e1000_phy_m88) { |
@@ -1317,6 +1345,7 @@ e1000_set_phy_loopback(struct e1000_adapter *adapter) | |||
1317 | case e1000_82572: | 1345 | case e1000_82572: |
1318 | case e1000_82573: | 1346 | case e1000_82573: |
1319 | case e1000_80003es2lan: | 1347 | case e1000_80003es2lan: |
1348 | case e1000_ich8lan: | ||
1320 | return e1000_integrated_phy_loopback(adapter); | 1349 | return e1000_integrated_phy_loopback(adapter); |
1321 | break; | 1350 | break; |
1322 | 1351 | ||
@@ -1568,6 +1597,7 @@ e1000_diag_test(struct net_device *netdev, | |||
1568 | struct e1000_adapter *adapter = netdev_priv(netdev); | 1597 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1569 | boolean_t if_running = netif_running(netdev); | 1598 | boolean_t if_running = netif_running(netdev); |
1570 | 1599 | ||
1600 | set_bit(__E1000_DRIVER_TESTING, &adapter->flags); | ||
1571 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { | 1601 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { |
1572 | /* Offline tests */ | 1602 | /* Offline tests */ |
1573 | 1603 | ||
@@ -1582,7 +1612,8 @@ e1000_diag_test(struct net_device *netdev, | |||
1582 | eth_test->flags |= ETH_TEST_FL_FAILED; | 1612 | eth_test->flags |= ETH_TEST_FL_FAILED; |
1583 | 1613 | ||
1584 | if (if_running) | 1614 | if (if_running) |
1585 | e1000_down(adapter); | 1615 | /* indicate we're in test mode */ |
1616 | dev_close(netdev); | ||
1586 | else | 1617 | else |
1587 | e1000_reset(adapter); | 1618 | e1000_reset(adapter); |
1588 | 1619 | ||
@@ -1607,8 +1638,9 @@ e1000_diag_test(struct net_device *netdev, | |||
1607 | adapter->hw.autoneg = autoneg; | 1638 | adapter->hw.autoneg = autoneg; |
1608 | 1639 | ||
1609 | e1000_reset(adapter); | 1640 | e1000_reset(adapter); |
1641 | clear_bit(__E1000_DRIVER_TESTING, &adapter->flags); | ||
1610 | if (if_running) | 1642 | if (if_running) |
1611 | e1000_up(adapter); | 1643 | dev_open(netdev); |
1612 | } else { | 1644 | } else { |
1613 | /* Online tests */ | 1645 | /* Online tests */ |
1614 | if (e1000_link_test(adapter, &data[4])) | 1646 | if (e1000_link_test(adapter, &data[4])) |
@@ -1619,6 +1651,8 @@ e1000_diag_test(struct net_device *netdev, | |||
1619 | data[1] = 0; | 1651 | data[1] = 0; |
1620 | data[2] = 0; | 1652 | data[2] = 0; |
1621 | data[3] = 0; | 1653 | data[3] = 0; |
1654 | |||
1655 | clear_bit(__E1000_DRIVER_TESTING, &adapter->flags); | ||
1622 | } | 1656 | } |
1623 | msleep_interruptible(4 * 1000); | 1657 | msleep_interruptible(4 * 1000); |
1624 | } | 1658 | } |
@@ -1778,21 +1812,18 @@ e1000_phys_id(struct net_device *netdev, uint32_t data) | |||
1778 | mod_timer(&adapter->blink_timer, jiffies); | 1812 | mod_timer(&adapter->blink_timer, jiffies); |
1779 | msleep_interruptible(data * 1000); | 1813 | msleep_interruptible(data * 1000); |
1780 | del_timer_sync(&adapter->blink_timer); | 1814 | del_timer_sync(&adapter->blink_timer); |
1781 | } else if (adapter->hw.mac_type < e1000_82573) { | 1815 | } else if (adapter->hw.phy_type == e1000_phy_ife) { |
1782 | E1000_WRITE_REG(&adapter->hw, LEDCTL, | 1816 | if (!adapter->blink_timer.function) { |
1783 | (E1000_LEDCTL_LED2_BLINK_RATE | | 1817 | init_timer(&adapter->blink_timer); |
1784 | E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK | | 1818 | adapter->blink_timer.function = e1000_led_blink_callback; |
1785 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | | 1819 | adapter->blink_timer.data = (unsigned long) adapter; |
1786 | (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) | | 1820 | } |
1787 | (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT))); | 1821 | mod_timer(&adapter->blink_timer, jiffies); |
1788 | msleep_interruptible(data * 1000); | 1822 | msleep_interruptible(data * 1000); |
1823 | del_timer_sync(&adapter->blink_timer); | ||
1824 | e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0); | ||
1789 | } else { | 1825 | } else { |
1790 | E1000_WRITE_REG(&adapter->hw, LEDCTL, | 1826 | e1000_blink_led_start(&adapter->hw); |
1791 | (E1000_LEDCTL_LED2_BLINK_RATE | | ||
1792 | E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | | ||
1793 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | | ||
1794 | (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) | | ||
1795 | (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT))); | ||
1796 | msleep_interruptible(data * 1000); | 1827 | msleep_interruptible(data * 1000); |
1797 | } | 1828 | } |
1798 | 1829 | ||
@@ -1807,10 +1838,8 @@ static int | |||
1807 | e1000_nway_reset(struct net_device *netdev) | 1838 | e1000_nway_reset(struct net_device *netdev) |
1808 | { | 1839 | { |
1809 | struct e1000_adapter *adapter = netdev_priv(netdev); | 1840 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1810 | if (netif_running(netdev)) { | 1841 | if (netif_running(netdev)) |
1811 | e1000_down(adapter); | 1842 | e1000_reinit_locked(adapter); |
1812 | e1000_up(adapter); | ||
1813 | } | ||
1814 | return 0; | 1843 | return 0; |
1815 | } | 1844 | } |
1816 | 1845 | ||
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 3959039b16ec..b3b919116e0f 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -101,9 +101,37 @@ static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, | |||
101 | 101 | ||
102 | #define E1000_WRITE_REG_IO(a, reg, val) \ | 102 | #define E1000_WRITE_REG_IO(a, reg, val) \ |
103 | e1000_write_reg_io((a), E1000_##reg, val) | 103 | e1000_write_reg_io((a), E1000_##reg, val) |
104 | static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw); | 104 | static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, |
105 | uint16_t duplex); | ||
105 | static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); | 106 | static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); |
106 | 107 | ||
108 | static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, | ||
109 | uint32_t segment); | ||
110 | static int32_t e1000_get_software_flag(struct e1000_hw *hw); | ||
111 | static int32_t e1000_get_software_semaphore(struct e1000_hw *hw); | ||
112 | static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw); | ||
113 | static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); | ||
114 | static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, | ||
115 | uint16_t words, uint16_t *data); | ||
116 | static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, | ||
117 | uint8_t* data); | ||
118 | static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, | ||
119 | uint16_t *data); | ||
120 | static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, | ||
121 | uint16_t *data); | ||
122 | static void e1000_release_software_flag(struct e1000_hw *hw); | ||
123 | static void e1000_release_software_semaphore(struct e1000_hw *hw); | ||
124 | static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, | ||
125 | uint32_t no_snoop); | ||
126 | static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, | ||
127 | uint32_t index, uint8_t byte); | ||
128 | static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, | ||
129 | uint16_t words, uint16_t *data); | ||
130 | static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, | ||
131 | uint8_t data); | ||
132 | static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, | ||
133 | uint16_t data); | ||
134 | |||
107 | /* IGP cable length table */ | 135 | /* IGP cable length table */ |
108 | static const | 136 | static const |
109 | uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | 137 | uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = |
@@ -156,6 +184,14 @@ e1000_set_phy_type(struct e1000_hw *hw) | |||
156 | hw->phy_type = e1000_phy_igp; | 184 | hw->phy_type = e1000_phy_igp; |
157 | break; | 185 | break; |
158 | } | 186 | } |
187 | case IGP03E1000_E_PHY_ID: | ||
188 | hw->phy_type = e1000_phy_igp_3; | ||
189 | break; | ||
190 | case IFE_E_PHY_ID: | ||
191 | case IFE_PLUS_E_PHY_ID: | ||
192 | case IFE_C_E_PHY_ID: | ||
193 | hw->phy_type = e1000_phy_ife; | ||
194 | break; | ||
159 | case GG82563_E_PHY_ID: | 195 | case GG82563_E_PHY_ID: |
160 | if (hw->mac_type == e1000_80003es2lan) { | 196 | if (hw->mac_type == e1000_80003es2lan) { |
161 | hw->phy_type = e1000_phy_gg82563; | 197 | hw->phy_type = e1000_phy_gg82563; |
@@ -332,6 +368,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
332 | break; | 368 | break; |
333 | case E1000_DEV_ID_82541EI: | 369 | case E1000_DEV_ID_82541EI: |
334 | case E1000_DEV_ID_82541EI_MOBILE: | 370 | case E1000_DEV_ID_82541EI_MOBILE: |
371 | case E1000_DEV_ID_82541ER_LOM: | ||
335 | hw->mac_type = e1000_82541; | 372 | hw->mac_type = e1000_82541; |
336 | break; | 373 | break; |
337 | case E1000_DEV_ID_82541ER: | 374 | case E1000_DEV_ID_82541ER: |
@@ -341,6 +378,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
341 | hw->mac_type = e1000_82541_rev_2; | 378 | hw->mac_type = e1000_82541_rev_2; |
342 | break; | 379 | break; |
343 | case E1000_DEV_ID_82547EI: | 380 | case E1000_DEV_ID_82547EI: |
381 | case E1000_DEV_ID_82547EI_MOBILE: | ||
344 | hw->mac_type = e1000_82547; | 382 | hw->mac_type = e1000_82547; |
345 | break; | 383 | break; |
346 | case E1000_DEV_ID_82547GI: | 384 | case E1000_DEV_ID_82547GI: |
@@ -354,6 +392,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
354 | case E1000_DEV_ID_82572EI_COPPER: | 392 | case E1000_DEV_ID_82572EI_COPPER: |
355 | case E1000_DEV_ID_82572EI_FIBER: | 393 | case E1000_DEV_ID_82572EI_FIBER: |
356 | case E1000_DEV_ID_82572EI_SERDES: | 394 | case E1000_DEV_ID_82572EI_SERDES: |
395 | case E1000_DEV_ID_82572EI: | ||
357 | hw->mac_type = e1000_82572; | 396 | hw->mac_type = e1000_82572; |
358 | break; | 397 | break; |
359 | case E1000_DEV_ID_82573E: | 398 | case E1000_DEV_ID_82573E: |
@@ -361,16 +400,29 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
361 | case E1000_DEV_ID_82573L: | 400 | case E1000_DEV_ID_82573L: |
362 | hw->mac_type = e1000_82573; | 401 | hw->mac_type = e1000_82573; |
363 | break; | 402 | break; |
403 | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: | ||
404 | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: | ||
364 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: | 405 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: |
365 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | 406 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
366 | hw->mac_type = e1000_80003es2lan; | 407 | hw->mac_type = e1000_80003es2lan; |
367 | break; | 408 | break; |
409 | case E1000_DEV_ID_ICH8_IGP_M_AMT: | ||
410 | case E1000_DEV_ID_ICH8_IGP_AMT: | ||
411 | case E1000_DEV_ID_ICH8_IGP_C: | ||
412 | case E1000_DEV_ID_ICH8_IFE: | ||
413 | case E1000_DEV_ID_ICH8_IGP_M: | ||
414 | hw->mac_type = e1000_ich8lan; | ||
415 | break; | ||
368 | default: | 416 | default: |
369 | /* Should never have loaded on this device */ | 417 | /* Should never have loaded on this device */ |
370 | return -E1000_ERR_MAC_TYPE; | 418 | return -E1000_ERR_MAC_TYPE; |
371 | } | 419 | } |
372 | 420 | ||
373 | switch(hw->mac_type) { | 421 | switch(hw->mac_type) { |
422 | case e1000_ich8lan: | ||
423 | hw->swfwhw_semaphore_present = TRUE; | ||
424 | hw->asf_firmware_present = TRUE; | ||
425 | break; | ||
374 | case e1000_80003es2lan: | 426 | case e1000_80003es2lan: |
375 | hw->swfw_sync_present = TRUE; | 427 | hw->swfw_sync_present = TRUE; |
376 | /* fall through */ | 428 | /* fall through */ |
@@ -423,6 +475,7 @@ e1000_set_media_type(struct e1000_hw *hw) | |||
423 | case e1000_82542_rev2_1: | 475 | case e1000_82542_rev2_1: |
424 | hw->media_type = e1000_media_type_fiber; | 476 | hw->media_type = e1000_media_type_fiber; |
425 | break; | 477 | break; |
478 | case e1000_ich8lan: | ||
426 | case e1000_82573: | 479 | case e1000_82573: |
427 | /* The STATUS_TBIMODE bit is reserved or reused for the this | 480 | /* The STATUS_TBIMODE bit is reserved or reused for the this |
428 | * device. | 481 | * device. |
@@ -527,6 +580,14 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
527 | } while(timeout); | 580 | } while(timeout); |
528 | } | 581 | } |
529 | 582 | ||
583 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | ||
584 | if (hw->mac_type == e1000_ich8lan) { | ||
585 | /* Set Tx and Rx buffer allocation to 8k apiece. */ | ||
586 | E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); | ||
587 | /* Set Packet Buffer Size to 16k. */ | ||
588 | E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); | ||
589 | } | ||
590 | |||
530 | /* Issue a global reset to the MAC. This will reset the chip's | 591 | /* Issue a global reset to the MAC. This will reset the chip's |
531 | * transmit, receive, DMA, and link units. It will not effect | 592 | * transmit, receive, DMA, and link units. It will not effect |
532 | * the current PCI configuration. The global reset bit is self- | 593 | * the current PCI configuration. The global reset bit is self- |
@@ -550,6 +611,20 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
550 | /* Reset is performed on a shadow of the control register */ | 611 | /* Reset is performed on a shadow of the control register */ |
551 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 612 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
552 | break; | 613 | break; |
614 | case e1000_ich8lan: | ||
615 | if (!hw->phy_reset_disable && | ||
616 | e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { | ||
617 | /* e1000_ich8lan PHY HW reset requires MAC CORE reset | ||
618 | * at the same time to make sure the interface between | ||
619 | * MAC and the external PHY is reset. | ||
620 | */ | ||
621 | ctrl |= E1000_CTRL_PHY_RST; | ||
622 | } | ||
623 | |||
624 | e1000_get_software_flag(hw); | ||
625 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | ||
626 | msec_delay(5); | ||
627 | break; | ||
553 | default: | 628 | default: |
554 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 629 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
555 | break; | 630 | break; |
@@ -591,6 +666,7 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
591 | /* fall through */ | 666 | /* fall through */ |
592 | case e1000_82571: | 667 | case e1000_82571: |
593 | case e1000_82572: | 668 | case e1000_82572: |
669 | case e1000_ich8lan: | ||
594 | case e1000_80003es2lan: | 670 | case e1000_80003es2lan: |
595 | ret_val = e1000_get_auto_rd_done(hw); | 671 | ret_val = e1000_get_auto_rd_done(hw); |
596 | if(ret_val) | 672 | if(ret_val) |
@@ -633,6 +709,12 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
633 | e1000_pci_set_mwi(hw); | 709 | e1000_pci_set_mwi(hw); |
634 | } | 710 | } |
635 | 711 | ||
712 | if (hw->mac_type == e1000_ich8lan) { | ||
713 | uint32_t kab = E1000_READ_REG(hw, KABGTXD); | ||
714 | kab |= E1000_KABGTXD_BGSQLBIAS; | ||
715 | E1000_WRITE_REG(hw, KABGTXD, kab); | ||
716 | } | ||
717 | |||
636 | return E1000_SUCCESS; | 718 | return E1000_SUCCESS; |
637 | } | 719 | } |
638 | 720 | ||
@@ -675,9 +757,12 @@ e1000_init_hw(struct e1000_hw *hw) | |||
675 | 757 | ||
676 | /* Disabling VLAN filtering. */ | 758 | /* Disabling VLAN filtering. */ |
677 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 759 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
678 | if (hw->mac_type < e1000_82545_rev_3) | 760 | /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ |
679 | E1000_WRITE_REG(hw, VET, 0); | 761 | if (hw->mac_type != e1000_ich8lan) { |
680 | e1000_clear_vfta(hw); | 762 | if (hw->mac_type < e1000_82545_rev_3) |
763 | E1000_WRITE_REG(hw, VET, 0); | ||
764 | e1000_clear_vfta(hw); | ||
765 | } | ||
681 | 766 | ||
682 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 767 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
683 | if(hw->mac_type == e1000_82542_rev2_0) { | 768 | if(hw->mac_type == e1000_82542_rev2_0) { |
@@ -705,8 +790,14 @@ e1000_init_hw(struct e1000_hw *hw) | |||
705 | /* Zero out the Multicast HASH table */ | 790 | /* Zero out the Multicast HASH table */ |
706 | DEBUGOUT("Zeroing the MTA\n"); | 791 | DEBUGOUT("Zeroing the MTA\n"); |
707 | mta_size = E1000_MC_TBL_SIZE; | 792 | mta_size = E1000_MC_TBL_SIZE; |
708 | for(i = 0; i < mta_size; i++) | 793 | if (hw->mac_type == e1000_ich8lan) |
794 | mta_size = E1000_MC_TBL_SIZE_ICH8LAN; | ||
795 | for(i = 0; i < mta_size; i++) { | ||
709 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 796 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
797 | /* use write flush to prevent Memory Write Block (MWB) from | ||
798 | * occuring when accessing our register space */ | ||
799 | E1000_WRITE_FLUSH(hw); | ||
800 | } | ||
710 | 801 | ||
711 | /* Set the PCI priority bit correctly in the CTRL register. This | 802 | /* Set the PCI priority bit correctly in the CTRL register. This |
712 | * determines if the adapter gives priority to receives, or if it | 803 | * determines if the adapter gives priority to receives, or if it |
@@ -744,6 +835,10 @@ e1000_init_hw(struct e1000_hw *hw) | |||
744 | break; | 835 | break; |
745 | } | 836 | } |
746 | 837 | ||
838 | /* More time needed for PHY to initialize */ | ||
839 | if (hw->mac_type == e1000_ich8lan) | ||
840 | msec_delay(15); | ||
841 | |||
747 | /* Call a subroutine to configure the link and setup flow control. */ | 842 | /* Call a subroutine to configure the link and setup flow control. */ |
748 | ret_val = e1000_setup_link(hw); | 843 | ret_val = e1000_setup_link(hw); |
749 | 844 | ||
@@ -757,6 +852,7 @@ e1000_init_hw(struct e1000_hw *hw) | |||
757 | case e1000_82571: | 852 | case e1000_82571: |
758 | case e1000_82572: | 853 | case e1000_82572: |
759 | case e1000_82573: | 854 | case e1000_82573: |
855 | case e1000_ich8lan: | ||
760 | case e1000_80003es2lan: | 856 | case e1000_80003es2lan: |
761 | ctrl |= E1000_TXDCTL_COUNT_DESC; | 857 | ctrl |= E1000_TXDCTL_COUNT_DESC; |
762 | break; | 858 | break; |
@@ -795,6 +891,7 @@ e1000_init_hw(struct e1000_hw *hw) | |||
795 | /* Fall through */ | 891 | /* Fall through */ |
796 | case e1000_82571: | 892 | case e1000_82571: |
797 | case e1000_82572: | 893 | case e1000_82572: |
894 | case e1000_ich8lan: | ||
798 | ctrl = E1000_READ_REG(hw, TXDCTL1); | 895 | ctrl = E1000_READ_REG(hw, TXDCTL1); |
799 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 896 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
800 | if(hw->mac_type >= e1000_82571) | 897 | if(hw->mac_type >= e1000_82571) |
@@ -818,6 +915,11 @@ e1000_init_hw(struct e1000_hw *hw) | |||
818 | */ | 915 | */ |
819 | e1000_clear_hw_cntrs(hw); | 916 | e1000_clear_hw_cntrs(hw); |
820 | 917 | ||
918 | /* ICH8 No-snoop bits are opposite polarity. | ||
919 | * Set to snoop by default after reset. */ | ||
920 | if (hw->mac_type == e1000_ich8lan) | ||
921 | e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); | ||
922 | |||
821 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | 923 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
822 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | 924 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
823 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 925 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
@@ -905,6 +1007,7 @@ e1000_setup_link(struct e1000_hw *hw) | |||
905 | */ | 1007 | */ |
906 | if (hw->fc == e1000_fc_default) { | 1008 | if (hw->fc == e1000_fc_default) { |
907 | switch (hw->mac_type) { | 1009 | switch (hw->mac_type) { |
1010 | case e1000_ich8lan: | ||
908 | case e1000_82573: | 1011 | case e1000_82573: |
909 | hw->fc = e1000_fc_full; | 1012 | hw->fc = e1000_fc_full; |
910 | break; | 1013 | break; |
@@ -971,9 +1074,12 @@ e1000_setup_link(struct e1000_hw *hw) | |||
971 | */ | 1074 | */ |
972 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 1075 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); |
973 | 1076 | ||
974 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | 1077 | /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ |
975 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 1078 | if (hw->mac_type != e1000_ich8lan) { |
976 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | 1079 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
1080 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
1081 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
1082 | } | ||
977 | 1083 | ||
978 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | 1084 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
979 | 1085 | ||
@@ -1237,12 +1343,13 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw) | |||
1237 | 1343 | ||
1238 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ | 1344 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ |
1239 | msec_delay(15); | 1345 | msec_delay(15); |
1240 | 1346 | if (hw->mac_type != e1000_ich8lan) { | |
1241 | /* Configure activity LED after PHY reset */ | 1347 | /* Configure activity LED after PHY reset */ |
1242 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | 1348 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
1243 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 1349 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
1244 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 1350 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
1245 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 1351 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
1352 | } | ||
1246 | 1353 | ||
1247 | /* disable lplu d3 during driver init */ | 1354 | /* disable lplu d3 during driver init */ |
1248 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); | 1355 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); |
@@ -1478,8 +1585,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw) | |||
1478 | if (ret_val) | 1585 | if (ret_val) |
1479 | return ret_val; | 1586 | return ret_val; |
1480 | 1587 | ||
1481 | /* Enable Pass False Carrier on the PHY */ | 1588 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
1482 | phy_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1483 | 1589 | ||
1484 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, | 1590 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
1485 | phy_data); | 1591 | phy_data); |
@@ -1561,28 +1667,40 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw) | |||
1561 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 1667 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
1562 | if(hw->disable_polarity_correction == 1) | 1668 | if(hw->disable_polarity_correction == 1) |
1563 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 1669 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
1564 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 1670 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
1565 | if(ret_val) | 1671 | if (ret_val) |
1566 | return ret_val; | ||
1567 | |||
1568 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1569 | * to 25MHz clock. | ||
1570 | */ | ||
1571 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1572 | if(ret_val) | ||
1573 | return ret_val; | 1672 | return ret_val; |
1574 | 1673 | ||
1575 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1576 | |||
1577 | if (hw->phy_revision < M88E1011_I_REV_4) { | 1674 | if (hw->phy_revision < M88E1011_I_REV_4) { |
1578 | /* Configure Master and Slave downshift values */ | 1675 | /* Force TX_CLK in the Extended PHY Specific Control Register |
1579 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 1676 | * to 25MHz clock. |
1677 | */ | ||
1678 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1679 | if (ret_val) | ||
1680 | return ret_val; | ||
1681 | |||
1682 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1683 | |||
1684 | if ((hw->phy_revision == E1000_REVISION_2) && | ||
1685 | (hw->phy_id == M88E1111_I_PHY_ID)) { | ||
1686 | /* Vidalia Phy, set the downshift counter to 5x */ | ||
1687 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | ||
1688 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
1689 | ret_val = e1000_write_phy_reg(hw, | ||
1690 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
1691 | if (ret_val) | ||
1692 | return ret_val; | ||
1693 | } else { | ||
1694 | /* Configure Master and Slave downshift values */ | ||
1695 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
1580 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 1696 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
1581 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 1697 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
1582 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 1698 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
1583 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 1699 | ret_val = e1000_write_phy_reg(hw, |
1584 | if(ret_val) | 1700 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
1585 | return ret_val; | 1701 | if (ret_val) |
1702 | return ret_val; | ||
1703 | } | ||
1586 | } | 1704 | } |
1587 | 1705 | ||
1588 | /* SW Reset the PHY so all changes take effect */ | 1706 | /* SW Reset the PHY so all changes take effect */ |
@@ -1620,6 +1738,10 @@ e1000_copper_link_autoneg(struct e1000_hw *hw) | |||
1620 | if(hw->autoneg_advertised == 0) | 1738 | if(hw->autoneg_advertised == 0) |
1621 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 1739 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
1622 | 1740 | ||
1741 | /* IFE phy only supports 10/100 */ | ||
1742 | if (hw->phy_type == e1000_phy_ife) | ||
1743 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; | ||
1744 | |||
1623 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 1745 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
1624 | ret_val = e1000_phy_setup_autoneg(hw); | 1746 | ret_val = e1000_phy_setup_autoneg(hw); |
1625 | if(ret_val) { | 1747 | if(ret_val) { |
@@ -1717,6 +1839,26 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1717 | 1839 | ||
1718 | DEBUGFUNC("e1000_setup_copper_link"); | 1840 | DEBUGFUNC("e1000_setup_copper_link"); |
1719 | 1841 | ||
1842 | switch (hw->mac_type) { | ||
1843 | case e1000_80003es2lan: | ||
1844 | case e1000_ich8lan: | ||
1845 | /* Set the mac to wait the maximum time between each | ||
1846 | * iteration and increase the max iterations when | ||
1847 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ | ||
1848 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); | ||
1849 | if (ret_val) | ||
1850 | return ret_val; | ||
1851 | ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); | ||
1852 | if (ret_val) | ||
1853 | return ret_val; | ||
1854 | reg_data |= 0x3F; | ||
1855 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); | ||
1856 | if (ret_val) | ||
1857 | return ret_val; | ||
1858 | default: | ||
1859 | break; | ||
1860 | } | ||
1861 | |||
1720 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 1862 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
1721 | ret_val = e1000_copper_link_preconfig(hw); | 1863 | ret_val = e1000_copper_link_preconfig(hw); |
1722 | if(ret_val) | 1864 | if(ret_val) |
@@ -1724,10 +1866,8 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1724 | 1866 | ||
1725 | switch (hw->mac_type) { | 1867 | switch (hw->mac_type) { |
1726 | case e1000_80003es2lan: | 1868 | case e1000_80003es2lan: |
1727 | ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, | 1869 | /* Kumeran registers are written-only */ |
1728 | ®_data); | 1870 | reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; |
1729 | if (ret_val) | ||
1730 | return ret_val; | ||
1731 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; | 1871 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; |
1732 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, | 1872 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, |
1733 | reg_data); | 1873 | reg_data); |
@@ -1739,6 +1879,7 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1739 | } | 1879 | } |
1740 | 1880 | ||
1741 | if (hw->phy_type == e1000_phy_igp || | 1881 | if (hw->phy_type == e1000_phy_igp || |
1882 | hw->phy_type == e1000_phy_igp_3 || | ||
1742 | hw->phy_type == e1000_phy_igp_2) { | 1883 | hw->phy_type == e1000_phy_igp_2) { |
1743 | ret_val = e1000_copper_link_igp_setup(hw); | 1884 | ret_val = e1000_copper_link_igp_setup(hw); |
1744 | if(ret_val) | 1885 | if(ret_val) |
@@ -1803,7 +1944,7 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1803 | * hw - Struct containing variables accessed by shared code | 1944 | * hw - Struct containing variables accessed by shared code |
1804 | ******************************************************************************/ | 1945 | ******************************************************************************/ |
1805 | static int32_t | 1946 | static int32_t |
1806 | e1000_configure_kmrn_for_10_100(struct e1000_hw *hw) | 1947 | e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) |
1807 | { | 1948 | { |
1808 | int32_t ret_val = E1000_SUCCESS; | 1949 | int32_t ret_val = E1000_SUCCESS; |
1809 | uint32_t tipg; | 1950 | uint32_t tipg; |
@@ -1823,6 +1964,18 @@ e1000_configure_kmrn_for_10_100(struct e1000_hw *hw) | |||
1823 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; | 1964 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; |
1824 | E1000_WRITE_REG(hw, TIPG, tipg); | 1965 | E1000_WRITE_REG(hw, TIPG, tipg); |
1825 | 1966 | ||
1967 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
1968 | |||
1969 | if (ret_val) | ||
1970 | return ret_val; | ||
1971 | |||
1972 | if (duplex == HALF_DUPLEX) | ||
1973 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1974 | else | ||
1975 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1976 | |||
1977 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
1978 | |||
1826 | return ret_val; | 1979 | return ret_val; |
1827 | } | 1980 | } |
1828 | 1981 | ||
@@ -1847,6 +2000,14 @@ e1000_configure_kmrn_for_1000(struct e1000_hw *hw) | |||
1847 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | 2000 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
1848 | E1000_WRITE_REG(hw, TIPG, tipg); | 2001 | E1000_WRITE_REG(hw, TIPG, tipg); |
1849 | 2002 | ||
2003 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
2004 | |||
2005 | if (ret_val) | ||
2006 | return ret_val; | ||
2007 | |||
2008 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
2009 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
2010 | |||
1850 | return ret_val; | 2011 | return ret_val; |
1851 | } | 2012 | } |
1852 | 2013 | ||
@@ -1869,10 +2030,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1869 | if(ret_val) | 2030 | if(ret_val) |
1870 | return ret_val; | 2031 | return ret_val; |
1871 | 2032 | ||
1872 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 2033 | if (hw->phy_type != e1000_phy_ife) { |
1873 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 2034 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
1874 | if(ret_val) | 2035 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
1875 | return ret_val; | 2036 | if (ret_val) |
2037 | return ret_val; | ||
2038 | } else | ||
2039 | mii_1000t_ctrl_reg=0; | ||
1876 | 2040 | ||
1877 | /* Need to parse both autoneg_advertised and fc and set up | 2041 | /* Need to parse both autoneg_advertised and fc and set up |
1878 | * the appropriate PHY registers. First we will parse for | 2042 | * the appropriate PHY registers. First we will parse for |
@@ -1923,6 +2087,9 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1923 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 2087 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
1924 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | 2088 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
1925 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 2089 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
2090 | if (hw->phy_type == e1000_phy_ife) { | ||
2091 | DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); | ||
2092 | } | ||
1926 | } | 2093 | } |
1927 | 2094 | ||
1928 | /* Check for a software override of the flow control settings, and | 2095 | /* Check for a software override of the flow control settings, and |
@@ -1984,9 +2151,11 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1984 | 2151 | ||
1985 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 2152 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
1986 | 2153 | ||
1987 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 2154 | if (hw->phy_type != e1000_phy_ife) { |
1988 | if(ret_val) | 2155 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
1989 | return ret_val; | 2156 | if (ret_val) |
2157 | return ret_val; | ||
2158 | } | ||
1990 | 2159 | ||
1991 | return E1000_SUCCESS; | 2160 | return E1000_SUCCESS; |
1992 | } | 2161 | } |
@@ -2089,6 +2258,18 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) | |||
2089 | 2258 | ||
2090 | /* Need to reset the PHY or these changes will be ignored */ | 2259 | /* Need to reset the PHY or these changes will be ignored */ |
2091 | mii_ctrl_reg |= MII_CR_RESET; | 2260 | mii_ctrl_reg |= MII_CR_RESET; |
2261 | /* Disable MDI-X support for 10/100 */ | ||
2262 | } else if (hw->phy_type == e1000_phy_ife) { | ||
2263 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | ||
2264 | if (ret_val) | ||
2265 | return ret_val; | ||
2266 | |||
2267 | phy_data &= ~IFE_PMC_AUTO_MDIX; | ||
2268 | phy_data &= ~IFE_PMC_FORCE_MDIX; | ||
2269 | |||
2270 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); | ||
2271 | if (ret_val) | ||
2272 | return ret_val; | ||
2092 | } else { | 2273 | } else { |
2093 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | 2274 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
2094 | * forced whenever speed or duplex are forced. | 2275 | * forced whenever speed or duplex are forced. |
@@ -2721,8 +2902,12 @@ e1000_check_for_link(struct e1000_hw *hw) | |||
2721 | */ | 2902 | */ |
2722 | if(hw->tbi_compatibility_en) { | 2903 | if(hw->tbi_compatibility_en) { |
2723 | uint16_t speed, duplex; | 2904 | uint16_t speed, duplex; |
2724 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | 2905 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
2725 | if(speed != SPEED_1000) { | 2906 | if (ret_val) { |
2907 | DEBUGOUT("Error getting link speed and duplex\n"); | ||
2908 | return ret_val; | ||
2909 | } | ||
2910 | if (speed != SPEED_1000) { | ||
2726 | /* If link speed is not set to gigabit speed, we do not need | 2911 | /* If link speed is not set to gigabit speed, we do not need |
2727 | * to enable TBI compatibility. | 2912 | * to enable TBI compatibility. |
2728 | */ | 2913 | */ |
@@ -2889,7 +3074,13 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw, | |||
2889 | if (*speed == SPEED_1000) | 3074 | if (*speed == SPEED_1000) |
2890 | ret_val = e1000_configure_kmrn_for_1000(hw); | 3075 | ret_val = e1000_configure_kmrn_for_1000(hw); |
2891 | else | 3076 | else |
2892 | ret_val = e1000_configure_kmrn_for_10_100(hw); | 3077 | ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); |
3078 | if (ret_val) | ||
3079 | return ret_val; | ||
3080 | } | ||
3081 | |||
3082 | if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { | ||
3083 | ret_val = e1000_kumeran_lock_loss_workaround(hw); | ||
2893 | if (ret_val) | 3084 | if (ret_val) |
2894 | return ret_val; | 3085 | return ret_val; |
2895 | } | 3086 | } |
@@ -3069,7 +3260,7 @@ e1000_shift_in_mdi_bits(struct e1000_hw *hw) | |||
3069 | return data; | 3260 | return data; |
3070 | } | 3261 | } |
3071 | 3262 | ||
3072 | int32_t | 3263 | static int32_t |
3073 | e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) | 3264 | e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) |
3074 | { | 3265 | { |
3075 | uint32_t swfw_sync = 0; | 3266 | uint32_t swfw_sync = 0; |
@@ -3079,6 +3270,9 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) | |||
3079 | 3270 | ||
3080 | DEBUGFUNC("e1000_swfw_sync_acquire"); | 3271 | DEBUGFUNC("e1000_swfw_sync_acquire"); |
3081 | 3272 | ||
3273 | if (hw->swfwhw_semaphore_present) | ||
3274 | return e1000_get_software_flag(hw); | ||
3275 | |||
3082 | if (!hw->swfw_sync_present) | 3276 | if (!hw->swfw_sync_present) |
3083 | return e1000_get_hw_eeprom_semaphore(hw); | 3277 | return e1000_get_hw_eeprom_semaphore(hw); |
3084 | 3278 | ||
@@ -3110,7 +3304,7 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) | |||
3110 | return E1000_SUCCESS; | 3304 | return E1000_SUCCESS; |
3111 | } | 3305 | } |
3112 | 3306 | ||
3113 | void | 3307 | static void |
3114 | e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) | 3308 | e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) |
3115 | { | 3309 | { |
3116 | uint32_t swfw_sync; | 3310 | uint32_t swfw_sync; |
@@ -3118,6 +3312,11 @@ e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) | |||
3118 | 3312 | ||
3119 | DEBUGFUNC("e1000_swfw_sync_release"); | 3313 | DEBUGFUNC("e1000_swfw_sync_release"); |
3120 | 3314 | ||
3315 | if (hw->swfwhw_semaphore_present) { | ||
3316 | e1000_release_software_flag(hw); | ||
3317 | return; | ||
3318 | } | ||
3319 | |||
3121 | if (!hw->swfw_sync_present) { | 3320 | if (!hw->swfw_sync_present) { |
3122 | e1000_put_hw_eeprom_semaphore(hw); | 3321 | e1000_put_hw_eeprom_semaphore(hw); |
3123 | return; | 3322 | return; |
@@ -3160,7 +3359,8 @@ e1000_read_phy_reg(struct e1000_hw *hw, | |||
3160 | if (e1000_swfw_sync_acquire(hw, swfw)) | 3359 | if (e1000_swfw_sync_acquire(hw, swfw)) |
3161 | return -E1000_ERR_SWFW_SYNC; | 3360 | return -E1000_ERR_SWFW_SYNC; |
3162 | 3361 | ||
3163 | if((hw->phy_type == e1000_phy_igp || | 3362 | if ((hw->phy_type == e1000_phy_igp || |
3363 | hw->phy_type == e1000_phy_igp_3 || | ||
3164 | hw->phy_type == e1000_phy_igp_2) && | 3364 | hw->phy_type == e1000_phy_igp_2) && |
3165 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 3365 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
3166 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 3366 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
@@ -3299,7 +3499,8 @@ e1000_write_phy_reg(struct e1000_hw *hw, | |||
3299 | if (e1000_swfw_sync_acquire(hw, swfw)) | 3499 | if (e1000_swfw_sync_acquire(hw, swfw)) |
3300 | return -E1000_ERR_SWFW_SYNC; | 3500 | return -E1000_ERR_SWFW_SYNC; |
3301 | 3501 | ||
3302 | if((hw->phy_type == e1000_phy_igp || | 3502 | if ((hw->phy_type == e1000_phy_igp || |
3503 | hw->phy_type == e1000_phy_igp_3 || | ||
3303 | hw->phy_type == e1000_phy_igp_2) && | 3504 | hw->phy_type == e1000_phy_igp_2) && |
3304 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 3505 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
3305 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 3506 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
@@ -3401,7 +3602,7 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw, | |||
3401 | return E1000_SUCCESS; | 3602 | return E1000_SUCCESS; |
3402 | } | 3603 | } |
3403 | 3604 | ||
3404 | int32_t | 3605 | static int32_t |
3405 | e1000_read_kmrn_reg(struct e1000_hw *hw, | 3606 | e1000_read_kmrn_reg(struct e1000_hw *hw, |
3406 | uint32_t reg_addr, | 3607 | uint32_t reg_addr, |
3407 | uint16_t *data) | 3608 | uint16_t *data) |
@@ -3434,7 +3635,7 @@ e1000_read_kmrn_reg(struct e1000_hw *hw, | |||
3434 | return E1000_SUCCESS; | 3635 | return E1000_SUCCESS; |
3435 | } | 3636 | } |
3436 | 3637 | ||
3437 | int32_t | 3638 | static int32_t |
3438 | e1000_write_kmrn_reg(struct e1000_hw *hw, | 3639 | e1000_write_kmrn_reg(struct e1000_hw *hw, |
3439 | uint32_t reg_addr, | 3640 | uint32_t reg_addr, |
3440 | uint16_t data) | 3641 | uint16_t data) |
@@ -3514,7 +3715,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw) | |||
3514 | E1000_WRITE_FLUSH(hw); | 3715 | E1000_WRITE_FLUSH(hw); |
3515 | 3716 | ||
3516 | if (hw->mac_type >= e1000_82571) | 3717 | if (hw->mac_type >= e1000_82571) |
3517 | msec_delay(10); | 3718 | msec_delay_irq(10); |
3518 | e1000_swfw_sync_release(hw, swfw); | 3719 | e1000_swfw_sync_release(hw, swfw); |
3519 | } else { | 3720 | } else { |
3520 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 3721 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
@@ -3544,6 +3745,12 @@ e1000_phy_hw_reset(struct e1000_hw *hw) | |||
3544 | ret_val = e1000_get_phy_cfg_done(hw); | 3745 | ret_val = e1000_get_phy_cfg_done(hw); |
3545 | e1000_release_software_semaphore(hw); | 3746 | e1000_release_software_semaphore(hw); |
3546 | 3747 | ||
3748 | if ((hw->mac_type == e1000_ich8lan) && | ||
3749 | (hw->phy_type == e1000_phy_igp_3)) { | ||
3750 | ret_val = e1000_init_lcd_from_nvm(hw); | ||
3751 | if (ret_val) | ||
3752 | return ret_val; | ||
3753 | } | ||
3547 | return ret_val; | 3754 | return ret_val; |
3548 | } | 3755 | } |
3549 | 3756 | ||
@@ -3572,9 +3779,11 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
3572 | case e1000_82541_rev_2: | 3779 | case e1000_82541_rev_2: |
3573 | case e1000_82571: | 3780 | case e1000_82571: |
3574 | case e1000_82572: | 3781 | case e1000_82572: |
3782 | case e1000_ich8lan: | ||
3575 | ret_val = e1000_phy_hw_reset(hw); | 3783 | ret_val = e1000_phy_hw_reset(hw); |
3576 | if(ret_val) | 3784 | if(ret_val) |
3577 | return ret_val; | 3785 | return ret_val; |
3786 | |||
3578 | break; | 3787 | break; |
3579 | default: | 3788 | default: |
3580 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 3789 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
@@ -3597,11 +3806,120 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
3597 | } | 3806 | } |
3598 | 3807 | ||
3599 | /****************************************************************************** | 3808 | /****************************************************************************** |
3809 | * Work-around for 82566 power-down: on D3 entry- | ||
3810 | * 1) disable gigabit link | ||
3811 | * 2) write VR power-down enable | ||
3812 | * 3) read it back | ||
3813 | * if successful continue, else issue LCD reset and repeat | ||
3814 | * | ||
3815 | * hw - struct containing variables accessed by shared code | ||
3816 | ******************************************************************************/ | ||
3817 | void | ||
3818 | e1000_phy_powerdown_workaround(struct e1000_hw *hw) | ||
3819 | { | ||
3820 | int32_t reg; | ||
3821 | uint16_t phy_data; | ||
3822 | int32_t retry = 0; | ||
3823 | |||
3824 | DEBUGFUNC("e1000_phy_powerdown_workaround"); | ||
3825 | |||
3826 | if (hw->phy_type != e1000_phy_igp_3) | ||
3827 | return; | ||
3828 | |||
3829 | do { | ||
3830 | /* Disable link */ | ||
3831 | reg = E1000_READ_REG(hw, PHY_CTRL); | ||
3832 | E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
3833 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3834 | |||
3835 | /* Write VR power-down enable */ | ||
3836 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | ||
3837 | e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data | | ||
3838 | IGP3_VR_CTRL_MODE_SHUT); | ||
3839 | |||
3840 | /* Read it back and test */ | ||
3841 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | ||
3842 | if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry) | ||
3843 | break; | ||
3844 | |||
3845 | /* Issue PHY reset and repeat at most one more time */ | ||
3846 | reg = E1000_READ_REG(hw, CTRL); | ||
3847 | E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); | ||
3848 | retry++; | ||
3849 | } while (retry); | ||
3850 | |||
3851 | return; | ||
3852 | |||
3853 | } | ||
3854 | |||
3855 | /****************************************************************************** | ||
3856 | * Work-around for 82566 Kumeran PCS lock loss: | ||
3857 | * On link status change (i.e. PCI reset, speed change) and link is up and | ||
3858 | * speed is gigabit- | ||
3859 | * 0) if workaround is optionally disabled do nothing | ||
3860 | * 1) wait 1ms for Kumeran link to come up | ||
3861 | * 2) check Kumeran Diagnostic register PCS lock loss bit | ||
3862 | * 3) if not set the link is locked (all is good), otherwise... | ||
3863 | * 4) reset the PHY | ||
3864 | * 5) repeat up to 10 times | ||
3865 | * Note: this is only called for IGP3 copper when speed is 1gb. | ||
3866 | * | ||
3867 | * hw - struct containing variables accessed by shared code | ||
3868 | ******************************************************************************/ | ||
3869 | static int32_t | ||
3870 | e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) | ||
3871 | { | ||
3872 | int32_t ret_val; | ||
3873 | int32_t reg; | ||
3874 | int32_t cnt; | ||
3875 | uint16_t phy_data; | ||
3876 | |||
3877 | if (hw->kmrn_lock_loss_workaround_disabled) | ||
3878 | return E1000_SUCCESS; | ||
3879 | |||
3880 | /* Make sure link is up before proceeding. If not just return. | ||
3881 | * Attempting this while link is negotiating fouls up link | ||
3882 | * stability */ | ||
3883 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3884 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3885 | |||
3886 | if (phy_data & MII_SR_LINK_STATUS) { | ||
3887 | for (cnt = 0; cnt < 10; cnt++) { | ||
3888 | /* read once to clear */ | ||
3889 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
3890 | if (ret_val) | ||
3891 | return ret_val; | ||
3892 | /* and again to get new status */ | ||
3893 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
3894 | if (ret_val) | ||
3895 | return ret_val; | ||
3896 | |||
3897 | /* check for PCS lock */ | ||
3898 | if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | ||
3899 | return E1000_SUCCESS; | ||
3900 | |||
3901 | /* Issue PHY reset */ | ||
3902 | e1000_phy_hw_reset(hw); | ||
3903 | msec_delay_irq(5); | ||
3904 | } | ||
3905 | /* Disable GigE link negotiation */ | ||
3906 | reg = E1000_READ_REG(hw, PHY_CTRL); | ||
3907 | E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
3908 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3909 | |||
3910 | /* unable to acquire PCS lock */ | ||
3911 | return E1000_ERR_PHY; | ||
3912 | } | ||
3913 | |||
3914 | return E1000_SUCCESS; | ||
3915 | } | ||
3916 | |||
3917 | /****************************************************************************** | ||
3600 | * Probes the expected PHY address for known PHY IDs | 3918 | * Probes the expected PHY address for known PHY IDs |
3601 | * | 3919 | * |
3602 | * hw - Struct containing variables accessed by shared code | 3920 | * hw - Struct containing variables accessed by shared code |
3603 | ******************************************************************************/ | 3921 | ******************************************************************************/ |
3604 | static int32_t | 3922 | int32_t |
3605 | e1000_detect_gig_phy(struct e1000_hw *hw) | 3923 | e1000_detect_gig_phy(struct e1000_hw *hw) |
3606 | { | 3924 | { |
3607 | int32_t phy_init_status, ret_val; | 3925 | int32_t phy_init_status, ret_val; |
@@ -3613,8 +3931,8 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
3613 | /* The 82571 firmware may still be configuring the PHY. In this | 3931 | /* The 82571 firmware may still be configuring the PHY. In this |
3614 | * case, we cannot access the PHY until the configuration is done. So | 3932 | * case, we cannot access the PHY until the configuration is done. So |
3615 | * we explicitly set the PHY values. */ | 3933 | * we explicitly set the PHY values. */ |
3616 | if(hw->mac_type == e1000_82571 || | 3934 | if (hw->mac_type == e1000_82571 || |
3617 | hw->mac_type == e1000_82572) { | 3935 | hw->mac_type == e1000_82572) { |
3618 | hw->phy_id = IGP01E1000_I_PHY_ID; | 3936 | hw->phy_id = IGP01E1000_I_PHY_ID; |
3619 | hw->phy_type = e1000_phy_igp_2; | 3937 | hw->phy_type = e1000_phy_igp_2; |
3620 | return E1000_SUCCESS; | 3938 | return E1000_SUCCESS; |
@@ -3631,7 +3949,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
3631 | 3949 | ||
3632 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 3950 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
3633 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 3951 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
3634 | if(ret_val) | 3952 | if (ret_val) |
3635 | return ret_val; | 3953 | return ret_val; |
3636 | 3954 | ||
3637 | hw->phy_id = (uint32_t) (phy_id_high << 16); | 3955 | hw->phy_id = (uint32_t) (phy_id_high << 16); |
@@ -3669,6 +3987,12 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
3669 | case e1000_80003es2lan: | 3987 | case e1000_80003es2lan: |
3670 | if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; | 3988 | if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; |
3671 | break; | 3989 | break; |
3990 | case e1000_ich8lan: | ||
3991 | if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; | ||
3992 | if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; | ||
3993 | if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; | ||
3994 | if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; | ||
3995 | break; | ||
3672 | default: | 3996 | default: |
3673 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 3997 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
3674 | return -E1000_ERR_CONFIG; | 3998 | return -E1000_ERR_CONFIG; |
@@ -3784,6 +4108,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
3784 | } | 4108 | } |
3785 | 4109 | ||
3786 | /****************************************************************************** | 4110 | /****************************************************************************** |
4111 | * Get PHY information from various PHY registers for ife PHY only. | ||
4112 | * | ||
4113 | * hw - Struct containing variables accessed by shared code | ||
4114 | * phy_info - PHY information structure | ||
4115 | ******************************************************************************/ | ||
4116 | static int32_t | ||
4117 | e1000_phy_ife_get_info(struct e1000_hw *hw, | ||
4118 | struct e1000_phy_info *phy_info) | ||
4119 | { | ||
4120 | int32_t ret_val; | ||
4121 | uint16_t phy_data, polarity; | ||
4122 | |||
4123 | DEBUGFUNC("e1000_phy_ife_get_info"); | ||
4124 | |||
4125 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | ||
4126 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | ||
4127 | |||
4128 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
4129 | if (ret_val) | ||
4130 | return ret_val; | ||
4131 | phy_info->polarity_correction = | ||
4132 | (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> | ||
4133 | IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT; | ||
4134 | |||
4135 | if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { | ||
4136 | ret_val = e1000_check_polarity(hw, &polarity); | ||
4137 | if (ret_val) | ||
4138 | return ret_val; | ||
4139 | } else { | ||
4140 | /* Polarity is forced. */ | ||
4141 | polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >> | ||
4142 | IFE_PSC_FORCE_POLARITY_SHIFT; | ||
4143 | } | ||
4144 | phy_info->cable_polarity = polarity; | ||
4145 | |||
4146 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | ||
4147 | if (ret_val) | ||
4148 | return ret_val; | ||
4149 | |||
4150 | phy_info->mdix_mode = | ||
4151 | (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> | ||
4152 | IFE_PMC_MDIX_MODE_SHIFT; | ||
4153 | |||
4154 | return E1000_SUCCESS; | ||
4155 | } | ||
4156 | |||
4157 | /****************************************************************************** | ||
3787 | * Get PHY information from various PHY registers fot m88 PHY only. | 4158 | * Get PHY information from various PHY registers fot m88 PHY only. |
3788 | * | 4159 | * |
3789 | * hw - Struct containing variables accessed by shared code | 4160 | * hw - Struct containing variables accessed by shared code |
@@ -3898,9 +4269,12 @@ e1000_phy_get_info(struct e1000_hw *hw, | |||
3898 | return -E1000_ERR_CONFIG; | 4269 | return -E1000_ERR_CONFIG; |
3899 | } | 4270 | } |
3900 | 4271 | ||
3901 | if(hw->phy_type == e1000_phy_igp || | 4272 | if (hw->phy_type == e1000_phy_igp || |
4273 | hw->phy_type == e1000_phy_igp_3 || | ||
3902 | hw->phy_type == e1000_phy_igp_2) | 4274 | hw->phy_type == e1000_phy_igp_2) |
3903 | return e1000_phy_igp_get_info(hw, phy_info); | 4275 | return e1000_phy_igp_get_info(hw, phy_info); |
4276 | else if (hw->phy_type == e1000_phy_ife) | ||
4277 | return e1000_phy_ife_get_info(hw, phy_info); | ||
3904 | else | 4278 | else |
3905 | return e1000_phy_m88_get_info(hw, phy_info); | 4279 | return e1000_phy_m88_get_info(hw, phy_info); |
3906 | } | 4280 | } |
@@ -4049,6 +4423,35 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
4049 | eeprom->use_eerd = TRUE; | 4423 | eeprom->use_eerd = TRUE; |
4050 | eeprom->use_eewr = FALSE; | 4424 | eeprom->use_eewr = FALSE; |
4051 | break; | 4425 | break; |
4426 | case e1000_ich8lan: | ||
4427 | { | ||
4428 | int32_t i = 0; | ||
4429 | uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG); | ||
4430 | |||
4431 | eeprom->type = e1000_eeprom_ich8; | ||
4432 | eeprom->use_eerd = FALSE; | ||
4433 | eeprom->use_eewr = FALSE; | ||
4434 | eeprom->word_size = E1000_SHADOW_RAM_WORDS; | ||
4435 | |||
4436 | /* Zero the shadow RAM structure. But don't load it from NVM | ||
4437 | * so as to save time for driver init */ | ||
4438 | if (hw->eeprom_shadow_ram != NULL) { | ||
4439 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
4440 | hw->eeprom_shadow_ram[i].modified = FALSE; | ||
4441 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
4442 | } | ||
4443 | } | ||
4444 | |||
4445 | hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) * | ||
4446 | ICH8_FLASH_SECTOR_SIZE; | ||
4447 | |||
4448 | hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1; | ||
4449 | hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK); | ||
4450 | hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE; | ||
4451 | hw->flash_bank_size /= 2 * sizeof(uint16_t); | ||
4452 | |||
4453 | break; | ||
4454 | } | ||
4052 | default: | 4455 | default: |
4053 | break; | 4456 | break; |
4054 | } | 4457 | } |
@@ -4469,7 +4872,10 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
4469 | return ret_val; | 4872 | return ret_val; |
4470 | } | 4873 | } |
4471 | 4874 | ||
4472 | if(eeprom->type == e1000_eeprom_spi) { | 4875 | if (eeprom->type == e1000_eeprom_ich8) |
4876 | return e1000_read_eeprom_ich8(hw, offset, words, data); | ||
4877 | |||
4878 | if (eeprom->type == e1000_eeprom_spi) { | ||
4473 | uint16_t word_in; | 4879 | uint16_t word_in; |
4474 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; | 4880 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; |
4475 | 4881 | ||
@@ -4636,7 +5042,10 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | |||
4636 | 5042 | ||
4637 | DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); | 5043 | DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); |
4638 | 5044 | ||
4639 | if(hw->mac_type == e1000_82573) { | 5045 | if (hw->mac_type == e1000_ich8lan) |
5046 | return FALSE; | ||
5047 | |||
5048 | if (hw->mac_type == e1000_82573) { | ||
4640 | eecd = E1000_READ_REG(hw, EECD); | 5049 | eecd = E1000_READ_REG(hw, EECD); |
4641 | 5050 | ||
4642 | /* Isolate bits 15 & 16 */ | 5051 | /* Isolate bits 15 & 16 */ |
@@ -4686,8 +5095,22 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
4686 | } | 5095 | } |
4687 | } | 5096 | } |
4688 | 5097 | ||
4689 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 5098 | if (hw->mac_type == e1000_ich8lan) { |
4690 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 5099 | /* Drivers must allocate the shadow ram structure for the |
5100 | * EEPROM checksum to be updated. Otherwise, this bit as well | ||
5101 | * as the checksum must both be set correctly for this | ||
5102 | * validation to pass. | ||
5103 | */ | ||
5104 | e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); | ||
5105 | if ((eeprom_data & 0x40) == 0) { | ||
5106 | eeprom_data |= 0x40; | ||
5107 | e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); | ||
5108 | e1000_update_eeprom_checksum(hw); | ||
5109 | } | ||
5110 | } | ||
5111 | |||
5112 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
5113 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
4691 | DEBUGOUT("EEPROM Read Error\n"); | 5114 | DEBUGOUT("EEPROM Read Error\n"); |
4692 | return -E1000_ERR_EEPROM; | 5115 | return -E1000_ERR_EEPROM; |
4693 | } | 5116 | } |
@@ -4713,6 +5136,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
4713 | int32_t | 5136 | int32_t |
4714 | e1000_update_eeprom_checksum(struct e1000_hw *hw) | 5137 | e1000_update_eeprom_checksum(struct e1000_hw *hw) |
4715 | { | 5138 | { |
5139 | uint32_t ctrl_ext; | ||
4716 | uint16_t checksum = 0; | 5140 | uint16_t checksum = 0; |
4717 | uint16_t i, eeprom_data; | 5141 | uint16_t i, eeprom_data; |
4718 | 5142 | ||
@@ -4731,6 +5155,14 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw) | |||
4731 | return -E1000_ERR_EEPROM; | 5155 | return -E1000_ERR_EEPROM; |
4732 | } else if (hw->eeprom.type == e1000_eeprom_flash) { | 5156 | } else if (hw->eeprom.type == e1000_eeprom_flash) { |
4733 | e1000_commit_shadow_ram(hw); | 5157 | e1000_commit_shadow_ram(hw); |
5158 | } else if (hw->eeprom.type == e1000_eeprom_ich8) { | ||
5159 | e1000_commit_shadow_ram(hw); | ||
5160 | /* Reload the EEPROM, or else modifications will not appear | ||
5161 | * until after next adapter reset. */ | ||
5162 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
5163 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
5164 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
5165 | msec_delay(10); | ||
4734 | } | 5166 | } |
4735 | return E1000_SUCCESS; | 5167 | return E1000_SUCCESS; |
4736 | } | 5168 | } |
@@ -4770,6 +5202,9 @@ e1000_write_eeprom(struct e1000_hw *hw, | |||
4770 | if(eeprom->use_eewr == TRUE) | 5202 | if(eeprom->use_eewr == TRUE) |
4771 | return e1000_write_eeprom_eewr(hw, offset, words, data); | 5203 | return e1000_write_eeprom_eewr(hw, offset, words, data); |
4772 | 5204 | ||
5205 | if (eeprom->type == e1000_eeprom_ich8) | ||
5206 | return e1000_write_eeprom_ich8(hw, offset, words, data); | ||
5207 | |||
4773 | /* Prepare the EEPROM for writing */ | 5208 | /* Prepare the EEPROM for writing */ |
4774 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 5209 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
4775 | return -E1000_ERR_EEPROM; | 5210 | return -E1000_ERR_EEPROM; |
@@ -4957,11 +5392,17 @@ e1000_commit_shadow_ram(struct e1000_hw *hw) | |||
4957 | uint32_t flop = 0; | 5392 | uint32_t flop = 0; |
4958 | uint32_t i = 0; | 5393 | uint32_t i = 0; |
4959 | int32_t error = E1000_SUCCESS; | 5394 | int32_t error = E1000_SUCCESS; |
4960 | 5395 | uint32_t old_bank_offset = 0; | |
4961 | /* The flop register will be used to determine if flash type is STM */ | 5396 | uint32_t new_bank_offset = 0; |
4962 | flop = E1000_READ_REG(hw, FLOP); | 5397 | uint32_t sector_retries = 0; |
5398 | uint8_t low_byte = 0; | ||
5399 | uint8_t high_byte = 0; | ||
5400 | uint8_t temp_byte = 0; | ||
5401 | boolean_t sector_write_failed = FALSE; | ||
4963 | 5402 | ||
4964 | if (hw->mac_type == e1000_82573) { | 5403 | if (hw->mac_type == e1000_82573) { |
5404 | /* The flop register will be used to determine if flash type is STM */ | ||
5405 | flop = E1000_READ_REG(hw, FLOP); | ||
4965 | for (i=0; i < attempts; i++) { | 5406 | for (i=0; i < attempts; i++) { |
4966 | eecd = E1000_READ_REG(hw, EECD); | 5407 | eecd = E1000_READ_REG(hw, EECD); |
4967 | if ((eecd & E1000_EECD_FLUPD) == 0) { | 5408 | if ((eecd & E1000_EECD_FLUPD) == 0) { |
@@ -4995,6 +5436,106 @@ e1000_commit_shadow_ram(struct e1000_hw *hw) | |||
4995 | } | 5436 | } |
4996 | } | 5437 | } |
4997 | 5438 | ||
5439 | if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { | ||
5440 | /* We're writing to the opposite bank so if we're on bank 1, | ||
5441 | * write to bank 0 etc. We also need to erase the segment that | ||
5442 | * is going to be written */ | ||
5443 | if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { | ||
5444 | new_bank_offset = hw->flash_bank_size * 2; | ||
5445 | old_bank_offset = 0; | ||
5446 | e1000_erase_ich8_4k_segment(hw, 1); | ||
5447 | } else { | ||
5448 | old_bank_offset = hw->flash_bank_size * 2; | ||
5449 | new_bank_offset = 0; | ||
5450 | e1000_erase_ich8_4k_segment(hw, 0); | ||
5451 | } | ||
5452 | |||
5453 | do { | ||
5454 | sector_write_failed = FALSE; | ||
5455 | /* Loop for every byte in the shadow RAM, | ||
5456 | * which is in units of words. */ | ||
5457 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
5458 | /* Determine whether to write the value stored | ||
5459 | * in the other NVM bank or a modified value stored | ||
5460 | * in the shadow RAM */ | ||
5461 | if (hw->eeprom_shadow_ram[i].modified == TRUE) { | ||
5462 | low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; | ||
5463 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, | ||
5464 | &temp_byte); | ||
5465 | udelay(100); | ||
5466 | error = e1000_verify_write_ich8_byte(hw, | ||
5467 | (i << 1) + new_bank_offset, | ||
5468 | low_byte); | ||
5469 | if (error != E1000_SUCCESS) | ||
5470 | sector_write_failed = TRUE; | ||
5471 | high_byte = | ||
5472 | (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); | ||
5473 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, | ||
5474 | &temp_byte); | ||
5475 | udelay(100); | ||
5476 | } else { | ||
5477 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, | ||
5478 | &low_byte); | ||
5479 | udelay(100); | ||
5480 | error = e1000_verify_write_ich8_byte(hw, | ||
5481 | (i << 1) + new_bank_offset, low_byte); | ||
5482 | if (error != E1000_SUCCESS) | ||
5483 | sector_write_failed = TRUE; | ||
5484 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, | ||
5485 | &high_byte); | ||
5486 | } | ||
5487 | |||
5488 | /* If the word is 0x13, then make sure the signature bits | ||
5489 | * (15:14) are 11b until the commit has completed. | ||
5490 | * This will allow us to write 10b which indicates the | ||
5491 | * signature is valid. We want to do this after the write | ||
5492 | * has completed so that we don't mark the segment valid | ||
5493 | * while the write is still in progress */ | ||
5494 | if (i == E1000_ICH8_NVM_SIG_WORD) | ||
5495 | high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte; | ||
5496 | |||
5497 | error = e1000_verify_write_ich8_byte(hw, | ||
5498 | (i << 1) + new_bank_offset + 1, high_byte); | ||
5499 | if (error != E1000_SUCCESS) | ||
5500 | sector_write_failed = TRUE; | ||
5501 | |||
5502 | if (sector_write_failed == FALSE) { | ||
5503 | /* Clear the now not used entry in the cache */ | ||
5504 | hw->eeprom_shadow_ram[i].modified = FALSE; | ||
5505 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
5506 | } | ||
5507 | } | ||
5508 | |||
5509 | /* Don't bother writing the segment valid bits if sector | ||
5510 | * programming failed. */ | ||
5511 | if (sector_write_failed == FALSE) { | ||
5512 | /* Finally validate the new segment by setting bit 15:14 | ||
5513 | * to 10b in word 0x13 , this can be done without an | ||
5514 | * erase as well since these bits are 11 to start with | ||
5515 | * and we need to change bit 14 to 0b */ | ||
5516 | e1000_read_ich8_byte(hw, | ||
5517 | E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, | ||
5518 | &high_byte); | ||
5519 | high_byte &= 0xBF; | ||
5520 | error = e1000_verify_write_ich8_byte(hw, | ||
5521 | E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, | ||
5522 | high_byte); | ||
5523 | if (error != E1000_SUCCESS) | ||
5524 | sector_write_failed = TRUE; | ||
5525 | |||
5526 | /* And invalidate the previously valid segment by setting | ||
5527 | * its signature word (0x13) high_byte to 0b. This can be | ||
5528 | * done without an erase because flash erase sets all bits | ||
5529 | * to 1's. We can write 1's to 0's without an erase */ | ||
5530 | error = e1000_verify_write_ich8_byte(hw, | ||
5531 | E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset, | ||
5532 | 0); | ||
5533 | if (error != E1000_SUCCESS) | ||
5534 | sector_write_failed = TRUE; | ||
5535 | } | ||
5536 | } while (++sector_retries < 10 && sector_write_failed == TRUE); | ||
5537 | } | ||
5538 | |||
4998 | return error; | 5539 | return error; |
4999 | } | 5540 | } |
5000 | 5541 | ||
@@ -5102,15 +5643,19 @@ e1000_init_rx_addrs(struct e1000_hw *hw) | |||
5102 | * the other port. */ | 5643 | * the other port. */ |
5103 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) | 5644 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) |
5104 | rar_num -= 1; | 5645 | rar_num -= 1; |
5646 | if (hw->mac_type == e1000_ich8lan) | ||
5647 | rar_num = E1000_RAR_ENTRIES_ICH8LAN; | ||
5648 | |||
5105 | /* Zero out the other 15 receive addresses. */ | 5649 | /* Zero out the other 15 receive addresses. */ |
5106 | DEBUGOUT("Clearing RAR[1-15]\n"); | 5650 | DEBUGOUT("Clearing RAR[1-15]\n"); |
5107 | for(i = 1; i < rar_num; i++) { | 5651 | for(i = 1; i < rar_num; i++) { |
5108 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 5652 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
5653 | E1000_WRITE_FLUSH(hw); | ||
5109 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 5654 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
5655 | E1000_WRITE_FLUSH(hw); | ||
5110 | } | 5656 | } |
5111 | } | 5657 | } |
5112 | 5658 | ||
5113 | #if 0 | ||
5114 | /****************************************************************************** | 5659 | /****************************************************************************** |
5115 | * Updates the MAC's list of multicast addresses. | 5660 | * Updates the MAC's list of multicast addresses. |
5116 | * | 5661 | * |
@@ -5125,6 +5670,7 @@ e1000_init_rx_addrs(struct e1000_hw *hw) | |||
5125 | * for the first 15 multicast addresses, and hashes the rest into the | 5670 | * for the first 15 multicast addresses, and hashes the rest into the |
5126 | * multicast table. | 5671 | * multicast table. |
5127 | *****************************************************************************/ | 5672 | *****************************************************************************/ |
5673 | #if 0 | ||
5128 | void | 5674 | void |
5129 | e1000_mc_addr_list_update(struct e1000_hw *hw, | 5675 | e1000_mc_addr_list_update(struct e1000_hw *hw, |
5130 | uint8_t *mc_addr_list, | 5676 | uint8_t *mc_addr_list, |
@@ -5145,6 +5691,8 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
5145 | /* Clear RAR[1-15] */ | 5691 | /* Clear RAR[1-15] */ |
5146 | DEBUGOUT(" Clearing RAR[1-15]\n"); | 5692 | DEBUGOUT(" Clearing RAR[1-15]\n"); |
5147 | num_rar_entry = E1000_RAR_ENTRIES; | 5693 | num_rar_entry = E1000_RAR_ENTRIES; |
5694 | if (hw->mac_type == e1000_ich8lan) | ||
5695 | num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN; | ||
5148 | /* Reserve a spot for the Locally Administered Address to work around | 5696 | /* Reserve a spot for the Locally Administered Address to work around |
5149 | * an 82571 issue in which a reset on one port will reload the MAC on | 5697 | * an 82571 issue in which a reset on one port will reload the MAC on |
5150 | * the other port. */ | 5698 | * the other port. */ |
@@ -5153,14 +5701,19 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
5153 | 5701 | ||
5154 | for(i = rar_used_count; i < num_rar_entry; i++) { | 5702 | for(i = rar_used_count; i < num_rar_entry; i++) { |
5155 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 5703 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
5704 | E1000_WRITE_FLUSH(hw); | ||
5156 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 5705 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
5706 | E1000_WRITE_FLUSH(hw); | ||
5157 | } | 5707 | } |
5158 | 5708 | ||
5159 | /* Clear the MTA */ | 5709 | /* Clear the MTA */ |
5160 | DEBUGOUT(" Clearing MTA\n"); | 5710 | DEBUGOUT(" Clearing MTA\n"); |
5161 | num_mta_entry = E1000_NUM_MTA_REGISTERS; | 5711 | num_mta_entry = E1000_NUM_MTA_REGISTERS; |
5712 | if (hw->mac_type == e1000_ich8lan) | ||
5713 | num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; | ||
5162 | for(i = 0; i < num_mta_entry; i++) { | 5714 | for(i = 0; i < num_mta_entry; i++) { |
5163 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 5715 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
5716 | E1000_WRITE_FLUSH(hw); | ||
5164 | } | 5717 | } |
5165 | 5718 | ||
5166 | /* Add the new addresses */ | 5719 | /* Add the new addresses */ |
@@ -5217,24 +5770,46 @@ e1000_hash_mc_addr(struct e1000_hw *hw, | |||
5217 | * LSB MSB | 5770 | * LSB MSB |
5218 | */ | 5771 | */ |
5219 | case 0: | 5772 | case 0: |
5220 | /* [47:36] i.e. 0x563 for above example address */ | 5773 | if (hw->mac_type == e1000_ich8lan) { |
5221 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | 5774 | /* [47:38] i.e. 0x158 for above example address */ |
5775 | hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); | ||
5776 | } else { | ||
5777 | /* [47:36] i.e. 0x563 for above example address */ | ||
5778 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | ||
5779 | } | ||
5222 | break; | 5780 | break; |
5223 | case 1: | 5781 | case 1: |
5224 | /* [46:35] i.e. 0xAC6 for above example address */ | 5782 | if (hw->mac_type == e1000_ich8lan) { |
5225 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | 5783 | /* [46:37] i.e. 0x2B1 for above example address */ |
5784 | hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); | ||
5785 | } else { | ||
5786 | /* [46:35] i.e. 0xAC6 for above example address */ | ||
5787 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | ||
5788 | } | ||
5226 | break; | 5789 | break; |
5227 | case 2: | 5790 | case 2: |
5228 | /* [45:34] i.e. 0x5D8 for above example address */ | 5791 | if (hw->mac_type == e1000_ich8lan) { |
5229 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | 5792 | /*[45:36] i.e. 0x163 for above example address */ |
5793 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | ||
5794 | } else { | ||
5795 | /* [45:34] i.e. 0x5D8 for above example address */ | ||
5796 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | ||
5797 | } | ||
5230 | break; | 5798 | break; |
5231 | case 3: | 5799 | case 3: |
5232 | /* [43:32] i.e. 0x634 for above example address */ | 5800 | if (hw->mac_type == e1000_ich8lan) { |
5233 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | 5801 | /* [43:34] i.e. 0x18D for above example address */ |
5802 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | ||
5803 | } else { | ||
5804 | /* [43:32] i.e. 0x634 for above example address */ | ||
5805 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | ||
5806 | } | ||
5234 | break; | 5807 | break; |
5235 | } | 5808 | } |
5236 | 5809 | ||
5237 | hash_value &= 0xFFF; | 5810 | hash_value &= 0xFFF; |
5811 | if (hw->mac_type == e1000_ich8lan) | ||
5812 | hash_value &= 0x3FF; | ||
5238 | 5813 | ||
5239 | return hash_value; | 5814 | return hash_value; |
5240 | } | 5815 | } |
@@ -5262,6 +5837,8 @@ e1000_mta_set(struct e1000_hw *hw, | |||
5262 | * register are determined by the lower 5 bits of the value. | 5837 | * register are determined by the lower 5 bits of the value. |
5263 | */ | 5838 | */ |
5264 | hash_reg = (hash_value >> 5) & 0x7F; | 5839 | hash_reg = (hash_value >> 5) & 0x7F; |
5840 | if (hw->mac_type == e1000_ich8lan) | ||
5841 | hash_reg &= 0x1F; | ||
5265 | hash_bit = hash_value & 0x1F; | 5842 | hash_bit = hash_value & 0x1F; |
5266 | 5843 | ||
5267 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); | 5844 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); |
@@ -5275,9 +5852,12 @@ e1000_mta_set(struct e1000_hw *hw, | |||
5275 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { | 5852 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { |
5276 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); | 5853 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); |
5277 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 5854 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
5855 | E1000_WRITE_FLUSH(hw); | ||
5278 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); | 5856 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); |
5857 | E1000_WRITE_FLUSH(hw); | ||
5279 | } else { | 5858 | } else { |
5280 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 5859 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
5860 | E1000_WRITE_FLUSH(hw); | ||
5281 | } | 5861 | } |
5282 | } | 5862 | } |
5283 | 5863 | ||
@@ -5334,7 +5914,9 @@ e1000_rar_set(struct e1000_hw *hw, | |||
5334 | } | 5914 | } |
5335 | 5915 | ||
5336 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | 5916 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
5917 | E1000_WRITE_FLUSH(hw); | ||
5337 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | 5918 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
5919 | E1000_WRITE_FLUSH(hw); | ||
5338 | } | 5920 | } |
5339 | 5921 | ||
5340 | /****************************************************************************** | 5922 | /****************************************************************************** |
@@ -5351,12 +5933,18 @@ e1000_write_vfta(struct e1000_hw *hw, | |||
5351 | { | 5933 | { |
5352 | uint32_t temp; | 5934 | uint32_t temp; |
5353 | 5935 | ||
5354 | if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 5936 | if (hw->mac_type == e1000_ich8lan) |
5937 | return; | ||
5938 | |||
5939 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | ||
5355 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 5940 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
5356 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 5941 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
5942 | E1000_WRITE_FLUSH(hw); | ||
5357 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 5943 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
5944 | E1000_WRITE_FLUSH(hw); | ||
5358 | } else { | 5945 | } else { |
5359 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 5946 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
5947 | E1000_WRITE_FLUSH(hw); | ||
5360 | } | 5948 | } |
5361 | } | 5949 | } |
5362 | 5950 | ||
@@ -5373,6 +5961,9 @@ e1000_clear_vfta(struct e1000_hw *hw) | |||
5373 | uint32_t vfta_offset = 0; | 5961 | uint32_t vfta_offset = 0; |
5374 | uint32_t vfta_bit_in_reg = 0; | 5962 | uint32_t vfta_bit_in_reg = 0; |
5375 | 5963 | ||
5964 | if (hw->mac_type == e1000_ich8lan) | ||
5965 | return; | ||
5966 | |||
5376 | if (hw->mac_type == e1000_82573) { | 5967 | if (hw->mac_type == e1000_82573) { |
5377 | if (hw->mng_cookie.vlan_id != 0) { | 5968 | if (hw->mng_cookie.vlan_id != 0) { |
5378 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | 5969 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN |
@@ -5392,6 +5983,7 @@ e1000_clear_vfta(struct e1000_hw *hw) | |||
5392 | * manageability unit */ | 5983 | * manageability unit */ |
5393 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 5984 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
5394 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | 5985 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
5986 | E1000_WRITE_FLUSH(hw); | ||
5395 | } | 5987 | } |
5396 | } | 5988 | } |
5397 | 5989 | ||
@@ -5421,9 +6013,18 @@ e1000_id_led_init(struct e1000_hw * hw) | |||
5421 | DEBUGOUT("EEPROM Read Error\n"); | 6013 | DEBUGOUT("EEPROM Read Error\n"); |
5422 | return -E1000_ERR_EEPROM; | 6014 | return -E1000_ERR_EEPROM; |
5423 | } | 6015 | } |
5424 | if((eeprom_data== ID_LED_RESERVED_0000) || | 6016 | |
5425 | (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; | 6017 | if ((hw->mac_type == e1000_82573) && |
5426 | for(i = 0; i < 4; i++) { | 6018 | (eeprom_data == ID_LED_RESERVED_82573)) |
6019 | eeprom_data = ID_LED_DEFAULT_82573; | ||
6020 | else if ((eeprom_data == ID_LED_RESERVED_0000) || | ||
6021 | (eeprom_data == ID_LED_RESERVED_FFFF)) { | ||
6022 | if (hw->mac_type == e1000_ich8lan) | ||
6023 | eeprom_data = ID_LED_DEFAULT_ICH8LAN; | ||
6024 | else | ||
6025 | eeprom_data = ID_LED_DEFAULT; | ||
6026 | } | ||
6027 | for (i = 0; i < 4; i++) { | ||
5427 | temp = (eeprom_data >> (i << 2)) & led_mask; | 6028 | temp = (eeprom_data >> (i << 2)) & led_mask; |
5428 | switch(temp) { | 6029 | switch(temp) { |
5429 | case ID_LED_ON1_DEF2: | 6030 | case ID_LED_ON1_DEF2: |
@@ -5519,6 +6120,44 @@ e1000_setup_led(struct e1000_hw *hw) | |||
5519 | } | 6120 | } |
5520 | 6121 | ||
5521 | /****************************************************************************** | 6122 | /****************************************************************************** |
6123 | * Used on 82571 and later Si that has LED blink bits. | ||
6124 | * Callers must use their own timer and should have already called | ||
6125 | * e1000_id_led_init() | ||
6126 | * Call e1000_cleanup led() to stop blinking | ||
6127 | * | ||
6128 | * hw - Struct containing variables accessed by shared code | ||
6129 | *****************************************************************************/ | ||
6130 | int32_t | ||
6131 | e1000_blink_led_start(struct e1000_hw *hw) | ||
6132 | { | ||
6133 | int16_t i; | ||
6134 | uint32_t ledctl_blink = 0; | ||
6135 | |||
6136 | DEBUGFUNC("e1000_id_led_blink_on"); | ||
6137 | |||
6138 | if (hw->mac_type < e1000_82571) { | ||
6139 | /* Nothing to do */ | ||
6140 | return E1000_SUCCESS; | ||
6141 | } | ||
6142 | if (hw->media_type == e1000_media_type_fiber) { | ||
6143 | /* always blink LED0 for PCI-E fiber */ | ||
6144 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
6145 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
6146 | } else { | ||
6147 | /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ | ||
6148 | ledctl_blink = hw->ledctl_mode2; | ||
6149 | for (i=0; i < 4; i++) | ||
6150 | if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
6151 | E1000_LEDCTL_MODE_LED_ON) | ||
6152 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); | ||
6153 | } | ||
6154 | |||
6155 | E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); | ||
6156 | |||
6157 | return E1000_SUCCESS; | ||
6158 | } | ||
6159 | |||
6160 | /****************************************************************************** | ||
5522 | * Restores the saved state of the SW controlable LED. | 6161 | * Restores the saved state of the SW controlable LED. |
5523 | * | 6162 | * |
5524 | * hw - Struct containing variables accessed by shared code | 6163 | * hw - Struct containing variables accessed by shared code |
@@ -5548,6 +6187,10 @@ e1000_cleanup_led(struct e1000_hw *hw) | |||
5548 | return ret_val; | 6187 | return ret_val; |
5549 | /* Fall Through */ | 6188 | /* Fall Through */ |
5550 | default: | 6189 | default: |
6190 | if (hw->phy_type == e1000_phy_ife) { | ||
6191 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | ||
6192 | break; | ||
6193 | } | ||
5551 | /* Restore LEDCTL settings */ | 6194 | /* Restore LEDCTL settings */ |
5552 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); | 6195 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); |
5553 | break; | 6196 | break; |
@@ -5592,7 +6235,10 @@ e1000_led_on(struct e1000_hw *hw) | |||
5592 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 6235 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
5593 | ctrl &= ~E1000_CTRL_SWDPIN0; | 6236 | ctrl &= ~E1000_CTRL_SWDPIN0; |
5594 | ctrl |= E1000_CTRL_SWDPIO0; | 6237 | ctrl |= E1000_CTRL_SWDPIO0; |
5595 | } else if(hw->media_type == e1000_media_type_copper) { | 6238 | } else if (hw->phy_type == e1000_phy_ife) { |
6239 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
6240 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | ||
6241 | } else if (hw->media_type == e1000_media_type_copper) { | ||
5596 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); | 6242 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); |
5597 | return E1000_SUCCESS; | 6243 | return E1000_SUCCESS; |
5598 | } | 6244 | } |
@@ -5640,7 +6286,10 @@ e1000_led_off(struct e1000_hw *hw) | |||
5640 | /* Set SW Defineable Pin 0 to turn off the LED */ | 6286 | /* Set SW Defineable Pin 0 to turn off the LED */ |
5641 | ctrl |= E1000_CTRL_SWDPIN0; | 6287 | ctrl |= E1000_CTRL_SWDPIN0; |
5642 | ctrl |= E1000_CTRL_SWDPIO0; | 6288 | ctrl |= E1000_CTRL_SWDPIO0; |
5643 | } else if(hw->media_type == e1000_media_type_copper) { | 6289 | } else if (hw->phy_type == e1000_phy_ife) { |
6290 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
6291 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); | ||
6292 | } else if (hw->media_type == e1000_media_type_copper) { | ||
5644 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | 6293 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); |
5645 | return E1000_SUCCESS; | 6294 | return E1000_SUCCESS; |
5646 | } | 6295 | } |
@@ -5678,12 +6327,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
5678 | temp = E1000_READ_REG(hw, XOFFRXC); | 6327 | temp = E1000_READ_REG(hw, XOFFRXC); |
5679 | temp = E1000_READ_REG(hw, XOFFTXC); | 6328 | temp = E1000_READ_REG(hw, XOFFTXC); |
5680 | temp = E1000_READ_REG(hw, FCRUC); | 6329 | temp = E1000_READ_REG(hw, FCRUC); |
6330 | |||
6331 | if (hw->mac_type != e1000_ich8lan) { | ||
5681 | temp = E1000_READ_REG(hw, PRC64); | 6332 | temp = E1000_READ_REG(hw, PRC64); |
5682 | temp = E1000_READ_REG(hw, PRC127); | 6333 | temp = E1000_READ_REG(hw, PRC127); |
5683 | temp = E1000_READ_REG(hw, PRC255); | 6334 | temp = E1000_READ_REG(hw, PRC255); |
5684 | temp = E1000_READ_REG(hw, PRC511); | 6335 | temp = E1000_READ_REG(hw, PRC511); |
5685 | temp = E1000_READ_REG(hw, PRC1023); | 6336 | temp = E1000_READ_REG(hw, PRC1023); |
5686 | temp = E1000_READ_REG(hw, PRC1522); | 6337 | temp = E1000_READ_REG(hw, PRC1522); |
6338 | } | ||
6339 | |||
5687 | temp = E1000_READ_REG(hw, GPRC); | 6340 | temp = E1000_READ_REG(hw, GPRC); |
5688 | temp = E1000_READ_REG(hw, BPRC); | 6341 | temp = E1000_READ_REG(hw, BPRC); |
5689 | temp = E1000_READ_REG(hw, MPRC); | 6342 | temp = E1000_READ_REG(hw, MPRC); |
@@ -5703,12 +6356,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
5703 | temp = E1000_READ_REG(hw, TOTH); | 6356 | temp = E1000_READ_REG(hw, TOTH); |
5704 | temp = E1000_READ_REG(hw, TPR); | 6357 | temp = E1000_READ_REG(hw, TPR); |
5705 | temp = E1000_READ_REG(hw, TPT); | 6358 | temp = E1000_READ_REG(hw, TPT); |
6359 | |||
6360 | if (hw->mac_type != e1000_ich8lan) { | ||
5706 | temp = E1000_READ_REG(hw, PTC64); | 6361 | temp = E1000_READ_REG(hw, PTC64); |
5707 | temp = E1000_READ_REG(hw, PTC127); | 6362 | temp = E1000_READ_REG(hw, PTC127); |
5708 | temp = E1000_READ_REG(hw, PTC255); | 6363 | temp = E1000_READ_REG(hw, PTC255); |
5709 | temp = E1000_READ_REG(hw, PTC511); | 6364 | temp = E1000_READ_REG(hw, PTC511); |
5710 | temp = E1000_READ_REG(hw, PTC1023); | 6365 | temp = E1000_READ_REG(hw, PTC1023); |
5711 | temp = E1000_READ_REG(hw, PTC1522); | 6366 | temp = E1000_READ_REG(hw, PTC1522); |
6367 | } | ||
6368 | |||
5712 | temp = E1000_READ_REG(hw, MPTC); | 6369 | temp = E1000_READ_REG(hw, MPTC); |
5713 | temp = E1000_READ_REG(hw, BPTC); | 6370 | temp = E1000_READ_REG(hw, BPTC); |
5714 | 6371 | ||
@@ -5731,6 +6388,9 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
5731 | 6388 | ||
5732 | temp = E1000_READ_REG(hw, IAC); | 6389 | temp = E1000_READ_REG(hw, IAC); |
5733 | temp = E1000_READ_REG(hw, ICRXOC); | 6390 | temp = E1000_READ_REG(hw, ICRXOC); |
6391 | |||
6392 | if (hw->mac_type == e1000_ich8lan) return; | ||
6393 | |||
5734 | temp = E1000_READ_REG(hw, ICRXPTC); | 6394 | temp = E1000_READ_REG(hw, ICRXPTC); |
5735 | temp = E1000_READ_REG(hw, ICRXATC); | 6395 | temp = E1000_READ_REG(hw, ICRXATC); |
5736 | temp = E1000_READ_REG(hw, ICTXPTC); | 6396 | temp = E1000_READ_REG(hw, ICTXPTC); |
@@ -5911,6 +6571,7 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
5911 | hw->bus_width = e1000_bus_width_pciex_1; | 6571 | hw->bus_width = e1000_bus_width_pciex_1; |
5912 | break; | 6572 | break; |
5913 | case e1000_82571: | 6573 | case e1000_82571: |
6574 | case e1000_ich8lan: | ||
5914 | case e1000_80003es2lan: | 6575 | case e1000_80003es2lan: |
5915 | hw->bus_type = e1000_bus_type_pci_express; | 6576 | hw->bus_type = e1000_bus_type_pci_express; |
5916 | hw->bus_speed = e1000_bus_speed_2500; | 6577 | hw->bus_speed = e1000_bus_speed_2500; |
@@ -5948,8 +6609,6 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
5948 | break; | 6609 | break; |
5949 | } | 6610 | } |
5950 | } | 6611 | } |
5951 | |||
5952 | #if 0 | ||
5953 | /****************************************************************************** | 6612 | /****************************************************************************** |
5954 | * Reads a value from one of the devices registers using port I/O (as opposed | 6613 | * Reads a value from one of the devices registers using port I/O (as opposed |
5955 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 6614 | * memory mapped I/O). Only 82544 and newer devices support port I/O. |
@@ -5957,6 +6616,7 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
5957 | * hw - Struct containing variables accessed by shared code | 6616 | * hw - Struct containing variables accessed by shared code |
5958 | * offset - offset to read from | 6617 | * offset - offset to read from |
5959 | *****************************************************************************/ | 6618 | *****************************************************************************/ |
6619 | #if 0 | ||
5960 | uint32_t | 6620 | uint32_t |
5961 | e1000_read_reg_io(struct e1000_hw *hw, | 6621 | e1000_read_reg_io(struct e1000_hw *hw, |
5962 | uint32_t offset) | 6622 | uint32_t offset) |
@@ -6012,8 +6672,6 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6012 | { | 6672 | { |
6013 | int32_t ret_val; | 6673 | int32_t ret_val; |
6014 | uint16_t agc_value = 0; | 6674 | uint16_t agc_value = 0; |
6015 | uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | ||
6016 | uint16_t max_agc = 0; | ||
6017 | uint16_t i, phy_data; | 6675 | uint16_t i, phy_data; |
6018 | uint16_t cable_length; | 6676 | uint16_t cable_length; |
6019 | 6677 | ||
@@ -6086,6 +6744,8 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6086 | break; | 6744 | break; |
6087 | } | 6745 | } |
6088 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | 6746 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
6747 | uint16_t cur_agc_value; | ||
6748 | uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | ||
6089 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 6749 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
6090 | {IGP01E1000_PHY_AGC_A, | 6750 | {IGP01E1000_PHY_AGC_A, |
6091 | IGP01E1000_PHY_AGC_B, | 6751 | IGP01E1000_PHY_AGC_B, |
@@ -6098,23 +6758,23 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6098 | if(ret_val) | 6758 | if(ret_val) |
6099 | return ret_val; | 6759 | return ret_val; |
6100 | 6760 | ||
6101 | cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 6761 | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
6102 | 6762 | ||
6103 | /* Array bound check. */ | 6763 | /* Value bound check. */ |
6104 | if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | 6764 | if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || |
6105 | (cur_agc == 0)) | 6765 | (cur_agc_value == 0)) |
6106 | return -E1000_ERR_PHY; | 6766 | return -E1000_ERR_PHY; |
6107 | 6767 | ||
6108 | agc_value += cur_agc; | 6768 | agc_value += cur_agc_value; |
6109 | 6769 | ||
6110 | /* Update minimal AGC value. */ | 6770 | /* Update minimal AGC value. */ |
6111 | if(min_agc > cur_agc) | 6771 | if (min_agc_value > cur_agc_value) |
6112 | min_agc = cur_agc; | 6772 | min_agc_value = cur_agc_value; |
6113 | } | 6773 | } |
6114 | 6774 | ||
6115 | /* Remove the minimal AGC result for length < 50m */ | 6775 | /* Remove the minimal AGC result for length < 50m */ |
6116 | if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | 6776 | if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
6117 | agc_value -= min_agc; | 6777 | agc_value -= min_agc_value; |
6118 | 6778 | ||
6119 | /* Get the average length of the remaining 3 channels */ | 6779 | /* Get the average length of the remaining 3 channels */ |
6120 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | 6780 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
@@ -6130,7 +6790,10 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6130 | IGP01E1000_AGC_RANGE) : 0; | 6790 | IGP01E1000_AGC_RANGE) : 0; |
6131 | *max_length = e1000_igp_cable_length_table[agc_value] + | 6791 | *max_length = e1000_igp_cable_length_table[agc_value] + |
6132 | IGP01E1000_AGC_RANGE; | 6792 | IGP01E1000_AGC_RANGE; |
6133 | } else if (hw->phy_type == e1000_phy_igp_2) { | 6793 | } else if (hw->phy_type == e1000_phy_igp_2 || |
6794 | hw->phy_type == e1000_phy_igp_3) { | ||
6795 | uint16_t cur_agc_index, max_agc_index = 0; | ||
6796 | uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; | ||
6134 | uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | 6797 | uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = |
6135 | {IGP02E1000_PHY_AGC_A, | 6798 | {IGP02E1000_PHY_AGC_A, |
6136 | IGP02E1000_PHY_AGC_B, | 6799 | IGP02E1000_PHY_AGC_B, |
@@ -6145,19 +6808,27 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6145 | /* Getting bits 15:9, which represent the combination of course and | 6808 | /* Getting bits 15:9, which represent the combination of course and |
6146 | * fine gain values. The result is a number that can be put into | 6809 | * fine gain values. The result is a number that can be put into |
6147 | * the lookup table to obtain the approximate cable length. */ | 6810 | * the lookup table to obtain the approximate cable length. */ |
6148 | cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | 6811 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & |
6149 | IGP02E1000_AGC_LENGTH_MASK; | 6812 | IGP02E1000_AGC_LENGTH_MASK; |
6150 | 6813 | ||
6151 | /* Remove min & max AGC values from calculation. */ | 6814 | /* Array index bound check. */ |
6152 | if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc]) | 6815 | if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || |
6153 | min_agc = cur_agc; | 6816 | (cur_agc_index == 0)) |
6154 | if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc]) | 6817 | return -E1000_ERR_PHY; |
6155 | max_agc = cur_agc; | ||
6156 | 6818 | ||
6157 | agc_value += e1000_igp_2_cable_length_table[cur_agc]; | 6819 | /* Remove min & max AGC values from calculation. */ |
6820 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
6821 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
6822 | min_agc_index = cur_agc_index; | ||
6823 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
6824 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
6825 | max_agc_index = cur_agc_index; | ||
6826 | |||
6827 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
6158 | } | 6828 | } |
6159 | 6829 | ||
6160 | agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]); | 6830 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + |
6831 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
6161 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | 6832 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); |
6162 | 6833 | ||
6163 | /* Calculate cable length with the error range of +/- 10 meters. */ | 6834 | /* Calculate cable length with the error range of +/- 10 meters. */ |
@@ -6203,7 +6874,8 @@ e1000_check_polarity(struct e1000_hw *hw, | |||
6203 | return ret_val; | 6874 | return ret_val; |
6204 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | 6875 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> |
6205 | M88E1000_PSSR_REV_POLARITY_SHIFT; | 6876 | M88E1000_PSSR_REV_POLARITY_SHIFT; |
6206 | } else if(hw->phy_type == e1000_phy_igp || | 6877 | } else if (hw->phy_type == e1000_phy_igp || |
6878 | hw->phy_type == e1000_phy_igp_3 || | ||
6207 | hw->phy_type == e1000_phy_igp_2) { | 6879 | hw->phy_type == e1000_phy_igp_2) { |
6208 | /* Read the Status register to check the speed */ | 6880 | /* Read the Status register to check the speed */ |
6209 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 6881 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
@@ -6229,6 +6901,13 @@ e1000_check_polarity(struct e1000_hw *hw, | |||
6229 | * 100 Mbps this bit is always 0) */ | 6901 | * 100 Mbps this bit is always 0) */ |
6230 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; | 6902 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; |
6231 | } | 6903 | } |
6904 | } else if (hw->phy_type == e1000_phy_ife) { | ||
6905 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, | ||
6906 | &phy_data); | ||
6907 | if (ret_val) | ||
6908 | return ret_val; | ||
6909 | *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >> | ||
6910 | IFE_PESC_POLARITY_REVERSED_SHIFT; | ||
6232 | } | 6911 | } |
6233 | return E1000_SUCCESS; | 6912 | return E1000_SUCCESS; |
6234 | } | 6913 | } |
@@ -6256,7 +6935,8 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
6256 | 6935 | ||
6257 | DEBUGFUNC("e1000_check_downshift"); | 6936 | DEBUGFUNC("e1000_check_downshift"); |
6258 | 6937 | ||
6259 | if(hw->phy_type == e1000_phy_igp || | 6938 | if (hw->phy_type == e1000_phy_igp || |
6939 | hw->phy_type == e1000_phy_igp_3 || | ||
6260 | hw->phy_type == e1000_phy_igp_2) { | 6940 | hw->phy_type == e1000_phy_igp_2) { |
6261 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 6941 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
6262 | &phy_data); | 6942 | &phy_data); |
@@ -6273,6 +6953,9 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
6273 | 6953 | ||
6274 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 6954 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
6275 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 6955 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
6956 | } else if (hw->phy_type == e1000_phy_ife) { | ||
6957 | /* e1000_phy_ife supports 10/100 speed only */ | ||
6958 | hw->speed_downgraded = FALSE; | ||
6276 | } | 6959 | } |
6277 | 6960 | ||
6278 | return E1000_SUCCESS; | 6961 | return E1000_SUCCESS; |
@@ -6317,7 +7000,9 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
6317 | 7000 | ||
6318 | if(speed == SPEED_1000) { | 7001 | if(speed == SPEED_1000) { |
6319 | 7002 | ||
6320 | e1000_get_cable_length(hw, &min_length, &max_length); | 7003 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
7004 | if (ret_val) | ||
7005 | return ret_val; | ||
6321 | 7006 | ||
6322 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && | 7007 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && |
6323 | min_length >= e1000_igp_cable_length_50) { | 7008 | min_length >= e1000_igp_cable_length_50) { |
@@ -6525,20 +7210,27 @@ static int32_t | |||
6525 | e1000_set_d3_lplu_state(struct e1000_hw *hw, | 7210 | e1000_set_d3_lplu_state(struct e1000_hw *hw, |
6526 | boolean_t active) | 7211 | boolean_t active) |
6527 | { | 7212 | { |
7213 | uint32_t phy_ctrl = 0; | ||
6528 | int32_t ret_val; | 7214 | int32_t ret_val; |
6529 | uint16_t phy_data; | 7215 | uint16_t phy_data; |
6530 | DEBUGFUNC("e1000_set_d3_lplu_state"); | 7216 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
6531 | 7217 | ||
6532 | if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) | 7218 | if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 |
7219 | && hw->phy_type != e1000_phy_igp_3) | ||
6533 | return E1000_SUCCESS; | 7220 | return E1000_SUCCESS; |
6534 | 7221 | ||
6535 | /* During driver activity LPLU should not be used or it will attain link | 7222 | /* During driver activity LPLU should not be used or it will attain link |
6536 | * from the lowest speeds starting from 10Mbps. The capability is used for | 7223 | * from the lowest speeds starting from 10Mbps. The capability is used for |
6537 | * Dx transitions and states */ | 7224 | * Dx transitions and states */ |
6538 | if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { | 7225 | if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { |
6539 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 7226 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
6540 | if(ret_val) | 7227 | if (ret_val) |
6541 | return ret_val; | 7228 | return ret_val; |
7229 | } else if (hw->mac_type == e1000_ich8lan) { | ||
7230 | /* MAC writes into PHY register based on the state transition | ||
7231 | * and start auto-negotiation. SW driver can overwrite the settings | ||
7232 | * in CSR PHY power control E1000_PHY_CTRL register. */ | ||
7233 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); | ||
6542 | } else { | 7234 | } else { |
6543 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 7235 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
6544 | if(ret_val) | 7236 | if(ret_val) |
@@ -6553,11 +7245,16 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
6553 | if(ret_val) | 7245 | if(ret_val) |
6554 | return ret_val; | 7246 | return ret_val; |
6555 | } else { | 7247 | } else { |
7248 | if (hw->mac_type == e1000_ich8lan) { | ||
7249 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | ||
7250 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
7251 | } else { | ||
6556 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | 7252 | phy_data &= ~IGP02E1000_PM_D3_LPLU; |
6557 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 7253 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
6558 | phy_data); | 7254 | phy_data); |
6559 | if (ret_val) | 7255 | if (ret_val) |
6560 | return ret_val; | 7256 | return ret_val; |
7257 | } | ||
6561 | } | 7258 | } |
6562 | 7259 | ||
6563 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 7260 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
@@ -6593,17 +7290,22 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
6593 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 7290 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
6594 | 7291 | ||
6595 | if(hw->mac_type == e1000_82541_rev_2 || | 7292 | if(hw->mac_type == e1000_82541_rev_2 || |
6596 | hw->mac_type == e1000_82547_rev_2) { | 7293 | hw->mac_type == e1000_82547_rev_2) { |
6597 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 7294 | phy_data |= IGP01E1000_GMII_FLEX_SPD; |
6598 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 7295 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); |
6599 | if(ret_val) | 7296 | if(ret_val) |
6600 | return ret_val; | 7297 | return ret_val; |
6601 | } else { | 7298 | } else { |
7299 | if (hw->mac_type == e1000_ich8lan) { | ||
7300 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | ||
7301 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
7302 | } else { | ||
6602 | phy_data |= IGP02E1000_PM_D3_LPLU; | 7303 | phy_data |= IGP02E1000_PM_D3_LPLU; |
6603 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 7304 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
6604 | phy_data); | 7305 | phy_data); |
6605 | if (ret_val) | 7306 | if (ret_val) |
6606 | return ret_val; | 7307 | return ret_val; |
7308 | } | ||
6607 | } | 7309 | } |
6608 | 7310 | ||
6609 | /* When LPLU is enabled we should disable SmartSpeed */ | 7311 | /* When LPLU is enabled we should disable SmartSpeed */ |
@@ -6638,6 +7340,7 @@ static int32_t | |||
6638 | e1000_set_d0_lplu_state(struct e1000_hw *hw, | 7340 | e1000_set_d0_lplu_state(struct e1000_hw *hw, |
6639 | boolean_t active) | 7341 | boolean_t active) |
6640 | { | 7342 | { |
7343 | uint32_t phy_ctrl = 0; | ||
6641 | int32_t ret_val; | 7344 | int32_t ret_val; |
6642 | uint16_t phy_data; | 7345 | uint16_t phy_data; |
6643 | DEBUGFUNC("e1000_set_d0_lplu_state"); | 7346 | DEBUGFUNC("e1000_set_d0_lplu_state"); |
@@ -6645,15 +7348,24 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, | |||
6645 | if(hw->mac_type <= e1000_82547_rev_2) | 7348 | if(hw->mac_type <= e1000_82547_rev_2) |
6646 | return E1000_SUCCESS; | 7349 | return E1000_SUCCESS; |
6647 | 7350 | ||
7351 | if (hw->mac_type == e1000_ich8lan) { | ||
7352 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); | ||
7353 | } else { | ||
6648 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 7354 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
6649 | if(ret_val) | 7355 | if(ret_val) |
6650 | return ret_val; | 7356 | return ret_val; |
7357 | } | ||
6651 | 7358 | ||
6652 | if (!active) { | 7359 | if (!active) { |
7360 | if (hw->mac_type == e1000_ich8lan) { | ||
7361 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | ||
7362 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
7363 | } else { | ||
6653 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | 7364 | phy_data &= ~IGP02E1000_PM_D0_LPLU; |
6654 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 7365 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
6655 | if (ret_val) | 7366 | if (ret_val) |
6656 | return ret_val; | 7367 | return ret_val; |
7368 | } | ||
6657 | 7369 | ||
6658 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 7370 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
6659 | * Dx states where the power conservation is most important. During | 7371 | * Dx states where the power conservation is most important. During |
@@ -6686,10 +7398,15 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, | |||
6686 | 7398 | ||
6687 | } else { | 7399 | } else { |
6688 | 7400 | ||
7401 | if (hw->mac_type == e1000_ich8lan) { | ||
7402 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | ||
7403 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
7404 | } else { | ||
6689 | phy_data |= IGP02E1000_PM_D0_LPLU; | 7405 | phy_data |= IGP02E1000_PM_D0_LPLU; |
6690 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 7406 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
6691 | if (ret_val) | 7407 | if (ret_val) |
6692 | return ret_val; | 7408 | return ret_val; |
7409 | } | ||
6693 | 7410 | ||
6694 | /* When LPLU is enabled we should disable SmartSpeed */ | 7411 | /* When LPLU is enabled we should disable SmartSpeed */ |
6695 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 7412 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
@@ -6928,8 +7645,10 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw, | |||
6928 | 7645 | ||
6929 | length >>= 2; | 7646 | length >>= 2; |
6930 | /* The device driver writes the relevant command block into the ram area. */ | 7647 | /* The device driver writes the relevant command block into the ram area. */ |
6931 | for (i = 0; i < length; i++) | 7648 | for (i = 0; i < length; i++) { |
6932 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); | 7649 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); |
7650 | E1000_WRITE_FLUSH(hw); | ||
7651 | } | ||
6933 | 7652 | ||
6934 | return E1000_SUCCESS; | 7653 | return E1000_SUCCESS; |
6935 | } | 7654 | } |
@@ -6961,15 +7680,18 @@ e1000_mng_write_commit( | |||
6961 | * returns - TRUE when the mode is IAMT or FALSE. | 7680 | * returns - TRUE when the mode is IAMT or FALSE. |
6962 | ****************************************************************************/ | 7681 | ****************************************************************************/ |
6963 | boolean_t | 7682 | boolean_t |
6964 | e1000_check_mng_mode( | 7683 | e1000_check_mng_mode(struct e1000_hw *hw) |
6965 | struct e1000_hw *hw) | ||
6966 | { | 7684 | { |
6967 | uint32_t fwsm; | 7685 | uint32_t fwsm; |
6968 | 7686 | ||
6969 | fwsm = E1000_READ_REG(hw, FWSM); | 7687 | fwsm = E1000_READ_REG(hw, FWSM); |
6970 | 7688 | ||
6971 | if((fwsm & E1000_FWSM_MODE_MASK) == | 7689 | if (hw->mac_type == e1000_ich8lan) { |
6972 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | 7690 | if ((fwsm & E1000_FWSM_MODE_MASK) == |
7691 | (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
7692 | return TRUE; | ||
7693 | } else if ((fwsm & E1000_FWSM_MODE_MASK) == | ||
7694 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
6973 | return TRUE; | 7695 | return TRUE; |
6974 | 7696 | ||
6975 | return FALSE; | 7697 | return FALSE; |
@@ -7209,7 +7931,6 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw) | |||
7209 | E1000_WRITE_REG(hw, CTRL, ctrl); | 7931 | E1000_WRITE_REG(hw, CTRL, ctrl); |
7210 | } | 7932 | } |
7211 | 7933 | ||
7212 | #if 0 | ||
7213 | /*************************************************************************** | 7934 | /*************************************************************************** |
7214 | * | 7935 | * |
7215 | * Enables PCI-Express master access. | 7936 | * Enables PCI-Express master access. |
@@ -7219,6 +7940,7 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw) | |||
7219 | * returns: - none. | 7940 | * returns: - none. |
7220 | * | 7941 | * |
7221 | ***************************************************************************/ | 7942 | ***************************************************************************/ |
7943 | #if 0 | ||
7222 | void | 7944 | void |
7223 | e1000_enable_pciex_master(struct e1000_hw *hw) | 7945 | e1000_enable_pciex_master(struct e1000_hw *hw) |
7224 | { | 7946 | { |
@@ -7299,8 +8021,10 @@ e1000_get_auto_rd_done(struct e1000_hw *hw) | |||
7299 | case e1000_82572: | 8021 | case e1000_82572: |
7300 | case e1000_82573: | 8022 | case e1000_82573: |
7301 | case e1000_80003es2lan: | 8023 | case e1000_80003es2lan: |
7302 | while(timeout) { | 8024 | case e1000_ich8lan: |
7303 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; | 8025 | while (timeout) { |
8026 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) | ||
8027 | break; | ||
7304 | else msec_delay(1); | 8028 | else msec_delay(1); |
7305 | timeout--; | 8029 | timeout--; |
7306 | } | 8030 | } |
@@ -7340,7 +8064,7 @@ e1000_get_phy_cfg_done(struct e1000_hw *hw) | |||
7340 | 8064 | ||
7341 | switch (hw->mac_type) { | 8065 | switch (hw->mac_type) { |
7342 | default: | 8066 | default: |
7343 | msec_delay(10); | 8067 | msec_delay_irq(10); |
7344 | break; | 8068 | break; |
7345 | case e1000_80003es2lan: | 8069 | case e1000_80003es2lan: |
7346 | /* Separate *_CFG_DONE_* bit for each port */ | 8070 | /* Separate *_CFG_DONE_* bit for each port */ |
@@ -7457,7 +8181,7 @@ e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | |||
7457 | * E1000_SUCCESS at any other case. | 8181 | * E1000_SUCCESS at any other case. |
7458 | * | 8182 | * |
7459 | ***************************************************************************/ | 8183 | ***************************************************************************/ |
7460 | int32_t | 8184 | static int32_t |
7461 | e1000_get_software_semaphore(struct e1000_hw *hw) | 8185 | e1000_get_software_semaphore(struct e1000_hw *hw) |
7462 | { | 8186 | { |
7463 | int32_t timeout = hw->eeprom.word_size + 1; | 8187 | int32_t timeout = hw->eeprom.word_size + 1; |
@@ -7492,7 +8216,7 @@ e1000_get_software_semaphore(struct e1000_hw *hw) | |||
7492 | * hw: Struct containing variables accessed by shared code | 8216 | * hw: Struct containing variables accessed by shared code |
7493 | * | 8217 | * |
7494 | ***************************************************************************/ | 8218 | ***************************************************************************/ |
7495 | void | 8219 | static void |
7496 | e1000_release_software_semaphore(struct e1000_hw *hw) | 8220 | e1000_release_software_semaphore(struct e1000_hw *hw) |
7497 | { | 8221 | { |
7498 | uint32_t swsm; | 8222 | uint32_t swsm; |
@@ -7523,6 +8247,13 @@ int32_t | |||
7523 | e1000_check_phy_reset_block(struct e1000_hw *hw) | 8247 | e1000_check_phy_reset_block(struct e1000_hw *hw) |
7524 | { | 8248 | { |
7525 | uint32_t manc = 0; | 8249 | uint32_t manc = 0; |
8250 | uint32_t fwsm = 0; | ||
8251 | |||
8252 | if (hw->mac_type == e1000_ich8lan) { | ||
8253 | fwsm = E1000_READ_REG(hw, FWSM); | ||
8254 | return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS | ||
8255 | : E1000_BLK_PHY_RESET; | ||
8256 | } | ||
7526 | 8257 | ||
7527 | if (hw->mac_type > e1000_82547_rev_2) | 8258 | if (hw->mac_type > e1000_82547_rev_2) |
7528 | manc = E1000_READ_REG(hw, MANC); | 8259 | manc = E1000_READ_REG(hw, MANC); |
@@ -7549,6 +8280,8 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) | |||
7549 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) | 8280 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) |
7550 | return TRUE; | 8281 | return TRUE; |
7551 | break; | 8282 | break; |
8283 | case e1000_ich8lan: | ||
8284 | return TRUE; | ||
7552 | default: | 8285 | default: |
7553 | break; | 8286 | break; |
7554 | } | 8287 | } |
@@ -7556,4 +8289,854 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) | |||
7556 | } | 8289 | } |
7557 | 8290 | ||
7558 | 8291 | ||
8292 | /****************************************************************************** | ||
8293 | * Configure PCI-Ex no-snoop | ||
8294 | * | ||
8295 | * hw - Struct containing variables accessed by shared code. | ||
8296 | * no_snoop - Bitmap of no-snoop events. | ||
8297 | * | ||
8298 | * returns: E1000_SUCCESS | ||
8299 | * | ||
8300 | *****************************************************************************/ | ||
8301 | static int32_t | ||
8302 | e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop) | ||
8303 | { | ||
8304 | uint32_t gcr_reg = 0; | ||
8305 | |||
8306 | DEBUGFUNC("e1000_set_pci_ex_no_snoop"); | ||
8307 | |||
8308 | if (hw->bus_type == e1000_bus_type_unknown) | ||
8309 | e1000_get_bus_info(hw); | ||
8310 | |||
8311 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
8312 | return E1000_SUCCESS; | ||
8313 | |||
8314 | if (no_snoop) { | ||
8315 | gcr_reg = E1000_READ_REG(hw, GCR); | ||
8316 | gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); | ||
8317 | gcr_reg |= no_snoop; | ||
8318 | E1000_WRITE_REG(hw, GCR, gcr_reg); | ||
8319 | } | ||
8320 | if (hw->mac_type == e1000_ich8lan) { | ||
8321 | uint32_t ctrl_ext; | ||
8322 | |||
8323 | E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); | ||
8324 | |||
8325 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
8326 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | ||
8327 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
8328 | } | ||
8329 | |||
8330 | return E1000_SUCCESS; | ||
8331 | } | ||
8332 | |||
8333 | /*************************************************************************** | ||
8334 | * | ||
8335 | * Get software semaphore FLAG bit (SWFLAG). | ||
8336 | * SWFLAG is used to synchronize the access to all shared resource between | ||
8337 | * SW, FW and HW. | ||
8338 | * | ||
8339 | * hw: Struct containing variables accessed by shared code | ||
8340 | * | ||
8341 | ***************************************************************************/ | ||
8342 | static int32_t | ||
8343 | e1000_get_software_flag(struct e1000_hw *hw) | ||
8344 | { | ||
8345 | int32_t timeout = PHY_CFG_TIMEOUT; | ||
8346 | uint32_t extcnf_ctrl; | ||
8347 | |||
8348 | DEBUGFUNC("e1000_get_software_flag"); | ||
8349 | |||
8350 | if (hw->mac_type == e1000_ich8lan) { | ||
8351 | while (timeout) { | ||
8352 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
8353 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | ||
8354 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | ||
8355 | |||
8356 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
8357 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | ||
8358 | break; | ||
8359 | msec_delay_irq(1); | ||
8360 | timeout--; | ||
8361 | } | ||
8362 | |||
8363 | if (!timeout) { | ||
8364 | DEBUGOUT("FW or HW locks the resource too long.\n"); | ||
8365 | return -E1000_ERR_CONFIG; | ||
8366 | } | ||
8367 | } | ||
8368 | |||
8369 | return E1000_SUCCESS; | ||
8370 | } | ||
8371 | |||
8372 | /*************************************************************************** | ||
8373 | * | ||
8374 | * Release software semaphore FLAG bit (SWFLAG). | ||
8375 | * SWFLAG is used to synchronize the access to all shared resource between | ||
8376 | * SW, FW and HW. | ||
8377 | * | ||
8378 | * hw: Struct containing variables accessed by shared code | ||
8379 | * | ||
8380 | ***************************************************************************/ | ||
8381 | static void | ||
8382 | e1000_release_software_flag(struct e1000_hw *hw) | ||
8383 | { | ||
8384 | uint32_t extcnf_ctrl; | ||
8385 | |||
8386 | DEBUGFUNC("e1000_release_software_flag"); | ||
8387 | |||
8388 | if (hw->mac_type == e1000_ich8lan) { | ||
8389 | extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); | ||
8390 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | ||
8391 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | ||
8392 | } | ||
8393 | |||
8394 | return; | ||
8395 | } | ||
8396 | |||
8397 | /*************************************************************************** | ||
8398 | * | ||
8399 | * Disable dynamic power down mode in ife PHY. | ||
8400 | * It can be used to workaround band-gap problem. | ||
8401 | * | ||
8402 | * hw: Struct containing variables accessed by shared code | ||
8403 | * | ||
8404 | ***************************************************************************/ | ||
8405 | #if 0 | ||
8406 | int32_t | ||
8407 | e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw) | ||
8408 | { | ||
8409 | uint16_t phy_data; | ||
8410 | int32_t ret_val = E1000_SUCCESS; | ||
8411 | |||
8412 | DEBUGFUNC("e1000_ife_disable_dynamic_power_down"); | ||
8413 | |||
8414 | if (hw->phy_type == e1000_phy_ife) { | ||
8415 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
8416 | if (ret_val) | ||
8417 | return ret_val; | ||
8418 | |||
8419 | phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; | ||
8420 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); | ||
8421 | } | ||
8422 | |||
8423 | return ret_val; | ||
8424 | } | ||
8425 | #endif /* 0 */ | ||
8426 | |||
8427 | /*************************************************************************** | ||
8428 | * | ||
8429 | * Enable dynamic power down mode in ife PHY. | ||
8430 | * It can be used to workaround band-gap problem. | ||
8431 | * | ||
8432 | * hw: Struct containing variables accessed by shared code | ||
8433 | * | ||
8434 | ***************************************************************************/ | ||
8435 | #if 0 | ||
8436 | int32_t | ||
8437 | e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw) | ||
8438 | { | ||
8439 | uint16_t phy_data; | ||
8440 | int32_t ret_val = E1000_SUCCESS; | ||
8441 | |||
8442 | DEBUGFUNC("e1000_ife_enable_dynamic_power_down"); | ||
8443 | |||
8444 | if (hw->phy_type == e1000_phy_ife) { | ||
8445 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
8446 | if (ret_val) | ||
8447 | return ret_val; | ||
8448 | |||
8449 | phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; | ||
8450 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); | ||
8451 | } | ||
8452 | |||
8453 | return ret_val; | ||
8454 | } | ||
8455 | #endif /* 0 */ | ||
8456 | |||
8457 | /****************************************************************************** | ||
8458 | * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access | ||
8459 | * register. | ||
8460 | * | ||
8461 | * hw - Struct containing variables accessed by shared code | ||
8462 | * offset - offset of word in the EEPROM to read | ||
8463 | * data - word read from the EEPROM | ||
8464 | * words - number of words to read | ||
8465 | *****************************************************************************/ | ||
8466 | static int32_t | ||
8467 | e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, | ||
8468 | uint16_t *data) | ||
8469 | { | ||
8470 | int32_t error = E1000_SUCCESS; | ||
8471 | uint32_t flash_bank = 0; | ||
8472 | uint32_t act_offset = 0; | ||
8473 | uint32_t bank_offset = 0; | ||
8474 | uint16_t word = 0; | ||
8475 | uint16_t i = 0; | ||
8476 | |||
8477 | /* We need to know which is the valid flash bank. In the event | ||
8478 | * that we didn't allocate eeprom_shadow_ram, we may not be | ||
8479 | * managing flash_bank. So it cannot be trusted and needs | ||
8480 | * to be updated with each read. | ||
8481 | */ | ||
8482 | /* Value of bit 22 corresponds to the flash bank we're on. */ | ||
8483 | flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; | ||
8484 | |||
8485 | /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ | ||
8486 | bank_offset = flash_bank * (hw->flash_bank_size * 2); | ||
8487 | |||
8488 | error = e1000_get_software_flag(hw); | ||
8489 | if (error != E1000_SUCCESS) | ||
8490 | return error; | ||
8491 | |||
8492 | for (i = 0; i < words; i++) { | ||
8493 | if (hw->eeprom_shadow_ram != NULL && | ||
8494 | hw->eeprom_shadow_ram[offset+i].modified == TRUE) { | ||
8495 | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | ||
8496 | } else { | ||
8497 | /* The NVM part needs a byte offset, hence * 2 */ | ||
8498 | act_offset = bank_offset + ((offset + i) * 2); | ||
8499 | error = e1000_read_ich8_word(hw, act_offset, &word); | ||
8500 | if (error != E1000_SUCCESS) | ||
8501 | break; | ||
8502 | data[i] = word; | ||
8503 | } | ||
8504 | } | ||
8505 | |||
8506 | e1000_release_software_flag(hw); | ||
8507 | |||
8508 | return error; | ||
8509 | } | ||
8510 | |||
8511 | /****************************************************************************** | ||
8512 | * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access | ||
8513 | * register. Actually, writes are written to the shadow ram cache in the hw | ||
8514 | * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to | ||
8515 | * the NVM, which occurs when the NVM checksum is updated. | ||
8516 | * | ||
8517 | * hw - Struct containing variables accessed by shared code | ||
8518 | * offset - offset of word in the EEPROM to write | ||
8519 | * words - number of words to write | ||
8520 | * data - words to write to the EEPROM | ||
8521 | *****************************************************************************/ | ||
8522 | static int32_t | ||
8523 | e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, | ||
8524 | uint16_t *data) | ||
8525 | { | ||
8526 | uint32_t i = 0; | ||
8527 | int32_t error = E1000_SUCCESS; | ||
8528 | |||
8529 | error = e1000_get_software_flag(hw); | ||
8530 | if (error != E1000_SUCCESS) | ||
8531 | return error; | ||
8532 | |||
8533 | /* A driver can write to the NVM only if it has eeprom_shadow_ram | ||
8534 | * allocated. Subsequent reads to the modified words are read from | ||
8535 | * this cached structure as well. Writes will only go into this | ||
8536 | * cached structure unless it's followed by a call to | ||
8537 | * e1000_update_eeprom_checksum() where it will commit the changes | ||
8538 | * and clear the "modified" field. | ||
8539 | */ | ||
8540 | if (hw->eeprom_shadow_ram != NULL) { | ||
8541 | for (i = 0; i < words; i++) { | ||
8542 | if ((offset + i) < E1000_SHADOW_RAM_WORDS) { | ||
8543 | hw->eeprom_shadow_ram[offset+i].modified = TRUE; | ||
8544 | hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; | ||
8545 | } else { | ||
8546 | error = -E1000_ERR_EEPROM; | ||
8547 | break; | ||
8548 | } | ||
8549 | } | ||
8550 | } else { | ||
8551 | /* Drivers have the option to not allocate eeprom_shadow_ram as long | ||
8552 | * as they don't perform any NVM writes. An attempt in doing so | ||
8553 | * will result in this error. | ||
8554 | */ | ||
8555 | error = -E1000_ERR_EEPROM; | ||
8556 | } | ||
8557 | |||
8558 | e1000_release_software_flag(hw); | ||
8559 | |||
8560 | return error; | ||
8561 | } | ||
8562 | |||
8563 | /****************************************************************************** | ||
8564 | * This function does initial flash setup so that a new read/write/erase cycle | ||
8565 | * can be started. | ||
8566 | * | ||
8567 | * hw - The pointer to the hw structure | ||
8568 | ****************************************************************************/ | ||
8569 | static int32_t | ||
8570 | e1000_ich8_cycle_init(struct e1000_hw *hw) | ||
8571 | { | ||
8572 | union ich8_hws_flash_status hsfsts; | ||
8573 | int32_t error = E1000_ERR_EEPROM; | ||
8574 | int32_t i = 0; | ||
8575 | |||
8576 | DEBUGFUNC("e1000_ich8_cycle_init"); | ||
8577 | |||
8578 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8579 | |||
8580 | /* May be check the Flash Des Valid bit in Hw status */ | ||
8581 | if (hsfsts.hsf_status.fldesvalid == 0) { | ||
8582 | DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); | ||
8583 | return error; | ||
8584 | } | ||
8585 | |||
8586 | /* Clear FCERR in Hw status by writing 1 */ | ||
8587 | /* Clear DAEL in Hw status by writing a 1 */ | ||
8588 | hsfsts.hsf_status.flcerr = 1; | ||
8589 | hsfsts.hsf_status.dael = 1; | ||
8590 | |||
8591 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); | ||
8592 | |||
8593 | /* Either we should have a hardware SPI cycle in progress bit to check | ||
8594 | * against, in order to start a new cycle or FDONE bit should be changed | ||
8595 | * in the hardware so that it is 1 after harware reset, which can then be | ||
8596 | * used as an indication whether a cycle is in progress or has been | ||
8597 | * completed .. we should also have some software semaphore mechanism to | ||
8598 | * guard FDONE or the cycle in progress bit so that two threads access to | ||
8599 | * those bits can be sequentiallized or a way so that 2 threads dont | ||
8600 | * start the cycle at the same time */ | ||
8601 | |||
8602 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
8603 | /* There is no cycle running at present, so we can start a cycle */ | ||
8604 | /* Begin by setting Flash Cycle Done. */ | ||
8605 | hsfsts.hsf_status.flcdone = 1; | ||
8606 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); | ||
8607 | error = E1000_SUCCESS; | ||
8608 | } else { | ||
8609 | /* otherwise poll for sometime so the current cycle has a chance | ||
8610 | * to end before giving up. */ | ||
8611 | for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) { | ||
8612 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8613 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
8614 | error = E1000_SUCCESS; | ||
8615 | break; | ||
8616 | } | ||
8617 | udelay(1); | ||
8618 | } | ||
8619 | if (error == E1000_SUCCESS) { | ||
8620 | /* Successful in waiting for previous cycle to timeout, | ||
8621 | * now set the Flash Cycle Done. */ | ||
8622 | hsfsts.hsf_status.flcdone = 1; | ||
8623 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); | ||
8624 | } else { | ||
8625 | DEBUGOUT("Flash controller busy, cannot get access"); | ||
8626 | } | ||
8627 | } | ||
8628 | return error; | ||
8629 | } | ||
8630 | |||
8631 | /****************************************************************************** | ||
8632 | * This function starts a flash cycle and waits for its completion | ||
8633 | * | ||
8634 | * hw - The pointer to the hw structure | ||
8635 | ****************************************************************************/ | ||
8636 | static int32_t | ||
8637 | e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout) | ||
8638 | { | ||
8639 | union ich8_hws_flash_ctrl hsflctl; | ||
8640 | union ich8_hws_flash_status hsfsts; | ||
8641 | int32_t error = E1000_ERR_EEPROM; | ||
8642 | uint32_t i = 0; | ||
8643 | |||
8644 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | ||
8645 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
8646 | hsflctl.hsf_ctrl.flcgo = 1; | ||
8647 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
8648 | |||
8649 | /* wait till FDONE bit is set to 1 */ | ||
8650 | do { | ||
8651 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8652 | if (hsfsts.hsf_status.flcdone == 1) | ||
8653 | break; | ||
8654 | udelay(1); | ||
8655 | i++; | ||
8656 | } while (i < timeout); | ||
8657 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { | ||
8658 | error = E1000_SUCCESS; | ||
8659 | } | ||
8660 | return error; | ||
8661 | } | ||
8662 | |||
8663 | /****************************************************************************** | ||
8664 | * Reads a byte or word from the NVM using the ICH8 flash access registers. | ||
8665 | * | ||
8666 | * hw - The pointer to the hw structure | ||
8667 | * index - The index of the byte or word to read. | ||
8668 | * size - Size of data to read, 1=byte 2=word | ||
8669 | * data - Pointer to the word to store the value read. | ||
8670 | *****************************************************************************/ | ||
8671 | static int32_t | ||
8672 | e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, | ||
8673 | uint32_t size, uint16_t* data) | ||
8674 | { | ||
8675 | union ich8_hws_flash_status hsfsts; | ||
8676 | union ich8_hws_flash_ctrl hsflctl; | ||
8677 | uint32_t flash_linear_address; | ||
8678 | uint32_t flash_data = 0; | ||
8679 | int32_t error = -E1000_ERR_EEPROM; | ||
8680 | int32_t count = 0; | ||
8681 | |||
8682 | DEBUGFUNC("e1000_read_ich8_data"); | ||
8683 | |||
8684 | if (size < 1 || size > 2 || data == 0x0 || | ||
8685 | index > ICH8_FLASH_LINEAR_ADDR_MASK) | ||
8686 | return error; | ||
8687 | |||
8688 | flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + | ||
8689 | hw->flash_base_addr; | ||
8690 | |||
8691 | do { | ||
8692 | udelay(1); | ||
8693 | /* Steps */ | ||
8694 | error = e1000_ich8_cycle_init(hw); | ||
8695 | if (error != E1000_SUCCESS) | ||
8696 | break; | ||
8697 | |||
8698 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
8699 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
8700 | hsflctl.hsf_ctrl.fldbcount = size - 1; | ||
8701 | hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ; | ||
8702 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
8703 | |||
8704 | /* Write the last 24 bits of index into Flash Linear address field in | ||
8705 | * Flash Address */ | ||
8706 | /* TODO: TBD maybe check the index against the size of flash */ | ||
8707 | |||
8708 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); | ||
8709 | |||
8710 | error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); | ||
8711 | |||
8712 | /* Check if FCERR is set to 1, if set to 1, clear it and try the whole | ||
8713 | * sequence a few more times, else read in (shift in) the Flash Data0, | ||
8714 | * the order is least significant byte first msb to lsb */ | ||
8715 | if (error == E1000_SUCCESS) { | ||
8716 | flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0); | ||
8717 | if (size == 1) { | ||
8718 | *data = (uint8_t)(flash_data & 0x000000FF); | ||
8719 | } else if (size == 2) { | ||
8720 | *data = (uint16_t)(flash_data & 0x0000FFFF); | ||
8721 | } | ||
8722 | break; | ||
8723 | } else { | ||
8724 | /* If we've gotten here, then things are probably completely hosed, | ||
8725 | * but if the error condition is detected, it won't hurt to give | ||
8726 | * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. | ||
8727 | */ | ||
8728 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8729 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8730 | /* Repeat for some time before giving up. */ | ||
8731 | continue; | ||
8732 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8733 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
8734 | break; | ||
8735 | } | ||
8736 | } | ||
8737 | } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); | ||
8738 | |||
8739 | return error; | ||
8740 | } | ||
8741 | |||
8742 | /****************************************************************************** | ||
8743 | * Writes One /two bytes to the NVM using the ICH8 flash access registers. | ||
8744 | * | ||
8745 | * hw - The pointer to the hw structure | ||
8746 | * index - The index of the byte/word to read. | ||
8747 | * size - Size of data to read, 1=byte 2=word | ||
8748 | * data - The byte(s) to write to the NVM. | ||
8749 | *****************************************************************************/ | ||
8750 | static int32_t | ||
8751 | e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, | ||
8752 | uint16_t data) | ||
8753 | { | ||
8754 | union ich8_hws_flash_status hsfsts; | ||
8755 | union ich8_hws_flash_ctrl hsflctl; | ||
8756 | uint32_t flash_linear_address; | ||
8757 | uint32_t flash_data = 0; | ||
8758 | int32_t error = -E1000_ERR_EEPROM; | ||
8759 | int32_t count = 0; | ||
8760 | |||
8761 | DEBUGFUNC("e1000_write_ich8_data"); | ||
8762 | |||
8763 | if (size < 1 || size > 2 || data > size * 0xff || | ||
8764 | index > ICH8_FLASH_LINEAR_ADDR_MASK) | ||
8765 | return error; | ||
8766 | |||
8767 | flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + | ||
8768 | hw->flash_base_addr; | ||
8769 | |||
8770 | do { | ||
8771 | udelay(1); | ||
8772 | /* Steps */ | ||
8773 | error = e1000_ich8_cycle_init(hw); | ||
8774 | if (error != E1000_SUCCESS) | ||
8775 | break; | ||
8776 | |||
8777 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
8778 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
8779 | hsflctl.hsf_ctrl.fldbcount = size -1; | ||
8780 | hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE; | ||
8781 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
8782 | |||
8783 | /* Write the last 24 bits of index into Flash Linear address field in | ||
8784 | * Flash Address */ | ||
8785 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); | ||
8786 | |||
8787 | if (size == 1) | ||
8788 | flash_data = (uint32_t)data & 0x00FF; | ||
8789 | else | ||
8790 | flash_data = (uint32_t)data; | ||
8791 | |||
8792 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data); | ||
8793 | |||
8794 | /* check if FCERR is set to 1 , if set to 1, clear it and try the whole | ||
8795 | * sequence a few more times else done */ | ||
8796 | error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); | ||
8797 | if (error == E1000_SUCCESS) { | ||
8798 | break; | ||
8799 | } else { | ||
8800 | /* If we're here, then things are most likely completely hosed, | ||
8801 | * but if the error condition is detected, it won't hurt to give | ||
8802 | * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. | ||
8803 | */ | ||
8804 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8805 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8806 | /* Repeat for some time before giving up. */ | ||
8807 | continue; | ||
8808 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8809 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
8810 | break; | ||
8811 | } | ||
8812 | } | ||
8813 | } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); | ||
8814 | |||
8815 | return error; | ||
8816 | } | ||
8817 | |||
8818 | /****************************************************************************** | ||
8819 | * Reads a single byte from the NVM using the ICH8 flash access registers. | ||
8820 | * | ||
8821 | * hw - pointer to e1000_hw structure | ||
8822 | * index - The index of the byte to read. | ||
8823 | * data - Pointer to a byte to store the value read. | ||
8824 | *****************************************************************************/ | ||
8825 | static int32_t | ||
8826 | e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data) | ||
8827 | { | ||
8828 | int32_t status = E1000_SUCCESS; | ||
8829 | uint16_t word = 0; | ||
8830 | |||
8831 | status = e1000_read_ich8_data(hw, index, 1, &word); | ||
8832 | if (status == E1000_SUCCESS) { | ||
8833 | *data = (uint8_t)word; | ||
8834 | } | ||
8835 | |||
8836 | return status; | ||
8837 | } | ||
8838 | |||
8839 | /****************************************************************************** | ||
8840 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
8841 | * Performs verification by reading back the value and then going through | ||
8842 | * a retry algorithm before giving up. | ||
8843 | * | ||
8844 | * hw - pointer to e1000_hw structure | ||
8845 | * index - The index of the byte to write. | ||
8846 | * byte - The byte to write to the NVM. | ||
8847 | *****************************************************************************/ | ||
8848 | static int32_t | ||
8849 | e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte) | ||
8850 | { | ||
8851 | int32_t error = E1000_SUCCESS; | ||
8852 | int32_t program_retries; | ||
8853 | uint8_t temp_byte; | ||
8854 | |||
8855 | e1000_write_ich8_byte(hw, index, byte); | ||
8856 | udelay(100); | ||
8857 | |||
8858 | for (program_retries = 0; program_retries < 100; program_retries++) { | ||
8859 | e1000_read_ich8_byte(hw, index, &temp_byte); | ||
8860 | if (temp_byte == byte) | ||
8861 | break; | ||
8862 | udelay(10); | ||
8863 | e1000_write_ich8_byte(hw, index, byte); | ||
8864 | udelay(100); | ||
8865 | } | ||
8866 | if (program_retries == 100) | ||
8867 | error = E1000_ERR_EEPROM; | ||
8868 | |||
8869 | return error; | ||
8870 | } | ||
8871 | |||
8872 | /****************************************************************************** | ||
8873 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
8874 | * | ||
8875 | * hw - pointer to e1000_hw structure | ||
8876 | * index - The index of the byte to read. | ||
8877 | * data - The byte to write to the NVM. | ||
8878 | *****************************************************************************/ | ||
8879 | static int32_t | ||
8880 | e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data) | ||
8881 | { | ||
8882 | int32_t status = E1000_SUCCESS; | ||
8883 | uint16_t word = (uint16_t)data; | ||
8884 | |||
8885 | status = e1000_write_ich8_data(hw, index, 1, word); | ||
8886 | |||
8887 | return status; | ||
8888 | } | ||
8889 | |||
8890 | /****************************************************************************** | ||
8891 | * Reads a word from the NVM using the ICH8 flash access registers. | ||
8892 | * | ||
8893 | * hw - pointer to e1000_hw structure | ||
8894 | * index - The starting byte index of the word to read. | ||
8895 | * data - Pointer to a word to store the value read. | ||
8896 | *****************************************************************************/ | ||
8897 | static int32_t | ||
8898 | e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data) | ||
8899 | { | ||
8900 | int32_t status = E1000_SUCCESS; | ||
8901 | status = e1000_read_ich8_data(hw, index, 2, data); | ||
8902 | return status; | ||
8903 | } | ||
8904 | |||
8905 | /****************************************************************************** | ||
8906 | * Writes a word to the NVM using the ICH8 flash access registers. | ||
8907 | * | ||
8908 | * hw - pointer to e1000_hw structure | ||
8909 | * index - The starting byte index of the word to read. | ||
8910 | * data - The word to write to the NVM. | ||
8911 | *****************************************************************************/ | ||
8912 | #if 0 | ||
8913 | int32_t | ||
8914 | e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data) | ||
8915 | { | ||
8916 | int32_t status = E1000_SUCCESS; | ||
8917 | status = e1000_write_ich8_data(hw, index, 2, data); | ||
8918 | return status; | ||
8919 | } | ||
8920 | #endif /* 0 */ | ||
8921 | |||
8922 | /****************************************************************************** | ||
8923 | * Erases the bank specified. Each bank is a 4k block. Segments are 0 based. | ||
8924 | * segment N is 4096 * N + flash_reg_addr. | ||
8925 | * | ||
8926 | * hw - pointer to e1000_hw structure | ||
8927 | * segment - 0 for first segment, 1 for second segment, etc. | ||
8928 | *****************************************************************************/ | ||
8929 | static int32_t | ||
8930 | e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment) | ||
8931 | { | ||
8932 | union ich8_hws_flash_status hsfsts; | ||
8933 | union ich8_hws_flash_ctrl hsflctl; | ||
8934 | uint32_t flash_linear_address; | ||
8935 | int32_t count = 0; | ||
8936 | int32_t error = E1000_ERR_EEPROM; | ||
8937 | int32_t iteration, seg_size; | ||
8938 | int32_t sector_size; | ||
8939 | int32_t j = 0; | ||
8940 | int32_t error_flag = 0; | ||
8941 | |||
8942 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8943 | |||
8944 | /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ | ||
8945 | /* 00: The Hw sector is 256 bytes, hence we need to erase 16 | ||
8946 | * consecutive sectors. The start index for the nth Hw sector can be | ||
8947 | * calculated as = segment * 4096 + n * 256 | ||
8948 | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | ||
8949 | * The start index for the nth Hw sector can be calculated | ||
8950 | * as = segment * 4096 | ||
8951 | * 10: Error condition | ||
8952 | * 11: The Hw sector size is much bigger than the size asked to | ||
8953 | * erase...error condition */ | ||
8954 | if (hsfsts.hsf_status.berasesz == 0x0) { | ||
8955 | /* Hw sector size 256 */ | ||
8956 | sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256; | ||
8957 | iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256; | ||
8958 | } else if (hsfsts.hsf_status.berasesz == 0x1) { | ||
8959 | sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K; | ||
8960 | iteration = 1; | ||
8961 | } else if (hsfsts.hsf_status.berasesz == 0x3) { | ||
8962 | sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K; | ||
8963 | iteration = 1; | ||
8964 | } else { | ||
8965 | return error; | ||
8966 | } | ||
8967 | |||
8968 | for (j = 0; j < iteration ; j++) { | ||
8969 | do { | ||
8970 | count++; | ||
8971 | /* Steps */ | ||
8972 | error = e1000_ich8_cycle_init(hw); | ||
8973 | if (error != E1000_SUCCESS) { | ||
8974 | error_flag = 1; | ||
8975 | break; | ||
8976 | } | ||
8977 | |||
8978 | /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash | ||
8979 | * Control */ | ||
8980 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
8981 | hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE; | ||
8982 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
8983 | |||
8984 | /* Write the last 24 bits of an index within the block into Flash | ||
8985 | * Linear address field in Flash Address. This probably needs to | ||
8986 | * be calculated here based off the on-chip segment size and the | ||
8987 | * software segment size assumed (4K) */ | ||
8988 | /* TBD */ | ||
8989 | flash_linear_address = segment * sector_size + j * seg_size; | ||
8990 | flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK; | ||
8991 | flash_linear_address += hw->flash_base_addr; | ||
8992 | |||
8993 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); | ||
8994 | |||
8995 | error = e1000_ich8_flash_cycle(hw, 1000000); | ||
8996 | /* Check if FCERR is set to 1. If 1, clear it and try the whole | ||
8997 | * sequence a few more times else Done */ | ||
8998 | if (error == E1000_SUCCESS) { | ||
8999 | break; | ||
9000 | } else { | ||
9001 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
9002 | if (hsfsts.hsf_status.flcerr == 1) { | ||
9003 | /* repeat for some time before giving up */ | ||
9004 | continue; | ||
9005 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
9006 | error_flag = 1; | ||
9007 | break; | ||
9008 | } | ||
9009 | } | ||
9010 | } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); | ||
9011 | if (error_flag == 1) | ||
9012 | break; | ||
9013 | } | ||
9014 | if (error_flag != 1) | ||
9015 | error = E1000_SUCCESS; | ||
9016 | return error; | ||
9017 | } | ||
9018 | |||
9019 | /****************************************************************************** | ||
9020 | * | ||
9021 | * Reverse duplex setting without breaking the link. | ||
9022 | * | ||
9023 | * hw: Struct containing variables accessed by shared code | ||
9024 | * | ||
9025 | *****************************************************************************/ | ||
9026 | #if 0 | ||
9027 | int32_t | ||
9028 | e1000_duplex_reversal(struct e1000_hw *hw) | ||
9029 | { | ||
9030 | int32_t ret_val; | ||
9031 | uint16_t phy_data; | ||
9032 | |||
9033 | if (hw->phy_type != e1000_phy_igp_3) | ||
9034 | return E1000_SUCCESS; | ||
9035 | |||
9036 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
9037 | if (ret_val) | ||
9038 | return ret_val; | ||
9039 | |||
9040 | phy_data ^= MII_CR_FULL_DUPLEX; | ||
9041 | |||
9042 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
9043 | if (ret_val) | ||
9044 | return ret_val; | ||
9045 | |||
9046 | ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data); | ||
9047 | if (ret_val) | ||
9048 | return ret_val; | ||
9049 | |||
9050 | phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET; | ||
9051 | ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data); | ||
9052 | |||
9053 | return ret_val; | ||
9054 | } | ||
9055 | #endif /* 0 */ | ||
9056 | |||
9057 | static int32_t | ||
9058 | e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, | ||
9059 | uint32_t cnf_base_addr, uint32_t cnf_size) | ||
9060 | { | ||
9061 | uint32_t ret_val = E1000_SUCCESS; | ||
9062 | uint16_t word_addr, reg_data, reg_addr; | ||
9063 | uint16_t i; | ||
9064 | |||
9065 | /* cnf_base_addr is in DWORD */ | ||
9066 | word_addr = (uint16_t)(cnf_base_addr << 1); | ||
9067 | |||
9068 | /* cnf_size is returned in size of dwords */ | ||
9069 | for (i = 0; i < cnf_size; i++) { | ||
9070 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); | ||
9071 | if (ret_val) | ||
9072 | return ret_val; | ||
9073 | |||
9074 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); | ||
9075 | if (ret_val) | ||
9076 | return ret_val; | ||
9077 | |||
9078 | ret_val = e1000_get_software_flag(hw); | ||
9079 | if (ret_val != E1000_SUCCESS) | ||
9080 | return ret_val; | ||
9081 | |||
9082 | ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); | ||
9083 | |||
9084 | e1000_release_software_flag(hw); | ||
9085 | } | ||
9086 | |||
9087 | return ret_val; | ||
9088 | } | ||
9089 | |||
9090 | |||
9091 | static int32_t | ||
9092 | e1000_init_lcd_from_nvm(struct e1000_hw *hw) | ||
9093 | { | ||
9094 | uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; | ||
9095 | |||
9096 | if (hw->phy_type != e1000_phy_igp_3) | ||
9097 | return E1000_SUCCESS; | ||
9098 | |||
9099 | /* Check if SW needs configure the PHY */ | ||
9100 | reg_data = E1000_READ_REG(hw, FEXTNVM); | ||
9101 | if (!(reg_data & FEXTNVM_SW_CONFIG)) | ||
9102 | return E1000_SUCCESS; | ||
9103 | |||
9104 | /* Wait for basic configuration completes before proceeding*/ | ||
9105 | loop = 0; | ||
9106 | do { | ||
9107 | reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; | ||
9108 | udelay(100); | ||
9109 | loop++; | ||
9110 | } while ((!reg_data) && (loop < 50)); | ||
9111 | |||
9112 | /* Clear the Init Done bit for the next init event */ | ||
9113 | reg_data = E1000_READ_REG(hw, STATUS); | ||
9114 | reg_data &= ~E1000_STATUS_LAN_INIT_DONE; | ||
9115 | E1000_WRITE_REG(hw, STATUS, reg_data); | ||
9116 | |||
9117 | /* Make sure HW does not configure LCD from PHY extended configuration | ||
9118 | before SW configuration */ | ||
9119 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
9120 | if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { | ||
9121 | reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); | ||
9122 | cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; | ||
9123 | cnf_size >>= 16; | ||
9124 | if (cnf_size) { | ||
9125 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
9126 | cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; | ||
9127 | /* cnf_base_addr is in DWORD */ | ||
9128 | cnf_base_addr >>= 16; | ||
9129 | |||
9130 | /* Configure LCD from extended configuration region. */ | ||
9131 | ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, | ||
9132 | cnf_size); | ||
9133 | if (ret_val) | ||
9134 | return ret_val; | ||
9135 | } | ||
9136 | } | ||
9137 | |||
9138 | return E1000_SUCCESS; | ||
9139 | } | ||
9140 | |||
9141 | |||
7559 | 9142 | ||
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h index 467c9ed944f8..375b95518c31 100644 --- a/drivers/net/e1000/e1000_hw.h +++ b/drivers/net/e1000/e1000_hw.h | |||
@@ -62,6 +62,7 @@ typedef enum { | |||
62 | e1000_82572, | 62 | e1000_82572, |
63 | e1000_82573, | 63 | e1000_82573, |
64 | e1000_80003es2lan, | 64 | e1000_80003es2lan, |
65 | e1000_ich8lan, | ||
65 | e1000_num_macs | 66 | e1000_num_macs |
66 | } e1000_mac_type; | 67 | } e1000_mac_type; |
67 | 68 | ||
@@ -70,6 +71,7 @@ typedef enum { | |||
70 | e1000_eeprom_spi, | 71 | e1000_eeprom_spi, |
71 | e1000_eeprom_microwire, | 72 | e1000_eeprom_microwire, |
72 | e1000_eeprom_flash, | 73 | e1000_eeprom_flash, |
74 | e1000_eeprom_ich8, | ||
73 | e1000_eeprom_none, /* No NVM support */ | 75 | e1000_eeprom_none, /* No NVM support */ |
74 | e1000_num_eeprom_types | 76 | e1000_num_eeprom_types |
75 | } e1000_eeprom_type; | 77 | } e1000_eeprom_type; |
@@ -98,6 +100,11 @@ typedef enum { | |||
98 | e1000_fc_default = 0xFF | 100 | e1000_fc_default = 0xFF |
99 | } e1000_fc_type; | 101 | } e1000_fc_type; |
100 | 102 | ||
103 | struct e1000_shadow_ram { | ||
104 | uint16_t eeprom_word; | ||
105 | boolean_t modified; | ||
106 | }; | ||
107 | |||
101 | /* PCI bus types */ | 108 | /* PCI bus types */ |
102 | typedef enum { | 109 | typedef enum { |
103 | e1000_bus_type_unknown = 0, | 110 | e1000_bus_type_unknown = 0, |
@@ -218,6 +225,8 @@ typedef enum { | |||
218 | e1000_phy_igp, | 225 | e1000_phy_igp, |
219 | e1000_phy_igp_2, | 226 | e1000_phy_igp_2, |
220 | e1000_phy_gg82563, | 227 | e1000_phy_gg82563, |
228 | e1000_phy_igp_3, | ||
229 | e1000_phy_ife, | ||
221 | e1000_phy_undefined = 0xFF | 230 | e1000_phy_undefined = 0xFF |
222 | } e1000_phy_type; | 231 | } e1000_phy_type; |
223 | 232 | ||
@@ -313,10 +322,9 @@ int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy | |||
313 | int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); | 322 | int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); |
314 | int32_t e1000_phy_hw_reset(struct e1000_hw *hw); | 323 | int32_t e1000_phy_hw_reset(struct e1000_hw *hw); |
315 | int32_t e1000_phy_reset(struct e1000_hw *hw); | 324 | int32_t e1000_phy_reset(struct e1000_hw *hw); |
325 | void e1000_phy_powerdown_workaround(struct e1000_hw *hw); | ||
316 | int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); | 326 | int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); |
317 | int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); | 327 | int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); |
318 | int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data); | ||
319 | int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); | ||
320 | 328 | ||
321 | /* EEPROM Functions */ | 329 | /* EEPROM Functions */ |
322 | int32_t e1000_init_eeprom_params(struct e1000_hw *hw); | 330 | int32_t e1000_init_eeprom_params(struct e1000_hw *hw); |
@@ -331,6 +339,7 @@ uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); | |||
331 | #define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ | 339 | #define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ |
332 | #define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ | 340 | #define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ |
333 | #define E1000_MNG_IAMT_MODE 0x3 | 341 | #define E1000_MNG_IAMT_MODE 0x3 |
342 | #define E1000_MNG_ICH_IAMT_MODE 0x2 | ||
334 | #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ | 343 | #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ |
335 | 344 | ||
336 | #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ | 345 | #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ |
@@ -386,11 +395,8 @@ int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw); | |||
386 | int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); | 395 | int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); |
387 | int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); | 396 | int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); |
388 | int32_t e1000_read_mac_addr(struct e1000_hw * hw); | 397 | int32_t e1000_read_mac_addr(struct e1000_hw * hw); |
389 | int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); | ||
390 | void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); | ||
391 | 398 | ||
392 | /* Filters (multicast, vlan, receive) */ | 399 | /* Filters (multicast, vlan, receive) */ |
393 | void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count); | ||
394 | uint32_t e1000_hash_mc_addr(struct e1000_hw *hw, uint8_t * mc_addr); | 400 | uint32_t e1000_hash_mc_addr(struct e1000_hw *hw, uint8_t * mc_addr); |
395 | void e1000_mta_set(struct e1000_hw *hw, uint32_t hash_value); | 401 | void e1000_mta_set(struct e1000_hw *hw, uint32_t hash_value); |
396 | void e1000_rar_set(struct e1000_hw *hw, uint8_t * mc_addr, uint32_t rar_index); | 402 | void e1000_rar_set(struct e1000_hw *hw, uint8_t * mc_addr, uint32_t rar_index); |
@@ -401,6 +407,7 @@ int32_t e1000_setup_led(struct e1000_hw *hw); | |||
401 | int32_t e1000_cleanup_led(struct e1000_hw *hw); | 407 | int32_t e1000_cleanup_led(struct e1000_hw *hw); |
402 | int32_t e1000_led_on(struct e1000_hw *hw); | 408 | int32_t e1000_led_on(struct e1000_hw *hw); |
403 | int32_t e1000_led_off(struct e1000_hw *hw); | 409 | int32_t e1000_led_off(struct e1000_hw *hw); |
410 | int32_t e1000_blink_led_start(struct e1000_hw *hw); | ||
404 | 411 | ||
405 | /* Adaptive IFS Functions */ | 412 | /* Adaptive IFS Functions */ |
406 | 413 | ||
@@ -414,15 +421,16 @@ void e1000_pci_clear_mwi(struct e1000_hw *hw); | |||
414 | void e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); | 421 | void e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); |
415 | void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); | 422 | void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); |
416 | /* Port I/O is only supported on 82544 and newer */ | 423 | /* Port I/O is only supported on 82544 and newer */ |
417 | uint32_t e1000_io_read(struct e1000_hw *hw, unsigned long port); | ||
418 | uint32_t e1000_read_reg_io(struct e1000_hw *hw, uint32_t offset); | ||
419 | void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value); | 424 | void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value); |
420 | void e1000_enable_pciex_master(struct e1000_hw *hw); | ||
421 | int32_t e1000_disable_pciex_master(struct e1000_hw *hw); | 425 | int32_t e1000_disable_pciex_master(struct e1000_hw *hw); |
422 | int32_t e1000_get_software_semaphore(struct e1000_hw *hw); | ||
423 | void e1000_release_software_semaphore(struct e1000_hw *hw); | ||
424 | int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | 426 | int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); |
425 | 427 | ||
428 | |||
429 | #define E1000_READ_REG_IO(a, reg) \ | ||
430 | e1000_read_reg_io((a), E1000_##reg) | ||
431 | #define E1000_WRITE_REG_IO(a, reg, val) \ | ||
432 | e1000_write_reg_io((a), E1000_##reg, val) | ||
433 | |||
426 | /* PCI Device IDs */ | 434 | /* PCI Device IDs */ |
427 | #define E1000_DEV_ID_82542 0x1000 | 435 | #define E1000_DEV_ID_82542 0x1000 |
428 | #define E1000_DEV_ID_82543GC_FIBER 0x1001 | 436 | #define E1000_DEV_ID_82543GC_FIBER 0x1001 |
@@ -446,6 +454,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | |||
446 | #define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D | 454 | #define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D |
447 | #define E1000_DEV_ID_82541EI 0x1013 | 455 | #define E1000_DEV_ID_82541EI 0x1013 |
448 | #define E1000_DEV_ID_82541EI_MOBILE 0x1018 | 456 | #define E1000_DEV_ID_82541EI_MOBILE 0x1018 |
457 | #define E1000_DEV_ID_82541ER_LOM 0x1014 | ||
449 | #define E1000_DEV_ID_82541ER 0x1078 | 458 | #define E1000_DEV_ID_82541ER 0x1078 |
450 | #define E1000_DEV_ID_82547GI 0x1075 | 459 | #define E1000_DEV_ID_82547GI 0x1075 |
451 | #define E1000_DEV_ID_82541GI 0x1076 | 460 | #define E1000_DEV_ID_82541GI 0x1076 |
@@ -457,18 +466,28 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | |||
457 | #define E1000_DEV_ID_82546GB_PCIE 0x108A | 466 | #define E1000_DEV_ID_82546GB_PCIE 0x108A |
458 | #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 | 467 | #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 |
459 | #define E1000_DEV_ID_82547EI 0x1019 | 468 | #define E1000_DEV_ID_82547EI 0x1019 |
469 | #define E1000_DEV_ID_82547EI_MOBILE 0x101A | ||
460 | #define E1000_DEV_ID_82571EB_COPPER 0x105E | 470 | #define E1000_DEV_ID_82571EB_COPPER 0x105E |
461 | #define E1000_DEV_ID_82571EB_FIBER 0x105F | 471 | #define E1000_DEV_ID_82571EB_FIBER 0x105F |
462 | #define E1000_DEV_ID_82571EB_SERDES 0x1060 | 472 | #define E1000_DEV_ID_82571EB_SERDES 0x1060 |
463 | #define E1000_DEV_ID_82572EI_COPPER 0x107D | 473 | #define E1000_DEV_ID_82572EI_COPPER 0x107D |
464 | #define E1000_DEV_ID_82572EI_FIBER 0x107E | 474 | #define E1000_DEV_ID_82572EI_FIBER 0x107E |
465 | #define E1000_DEV_ID_82572EI_SERDES 0x107F | 475 | #define E1000_DEV_ID_82572EI_SERDES 0x107F |
476 | #define E1000_DEV_ID_82572EI 0x10B9 | ||
466 | #define E1000_DEV_ID_82573E 0x108B | 477 | #define E1000_DEV_ID_82573E 0x108B |
467 | #define E1000_DEV_ID_82573E_IAMT 0x108C | 478 | #define E1000_DEV_ID_82573E_IAMT 0x108C |
468 | #define E1000_DEV_ID_82573L 0x109A | 479 | #define E1000_DEV_ID_82573L 0x109A |
469 | #define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 | 480 | #define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 |
470 | #define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 | 481 | #define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 |
471 | #define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 | 482 | #define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 |
483 | #define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA | ||
484 | #define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB | ||
485 | |||
486 | #define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 | ||
487 | #define E1000_DEV_ID_ICH8_IGP_AMT 0x104A | ||
488 | #define E1000_DEV_ID_ICH8_IGP_C 0x104B | ||
489 | #define E1000_DEV_ID_ICH8_IFE 0x104C | ||
490 | #define E1000_DEV_ID_ICH8_IGP_M 0x104D | ||
472 | 491 | ||
473 | 492 | ||
474 | #define NODE_ADDRESS_SIZE 6 | 493 | #define NODE_ADDRESS_SIZE 6 |
@@ -539,6 +558,14 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | |||
539 | E1000_IMS_RXSEQ | \ | 558 | E1000_IMS_RXSEQ | \ |
540 | E1000_IMS_LSC) | 559 | E1000_IMS_LSC) |
541 | 560 | ||
561 | /* Additional interrupts need to be handled for e1000_ich8lan: | ||
562 | DSW = The FW changed the status of the DISSW bit in FWSM | ||
563 | PHYINT = The LAN connected device generates an interrupt | ||
564 | EPRST = Manageability reset event */ | ||
565 | #define IMS_ICH8LAN_ENABLE_MASK (\ | ||
566 | E1000_IMS_DSW | \ | ||
567 | E1000_IMS_PHYINT | \ | ||
568 | E1000_IMS_EPRST) | ||
542 | 569 | ||
543 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address | 570 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address |
544 | * Registers) holds the directed and multicast addresses that we monitor. We | 571 | * Registers) holds the directed and multicast addresses that we monitor. We |
@@ -546,6 +573,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | |||
546 | * E1000_RAR_ENTRIES - 1 multicast addresses. | 573 | * E1000_RAR_ENTRIES - 1 multicast addresses. |
547 | */ | 574 | */ |
548 | #define E1000_RAR_ENTRIES 15 | 575 | #define E1000_RAR_ENTRIES 15 |
576 | #define E1000_RAR_ENTRIES_ICH8LAN 7 | ||
549 | 577 | ||
550 | #define MIN_NUMBER_OF_DESCRIPTORS 8 | 578 | #define MIN_NUMBER_OF_DESCRIPTORS 8 |
551 | #define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 | 579 | #define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 |
@@ -767,6 +795,9 @@ struct e1000_data_desc { | |||
767 | #define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ | 795 | #define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ |
768 | #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ | 796 | #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ |
769 | 797 | ||
798 | #define E1000_NUM_UNICAST_ICH8LAN 7 | ||
799 | #define E1000_MC_TBL_SIZE_ICH8LAN 32 | ||
800 | |||
770 | 801 | ||
771 | /* Receive Address Register */ | 802 | /* Receive Address Register */ |
772 | struct e1000_rar { | 803 | struct e1000_rar { |
@@ -776,6 +807,7 @@ struct e1000_rar { | |||
776 | 807 | ||
777 | /* Number of entries in the Multicast Table Array (MTA). */ | 808 | /* Number of entries in the Multicast Table Array (MTA). */ |
778 | #define E1000_NUM_MTA_REGISTERS 128 | 809 | #define E1000_NUM_MTA_REGISTERS 128 |
810 | #define E1000_NUM_MTA_REGISTERS_ICH8LAN 32 | ||
779 | 811 | ||
780 | /* IPv4 Address Table Entry */ | 812 | /* IPv4 Address Table Entry */ |
781 | struct e1000_ipv4_at_entry { | 813 | struct e1000_ipv4_at_entry { |
@@ -786,6 +818,7 @@ struct e1000_ipv4_at_entry { | |||
786 | /* Four wakeup IP addresses are supported */ | 818 | /* Four wakeup IP addresses are supported */ |
787 | #define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 | 819 | #define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 |
788 | #define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX | 820 | #define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX |
821 | #define E1000_IP4AT_SIZE_ICH8LAN 3 | ||
789 | #define E1000_IP6AT_SIZE 1 | 822 | #define E1000_IP6AT_SIZE 1 |
790 | 823 | ||
791 | /* IPv6 Address Table Entry */ | 824 | /* IPv6 Address Table Entry */ |
@@ -844,6 +877,7 @@ struct e1000_ffvt_entry { | |||
844 | #define E1000_FLA 0x0001C /* Flash Access - RW */ | 877 | #define E1000_FLA 0x0001C /* Flash Access - RW */ |
845 | #define E1000_MDIC 0x00020 /* MDI Control - RW */ | 878 | #define E1000_MDIC 0x00020 /* MDI Control - RW */ |
846 | #define E1000_SCTL 0x00024 /* SerDes Control - RW */ | 879 | #define E1000_SCTL 0x00024 /* SerDes Control - RW */ |
880 | #define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */ | ||
847 | #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ | 881 | #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ |
848 | #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ | 882 | #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ |
849 | #define E1000_FCT 0x00030 /* Flow Control Type - RW */ | 883 | #define E1000_FCT 0x00030 /* Flow Control Type - RW */ |
@@ -872,6 +906,8 @@ struct e1000_ffvt_entry { | |||
872 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ | 906 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ |
873 | #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ | 907 | #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ |
874 | #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ | 908 | #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ |
909 | #define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ | ||
910 | #define FEXTNVM_SW_CONFIG 0x0001 | ||
875 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ | 911 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ |
876 | #define E1000_PBS 0x01008 /* Packet Buffer Size */ | 912 | #define E1000_PBS 0x01008 /* Packet Buffer Size */ |
877 | #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ | 913 | #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ |
@@ -899,11 +935,13 @@ struct e1000_ffvt_entry { | |||
899 | #define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ | 935 | #define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ |
900 | #define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ | 936 | #define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ |
901 | #define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ | 937 | #define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ |
902 | #define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ | 938 | #define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */ |
939 | #define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */ | ||
903 | #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ | 940 | #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ |
904 | #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ | 941 | #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ |
905 | #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ | 942 | #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ |
906 | #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ | 943 | #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ |
944 | #define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ | ||
907 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ | 945 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ |
908 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ | 946 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ |
909 | #define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ | 947 | #define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ |
@@ -1050,6 +1088,7 @@ struct e1000_ffvt_entry { | |||
1050 | #define E1000_82542_FLA E1000_FLA | 1088 | #define E1000_82542_FLA E1000_FLA |
1051 | #define E1000_82542_MDIC E1000_MDIC | 1089 | #define E1000_82542_MDIC E1000_MDIC |
1052 | #define E1000_82542_SCTL E1000_SCTL | 1090 | #define E1000_82542_SCTL E1000_SCTL |
1091 | #define E1000_82542_FEXTNVM E1000_FEXTNVM | ||
1053 | #define E1000_82542_FCAL E1000_FCAL | 1092 | #define E1000_82542_FCAL E1000_FCAL |
1054 | #define E1000_82542_FCAH E1000_FCAH | 1093 | #define E1000_82542_FCAH E1000_FCAH |
1055 | #define E1000_82542_FCT E1000_FCT | 1094 | #define E1000_82542_FCT E1000_FCT |
@@ -1073,6 +1112,19 @@ struct e1000_ffvt_entry { | |||
1073 | #define E1000_82542_RDLEN0 E1000_82542_RDLEN | 1112 | #define E1000_82542_RDLEN0 E1000_82542_RDLEN |
1074 | #define E1000_82542_RDH0 E1000_82542_RDH | 1113 | #define E1000_82542_RDH0 E1000_82542_RDH |
1075 | #define E1000_82542_RDT0 E1000_82542_RDT | 1114 | #define E1000_82542_RDT0 E1000_82542_RDT |
1115 | #define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication | ||
1116 | * RX Control - RW */ | ||
1117 | #define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8)) | ||
1118 | #define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */ | ||
1119 | #define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */ | ||
1120 | #define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */ | ||
1121 | #define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */ | ||
1122 | #define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */ | ||
1123 | #define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */ | ||
1124 | #define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */ | ||
1125 | #define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */ | ||
1126 | #define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */ | ||
1127 | #define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */ | ||
1076 | #define E1000_82542_RDTR1 0x00130 | 1128 | #define E1000_82542_RDTR1 0x00130 |
1077 | #define E1000_82542_RDBAL1 0x00138 | 1129 | #define E1000_82542_RDBAL1 0x00138 |
1078 | #define E1000_82542_RDBAH1 0x0013C | 1130 | #define E1000_82542_RDBAH1 0x0013C |
@@ -1110,11 +1162,14 @@ struct e1000_ffvt_entry { | |||
1110 | #define E1000_82542_FLOP E1000_FLOP | 1162 | #define E1000_82542_FLOP E1000_FLOP |
1111 | #define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL | 1163 | #define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL |
1112 | #define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE | 1164 | #define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE |
1165 | #define E1000_82542_PHY_CTRL E1000_PHY_CTRL | ||
1113 | #define E1000_82542_ERT E1000_ERT | 1166 | #define E1000_82542_ERT E1000_ERT |
1114 | #define E1000_82542_RXDCTL E1000_RXDCTL | 1167 | #define E1000_82542_RXDCTL E1000_RXDCTL |
1168 | #define E1000_82542_RXDCTL1 E1000_RXDCTL1 | ||
1115 | #define E1000_82542_RADV E1000_RADV | 1169 | #define E1000_82542_RADV E1000_RADV |
1116 | #define E1000_82542_RSRPD E1000_RSRPD | 1170 | #define E1000_82542_RSRPD E1000_RSRPD |
1117 | #define E1000_82542_TXDMAC E1000_TXDMAC | 1171 | #define E1000_82542_TXDMAC E1000_TXDMAC |
1172 | #define E1000_82542_KABGTXD E1000_KABGTXD | ||
1118 | #define E1000_82542_TDFHS E1000_TDFHS | 1173 | #define E1000_82542_TDFHS E1000_TDFHS |
1119 | #define E1000_82542_TDFTS E1000_TDFTS | 1174 | #define E1000_82542_TDFTS E1000_TDFTS |
1120 | #define E1000_82542_TDFPC E1000_TDFPC | 1175 | #define E1000_82542_TDFPC E1000_TDFPC |
@@ -1310,13 +1365,16 @@ struct e1000_hw_stats { | |||
1310 | 1365 | ||
1311 | /* Structure containing variables used by the shared code (e1000_hw.c) */ | 1366 | /* Structure containing variables used by the shared code (e1000_hw.c) */ |
1312 | struct e1000_hw { | 1367 | struct e1000_hw { |
1313 | uint8_t __iomem *hw_addr; | 1368 | uint8_t *hw_addr; |
1314 | uint8_t *flash_address; | 1369 | uint8_t *flash_address; |
1315 | e1000_mac_type mac_type; | 1370 | e1000_mac_type mac_type; |
1316 | e1000_phy_type phy_type; | 1371 | e1000_phy_type phy_type; |
1317 | uint32_t phy_init_script; | 1372 | uint32_t phy_init_script; |
1318 | e1000_media_type media_type; | 1373 | e1000_media_type media_type; |
1319 | void *back; | 1374 | void *back; |
1375 | struct e1000_shadow_ram *eeprom_shadow_ram; | ||
1376 | uint32_t flash_bank_size; | ||
1377 | uint32_t flash_base_addr; | ||
1320 | e1000_fc_type fc; | 1378 | e1000_fc_type fc; |
1321 | e1000_bus_speed bus_speed; | 1379 | e1000_bus_speed bus_speed; |
1322 | e1000_bus_width bus_width; | 1380 | e1000_bus_width bus_width; |
@@ -1328,6 +1386,7 @@ struct e1000_hw { | |||
1328 | uint32_t asf_firmware_present; | 1386 | uint32_t asf_firmware_present; |
1329 | uint32_t eeprom_semaphore_present; | 1387 | uint32_t eeprom_semaphore_present; |
1330 | uint32_t swfw_sync_present; | 1388 | uint32_t swfw_sync_present; |
1389 | uint32_t swfwhw_semaphore_present; | ||
1331 | unsigned long io_base; | 1390 | unsigned long io_base; |
1332 | uint32_t phy_id; | 1391 | uint32_t phy_id; |
1333 | uint32_t phy_revision; | 1392 | uint32_t phy_revision; |
@@ -1387,6 +1446,7 @@ struct e1000_hw { | |||
1387 | boolean_t in_ifs_mode; | 1446 | boolean_t in_ifs_mode; |
1388 | boolean_t mng_reg_access_disabled; | 1447 | boolean_t mng_reg_access_disabled; |
1389 | boolean_t leave_av_bit_off; | 1448 | boolean_t leave_av_bit_off; |
1449 | boolean_t kmrn_lock_loss_workaround_disabled; | ||
1390 | }; | 1450 | }; |
1391 | 1451 | ||
1392 | 1452 | ||
@@ -1435,6 +1495,7 @@ struct e1000_hw { | |||
1435 | #define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ | 1495 | #define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ |
1436 | #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ | 1496 | #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ |
1437 | #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ | 1497 | #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ |
1498 | #define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */ | ||
1438 | 1499 | ||
1439 | /* Device Status */ | 1500 | /* Device Status */ |
1440 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ | 1501 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ |
@@ -1449,6 +1510,8 @@ struct e1000_hw { | |||
1449 | #define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ | 1510 | #define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ |
1450 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ | 1511 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ |
1451 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ | 1512 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ |
1513 | #define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion | ||
1514 | by EEPROM/Flash */ | ||
1452 | #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ | 1515 | #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ |
1453 | #define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ | 1516 | #define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ |
1454 | #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ | 1517 | #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ |
@@ -1506,6 +1569,10 @@ struct e1000_hw { | |||
1506 | #define E1000_STM_OPCODE 0xDB00 | 1569 | #define E1000_STM_OPCODE 0xDB00 |
1507 | #define E1000_HICR_FW_RESET 0xC0 | 1570 | #define E1000_HICR_FW_RESET 0xC0 |
1508 | 1571 | ||
1572 | #define E1000_SHADOW_RAM_WORDS 2048 | ||
1573 | #define E1000_ICH8_NVM_SIG_WORD 0x13 | ||
1574 | #define E1000_ICH8_NVM_SIG_MASK 0xC0 | ||
1575 | |||
1509 | /* EEPROM Read */ | 1576 | /* EEPROM Read */ |
1510 | #define E1000_EERD_START 0x00000001 /* Start Read */ | 1577 | #define E1000_EERD_START 0x00000001 /* Start Read */ |
1511 | #define E1000_EERD_DONE 0x00000010 /* Read Done */ | 1578 | #define E1000_EERD_DONE 0x00000010 /* Read Done */ |
@@ -1551,7 +1618,6 @@ struct e1000_hw { | |||
1551 | #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 | 1618 | #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 |
1552 | #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 | 1619 | #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 |
1553 | #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 | 1620 | #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 |
1554 | #define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */ | ||
1555 | #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ | 1621 | #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ |
1556 | #define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ | 1622 | #define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ |
1557 | #define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ | 1623 | #define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ |
@@ -1591,12 +1657,31 @@ struct e1000_hw { | |||
1591 | #define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 | 1657 | #define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 |
1592 | 1658 | ||
1593 | /* In-Band Control */ | 1659 | /* In-Band Control */ |
1660 | #define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500 | ||
1594 | #define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 | 1661 | #define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 |
1595 | 1662 | ||
1596 | /* Half-Duplex Control */ | 1663 | /* Half-Duplex Control */ |
1597 | #define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 | 1664 | #define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 |
1598 | #define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 | 1665 | #define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 |
1599 | 1666 | ||
1667 | #define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E | ||
1668 | |||
1669 | #define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000 | ||
1670 | #define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000 | ||
1671 | |||
1672 | #define E1000_KUMCTRLSTA_K0S_100_EN 0x2000 | ||
1673 | #define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000 | ||
1674 | #define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003 | ||
1675 | |||
1676 | #define E1000_KABGTXD_BGSQLBIAS 0x00050000 | ||
1677 | |||
1678 | #define E1000_PHY_CTRL_SPD_EN 0x00000001 | ||
1679 | #define E1000_PHY_CTRL_D0A_LPLU 0x00000002 | ||
1680 | #define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 | ||
1681 | #define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 | ||
1682 | #define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 | ||
1683 | #define E1000_PHY_CTRL_B2B_EN 0x00000080 | ||
1684 | |||
1600 | /* LED Control */ | 1685 | /* LED Control */ |
1601 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F | 1686 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F |
1602 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 | 1687 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 |
@@ -1666,6 +1751,9 @@ struct e1000_hw { | |||
1666 | #define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ | 1751 | #define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ |
1667 | #define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ | 1752 | #define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ |
1668 | #define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ | 1753 | #define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ |
1754 | #define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */ | ||
1755 | #define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */ | ||
1756 | #define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */ | ||
1669 | 1757 | ||
1670 | /* Interrupt Cause Set */ | 1758 | /* Interrupt Cause Set */ |
1671 | #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1759 | #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
@@ -1692,6 +1780,9 @@ struct e1000_hw { | |||
1692 | #define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ | 1780 | #define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ |
1693 | #define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ | 1781 | #define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ |
1694 | #define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ | 1782 | #define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ |
1783 | #define E1000_ICS_DSW E1000_ICR_DSW | ||
1784 | #define E1000_ICS_PHYINT E1000_ICR_PHYINT | ||
1785 | #define E1000_ICS_EPRST E1000_ICR_EPRST | ||
1695 | 1786 | ||
1696 | /* Interrupt Mask Set */ | 1787 | /* Interrupt Mask Set */ |
1697 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1788 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
@@ -1718,6 +1809,9 @@ struct e1000_hw { | |||
1718 | #define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ | 1809 | #define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ |
1719 | #define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ | 1810 | #define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ |
1720 | #define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ | 1811 | #define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ |
1812 | #define E1000_IMS_DSW E1000_ICR_DSW | ||
1813 | #define E1000_IMS_PHYINT E1000_ICR_PHYINT | ||
1814 | #define E1000_IMS_EPRST E1000_ICR_EPRST | ||
1721 | 1815 | ||
1722 | /* Interrupt Mask Clear */ | 1816 | /* Interrupt Mask Clear */ |
1723 | #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1817 | #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
@@ -1744,6 +1838,9 @@ struct e1000_hw { | |||
1744 | #define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ | 1838 | #define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ |
1745 | #define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ | 1839 | #define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ |
1746 | #define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ | 1840 | #define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ |
1841 | #define E1000_IMC_DSW E1000_ICR_DSW | ||
1842 | #define E1000_IMC_PHYINT E1000_ICR_PHYINT | ||
1843 | #define E1000_IMC_EPRST E1000_ICR_EPRST | ||
1747 | 1844 | ||
1748 | /* Receive Control */ | 1845 | /* Receive Control */ |
1749 | #define E1000_RCTL_RST 0x00000001 /* Software reset */ | 1846 | #define E1000_RCTL_RST 0x00000001 /* Software reset */ |
@@ -1918,9 +2015,10 @@ struct e1000_hw { | |||
1918 | #define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 | 2015 | #define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 |
1919 | #define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 | 2016 | #define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 |
1920 | #define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 | 2017 | #define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 |
1921 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00040000 | 2018 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 |
1922 | #define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 | 2019 | #define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 |
1923 | #define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 | 2020 | #define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 |
2021 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 | ||
1924 | 2022 | ||
1925 | /* Definitions for power management and wakeup registers */ | 2023 | /* Definitions for power management and wakeup registers */ |
1926 | /* Wake Up Control */ | 2024 | /* Wake Up Control */ |
@@ -2010,6 +2108,15 @@ struct e1000_hw { | |||
2010 | #define E1000_FWSM_MODE_SHIFT 1 | 2108 | #define E1000_FWSM_MODE_SHIFT 1 |
2011 | #define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ | 2109 | #define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ |
2012 | 2110 | ||
2111 | #define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ | ||
2112 | #define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ | ||
2113 | #define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ | ||
2114 | #define E1000_FWSM_SKUEL_SHIFT 29 | ||
2115 | #define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ | ||
2116 | #define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ | ||
2117 | #define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ | ||
2118 | #define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ | ||
2119 | |||
2013 | /* FFLT Debug Register */ | 2120 | /* FFLT Debug Register */ |
2014 | #define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ | 2121 | #define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ |
2015 | 2122 | ||
@@ -2082,6 +2189,8 @@ struct e1000_host_command_info { | |||
2082 | E1000_GCR_TXDSCW_NO_SNOOP | \ | 2189 | E1000_GCR_TXDSCW_NO_SNOOP | \ |
2083 | E1000_GCR_TXDSCR_NO_SNOOP) | 2190 | E1000_GCR_TXDSCR_NO_SNOOP) |
2084 | 2191 | ||
2192 | #define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL | ||
2193 | |||
2085 | #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 | 2194 | #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 |
2086 | /* Function Active and Power State to MNG */ | 2195 | /* Function Active and Power State to MNG */ |
2087 | #define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 | 2196 | #define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 |
@@ -2140,8 +2249,10 @@ struct e1000_host_command_info { | |||
2140 | #define EEPROM_PHY_CLASS_WORD 0x0007 | 2249 | #define EEPROM_PHY_CLASS_WORD 0x0007 |
2141 | #define EEPROM_INIT_CONTROL1_REG 0x000A | 2250 | #define EEPROM_INIT_CONTROL1_REG 0x000A |
2142 | #define EEPROM_INIT_CONTROL2_REG 0x000F | 2251 | #define EEPROM_INIT_CONTROL2_REG 0x000F |
2252 | #define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010 | ||
2143 | #define EEPROM_INIT_CONTROL3_PORT_B 0x0014 | 2253 | #define EEPROM_INIT_CONTROL3_PORT_B 0x0014 |
2144 | #define EEPROM_INIT_3GIO_3 0x001A | 2254 | #define EEPROM_INIT_3GIO_3 0x001A |
2255 | #define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020 | ||
2145 | #define EEPROM_INIT_CONTROL3_PORT_A 0x0024 | 2256 | #define EEPROM_INIT_CONTROL3_PORT_A 0x0024 |
2146 | #define EEPROM_CFG 0x0012 | 2257 | #define EEPROM_CFG 0x0012 |
2147 | #define EEPROM_FLASH_VERSION 0x0032 | 2258 | #define EEPROM_FLASH_VERSION 0x0032 |
@@ -2153,10 +2264,16 @@ struct e1000_host_command_info { | |||
2153 | /* Word definitions for ID LED Settings */ | 2264 | /* Word definitions for ID LED Settings */ |
2154 | #define ID_LED_RESERVED_0000 0x0000 | 2265 | #define ID_LED_RESERVED_0000 0x0000 |
2155 | #define ID_LED_RESERVED_FFFF 0xFFFF | 2266 | #define ID_LED_RESERVED_FFFF 0xFFFF |
2267 | #define ID_LED_RESERVED_82573 0xF746 | ||
2268 | #define ID_LED_DEFAULT_82573 0x1811 | ||
2156 | #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ | 2269 | #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ |
2157 | (ID_LED_OFF1_OFF2 << 8) | \ | 2270 | (ID_LED_OFF1_OFF2 << 8) | \ |
2158 | (ID_LED_DEF1_DEF2 << 4) | \ | 2271 | (ID_LED_DEF1_DEF2 << 4) | \ |
2159 | (ID_LED_DEF1_DEF2)) | 2272 | (ID_LED_DEF1_DEF2)) |
2273 | #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ | ||
2274 | (ID_LED_DEF1_OFF2 << 8) | \ | ||
2275 | (ID_LED_DEF1_ON2 << 4) | \ | ||
2276 | (ID_LED_DEF1_DEF2)) | ||
2160 | #define ID_LED_DEF1_DEF2 0x1 | 2277 | #define ID_LED_DEF1_DEF2 0x1 |
2161 | #define ID_LED_DEF1_ON2 0x2 | 2278 | #define ID_LED_DEF1_ON2 0x2 |
2162 | #define ID_LED_DEF1_OFF2 0x3 | 2279 | #define ID_LED_DEF1_OFF2 0x3 |
@@ -2191,6 +2308,11 @@ struct e1000_host_command_info { | |||
2191 | #define EEPROM_WORD0F_ASM_DIR 0x2000 | 2308 | #define EEPROM_WORD0F_ASM_DIR 0x2000 |
2192 | #define EEPROM_WORD0F_ANE 0x0800 | 2309 | #define EEPROM_WORD0F_ANE 0x0800 |
2193 | #define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 | 2310 | #define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 |
2311 | #define EEPROM_WORD0F_LPLU 0x0001 | ||
2312 | |||
2313 | /* Mask bits for fields in Word 0x10/0x20 of the EEPROM */ | ||
2314 | #define EEPROM_WORD1020_GIGA_DISABLE 0x0010 | ||
2315 | #define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008 | ||
2194 | 2316 | ||
2195 | /* Mask bits for fields in Word 0x1a of the EEPROM */ | 2317 | /* Mask bits for fields in Word 0x1a of the EEPROM */ |
2196 | #define EEPROM_WORD1A_ASPM_MASK 0x000C | 2318 | #define EEPROM_WORD1A_ASPM_MASK 0x000C |
@@ -2265,23 +2387,29 @@ struct e1000_host_command_info { | |||
2265 | #define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 | 2387 | #define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 |
2266 | #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 | 2388 | #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 |
2267 | #define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 | 2389 | #define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 |
2268 | #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000 | 2390 | #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000 |
2269 | 2391 | ||
2270 | #define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF | 2392 | #define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF |
2271 | #define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 | 2393 | #define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 |
2272 | #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 | 2394 | #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 |
2395 | #define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 | ||
2396 | #define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 | ||
2273 | 2397 | ||
2274 | /* PBA constants */ | 2398 | /* PBA constants */ |
2399 | #define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ | ||
2275 | #define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ | 2400 | #define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ |
2276 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ | 2401 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ |
2277 | #define E1000_PBA_22K 0x0016 | 2402 | #define E1000_PBA_22K 0x0016 |
2278 | #define E1000_PBA_24K 0x0018 | 2403 | #define E1000_PBA_24K 0x0018 |
2279 | #define E1000_PBA_30K 0x001E | 2404 | #define E1000_PBA_30K 0x001E |
2280 | #define E1000_PBA_32K 0x0020 | 2405 | #define E1000_PBA_32K 0x0020 |
2406 | #define E1000_PBA_34K 0x0022 | ||
2281 | #define E1000_PBA_38K 0x0026 | 2407 | #define E1000_PBA_38K 0x0026 |
2282 | #define E1000_PBA_40K 0x0028 | 2408 | #define E1000_PBA_40K 0x0028 |
2283 | #define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ | 2409 | #define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ |
2284 | 2410 | ||
2411 | #define E1000_PBS_16K E1000_PBA_16K | ||
2412 | |||
2285 | /* Flow Control Constants */ | 2413 | /* Flow Control Constants */ |
2286 | #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 | 2414 | #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 |
2287 | #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 | 2415 | #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 |
@@ -2336,7 +2464,7 @@ struct e1000_host_command_info { | |||
2336 | /* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ | 2464 | /* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ |
2337 | #define AUTO_READ_DONE_TIMEOUT 10 | 2465 | #define AUTO_READ_DONE_TIMEOUT 10 |
2338 | /* Number of milliseconds we wait for PHY configuration done after MAC reset */ | 2466 | /* Number of milliseconds we wait for PHY configuration done after MAC reset */ |
2339 | #define PHY_CFG_TIMEOUT 40 | 2467 | #define PHY_CFG_TIMEOUT 100 |
2340 | 2468 | ||
2341 | #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) | 2469 | #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) |
2342 | 2470 | ||
@@ -2764,6 +2892,17 @@ struct e1000_host_command_info { | |||
2764 | #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ | 2892 | #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ |
2765 | #define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ | 2893 | #define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ |
2766 | 2894 | ||
2895 | /* M88EC018 Rev 2 specific DownShift settings */ | ||
2896 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 | ||
2897 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 | ||
2898 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 | ||
2899 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 | ||
2900 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 | ||
2901 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 | ||
2902 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 | ||
2903 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 | ||
2904 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 | ||
2905 | |||
2767 | /* IGP01E1000 Specific Port Config Register - R/W */ | 2906 | /* IGP01E1000 Specific Port Config Register - R/W */ |
2768 | #define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 | 2907 | #define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 |
2769 | #define IGP01E1000_PSCFR_PRE_EN 0x0020 | 2908 | #define IGP01E1000_PSCFR_PRE_EN 0x0020 |
@@ -2990,6 +3129,221 @@ struct e1000_host_command_info { | |||
2990 | #define L1LXT971A_PHY_ID 0x001378E0 | 3129 | #define L1LXT971A_PHY_ID 0x001378E0 |
2991 | #define GG82563_E_PHY_ID 0x01410CA0 | 3130 | #define GG82563_E_PHY_ID 0x01410CA0 |
2992 | 3131 | ||
3132 | |||
3133 | /* Bits... | ||
3134 | * 15-5: page | ||
3135 | * 4-0: register offset | ||
3136 | */ | ||
3137 | #define PHY_PAGE_SHIFT 5 | ||
3138 | #define PHY_REG(page, reg) \ | ||
3139 | (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) | ||
3140 | |||
3141 | #define IGP3_PHY_PORT_CTRL \ | ||
3142 | PHY_REG(769, 17) /* Port General Configuration */ | ||
3143 | #define IGP3_PHY_RATE_ADAPT_CTRL \ | ||
3144 | PHY_REG(769, 25) /* Rate Adapter Control Register */ | ||
3145 | |||
3146 | #define IGP3_KMRN_FIFO_CTRL_STATS \ | ||
3147 | PHY_REG(770, 16) /* KMRN FIFO's control/status register */ | ||
3148 | #define IGP3_KMRN_POWER_MNG_CTRL \ | ||
3149 | PHY_REG(770, 17) /* KMRN Power Management Control Register */ | ||
3150 | #define IGP3_KMRN_INBAND_CTRL \ | ||
3151 | PHY_REG(770, 18) /* KMRN Inband Control Register */ | ||
3152 | #define IGP3_KMRN_DIAG \ | ||
3153 | PHY_REG(770, 19) /* KMRN Diagnostic register */ | ||
3154 | #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */ | ||
3155 | #define IGP3_KMRN_ACK_TIMEOUT \ | ||
3156 | PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */ | ||
3157 | |||
3158 | #define IGP3_VR_CTRL \ | ||
3159 | PHY_REG(776, 18) /* Voltage regulator control register */ | ||
3160 | #define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */ | ||
3161 | |||
3162 | #define IGP3_CAPABILITY \ | ||
3163 | PHY_REG(776, 19) /* IGP3 Capability Register */ | ||
3164 | |||
3165 | /* Capabilities for SKU Control */ | ||
3166 | #define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */ | ||
3167 | #define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */ | ||
3168 | #define IGP3_CAP_ASF 0x0004 /* Support ASF */ | ||
3169 | #define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */ | ||
3170 | #define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */ | ||
3171 | #define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */ | ||
3172 | #define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */ | ||
3173 | #define IGP3_CAP_RSS 0x0080 /* Support RSS */ | ||
3174 | #define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */ | ||
3175 | #define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */ | ||
3176 | |||
3177 | #define IGP3_PPC_JORDAN_EN 0x0001 | ||
3178 | #define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002 | ||
3179 | |||
3180 | #define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001 | ||
3181 | #define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E | ||
3182 | #define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020 | ||
3183 | #define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040 | ||
3184 | |||
3185 | #define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */ | ||
3186 | #define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */ | ||
3187 | |||
3188 | #define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18) | ||
3189 | #define IGP3_KMRN_EC_DIS_INBAND 0x0080 | ||
3190 | |||
3191 | #define IGP03E1000_E_PHY_ID 0x02A80390 | ||
3192 | #define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ | ||
3193 | #define IFE_PLUS_E_PHY_ID 0x02A80320 | ||
3194 | #define IFE_C_E_PHY_ID 0x02A80310 | ||
3195 | |||
3196 | #define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */ | ||
3197 | #define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */ | ||
3198 | #define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */ | ||
3199 | #define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */ | ||
3200 | #define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */ | ||
3201 | #define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */ | ||
3202 | #define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */ | ||
3203 | #define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */ | ||
3204 | #define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */ | ||
3205 | #define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */ | ||
3206 | #define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */ | ||
3207 | #define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */ | ||
3208 | #define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */ | ||
3209 | |||
3210 | #define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */ | ||
3211 | #define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */ | ||
3212 | #define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */ | ||
3213 | #define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */ | ||
3214 | #define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */ | ||
3215 | #define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */ | ||
3216 | #define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */ | ||
3217 | #define IFE_PESC_POLARITY_REVERSED_SHIFT 8 | ||
3218 | |||
3219 | #define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */ | ||
3220 | #define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */ | ||
3221 | #define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */ | ||
3222 | #define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */ | ||
3223 | #define IFE_PSC_FORCE_POLARITY_SHIFT 5 | ||
3224 | #define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4 | ||
3225 | |||
3226 | #define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */ | ||
3227 | #define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */ | ||
3228 | #define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ | ||
3229 | #define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorthm is completed */ | ||
3230 | #define IFE_PMC_MDIX_MODE_SHIFT 6 | ||
3231 | #define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */ | ||
3232 | |||
3233 | #define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */ | ||
3234 | #define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */ | ||
3235 | #define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */ | ||
3236 | #define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */ | ||
3237 | #define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */ | ||
3238 | #define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */ | ||
3239 | #define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */ | ||
3240 | #define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */ | ||
3241 | #define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */ | ||
3242 | #define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ | ||
3243 | #define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ | ||
3244 | |||
3245 | #define ICH8_FLASH_COMMAND_TIMEOUT 500 /* 500 ms , should be adjusted */ | ||
3246 | #define ICH8_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles , should be adjusted */ | ||
3247 | #define ICH8_FLASH_SEG_SIZE_256 256 | ||
3248 | #define ICH8_FLASH_SEG_SIZE_4K 4096 | ||
3249 | #define ICH8_FLASH_SEG_SIZE_64K 65536 | ||
3250 | |||
3251 | #define ICH8_CYCLE_READ 0x0 | ||
3252 | #define ICH8_CYCLE_RESERVED 0x1 | ||
3253 | #define ICH8_CYCLE_WRITE 0x2 | ||
3254 | #define ICH8_CYCLE_ERASE 0x3 | ||
3255 | |||
3256 | #define ICH8_FLASH_GFPREG 0x0000 | ||
3257 | #define ICH8_FLASH_HSFSTS 0x0004 | ||
3258 | #define ICH8_FLASH_HSFCTL 0x0006 | ||
3259 | #define ICH8_FLASH_FADDR 0x0008 | ||
3260 | #define ICH8_FLASH_FDATA0 0x0010 | ||
3261 | #define ICH8_FLASH_FRACC 0x0050 | ||
3262 | #define ICH8_FLASH_FREG0 0x0054 | ||
3263 | #define ICH8_FLASH_FREG1 0x0058 | ||
3264 | #define ICH8_FLASH_FREG2 0x005C | ||
3265 | #define ICH8_FLASH_FREG3 0x0060 | ||
3266 | #define ICH8_FLASH_FPR0 0x0074 | ||
3267 | #define ICH8_FLASH_FPR1 0x0078 | ||
3268 | #define ICH8_FLASH_SSFSTS 0x0090 | ||
3269 | #define ICH8_FLASH_SSFCTL 0x0092 | ||
3270 | #define ICH8_FLASH_PREOP 0x0094 | ||
3271 | #define ICH8_FLASH_OPTYPE 0x0096 | ||
3272 | #define ICH8_FLASH_OPMENU 0x0098 | ||
3273 | |||
3274 | #define ICH8_FLASH_REG_MAPSIZE 0x00A0 | ||
3275 | #define ICH8_FLASH_SECTOR_SIZE 4096 | ||
3276 | #define ICH8_GFPREG_BASE_MASK 0x1FFF | ||
3277 | #define ICH8_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF | ||
3278 | |||
3279 | /* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ | ||
3280 | /* Offset 04h HSFSTS */ | ||
3281 | union ich8_hws_flash_status { | ||
3282 | struct ich8_hsfsts { | ||
3283 | #ifdef E1000_BIG_ENDIAN | ||
3284 | uint16_t reserved2 :6; | ||
3285 | uint16_t fldesvalid :1; | ||
3286 | uint16_t flockdn :1; | ||
3287 | uint16_t flcdone :1; | ||
3288 | uint16_t flcerr :1; | ||
3289 | uint16_t dael :1; | ||
3290 | uint16_t berasesz :2; | ||
3291 | uint16_t flcinprog :1; | ||
3292 | uint16_t reserved1 :2; | ||
3293 | #else | ||
3294 | uint16_t flcdone :1; /* bit 0 Flash Cycle Done */ | ||
3295 | uint16_t flcerr :1; /* bit 1 Flash Cycle Error */ | ||
3296 | uint16_t dael :1; /* bit 2 Direct Access error Log */ | ||
3297 | uint16_t berasesz :2; /* bit 4:3 Block/Sector Erase Size */ | ||
3298 | uint16_t flcinprog :1; /* bit 5 flash SPI cycle in Progress */ | ||
3299 | uint16_t reserved1 :2; /* bit 13:6 Reserved */ | ||
3300 | uint16_t reserved2 :6; /* bit 13:6 Reserved */ | ||
3301 | uint16_t fldesvalid :1; /* bit 14 Flash Descriptor Valid */ | ||
3302 | uint16_t flockdn :1; /* bit 15 Flash Configuration Lock-Down */ | ||
3303 | #endif | ||
3304 | } hsf_status; | ||
3305 | uint16_t regval; | ||
3306 | }; | ||
3307 | |||
3308 | /* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */ | ||
3309 | /* Offset 06h FLCTL */ | ||
3310 | union ich8_hws_flash_ctrl { | ||
3311 | struct ich8_hsflctl { | ||
3312 | #ifdef E1000_BIG_ENDIAN | ||
3313 | uint16_t fldbcount :2; | ||
3314 | uint16_t flockdn :6; | ||
3315 | uint16_t flcgo :1; | ||
3316 | uint16_t flcycle :2; | ||
3317 | uint16_t reserved :5; | ||
3318 | #else | ||
3319 | uint16_t flcgo :1; /* 0 Flash Cycle Go */ | ||
3320 | uint16_t flcycle :2; /* 2:1 Flash Cycle */ | ||
3321 | uint16_t reserved :5; /* 7:3 Reserved */ | ||
3322 | uint16_t fldbcount :2; /* 9:8 Flash Data Byte Count */ | ||
3323 | uint16_t flockdn :6; /* 15:10 Reserved */ | ||
3324 | #endif | ||
3325 | } hsf_ctrl; | ||
3326 | uint16_t regval; | ||
3327 | }; | ||
3328 | |||
3329 | /* ICH8 Flash Region Access Permissions */ | ||
3330 | union ich8_hws_flash_regacc { | ||
3331 | struct ich8_flracc { | ||
3332 | #ifdef E1000_BIG_ENDIAN | ||
3333 | uint32_t gmwag :8; | ||
3334 | uint32_t gmrag :8; | ||
3335 | uint32_t grwa :8; | ||
3336 | uint32_t grra :8; | ||
3337 | #else | ||
3338 | uint32_t grra :8; /* 0:7 GbE region Read Access */ | ||
3339 | uint32_t grwa :8; /* 8:15 GbE region Write Access */ | ||
3340 | uint32_t gmrag :8; /* 23:16 GbE Master Read Access Grant */ | ||
3341 | uint32_t gmwag :8; /* 31:24 GbE Master Write Access Grant */ | ||
3342 | #endif | ||
3343 | } hsf_flregacc; | ||
3344 | uint16_t regval; | ||
3345 | }; | ||
3346 | |||
2993 | /* Miscellaneous PHY bit definitions. */ | 3347 | /* Miscellaneous PHY bit definitions. */ |
2994 | #define PHY_PREAMBLE 0xFFFFFFFF | 3348 | #define PHY_PREAMBLE 0xFFFFFFFF |
2995 | #define PHY_SOF 0x01 | 3349 | #define PHY_SOF 0x01 |
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c index f77624f5f17b..98ef9f85482f 100644 --- a/drivers/net/e1000/e1000_main.c +++ b/drivers/net/e1000/e1000_main.c | |||
@@ -36,7 +36,7 @@ static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; | |||
36 | #else | 36 | #else |
37 | #define DRIVERNAPI "-NAPI" | 37 | #define DRIVERNAPI "-NAPI" |
38 | #endif | 38 | #endif |
39 | #define DRV_VERSION "7.0.38-k4"DRIVERNAPI | 39 | #define DRV_VERSION "7.1.9-k4"DRIVERNAPI |
40 | char e1000_driver_version[] = DRV_VERSION; | 40 | char e1000_driver_version[] = DRV_VERSION; |
41 | static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; | 41 | static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
42 | 42 | ||
@@ -73,6 +73,11 @@ static struct pci_device_id e1000_pci_tbl[] = { | |||
73 | INTEL_E1000_ETHERNET_DEVICE(0x1026), | 73 | INTEL_E1000_ETHERNET_DEVICE(0x1026), |
74 | INTEL_E1000_ETHERNET_DEVICE(0x1027), | 74 | INTEL_E1000_ETHERNET_DEVICE(0x1027), |
75 | INTEL_E1000_ETHERNET_DEVICE(0x1028), | 75 | INTEL_E1000_ETHERNET_DEVICE(0x1028), |
76 | INTEL_E1000_ETHERNET_DEVICE(0x1049), | ||
77 | INTEL_E1000_ETHERNET_DEVICE(0x104A), | ||
78 | INTEL_E1000_ETHERNET_DEVICE(0x104B), | ||
79 | INTEL_E1000_ETHERNET_DEVICE(0x104C), | ||
80 | INTEL_E1000_ETHERNET_DEVICE(0x104D), | ||
76 | INTEL_E1000_ETHERNET_DEVICE(0x105E), | 81 | INTEL_E1000_ETHERNET_DEVICE(0x105E), |
77 | INTEL_E1000_ETHERNET_DEVICE(0x105F), | 82 | INTEL_E1000_ETHERNET_DEVICE(0x105F), |
78 | INTEL_E1000_ETHERNET_DEVICE(0x1060), | 83 | INTEL_E1000_ETHERNET_DEVICE(0x1060), |
@@ -96,6 +101,8 @@ static struct pci_device_id e1000_pci_tbl[] = { | |||
96 | INTEL_E1000_ETHERNET_DEVICE(0x109A), | 101 | INTEL_E1000_ETHERNET_DEVICE(0x109A), |
97 | INTEL_E1000_ETHERNET_DEVICE(0x10B5), | 102 | INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
98 | INTEL_E1000_ETHERNET_DEVICE(0x10B9), | 103 | INTEL_E1000_ETHERNET_DEVICE(0x10B9), |
104 | INTEL_E1000_ETHERNET_DEVICE(0x10BA), | ||
105 | INTEL_E1000_ETHERNET_DEVICE(0x10BB), | ||
99 | /* required last entry */ | 106 | /* required last entry */ |
100 | {0,} | 107 | {0,} |
101 | }; | 108 | }; |
@@ -133,7 +140,6 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | |||
133 | static void e1000_set_multi(struct net_device *netdev); | 140 | static void e1000_set_multi(struct net_device *netdev); |
134 | static void e1000_update_phy_info(unsigned long data); | 141 | static void e1000_update_phy_info(unsigned long data); |
135 | static void e1000_watchdog(unsigned long data); | 142 | static void e1000_watchdog(unsigned long data); |
136 | static void e1000_watchdog_task(struct e1000_adapter *adapter); | ||
137 | static void e1000_82547_tx_fifo_stall(unsigned long data); | 143 | static void e1000_82547_tx_fifo_stall(unsigned long data); |
138 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); | 144 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
139 | static struct net_device_stats * e1000_get_stats(struct net_device *netdev); | 145 | static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
@@ -178,8 +184,8 @@ static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); | |||
178 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); | 184 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); |
179 | static void e1000_restore_vlan(struct e1000_adapter *adapter); | 185 | static void e1000_restore_vlan(struct e1000_adapter *adapter); |
180 | 186 | ||
181 | #ifdef CONFIG_PM | ||
182 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); | 187 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
188 | #ifdef CONFIG_PM | ||
183 | static int e1000_resume(struct pci_dev *pdev); | 189 | static int e1000_resume(struct pci_dev *pdev); |
184 | #endif | 190 | #endif |
185 | static void e1000_shutdown(struct pci_dev *pdev); | 191 | static void e1000_shutdown(struct pci_dev *pdev); |
@@ -206,8 +212,8 @@ static struct pci_driver e1000_driver = { | |||
206 | .probe = e1000_probe, | 212 | .probe = e1000_probe, |
207 | .remove = __devexit_p(e1000_remove), | 213 | .remove = __devexit_p(e1000_remove), |
208 | /* Power Managment Hooks */ | 214 | /* Power Managment Hooks */ |
209 | #ifdef CONFIG_PM | ||
210 | .suspend = e1000_suspend, | 215 | .suspend = e1000_suspend, |
216 | #ifdef CONFIG_PM | ||
211 | .resume = e1000_resume, | 217 | .resume = e1000_resume, |
212 | #endif | 218 | #endif |
213 | .shutdown = e1000_shutdown, | 219 | .shutdown = e1000_shutdown, |
@@ -261,6 +267,44 @@ e1000_exit_module(void) | |||
261 | 267 | ||
262 | module_exit(e1000_exit_module); | 268 | module_exit(e1000_exit_module); |
263 | 269 | ||
270 | static int e1000_request_irq(struct e1000_adapter *adapter) | ||
271 | { | ||
272 | struct net_device *netdev = adapter->netdev; | ||
273 | int flags, err = 0; | ||
274 | |||
275 | flags = IRQF_SHARED; | ||
276 | #ifdef CONFIG_PCI_MSI | ||
277 | if (adapter->hw.mac_type > e1000_82547_rev_2) { | ||
278 | adapter->have_msi = TRUE; | ||
279 | if ((err = pci_enable_msi(adapter->pdev))) { | ||
280 | DPRINTK(PROBE, ERR, | ||
281 | "Unable to allocate MSI interrupt Error: %d\n", err); | ||
282 | adapter->have_msi = FALSE; | ||
283 | } | ||
284 | } | ||
285 | if (adapter->have_msi) | ||
286 | flags &= ~IRQF_SHARED; | ||
287 | #endif | ||
288 | if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags, | ||
289 | netdev->name, netdev))) | ||
290 | DPRINTK(PROBE, ERR, | ||
291 | "Unable to allocate interrupt Error: %d\n", err); | ||
292 | |||
293 | return err; | ||
294 | } | ||
295 | |||
296 | static void e1000_free_irq(struct e1000_adapter *adapter) | ||
297 | { | ||
298 | struct net_device *netdev = adapter->netdev; | ||
299 | |||
300 | free_irq(adapter->pdev->irq, netdev); | ||
301 | |||
302 | #ifdef CONFIG_PCI_MSI | ||
303 | if (adapter->have_msi) | ||
304 | pci_disable_msi(adapter->pdev); | ||
305 | #endif | ||
306 | } | ||
307 | |||
264 | /** | 308 | /** |
265 | * e1000_irq_disable - Mask off interrupt generation on the NIC | 309 | * e1000_irq_disable - Mask off interrupt generation on the NIC |
266 | * @adapter: board private structure | 310 | * @adapter: board private structure |
@@ -329,6 +373,7 @@ e1000_release_hw_control(struct e1000_adapter *adapter) | |||
329 | { | 373 | { |
330 | uint32_t ctrl_ext; | 374 | uint32_t ctrl_ext; |
331 | uint32_t swsm; | 375 | uint32_t swsm; |
376 | uint32_t extcnf; | ||
332 | 377 | ||
333 | /* Let firmware taken over control of h/w */ | 378 | /* Let firmware taken over control of h/w */ |
334 | switch (adapter->hw.mac_type) { | 379 | switch (adapter->hw.mac_type) { |
@@ -343,6 +388,11 @@ e1000_release_hw_control(struct e1000_adapter *adapter) | |||
343 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | 388 | swsm = E1000_READ_REG(&adapter->hw, SWSM); |
344 | E1000_WRITE_REG(&adapter->hw, SWSM, | 389 | E1000_WRITE_REG(&adapter->hw, SWSM, |
345 | swsm & ~E1000_SWSM_DRV_LOAD); | 390 | swsm & ~E1000_SWSM_DRV_LOAD); |
391 | case e1000_ich8lan: | ||
392 | extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT); | ||
393 | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, | ||
394 | extcnf & ~E1000_CTRL_EXT_DRV_LOAD); | ||
395 | break; | ||
346 | default: | 396 | default: |
347 | break; | 397 | break; |
348 | } | 398 | } |
@@ -364,6 +414,7 @@ e1000_get_hw_control(struct e1000_adapter *adapter) | |||
364 | { | 414 | { |
365 | uint32_t ctrl_ext; | 415 | uint32_t ctrl_ext; |
366 | uint32_t swsm; | 416 | uint32_t swsm; |
417 | uint32_t extcnf; | ||
367 | /* Let firmware know the driver has taken over */ | 418 | /* Let firmware know the driver has taken over */ |
368 | switch (adapter->hw.mac_type) { | 419 | switch (adapter->hw.mac_type) { |
369 | case e1000_82571: | 420 | case e1000_82571: |
@@ -378,6 +429,11 @@ e1000_get_hw_control(struct e1000_adapter *adapter) | |||
378 | E1000_WRITE_REG(&adapter->hw, SWSM, | 429 | E1000_WRITE_REG(&adapter->hw, SWSM, |
379 | swsm | E1000_SWSM_DRV_LOAD); | 430 | swsm | E1000_SWSM_DRV_LOAD); |
380 | break; | 431 | break; |
432 | case e1000_ich8lan: | ||
433 | extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL); | ||
434 | E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL, | ||
435 | extcnf | E1000_EXTCNF_CTRL_SWFLAG); | ||
436 | break; | ||
381 | default: | 437 | default: |
382 | break; | 438 | break; |
383 | } | 439 | } |
@@ -387,18 +443,10 @@ int | |||
387 | e1000_up(struct e1000_adapter *adapter) | 443 | e1000_up(struct e1000_adapter *adapter) |
388 | { | 444 | { |
389 | struct net_device *netdev = adapter->netdev; | 445 | struct net_device *netdev = adapter->netdev; |
390 | int i, err; | 446 | int i; |
391 | 447 | ||
392 | /* hardware has been reset, we need to reload some things */ | 448 | /* hardware has been reset, we need to reload some things */ |
393 | 449 | ||
394 | /* Reset the PHY if it was previously powered down */ | ||
395 | if (adapter->hw.media_type == e1000_media_type_copper) { | ||
396 | uint16_t mii_reg; | ||
397 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
398 | if (mii_reg & MII_CR_POWER_DOWN) | ||
399 | e1000_phy_hw_reset(&adapter->hw); | ||
400 | } | ||
401 | |||
402 | e1000_set_multi(netdev); | 450 | e1000_set_multi(netdev); |
403 | 451 | ||
404 | e1000_restore_vlan(adapter); | 452 | e1000_restore_vlan(adapter); |
@@ -415,24 +463,6 @@ e1000_up(struct e1000_adapter *adapter) | |||
415 | E1000_DESC_UNUSED(ring)); | 463 | E1000_DESC_UNUSED(ring)); |
416 | } | 464 | } |
417 | 465 | ||
418 | #ifdef CONFIG_PCI_MSI | ||
419 | if (adapter->hw.mac_type > e1000_82547_rev_2) { | ||
420 | adapter->have_msi = TRUE; | ||
421 | if ((err = pci_enable_msi(adapter->pdev))) { | ||
422 | DPRINTK(PROBE, ERR, | ||
423 | "Unable to allocate MSI interrupt Error: %d\n", err); | ||
424 | adapter->have_msi = FALSE; | ||
425 | } | ||
426 | } | ||
427 | #endif | ||
428 | if ((err = request_irq(adapter->pdev->irq, &e1000_intr, | ||
429 | IRQF_SHARED | IRQF_SAMPLE_RANDOM, | ||
430 | netdev->name, netdev))) { | ||
431 | DPRINTK(PROBE, ERR, | ||
432 | "Unable to allocate interrupt Error: %d\n", err); | ||
433 | return err; | ||
434 | } | ||
435 | |||
436 | adapter->tx_queue_len = netdev->tx_queue_len; | 466 | adapter->tx_queue_len = netdev->tx_queue_len; |
437 | 467 | ||
438 | mod_timer(&adapter->watchdog_timer, jiffies); | 468 | mod_timer(&adapter->watchdog_timer, jiffies); |
@@ -445,21 +475,60 @@ e1000_up(struct e1000_adapter *adapter) | |||
445 | return 0; | 475 | return 0; |
446 | } | 476 | } |
447 | 477 | ||
478 | /** | ||
479 | * e1000_power_up_phy - restore link in case the phy was powered down | ||
480 | * @adapter: address of board private structure | ||
481 | * | ||
482 | * The phy may be powered down to save power and turn off link when the | ||
483 | * driver is unloaded and wake on lan is not enabled (among others) | ||
484 | * *** this routine MUST be followed by a call to e1000_reset *** | ||
485 | * | ||
486 | **/ | ||
487 | |||
488 | static void e1000_power_up_phy(struct e1000_adapter *adapter) | ||
489 | { | ||
490 | uint16_t mii_reg = 0; | ||
491 | |||
492 | /* Just clear the power down bit to wake the phy back up */ | ||
493 | if (adapter->hw.media_type == e1000_media_type_copper) { | ||
494 | /* according to the manual, the phy will retain its | ||
495 | * settings across a power-down/up cycle */ | ||
496 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
497 | mii_reg &= ~MII_CR_POWER_DOWN; | ||
498 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | ||
499 | } | ||
500 | } | ||
501 | |||
502 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | ||
503 | { | ||
504 | boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) && | ||
505 | e1000_check_mng_mode(&adapter->hw); | ||
506 | /* Power down the PHY so no link is implied when interface is down | ||
507 | * The PHY cannot be powered down if any of the following is TRUE | ||
508 | * (a) WoL is enabled | ||
509 | * (b) AMT is active | ||
510 | * (c) SoL/IDER session is active */ | ||
511 | if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && | ||
512 | adapter->hw.mac_type != e1000_ich8lan && | ||
513 | adapter->hw.media_type == e1000_media_type_copper && | ||
514 | !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) && | ||
515 | !mng_mode_enabled && | ||
516 | !e1000_check_phy_reset_block(&adapter->hw)) { | ||
517 | uint16_t mii_reg = 0; | ||
518 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
519 | mii_reg |= MII_CR_POWER_DOWN; | ||
520 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | ||
521 | mdelay(1); | ||
522 | } | ||
523 | } | ||
524 | |||
448 | void | 525 | void |
449 | e1000_down(struct e1000_adapter *adapter) | 526 | e1000_down(struct e1000_adapter *adapter) |
450 | { | 527 | { |
451 | struct net_device *netdev = adapter->netdev; | 528 | struct net_device *netdev = adapter->netdev; |
452 | boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) && | ||
453 | e1000_check_mng_mode(&adapter->hw); | ||
454 | 529 | ||
455 | e1000_irq_disable(adapter); | 530 | e1000_irq_disable(adapter); |
456 | 531 | ||
457 | free_irq(adapter->pdev->irq, netdev); | ||
458 | #ifdef CONFIG_PCI_MSI | ||
459 | if (adapter->hw.mac_type > e1000_82547_rev_2 && | ||
460 | adapter->have_msi == TRUE) | ||
461 | pci_disable_msi(adapter->pdev); | ||
462 | #endif | ||
463 | del_timer_sync(&adapter->tx_fifo_stall_timer); | 532 | del_timer_sync(&adapter->tx_fifo_stall_timer); |
464 | del_timer_sync(&adapter->watchdog_timer); | 533 | del_timer_sync(&adapter->watchdog_timer); |
465 | del_timer_sync(&adapter->phy_info_timer); | 534 | del_timer_sync(&adapter->phy_info_timer); |
@@ -476,23 +545,17 @@ e1000_down(struct e1000_adapter *adapter) | |||
476 | e1000_reset(adapter); | 545 | e1000_reset(adapter); |
477 | e1000_clean_all_tx_rings(adapter); | 546 | e1000_clean_all_tx_rings(adapter); |
478 | e1000_clean_all_rx_rings(adapter); | 547 | e1000_clean_all_rx_rings(adapter); |
548 | } | ||
479 | 549 | ||
480 | /* Power down the PHY so no link is implied when interface is down * | 550 | void |
481 | * The PHY cannot be powered down if any of the following is TRUE * | 551 | e1000_reinit_locked(struct e1000_adapter *adapter) |
482 | * (a) WoL is enabled | 552 | { |
483 | * (b) AMT is active | 553 | WARN_ON(in_interrupt()); |
484 | * (c) SoL/IDER session is active */ | 554 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
485 | if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && | 555 | msleep(1); |
486 | adapter->hw.media_type == e1000_media_type_copper && | 556 | e1000_down(adapter); |
487 | !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) && | 557 | e1000_up(adapter); |
488 | !mng_mode_enabled && | 558 | clear_bit(__E1000_RESETTING, &adapter->flags); |
489 | !e1000_check_phy_reset_block(&adapter->hw)) { | ||
490 | uint16_t mii_reg; | ||
491 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
492 | mii_reg |= MII_CR_POWER_DOWN; | ||
493 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | ||
494 | mdelay(1); | ||
495 | } | ||
496 | } | 559 | } |
497 | 560 | ||
498 | void | 561 | void |
@@ -518,6 +581,9 @@ e1000_reset(struct e1000_adapter *adapter) | |||
518 | case e1000_82573: | 581 | case e1000_82573: |
519 | pba = E1000_PBA_12K; | 582 | pba = E1000_PBA_12K; |
520 | break; | 583 | break; |
584 | case e1000_ich8lan: | ||
585 | pba = E1000_PBA_8K; | ||
586 | break; | ||
521 | default: | 587 | default: |
522 | pba = E1000_PBA_48K; | 588 | pba = E1000_PBA_48K; |
523 | break; | 589 | break; |
@@ -542,6 +608,12 @@ e1000_reset(struct e1000_adapter *adapter) | |||
542 | /* Set the FC high water mark to 90% of the FIFO size. | 608 | /* Set the FC high water mark to 90% of the FIFO size. |
543 | * Required to clear last 3 LSB */ | 609 | * Required to clear last 3 LSB */ |
544 | fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; | 610 | fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; |
611 | /* We can't use 90% on small FIFOs because the remainder | ||
612 | * would be less than 1 full frame. In this case, we size | ||
613 | * it to allow at least a full frame above the high water | ||
614 | * mark. */ | ||
615 | if (pba < E1000_PBA_16K) | ||
616 | fc_high_water_mark = (pba * 1024) - 1600; | ||
545 | 617 | ||
546 | adapter->hw.fc_high_water = fc_high_water_mark; | 618 | adapter->hw.fc_high_water = fc_high_water_mark; |
547 | adapter->hw.fc_low_water = fc_high_water_mark - 8; | 619 | adapter->hw.fc_low_water = fc_high_water_mark - 8; |
@@ -564,6 +636,23 @@ e1000_reset(struct e1000_adapter *adapter) | |||
564 | 636 | ||
565 | e1000_reset_adaptive(&adapter->hw); | 637 | e1000_reset_adaptive(&adapter->hw); |
566 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | 638 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); |
639 | |||
640 | if (!adapter->smart_power_down && | ||
641 | (adapter->hw.mac_type == e1000_82571 || | ||
642 | adapter->hw.mac_type == e1000_82572)) { | ||
643 | uint16_t phy_data = 0; | ||
644 | /* speed up time to link by disabling smart power down, ignore | ||
645 | * the return value of this function because there is nothing | ||
646 | * different we would do if it failed */ | ||
647 | e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, | ||
648 | &phy_data); | ||
649 | phy_data &= ~IGP02E1000_PM_SPD; | ||
650 | e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, | ||
651 | phy_data); | ||
652 | } | ||
653 | |||
654 | if (adapter->hw.mac_type < e1000_ich8lan) | ||
655 | /* FIXME: this code is duplicate and wrong for PCI Express */ | ||
567 | if (adapter->en_mng_pt) { | 656 | if (adapter->en_mng_pt) { |
568 | manc = E1000_READ_REG(&adapter->hw, MANC); | 657 | manc = E1000_READ_REG(&adapter->hw, MANC); |
569 | manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); | 658 | manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); |
@@ -590,6 +679,7 @@ e1000_probe(struct pci_dev *pdev, | |||
590 | struct net_device *netdev; | 679 | struct net_device *netdev; |
591 | struct e1000_adapter *adapter; | 680 | struct e1000_adapter *adapter; |
592 | unsigned long mmio_start, mmio_len; | 681 | unsigned long mmio_start, mmio_len; |
682 | unsigned long flash_start, flash_len; | ||
593 | 683 | ||
594 | static int cards_found = 0; | 684 | static int cards_found = 0; |
595 | static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */ | 685 | static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */ |
@@ -599,10 +689,12 @@ e1000_probe(struct pci_dev *pdev, | |||
599 | if ((err = pci_enable_device(pdev))) | 689 | if ((err = pci_enable_device(pdev))) |
600 | return err; | 690 | return err; |
601 | 691 | ||
602 | if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) { | 692 | if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) && |
693 | !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) { | ||
603 | pci_using_dac = 1; | 694 | pci_using_dac = 1; |
604 | } else { | 695 | } else { |
605 | if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { | 696 | if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) && |
697 | (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) { | ||
606 | E1000_ERR("No usable DMA configuration, aborting\n"); | 698 | E1000_ERR("No usable DMA configuration, aborting\n"); |
607 | return err; | 699 | return err; |
608 | } | 700 | } |
@@ -682,6 +774,19 @@ e1000_probe(struct pci_dev *pdev, | |||
682 | if ((err = e1000_sw_init(adapter))) | 774 | if ((err = e1000_sw_init(adapter))) |
683 | goto err_sw_init; | 775 | goto err_sw_init; |
684 | 776 | ||
777 | /* Flash BAR mapping must happen after e1000_sw_init | ||
778 | * because it depends on mac_type */ | ||
779 | if ((adapter->hw.mac_type == e1000_ich8lan) && | ||
780 | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | ||
781 | flash_start = pci_resource_start(pdev, 1); | ||
782 | flash_len = pci_resource_len(pdev, 1); | ||
783 | adapter->hw.flash_address = ioremap(flash_start, flash_len); | ||
784 | if (!adapter->hw.flash_address) { | ||
785 | err = -EIO; | ||
786 | goto err_flashmap; | ||
787 | } | ||
788 | } | ||
789 | |||
685 | if ((err = e1000_check_phy_reset_block(&adapter->hw))) | 790 | if ((err = e1000_check_phy_reset_block(&adapter->hw))) |
686 | DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); | 791 | DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); |
687 | 792 | ||
@@ -700,6 +805,8 @@ e1000_probe(struct pci_dev *pdev, | |||
700 | NETIF_F_HW_VLAN_TX | | 805 | NETIF_F_HW_VLAN_TX | |
701 | NETIF_F_HW_VLAN_RX | | 806 | NETIF_F_HW_VLAN_RX | |
702 | NETIF_F_HW_VLAN_FILTER; | 807 | NETIF_F_HW_VLAN_FILTER; |
808 | if (adapter->hw.mac_type == e1000_ich8lan) | ||
809 | netdev->features &= ~NETIF_F_HW_VLAN_FILTER; | ||
703 | } | 810 | } |
704 | 811 | ||
705 | #ifdef NETIF_F_TSO | 812 | #ifdef NETIF_F_TSO |
@@ -715,11 +822,17 @@ e1000_probe(struct pci_dev *pdev, | |||
715 | if (pci_using_dac) | 822 | if (pci_using_dac) |
716 | netdev->features |= NETIF_F_HIGHDMA; | 823 | netdev->features |= NETIF_F_HIGHDMA; |
717 | 824 | ||
718 | /* hard_start_xmit is safe against parallel locking */ | ||
719 | netdev->features |= NETIF_F_LLTX; | 825 | netdev->features |= NETIF_F_LLTX; |
720 | 826 | ||
721 | adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); | 827 | adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); |
722 | 828 | ||
829 | /* initialize eeprom parameters */ | ||
830 | |||
831 | if (e1000_init_eeprom_params(&adapter->hw)) { | ||
832 | E1000_ERR("EEPROM initialization failed\n"); | ||
833 | return -EIO; | ||
834 | } | ||
835 | |||
723 | /* before reading the EEPROM, reset the controller to | 836 | /* before reading the EEPROM, reset the controller to |
724 | * put the device in a known good starting state */ | 837 | * put the device in a known good starting state */ |
725 | 838 | ||
@@ -758,9 +871,6 @@ e1000_probe(struct pci_dev *pdev, | |||
758 | adapter->watchdog_timer.function = &e1000_watchdog; | 871 | adapter->watchdog_timer.function = &e1000_watchdog; |
759 | adapter->watchdog_timer.data = (unsigned long) adapter; | 872 | adapter->watchdog_timer.data = (unsigned long) adapter; |
760 | 873 | ||
761 | INIT_WORK(&adapter->watchdog_task, | ||
762 | (void (*)(void *))e1000_watchdog_task, adapter); | ||
763 | |||
764 | init_timer(&adapter->phy_info_timer); | 874 | init_timer(&adapter->phy_info_timer); |
765 | adapter->phy_info_timer.function = &e1000_update_phy_info; | 875 | adapter->phy_info_timer.function = &e1000_update_phy_info; |
766 | adapter->phy_info_timer.data = (unsigned long) adapter; | 876 | adapter->phy_info_timer.data = (unsigned long) adapter; |
@@ -790,6 +900,11 @@ e1000_probe(struct pci_dev *pdev, | |||
790 | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); | 900 | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
791 | eeprom_apme_mask = E1000_EEPROM_82544_APM; | 901 | eeprom_apme_mask = E1000_EEPROM_82544_APM; |
792 | break; | 902 | break; |
903 | case e1000_ich8lan: | ||
904 | e1000_read_eeprom(&adapter->hw, | ||
905 | EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); | ||
906 | eeprom_apme_mask = E1000_EEPROM_ICH8_APME; | ||
907 | break; | ||
793 | case e1000_82546: | 908 | case e1000_82546: |
794 | case e1000_82546_rev_3: | 909 | case e1000_82546_rev_3: |
795 | case e1000_82571: | 910 | case e1000_82571: |
@@ -849,6 +964,9 @@ e1000_probe(struct pci_dev *pdev, | |||
849 | return 0; | 964 | return 0; |
850 | 965 | ||
851 | err_register: | 966 | err_register: |
967 | if (adapter->hw.flash_address) | ||
968 | iounmap(adapter->hw.flash_address); | ||
969 | err_flashmap: | ||
852 | err_sw_init: | 970 | err_sw_init: |
853 | err_eeprom: | 971 | err_eeprom: |
854 | iounmap(adapter->hw.hw_addr); | 972 | iounmap(adapter->hw.hw_addr); |
@@ -882,6 +1000,7 @@ e1000_remove(struct pci_dev *pdev) | |||
882 | flush_scheduled_work(); | 1000 | flush_scheduled_work(); |
883 | 1001 | ||
884 | if (adapter->hw.mac_type >= e1000_82540 && | 1002 | if (adapter->hw.mac_type >= e1000_82540 && |
1003 | adapter->hw.mac_type != e1000_ich8lan && | ||
885 | adapter->hw.media_type == e1000_media_type_copper) { | 1004 | adapter->hw.media_type == e1000_media_type_copper) { |
886 | manc = E1000_READ_REG(&adapter->hw, MANC); | 1005 | manc = E1000_READ_REG(&adapter->hw, MANC); |
887 | if (manc & E1000_MANC_SMBUS_EN) { | 1006 | if (manc & E1000_MANC_SMBUS_EN) { |
@@ -910,6 +1029,8 @@ e1000_remove(struct pci_dev *pdev) | |||
910 | #endif | 1029 | #endif |
911 | 1030 | ||
912 | iounmap(adapter->hw.hw_addr); | 1031 | iounmap(adapter->hw.hw_addr); |
1032 | if (adapter->hw.flash_address) | ||
1033 | iounmap(adapter->hw.flash_address); | ||
913 | pci_release_regions(pdev); | 1034 | pci_release_regions(pdev); |
914 | 1035 | ||
915 | free_netdev(netdev); | 1036 | free_netdev(netdev); |
@@ -947,7 +1068,7 @@ e1000_sw_init(struct e1000_adapter *adapter) | |||
947 | 1068 | ||
948 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); | 1069 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
949 | 1070 | ||
950 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE; | 1071 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
951 | adapter->rx_ps_bsize0 = E1000_RXBUFFER_128; | 1072 | adapter->rx_ps_bsize0 = E1000_RXBUFFER_128; |
952 | hw->max_frame_size = netdev->mtu + | 1073 | hw->max_frame_size = netdev->mtu + |
953 | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 1074 | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
@@ -960,13 +1081,6 @@ e1000_sw_init(struct e1000_adapter *adapter) | |||
960 | return -EIO; | 1081 | return -EIO; |
961 | } | 1082 | } |
962 | 1083 | ||
963 | /* initialize eeprom parameters */ | ||
964 | |||
965 | if (e1000_init_eeprom_params(hw)) { | ||
966 | E1000_ERR("EEPROM initialization failed\n"); | ||
967 | return -EIO; | ||
968 | } | ||
969 | |||
970 | switch (hw->mac_type) { | 1084 | switch (hw->mac_type) { |
971 | default: | 1085 | default: |
972 | break; | 1086 | break; |
@@ -1078,6 +1192,10 @@ e1000_open(struct net_device *netdev) | |||
1078 | struct e1000_adapter *adapter = netdev_priv(netdev); | 1192 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1079 | int err; | 1193 | int err; |
1080 | 1194 | ||
1195 | /* disallow open during test */ | ||
1196 | if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags)) | ||
1197 | return -EBUSY; | ||
1198 | |||
1081 | /* allocate transmit descriptors */ | 1199 | /* allocate transmit descriptors */ |
1082 | 1200 | ||
1083 | if ((err = e1000_setup_all_tx_resources(adapter))) | 1201 | if ((err = e1000_setup_all_tx_resources(adapter))) |
@@ -1088,6 +1206,12 @@ e1000_open(struct net_device *netdev) | |||
1088 | if ((err = e1000_setup_all_rx_resources(adapter))) | 1206 | if ((err = e1000_setup_all_rx_resources(adapter))) |
1089 | goto err_setup_rx; | 1207 | goto err_setup_rx; |
1090 | 1208 | ||
1209 | err = e1000_request_irq(adapter); | ||
1210 | if (err) | ||
1211 | goto err_up; | ||
1212 | |||
1213 | e1000_power_up_phy(adapter); | ||
1214 | |||
1091 | if ((err = e1000_up(adapter))) | 1215 | if ((err = e1000_up(adapter))) |
1092 | goto err_up; | 1216 | goto err_up; |
1093 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 1217 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
@@ -1131,7 +1255,10 @@ e1000_close(struct net_device *netdev) | |||
1131 | { | 1255 | { |
1132 | struct e1000_adapter *adapter = netdev_priv(netdev); | 1256 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1133 | 1257 | ||
1258 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | ||
1134 | e1000_down(adapter); | 1259 | e1000_down(adapter); |
1260 | e1000_power_down_phy(adapter); | ||
1261 | e1000_free_irq(adapter); | ||
1135 | 1262 | ||
1136 | e1000_free_all_tx_resources(adapter); | 1263 | e1000_free_all_tx_resources(adapter); |
1137 | e1000_free_all_rx_resources(adapter); | 1264 | e1000_free_all_rx_resources(adapter); |
@@ -1189,8 +1316,7 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter, | |||
1189 | int size; | 1316 | int size; |
1190 | 1317 | ||
1191 | size = sizeof(struct e1000_buffer) * txdr->count; | 1318 | size = sizeof(struct e1000_buffer) * txdr->count; |
1192 | 1319 | txdr->buffer_info = vmalloc(size); | |
1193 | txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus)); | ||
1194 | if (!txdr->buffer_info) { | 1320 | if (!txdr->buffer_info) { |
1195 | DPRINTK(PROBE, ERR, | 1321 | DPRINTK(PROBE, ERR, |
1196 | "Unable to allocate memory for the transmit descriptor ring\n"); | 1322 | "Unable to allocate memory for the transmit descriptor ring\n"); |
@@ -1302,13 +1428,13 @@ e1000_configure_tx(struct e1000_adapter *adapter) | |||
1302 | tdba = adapter->tx_ring[0].dma; | 1428 | tdba = adapter->tx_ring[0].dma; |
1303 | tdlen = adapter->tx_ring[0].count * | 1429 | tdlen = adapter->tx_ring[0].count * |
1304 | sizeof(struct e1000_tx_desc); | 1430 | sizeof(struct e1000_tx_desc); |
1305 | E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL)); | ||
1306 | E1000_WRITE_REG(hw, TDBAH, (tdba >> 32)); | ||
1307 | E1000_WRITE_REG(hw, TDLEN, tdlen); | 1431 | E1000_WRITE_REG(hw, TDLEN, tdlen); |
1308 | E1000_WRITE_REG(hw, TDH, 0); | 1432 | E1000_WRITE_REG(hw, TDBAH, (tdba >> 32)); |
1433 | E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL)); | ||
1309 | E1000_WRITE_REG(hw, TDT, 0); | 1434 | E1000_WRITE_REG(hw, TDT, 0); |
1310 | adapter->tx_ring[0].tdh = E1000_TDH; | 1435 | E1000_WRITE_REG(hw, TDH, 0); |
1311 | adapter->tx_ring[0].tdt = E1000_TDT; | 1436 | adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); |
1437 | adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); | ||
1312 | break; | 1438 | break; |
1313 | } | 1439 | } |
1314 | 1440 | ||
@@ -1418,7 +1544,7 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter, | |||
1418 | int size, desc_len; | 1544 | int size, desc_len; |
1419 | 1545 | ||
1420 | size = sizeof(struct e1000_buffer) * rxdr->count; | 1546 | size = sizeof(struct e1000_buffer) * rxdr->count; |
1421 | rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus)); | 1547 | rxdr->buffer_info = vmalloc(size); |
1422 | if (!rxdr->buffer_info) { | 1548 | if (!rxdr->buffer_info) { |
1423 | DPRINTK(PROBE, ERR, | 1549 | DPRINTK(PROBE, ERR, |
1424 | "Unable to allocate memory for the receive descriptor ring\n"); | 1550 | "Unable to allocate memory for the receive descriptor ring\n"); |
@@ -1560,9 +1686,6 @@ e1000_setup_rctl(struct e1000_adapter *adapter) | |||
1560 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 1686 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
1561 | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); | 1687 | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); |
1562 | 1688 | ||
1563 | if (adapter->hw.mac_type > e1000_82543) | ||
1564 | rctl |= E1000_RCTL_SECRC; | ||
1565 | |||
1566 | if (adapter->hw.tbi_compatibility_on == 1) | 1689 | if (adapter->hw.tbi_compatibility_on == 1) |
1567 | rctl |= E1000_RCTL_SBP; | 1690 | rctl |= E1000_RCTL_SBP; |
1568 | else | 1691 | else |
@@ -1628,7 +1751,7 @@ e1000_setup_rctl(struct e1000_adapter *adapter) | |||
1628 | rfctl |= E1000_RFCTL_IPV6_DIS; | 1751 | rfctl |= E1000_RFCTL_IPV6_DIS; |
1629 | E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); | 1752 | E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); |
1630 | 1753 | ||
1631 | rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC; | 1754 | rctl |= E1000_RCTL_DTYP_PS; |
1632 | 1755 | ||
1633 | psrctl |= adapter->rx_ps_bsize0 >> | 1756 | psrctl |= adapter->rx_ps_bsize0 >> |
1634 | E1000_PSRCTL_BSIZE0_SHIFT; | 1757 | E1000_PSRCTL_BSIZE0_SHIFT; |
@@ -1712,13 +1835,13 @@ e1000_configure_rx(struct e1000_adapter *adapter) | |||
1712 | case 1: | 1835 | case 1: |
1713 | default: | 1836 | default: |
1714 | rdba = adapter->rx_ring[0].dma; | 1837 | rdba = adapter->rx_ring[0].dma; |
1715 | E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL)); | ||
1716 | E1000_WRITE_REG(hw, RDBAH, (rdba >> 32)); | ||
1717 | E1000_WRITE_REG(hw, RDLEN, rdlen); | 1838 | E1000_WRITE_REG(hw, RDLEN, rdlen); |
1718 | E1000_WRITE_REG(hw, RDH, 0); | 1839 | E1000_WRITE_REG(hw, RDBAH, (rdba >> 32)); |
1840 | E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL)); | ||
1719 | E1000_WRITE_REG(hw, RDT, 0); | 1841 | E1000_WRITE_REG(hw, RDT, 0); |
1720 | adapter->rx_ring[0].rdh = E1000_RDH; | 1842 | E1000_WRITE_REG(hw, RDH, 0); |
1721 | adapter->rx_ring[0].rdt = E1000_RDT; | 1843 | adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); |
1844 | adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); | ||
1722 | break; | 1845 | break; |
1723 | } | 1846 | } |
1724 | 1847 | ||
@@ -1741,9 +1864,6 @@ e1000_configure_rx(struct e1000_adapter *adapter) | |||
1741 | E1000_WRITE_REG(hw, RXCSUM, rxcsum); | 1864 | E1000_WRITE_REG(hw, RXCSUM, rxcsum); |
1742 | } | 1865 | } |
1743 | 1866 | ||
1744 | if (hw->mac_type == e1000_82573) | ||
1745 | E1000_WRITE_REG(hw, ERT, 0x0100); | ||
1746 | |||
1747 | /* Enable Receives */ | 1867 | /* Enable Receives */ |
1748 | E1000_WRITE_REG(hw, RCTL, rctl); | 1868 | E1000_WRITE_REG(hw, RCTL, rctl); |
1749 | } | 1869 | } |
@@ -2083,6 +2203,12 @@ e1000_set_multi(struct net_device *netdev) | |||
2083 | uint32_t rctl; | 2203 | uint32_t rctl; |
2084 | uint32_t hash_value; | 2204 | uint32_t hash_value; |
2085 | int i, rar_entries = E1000_RAR_ENTRIES; | 2205 | int i, rar_entries = E1000_RAR_ENTRIES; |
2206 | int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? | ||
2207 | E1000_NUM_MTA_REGISTERS_ICH8LAN : | ||
2208 | E1000_NUM_MTA_REGISTERS; | ||
2209 | |||
2210 | if (adapter->hw.mac_type == e1000_ich8lan) | ||
2211 | rar_entries = E1000_RAR_ENTRIES_ICH8LAN; | ||
2086 | 2212 | ||
2087 | /* reserve RAR[14] for LAA over-write work-around */ | 2213 | /* reserve RAR[14] for LAA over-write work-around */ |
2088 | if (adapter->hw.mac_type == e1000_82571) | 2214 | if (adapter->hw.mac_type == e1000_82571) |
@@ -2121,14 +2247,18 @@ e1000_set_multi(struct net_device *netdev) | |||
2121 | mc_ptr = mc_ptr->next; | 2247 | mc_ptr = mc_ptr->next; |
2122 | } else { | 2248 | } else { |
2123 | E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); | 2249 | E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
2250 | E1000_WRITE_FLUSH(hw); | ||
2124 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); | 2251 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
2252 | E1000_WRITE_FLUSH(hw); | ||
2125 | } | 2253 | } |
2126 | } | 2254 | } |
2127 | 2255 | ||
2128 | /* clear the old settings from the multicast hash table */ | 2256 | /* clear the old settings from the multicast hash table */ |
2129 | 2257 | ||
2130 | for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++) | 2258 | for (i = 0; i < mta_reg_count; i++) { |
2131 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 2259 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
2260 | E1000_WRITE_FLUSH(hw); | ||
2261 | } | ||
2132 | 2262 | ||
2133 | /* load any remaining addresses into the hash table */ | 2263 | /* load any remaining addresses into the hash table */ |
2134 | 2264 | ||
@@ -2201,19 +2331,19 @@ static void | |||
2201 | e1000_watchdog(unsigned long data) | 2331 | e1000_watchdog(unsigned long data) |
2202 | { | 2332 | { |
2203 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 2333 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
2204 | |||
2205 | /* Do the rest outside of interrupt context */ | ||
2206 | schedule_work(&adapter->watchdog_task); | ||
2207 | } | ||
2208 | |||
2209 | static void | ||
2210 | e1000_watchdog_task(struct e1000_adapter *adapter) | ||
2211 | { | ||
2212 | struct net_device *netdev = adapter->netdev; | 2334 | struct net_device *netdev = adapter->netdev; |
2213 | struct e1000_tx_ring *txdr = adapter->tx_ring; | 2335 | struct e1000_tx_ring *txdr = adapter->tx_ring; |
2214 | uint32_t link, tctl; | 2336 | uint32_t link, tctl; |
2215 | 2337 | int32_t ret_val; | |
2216 | e1000_check_for_link(&adapter->hw); | 2338 | |
2339 | ret_val = e1000_check_for_link(&adapter->hw); | ||
2340 | if ((ret_val == E1000_ERR_PHY) && | ||
2341 | (adapter->hw.phy_type == e1000_phy_igp_3) && | ||
2342 | (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | ||
2343 | /* See e1000_kumeran_lock_loss_workaround() */ | ||
2344 | DPRINTK(LINK, INFO, | ||
2345 | "Gigabit has been disabled, downgrading speed\n"); | ||
2346 | } | ||
2217 | if (adapter->hw.mac_type == e1000_82573) { | 2347 | if (adapter->hw.mac_type == e1000_82573) { |
2218 | e1000_enable_tx_pkt_filtering(&adapter->hw); | 2348 | e1000_enable_tx_pkt_filtering(&adapter->hw); |
2219 | if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) | 2349 | if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) |
@@ -2394,7 +2524,7 @@ e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, | |||
2394 | uint8_t ipcss, ipcso, tucss, tucso, hdr_len; | 2524 | uint8_t ipcss, ipcso, tucss, tucso, hdr_len; |
2395 | int err; | 2525 | int err; |
2396 | 2526 | ||
2397 | if (skb_shinfo(skb)->gso_size) { | 2527 | if (skb_is_gso(skb)) { |
2398 | if (skb_header_cloned(skb)) { | 2528 | if (skb_header_cloned(skb)) { |
2399 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 2529 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
2400 | if (err) | 2530 | if (err) |
@@ -2519,7 +2649,7 @@ e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, | |||
2519 | * tso gets written back prematurely before the data is fully | 2649 | * tso gets written back prematurely before the data is fully |
2520 | * DMA'd to the controller */ | 2650 | * DMA'd to the controller */ |
2521 | if (!skb->data_len && tx_ring->last_tx_tso && | 2651 | if (!skb->data_len && tx_ring->last_tx_tso && |
2522 | !skb_shinfo(skb)->gso_size) { | 2652 | !skb_is_gso(skb)) { |
2523 | tx_ring->last_tx_tso = 0; | 2653 | tx_ring->last_tx_tso = 0; |
2524 | size -= 4; | 2654 | size -= 4; |
2525 | } | 2655 | } |
@@ -2779,9 +2909,10 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
2779 | case e1000_82571: | 2909 | case e1000_82571: |
2780 | case e1000_82572: | 2910 | case e1000_82572: |
2781 | case e1000_82573: | 2911 | case e1000_82573: |
2912 | case e1000_ich8lan: | ||
2782 | pull_size = min((unsigned int)4, skb->data_len); | 2913 | pull_size = min((unsigned int)4, skb->data_len); |
2783 | if (!__pskb_pull_tail(skb, pull_size)) { | 2914 | if (!__pskb_pull_tail(skb, pull_size)) { |
2784 | printk(KERN_ERR | 2915 | DPRINTK(DRV, ERR, |
2785 | "__pskb_pull_tail failed.\n"); | 2916 | "__pskb_pull_tail failed.\n"); |
2786 | dev_kfree_skb_any(skb); | 2917 | dev_kfree_skb_any(skb); |
2787 | return NETDEV_TX_OK; | 2918 | return NETDEV_TX_OK; |
@@ -2806,8 +2937,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
2806 | 2937 | ||
2807 | #ifdef NETIF_F_TSO | 2938 | #ifdef NETIF_F_TSO |
2808 | /* Controller Erratum workaround */ | 2939 | /* Controller Erratum workaround */ |
2809 | if (!skb->data_len && tx_ring->last_tx_tso && | 2940 | if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
2810 | !skb_shinfo(skb)->gso_size) | ||
2811 | count++; | 2941 | count++; |
2812 | #endif | 2942 | #endif |
2813 | 2943 | ||
@@ -2919,8 +3049,7 @@ e1000_reset_task(struct net_device *netdev) | |||
2919 | { | 3049 | { |
2920 | struct e1000_adapter *adapter = netdev_priv(netdev); | 3050 | struct e1000_adapter *adapter = netdev_priv(netdev); |
2921 | 3051 | ||
2922 | e1000_down(adapter); | 3052 | e1000_reinit_locked(adapter); |
2923 | e1000_up(adapter); | ||
2924 | } | 3053 | } |
2925 | 3054 | ||
2926 | /** | 3055 | /** |
@@ -2964,6 +3093,7 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu) | |||
2964 | /* Adapter-specific max frame size limits. */ | 3093 | /* Adapter-specific max frame size limits. */ |
2965 | switch (adapter->hw.mac_type) { | 3094 | switch (adapter->hw.mac_type) { |
2966 | case e1000_undefined ... e1000_82542_rev2_1: | 3095 | case e1000_undefined ... e1000_82542_rev2_1: |
3096 | case e1000_ich8lan: | ||
2967 | if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { | 3097 | if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
2968 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); | 3098 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); |
2969 | return -EINVAL; | 3099 | return -EINVAL; |
@@ -2997,7 +3127,7 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu) | |||
2997 | break; | 3127 | break; |
2998 | } | 3128 | } |
2999 | 3129 | ||
3000 | /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | 3130 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
3001 | * means we reserve 2 more, this pushes us to allocate from the next | 3131 | * means we reserve 2 more, this pushes us to allocate from the next |
3002 | * larger slab size | 3132 | * larger slab size |
3003 | * i.e. RXBUFFER_2048 --> size-4096 slab */ | 3133 | * i.e. RXBUFFER_2048 --> size-4096 slab */ |
@@ -3018,7 +3148,6 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu) | |||
3018 | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | 3148 | adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
3019 | 3149 | ||
3020 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | 3150 | /* adjust allocation if LPE protects us, and we aren't using SBP */ |
3021 | #define MAXIMUM_ETHERNET_VLAN_SIZE 1522 | ||
3022 | if (!adapter->hw.tbi_compatibility_on && | 3151 | if (!adapter->hw.tbi_compatibility_on && |
3023 | ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || | 3152 | ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || |
3024 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) | 3153 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
@@ -3026,10 +3155,8 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu) | |||
3026 | 3155 | ||
3027 | netdev->mtu = new_mtu; | 3156 | netdev->mtu = new_mtu; |
3028 | 3157 | ||
3029 | if (netif_running(netdev)) { | 3158 | if (netif_running(netdev)) |
3030 | e1000_down(adapter); | 3159 | e1000_reinit_locked(adapter); |
3031 | e1000_up(adapter); | ||
3032 | } | ||
3033 | 3160 | ||
3034 | adapter->hw.max_frame_size = max_frame; | 3161 | adapter->hw.max_frame_size = max_frame; |
3035 | 3162 | ||
@@ -3074,12 +3201,15 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
3074 | adapter->stats.bprc += E1000_READ_REG(hw, BPRC); | 3201 | adapter->stats.bprc += E1000_READ_REG(hw, BPRC); |
3075 | adapter->stats.mprc += E1000_READ_REG(hw, MPRC); | 3202 | adapter->stats.mprc += E1000_READ_REG(hw, MPRC); |
3076 | adapter->stats.roc += E1000_READ_REG(hw, ROC); | 3203 | adapter->stats.roc += E1000_READ_REG(hw, ROC); |
3204 | |||
3205 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
3077 | adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); | 3206 | adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); |
3078 | adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); | 3207 | adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); |
3079 | adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); | 3208 | adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); |
3080 | adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); | 3209 | adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); |
3081 | adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); | 3210 | adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); |
3082 | adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); | 3211 | adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); |
3212 | } | ||
3083 | 3213 | ||
3084 | adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); | 3214 | adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); |
3085 | adapter->stats.mpc += E1000_READ_REG(hw, MPC); | 3215 | adapter->stats.mpc += E1000_READ_REG(hw, MPC); |
@@ -3107,12 +3237,16 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
3107 | adapter->stats.totl += E1000_READ_REG(hw, TOTL); | 3237 | adapter->stats.totl += E1000_READ_REG(hw, TOTL); |
3108 | adapter->stats.toth += E1000_READ_REG(hw, TOTH); | 3238 | adapter->stats.toth += E1000_READ_REG(hw, TOTH); |
3109 | adapter->stats.tpr += E1000_READ_REG(hw, TPR); | 3239 | adapter->stats.tpr += E1000_READ_REG(hw, TPR); |
3240 | |||
3241 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
3110 | adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); | 3242 | adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); |
3111 | adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); | 3243 | adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); |
3112 | adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); | 3244 | adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); |
3113 | adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); | 3245 | adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); |
3114 | adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); | 3246 | adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); |
3115 | adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); | 3247 | adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); |
3248 | } | ||
3249 | |||
3116 | adapter->stats.mptc += E1000_READ_REG(hw, MPTC); | 3250 | adapter->stats.mptc += E1000_READ_REG(hw, MPTC); |
3117 | adapter->stats.bptc += E1000_READ_REG(hw, BPTC); | 3251 | adapter->stats.bptc += E1000_READ_REG(hw, BPTC); |
3118 | 3252 | ||
@@ -3134,6 +3268,8 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
3134 | if (hw->mac_type > e1000_82547_rev_2) { | 3268 | if (hw->mac_type > e1000_82547_rev_2) { |
3135 | adapter->stats.iac += E1000_READ_REG(hw, IAC); | 3269 | adapter->stats.iac += E1000_READ_REG(hw, IAC); |
3136 | adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); | 3270 | adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); |
3271 | |||
3272 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
3137 | adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); | 3273 | adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); |
3138 | adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); | 3274 | adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); |
3139 | adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); | 3275 | adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); |
@@ -3141,6 +3277,7 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
3141 | adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); | 3277 | adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); |
3142 | adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); | 3278 | adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); |
3143 | adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); | 3279 | adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); |
3280 | } | ||
3144 | } | 3281 | } |
3145 | 3282 | ||
3146 | /* Fill out the OS statistics structure */ | 3283 | /* Fill out the OS statistics structure */ |
@@ -3249,8 +3386,8 @@ e1000_intr(int irq, void *data, struct pt_regs *regs) | |||
3249 | E1000_WRITE_REG(hw, IMC, ~0); | 3386 | E1000_WRITE_REG(hw, IMC, ~0); |
3250 | E1000_WRITE_FLUSH(hw); | 3387 | E1000_WRITE_FLUSH(hw); |
3251 | } | 3388 | } |
3252 | if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0]))) | 3389 | if (likely(netif_rx_schedule_prep(netdev))) |
3253 | __netif_rx_schedule(&adapter->polling_netdev[0]); | 3390 | __netif_rx_schedule(netdev); |
3254 | else | 3391 | else |
3255 | e1000_irq_enable(adapter); | 3392 | e1000_irq_enable(adapter); |
3256 | #else | 3393 | #else |
@@ -3293,34 +3430,26 @@ e1000_clean(struct net_device *poll_dev, int *budget) | |||
3293 | { | 3430 | { |
3294 | struct e1000_adapter *adapter; | 3431 | struct e1000_adapter *adapter; |
3295 | int work_to_do = min(*budget, poll_dev->quota); | 3432 | int work_to_do = min(*budget, poll_dev->quota); |
3296 | int tx_cleaned = 0, i = 0, work_done = 0; | 3433 | int tx_cleaned = 0, work_done = 0; |
3297 | 3434 | ||
3298 | /* Must NOT use netdev_priv macro here. */ | 3435 | /* Must NOT use netdev_priv macro here. */ |
3299 | adapter = poll_dev->priv; | 3436 | adapter = poll_dev->priv; |
3300 | 3437 | ||
3301 | /* Keep link state information with original netdev */ | 3438 | /* Keep link state information with original netdev */ |
3302 | if (!netif_carrier_ok(adapter->netdev)) | 3439 | if (!netif_carrier_ok(poll_dev)) |
3303 | goto quit_polling; | 3440 | goto quit_polling; |
3304 | 3441 | ||
3305 | while (poll_dev != &adapter->polling_netdev[i]) { | 3442 | /* e1000_clean is called per-cpu. This lock protects |
3306 | i++; | 3443 | * tx_ring[0] from being cleaned by multiple cpus |
3307 | BUG_ON(i == adapter->num_rx_queues); | 3444 | * simultaneously. A failure obtaining the lock means |
3445 | * tx_ring[0] is currently being cleaned anyway. */ | ||
3446 | if (spin_trylock(&adapter->tx_queue_lock)) { | ||
3447 | tx_cleaned = e1000_clean_tx_irq(adapter, | ||
3448 | &adapter->tx_ring[0]); | ||
3449 | spin_unlock(&adapter->tx_queue_lock); | ||
3308 | } | 3450 | } |
3309 | 3451 | ||
3310 | if (likely(adapter->num_tx_queues == 1)) { | 3452 | adapter->clean_rx(adapter, &adapter->rx_ring[0], |
3311 | /* e1000_clean is called per-cpu. This lock protects | ||
3312 | * tx_ring[0] from being cleaned by multiple cpus | ||
3313 | * simultaneously. A failure obtaining the lock means | ||
3314 | * tx_ring[0] is currently being cleaned anyway. */ | ||
3315 | if (spin_trylock(&adapter->tx_queue_lock)) { | ||
3316 | tx_cleaned = e1000_clean_tx_irq(adapter, | ||
3317 | &adapter->tx_ring[0]); | ||
3318 | spin_unlock(&adapter->tx_queue_lock); | ||
3319 | } | ||
3320 | } else | ||
3321 | tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]); | ||
3322 | |||
3323 | adapter->clean_rx(adapter, &adapter->rx_ring[i], | ||
3324 | &work_done, work_to_do); | 3453 | &work_done, work_to_do); |
3325 | 3454 | ||
3326 | *budget -= work_done; | 3455 | *budget -= work_done; |
@@ -3328,7 +3457,7 @@ e1000_clean(struct net_device *poll_dev, int *budget) | |||
3328 | 3457 | ||
3329 | /* If no Tx and not enough Rx work done, exit the polling mode */ | 3458 | /* If no Tx and not enough Rx work done, exit the polling mode */ |
3330 | if ((!tx_cleaned && (work_done == 0)) || | 3459 | if ((!tx_cleaned && (work_done == 0)) || |
3331 | !netif_running(adapter->netdev)) { | 3460 | !netif_running(poll_dev)) { |
3332 | quit_polling: | 3461 | quit_polling: |
3333 | netif_rx_complete(poll_dev); | 3462 | netif_rx_complete(poll_dev); |
3334 | e1000_irq_enable(adapter); | 3463 | e1000_irq_enable(adapter); |
@@ -3543,11 +3672,15 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter, | |||
3543 | 3672 | ||
3544 | length = le16_to_cpu(rx_desc->length); | 3673 | length = le16_to_cpu(rx_desc->length); |
3545 | 3674 | ||
3675 | /* adjust length to remove Ethernet CRC */ | ||
3676 | length -= 4; | ||
3677 | |||
3546 | if (unlikely(!(status & E1000_RXD_STAT_EOP))) { | 3678 | if (unlikely(!(status & E1000_RXD_STAT_EOP))) { |
3547 | /* All receives must fit into a single buffer */ | 3679 | /* All receives must fit into a single buffer */ |
3548 | E1000_DBG("%s: Receive packet consumed multiple" | 3680 | E1000_DBG("%s: Receive packet consumed multiple" |
3549 | " buffers\n", netdev->name); | 3681 | " buffers\n", netdev->name); |
3550 | dev_kfree_skb_irq(skb); | 3682 | /* recycle */ |
3683 | buffer_info-> skb = skb; | ||
3551 | goto next_desc; | 3684 | goto next_desc; |
3552 | } | 3685 | } |
3553 | 3686 | ||
@@ -3575,7 +3708,7 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter, | |||
3575 | #define E1000_CB_LENGTH 256 | 3708 | #define E1000_CB_LENGTH 256 |
3576 | if (length < E1000_CB_LENGTH) { | 3709 | if (length < E1000_CB_LENGTH) { |
3577 | struct sk_buff *new_skb = | 3710 | struct sk_buff *new_skb = |
3578 | dev_alloc_skb(length + NET_IP_ALIGN); | 3711 | netdev_alloc_skb(netdev, length + NET_IP_ALIGN); |
3579 | if (new_skb) { | 3712 | if (new_skb) { |
3580 | skb_reserve(new_skb, NET_IP_ALIGN); | 3713 | skb_reserve(new_skb, NET_IP_ALIGN); |
3581 | new_skb->dev = netdev; | 3714 | new_skb->dev = netdev; |
@@ -3675,7 +3808,6 @@ e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | |||
3675 | buffer_info = &rx_ring->buffer_info[i]; | 3808 | buffer_info = &rx_ring->buffer_info[i]; |
3676 | 3809 | ||
3677 | while (staterr & E1000_RXD_STAT_DD) { | 3810 | while (staterr & E1000_RXD_STAT_DD) { |
3678 | buffer_info = &rx_ring->buffer_info[i]; | ||
3679 | ps_page = &rx_ring->ps_page[i]; | 3811 | ps_page = &rx_ring->ps_page[i]; |
3680 | ps_page_dma = &rx_ring->ps_page_dma[i]; | 3812 | ps_page_dma = &rx_ring->ps_page_dma[i]; |
3681 | #ifdef CONFIG_E1000_NAPI | 3813 | #ifdef CONFIG_E1000_NAPI |
@@ -3747,8 +3879,9 @@ e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | |||
3747 | pci_dma_sync_single_for_device(pdev, | 3879 | pci_dma_sync_single_for_device(pdev, |
3748 | ps_page_dma->ps_page_dma[0], | 3880 | ps_page_dma->ps_page_dma[0], |
3749 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | 3881 | PAGE_SIZE, PCI_DMA_FROMDEVICE); |
3882 | /* remove the CRC */ | ||
3883 | l1 -= 4; | ||
3750 | skb_put(skb, l1); | 3884 | skb_put(skb, l1); |
3751 | length += l1; | ||
3752 | goto copydone; | 3885 | goto copydone; |
3753 | } /* if */ | 3886 | } /* if */ |
3754 | } | 3887 | } |
@@ -3767,6 +3900,10 @@ e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | |||
3767 | skb->truesize += length; | 3900 | skb->truesize += length; |
3768 | } | 3901 | } |
3769 | 3902 | ||
3903 | /* strip the ethernet crc, problem is we're using pages now so | ||
3904 | * this whole operation can get a little cpu intensive */ | ||
3905 | pskb_trim(skb, skb->len - 4); | ||
3906 | |||
3770 | copydone: | 3907 | copydone: |
3771 | e1000_rx_checksum(adapter, staterr, | 3908 | e1000_rx_checksum(adapter, staterr, |
3772 | le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | 3909 | le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); |
@@ -3842,7 +3979,7 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | |||
3842 | 3979 | ||
3843 | while (cleaned_count--) { | 3980 | while (cleaned_count--) { |
3844 | if (!(skb = buffer_info->skb)) | 3981 | if (!(skb = buffer_info->skb)) |
3845 | skb = dev_alloc_skb(bufsz); | 3982 | skb = netdev_alloc_skb(netdev, bufsz); |
3846 | else { | 3983 | else { |
3847 | skb_trim(skb, 0); | 3984 | skb_trim(skb, 0); |
3848 | goto map_skb; | 3985 | goto map_skb; |
@@ -3860,7 +3997,7 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | |||
3860 | DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " | 3997 | DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " |
3861 | "at %p\n", bufsz, skb->data); | 3998 | "at %p\n", bufsz, skb->data); |
3862 | /* Try again, without freeing the previous */ | 3999 | /* Try again, without freeing the previous */ |
3863 | skb = dev_alloc_skb(bufsz); | 4000 | skb = netdev_alloc_skb(netdev, bufsz); |
3864 | /* Failed allocation, critical failure */ | 4001 | /* Failed allocation, critical failure */ |
3865 | if (!skb) { | 4002 | if (!skb) { |
3866 | dev_kfree_skb(oldskb); | 4003 | dev_kfree_skb(oldskb); |
@@ -3984,7 +4121,8 @@ e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | |||
3984 | rx_desc->read.buffer_addr[j+1] = ~0; | 4121 | rx_desc->read.buffer_addr[j+1] = ~0; |
3985 | } | 4122 | } |
3986 | 4123 | ||
3987 | skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN); | 4124 | skb = netdev_alloc_skb(netdev, |
4125 | adapter->rx_ps_bsize0 + NET_IP_ALIGN); | ||
3988 | 4126 | ||
3989 | if (unlikely(!skb)) { | 4127 | if (unlikely(!skb)) { |
3990 | adapter->alloc_rx_buff_failed++; | 4128 | adapter->alloc_rx_buff_failed++; |
@@ -4180,10 +4318,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | |||
4180 | return retval; | 4318 | return retval; |
4181 | } | 4319 | } |
4182 | } | 4320 | } |
4183 | if (netif_running(adapter->netdev)) { | 4321 | if (netif_running(adapter->netdev)) |
4184 | e1000_down(adapter); | 4322 | e1000_reinit_locked(adapter); |
4185 | e1000_up(adapter); | 4323 | else |
4186 | } else | ||
4187 | e1000_reset(adapter); | 4324 | e1000_reset(adapter); |
4188 | break; | 4325 | break; |
4189 | case M88E1000_PHY_SPEC_CTRL: | 4326 | case M88E1000_PHY_SPEC_CTRL: |
@@ -4200,10 +4337,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | |||
4200 | case PHY_CTRL: | 4337 | case PHY_CTRL: |
4201 | if (mii_reg & MII_CR_POWER_DOWN) | 4338 | if (mii_reg & MII_CR_POWER_DOWN) |
4202 | break; | 4339 | break; |
4203 | if (netif_running(adapter->netdev)) { | 4340 | if (netif_running(adapter->netdev)) |
4204 | e1000_down(adapter); | 4341 | e1000_reinit_locked(adapter); |
4205 | e1000_up(adapter); | 4342 | else |
4206 | } else | ||
4207 | e1000_reset(adapter); | 4343 | e1000_reset(adapter); |
4208 | break; | 4344 | break; |
4209 | } | 4345 | } |
@@ -4250,11 +4386,13 @@ e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) | |||
4250 | pci_write_config_word(adapter->pdev, reg, *value); | 4386 | pci_write_config_word(adapter->pdev, reg, *value); |
4251 | } | 4387 | } |
4252 | 4388 | ||
4389 | #if 0 | ||
4253 | uint32_t | 4390 | uint32_t |
4254 | e1000_io_read(struct e1000_hw *hw, unsigned long port) | 4391 | e1000_io_read(struct e1000_hw *hw, unsigned long port) |
4255 | { | 4392 | { |
4256 | return inl(port); | 4393 | return inl(port); |
4257 | } | 4394 | } |
4395 | #endif /* 0 */ | ||
4258 | 4396 | ||
4259 | void | 4397 | void |
4260 | e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value) | 4398 | e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value) |
@@ -4277,18 +4415,21 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | |||
4277 | ctrl |= E1000_CTRL_VME; | 4415 | ctrl |= E1000_CTRL_VME; |
4278 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | 4416 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); |
4279 | 4417 | ||
4418 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
4280 | /* enable VLAN receive filtering */ | 4419 | /* enable VLAN receive filtering */ |
4281 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 4420 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
4282 | rctl |= E1000_RCTL_VFE; | 4421 | rctl |= E1000_RCTL_VFE; |
4283 | rctl &= ~E1000_RCTL_CFIEN; | 4422 | rctl &= ~E1000_RCTL_CFIEN; |
4284 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 4423 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
4285 | e1000_update_mng_vlan(adapter); | 4424 | e1000_update_mng_vlan(adapter); |
4425 | } | ||
4286 | } else { | 4426 | } else { |
4287 | /* disable VLAN tag insert/strip */ | 4427 | /* disable VLAN tag insert/strip */ |
4288 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | 4428 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); |
4289 | ctrl &= ~E1000_CTRL_VME; | 4429 | ctrl &= ~E1000_CTRL_VME; |
4290 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | 4430 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); |
4291 | 4431 | ||
4432 | if (adapter->hw.mac_type != e1000_ich8lan) { | ||
4292 | /* disable VLAN filtering */ | 4433 | /* disable VLAN filtering */ |
4293 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 4434 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
4294 | rctl &= ~E1000_RCTL_VFE; | 4435 | rctl &= ~E1000_RCTL_VFE; |
@@ -4297,6 +4438,7 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | |||
4297 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | 4438 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
4298 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 4439 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
4299 | } | 4440 | } |
4441 | } | ||
4300 | } | 4442 | } |
4301 | 4443 | ||
4302 | e1000_irq_enable(adapter); | 4444 | e1000_irq_enable(adapter); |
@@ -4458,12 +4600,16 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state) | |||
4458 | struct e1000_adapter *adapter = netdev_priv(netdev); | 4600 | struct e1000_adapter *adapter = netdev_priv(netdev); |
4459 | uint32_t ctrl, ctrl_ext, rctl, manc, status; | 4601 | uint32_t ctrl, ctrl_ext, rctl, manc, status; |
4460 | uint32_t wufc = adapter->wol; | 4602 | uint32_t wufc = adapter->wol; |
4603 | #ifdef CONFIG_PM | ||
4461 | int retval = 0; | 4604 | int retval = 0; |
4605 | #endif | ||
4462 | 4606 | ||
4463 | netif_device_detach(netdev); | 4607 | netif_device_detach(netdev); |
4464 | 4608 | ||
4465 | if (netif_running(netdev)) | 4609 | if (netif_running(netdev)) { |
4610 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | ||
4466 | e1000_down(adapter); | 4611 | e1000_down(adapter); |
4612 | } | ||
4467 | 4613 | ||
4468 | #ifdef CONFIG_PM | 4614 | #ifdef CONFIG_PM |
4469 | /* Implement our own version of pci_save_state(pdev) because pci- | 4615 | /* Implement our own version of pci_save_state(pdev) because pci- |
@@ -4521,7 +4667,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state) | |||
4521 | pci_enable_wake(pdev, PCI_D3cold, 0); | 4667 | pci_enable_wake(pdev, PCI_D3cold, 0); |
4522 | } | 4668 | } |
4523 | 4669 | ||
4670 | /* FIXME: this code is incorrect for PCI Express */ | ||
4524 | if (adapter->hw.mac_type >= e1000_82540 && | 4671 | if (adapter->hw.mac_type >= e1000_82540 && |
4672 | adapter->hw.mac_type != e1000_ich8lan && | ||
4525 | adapter->hw.media_type == e1000_media_type_copper) { | 4673 | adapter->hw.media_type == e1000_media_type_copper) { |
4526 | manc = E1000_READ_REG(&adapter->hw, MANC); | 4674 | manc = E1000_READ_REG(&adapter->hw, MANC); |
4527 | if (manc & E1000_MANC_SMBUS_EN) { | 4675 | if (manc & E1000_MANC_SMBUS_EN) { |
@@ -4532,6 +4680,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state) | |||
4532 | } | 4680 | } |
4533 | } | 4681 | } |
4534 | 4682 | ||
4683 | if (adapter->hw.phy_type == e1000_phy_igp_3) | ||
4684 | e1000_phy_powerdown_workaround(&adapter->hw); | ||
4685 | |||
4535 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | 4686 | /* Release control of h/w to f/w. If f/w is AMT enabled, this |
4536 | * would have already happened in close and is redundant. */ | 4687 | * would have already happened in close and is redundant. */ |
4537 | e1000_release_hw_control(adapter); | 4688 | e1000_release_hw_control(adapter); |
@@ -4567,7 +4718,9 @@ e1000_resume(struct pci_dev *pdev) | |||
4567 | 4718 | ||
4568 | netif_device_attach(netdev); | 4719 | netif_device_attach(netdev); |
4569 | 4720 | ||
4721 | /* FIXME: this code is incorrect for PCI Express */ | ||
4570 | if (adapter->hw.mac_type >= e1000_82540 && | 4722 | if (adapter->hw.mac_type >= e1000_82540 && |
4723 | adapter->hw.mac_type != e1000_ich8lan && | ||
4571 | adapter->hw.media_type == e1000_media_type_copper) { | 4724 | adapter->hw.media_type == e1000_media_type_copper) { |
4572 | manc = E1000_READ_REG(&adapter->hw, MANC); | 4725 | manc = E1000_READ_REG(&adapter->hw, MANC); |
4573 | manc &= ~(E1000_MANC_ARP_EN); | 4726 | manc &= ~(E1000_MANC_ARP_EN); |
@@ -4601,6 +4754,7 @@ static void | |||
4601 | e1000_netpoll(struct net_device *netdev) | 4754 | e1000_netpoll(struct net_device *netdev) |
4602 | { | 4755 | { |
4603 | struct e1000_adapter *adapter = netdev_priv(netdev); | 4756 | struct e1000_adapter *adapter = netdev_priv(netdev); |
4757 | |||
4604 | disable_irq(adapter->pdev->irq); | 4758 | disable_irq(adapter->pdev->irq); |
4605 | e1000_intr(adapter->pdev->irq, netdev, NULL); | 4759 | e1000_intr(adapter->pdev->irq, netdev, NULL); |
4606 | e1000_clean_tx_irq(adapter, adapter->tx_ring); | 4760 | e1000_clean_tx_irq(adapter, adapter->tx_ring); |
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h index 048d052be29d..2d3e8b06cab0 100644 --- a/drivers/net/e1000/e1000_osdep.h +++ b/drivers/net/e1000/e1000_osdep.h | |||
@@ -127,4 +127,17 @@ typedef enum { | |||
127 | 127 | ||
128 | #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) | 128 | #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) |
129 | 129 | ||
130 | #define E1000_WRITE_ICH8_REG(a, reg, value) ( \ | ||
131 | writel((value), ((a)->flash_address + reg))) | ||
132 | |||
133 | #define E1000_READ_ICH8_REG(a, reg) ( \ | ||
134 | readl((a)->flash_address + reg)) | ||
135 | |||
136 | #define E1000_WRITE_ICH8_REG16(a, reg, value) ( \ | ||
137 | writew((value), ((a)->flash_address + reg))) | ||
138 | |||
139 | #define E1000_READ_ICH8_REG16(a, reg) ( \ | ||
140 | readw((a)->flash_address + reg)) | ||
141 | |||
142 | |||
130 | #endif /* _E1000_OSDEP_H_ */ | 143 | #endif /* _E1000_OSDEP_H_ */ |
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c index e55f8969a0fb..0ef413172c68 100644 --- a/drivers/net/e1000/e1000_param.c +++ b/drivers/net/e1000/e1000_param.c | |||
@@ -45,6 +45,16 @@ | |||
45 | */ | 45 | */ |
46 | 46 | ||
47 | #define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } | 47 | #define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } |
48 | /* Module Parameters are always initialized to -1, so that the driver | ||
49 | * can tell the difference between no user specified value or the | ||
50 | * user asking for the default value. | ||
51 | * The true default values are loaded in when e1000_check_options is called. | ||
52 | * | ||
53 | * This is a GCC extension to ANSI C. | ||
54 | * See the item "Labeled Elements in Initializers" in the section | ||
55 | * "Extensions to the C Language Family" of the GCC documentation. | ||
56 | */ | ||
57 | |||
48 | #define E1000_PARAM(X, desc) \ | 58 | #define E1000_PARAM(X, desc) \ |
49 | static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \ | 59 | static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \ |
50 | static int num_##X = 0; \ | 60 | static int num_##X = 0; \ |
@@ -183,6 +193,24 @@ E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay"); | |||
183 | 193 | ||
184 | E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); | 194 | E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); |
185 | 195 | ||
196 | /* Enable Smart Power Down of the PHY | ||
197 | * | ||
198 | * Valid Range: 0, 1 | ||
199 | * | ||
200 | * Default Value: 0 (disabled) | ||
201 | */ | ||
202 | |||
203 | E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down"); | ||
204 | |||
205 | /* Enable Kumeran Lock Loss workaround | ||
206 | * | ||
207 | * Valid Range: 0, 1 | ||
208 | * | ||
209 | * Default Value: 1 (enabled) | ||
210 | */ | ||
211 | |||
212 | E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround"); | ||
213 | |||
186 | #define AUTONEG_ADV_DEFAULT 0x2F | 214 | #define AUTONEG_ADV_DEFAULT 0x2F |
187 | #define AUTONEG_ADV_MASK 0x2F | 215 | #define AUTONEG_ADV_MASK 0x2F |
188 | #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL | 216 | #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL |
@@ -296,6 +324,7 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
296 | DPRINTK(PROBE, NOTICE, | 324 | DPRINTK(PROBE, NOTICE, |
297 | "Warning: no configuration for board #%i\n", bd); | 325 | "Warning: no configuration for board #%i\n", bd); |
298 | DPRINTK(PROBE, NOTICE, "Using defaults for all values\n"); | 326 | DPRINTK(PROBE, NOTICE, "Using defaults for all values\n"); |
327 | bd = E1000_MAX_NIC; | ||
299 | } | 328 | } |
300 | 329 | ||
301 | { /* Transmit Descriptor Count */ | 330 | { /* Transmit Descriptor Count */ |
@@ -313,14 +342,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
313 | opt.arg.r.max = mac_type < e1000_82544 ? | 342 | opt.arg.r.max = mac_type < e1000_82544 ? |
314 | E1000_MAX_TXD : E1000_MAX_82544_TXD; | 343 | E1000_MAX_TXD : E1000_MAX_82544_TXD; |
315 | 344 | ||
316 | if (num_TxDescriptors > bd) { | 345 | tx_ring->count = TxDescriptors[bd]; |
317 | tx_ring->count = TxDescriptors[bd]; | 346 | e1000_validate_option(&tx_ring->count, &opt, adapter); |
318 | e1000_validate_option(&tx_ring->count, &opt, adapter); | 347 | E1000_ROUNDUP(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE); |
319 | E1000_ROUNDUP(tx_ring->count, | ||
320 | REQ_TX_DESCRIPTOR_MULTIPLE); | ||
321 | } else { | ||
322 | tx_ring->count = opt.def; | ||
323 | } | ||
324 | for (i = 0; i < adapter->num_tx_queues; i++) | 348 | for (i = 0; i < adapter->num_tx_queues; i++) |
325 | tx_ring[i].count = tx_ring->count; | 349 | tx_ring[i].count = tx_ring->count; |
326 | } | 350 | } |
@@ -339,14 +363,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
339 | opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD : | 363 | opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD : |
340 | E1000_MAX_82544_RXD; | 364 | E1000_MAX_82544_RXD; |
341 | 365 | ||
342 | if (num_RxDescriptors > bd) { | 366 | rx_ring->count = RxDescriptors[bd]; |
343 | rx_ring->count = RxDescriptors[bd]; | 367 | e1000_validate_option(&rx_ring->count, &opt, adapter); |
344 | e1000_validate_option(&rx_ring->count, &opt, adapter); | 368 | E1000_ROUNDUP(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE); |
345 | E1000_ROUNDUP(rx_ring->count, | ||
346 | REQ_RX_DESCRIPTOR_MULTIPLE); | ||
347 | } else { | ||
348 | rx_ring->count = opt.def; | ||
349 | } | ||
350 | for (i = 0; i < adapter->num_rx_queues; i++) | 369 | for (i = 0; i < adapter->num_rx_queues; i++) |
351 | rx_ring[i].count = rx_ring->count; | 370 | rx_ring[i].count = rx_ring->count; |
352 | } | 371 | } |
@@ -358,13 +377,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
358 | .def = OPTION_ENABLED | 377 | .def = OPTION_ENABLED |
359 | }; | 378 | }; |
360 | 379 | ||
361 | if (num_XsumRX > bd) { | 380 | int rx_csum = XsumRX[bd]; |
362 | int rx_csum = XsumRX[bd]; | 381 | e1000_validate_option(&rx_csum, &opt, adapter); |
363 | e1000_validate_option(&rx_csum, &opt, adapter); | 382 | adapter->rx_csum = rx_csum; |
364 | adapter->rx_csum = rx_csum; | ||
365 | } else { | ||
366 | adapter->rx_csum = opt.def; | ||
367 | } | ||
368 | } | 383 | } |
369 | { /* Flow Control */ | 384 | { /* Flow Control */ |
370 | 385 | ||
@@ -384,13 +399,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
384 | .p = fc_list }} | 399 | .p = fc_list }} |
385 | }; | 400 | }; |
386 | 401 | ||
387 | if (num_FlowControl > bd) { | 402 | int fc = FlowControl[bd]; |
388 | int fc = FlowControl[bd]; | 403 | e1000_validate_option(&fc, &opt, adapter); |
389 | e1000_validate_option(&fc, &opt, adapter); | 404 | adapter->hw.fc = adapter->hw.original_fc = fc; |
390 | adapter->hw.fc = adapter->hw.original_fc = fc; | ||
391 | } else { | ||
392 | adapter->hw.fc = adapter->hw.original_fc = opt.def; | ||
393 | } | ||
394 | } | 405 | } |
395 | { /* Transmit Interrupt Delay */ | 406 | { /* Transmit Interrupt Delay */ |
396 | struct e1000_option opt = { | 407 | struct e1000_option opt = { |
@@ -402,13 +413,8 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
402 | .max = MAX_TXDELAY }} | 413 | .max = MAX_TXDELAY }} |
403 | }; | 414 | }; |
404 | 415 | ||
405 | if (num_TxIntDelay > bd) { | 416 | adapter->tx_int_delay = TxIntDelay[bd]; |
406 | adapter->tx_int_delay = TxIntDelay[bd]; | 417 | e1000_validate_option(&adapter->tx_int_delay, &opt, adapter); |
407 | e1000_validate_option(&adapter->tx_int_delay, &opt, | ||
408 | adapter); | ||
409 | } else { | ||
410 | adapter->tx_int_delay = opt.def; | ||
411 | } | ||
412 | } | 418 | } |
413 | { /* Transmit Absolute Interrupt Delay */ | 419 | { /* Transmit Absolute Interrupt Delay */ |
414 | struct e1000_option opt = { | 420 | struct e1000_option opt = { |
@@ -420,13 +426,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
420 | .max = MAX_TXABSDELAY }} | 426 | .max = MAX_TXABSDELAY }} |
421 | }; | 427 | }; |
422 | 428 | ||
423 | if (num_TxAbsIntDelay > bd) { | 429 | adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; |
424 | adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; | 430 | e1000_validate_option(&adapter->tx_abs_int_delay, &opt, |
425 | e1000_validate_option(&adapter->tx_abs_int_delay, &opt, | 431 | adapter); |
426 | adapter); | ||
427 | } else { | ||
428 | adapter->tx_abs_int_delay = opt.def; | ||
429 | } | ||
430 | } | 432 | } |
431 | { /* Receive Interrupt Delay */ | 433 | { /* Receive Interrupt Delay */ |
432 | struct e1000_option opt = { | 434 | struct e1000_option opt = { |
@@ -438,13 +440,8 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
438 | .max = MAX_RXDELAY }} | 440 | .max = MAX_RXDELAY }} |
439 | }; | 441 | }; |
440 | 442 | ||
441 | if (num_RxIntDelay > bd) { | 443 | adapter->rx_int_delay = RxIntDelay[bd]; |
442 | adapter->rx_int_delay = RxIntDelay[bd]; | 444 | e1000_validate_option(&adapter->rx_int_delay, &opt, adapter); |
443 | e1000_validate_option(&adapter->rx_int_delay, &opt, | ||
444 | adapter); | ||
445 | } else { | ||
446 | adapter->rx_int_delay = opt.def; | ||
447 | } | ||
448 | } | 445 | } |
449 | { /* Receive Absolute Interrupt Delay */ | 446 | { /* Receive Absolute Interrupt Delay */ |
450 | struct e1000_option opt = { | 447 | struct e1000_option opt = { |
@@ -456,13 +453,9 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
456 | .max = MAX_RXABSDELAY }} | 453 | .max = MAX_RXABSDELAY }} |
457 | }; | 454 | }; |
458 | 455 | ||
459 | if (num_RxAbsIntDelay > bd) { | 456 | adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; |
460 | adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; | 457 | e1000_validate_option(&adapter->rx_abs_int_delay, &opt, |
461 | e1000_validate_option(&adapter->rx_abs_int_delay, &opt, | 458 | adapter); |
462 | adapter); | ||
463 | } else { | ||
464 | adapter->rx_abs_int_delay = opt.def; | ||
465 | } | ||
466 | } | 459 | } |
467 | { /* Interrupt Throttling Rate */ | 460 | { /* Interrupt Throttling Rate */ |
468 | struct e1000_option opt = { | 461 | struct e1000_option opt = { |
@@ -474,26 +467,44 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
474 | .max = MAX_ITR }} | 467 | .max = MAX_ITR }} |
475 | }; | 468 | }; |
476 | 469 | ||
477 | if (num_InterruptThrottleRate > bd) { | 470 | adapter->itr = InterruptThrottleRate[bd]; |
478 | adapter->itr = InterruptThrottleRate[bd]; | 471 | switch (adapter->itr) { |
479 | switch (adapter->itr) { | 472 | case 0: |
480 | case 0: | 473 | DPRINTK(PROBE, INFO, "%s turned off\n", opt.name); |
481 | DPRINTK(PROBE, INFO, "%s turned off\n", | 474 | break; |
482 | opt.name); | 475 | case 1: |
483 | break; | 476 | DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", |
484 | case 1: | 477 | opt.name); |
485 | DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", | 478 | break; |
486 | opt.name); | 479 | default: |
487 | break; | 480 | e1000_validate_option(&adapter->itr, &opt, adapter); |
488 | default: | 481 | break; |
489 | e1000_validate_option(&adapter->itr, &opt, | ||
490 | adapter); | ||
491 | break; | ||
492 | } | ||
493 | } else { | ||
494 | adapter->itr = opt.def; | ||
495 | } | 482 | } |
496 | } | 483 | } |
484 | { /* Smart Power Down */ | ||
485 | struct e1000_option opt = { | ||
486 | .type = enable_option, | ||
487 | .name = "PHY Smart Power Down", | ||
488 | .err = "defaulting to Disabled", | ||
489 | .def = OPTION_DISABLED | ||
490 | }; | ||
491 | |||
492 | int spd = SmartPowerDownEnable[bd]; | ||
493 | e1000_validate_option(&spd, &opt, adapter); | ||
494 | adapter->smart_power_down = spd; | ||
495 | } | ||
496 | { /* Kumeran Lock Loss Workaround */ | ||
497 | struct e1000_option opt = { | ||
498 | .type = enable_option, | ||
499 | .name = "Kumeran Lock Loss Workaround", | ||
500 | .err = "defaulting to Enabled", | ||
501 | .def = OPTION_ENABLED | ||
502 | }; | ||
503 | |||
504 | int kmrn_lock_loss = KumeranLockLoss[bd]; | ||
505 | e1000_validate_option(&kmrn_lock_loss, &opt, adapter); | ||
506 | adapter->hw.kmrn_lock_loss_workaround_disabled = !kmrn_lock_loss; | ||
507 | } | ||
497 | 508 | ||
498 | switch (adapter->hw.media_type) { | 509 | switch (adapter->hw.media_type) { |
499 | case e1000_media_type_fiber: | 510 | case e1000_media_type_fiber: |
@@ -519,17 +530,18 @@ static void __devinit | |||
519 | e1000_check_fiber_options(struct e1000_adapter *adapter) | 530 | e1000_check_fiber_options(struct e1000_adapter *adapter) |
520 | { | 531 | { |
521 | int bd = adapter->bd_number; | 532 | int bd = adapter->bd_number; |
522 | if (num_Speed > bd) { | 533 | bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd; |
534 | if ((Speed[bd] != OPTION_UNSET)) { | ||
523 | DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, " | 535 | DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, " |
524 | "parameter ignored\n"); | 536 | "parameter ignored\n"); |
525 | } | 537 | } |
526 | 538 | ||
527 | if (num_Duplex > bd) { | 539 | if ((Duplex[bd] != OPTION_UNSET)) { |
528 | DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, " | 540 | DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, " |
529 | "parameter ignored\n"); | 541 | "parameter ignored\n"); |
530 | } | 542 | } |
531 | 543 | ||
532 | if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) { | 544 | if ((AutoNeg[bd] != OPTION_UNSET) && (AutoNeg[bd] != 0x20)) { |
533 | DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is " | 545 | DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is " |
534 | "not valid for fiber adapters, " | 546 | "not valid for fiber adapters, " |
535 | "parameter ignored\n"); | 547 | "parameter ignored\n"); |
@@ -548,6 +560,7 @@ e1000_check_copper_options(struct e1000_adapter *adapter) | |||
548 | { | 560 | { |
549 | int speed, dplx, an; | 561 | int speed, dplx, an; |
550 | int bd = adapter->bd_number; | 562 | int bd = adapter->bd_number; |
563 | bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd; | ||
551 | 564 | ||
552 | { /* Speed */ | 565 | { /* Speed */ |
553 | struct e1000_opt_list speed_list[] = {{ 0, "" }, | 566 | struct e1000_opt_list speed_list[] = {{ 0, "" }, |
@@ -564,12 +577,8 @@ e1000_check_copper_options(struct e1000_adapter *adapter) | |||
564 | .p = speed_list }} | 577 | .p = speed_list }} |
565 | }; | 578 | }; |
566 | 579 | ||
567 | if (num_Speed > bd) { | 580 | speed = Speed[bd]; |
568 | speed = Speed[bd]; | 581 | e1000_validate_option(&speed, &opt, adapter); |
569 | e1000_validate_option(&speed, &opt, adapter); | ||
570 | } else { | ||
571 | speed = opt.def; | ||
572 | } | ||
573 | } | 582 | } |
574 | { /* Duplex */ | 583 | { /* Duplex */ |
575 | struct e1000_opt_list dplx_list[] = {{ 0, "" }, | 584 | struct e1000_opt_list dplx_list[] = {{ 0, "" }, |
@@ -591,15 +600,11 @@ e1000_check_copper_options(struct e1000_adapter *adapter) | |||
591 | "Speed/Duplex/AutoNeg parameter ignored.\n"); | 600 | "Speed/Duplex/AutoNeg parameter ignored.\n"); |
592 | return; | 601 | return; |
593 | } | 602 | } |
594 | if (num_Duplex > bd) { | 603 | dplx = Duplex[bd]; |
595 | dplx = Duplex[bd]; | 604 | e1000_validate_option(&dplx, &opt, adapter); |
596 | e1000_validate_option(&dplx, &opt, adapter); | ||
597 | } else { | ||
598 | dplx = opt.def; | ||
599 | } | ||
600 | } | 605 | } |
601 | 606 | ||
602 | if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) { | 607 | if (AutoNeg[bd] != OPTION_UNSET && (speed != 0 || dplx != 0)) { |
603 | DPRINTK(PROBE, INFO, | 608 | DPRINTK(PROBE, INFO, |
604 | "AutoNeg specified along with Speed or Duplex, " | 609 | "AutoNeg specified along with Speed or Duplex, " |
605 | "parameter ignored\n"); | 610 | "parameter ignored\n"); |
@@ -648,19 +653,15 @@ e1000_check_copper_options(struct e1000_adapter *adapter) | |||
648 | .p = an_list }} | 653 | .p = an_list }} |
649 | }; | 654 | }; |
650 | 655 | ||
651 | if (num_AutoNeg > bd) { | 656 | an = AutoNeg[bd]; |
652 | an = AutoNeg[bd]; | 657 | e1000_validate_option(&an, &opt, adapter); |
653 | e1000_validate_option(&an, &opt, adapter); | ||
654 | } else { | ||
655 | an = opt.def; | ||
656 | } | ||
657 | adapter->hw.autoneg_advertised = an; | 658 | adapter->hw.autoneg_advertised = an; |
658 | } | 659 | } |
659 | 660 | ||
660 | switch (speed + dplx) { | 661 | switch (speed + dplx) { |
661 | case 0: | 662 | case 0: |
662 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | 663 | adapter->hw.autoneg = adapter->fc_autoneg = 1; |
663 | if ((num_Speed > bd) && (speed != 0 || dplx != 0)) | 664 | if (Speed[bd] != OPTION_UNSET || Duplex[bd] != OPTION_UNSET) |
664 | DPRINTK(PROBE, INFO, | 665 | DPRINTK(PROBE, INFO, |
665 | "Speed and duplex autonegotiation enabled\n"); | 666 | "Speed and duplex autonegotiation enabled\n"); |
666 | break; | 667 | break; |