diff options
Diffstat (limited to 'drivers/net/e1000')
-rw-r--r-- | drivers/net/e1000/LICENSE | 339 | ||||
-rw-r--r-- | drivers/net/e1000/Makefile | 35 | ||||
-rw-r--r-- | drivers/net/e1000/e1000.h | 261 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_ethtool.c | 1673 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 5405 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.h | 2144 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_main.c | 3162 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_osdep.h | 101 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_param.c | 744 |
9 files changed, 13864 insertions, 0 deletions
diff --git a/drivers/net/e1000/LICENSE b/drivers/net/e1000/LICENSE new file mode 100644 index 000000000000..5f297e5bb465 --- /dev/null +++ b/drivers/net/e1000/LICENSE | |||
@@ -0,0 +1,339 @@ | |||
1 | |||
2 | "This software program is licensed subject to the GNU General Public License | ||
3 | (GPL). Version 2, June 1991, available at | ||
4 | <http://www.fsf.org/copyleft/gpl.html>" | ||
5 | |||
6 | GNU General Public License | ||
7 | |||
8 | Version 2, June 1991 | ||
9 | |||
10 | Copyright (C) 1989, 1991 Free Software Foundation, Inc. | ||
11 | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA | ||
12 | |||
13 | Everyone is permitted to copy and distribute verbatim copies of this license | ||
14 | document, but changing it is not allowed. | ||
15 | |||
16 | Preamble | ||
17 | |||
18 | The licenses for most software are designed to take away your freedom to | ||
19 | share and change it. By contrast, the GNU General Public License is intended | ||
20 | to guarantee your freedom to share and change free software--to make sure | ||
21 | the software is free for all its users. This General Public License applies | ||
22 | to most of the Free Software Foundation's software and to any other program | ||
23 | whose authors commit to using it. (Some other Free Software Foundation | ||
24 | software is covered by the GNU Library General Public License instead.) You | ||
25 | can apply it to your programs, too. | ||
26 | |||
27 | When we speak of free software, we are referring to freedom, not price. Our | ||
28 | General Public Licenses are designed to make sure that you have the freedom | ||
29 | to distribute copies of free software (and charge for this service if you | ||
30 | wish), that you receive source code or can get it if you want it, that you | ||
31 | can change the software or use pieces of it in new free programs; and that | ||
32 | you know you can do these things. | ||
33 | |||
34 | To protect your rights, we need to make restrictions that forbid anyone to | ||
35 | deny you these rights or to ask you to surrender the rights. These | ||
36 | restrictions translate to certain responsibilities for you if you distribute | ||
37 | copies of the software, or if you modify it. | ||
38 | |||
39 | For example, if you distribute copies of such a program, whether gratis or | ||
40 | for a fee, you must give the recipients all the rights that you have. You | ||
41 | must make sure that they, too, receive or can get the source code. And you | ||
42 | must show them these terms so they know their rights. | ||
43 | |||
44 | We protect your rights with two steps: (1) copyright the software, and (2) | ||
45 | offer you this license which gives you legal permission to copy, distribute | ||
46 | and/or modify the software. | ||
47 | |||
48 | Also, for each author's protection and ours, we want to make certain that | ||
49 | everyone understands that there is no warranty for this free software. If | ||
50 | the software is modified by someone else and passed on, we want its | ||
51 | recipients to know that what they have is not the original, so that any | ||
52 | problems introduced by others will not reflect on the original authors' | ||
53 | reputations. | ||
54 | |||
55 | Finally, any free program is threatened constantly by software patents. We | ||
56 | wish to avoid the danger that redistributors of a free program will | ||
57 | individually obtain patent licenses, in effect making the program | ||
58 | proprietary. To prevent this, we have made it clear that any patent must be | ||
59 | licensed for everyone's free use or not licensed at all. | ||
60 | |||
61 | The precise terms and conditions for copying, distribution and modification | ||
62 | follow. | ||
63 | |||
64 | TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION | ||
65 | |||
66 | 0. This License applies to any program or other work which contains a notice | ||
67 | placed by the copyright holder saying it may be distributed under the | ||
68 | terms of this General Public License. The "Program", below, refers to any | ||
69 | such program or work, and a "work based on the Program" means either the | ||
70 | Program or any derivative work under copyright law: that is to say, a | ||
71 | work containing the Program or a portion of it, either verbatim or with | ||
72 | modifications and/or translated into another language. (Hereinafter, | ||
73 | translation is included without limitation in the term "modification".) | ||
74 | Each licensee is addressed as "you". | ||
75 | |||
76 | Activities other than copying, distribution and modification are not | ||
77 | covered by this License; they are outside its scope. The act of running | ||
78 | the Program is not restricted, and the output from the Program is covered | ||
79 | only if its contents constitute a work based on the Program (independent | ||
80 | of having been made by running the Program). Whether that is true depends | ||
81 | on what the Program does. | ||
82 | |||
83 | 1. You may copy and distribute verbatim copies of the Program's source code | ||
84 | as you receive it, in any medium, provided that you conspicuously and | ||
85 | appropriately publish on each copy an appropriate copyright notice and | ||
86 | disclaimer of warranty; keep intact all the notices that refer to this | ||
87 | License and to the absence of any warranty; and give any other recipients | ||
88 | of the Program a copy of this License along with the Program. | ||
89 | |||
90 | You may charge a fee for the physical act of transferring a copy, and you | ||
91 | may at your option offer warranty protection in exchange for a fee. | ||
92 | |||
93 | 2. You may modify your copy or copies of the Program or any portion of it, | ||
94 | thus forming a work based on the Program, and copy and distribute such | ||
95 | modifications or work under the terms of Section 1 above, provided that | ||
96 | you also meet all of these conditions: | ||
97 | |||
98 | * a) You must cause the modified files to carry prominent notices stating | ||
99 | that you changed the files and the date of any change. | ||
100 | |||
101 | * b) You must cause any work that you distribute or publish, that in | ||
102 | whole or in part contains or is derived from the Program or any part | ||
103 | thereof, to be licensed as a whole at no charge to all third parties | ||
104 | under the terms of this License. | ||
105 | |||
106 | * c) If the modified program normally reads commands interactively when | ||
107 | run, you must cause it, when started running for such interactive | ||
108 | use in the most ordinary way, to print or display an announcement | ||
109 | including an appropriate copyright notice and a notice that there is | ||
110 | no warranty (or else, saying that you provide a warranty) and that | ||
111 | users may redistribute the program under these conditions, and | ||
112 | telling the user how to view a copy of this License. (Exception: if | ||
113 | the Program itself is interactive but does not normally print such | ||
114 | an announcement, your work based on the Program is not required to | ||
115 | print an announcement.) | ||
116 | |||
117 | These requirements apply to the modified work as a whole. If identifiable | ||
118 | sections of that work are not derived from the Program, and can be | ||
119 | reasonably considered independent and separate works in themselves, then | ||
120 | this License, and its terms, do not apply to those sections when you | ||
121 | distribute them as separate works. But when you distribute the same | ||
122 | sections as part of a whole which is a work based on the Program, the | ||
123 | distribution of the whole must be on the terms of this License, whose | ||
124 | permissions for other licensees extend to the entire whole, and thus to | ||
125 | each and every part regardless of who wrote it. | ||
126 | |||
127 | Thus, it is not the intent of this section to claim rights or contest | ||
128 | your rights to work written entirely by you; rather, the intent is to | ||
129 | exercise the right to control the distribution of derivative or | ||
130 | collective works based on the Program. | ||
131 | |||
132 | In addition, mere aggregation of another work not based on the Program | ||
133 | with the Program (or with a work based on the Program) on a volume of a | ||
134 | storage or distribution medium does not bring the other work under the | ||
135 | scope of this License. | ||
136 | |||
137 | 3. You may copy and distribute the Program (or a work based on it, under | ||
138 | Section 2) in object code or executable form under the terms of Sections | ||
139 | 1 and 2 above provided that you also do one of the following: | ||
140 | |||
141 | * a) Accompany it with the complete corresponding machine-readable source | ||
142 | code, which must be distributed under the terms of Sections 1 and 2 | ||
143 | above on a medium customarily used for software interchange; or, | ||
144 | |||
145 | * b) Accompany it with a written offer, valid for at least three years, | ||
146 | to give any third party, for a charge no more than your cost of | ||
147 | physically performing source distribution, a complete machine- | ||
148 | readable copy of the corresponding source code, to be distributed | ||
149 | under the terms of Sections 1 and 2 above on a medium customarily | ||
150 | used for software interchange; or, | ||
151 | |||
152 | * c) Accompany it with the information you received as to the offer to | ||
153 | distribute corresponding source code. (This alternative is allowed | ||
154 | only for noncommercial distribution and only if you received the | ||
155 | program in object code or executable form with such an offer, in | ||
156 | accord with Subsection b above.) | ||
157 | |||
158 | The source code for a work means the preferred form of the work for | ||
159 | making modifications to it. For an executable work, complete source code | ||
160 | means all the source code for all modules it contains, plus any | ||
161 | associated interface definition files, plus the scripts used to control | ||
162 | compilation and installation of the executable. However, as a special | ||
163 | exception, the source code distributed need not include anything that is | ||
164 | normally distributed (in either source or binary form) with the major | ||
165 | components (compiler, kernel, and so on) of the operating system on which | ||
166 | the executable runs, unless that component itself accompanies the | ||
167 | executable. | ||
168 | |||
169 | If distribution of executable or object code is made by offering access | ||
170 | to copy from a designated place, then offering equivalent access to copy | ||
171 | the source code from the same place counts as distribution of the source | ||
172 | code, even though third parties are not compelled to copy the source | ||
173 | along with the object code. | ||
174 | |||
175 | 4. You may not copy, modify, sublicense, or distribute the Program except as | ||
176 | expressly provided under this License. Any attempt otherwise to copy, | ||
177 | modify, sublicense or distribute the Program is void, and will | ||
178 | automatically terminate your rights under this License. However, parties | ||
179 | who have received copies, or rights, from you under this License will not | ||
180 | have their licenses terminated so long as such parties remain in full | ||
181 | compliance. | ||
182 | |||
183 | 5. You are not required to accept this License, since you have not signed | ||
184 | it. However, nothing else grants you permission to modify or distribute | ||
185 | the Program or its derivative works. These actions are prohibited by law | ||
186 | if you do not accept this License. Therefore, by modifying or | ||
187 | distributing the Program (or any work based on the Program), you | ||
188 | indicate your acceptance of this License to do so, and all its terms and | ||
189 | conditions for copying, distributing or modifying the Program or works | ||
190 | based on it. | ||
191 | |||
192 | 6. Each time you redistribute the Program (or any work based on the | ||
193 | Program), the recipient automatically receives a license from the | ||
194 | original licensor to copy, distribute or modify the Program subject to | ||
195 | these terms and conditions. You may not impose any further restrictions | ||
196 | on the recipients' exercise of the rights granted herein. You are not | ||
197 | responsible for enforcing compliance by third parties to this License. | ||
198 | |||
199 | 7. If, as a consequence of a court judgment or allegation of patent | ||
200 | infringement or for any other reason (not limited to patent issues), | ||
201 | conditions are imposed on you (whether by court order, agreement or | ||
202 | otherwise) that contradict the conditions of this License, they do not | ||
203 | excuse you from the conditions of this License. If you cannot distribute | ||
204 | so as to satisfy simultaneously your obligations under this License and | ||
205 | any other pertinent obligations, then as a consequence you may not | ||
206 | distribute the Program at all. For example, if a patent license would | ||
207 | not permit royalty-free redistribution of the Program by all those who | ||
208 | receive copies directly or indirectly through you, then the only way you | ||
209 | could satisfy both it and this License would be to refrain entirely from | ||
210 | distribution of the Program. | ||
211 | |||
212 | If any portion of this section is held invalid or unenforceable under any | ||
213 | particular circumstance, the balance of the section is intended to apply | ||
214 | and the section as a whole is intended to apply in other circumstances. | ||
215 | |||
216 | It is not the purpose of this section to induce you to infringe any | ||
217 | patents or other property right claims or to contest validity of any | ||
218 | such claims; this section has the sole purpose of protecting the | ||
219 | integrity of the free software distribution system, which is implemented | ||
220 | by public license practices. Many people have made generous contributions | ||
221 | to the wide range of software distributed through that system in | ||
222 | reliance on consistent application of that system; it is up to the | ||
223 | author/donor to decide if he or she is willing to distribute software | ||
224 | through any other system and a licensee cannot impose that choice. | ||
225 | |||
226 | This section is intended to make thoroughly clear what is believed to be | ||
227 | a consequence of the rest of this License. | ||
228 | |||
229 | 8. If the distribution and/or use of the Program is restricted in certain | ||
230 | countries either by patents or by copyrighted interfaces, the original | ||
231 | copyright holder who places the Program under this License may add an | ||
232 | explicit geographical distribution limitation excluding those countries, | ||
233 | so that distribution is permitted only in or among countries not thus | ||
234 | excluded. In such case, this License incorporates the limitation as if | ||
235 | written in the body of this License. | ||
236 | |||
237 | 9. The Free Software Foundation may publish revised and/or new versions of | ||
238 | the General Public License from time to time. Such new versions will be | ||
239 | similar in spirit to the present version, but may differ in detail to | ||
240 | address new problems or concerns. | ||
241 | |||
242 | Each version is given a distinguishing version number. If the Program | ||
243 | specifies a version number of this License which applies to it and "any | ||
244 | later version", you have the option of following the terms and | ||
245 | conditions either of that version or of any later version published by | ||
246 | the Free Software Foundation. If the Program does not specify a version | ||
247 | number of this License, you may choose any version ever published by the | ||
248 | Free Software Foundation. | ||
249 | |||
250 | 10. If you wish to incorporate parts of the Program into other free programs | ||
251 | whose distribution conditions are different, write to the author to ask | ||
252 | for permission. For software which is copyrighted by the Free Software | ||
253 | Foundation, write to the Free Software Foundation; we sometimes make | ||
254 | exceptions for this. Our decision will be guided by the two goals of | ||
255 | preserving the free status of all derivatives of our free software and | ||
256 | of promoting the sharing and reuse of software generally. | ||
257 | |||
258 | NO WARRANTY | ||
259 | |||
260 | 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY | ||
261 | FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN | ||
262 | OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES | ||
263 | PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER | ||
264 | EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
265 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE | ||
266 | ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH | ||
267 | YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL | ||
268 | NECESSARY SERVICING, REPAIR OR CORRECTION. | ||
269 | |||
270 | 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING | ||
271 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR | ||
272 | REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR | ||
273 | DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL | ||
274 | DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM | ||
275 | (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED | ||
276 | INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF | ||
277 | THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR | ||
278 | OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. | ||
279 | |||
280 | END OF TERMS AND CONDITIONS | ||
281 | |||
282 | How to Apply These Terms to Your New Programs | ||
283 | |||
284 | If you develop a new program, and you want it to be of the greatest | ||
285 | possible use to the public, the best way to achieve this is to make it free | ||
286 | software which everyone can redistribute and change under these terms. | ||
287 | |||
288 | To do so, attach the following notices to the program. It is safest to | ||
289 | attach them to the start of each source file to most effectively convey the | ||
290 | exclusion of warranty; and each file should have at least the "copyright" | ||
291 | line and a pointer to where the full notice is found. | ||
292 | |||
293 | one line to give the program's name and an idea of what it does. | ||
294 | Copyright (C) yyyy name of author | ||
295 | |||
296 | This program is free software; you can redistribute it and/or modify it | ||
297 | under the terms of the GNU General Public License as published by the Free | ||
298 | Software Foundation; either version 2 of the License, or (at your option) | ||
299 | any later version. | ||
300 | |||
301 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
302 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
303 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
304 | more details. | ||
305 | |||
306 | You should have received a copy of the GNU General Public License along with | ||
307 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
308 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
309 | |||
310 | Also add information on how to contact you by electronic and paper mail. | ||
311 | |||
312 | If the program is interactive, make it output a short notice like this when | ||
313 | it starts in an interactive mode: | ||
314 | |||
315 | Gnomovision version 69, Copyright (C) year name of author Gnomovision comes | ||
316 | with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free | ||
317 | software, and you are welcome to redistribute it under certain conditions; | ||
318 | type 'show c' for details. | ||
319 | |||
320 | The hypothetical commands 'show w' and 'show c' should show the appropriate | ||
321 | parts of the General Public License. Of course, the commands you use may be | ||
322 | called something other than 'show w' and 'show c'; they could even be | ||
323 | mouse-clicks or menu items--whatever suits your program. | ||
324 | |||
325 | You should also get your employer (if you work as a programmer) or your | ||
326 | school, if any, to sign a "copyright disclaimer" for the program, if | ||
327 | necessary. Here is a sample; alter the names: | ||
328 | |||
329 | Yoyodyne, Inc., hereby disclaims all copyright interest in the program | ||
330 | 'Gnomovision' (which makes passes at compilers) written by James Hacker. | ||
331 | |||
332 | signature of Ty Coon, 1 April 1989 | ||
333 | Ty Coon, President of Vice | ||
334 | |||
335 | This General Public License does not permit incorporating your program into | ||
336 | proprietary programs. If your program is a subroutine library, you may | ||
337 | consider it more useful to permit linking proprietary applications with the | ||
338 | library. If this is what you want to do, use the GNU Library General Public | ||
339 | License instead of this License. | ||
diff --git a/drivers/net/e1000/Makefile b/drivers/net/e1000/Makefile new file mode 100644 index 000000000000..ca9f89552da3 --- /dev/null +++ b/drivers/net/e1000/Makefile | |||
@@ -0,0 +1,35 @@ | |||
1 | ################################################################################ | ||
2 | # | ||
3 | # | ||
4 | # Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved. | ||
5 | # | ||
6 | # This program is free software; you can redistribute it and/or modify it | ||
7 | # under the terms of the GNU General Public License as published by the Free | ||
8 | # Software Foundation; either version 2 of the License, or (at your option) | ||
9 | # any later version. | ||
10 | # | ||
11 | # This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | # more details. | ||
15 | # | ||
16 | # You should have received a copy of the GNU General Public License along with | ||
17 | # this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | # Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | # | ||
20 | # The full GNU General Public License is included in this distribution in the | ||
21 | # file called LICENSE. | ||
22 | # | ||
23 | # Contact Information: | ||
24 | # Linux NICS <linux.nics@intel.com> | ||
25 | # Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | # | ||
27 | ################################################################################ | ||
28 | |||
29 | # | ||
30 | # Makefile for the Intel(R) PRO/1000 ethernet driver | ||
31 | # | ||
32 | |||
33 | obj-$(CONFIG_E1000) += e1000.o | ||
34 | |||
35 | e1000-objs := e1000_main.o e1000_hw.o e1000_ethtool.o e1000_param.o | ||
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h new file mode 100644 index 000000000000..148930d4e9bd --- /dev/null +++ b/drivers/net/e1000/e1000.h | |||
@@ -0,0 +1,261 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | |||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the Free | ||
8 | Software Foundation; either version 2 of the License, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along with | ||
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | |||
20 | The full GNU General Public License is included in this distribution in the | ||
21 | file called LICENSE. | ||
22 | |||
23 | Contact Information: | ||
24 | Linux NICS <linux.nics@intel.com> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | |||
30 | /* Linux PRO/1000 Ethernet Driver main header file */ | ||
31 | |||
32 | #ifndef _E1000_H_ | ||
33 | #define _E1000_H_ | ||
34 | |||
35 | #include <linux/stddef.h> | ||
36 | #include <linux/config.h> | ||
37 | #include <linux/module.h> | ||
38 | #include <linux/types.h> | ||
39 | #include <asm/byteorder.h> | ||
40 | #include <linux/init.h> | ||
41 | #include <linux/mm.h> | ||
42 | #include <linux/errno.h> | ||
43 | #include <linux/ioport.h> | ||
44 | #include <linux/pci.h> | ||
45 | #include <linux/kernel.h> | ||
46 | #include <linux/netdevice.h> | ||
47 | #include <linux/etherdevice.h> | ||
48 | #include <linux/skbuff.h> | ||
49 | #include <linux/delay.h> | ||
50 | #include <linux/timer.h> | ||
51 | #include <linux/slab.h> | ||
52 | #include <linux/vmalloc.h> | ||
53 | #include <linux/interrupt.h> | ||
54 | #include <linux/string.h> | ||
55 | #include <linux/pagemap.h> | ||
56 | #include <linux/dma-mapping.h> | ||
57 | #include <linux/bitops.h> | ||
58 | #include <asm/io.h> | ||
59 | #include <asm/irq.h> | ||
60 | #include <linux/capability.h> | ||
61 | #include <linux/in.h> | ||
62 | #include <linux/ip.h> | ||
63 | #include <linux/tcp.h> | ||
64 | #include <linux/udp.h> | ||
65 | #include <net/pkt_sched.h> | ||
66 | #include <linux/list.h> | ||
67 | #include <linux/reboot.h> | ||
68 | #ifdef NETIF_F_TSO | ||
69 | #include <net/checksum.h> | ||
70 | #endif | ||
71 | #include <linux/workqueue.h> | ||
72 | #include <linux/mii.h> | ||
73 | #include <linux/ethtool.h> | ||
74 | #include <linux/if_vlan.h> | ||
75 | |||
76 | #define BAR_0 0 | ||
77 | #define BAR_1 1 | ||
78 | #define BAR_5 5 | ||
79 | |||
80 | #define INTEL_E1000_ETHERNET_DEVICE(device_id) {\ | ||
81 | PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} | ||
82 | |||
83 | struct e1000_adapter; | ||
84 | |||
85 | #include "e1000_hw.h" | ||
86 | |||
87 | #ifdef DBG | ||
88 | #define E1000_DBG(args...) printk(KERN_DEBUG "e1000: " args) | ||
89 | #else | ||
90 | #define E1000_DBG(args...) | ||
91 | #endif | ||
92 | |||
93 | #define E1000_ERR(args...) printk(KERN_ERR "e1000: " args) | ||
94 | |||
95 | #define PFX "e1000: " | ||
96 | #define DPRINTK(nlevel, klevel, fmt, args...) \ | ||
97 | (void)((NETIF_MSG_##nlevel & adapter->msg_enable) && \ | ||
98 | printk(KERN_##klevel PFX "%s: %s: " fmt, adapter->netdev->name, \ | ||
99 | __FUNCTION__ , ## args)) | ||
100 | |||
101 | #define E1000_MAX_INTR 10 | ||
102 | |||
103 | /* TX/RX descriptor defines */ | ||
104 | #define E1000_DEFAULT_TXD 256 | ||
105 | #define E1000_MAX_TXD 256 | ||
106 | #define E1000_MIN_TXD 80 | ||
107 | #define E1000_MAX_82544_TXD 4096 | ||
108 | |||
109 | #define E1000_DEFAULT_RXD 256 | ||
110 | #define E1000_MAX_RXD 256 | ||
111 | #define E1000_MIN_RXD 80 | ||
112 | #define E1000_MAX_82544_RXD 4096 | ||
113 | |||
114 | /* Supported Rx Buffer Sizes */ | ||
115 | #define E1000_RXBUFFER_2048 2048 | ||
116 | #define E1000_RXBUFFER_4096 4096 | ||
117 | #define E1000_RXBUFFER_8192 8192 | ||
118 | #define E1000_RXBUFFER_16384 16384 | ||
119 | |||
120 | /* SmartSpeed delimiters */ | ||
121 | #define E1000_SMARTSPEED_DOWNSHIFT 3 | ||
122 | #define E1000_SMARTSPEED_MAX 15 | ||
123 | |||
124 | /* Packet Buffer allocations */ | ||
125 | #define E1000_PBA_BYTES_SHIFT 0xA | ||
126 | #define E1000_TX_HEAD_ADDR_SHIFT 7 | ||
127 | #define E1000_PBA_TX_MASK 0xFFFF0000 | ||
128 | |||
129 | /* Flow Control Watermarks */ | ||
130 | #define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */ | ||
131 | #define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */ | ||
132 | |||
133 | #define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ | ||
134 | |||
135 | /* How many Tx Descriptors do we need to call netif_wake_queue ? */ | ||
136 | #define E1000_TX_QUEUE_WAKE 16 | ||
137 | /* How many Rx Buffers do we bundle into one write to the hardware ? */ | ||
138 | #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ | ||
139 | |||
140 | #define AUTO_ALL_MODES 0 | ||
141 | #define E1000_EEPROM_82544_APM 0x0004 | ||
142 | #define E1000_EEPROM_APME 0x0400 | ||
143 | |||
144 | #ifndef E1000_MASTER_SLAVE | ||
145 | /* Switch to override PHY master/slave setting */ | ||
146 | #define E1000_MASTER_SLAVE e1000_ms_hw_default | ||
147 | #endif | ||
148 | |||
149 | /* only works for sizes that are powers of 2 */ | ||
150 | #define E1000_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1))) | ||
151 | |||
152 | /* wrapper around a pointer to a socket buffer, | ||
153 | * so a DMA handle can be stored along with the buffer */ | ||
154 | struct e1000_buffer { | ||
155 | struct sk_buff *skb; | ||
156 | uint64_t dma; | ||
157 | unsigned long time_stamp; | ||
158 | uint16_t length; | ||
159 | uint16_t next_to_watch; | ||
160 | }; | ||
161 | |||
162 | struct e1000_desc_ring { | ||
163 | /* pointer to the descriptor ring memory */ | ||
164 | void *desc; | ||
165 | /* physical address of the descriptor ring */ | ||
166 | dma_addr_t dma; | ||
167 | /* length of descriptor ring in bytes */ | ||
168 | unsigned int size; | ||
169 | /* number of descriptors in the ring */ | ||
170 | unsigned int count; | ||
171 | /* next descriptor to associate a buffer with */ | ||
172 | unsigned int next_to_use; | ||
173 | /* next descriptor to check for DD status bit */ | ||
174 | unsigned int next_to_clean; | ||
175 | /* array of buffer information structs */ | ||
176 | struct e1000_buffer *buffer_info; | ||
177 | }; | ||
178 | |||
179 | #define E1000_DESC_UNUSED(R) \ | ||
180 | ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ | ||
181 | (R)->next_to_clean - (R)->next_to_use - 1) | ||
182 | |||
183 | #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) | ||
184 | #define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) | ||
185 | #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) | ||
186 | #define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) | ||
187 | |||
188 | /* board specific private data structure */ | ||
189 | |||
190 | struct e1000_adapter { | ||
191 | struct timer_list tx_fifo_stall_timer; | ||
192 | struct timer_list watchdog_timer; | ||
193 | struct timer_list phy_info_timer; | ||
194 | struct vlan_group *vlgrp; | ||
195 | uint32_t bd_number; | ||
196 | uint32_t rx_buffer_len; | ||
197 | uint32_t part_num; | ||
198 | uint32_t wol; | ||
199 | uint32_t smartspeed; | ||
200 | uint32_t en_mng_pt; | ||
201 | uint16_t link_speed; | ||
202 | uint16_t link_duplex; | ||
203 | spinlock_t stats_lock; | ||
204 | atomic_t irq_sem; | ||
205 | struct work_struct tx_timeout_task; | ||
206 | struct work_struct watchdog_task; | ||
207 | uint8_t fc_autoneg; | ||
208 | |||
209 | struct timer_list blink_timer; | ||
210 | unsigned long led_status; | ||
211 | |||
212 | /* TX */ | ||
213 | struct e1000_desc_ring tx_ring; | ||
214 | struct e1000_buffer previous_buffer_info; | ||
215 | spinlock_t tx_lock; | ||
216 | uint32_t txd_cmd; | ||
217 | uint32_t tx_int_delay; | ||
218 | uint32_t tx_abs_int_delay; | ||
219 | uint32_t gotcl; | ||
220 | uint64_t gotcl_old; | ||
221 | uint64_t tpt_old; | ||
222 | uint64_t colc_old; | ||
223 | uint32_t tx_fifo_head; | ||
224 | uint32_t tx_head_addr; | ||
225 | uint32_t tx_fifo_size; | ||
226 | atomic_t tx_fifo_stall; | ||
227 | boolean_t pcix_82544; | ||
228 | boolean_t detect_tx_hung; | ||
229 | |||
230 | /* RX */ | ||
231 | struct e1000_desc_ring rx_ring; | ||
232 | uint64_t hw_csum_err; | ||
233 | uint64_t hw_csum_good; | ||
234 | uint32_t rx_int_delay; | ||
235 | uint32_t rx_abs_int_delay; | ||
236 | boolean_t rx_csum; | ||
237 | uint32_t gorcl; | ||
238 | uint64_t gorcl_old; | ||
239 | |||
240 | /* Interrupt Throttle Rate */ | ||
241 | uint32_t itr; | ||
242 | |||
243 | /* OS defined structs */ | ||
244 | struct net_device *netdev; | ||
245 | struct pci_dev *pdev; | ||
246 | struct net_device_stats net_stats; | ||
247 | |||
248 | /* structs defined in e1000_hw.h */ | ||
249 | struct e1000_hw hw; | ||
250 | struct e1000_hw_stats stats; | ||
251 | struct e1000_phy_info phy_info; | ||
252 | struct e1000_phy_stats phy_stats; | ||
253 | |||
254 | uint32_t test_icr; | ||
255 | struct e1000_desc_ring test_tx_ring; | ||
256 | struct e1000_desc_ring test_rx_ring; | ||
257 | |||
258 | |||
259 | int msg_enable; | ||
260 | }; | ||
261 | #endif /* _E1000_H_ */ | ||
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c new file mode 100644 index 000000000000..0a2ca7c73a41 --- /dev/null +++ b/drivers/net/e1000/e1000_ethtool.c | |||
@@ -0,0 +1,1673 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | |||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the Free | ||
8 | Software Foundation; either version 2 of the License, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along with | ||
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | |||
20 | The full GNU General Public License is included in this distribution in the | ||
21 | file called LICENSE. | ||
22 | |||
23 | Contact Information: | ||
24 | Linux NICS <linux.nics@intel.com> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* ethtool support for e1000 */ | ||
30 | |||
31 | #include "e1000.h" | ||
32 | |||
33 | #include <asm/uaccess.h> | ||
34 | |||
35 | extern char e1000_driver_name[]; | ||
36 | extern char e1000_driver_version[]; | ||
37 | |||
38 | extern int e1000_up(struct e1000_adapter *adapter); | ||
39 | extern void e1000_down(struct e1000_adapter *adapter); | ||
40 | extern void e1000_reset(struct e1000_adapter *adapter); | ||
41 | extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); | ||
42 | extern int e1000_setup_rx_resources(struct e1000_adapter *adapter); | ||
43 | extern int e1000_setup_tx_resources(struct e1000_adapter *adapter); | ||
44 | extern void e1000_free_rx_resources(struct e1000_adapter *adapter); | ||
45 | extern void e1000_free_tx_resources(struct e1000_adapter *adapter); | ||
46 | extern void e1000_update_stats(struct e1000_adapter *adapter); | ||
47 | |||
48 | struct e1000_stats { | ||
49 | char stat_string[ETH_GSTRING_LEN]; | ||
50 | int sizeof_stat; | ||
51 | int stat_offset; | ||
52 | }; | ||
53 | |||
54 | #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ | ||
55 | offsetof(struct e1000_adapter, m) | ||
56 | static const struct e1000_stats e1000_gstrings_stats[] = { | ||
57 | { "rx_packets", E1000_STAT(net_stats.rx_packets) }, | ||
58 | { "tx_packets", E1000_STAT(net_stats.tx_packets) }, | ||
59 | { "rx_bytes", E1000_STAT(net_stats.rx_bytes) }, | ||
60 | { "tx_bytes", E1000_STAT(net_stats.tx_bytes) }, | ||
61 | { "rx_errors", E1000_STAT(net_stats.rx_errors) }, | ||
62 | { "tx_errors", E1000_STAT(net_stats.tx_errors) }, | ||
63 | { "rx_dropped", E1000_STAT(net_stats.rx_dropped) }, | ||
64 | { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, | ||
65 | { "multicast", E1000_STAT(net_stats.multicast) }, | ||
66 | { "collisions", E1000_STAT(net_stats.collisions) }, | ||
67 | { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, | ||
68 | { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, | ||
69 | { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, | ||
70 | { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, | ||
71 | { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, | ||
72 | { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, | ||
73 | { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, | ||
74 | { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, | ||
75 | { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, | ||
76 | { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, | ||
77 | { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) }, | ||
78 | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, | ||
79 | { "tx_deferred_ok", E1000_STAT(stats.dc) }, | ||
80 | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, | ||
81 | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, | ||
82 | { "rx_long_length_errors", E1000_STAT(stats.roc) }, | ||
83 | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, | ||
84 | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, | ||
85 | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, | ||
86 | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, | ||
87 | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, | ||
88 | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, | ||
89 | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, | ||
90 | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, | ||
91 | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, | ||
92 | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, | ||
93 | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) } | ||
94 | }; | ||
95 | #define E1000_STATS_LEN \ | ||
96 | sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) | ||
97 | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { | ||
98 | "Register test (offline)", "Eeprom test (offline)", | ||
99 | "Interrupt test (offline)", "Loopback test (offline)", | ||
100 | "Link test (on/offline)" | ||
101 | }; | ||
102 | #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN | ||
103 | |||
104 | static int | ||
105 | e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | ||
106 | { | ||
107 | struct e1000_adapter *adapter = netdev->priv; | ||
108 | struct e1000_hw *hw = &adapter->hw; | ||
109 | |||
110 | if(hw->media_type == e1000_media_type_copper) { | ||
111 | |||
112 | ecmd->supported = (SUPPORTED_10baseT_Half | | ||
113 | SUPPORTED_10baseT_Full | | ||
114 | SUPPORTED_100baseT_Half | | ||
115 | SUPPORTED_100baseT_Full | | ||
116 | SUPPORTED_1000baseT_Full| | ||
117 | SUPPORTED_Autoneg | | ||
118 | SUPPORTED_TP); | ||
119 | |||
120 | ecmd->advertising = ADVERTISED_TP; | ||
121 | |||
122 | if(hw->autoneg == 1) { | ||
123 | ecmd->advertising |= ADVERTISED_Autoneg; | ||
124 | |||
125 | /* the e1000 autoneg seems to match ethtool nicely */ | ||
126 | |||
127 | ecmd->advertising |= hw->autoneg_advertised; | ||
128 | } | ||
129 | |||
130 | ecmd->port = PORT_TP; | ||
131 | ecmd->phy_address = hw->phy_addr; | ||
132 | |||
133 | if(hw->mac_type == e1000_82543) | ||
134 | ecmd->transceiver = XCVR_EXTERNAL; | ||
135 | else | ||
136 | ecmd->transceiver = XCVR_INTERNAL; | ||
137 | |||
138 | } else { | ||
139 | ecmd->supported = (SUPPORTED_1000baseT_Full | | ||
140 | SUPPORTED_FIBRE | | ||
141 | SUPPORTED_Autoneg); | ||
142 | |||
143 | ecmd->advertising = (SUPPORTED_1000baseT_Full | | ||
144 | SUPPORTED_FIBRE | | ||
145 | SUPPORTED_Autoneg); | ||
146 | |||
147 | ecmd->port = PORT_FIBRE; | ||
148 | |||
149 | if(hw->mac_type >= e1000_82545) | ||
150 | ecmd->transceiver = XCVR_INTERNAL; | ||
151 | else | ||
152 | ecmd->transceiver = XCVR_EXTERNAL; | ||
153 | } | ||
154 | |||
155 | if(netif_carrier_ok(adapter->netdev)) { | ||
156 | |||
157 | e1000_get_speed_and_duplex(hw, &adapter->link_speed, | ||
158 | &adapter->link_duplex); | ||
159 | ecmd->speed = adapter->link_speed; | ||
160 | |||
161 | /* unfortunatly FULL_DUPLEX != DUPLEX_FULL | ||
162 | * and HALF_DUPLEX != DUPLEX_HALF */ | ||
163 | |||
164 | if(adapter->link_duplex == FULL_DUPLEX) | ||
165 | ecmd->duplex = DUPLEX_FULL; | ||
166 | else | ||
167 | ecmd->duplex = DUPLEX_HALF; | ||
168 | } else { | ||
169 | ecmd->speed = -1; | ||
170 | ecmd->duplex = -1; | ||
171 | } | ||
172 | |||
173 | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || | ||
174 | hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; | ||
175 | return 0; | ||
176 | } | ||
177 | |||
178 | static int | ||
179 | e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | ||
180 | { | ||
181 | struct e1000_adapter *adapter = netdev->priv; | ||
182 | struct e1000_hw *hw = &adapter->hw; | ||
183 | |||
184 | if(ecmd->autoneg == AUTONEG_ENABLE) { | ||
185 | hw->autoneg = 1; | ||
186 | hw->autoneg_advertised = 0x002F; | ||
187 | ecmd->advertising = 0x002F; | ||
188 | } else | ||
189 | if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) | ||
190 | return -EINVAL; | ||
191 | |||
192 | /* reset the link */ | ||
193 | |||
194 | if(netif_running(adapter->netdev)) { | ||
195 | e1000_down(adapter); | ||
196 | e1000_reset(adapter); | ||
197 | e1000_up(adapter); | ||
198 | } else | ||
199 | e1000_reset(adapter); | ||
200 | |||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | static void | ||
205 | e1000_get_pauseparam(struct net_device *netdev, | ||
206 | struct ethtool_pauseparam *pause) | ||
207 | { | ||
208 | struct e1000_adapter *adapter = netdev->priv; | ||
209 | struct e1000_hw *hw = &adapter->hw; | ||
210 | |||
211 | pause->autoneg = | ||
212 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | ||
213 | |||
214 | if(hw->fc == e1000_fc_rx_pause) | ||
215 | pause->rx_pause = 1; | ||
216 | else if(hw->fc == e1000_fc_tx_pause) | ||
217 | pause->tx_pause = 1; | ||
218 | else if(hw->fc == e1000_fc_full) { | ||
219 | pause->rx_pause = 1; | ||
220 | pause->tx_pause = 1; | ||
221 | } | ||
222 | } | ||
223 | |||
224 | static int | ||
225 | e1000_set_pauseparam(struct net_device *netdev, | ||
226 | struct ethtool_pauseparam *pause) | ||
227 | { | ||
228 | struct e1000_adapter *adapter = netdev->priv; | ||
229 | struct e1000_hw *hw = &adapter->hw; | ||
230 | |||
231 | adapter->fc_autoneg = pause->autoneg; | ||
232 | |||
233 | if(pause->rx_pause && pause->tx_pause) | ||
234 | hw->fc = e1000_fc_full; | ||
235 | else if(pause->rx_pause && !pause->tx_pause) | ||
236 | hw->fc = e1000_fc_rx_pause; | ||
237 | else if(!pause->rx_pause && pause->tx_pause) | ||
238 | hw->fc = e1000_fc_tx_pause; | ||
239 | else if(!pause->rx_pause && !pause->tx_pause) | ||
240 | hw->fc = e1000_fc_none; | ||
241 | |||
242 | hw->original_fc = hw->fc; | ||
243 | |||
244 | if(adapter->fc_autoneg == AUTONEG_ENABLE) { | ||
245 | if(netif_running(adapter->netdev)) { | ||
246 | e1000_down(adapter); | ||
247 | e1000_up(adapter); | ||
248 | } else | ||
249 | e1000_reset(adapter); | ||
250 | } | ||
251 | else | ||
252 | return ((hw->media_type == e1000_media_type_fiber) ? | ||
253 | e1000_setup_link(hw) : e1000_force_mac_fc(hw)); | ||
254 | |||
255 | return 0; | ||
256 | } | ||
257 | |||
258 | static uint32_t | ||
259 | e1000_get_rx_csum(struct net_device *netdev) | ||
260 | { | ||
261 | struct e1000_adapter *adapter = netdev->priv; | ||
262 | return adapter->rx_csum; | ||
263 | } | ||
264 | |||
265 | static int | ||
266 | e1000_set_rx_csum(struct net_device *netdev, uint32_t data) | ||
267 | { | ||
268 | struct e1000_adapter *adapter = netdev->priv; | ||
269 | adapter->rx_csum = data; | ||
270 | |||
271 | if(netif_running(netdev)) { | ||
272 | e1000_down(adapter); | ||
273 | e1000_up(adapter); | ||
274 | } else | ||
275 | e1000_reset(adapter); | ||
276 | return 0; | ||
277 | } | ||
278 | |||
279 | static uint32_t | ||
280 | e1000_get_tx_csum(struct net_device *netdev) | ||
281 | { | ||
282 | return (netdev->features & NETIF_F_HW_CSUM) != 0; | ||
283 | } | ||
284 | |||
285 | static int | ||
286 | e1000_set_tx_csum(struct net_device *netdev, uint32_t data) | ||
287 | { | ||
288 | struct e1000_adapter *adapter = netdev->priv; | ||
289 | |||
290 | if(adapter->hw.mac_type < e1000_82543) { | ||
291 | if (!data) | ||
292 | return -EINVAL; | ||
293 | return 0; | ||
294 | } | ||
295 | |||
296 | if (data) | ||
297 | netdev->features |= NETIF_F_HW_CSUM; | ||
298 | else | ||
299 | netdev->features &= ~NETIF_F_HW_CSUM; | ||
300 | |||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | #ifdef NETIF_F_TSO | ||
305 | static int | ||
306 | e1000_set_tso(struct net_device *netdev, uint32_t data) | ||
307 | { | ||
308 | struct e1000_adapter *adapter = netdev->priv; | ||
309 | if ((adapter->hw.mac_type < e1000_82544) || | ||
310 | (adapter->hw.mac_type == e1000_82547)) | ||
311 | return data ? -EINVAL : 0; | ||
312 | |||
313 | if (data) | ||
314 | netdev->features |= NETIF_F_TSO; | ||
315 | else | ||
316 | netdev->features &= ~NETIF_F_TSO; | ||
317 | return 0; | ||
318 | } | ||
319 | #endif /* NETIF_F_TSO */ | ||
320 | |||
321 | static uint32_t | ||
322 | e1000_get_msglevel(struct net_device *netdev) | ||
323 | { | ||
324 | struct e1000_adapter *adapter = netdev->priv; | ||
325 | return adapter->msg_enable; | ||
326 | } | ||
327 | |||
328 | static void | ||
329 | e1000_set_msglevel(struct net_device *netdev, uint32_t data) | ||
330 | { | ||
331 | struct e1000_adapter *adapter = netdev->priv; | ||
332 | adapter->msg_enable = data; | ||
333 | } | ||
334 | |||
335 | static int | ||
336 | e1000_get_regs_len(struct net_device *netdev) | ||
337 | { | ||
338 | #define E1000_REGS_LEN 32 | ||
339 | return E1000_REGS_LEN * sizeof(uint32_t); | ||
340 | } | ||
341 | |||
342 | static void | ||
343 | e1000_get_regs(struct net_device *netdev, | ||
344 | struct ethtool_regs *regs, void *p) | ||
345 | { | ||
346 | struct e1000_adapter *adapter = netdev->priv; | ||
347 | struct e1000_hw *hw = &adapter->hw; | ||
348 | uint32_t *regs_buff = p; | ||
349 | uint16_t phy_data; | ||
350 | |||
351 | memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t)); | ||
352 | |||
353 | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; | ||
354 | |||
355 | regs_buff[0] = E1000_READ_REG(hw, CTRL); | ||
356 | regs_buff[1] = E1000_READ_REG(hw, STATUS); | ||
357 | |||
358 | regs_buff[2] = E1000_READ_REG(hw, RCTL); | ||
359 | regs_buff[3] = E1000_READ_REG(hw, RDLEN); | ||
360 | regs_buff[4] = E1000_READ_REG(hw, RDH); | ||
361 | regs_buff[5] = E1000_READ_REG(hw, RDT); | ||
362 | regs_buff[6] = E1000_READ_REG(hw, RDTR); | ||
363 | |||
364 | regs_buff[7] = E1000_READ_REG(hw, TCTL); | ||
365 | regs_buff[8] = E1000_READ_REG(hw, TDLEN); | ||
366 | regs_buff[9] = E1000_READ_REG(hw, TDH); | ||
367 | regs_buff[10] = E1000_READ_REG(hw, TDT); | ||
368 | regs_buff[11] = E1000_READ_REG(hw, TIDV); | ||
369 | |||
370 | regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ | ||
371 | if(hw->phy_type == e1000_phy_igp) { | ||
372 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
373 | IGP01E1000_PHY_AGC_A); | ||
374 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & | ||
375 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
376 | regs_buff[13] = (uint32_t)phy_data; /* cable length */ | ||
377 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
378 | IGP01E1000_PHY_AGC_B); | ||
379 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & | ||
380 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
381 | regs_buff[14] = (uint32_t)phy_data; /* cable length */ | ||
382 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
383 | IGP01E1000_PHY_AGC_C); | ||
384 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & | ||
385 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
386 | regs_buff[15] = (uint32_t)phy_data; /* cable length */ | ||
387 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
388 | IGP01E1000_PHY_AGC_D); | ||
389 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & | ||
390 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
391 | regs_buff[16] = (uint32_t)phy_data; /* cable length */ | ||
392 | regs_buff[17] = 0; /* extended 10bt distance (not needed) */ | ||
393 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | ||
394 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & | ||
395 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
396 | regs_buff[18] = (uint32_t)phy_data; /* cable polarity */ | ||
397 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
398 | IGP01E1000_PHY_PCS_INIT_REG); | ||
399 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & | ||
400 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
401 | regs_buff[19] = (uint32_t)phy_data; /* cable polarity */ | ||
402 | regs_buff[20] = 0; /* polarity correction enabled (always) */ | ||
403 | regs_buff[22] = 0; /* phy receive errors (unavailable) */ | ||
404 | regs_buff[23] = regs_buff[18]; /* mdix mode */ | ||
405 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | ||
406 | } else { | ||
407 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
408 | regs_buff[13] = (uint32_t)phy_data; /* cable length */ | ||
409 | regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
410 | regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
411 | regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
412 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
413 | regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */ | ||
414 | regs_buff[18] = regs_buff[13]; /* cable polarity */ | ||
415 | regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
416 | regs_buff[20] = regs_buff[17]; /* polarity correction */ | ||
417 | /* phy receive errors */ | ||
418 | regs_buff[22] = adapter->phy_stats.receive_errors; | ||
419 | regs_buff[23] = regs_buff[13]; /* mdix mode */ | ||
420 | } | ||
421 | regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ | ||
422 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
423 | regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */ | ||
424 | regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ | ||
425 | if(hw->mac_type >= e1000_82540 && | ||
426 | hw->media_type == e1000_media_type_copper) { | ||
427 | regs_buff[26] = E1000_READ_REG(hw, MANC); | ||
428 | } | ||
429 | } | ||
430 | |||
431 | static int | ||
432 | e1000_get_eeprom_len(struct net_device *netdev) | ||
433 | { | ||
434 | struct e1000_adapter *adapter = netdev->priv; | ||
435 | return adapter->hw.eeprom.word_size * 2; | ||
436 | } | ||
437 | |||
438 | static int | ||
439 | e1000_get_eeprom(struct net_device *netdev, | ||
440 | struct ethtool_eeprom *eeprom, uint8_t *bytes) | ||
441 | { | ||
442 | struct e1000_adapter *adapter = netdev->priv; | ||
443 | struct e1000_hw *hw = &adapter->hw; | ||
444 | uint16_t *eeprom_buff; | ||
445 | int first_word, last_word; | ||
446 | int ret_val = 0; | ||
447 | uint16_t i; | ||
448 | |||
449 | if(eeprom->len == 0) | ||
450 | return -EINVAL; | ||
451 | |||
452 | eeprom->magic = hw->vendor_id | (hw->device_id << 16); | ||
453 | |||
454 | first_word = eeprom->offset >> 1; | ||
455 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
456 | |||
457 | eeprom_buff = kmalloc(sizeof(uint16_t) * | ||
458 | (last_word - first_word + 1), GFP_KERNEL); | ||
459 | if(!eeprom_buff) | ||
460 | return -ENOMEM; | ||
461 | |||
462 | if(hw->eeprom.type == e1000_eeprom_spi) | ||
463 | ret_val = e1000_read_eeprom(hw, first_word, | ||
464 | last_word - first_word + 1, | ||
465 | eeprom_buff); | ||
466 | else { | ||
467 | for (i = 0; i < last_word - first_word + 1; i++) | ||
468 | if((ret_val = e1000_read_eeprom(hw, first_word + i, 1, | ||
469 | &eeprom_buff[i]))) | ||
470 | break; | ||
471 | } | ||
472 | |||
473 | /* Device's eeprom is always little-endian, word addressable */ | ||
474 | for (i = 0; i < last_word - first_word + 1; i++) | ||
475 | le16_to_cpus(&eeprom_buff[i]); | ||
476 | |||
477 | memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1), | ||
478 | eeprom->len); | ||
479 | kfree(eeprom_buff); | ||
480 | |||
481 | return ret_val; | ||
482 | } | ||
483 | |||
484 | static int | ||
485 | e1000_set_eeprom(struct net_device *netdev, | ||
486 | struct ethtool_eeprom *eeprom, uint8_t *bytes) | ||
487 | { | ||
488 | struct e1000_adapter *adapter = netdev->priv; | ||
489 | struct e1000_hw *hw = &adapter->hw; | ||
490 | uint16_t *eeprom_buff; | ||
491 | void *ptr; | ||
492 | int max_len, first_word, last_word, ret_val = 0; | ||
493 | uint16_t i; | ||
494 | |||
495 | if(eeprom->len == 0) | ||
496 | return -EOPNOTSUPP; | ||
497 | |||
498 | if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) | ||
499 | return -EFAULT; | ||
500 | |||
501 | max_len = hw->eeprom.word_size * 2; | ||
502 | |||
503 | first_word = eeprom->offset >> 1; | ||
504 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
505 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | ||
506 | if(!eeprom_buff) | ||
507 | return -ENOMEM; | ||
508 | |||
509 | ptr = (void *)eeprom_buff; | ||
510 | |||
511 | if(eeprom->offset & 1) { | ||
512 | /* need read/modify/write of first changed EEPROM word */ | ||
513 | /* only the second byte of the word is being modified */ | ||
514 | ret_val = e1000_read_eeprom(hw, first_word, 1, | ||
515 | &eeprom_buff[0]); | ||
516 | ptr++; | ||
517 | } | ||
518 | if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { | ||
519 | /* need read/modify/write of last changed EEPROM word */ | ||
520 | /* only the first byte of the word is being modified */ | ||
521 | ret_val = e1000_read_eeprom(hw, last_word, 1, | ||
522 | &eeprom_buff[last_word - first_word]); | ||
523 | } | ||
524 | |||
525 | /* Device's eeprom is always little-endian, word addressable */ | ||
526 | for (i = 0; i < last_word - first_word + 1; i++) | ||
527 | le16_to_cpus(&eeprom_buff[i]); | ||
528 | |||
529 | memcpy(ptr, bytes, eeprom->len); | ||
530 | |||
531 | for (i = 0; i < last_word - first_word + 1; i++) | ||
532 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | ||
533 | |||
534 | ret_val = e1000_write_eeprom(hw, first_word, | ||
535 | last_word - first_word + 1, eeprom_buff); | ||
536 | |||
537 | /* Update the checksum over the first part of the EEPROM if needed */ | ||
538 | if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG) | ||
539 | e1000_update_eeprom_checksum(hw); | ||
540 | |||
541 | kfree(eeprom_buff); | ||
542 | return ret_val; | ||
543 | } | ||
544 | |||
545 | static void | ||
546 | e1000_get_drvinfo(struct net_device *netdev, | ||
547 | struct ethtool_drvinfo *drvinfo) | ||
548 | { | ||
549 | struct e1000_adapter *adapter = netdev->priv; | ||
550 | |||
551 | strncpy(drvinfo->driver, e1000_driver_name, 32); | ||
552 | strncpy(drvinfo->version, e1000_driver_version, 32); | ||
553 | strncpy(drvinfo->fw_version, "N/A", 32); | ||
554 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); | ||
555 | drvinfo->n_stats = E1000_STATS_LEN; | ||
556 | drvinfo->testinfo_len = E1000_TEST_LEN; | ||
557 | drvinfo->regdump_len = e1000_get_regs_len(netdev); | ||
558 | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); | ||
559 | } | ||
560 | |||
561 | static void | ||
562 | e1000_get_ringparam(struct net_device *netdev, | ||
563 | struct ethtool_ringparam *ring) | ||
564 | { | ||
565 | struct e1000_adapter *adapter = netdev->priv; | ||
566 | e1000_mac_type mac_type = adapter->hw.mac_type; | ||
567 | struct e1000_desc_ring *txdr = &adapter->tx_ring; | ||
568 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; | ||
569 | |||
570 | ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : | ||
571 | E1000_MAX_82544_RXD; | ||
572 | ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : | ||
573 | E1000_MAX_82544_TXD; | ||
574 | ring->rx_mini_max_pending = 0; | ||
575 | ring->rx_jumbo_max_pending = 0; | ||
576 | ring->rx_pending = rxdr->count; | ||
577 | ring->tx_pending = txdr->count; | ||
578 | ring->rx_mini_pending = 0; | ||
579 | ring->rx_jumbo_pending = 0; | ||
580 | } | ||
581 | |||
582 | static int | ||
583 | e1000_set_ringparam(struct net_device *netdev, | ||
584 | struct ethtool_ringparam *ring) | ||
585 | { | ||
586 | struct e1000_adapter *adapter = netdev->priv; | ||
587 | e1000_mac_type mac_type = adapter->hw.mac_type; | ||
588 | struct e1000_desc_ring *txdr = &adapter->tx_ring; | ||
589 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; | ||
590 | struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new; | ||
591 | int err; | ||
592 | |||
593 | tx_old = adapter->tx_ring; | ||
594 | rx_old = adapter->rx_ring; | ||
595 | |||
596 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | ||
597 | return -EINVAL; | ||
598 | |||
599 | if(netif_running(adapter->netdev)) | ||
600 | e1000_down(adapter); | ||
601 | |||
602 | rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); | ||
603 | rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? | ||
604 | E1000_MAX_RXD : E1000_MAX_82544_RXD)); | ||
605 | E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); | ||
606 | |||
607 | txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); | ||
608 | txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? | ||
609 | E1000_MAX_TXD : E1000_MAX_82544_TXD)); | ||
610 | E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); | ||
611 | |||
612 | if(netif_running(adapter->netdev)) { | ||
613 | /* Try to get new resources before deleting old */ | ||
614 | if((err = e1000_setup_rx_resources(adapter))) | ||
615 | goto err_setup_rx; | ||
616 | if((err = e1000_setup_tx_resources(adapter))) | ||
617 | goto err_setup_tx; | ||
618 | |||
619 | /* save the new, restore the old in order to free it, | ||
620 | * then restore the new back again */ | ||
621 | |||
622 | rx_new = adapter->rx_ring; | ||
623 | tx_new = adapter->tx_ring; | ||
624 | adapter->rx_ring = rx_old; | ||
625 | adapter->tx_ring = tx_old; | ||
626 | e1000_free_rx_resources(adapter); | ||
627 | e1000_free_tx_resources(adapter); | ||
628 | adapter->rx_ring = rx_new; | ||
629 | adapter->tx_ring = tx_new; | ||
630 | if((err = e1000_up(adapter))) | ||
631 | return err; | ||
632 | } | ||
633 | |||
634 | return 0; | ||
635 | err_setup_tx: | ||
636 | e1000_free_rx_resources(adapter); | ||
637 | err_setup_rx: | ||
638 | adapter->rx_ring = rx_old; | ||
639 | adapter->tx_ring = tx_old; | ||
640 | e1000_up(adapter); | ||
641 | return err; | ||
642 | } | ||
643 | |||
644 | #define REG_PATTERN_TEST(R, M, W) \ | ||
645 | { \ | ||
646 | uint32_t pat, value; \ | ||
647 | uint32_t test[] = \ | ||
648 | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ | ||
649 | for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \ | ||
650 | E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \ | ||
651 | value = E1000_READ_REG(&adapter->hw, R); \ | ||
652 | if(value != (test[pat] & W & M)) { \ | ||
653 | *data = (adapter->hw.mac_type < e1000_82543) ? \ | ||
654 | E1000_82542_##R : E1000_##R; \ | ||
655 | return 1; \ | ||
656 | } \ | ||
657 | } \ | ||
658 | } | ||
659 | |||
660 | #define REG_SET_AND_CHECK(R, M, W) \ | ||
661 | { \ | ||
662 | uint32_t value; \ | ||
663 | E1000_WRITE_REG(&adapter->hw, R, W & M); \ | ||
664 | value = E1000_READ_REG(&adapter->hw, R); \ | ||
665 | if ((W & M) != (value & M)) { \ | ||
666 | *data = (adapter->hw.mac_type < e1000_82543) ? \ | ||
667 | E1000_82542_##R : E1000_##R; \ | ||
668 | return 1; \ | ||
669 | } \ | ||
670 | } | ||
671 | |||
672 | static int | ||
673 | e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | ||
674 | { | ||
675 | uint32_t value; | ||
676 | uint32_t i; | ||
677 | |||
678 | /* The status register is Read Only, so a write should fail. | ||
679 | * Some bits that get toggled are ignored. | ||
680 | */ | ||
681 | value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833)); | ||
682 | E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF)); | ||
683 | if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) { | ||
684 | *data = 1; | ||
685 | return 1; | ||
686 | } | ||
687 | |||
688 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | ||
689 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); | ||
690 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); | ||
691 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); | ||
692 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); | ||
693 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
694 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); | ||
695 | REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); | ||
696 | REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); | ||
697 | REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); | ||
698 | REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); | ||
699 | REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); | ||
700 | REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
701 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); | ||
702 | |||
703 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); | ||
704 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); | ||
705 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); | ||
706 | |||
707 | if(adapter->hw.mac_type >= e1000_82543) { | ||
708 | |||
709 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); | ||
710 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | ||
711 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | ||
712 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | ||
713 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); | ||
714 | |||
715 | for(i = 0; i < E1000_RAR_ENTRIES; i++) { | ||
716 | REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, | ||
717 | 0xFFFFFFFF); | ||
718 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, | ||
719 | 0xFFFFFFFF); | ||
720 | } | ||
721 | |||
722 | } else { | ||
723 | |||
724 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); | ||
725 | REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
726 | REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); | ||
727 | REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
728 | |||
729 | } | ||
730 | |||
731 | for(i = 0; i < E1000_MC_TBL_SIZE; i++) | ||
732 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); | ||
733 | |||
734 | *data = 0; | ||
735 | return 0; | ||
736 | } | ||
737 | |||
738 | static int | ||
739 | e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data) | ||
740 | { | ||
741 | uint16_t temp; | ||
742 | uint16_t checksum = 0; | ||
743 | uint16_t i; | ||
744 | |||
745 | *data = 0; | ||
746 | /* Read and add up the contents of the EEPROM */ | ||
747 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
748 | if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { | ||
749 | *data = 1; | ||
750 | break; | ||
751 | } | ||
752 | checksum += temp; | ||
753 | } | ||
754 | |||
755 | /* If Checksum is not Correct return error else test passed */ | ||
756 | if((checksum != (uint16_t) EEPROM_SUM) && !(*data)) | ||
757 | *data = 2; | ||
758 | |||
759 | return *data; | ||
760 | } | ||
761 | |||
762 | static irqreturn_t | ||
763 | e1000_test_intr(int irq, | ||
764 | void *data, | ||
765 | struct pt_regs *regs) | ||
766 | { | ||
767 | struct net_device *netdev = (struct net_device *) data; | ||
768 | struct e1000_adapter *adapter = netdev->priv; | ||
769 | |||
770 | adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); | ||
771 | |||
772 | return IRQ_HANDLED; | ||
773 | } | ||
774 | |||
775 | static int | ||
776 | e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) | ||
777 | { | ||
778 | struct net_device *netdev = adapter->netdev; | ||
779 | uint32_t mask, i=0, shared_int = TRUE; | ||
780 | uint32_t irq = adapter->pdev->irq; | ||
781 | |||
782 | *data = 0; | ||
783 | |||
784 | /* Hook up test interrupt handler just for this test */ | ||
785 | if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { | ||
786 | shared_int = FALSE; | ||
787 | } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, | ||
788 | netdev->name, netdev)){ | ||
789 | *data = 1; | ||
790 | return -1; | ||
791 | } | ||
792 | |||
793 | /* Disable all the interrupts */ | ||
794 | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); | ||
795 | msec_delay(10); | ||
796 | |||
797 | /* Test each interrupt */ | ||
798 | for(; i < 10; i++) { | ||
799 | |||
800 | /* Interrupt to test */ | ||
801 | mask = 1 << i; | ||
802 | |||
803 | if(!shared_int) { | ||
804 | /* Disable the interrupt to be reported in | ||
805 | * the cause register and then force the same | ||
806 | * interrupt and see if one gets posted. If | ||
807 | * an interrupt was posted to the bus, the | ||
808 | * test failed. | ||
809 | */ | ||
810 | adapter->test_icr = 0; | ||
811 | E1000_WRITE_REG(&adapter->hw, IMC, mask); | ||
812 | E1000_WRITE_REG(&adapter->hw, ICS, mask); | ||
813 | msec_delay(10); | ||
814 | |||
815 | if(adapter->test_icr & mask) { | ||
816 | *data = 3; | ||
817 | break; | ||
818 | } | ||
819 | } | ||
820 | |||
821 | /* Enable the interrupt to be reported in | ||
822 | * the cause register and then force the same | ||
823 | * interrupt and see if one gets posted. If | ||
824 | * an interrupt was not posted to the bus, the | ||
825 | * test failed. | ||
826 | */ | ||
827 | adapter->test_icr = 0; | ||
828 | E1000_WRITE_REG(&adapter->hw, IMS, mask); | ||
829 | E1000_WRITE_REG(&adapter->hw, ICS, mask); | ||
830 | msec_delay(10); | ||
831 | |||
832 | if(!(adapter->test_icr & mask)) { | ||
833 | *data = 4; | ||
834 | break; | ||
835 | } | ||
836 | |||
837 | if(!shared_int) { | ||
838 | /* Disable the other interrupts to be reported in | ||
839 | * the cause register and then force the other | ||
840 | * interrupts and see if any get posted. If | ||
841 | * an interrupt was posted to the bus, the | ||
842 | * test failed. | ||
843 | */ | ||
844 | adapter->test_icr = 0; | ||
845 | E1000_WRITE_REG(&adapter->hw, IMC, | ||
846 | (~mask & 0x00007FFF)); | ||
847 | E1000_WRITE_REG(&adapter->hw, ICS, | ||
848 | (~mask & 0x00007FFF)); | ||
849 | msec_delay(10); | ||
850 | |||
851 | if(adapter->test_icr) { | ||
852 | *data = 5; | ||
853 | break; | ||
854 | } | ||
855 | } | ||
856 | } | ||
857 | |||
858 | /* Disable all the interrupts */ | ||
859 | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); | ||
860 | msec_delay(10); | ||
861 | |||
862 | /* Unhook test interrupt handler */ | ||
863 | free_irq(irq, netdev); | ||
864 | |||
865 | return *data; | ||
866 | } | ||
867 | |||
868 | static void | ||
869 | e1000_free_desc_rings(struct e1000_adapter *adapter) | ||
870 | { | ||
871 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | ||
872 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | ||
873 | struct pci_dev *pdev = adapter->pdev; | ||
874 | int i; | ||
875 | |||
876 | if(txdr->desc && txdr->buffer_info) { | ||
877 | for(i = 0; i < txdr->count; i++) { | ||
878 | if(txdr->buffer_info[i].dma) | ||
879 | pci_unmap_single(pdev, txdr->buffer_info[i].dma, | ||
880 | txdr->buffer_info[i].length, | ||
881 | PCI_DMA_TODEVICE); | ||
882 | if(txdr->buffer_info[i].skb) | ||
883 | dev_kfree_skb(txdr->buffer_info[i].skb); | ||
884 | } | ||
885 | } | ||
886 | |||
887 | if(rxdr->desc && rxdr->buffer_info) { | ||
888 | for(i = 0; i < rxdr->count; i++) { | ||
889 | if(rxdr->buffer_info[i].dma) | ||
890 | pci_unmap_single(pdev, rxdr->buffer_info[i].dma, | ||
891 | rxdr->buffer_info[i].length, | ||
892 | PCI_DMA_FROMDEVICE); | ||
893 | if(rxdr->buffer_info[i].skb) | ||
894 | dev_kfree_skb(rxdr->buffer_info[i].skb); | ||
895 | } | ||
896 | } | ||
897 | |||
898 | if(txdr->desc) | ||
899 | pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); | ||
900 | if(rxdr->desc) | ||
901 | pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); | ||
902 | |||
903 | if(txdr->buffer_info) | ||
904 | kfree(txdr->buffer_info); | ||
905 | if(rxdr->buffer_info) | ||
906 | kfree(rxdr->buffer_info); | ||
907 | |||
908 | return; | ||
909 | } | ||
910 | |||
911 | static int | ||
912 | e1000_setup_desc_rings(struct e1000_adapter *adapter) | ||
913 | { | ||
914 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | ||
915 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | ||
916 | struct pci_dev *pdev = adapter->pdev; | ||
917 | uint32_t rctl; | ||
918 | int size, i, ret_val; | ||
919 | |||
920 | /* Setup Tx descriptor ring and Tx buffers */ | ||
921 | |||
922 | txdr->count = 80; | ||
923 | |||
924 | size = txdr->count * sizeof(struct e1000_buffer); | ||
925 | if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | ||
926 | ret_val = 1; | ||
927 | goto err_nomem; | ||
928 | } | ||
929 | memset(txdr->buffer_info, 0, size); | ||
930 | |||
931 | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | ||
932 | E1000_ROUNDUP(txdr->size, 4096); | ||
933 | if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { | ||
934 | ret_val = 2; | ||
935 | goto err_nomem; | ||
936 | } | ||
937 | memset(txdr->desc, 0, txdr->size); | ||
938 | txdr->next_to_use = txdr->next_to_clean = 0; | ||
939 | |||
940 | E1000_WRITE_REG(&adapter->hw, TDBAL, | ||
941 | ((uint64_t) txdr->dma & 0x00000000FFFFFFFF)); | ||
942 | E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32)); | ||
943 | E1000_WRITE_REG(&adapter->hw, TDLEN, | ||
944 | txdr->count * sizeof(struct e1000_tx_desc)); | ||
945 | E1000_WRITE_REG(&adapter->hw, TDH, 0); | ||
946 | E1000_WRITE_REG(&adapter->hw, TDT, 0); | ||
947 | E1000_WRITE_REG(&adapter->hw, TCTL, | ||
948 | E1000_TCTL_PSP | E1000_TCTL_EN | | ||
949 | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | | ||
950 | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); | ||
951 | |||
952 | for(i = 0; i < txdr->count; i++) { | ||
953 | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); | ||
954 | struct sk_buff *skb; | ||
955 | unsigned int size = 1024; | ||
956 | |||
957 | if(!(skb = alloc_skb(size, GFP_KERNEL))) { | ||
958 | ret_val = 3; | ||
959 | goto err_nomem; | ||
960 | } | ||
961 | skb_put(skb, size); | ||
962 | txdr->buffer_info[i].skb = skb; | ||
963 | txdr->buffer_info[i].length = skb->len; | ||
964 | txdr->buffer_info[i].dma = | ||
965 | pci_map_single(pdev, skb->data, skb->len, | ||
966 | PCI_DMA_TODEVICE); | ||
967 | tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); | ||
968 | tx_desc->lower.data = cpu_to_le32(skb->len); | ||
969 | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | | ||
970 | E1000_TXD_CMD_IFCS | | ||
971 | E1000_TXD_CMD_RPS); | ||
972 | tx_desc->upper.data = 0; | ||
973 | } | ||
974 | |||
975 | /* Setup Rx descriptor ring and Rx buffers */ | ||
976 | |||
977 | rxdr->count = 80; | ||
978 | |||
979 | size = rxdr->count * sizeof(struct e1000_buffer); | ||
980 | if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | ||
981 | ret_val = 4; | ||
982 | goto err_nomem; | ||
983 | } | ||
984 | memset(rxdr->buffer_info, 0, size); | ||
985 | |||
986 | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | ||
987 | if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { | ||
988 | ret_val = 5; | ||
989 | goto err_nomem; | ||
990 | } | ||
991 | memset(rxdr->desc, 0, rxdr->size); | ||
992 | rxdr->next_to_use = rxdr->next_to_clean = 0; | ||
993 | |||
994 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
995 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); | ||
996 | E1000_WRITE_REG(&adapter->hw, RDBAL, | ||
997 | ((uint64_t) rxdr->dma & 0xFFFFFFFF)); | ||
998 | E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32)); | ||
999 | E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); | ||
1000 | E1000_WRITE_REG(&adapter->hw, RDH, 0); | ||
1001 | E1000_WRITE_REG(&adapter->hw, RDT, 0); | ||
1002 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | | ||
1003 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1004 | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1005 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1006 | |||
1007 | for(i = 0; i < rxdr->count; i++) { | ||
1008 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); | ||
1009 | struct sk_buff *skb; | ||
1010 | |||
1011 | if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, | ||
1012 | GFP_KERNEL))) { | ||
1013 | ret_val = 6; | ||
1014 | goto err_nomem; | ||
1015 | } | ||
1016 | skb_reserve(skb, NET_IP_ALIGN); | ||
1017 | rxdr->buffer_info[i].skb = skb; | ||
1018 | rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; | ||
1019 | rxdr->buffer_info[i].dma = | ||
1020 | pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, | ||
1021 | PCI_DMA_FROMDEVICE); | ||
1022 | rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); | ||
1023 | memset(skb->data, 0x00, skb->len); | ||
1024 | } | ||
1025 | |||
1026 | return 0; | ||
1027 | |||
1028 | err_nomem: | ||
1029 | e1000_free_desc_rings(adapter); | ||
1030 | return ret_val; | ||
1031 | } | ||
1032 | |||
1033 | static void | ||
1034 | e1000_phy_disable_receiver(struct e1000_adapter *adapter) | ||
1035 | { | ||
1036 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
1037 | e1000_write_phy_reg(&adapter->hw, 29, 0x001F); | ||
1038 | e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); | ||
1039 | e1000_write_phy_reg(&adapter->hw, 29, 0x001A); | ||
1040 | e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); | ||
1041 | } | ||
1042 | |||
1043 | static void | ||
1044 | e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) | ||
1045 | { | ||
1046 | uint16_t phy_reg; | ||
1047 | |||
1048 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | ||
1049 | * Extended PHY Specific Control Register to 25MHz clock. This | ||
1050 | * value defaults back to a 2.5MHz clock when the PHY is reset. | ||
1051 | */ | ||
1052 | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | ||
1053 | phy_reg |= M88E1000_EPSCR_TX_CLK_25; | ||
1054 | e1000_write_phy_reg(&adapter->hw, | ||
1055 | M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); | ||
1056 | |||
1057 | /* In addition, because of the s/w reset above, we need to enable | ||
1058 | * CRS on TX. This must be set for both full and half duplex | ||
1059 | * operation. | ||
1060 | */ | ||
1061 | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | ||
1062 | phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1063 | e1000_write_phy_reg(&adapter->hw, | ||
1064 | M88E1000_PHY_SPEC_CTRL, phy_reg); | ||
1065 | } | ||
1066 | |||
1067 | static int | ||
1068 | e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) | ||
1069 | { | ||
1070 | uint32_t ctrl_reg; | ||
1071 | uint16_t phy_reg; | ||
1072 | |||
1073 | /* Setup the Device Control Register for PHY loopback test. */ | ||
1074 | |||
1075 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | ||
1076 | ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ | ||
1077 | E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1078 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1079 | E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ | ||
1080 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1081 | |||
1082 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); | ||
1083 | |||
1084 | /* Read the PHY Specific Control Register (0x10) */ | ||
1085 | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | ||
1086 | |||
1087 | /* Clear Auto-Crossover bits in PHY Specific Control Register | ||
1088 | * (bits 6:5). | ||
1089 | */ | ||
1090 | phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1091 | e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); | ||
1092 | |||
1093 | /* Perform software reset on the PHY */ | ||
1094 | e1000_phy_reset(&adapter->hw); | ||
1095 | |||
1096 | /* Have to setup TX_CLK and TX_CRS after software reset */ | ||
1097 | e1000_phy_reset_clk_and_crs(adapter); | ||
1098 | |||
1099 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); | ||
1100 | |||
1101 | /* Wait for reset to complete. */ | ||
1102 | udelay(500); | ||
1103 | |||
1104 | /* Have to setup TX_CLK and TX_CRS after software reset */ | ||
1105 | e1000_phy_reset_clk_and_crs(adapter); | ||
1106 | |||
1107 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
1108 | e1000_phy_disable_receiver(adapter); | ||
1109 | |||
1110 | /* Set the loopback bit in the PHY control register. */ | ||
1111 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | ||
1112 | phy_reg |= MII_CR_LOOPBACK; | ||
1113 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | ||
1114 | |||
1115 | /* Setup TX_CLK and TX_CRS one more time. */ | ||
1116 | e1000_phy_reset_clk_and_crs(adapter); | ||
1117 | |||
1118 | /* Check Phy Configuration */ | ||
1119 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | ||
1120 | if(phy_reg != 0x4100) | ||
1121 | return 9; | ||
1122 | |||
1123 | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | ||
1124 | if(phy_reg != 0x0070) | ||
1125 | return 10; | ||
1126 | |||
1127 | e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); | ||
1128 | if(phy_reg != 0x001A) | ||
1129 | return 11; | ||
1130 | |||
1131 | return 0; | ||
1132 | } | ||
1133 | |||
1134 | static int | ||
1135 | e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | ||
1136 | { | ||
1137 | uint32_t ctrl_reg = 0; | ||
1138 | uint32_t stat_reg = 0; | ||
1139 | |||
1140 | adapter->hw.autoneg = FALSE; | ||
1141 | |||
1142 | if(adapter->hw.phy_type == e1000_phy_m88) { | ||
1143 | /* Auto-MDI/MDIX Off */ | ||
1144 | e1000_write_phy_reg(&adapter->hw, | ||
1145 | M88E1000_PHY_SPEC_CTRL, 0x0808); | ||
1146 | /* reset to update Auto-MDI/MDIX */ | ||
1147 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); | ||
1148 | /* autoneg off */ | ||
1149 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); | ||
1150 | } | ||
1151 | /* force 1000, set loopback */ | ||
1152 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); | ||
1153 | |||
1154 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1155 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | ||
1156 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
1157 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1158 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1159 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | ||
1160 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1161 | |||
1162 | if(adapter->hw.media_type == e1000_media_type_copper && | ||
1163 | adapter->hw.phy_type == e1000_phy_m88) { | ||
1164 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | ||
1165 | } else { | ||
1166 | /* Set the ILOS bit on the fiber Nic is half | ||
1167 | * duplex link is detected. */ | ||
1168 | stat_reg = E1000_READ_REG(&adapter->hw, STATUS); | ||
1169 | if((stat_reg & E1000_STATUS_FD) == 0) | ||
1170 | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); | ||
1171 | } | ||
1172 | |||
1173 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); | ||
1174 | |||
1175 | /* Disable the receiver on the PHY so when a cable is plugged in, the | ||
1176 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | ||
1177 | */ | ||
1178 | if(adapter->hw.phy_type == e1000_phy_m88) | ||
1179 | e1000_phy_disable_receiver(adapter); | ||
1180 | |||
1181 | udelay(500); | ||
1182 | |||
1183 | return 0; | ||
1184 | } | ||
1185 | |||
1186 | static int | ||
1187 | e1000_set_phy_loopback(struct e1000_adapter *adapter) | ||
1188 | { | ||
1189 | uint16_t phy_reg = 0; | ||
1190 | uint16_t count = 0; | ||
1191 | |||
1192 | switch (adapter->hw.mac_type) { | ||
1193 | case e1000_82543: | ||
1194 | if(adapter->hw.media_type == e1000_media_type_copper) { | ||
1195 | /* Attempt to setup Loopback mode on Non-integrated PHY. | ||
1196 | * Some PHY registers get corrupted at random, so | ||
1197 | * attempt this 10 times. | ||
1198 | */ | ||
1199 | while(e1000_nonintegrated_phy_loopback(adapter) && | ||
1200 | count++ < 10); | ||
1201 | if(count < 11) | ||
1202 | return 0; | ||
1203 | } | ||
1204 | break; | ||
1205 | |||
1206 | case e1000_82544: | ||
1207 | case e1000_82540: | ||
1208 | case e1000_82545: | ||
1209 | case e1000_82545_rev_3: | ||
1210 | case e1000_82546: | ||
1211 | case e1000_82546_rev_3: | ||
1212 | case e1000_82541: | ||
1213 | case e1000_82541_rev_2: | ||
1214 | case e1000_82547: | ||
1215 | case e1000_82547_rev_2: | ||
1216 | return e1000_integrated_phy_loopback(adapter); | ||
1217 | break; | ||
1218 | |||
1219 | default: | ||
1220 | /* Default PHY loopback work is to read the MII | ||
1221 | * control register and assert bit 14 (loopback mode). | ||
1222 | */ | ||
1223 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | ||
1224 | phy_reg |= MII_CR_LOOPBACK; | ||
1225 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | ||
1226 | return 0; | ||
1227 | break; | ||
1228 | } | ||
1229 | |||
1230 | return 8; | ||
1231 | } | ||
1232 | |||
1233 | static int | ||
1234 | e1000_setup_loopback_test(struct e1000_adapter *adapter) | ||
1235 | { | ||
1236 | uint32_t rctl; | ||
1237 | |||
1238 | if(adapter->hw.media_type == e1000_media_type_fiber || | ||
1239 | adapter->hw.media_type == e1000_media_type_internal_serdes) { | ||
1240 | if(adapter->hw.mac_type == e1000_82545 || | ||
1241 | adapter->hw.mac_type == e1000_82546 || | ||
1242 | adapter->hw.mac_type == e1000_82545_rev_3 || | ||
1243 | adapter->hw.mac_type == e1000_82546_rev_3) | ||
1244 | return e1000_set_phy_loopback(adapter); | ||
1245 | else { | ||
1246 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
1247 | rctl |= E1000_RCTL_LBM_TCVR; | ||
1248 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1249 | return 0; | ||
1250 | } | ||
1251 | } else if(adapter->hw.media_type == e1000_media_type_copper) | ||
1252 | return e1000_set_phy_loopback(adapter); | ||
1253 | |||
1254 | return 7; | ||
1255 | } | ||
1256 | |||
1257 | static void | ||
1258 | e1000_loopback_cleanup(struct e1000_adapter *adapter) | ||
1259 | { | ||
1260 | uint32_t rctl; | ||
1261 | uint16_t phy_reg; | ||
1262 | |||
1263 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
1264 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
1265 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1266 | |||
1267 | if(adapter->hw.media_type == e1000_media_type_copper || | ||
1268 | ((adapter->hw.media_type == e1000_media_type_fiber || | ||
1269 | adapter->hw.media_type == e1000_media_type_internal_serdes) && | ||
1270 | (adapter->hw.mac_type == e1000_82545 || | ||
1271 | adapter->hw.mac_type == e1000_82546 || | ||
1272 | adapter->hw.mac_type == e1000_82545_rev_3 || | ||
1273 | adapter->hw.mac_type == e1000_82546_rev_3))) { | ||
1274 | adapter->hw.autoneg = TRUE; | ||
1275 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | ||
1276 | if(phy_reg & MII_CR_LOOPBACK) { | ||
1277 | phy_reg &= ~MII_CR_LOOPBACK; | ||
1278 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | ||
1279 | e1000_phy_reset(&adapter->hw); | ||
1280 | } | ||
1281 | } | ||
1282 | } | ||
1283 | |||
1284 | static void | ||
1285 | e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | ||
1286 | { | ||
1287 | memset(skb->data, 0xFF, frame_size); | ||
1288 | frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; | ||
1289 | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); | ||
1290 | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); | ||
1291 | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); | ||
1292 | } | ||
1293 | |||
1294 | static int | ||
1295 | e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | ||
1296 | { | ||
1297 | frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; | ||
1298 | if(*(skb->data + 3) == 0xFF) { | ||
1299 | if((*(skb->data + frame_size / 2 + 10) == 0xBE) && | ||
1300 | (*(skb->data + frame_size / 2 + 12) == 0xAF)) { | ||
1301 | return 0; | ||
1302 | } | ||
1303 | } | ||
1304 | return 13; | ||
1305 | } | ||
1306 | |||
1307 | static int | ||
1308 | e1000_run_loopback_test(struct e1000_adapter *adapter) | ||
1309 | { | ||
1310 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | ||
1311 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | ||
1312 | struct pci_dev *pdev = adapter->pdev; | ||
1313 | int i, ret_val; | ||
1314 | |||
1315 | E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); | ||
1316 | |||
1317 | for(i = 0; i < 64; i++) { | ||
1318 | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024); | ||
1319 | pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma, | ||
1320 | txdr->buffer_info[i].length, | ||
1321 | PCI_DMA_TODEVICE); | ||
1322 | } | ||
1323 | E1000_WRITE_REG(&adapter->hw, TDT, i); | ||
1324 | |||
1325 | msec_delay(200); | ||
1326 | |||
1327 | i = 0; | ||
1328 | do { | ||
1329 | pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[i].dma, | ||
1330 | rxdr->buffer_info[i].length, | ||
1331 | PCI_DMA_FROMDEVICE); | ||
1332 | |||
1333 | ret_val = e1000_check_lbtest_frame(rxdr->buffer_info[i].skb, | ||
1334 | 1024); | ||
1335 | i++; | ||
1336 | } while (ret_val != 0 && i < 64); | ||
1337 | |||
1338 | return ret_val; | ||
1339 | } | ||
1340 | |||
1341 | static int | ||
1342 | e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data) | ||
1343 | { | ||
1344 | if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback; | ||
1345 | if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback; | ||
1346 | *data = e1000_run_loopback_test(adapter); | ||
1347 | e1000_loopback_cleanup(adapter); | ||
1348 | e1000_free_desc_rings(adapter); | ||
1349 | err_loopback: | ||
1350 | return *data; | ||
1351 | } | ||
1352 | |||
1353 | static int | ||
1354 | e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) | ||
1355 | { | ||
1356 | *data = 0; | ||
1357 | |||
1358 | if (adapter->hw.media_type == e1000_media_type_internal_serdes) { | ||
1359 | int i = 0; | ||
1360 | adapter->hw.serdes_link_down = TRUE; | ||
1361 | |||
1362 | /* on some blade server designs link establishment */ | ||
1363 | /* could take as long as 2-3 minutes. */ | ||
1364 | do { | ||
1365 | e1000_check_for_link(&adapter->hw); | ||
1366 | if (adapter->hw.serdes_link_down == FALSE) | ||
1367 | return *data; | ||
1368 | msec_delay(20); | ||
1369 | } while (i++ < 3750); | ||
1370 | |||
1371 | *data = 1; | ||
1372 | } else { | ||
1373 | e1000_check_for_link(&adapter->hw); | ||
1374 | |||
1375 | if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { | ||
1376 | *data = 1; | ||
1377 | } | ||
1378 | } | ||
1379 | return *data; | ||
1380 | } | ||
1381 | |||
1382 | static int | ||
1383 | e1000_diag_test_count(struct net_device *netdev) | ||
1384 | { | ||
1385 | return E1000_TEST_LEN; | ||
1386 | } | ||
1387 | |||
1388 | static void | ||
1389 | e1000_diag_test(struct net_device *netdev, | ||
1390 | struct ethtool_test *eth_test, uint64_t *data) | ||
1391 | { | ||
1392 | struct e1000_adapter *adapter = netdev->priv; | ||
1393 | boolean_t if_running = netif_running(netdev); | ||
1394 | |||
1395 | if(eth_test->flags == ETH_TEST_FL_OFFLINE) { | ||
1396 | /* Offline tests */ | ||
1397 | |||
1398 | /* save speed, duplex, autoneg settings */ | ||
1399 | uint16_t autoneg_advertised = adapter->hw.autoneg_advertised; | ||
1400 | uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex; | ||
1401 | uint8_t autoneg = adapter->hw.autoneg; | ||
1402 | |||
1403 | /* Link test performed before hardware reset so autoneg doesn't | ||
1404 | * interfere with test result */ | ||
1405 | if(e1000_link_test(adapter, &data[4])) | ||
1406 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1407 | |||
1408 | if(if_running) | ||
1409 | e1000_down(adapter); | ||
1410 | else | ||
1411 | e1000_reset(adapter); | ||
1412 | |||
1413 | if(e1000_reg_test(adapter, &data[0])) | ||
1414 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1415 | |||
1416 | e1000_reset(adapter); | ||
1417 | if(e1000_eeprom_test(adapter, &data[1])) | ||
1418 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1419 | |||
1420 | e1000_reset(adapter); | ||
1421 | if(e1000_intr_test(adapter, &data[2])) | ||
1422 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1423 | |||
1424 | e1000_reset(adapter); | ||
1425 | if(e1000_loopback_test(adapter, &data[3])) | ||
1426 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1427 | |||
1428 | /* restore speed, duplex, autoneg settings */ | ||
1429 | adapter->hw.autoneg_advertised = autoneg_advertised; | ||
1430 | adapter->hw.forced_speed_duplex = forced_speed_duplex; | ||
1431 | adapter->hw.autoneg = autoneg; | ||
1432 | |||
1433 | e1000_reset(adapter); | ||
1434 | if(if_running) | ||
1435 | e1000_up(adapter); | ||
1436 | } else { | ||
1437 | /* Online tests */ | ||
1438 | if(e1000_link_test(adapter, &data[4])) | ||
1439 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1440 | |||
1441 | /* Offline tests aren't run; pass by default */ | ||
1442 | data[0] = 0; | ||
1443 | data[1] = 0; | ||
1444 | data[2] = 0; | ||
1445 | data[3] = 0; | ||
1446 | } | ||
1447 | } | ||
1448 | |||
1449 | static void | ||
1450 | e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
1451 | { | ||
1452 | struct e1000_adapter *adapter = netdev->priv; | ||
1453 | struct e1000_hw *hw = &adapter->hw; | ||
1454 | |||
1455 | switch(adapter->hw.device_id) { | ||
1456 | case E1000_DEV_ID_82542: | ||
1457 | case E1000_DEV_ID_82543GC_FIBER: | ||
1458 | case E1000_DEV_ID_82543GC_COPPER: | ||
1459 | case E1000_DEV_ID_82544EI_FIBER: | ||
1460 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
1461 | case E1000_DEV_ID_82545EM_FIBER: | ||
1462 | case E1000_DEV_ID_82545EM_COPPER: | ||
1463 | wol->supported = 0; | ||
1464 | wol->wolopts = 0; | ||
1465 | return; | ||
1466 | |||
1467 | case E1000_DEV_ID_82546EB_FIBER: | ||
1468 | case E1000_DEV_ID_82546GB_FIBER: | ||
1469 | /* Wake events only supported on port A for dual fiber */ | ||
1470 | if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { | ||
1471 | wol->supported = 0; | ||
1472 | wol->wolopts = 0; | ||
1473 | return; | ||
1474 | } | ||
1475 | /* Fall Through */ | ||
1476 | |||
1477 | default: | ||
1478 | wol->supported = WAKE_UCAST | WAKE_MCAST | | ||
1479 | WAKE_BCAST | WAKE_MAGIC; | ||
1480 | |||
1481 | wol->wolopts = 0; | ||
1482 | if(adapter->wol & E1000_WUFC_EX) | ||
1483 | wol->wolopts |= WAKE_UCAST; | ||
1484 | if(adapter->wol & E1000_WUFC_MC) | ||
1485 | wol->wolopts |= WAKE_MCAST; | ||
1486 | if(adapter->wol & E1000_WUFC_BC) | ||
1487 | wol->wolopts |= WAKE_BCAST; | ||
1488 | if(adapter->wol & E1000_WUFC_MAG) | ||
1489 | wol->wolopts |= WAKE_MAGIC; | ||
1490 | return; | ||
1491 | } | ||
1492 | } | ||
1493 | |||
1494 | static int | ||
1495 | e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
1496 | { | ||
1497 | struct e1000_adapter *adapter = netdev->priv; | ||
1498 | struct e1000_hw *hw = &adapter->hw; | ||
1499 | |||
1500 | switch(adapter->hw.device_id) { | ||
1501 | case E1000_DEV_ID_82542: | ||
1502 | case E1000_DEV_ID_82543GC_FIBER: | ||
1503 | case E1000_DEV_ID_82543GC_COPPER: | ||
1504 | case E1000_DEV_ID_82544EI_FIBER: | ||
1505 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
1506 | case E1000_DEV_ID_82545EM_FIBER: | ||
1507 | case E1000_DEV_ID_82545EM_COPPER: | ||
1508 | return wol->wolopts ? -EOPNOTSUPP : 0; | ||
1509 | |||
1510 | case E1000_DEV_ID_82546EB_FIBER: | ||
1511 | case E1000_DEV_ID_82546GB_FIBER: | ||
1512 | /* Wake events only supported on port A for dual fiber */ | ||
1513 | if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) | ||
1514 | return wol->wolopts ? -EOPNOTSUPP : 0; | ||
1515 | /* Fall Through */ | ||
1516 | |||
1517 | default: | ||
1518 | if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) | ||
1519 | return -EOPNOTSUPP; | ||
1520 | |||
1521 | adapter->wol = 0; | ||
1522 | |||
1523 | if(wol->wolopts & WAKE_UCAST) | ||
1524 | adapter->wol |= E1000_WUFC_EX; | ||
1525 | if(wol->wolopts & WAKE_MCAST) | ||
1526 | adapter->wol |= E1000_WUFC_MC; | ||
1527 | if(wol->wolopts & WAKE_BCAST) | ||
1528 | adapter->wol |= E1000_WUFC_BC; | ||
1529 | if(wol->wolopts & WAKE_MAGIC) | ||
1530 | adapter->wol |= E1000_WUFC_MAG; | ||
1531 | } | ||
1532 | |||
1533 | return 0; | ||
1534 | } | ||
1535 | |||
1536 | /* toggle LED 4 times per second = 2 "blinks" per second */ | ||
1537 | #define E1000_ID_INTERVAL (HZ/4) | ||
1538 | |||
1539 | /* bit defines for adapter->led_status */ | ||
1540 | #define E1000_LED_ON 0 | ||
1541 | |||
1542 | static void | ||
1543 | e1000_led_blink_callback(unsigned long data) | ||
1544 | { | ||
1545 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
1546 | |||
1547 | if(test_and_change_bit(E1000_LED_ON, &adapter->led_status)) | ||
1548 | e1000_led_off(&adapter->hw); | ||
1549 | else | ||
1550 | e1000_led_on(&adapter->hw); | ||
1551 | |||
1552 | mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); | ||
1553 | } | ||
1554 | |||
1555 | static int | ||
1556 | e1000_phys_id(struct net_device *netdev, uint32_t data) | ||
1557 | { | ||
1558 | struct e1000_adapter *adapter = netdev->priv; | ||
1559 | |||
1560 | if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) | ||
1561 | data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); | ||
1562 | |||
1563 | if(!adapter->blink_timer.function) { | ||
1564 | init_timer(&adapter->blink_timer); | ||
1565 | adapter->blink_timer.function = e1000_led_blink_callback; | ||
1566 | adapter->blink_timer.data = (unsigned long) adapter; | ||
1567 | } | ||
1568 | |||
1569 | e1000_setup_led(&adapter->hw); | ||
1570 | mod_timer(&adapter->blink_timer, jiffies); | ||
1571 | |||
1572 | msleep_interruptible(data * 1000); | ||
1573 | del_timer_sync(&adapter->blink_timer); | ||
1574 | e1000_led_off(&adapter->hw); | ||
1575 | clear_bit(E1000_LED_ON, &adapter->led_status); | ||
1576 | e1000_cleanup_led(&adapter->hw); | ||
1577 | |||
1578 | return 0; | ||
1579 | } | ||
1580 | |||
1581 | static int | ||
1582 | e1000_nway_reset(struct net_device *netdev) | ||
1583 | { | ||
1584 | struct e1000_adapter *adapter = netdev->priv; | ||
1585 | if(netif_running(netdev)) { | ||
1586 | e1000_down(adapter); | ||
1587 | e1000_up(adapter); | ||
1588 | } | ||
1589 | return 0; | ||
1590 | } | ||
1591 | |||
1592 | static int | ||
1593 | e1000_get_stats_count(struct net_device *netdev) | ||
1594 | { | ||
1595 | return E1000_STATS_LEN; | ||
1596 | } | ||
1597 | |||
1598 | static void | ||
1599 | e1000_get_ethtool_stats(struct net_device *netdev, | ||
1600 | struct ethtool_stats *stats, uint64_t *data) | ||
1601 | { | ||
1602 | struct e1000_adapter *adapter = netdev->priv; | ||
1603 | int i; | ||
1604 | |||
1605 | e1000_update_stats(adapter); | ||
1606 | for(i = 0; i < E1000_STATS_LEN; i++) { | ||
1607 | char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; | ||
1608 | data[i] = (e1000_gstrings_stats[i].sizeof_stat == | ||
1609 | sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; | ||
1610 | } | ||
1611 | } | ||
1612 | |||
1613 | static void | ||
1614 | e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) | ||
1615 | { | ||
1616 | int i; | ||
1617 | |||
1618 | switch(stringset) { | ||
1619 | case ETH_SS_TEST: | ||
1620 | memcpy(data, *e1000_gstrings_test, | ||
1621 | E1000_TEST_LEN*ETH_GSTRING_LEN); | ||
1622 | break; | ||
1623 | case ETH_SS_STATS: | ||
1624 | for (i=0; i < E1000_STATS_LEN; i++) { | ||
1625 | memcpy(data + i * ETH_GSTRING_LEN, | ||
1626 | e1000_gstrings_stats[i].stat_string, | ||
1627 | ETH_GSTRING_LEN); | ||
1628 | } | ||
1629 | break; | ||
1630 | } | ||
1631 | } | ||
1632 | |||
1633 | struct ethtool_ops e1000_ethtool_ops = { | ||
1634 | .get_settings = e1000_get_settings, | ||
1635 | .set_settings = e1000_set_settings, | ||
1636 | .get_drvinfo = e1000_get_drvinfo, | ||
1637 | .get_regs_len = e1000_get_regs_len, | ||
1638 | .get_regs = e1000_get_regs, | ||
1639 | .get_wol = e1000_get_wol, | ||
1640 | .set_wol = e1000_set_wol, | ||
1641 | .get_msglevel = e1000_get_msglevel, | ||
1642 | .set_msglevel = e1000_set_msglevel, | ||
1643 | .nway_reset = e1000_nway_reset, | ||
1644 | .get_link = ethtool_op_get_link, | ||
1645 | .get_eeprom_len = e1000_get_eeprom_len, | ||
1646 | .get_eeprom = e1000_get_eeprom, | ||
1647 | .set_eeprom = e1000_set_eeprom, | ||
1648 | .get_ringparam = e1000_get_ringparam, | ||
1649 | .set_ringparam = e1000_set_ringparam, | ||
1650 | .get_pauseparam = e1000_get_pauseparam, | ||
1651 | .set_pauseparam = e1000_set_pauseparam, | ||
1652 | .get_rx_csum = e1000_get_rx_csum, | ||
1653 | .set_rx_csum = e1000_set_rx_csum, | ||
1654 | .get_tx_csum = e1000_get_tx_csum, | ||
1655 | .set_tx_csum = e1000_set_tx_csum, | ||
1656 | .get_sg = ethtool_op_get_sg, | ||
1657 | .set_sg = ethtool_op_set_sg, | ||
1658 | #ifdef NETIF_F_TSO | ||
1659 | .get_tso = ethtool_op_get_tso, | ||
1660 | .set_tso = e1000_set_tso, | ||
1661 | #endif | ||
1662 | .self_test_count = e1000_diag_test_count, | ||
1663 | .self_test = e1000_diag_test, | ||
1664 | .get_strings = e1000_get_strings, | ||
1665 | .phys_id = e1000_phys_id, | ||
1666 | .get_stats_count = e1000_get_stats_count, | ||
1667 | .get_ethtool_stats = e1000_get_ethtool_stats, | ||
1668 | }; | ||
1669 | |||
1670 | void e1000_set_ethtool_ops(struct net_device *netdev) | ||
1671 | { | ||
1672 | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); | ||
1673 | } | ||
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c new file mode 100644 index 000000000000..786a9b935659 --- /dev/null +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -0,0 +1,5405 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | |||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the Free | ||
8 | Software Foundation; either version 2 of the License, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along with | ||
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | |||
20 | The full GNU General Public License is included in this distribution in the | ||
21 | file called LICENSE. | ||
22 | |||
23 | Contact Information: | ||
24 | Linux NICS <linux.nics@intel.com> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* e1000_hw.c | ||
30 | * Shared functions for accessing and configuring the MAC | ||
31 | */ | ||
32 | |||
33 | #include "e1000_hw.h" | ||
34 | |||
35 | static int32_t e1000_set_phy_type(struct e1000_hw *hw); | ||
36 | static void e1000_phy_init_script(struct e1000_hw *hw); | ||
37 | static int32_t e1000_setup_copper_link(struct e1000_hw *hw); | ||
38 | static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw); | ||
39 | static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw); | ||
40 | static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw); | ||
41 | static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw); | ||
42 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); | ||
43 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); | ||
44 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, | ||
45 | uint16_t count); | ||
46 | static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw); | ||
47 | static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw); | ||
48 | static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset, | ||
49 | uint16_t words, uint16_t *data); | ||
50 | static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw, | ||
51 | uint16_t offset, uint16_t words, | ||
52 | uint16_t *data); | ||
53 | static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw); | ||
54 | static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd); | ||
55 | static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd); | ||
56 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, | ||
57 | uint16_t count); | ||
58 | static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, | ||
59 | uint16_t phy_data); | ||
60 | static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr, | ||
61 | uint16_t *phy_data); | ||
62 | static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); | ||
63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); | ||
64 | static void e1000_release_eeprom(struct e1000_hw *hw); | ||
65 | static void e1000_standby_eeprom(struct e1000_hw *hw); | ||
66 | static int32_t e1000_id_led_init(struct e1000_hw * hw); | ||
67 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); | ||
68 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); | ||
69 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); | ||
70 | |||
71 | /* IGP cable length table */ | ||
72 | static const | ||
73 | uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | ||
74 | { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | ||
75 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | ||
76 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | ||
77 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | ||
78 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | ||
79 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | ||
80 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | ||
81 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | ||
82 | |||
83 | |||
84 | /****************************************************************************** | ||
85 | * Set the phy type member in the hw struct. | ||
86 | * | ||
87 | * hw - Struct containing variables accessed by shared code | ||
88 | *****************************************************************************/ | ||
89 | int32_t | ||
90 | e1000_set_phy_type(struct e1000_hw *hw) | ||
91 | { | ||
92 | DEBUGFUNC("e1000_set_phy_type"); | ||
93 | |||
94 | switch(hw->phy_id) { | ||
95 | case M88E1000_E_PHY_ID: | ||
96 | case M88E1000_I_PHY_ID: | ||
97 | case M88E1011_I_PHY_ID: | ||
98 | hw->phy_type = e1000_phy_m88; | ||
99 | break; | ||
100 | case IGP01E1000_I_PHY_ID: | ||
101 | if(hw->mac_type == e1000_82541 || | ||
102 | hw->mac_type == e1000_82541_rev_2 || | ||
103 | hw->mac_type == e1000_82547 || | ||
104 | hw->mac_type == e1000_82547_rev_2) { | ||
105 | hw->phy_type = e1000_phy_igp; | ||
106 | break; | ||
107 | } | ||
108 | /* Fall Through */ | ||
109 | default: | ||
110 | /* Should never have loaded on this device */ | ||
111 | hw->phy_type = e1000_phy_undefined; | ||
112 | return -E1000_ERR_PHY_TYPE; | ||
113 | } | ||
114 | |||
115 | return E1000_SUCCESS; | ||
116 | } | ||
117 | |||
118 | /****************************************************************************** | ||
119 | * IGP phy init script - initializes the GbE PHY | ||
120 | * | ||
121 | * hw - Struct containing variables accessed by shared code | ||
122 | *****************************************************************************/ | ||
123 | static void | ||
124 | e1000_phy_init_script(struct e1000_hw *hw) | ||
125 | { | ||
126 | uint32_t ret_val; | ||
127 | uint16_t phy_saved_data; | ||
128 | |||
129 | DEBUGFUNC("e1000_phy_init_script"); | ||
130 | |||
131 | |||
132 | if(hw->phy_init_script) { | ||
133 | msec_delay(20); | ||
134 | |||
135 | /* Save off the current value of register 0x2F5B to be restored at | ||
136 | * the end of this routine. */ | ||
137 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
138 | |||
139 | /* Disabled the PHY transmitter */ | ||
140 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
141 | |||
142 | msec_delay(20); | ||
143 | |||
144 | e1000_write_phy_reg(hw,0x0000,0x0140); | ||
145 | |||
146 | msec_delay(5); | ||
147 | |||
148 | switch(hw->mac_type) { | ||
149 | case e1000_82541: | ||
150 | case e1000_82547: | ||
151 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | ||
152 | |||
153 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | ||
154 | |||
155 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | ||
156 | |||
157 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | ||
158 | |||
159 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | ||
160 | |||
161 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | ||
162 | |||
163 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | ||
164 | |||
165 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | ||
166 | |||
167 | e1000_write_phy_reg(hw, 0x2010, 0x0008); | ||
168 | break; | ||
169 | |||
170 | case e1000_82541_rev_2: | ||
171 | case e1000_82547_rev_2: | ||
172 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); | ||
173 | break; | ||
174 | default: | ||
175 | break; | ||
176 | } | ||
177 | |||
178 | e1000_write_phy_reg(hw, 0x0000, 0x3300); | ||
179 | |||
180 | msec_delay(20); | ||
181 | |||
182 | /* Now enable the transmitter */ | ||
183 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
184 | |||
185 | if(hw->mac_type == e1000_82547) { | ||
186 | uint16_t fused, fine, coarse; | ||
187 | |||
188 | /* Move to analog registers page */ | ||
189 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); | ||
190 | |||
191 | if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | ||
192 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); | ||
193 | |||
194 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | ||
195 | coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | ||
196 | |||
197 | if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | ||
198 | coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; | ||
199 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | ||
200 | } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | ||
201 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | ||
202 | |||
203 | fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | ||
204 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | ||
205 | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); | ||
206 | |||
207 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); | ||
208 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, | ||
209 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | ||
210 | } | ||
211 | } | ||
212 | } | ||
213 | } | ||
214 | |||
215 | /****************************************************************************** | ||
216 | * Set the mac type member in the hw struct. | ||
217 | * | ||
218 | * hw - Struct containing variables accessed by shared code | ||
219 | *****************************************************************************/ | ||
220 | int32_t | ||
221 | e1000_set_mac_type(struct e1000_hw *hw) | ||
222 | { | ||
223 | DEBUGFUNC("e1000_set_mac_type"); | ||
224 | |||
225 | switch (hw->device_id) { | ||
226 | case E1000_DEV_ID_82542: | ||
227 | switch (hw->revision_id) { | ||
228 | case E1000_82542_2_0_REV_ID: | ||
229 | hw->mac_type = e1000_82542_rev2_0; | ||
230 | break; | ||
231 | case E1000_82542_2_1_REV_ID: | ||
232 | hw->mac_type = e1000_82542_rev2_1; | ||
233 | break; | ||
234 | default: | ||
235 | /* Invalid 82542 revision ID */ | ||
236 | return -E1000_ERR_MAC_TYPE; | ||
237 | } | ||
238 | break; | ||
239 | case E1000_DEV_ID_82543GC_FIBER: | ||
240 | case E1000_DEV_ID_82543GC_COPPER: | ||
241 | hw->mac_type = e1000_82543; | ||
242 | break; | ||
243 | case E1000_DEV_ID_82544EI_COPPER: | ||
244 | case E1000_DEV_ID_82544EI_FIBER: | ||
245 | case E1000_DEV_ID_82544GC_COPPER: | ||
246 | case E1000_DEV_ID_82544GC_LOM: | ||
247 | hw->mac_type = e1000_82544; | ||
248 | break; | ||
249 | case E1000_DEV_ID_82540EM: | ||
250 | case E1000_DEV_ID_82540EM_LOM: | ||
251 | case E1000_DEV_ID_82540EP: | ||
252 | case E1000_DEV_ID_82540EP_LOM: | ||
253 | case E1000_DEV_ID_82540EP_LP: | ||
254 | hw->mac_type = e1000_82540; | ||
255 | break; | ||
256 | case E1000_DEV_ID_82545EM_COPPER: | ||
257 | case E1000_DEV_ID_82545EM_FIBER: | ||
258 | hw->mac_type = e1000_82545; | ||
259 | break; | ||
260 | case E1000_DEV_ID_82545GM_COPPER: | ||
261 | case E1000_DEV_ID_82545GM_FIBER: | ||
262 | case E1000_DEV_ID_82545GM_SERDES: | ||
263 | hw->mac_type = e1000_82545_rev_3; | ||
264 | break; | ||
265 | case E1000_DEV_ID_82546EB_COPPER: | ||
266 | case E1000_DEV_ID_82546EB_FIBER: | ||
267 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
268 | hw->mac_type = e1000_82546; | ||
269 | break; | ||
270 | case E1000_DEV_ID_82546GB_COPPER: | ||
271 | case E1000_DEV_ID_82546GB_FIBER: | ||
272 | case E1000_DEV_ID_82546GB_SERDES: | ||
273 | case E1000_DEV_ID_82546GB_PCIE: | ||
274 | hw->mac_type = e1000_82546_rev_3; | ||
275 | break; | ||
276 | case E1000_DEV_ID_82541EI: | ||
277 | case E1000_DEV_ID_82541EI_MOBILE: | ||
278 | hw->mac_type = e1000_82541; | ||
279 | break; | ||
280 | case E1000_DEV_ID_82541ER: | ||
281 | case E1000_DEV_ID_82541GI: | ||
282 | case E1000_DEV_ID_82541GI_LF: | ||
283 | case E1000_DEV_ID_82541GI_MOBILE: | ||
284 | hw->mac_type = e1000_82541_rev_2; | ||
285 | break; | ||
286 | case E1000_DEV_ID_82547EI: | ||
287 | hw->mac_type = e1000_82547; | ||
288 | break; | ||
289 | case E1000_DEV_ID_82547GI: | ||
290 | hw->mac_type = e1000_82547_rev_2; | ||
291 | break; | ||
292 | default: | ||
293 | /* Should never have loaded on this device */ | ||
294 | return -E1000_ERR_MAC_TYPE; | ||
295 | } | ||
296 | |||
297 | switch(hw->mac_type) { | ||
298 | case e1000_82541: | ||
299 | case e1000_82547: | ||
300 | case e1000_82541_rev_2: | ||
301 | case e1000_82547_rev_2: | ||
302 | hw->asf_firmware_present = TRUE; | ||
303 | break; | ||
304 | default: | ||
305 | break; | ||
306 | } | ||
307 | |||
308 | return E1000_SUCCESS; | ||
309 | } | ||
310 | |||
311 | /***************************************************************************** | ||
312 | * Set media type and TBI compatibility. | ||
313 | * | ||
314 | * hw - Struct containing variables accessed by shared code | ||
315 | * **************************************************************************/ | ||
316 | void | ||
317 | e1000_set_media_type(struct e1000_hw *hw) | ||
318 | { | ||
319 | uint32_t status; | ||
320 | |||
321 | DEBUGFUNC("e1000_set_media_type"); | ||
322 | |||
323 | if(hw->mac_type != e1000_82543) { | ||
324 | /* tbi_compatibility is only valid on 82543 */ | ||
325 | hw->tbi_compatibility_en = FALSE; | ||
326 | } | ||
327 | |||
328 | switch (hw->device_id) { | ||
329 | case E1000_DEV_ID_82545GM_SERDES: | ||
330 | case E1000_DEV_ID_82546GB_SERDES: | ||
331 | hw->media_type = e1000_media_type_internal_serdes; | ||
332 | break; | ||
333 | default: | ||
334 | if(hw->mac_type >= e1000_82543) { | ||
335 | status = E1000_READ_REG(hw, STATUS); | ||
336 | if(status & E1000_STATUS_TBIMODE) { | ||
337 | hw->media_type = e1000_media_type_fiber; | ||
338 | /* tbi_compatibility not valid on fiber */ | ||
339 | hw->tbi_compatibility_en = FALSE; | ||
340 | } else { | ||
341 | hw->media_type = e1000_media_type_copper; | ||
342 | } | ||
343 | } else { | ||
344 | /* This is an 82542 (fiber only) */ | ||
345 | hw->media_type = e1000_media_type_fiber; | ||
346 | } | ||
347 | } | ||
348 | } | ||
349 | |||
350 | /****************************************************************************** | ||
351 | * Reset the transmit and receive units; mask and clear all interrupts. | ||
352 | * | ||
353 | * hw - Struct containing variables accessed by shared code | ||
354 | *****************************************************************************/ | ||
355 | int32_t | ||
356 | e1000_reset_hw(struct e1000_hw *hw) | ||
357 | { | ||
358 | uint32_t ctrl; | ||
359 | uint32_t ctrl_ext; | ||
360 | uint32_t icr; | ||
361 | uint32_t manc; | ||
362 | uint32_t led_ctrl; | ||
363 | |||
364 | DEBUGFUNC("e1000_reset_hw"); | ||
365 | |||
366 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | ||
367 | if(hw->mac_type == e1000_82542_rev2_0) { | ||
368 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | ||
369 | e1000_pci_clear_mwi(hw); | ||
370 | } | ||
371 | |||
372 | /* Clear interrupt mask to stop board from generating interrupts */ | ||
373 | DEBUGOUT("Masking off all interrupts\n"); | ||
374 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | ||
375 | |||
376 | /* Disable the Transmit and Receive units. Then delay to allow | ||
377 | * any pending transactions to complete before we hit the MAC with | ||
378 | * the global reset. | ||
379 | */ | ||
380 | E1000_WRITE_REG(hw, RCTL, 0); | ||
381 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); | ||
382 | E1000_WRITE_FLUSH(hw); | ||
383 | |||
384 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | ||
385 | hw->tbi_compatibility_on = FALSE; | ||
386 | |||
387 | /* Delay to allow any outstanding PCI transactions to complete before | ||
388 | * resetting the device | ||
389 | */ | ||
390 | msec_delay(10); | ||
391 | |||
392 | ctrl = E1000_READ_REG(hw, CTRL); | ||
393 | |||
394 | /* Must reset the PHY before resetting the MAC */ | ||
395 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
396 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); | ||
397 | msec_delay(5); | ||
398 | } | ||
399 | |||
400 | /* Issue a global reset to the MAC. This will reset the chip's | ||
401 | * transmit, receive, DMA, and link units. It will not effect | ||
402 | * the current PCI configuration. The global reset bit is self- | ||
403 | * clearing, and should clear within a microsecond. | ||
404 | */ | ||
405 | DEBUGOUT("Issuing a global reset to MAC\n"); | ||
406 | |||
407 | switch(hw->mac_type) { | ||
408 | case e1000_82544: | ||
409 | case e1000_82540: | ||
410 | case e1000_82545: | ||
411 | case e1000_82546: | ||
412 | case e1000_82541: | ||
413 | case e1000_82541_rev_2: | ||
414 | /* These controllers can't ack the 64-bit write when issuing the | ||
415 | * reset, so use IO-mapping as a workaround to issue the reset */ | ||
416 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | ||
417 | break; | ||
418 | case e1000_82545_rev_3: | ||
419 | case e1000_82546_rev_3: | ||
420 | /* Reset is performed on a shadow of the control register */ | ||
421 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); | ||
422 | break; | ||
423 | default: | ||
424 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | ||
425 | break; | ||
426 | } | ||
427 | |||
428 | /* After MAC reset, force reload of EEPROM to restore power-on settings to | ||
429 | * device. Later controllers reload the EEPROM automatically, so just wait | ||
430 | * for reload to complete. | ||
431 | */ | ||
432 | switch(hw->mac_type) { | ||
433 | case e1000_82542_rev2_0: | ||
434 | case e1000_82542_rev2_1: | ||
435 | case e1000_82543: | ||
436 | case e1000_82544: | ||
437 | /* Wait for reset to complete */ | ||
438 | udelay(10); | ||
439 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
440 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
441 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
442 | E1000_WRITE_FLUSH(hw); | ||
443 | /* Wait for EEPROM reload */ | ||
444 | msec_delay(2); | ||
445 | break; | ||
446 | case e1000_82541: | ||
447 | case e1000_82541_rev_2: | ||
448 | case e1000_82547: | ||
449 | case e1000_82547_rev_2: | ||
450 | /* Wait for EEPROM reload */ | ||
451 | msec_delay(20); | ||
452 | break; | ||
453 | default: | ||
454 | /* Wait for EEPROM reload (it happens automatically) */ | ||
455 | msec_delay(5); | ||
456 | break; | ||
457 | } | ||
458 | |||
459 | /* Disable HW ARPs on ASF enabled adapters */ | ||
460 | if(hw->mac_type >= e1000_82540) { | ||
461 | manc = E1000_READ_REG(hw, MANC); | ||
462 | manc &= ~(E1000_MANC_ARP_EN); | ||
463 | E1000_WRITE_REG(hw, MANC, manc); | ||
464 | } | ||
465 | |||
466 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
467 | e1000_phy_init_script(hw); | ||
468 | |||
469 | /* Configure activity LED after PHY reset */ | ||
470 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | ||
471 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
472 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
473 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | ||
474 | } | ||
475 | |||
476 | /* Clear interrupt mask to stop board from generating interrupts */ | ||
477 | DEBUGOUT("Masking off all interrupts\n"); | ||
478 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | ||
479 | |||
480 | /* Clear any pending interrupt events. */ | ||
481 | icr = E1000_READ_REG(hw, ICR); | ||
482 | |||
483 | /* If MWI was previously enabled, reenable it. */ | ||
484 | if(hw->mac_type == e1000_82542_rev2_0) { | ||
485 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) | ||
486 | e1000_pci_set_mwi(hw); | ||
487 | } | ||
488 | |||
489 | return E1000_SUCCESS; | ||
490 | } | ||
491 | |||
492 | /****************************************************************************** | ||
493 | * Performs basic configuration of the adapter. | ||
494 | * | ||
495 | * hw - Struct containing variables accessed by shared code | ||
496 | * | ||
497 | * Assumes that the controller has previously been reset and is in a | ||
498 | * post-reset uninitialized state. Initializes the receive address registers, | ||
499 | * multicast table, and VLAN filter table. Calls routines to setup link | ||
500 | * configuration and flow control settings. Clears all on-chip counters. Leaves | ||
501 | * the transmit and receive units disabled and uninitialized. | ||
502 | *****************************************************************************/ | ||
503 | int32_t | ||
504 | e1000_init_hw(struct e1000_hw *hw) | ||
505 | { | ||
506 | uint32_t ctrl; | ||
507 | uint32_t i; | ||
508 | int32_t ret_val; | ||
509 | uint16_t pcix_cmd_word; | ||
510 | uint16_t pcix_stat_hi_word; | ||
511 | uint16_t cmd_mmrbc; | ||
512 | uint16_t stat_mmrbc; | ||
513 | DEBUGFUNC("e1000_init_hw"); | ||
514 | |||
515 | /* Initialize Identification LED */ | ||
516 | ret_val = e1000_id_led_init(hw); | ||
517 | if(ret_val) { | ||
518 | DEBUGOUT("Error Initializing Identification LED\n"); | ||
519 | return ret_val; | ||
520 | } | ||
521 | |||
522 | /* Set the media type and TBI compatibility */ | ||
523 | e1000_set_media_type(hw); | ||
524 | |||
525 | /* Disabling VLAN filtering. */ | ||
526 | DEBUGOUT("Initializing the IEEE VLAN\n"); | ||
527 | E1000_WRITE_REG(hw, VET, 0); | ||
528 | |||
529 | e1000_clear_vfta(hw); | ||
530 | |||
531 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | ||
532 | if(hw->mac_type == e1000_82542_rev2_0) { | ||
533 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | ||
534 | e1000_pci_clear_mwi(hw); | ||
535 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); | ||
536 | E1000_WRITE_FLUSH(hw); | ||
537 | msec_delay(5); | ||
538 | } | ||
539 | |||
540 | /* Setup the receive address. This involves initializing all of the Receive | ||
541 | * Address Registers (RARs 0 - 15). | ||
542 | */ | ||
543 | e1000_init_rx_addrs(hw); | ||
544 | |||
545 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | ||
546 | if(hw->mac_type == e1000_82542_rev2_0) { | ||
547 | E1000_WRITE_REG(hw, RCTL, 0); | ||
548 | E1000_WRITE_FLUSH(hw); | ||
549 | msec_delay(1); | ||
550 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) | ||
551 | e1000_pci_set_mwi(hw); | ||
552 | } | ||
553 | |||
554 | /* Zero out the Multicast HASH table */ | ||
555 | DEBUGOUT("Zeroing the MTA\n"); | ||
556 | for(i = 0; i < E1000_MC_TBL_SIZE; i++) | ||
557 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | ||
558 | |||
559 | /* Set the PCI priority bit correctly in the CTRL register. This | ||
560 | * determines if the adapter gives priority to receives, or if it | ||
561 | * gives equal priority to transmits and receives. | ||
562 | */ | ||
563 | if(hw->dma_fairness) { | ||
564 | ctrl = E1000_READ_REG(hw, CTRL); | ||
565 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); | ||
566 | } | ||
567 | |||
568 | switch(hw->mac_type) { | ||
569 | case e1000_82545_rev_3: | ||
570 | case e1000_82546_rev_3: | ||
571 | break; | ||
572 | default: | ||
573 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | ||
574 | if(hw->bus_type == e1000_bus_type_pcix) { | ||
575 | e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); | ||
576 | e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, | ||
577 | &pcix_stat_hi_word); | ||
578 | cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> | ||
579 | PCIX_COMMAND_MMRBC_SHIFT; | ||
580 | stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> | ||
581 | PCIX_STATUS_HI_MMRBC_SHIFT; | ||
582 | if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) | ||
583 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; | ||
584 | if(cmd_mmrbc > stat_mmrbc) { | ||
585 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; | ||
586 | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; | ||
587 | e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, | ||
588 | &pcix_cmd_word); | ||
589 | } | ||
590 | } | ||
591 | break; | ||
592 | } | ||
593 | |||
594 | /* Call a subroutine to configure the link and setup flow control. */ | ||
595 | ret_val = e1000_setup_link(hw); | ||
596 | |||
597 | /* Set the transmit descriptor write-back policy */ | ||
598 | if(hw->mac_type > e1000_82544) { | ||
599 | ctrl = E1000_READ_REG(hw, TXDCTL); | ||
600 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | ||
601 | E1000_WRITE_REG(hw, TXDCTL, ctrl); | ||
602 | } | ||
603 | |||
604 | /* Clear all of the statistics registers (clear on read). It is | ||
605 | * important that we do this after we have tried to establish link | ||
606 | * because the symbol error count will increment wildly if there | ||
607 | * is no link. | ||
608 | */ | ||
609 | e1000_clear_hw_cntrs(hw); | ||
610 | |||
611 | return ret_val; | ||
612 | } | ||
613 | |||
614 | /****************************************************************************** | ||
615 | * Adjust SERDES output amplitude based on EEPROM setting. | ||
616 | * | ||
617 | * hw - Struct containing variables accessed by shared code. | ||
618 | *****************************************************************************/ | ||
619 | static int32_t | ||
620 | e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | ||
621 | { | ||
622 | uint16_t eeprom_data; | ||
623 | int32_t ret_val; | ||
624 | |||
625 | DEBUGFUNC("e1000_adjust_serdes_amplitude"); | ||
626 | |||
627 | if(hw->media_type != e1000_media_type_internal_serdes) | ||
628 | return E1000_SUCCESS; | ||
629 | |||
630 | switch(hw->mac_type) { | ||
631 | case e1000_82545_rev_3: | ||
632 | case e1000_82546_rev_3: | ||
633 | break; | ||
634 | default: | ||
635 | return E1000_SUCCESS; | ||
636 | } | ||
637 | |||
638 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); | ||
639 | if (ret_val) { | ||
640 | return ret_val; | ||
641 | } | ||
642 | |||
643 | if(eeprom_data != EEPROM_RESERVED_WORD) { | ||
644 | /* Adjust SERDES output amplitude only. */ | ||
645 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; | ||
646 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); | ||
647 | if(ret_val) | ||
648 | return ret_val; | ||
649 | } | ||
650 | |||
651 | return E1000_SUCCESS; | ||
652 | } | ||
653 | |||
654 | /****************************************************************************** | ||
655 | * Configures flow control and link settings. | ||
656 | * | ||
657 | * hw - Struct containing variables accessed by shared code | ||
658 | * | ||
659 | * Determines which flow control settings to use. Calls the apropriate media- | ||
660 | * specific link configuration function. Configures the flow control settings. | ||
661 | * Assuming the adapter has a valid link partner, a valid link should be | ||
662 | * established. Assumes the hardware has previously been reset and the | ||
663 | * transmitter and receiver are not enabled. | ||
664 | *****************************************************************************/ | ||
665 | int32_t | ||
666 | e1000_setup_link(struct e1000_hw *hw) | ||
667 | { | ||
668 | uint32_t ctrl_ext; | ||
669 | int32_t ret_val; | ||
670 | uint16_t eeprom_data; | ||
671 | |||
672 | DEBUGFUNC("e1000_setup_link"); | ||
673 | |||
674 | /* Read and store word 0x0F of the EEPROM. This word contains bits | ||
675 | * that determine the hardware's default PAUSE (flow control) mode, | ||
676 | * a bit that determines whether the HW defaults to enabling or | ||
677 | * disabling auto-negotiation, and the direction of the | ||
678 | * SW defined pins. If there is no SW over-ride of the flow | ||
679 | * control setting, then the variable hw->fc will | ||
680 | * be initialized based on a value in the EEPROM. | ||
681 | */ | ||
682 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) { | ||
683 | DEBUGOUT("EEPROM Read Error\n"); | ||
684 | return -E1000_ERR_EEPROM; | ||
685 | } | ||
686 | |||
687 | if(hw->fc == e1000_fc_default) { | ||
688 | if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | ||
689 | hw->fc = e1000_fc_none; | ||
690 | else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | ||
691 | EEPROM_WORD0F_ASM_DIR) | ||
692 | hw->fc = e1000_fc_tx_pause; | ||
693 | else | ||
694 | hw->fc = e1000_fc_full; | ||
695 | } | ||
696 | |||
697 | /* We want to save off the original Flow Control configuration just | ||
698 | * in case we get disconnected and then reconnected into a different | ||
699 | * hub or switch with different Flow Control capabilities. | ||
700 | */ | ||
701 | if(hw->mac_type == e1000_82542_rev2_0) | ||
702 | hw->fc &= (~e1000_fc_tx_pause); | ||
703 | |||
704 | if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | ||
705 | hw->fc &= (~e1000_fc_rx_pause); | ||
706 | |||
707 | hw->original_fc = hw->fc; | ||
708 | |||
709 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | ||
710 | |||
711 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | ||
712 | * polarity value for the SW controlled pins, and setup the | ||
713 | * Extended Device Control reg with that info. | ||
714 | * This is needed because one of the SW controlled pins is used for | ||
715 | * signal detection. So this should be done before e1000_setup_pcs_link() | ||
716 | * or e1000_phy_setup() is called. | ||
717 | */ | ||
718 | if(hw->mac_type == e1000_82543) { | ||
719 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | ||
720 | SWDPIO__EXT_SHIFT); | ||
721 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
722 | } | ||
723 | |||
724 | /* Call the necessary subroutine to configure the link. */ | ||
725 | ret_val = (hw->media_type == e1000_media_type_copper) ? | ||
726 | e1000_setup_copper_link(hw) : | ||
727 | e1000_setup_fiber_serdes_link(hw); | ||
728 | |||
729 | /* Initialize the flow control address, type, and PAUSE timer | ||
730 | * registers to their default values. This is done even if flow | ||
731 | * control is disabled, because it does not hurt anything to | ||
732 | * initialize these registers. | ||
733 | */ | ||
734 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | ||
735 | |||
736 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
737 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
738 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | ||
739 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | ||
740 | |||
741 | /* Set the flow control receive threshold registers. Normally, | ||
742 | * these registers will be set to a default threshold that may be | ||
743 | * adjusted later by the driver's runtime code. However, if the | ||
744 | * ability to transmit pause frames in not enabled, then these | ||
745 | * registers will be set to 0. | ||
746 | */ | ||
747 | if(!(hw->fc & e1000_fc_tx_pause)) { | ||
748 | E1000_WRITE_REG(hw, FCRTL, 0); | ||
749 | E1000_WRITE_REG(hw, FCRTH, 0); | ||
750 | } else { | ||
751 | /* We need to set up the Receive Threshold high and low water marks | ||
752 | * as well as (optionally) enabling the transmission of XON frames. | ||
753 | */ | ||
754 | if(hw->fc_send_xon) { | ||
755 | E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | ||
756 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | ||
757 | } else { | ||
758 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); | ||
759 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | ||
760 | } | ||
761 | } | ||
762 | return ret_val; | ||
763 | } | ||
764 | |||
765 | /****************************************************************************** | ||
766 | * Sets up link for a fiber based or serdes based adapter | ||
767 | * | ||
768 | * hw - Struct containing variables accessed by shared code | ||
769 | * | ||
770 | * Manipulates Physical Coding Sublayer functions in order to configure | ||
771 | * link. Assumes the hardware has been previously reset and the transmitter | ||
772 | * and receiver are not enabled. | ||
773 | *****************************************************************************/ | ||
774 | static int32_t | ||
775 | e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | ||
776 | { | ||
777 | uint32_t ctrl; | ||
778 | uint32_t status; | ||
779 | uint32_t txcw = 0; | ||
780 | uint32_t i; | ||
781 | uint32_t signal = 0; | ||
782 | int32_t ret_val; | ||
783 | |||
784 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); | ||
785 | |||
786 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | ||
787 | * set when the optics detect a signal. On older adapters, it will be | ||
788 | * cleared when there is a signal. This applies to fiber media only. | ||
789 | * If we're on serdes media, adjust the output amplitude to value set in | ||
790 | * the EEPROM. | ||
791 | */ | ||
792 | ctrl = E1000_READ_REG(hw, CTRL); | ||
793 | if(hw->media_type == e1000_media_type_fiber) | ||
794 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | ||
795 | |||
796 | ret_val = e1000_adjust_serdes_amplitude(hw); | ||
797 | if(ret_val) | ||
798 | return ret_val; | ||
799 | |||
800 | /* Take the link out of reset */ | ||
801 | ctrl &= ~(E1000_CTRL_LRST); | ||
802 | |||
803 | /* Adjust VCO speed to improve BER performance */ | ||
804 | ret_val = e1000_set_vco_speed(hw); | ||
805 | if(ret_val) | ||
806 | return ret_val; | ||
807 | |||
808 | e1000_config_collision_dist(hw); | ||
809 | |||
810 | /* Check for a software override of the flow control settings, and setup | ||
811 | * the device accordingly. If auto-negotiation is enabled, then software | ||
812 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | ||
813 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if | ||
814 | * auto-negotiation is disabled, then software will have to manually | ||
815 | * configure the two flow control enable bits in the CTRL register. | ||
816 | * | ||
817 | * The possible values of the "fc" parameter are: | ||
818 | * 0: Flow control is completely disabled | ||
819 | * 1: Rx flow control is enabled (we can receive pause frames, but | ||
820 | * not send pause frames). | ||
821 | * 2: Tx flow control is enabled (we can send pause frames but we do | ||
822 | * not support receiving pause frames). | ||
823 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
824 | */ | ||
825 | switch (hw->fc) { | ||
826 | case e1000_fc_none: | ||
827 | /* Flow control is completely disabled by a software over-ride. */ | ||
828 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | ||
829 | break; | ||
830 | case e1000_fc_rx_pause: | ||
831 | /* RX Flow control is enabled and TX Flow control is disabled by a | ||
832 | * software over-ride. Since there really isn't a way to advertise | ||
833 | * that we are capable of RX Pause ONLY, we will advertise that we | ||
834 | * support both symmetric and asymmetric RX PAUSE. Later, we will | ||
835 | * disable the adapter's ability to send PAUSE frames. | ||
836 | */ | ||
837 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
838 | break; | ||
839 | case e1000_fc_tx_pause: | ||
840 | /* TX Flow control is enabled, and RX Flow control is disabled, by a | ||
841 | * software over-ride. | ||
842 | */ | ||
843 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | ||
844 | break; | ||
845 | case e1000_fc_full: | ||
846 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | ||
847 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
848 | break; | ||
849 | default: | ||
850 | DEBUGOUT("Flow control param set incorrectly\n"); | ||
851 | return -E1000_ERR_CONFIG; | ||
852 | break; | ||
853 | } | ||
854 | |||
855 | /* Since auto-negotiation is enabled, take the link out of reset (the link | ||
856 | * will be in reset, because we previously reset the chip). This will | ||
857 | * restart auto-negotiation. If auto-neogtiation is successful then the | ||
858 | * link-up status bit will be set and the flow control enable bits (RFCE | ||
859 | * and TFCE) will be set according to their negotiated value. | ||
860 | */ | ||
861 | DEBUGOUT("Auto-negotiation enabled\n"); | ||
862 | |||
863 | E1000_WRITE_REG(hw, TXCW, txcw); | ||
864 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
865 | E1000_WRITE_FLUSH(hw); | ||
866 | |||
867 | hw->txcw = txcw; | ||
868 | msec_delay(1); | ||
869 | |||
870 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | ||
871 | * indication in the Device Status Register. Time-out if a link isn't | ||
872 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | ||
873 | * less than 500 milliseconds even if the other end is doing it in SW). | ||
874 | * For internal serdes, we just assume a signal is present, then poll. | ||
875 | */ | ||
876 | if(hw->media_type == e1000_media_type_internal_serdes || | ||
877 | (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { | ||
878 | DEBUGOUT("Looking for Link\n"); | ||
879 | for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | ||
880 | msec_delay(10); | ||
881 | status = E1000_READ_REG(hw, STATUS); | ||
882 | if(status & E1000_STATUS_LU) break; | ||
883 | } | ||
884 | if(i == (LINK_UP_TIMEOUT / 10)) { | ||
885 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | ||
886 | hw->autoneg_failed = 1; | ||
887 | /* AutoNeg failed to achieve a link, so we'll call | ||
888 | * e1000_check_for_link. This routine will force the link up if | ||
889 | * we detect a signal. This will allow us to communicate with | ||
890 | * non-autonegotiating link partners. | ||
891 | */ | ||
892 | ret_val = e1000_check_for_link(hw); | ||
893 | if(ret_val) { | ||
894 | DEBUGOUT("Error while checking for link\n"); | ||
895 | return ret_val; | ||
896 | } | ||
897 | hw->autoneg_failed = 0; | ||
898 | } else { | ||
899 | hw->autoneg_failed = 0; | ||
900 | DEBUGOUT("Valid Link Found\n"); | ||
901 | } | ||
902 | } else { | ||
903 | DEBUGOUT("No Signal Detected\n"); | ||
904 | } | ||
905 | return E1000_SUCCESS; | ||
906 | } | ||
907 | |||
908 | /****************************************************************************** | ||
909 | * Detects which PHY is present and the speed and duplex | ||
910 | * | ||
911 | * hw - Struct containing variables accessed by shared code | ||
912 | ******************************************************************************/ | ||
913 | static int32_t | ||
914 | e1000_setup_copper_link(struct e1000_hw *hw) | ||
915 | { | ||
916 | uint32_t ctrl; | ||
917 | uint32_t led_ctrl; | ||
918 | int32_t ret_val; | ||
919 | uint16_t i; | ||
920 | uint16_t phy_data; | ||
921 | |||
922 | DEBUGFUNC("e1000_setup_copper_link"); | ||
923 | |||
924 | ctrl = E1000_READ_REG(hw, CTRL); | ||
925 | /* With 82543, we need to force speed and duplex on the MAC equal to what | ||
926 | * the PHY speed and duplex configuration is. In addition, we need to | ||
927 | * perform a hardware reset on the PHY to take it out of reset. | ||
928 | */ | ||
929 | if(hw->mac_type > e1000_82543) { | ||
930 | ctrl |= E1000_CTRL_SLU; | ||
931 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
932 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
933 | } else { | ||
934 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | ||
935 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
936 | e1000_phy_hw_reset(hw); | ||
937 | } | ||
938 | |||
939 | /* Make sure we have a valid PHY */ | ||
940 | ret_val = e1000_detect_gig_phy(hw); | ||
941 | if(ret_val) { | ||
942 | DEBUGOUT("Error, did not detect valid phy.\n"); | ||
943 | return ret_val; | ||
944 | } | ||
945 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | ||
946 | |||
947 | /* Set PHY to class A mode (if necessary) */ | ||
948 | ret_val = e1000_set_phy_mode(hw); | ||
949 | if(ret_val) | ||
950 | return ret_val; | ||
951 | |||
952 | if((hw->mac_type == e1000_82545_rev_3) || | ||
953 | (hw->mac_type == e1000_82546_rev_3)) { | ||
954 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
955 | phy_data |= 0x00000008; | ||
956 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
957 | } | ||
958 | |||
959 | if(hw->mac_type <= e1000_82543 || | ||
960 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | ||
961 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | ||
962 | hw->phy_reset_disable = FALSE; | ||
963 | |||
964 | if(!hw->phy_reset_disable) { | ||
965 | if (hw->phy_type == e1000_phy_igp) { | ||
966 | |||
967 | ret_val = e1000_phy_reset(hw); | ||
968 | if(ret_val) { | ||
969 | DEBUGOUT("Error Resetting the PHY\n"); | ||
970 | return ret_val; | ||
971 | } | ||
972 | |||
973 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ | ||
974 | msec_delay(15); | ||
975 | |||
976 | /* Configure activity LED after PHY reset */ | ||
977 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | ||
978 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
979 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
980 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | ||
981 | |||
982 | /* disable lplu d3 during driver init */ | ||
983 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); | ||
984 | if(ret_val) { | ||
985 | DEBUGOUT("Error Disabling LPLU D3\n"); | ||
986 | return ret_val; | ||
987 | } | ||
988 | |||
989 | /* Configure mdi-mdix settings */ | ||
990 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
991 | &phy_data); | ||
992 | if(ret_val) | ||
993 | return ret_val; | ||
994 | |||
995 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
996 | hw->dsp_config_state = e1000_dsp_config_disabled; | ||
997 | /* Force MDI for earlier revs of the IGP PHY */ | ||
998 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | | ||
999 | IGP01E1000_PSCR_FORCE_MDI_MDIX); | ||
1000 | hw->mdix = 1; | ||
1001 | |||
1002 | } else { | ||
1003 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
1004 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1005 | |||
1006 | switch (hw->mdix) { | ||
1007 | case 1: | ||
1008 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1009 | break; | ||
1010 | case 2: | ||
1011 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1012 | break; | ||
1013 | case 0: | ||
1014 | default: | ||
1015 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
1016 | break; | ||
1017 | } | ||
1018 | } | ||
1019 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
1020 | phy_data); | ||
1021 | if(ret_val) | ||
1022 | return ret_val; | ||
1023 | |||
1024 | /* set auto-master slave resolution settings */ | ||
1025 | if(hw->autoneg) { | ||
1026 | e1000_ms_type phy_ms_setting = hw->master_slave; | ||
1027 | |||
1028 | if(hw->ffe_config_state == e1000_ffe_config_active) | ||
1029 | hw->ffe_config_state = e1000_ffe_config_enabled; | ||
1030 | |||
1031 | if(hw->dsp_config_state == e1000_dsp_config_activated) | ||
1032 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
1033 | |||
1034 | /* when autonegotiation advertisment is only 1000Mbps then we | ||
1035 | * should disable SmartSpeed and enable Auto MasterSlave | ||
1036 | * resolution as hardware default. */ | ||
1037 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
1038 | /* Disable SmartSpeed */ | ||
1039 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1040 | &phy_data); | ||
1041 | if(ret_val) | ||
1042 | return ret_val; | ||
1043 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1044 | ret_val = e1000_write_phy_reg(hw, | ||
1045 | IGP01E1000_PHY_PORT_CONFIG, | ||
1046 | phy_data); | ||
1047 | if(ret_val) | ||
1048 | return ret_val; | ||
1049 | /* Set auto Master/Slave resolution process */ | ||
1050 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1051 | if(ret_val) | ||
1052 | return ret_val; | ||
1053 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1054 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1055 | if(ret_val) | ||
1056 | return ret_val; | ||
1057 | } | ||
1058 | |||
1059 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1060 | if(ret_val) | ||
1061 | return ret_val; | ||
1062 | |||
1063 | /* load defaults for future use */ | ||
1064 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | ||
1065 | ((phy_data & CR_1000T_MS_VALUE) ? | ||
1066 | e1000_ms_force_master : | ||
1067 | e1000_ms_force_slave) : | ||
1068 | e1000_ms_auto; | ||
1069 | |||
1070 | switch (phy_ms_setting) { | ||
1071 | case e1000_ms_force_master: | ||
1072 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
1073 | break; | ||
1074 | case e1000_ms_force_slave: | ||
1075 | phy_data |= CR_1000T_MS_ENABLE; | ||
1076 | phy_data &= ~(CR_1000T_MS_VALUE); | ||
1077 | break; | ||
1078 | case e1000_ms_auto: | ||
1079 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1080 | default: | ||
1081 | break; | ||
1082 | } | ||
1083 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1084 | if(ret_val) | ||
1085 | return ret_val; | ||
1086 | } | ||
1087 | } else { | ||
1088 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
1089 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1090 | &phy_data); | ||
1091 | if(ret_val) | ||
1092 | return ret_val; | ||
1093 | |||
1094 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1095 | |||
1096 | /* Options: | ||
1097 | * MDI/MDI-X = 0 (default) | ||
1098 | * 0 - Auto for all speeds | ||
1099 | * 1 - MDI mode | ||
1100 | * 2 - MDI-X mode | ||
1101 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
1102 | */ | ||
1103 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1104 | |||
1105 | switch (hw->mdix) { | ||
1106 | case 1: | ||
1107 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
1108 | break; | ||
1109 | case 2: | ||
1110 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
1111 | break; | ||
1112 | case 3: | ||
1113 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
1114 | break; | ||
1115 | case 0: | ||
1116 | default: | ||
1117 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
1118 | break; | ||
1119 | } | ||
1120 | |||
1121 | /* Options: | ||
1122 | * disable_polarity_correction = 0 (default) | ||
1123 | * Automatic Correction for Reversed Cable Polarity | ||
1124 | * 0 - Disabled | ||
1125 | * 1 - Enabled | ||
1126 | */ | ||
1127 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
1128 | if(hw->disable_polarity_correction == 1) | ||
1129 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
1130 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1131 | phy_data); | ||
1132 | if(ret_val) | ||
1133 | return ret_val; | ||
1134 | |||
1135 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1136 | * to 25MHz clock. | ||
1137 | */ | ||
1138 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1139 | &phy_data); | ||
1140 | if(ret_val) | ||
1141 | return ret_val; | ||
1142 | |||
1143 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1144 | |||
1145 | if (hw->phy_revision < M88E1011_I_REV_4) { | ||
1146 | /* Configure Master and Slave downshift values */ | ||
1147 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
1148 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | ||
1149 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | ||
1150 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | ||
1151 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1152 | phy_data); | ||
1153 | if(ret_val) | ||
1154 | return ret_val; | ||
1155 | } | ||
1156 | |||
1157 | /* SW Reset the PHY so all changes take effect */ | ||
1158 | ret_val = e1000_phy_reset(hw); | ||
1159 | if(ret_val) { | ||
1160 | DEBUGOUT("Error Resetting the PHY\n"); | ||
1161 | return ret_val; | ||
1162 | } | ||
1163 | } | ||
1164 | |||
1165 | /* Options: | ||
1166 | * autoneg = 1 (default) | ||
1167 | * PHY will advertise value(s) parsed from | ||
1168 | * autoneg_advertised and fc | ||
1169 | * autoneg = 0 | ||
1170 | * PHY will be set to 10H, 10F, 100H, or 100F | ||
1171 | * depending on value parsed from forced_speed_duplex. | ||
1172 | */ | ||
1173 | |||
1174 | /* Is autoneg enabled? This is enabled by default or by software | ||
1175 | * override. If so, call e1000_phy_setup_autoneg routine to parse the | ||
1176 | * autoneg_advertised and fc options. If autoneg is NOT enabled, then | ||
1177 | * the user should have provided a speed/duplex override. If so, then | ||
1178 | * call e1000_phy_force_speed_duplex to parse and set this up. | ||
1179 | */ | ||
1180 | if(hw->autoneg) { | ||
1181 | /* Perform some bounds checking on the hw->autoneg_advertised | ||
1182 | * parameter. If this variable is zero, then set it to the default. | ||
1183 | */ | ||
1184 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1185 | |||
1186 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
1187 | * by the calling code so we set to advertise full capability. | ||
1188 | */ | ||
1189 | if(hw->autoneg_advertised == 0) | ||
1190 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1191 | |||
1192 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | ||
1193 | ret_val = e1000_phy_setup_autoneg(hw); | ||
1194 | if(ret_val) { | ||
1195 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | ||
1196 | return ret_val; | ||
1197 | } | ||
1198 | DEBUGOUT("Restarting Auto-Neg\n"); | ||
1199 | |||
1200 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
1201 | * the Auto Neg Restart bit in the PHY control register. | ||
1202 | */ | ||
1203 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
1204 | if(ret_val) | ||
1205 | return ret_val; | ||
1206 | |||
1207 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
1208 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
1209 | if(ret_val) | ||
1210 | return ret_val; | ||
1211 | |||
1212 | /* Does the user want to wait for Auto-Neg to complete here, or | ||
1213 | * check at a later time (for example, callback routine). | ||
1214 | */ | ||
1215 | if(hw->wait_autoneg_complete) { | ||
1216 | ret_val = e1000_wait_autoneg(hw); | ||
1217 | if(ret_val) { | ||
1218 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | ||
1219 | return ret_val; | ||
1220 | } | ||
1221 | } | ||
1222 | hw->get_link_status = TRUE; | ||
1223 | } else { | ||
1224 | DEBUGOUT("Forcing speed and duplex\n"); | ||
1225 | ret_val = e1000_phy_force_speed_duplex(hw); | ||
1226 | if(ret_val) { | ||
1227 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | ||
1228 | return ret_val; | ||
1229 | } | ||
1230 | } | ||
1231 | } /* !hw->phy_reset_disable */ | ||
1232 | |||
1233 | /* Check link status. Wait up to 100 microseconds for link to become | ||
1234 | * valid. | ||
1235 | */ | ||
1236 | for(i = 0; i < 10; i++) { | ||
1237 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
1238 | if(ret_val) | ||
1239 | return ret_val; | ||
1240 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
1241 | if(ret_val) | ||
1242 | return ret_val; | ||
1243 | |||
1244 | if(phy_data & MII_SR_LINK_STATUS) { | ||
1245 | /* We have link, so we need to finish the config process: | ||
1246 | * 1) Set up the MAC to the current PHY speed/duplex | ||
1247 | * if we are on 82543. If we | ||
1248 | * are on newer silicon, we only need to configure | ||
1249 | * collision distance in the Transmit Control Register. | ||
1250 | * 2) Set up flow control on the MAC to that established with | ||
1251 | * the link partner. | ||
1252 | */ | ||
1253 | if(hw->mac_type >= e1000_82544) { | ||
1254 | e1000_config_collision_dist(hw); | ||
1255 | } else { | ||
1256 | ret_val = e1000_config_mac_to_phy(hw); | ||
1257 | if(ret_val) { | ||
1258 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
1259 | return ret_val; | ||
1260 | } | ||
1261 | } | ||
1262 | ret_val = e1000_config_fc_after_link_up(hw); | ||
1263 | if(ret_val) { | ||
1264 | DEBUGOUT("Error Configuring Flow Control\n"); | ||
1265 | return ret_val; | ||
1266 | } | ||
1267 | DEBUGOUT("Valid link established!!!\n"); | ||
1268 | |||
1269 | if(hw->phy_type == e1000_phy_igp) { | ||
1270 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); | ||
1271 | if(ret_val) { | ||
1272 | DEBUGOUT("Error Configuring DSP after link up\n"); | ||
1273 | return ret_val; | ||
1274 | } | ||
1275 | } | ||
1276 | DEBUGOUT("Valid link established!!!\n"); | ||
1277 | return E1000_SUCCESS; | ||
1278 | } | ||
1279 | udelay(10); | ||
1280 | } | ||
1281 | |||
1282 | DEBUGOUT("Unable to establish link!!!\n"); | ||
1283 | return E1000_SUCCESS; | ||
1284 | } | ||
1285 | |||
1286 | /****************************************************************************** | ||
1287 | * Configures PHY autoneg and flow control advertisement settings | ||
1288 | * | ||
1289 | * hw - Struct containing variables accessed by shared code | ||
1290 | ******************************************************************************/ | ||
1291 | int32_t | ||
1292 | e1000_phy_setup_autoneg(struct e1000_hw *hw) | ||
1293 | { | ||
1294 | int32_t ret_val; | ||
1295 | uint16_t mii_autoneg_adv_reg; | ||
1296 | uint16_t mii_1000t_ctrl_reg; | ||
1297 | |||
1298 | DEBUGFUNC("e1000_phy_setup_autoneg"); | ||
1299 | |||
1300 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
1301 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | ||
1302 | if(ret_val) | ||
1303 | return ret_val; | ||
1304 | |||
1305 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
1306 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | ||
1307 | if(ret_val) | ||
1308 | return ret_val; | ||
1309 | |||
1310 | /* Need to parse both autoneg_advertised and fc and set up | ||
1311 | * the appropriate PHY registers. First we will parse for | ||
1312 | * autoneg_advertised software override. Since we can advertise | ||
1313 | * a plethora of combinations, we need to check each bit | ||
1314 | * individually. | ||
1315 | */ | ||
1316 | |||
1317 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
1318 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
1319 | * the 1000Base-T Control Register (Address 9). | ||
1320 | */ | ||
1321 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | ||
1322 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | ||
1323 | |||
1324 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | ||
1325 | |||
1326 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
1327 | if(hw->autoneg_advertised & ADVERTISE_10_HALF) { | ||
1328 | DEBUGOUT("Advertise 10mb Half duplex\n"); | ||
1329 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
1330 | } | ||
1331 | |||
1332 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
1333 | if(hw->autoneg_advertised & ADVERTISE_10_FULL) { | ||
1334 | DEBUGOUT("Advertise 10mb Full duplex\n"); | ||
1335 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
1336 | } | ||
1337 | |||
1338 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
1339 | if(hw->autoneg_advertised & ADVERTISE_100_HALF) { | ||
1340 | DEBUGOUT("Advertise 100mb Half duplex\n"); | ||
1341 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
1342 | } | ||
1343 | |||
1344 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
1345 | if(hw->autoneg_advertised & ADVERTISE_100_FULL) { | ||
1346 | DEBUGOUT("Advertise 100mb Full duplex\n"); | ||
1347 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
1348 | } | ||
1349 | |||
1350 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
1351 | if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { | ||
1352 | DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); | ||
1353 | } | ||
1354 | |||
1355 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
1356 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
1357 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | ||
1358 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
1359 | } | ||
1360 | |||
1361 | /* Check for a software override of the flow control settings, and | ||
1362 | * setup the PHY advertisement registers accordingly. If | ||
1363 | * auto-negotiation is enabled, then software will have to set the | ||
1364 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
1365 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | ||
1366 | * | ||
1367 | * The possible values of the "fc" parameter are: | ||
1368 | * 0: Flow control is completely disabled | ||
1369 | * 1: Rx flow control is enabled (we can receive pause frames | ||
1370 | * but not send pause frames). | ||
1371 | * 2: Tx flow control is enabled (we can send pause frames | ||
1372 | * but we do not support receiving pause frames). | ||
1373 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
1374 | * other: No software override. The flow control configuration | ||
1375 | * in the EEPROM is used. | ||
1376 | */ | ||
1377 | switch (hw->fc) { | ||
1378 | case e1000_fc_none: /* 0 */ | ||
1379 | /* Flow control (RX & TX) is completely disabled by a | ||
1380 | * software over-ride. | ||
1381 | */ | ||
1382 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1383 | break; | ||
1384 | case e1000_fc_rx_pause: /* 1 */ | ||
1385 | /* RX Flow control is enabled, and TX Flow control is | ||
1386 | * disabled, by a software over-ride. | ||
1387 | */ | ||
1388 | /* Since there really isn't a way to advertise that we are | ||
1389 | * capable of RX Pause ONLY, we will advertise that we | ||
1390 | * support both symmetric and asymmetric RX PAUSE. Later | ||
1391 | * (in e1000_config_fc_after_link_up) we will disable the | ||
1392 | *hw's ability to send PAUSE frames. | ||
1393 | */ | ||
1394 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1395 | break; | ||
1396 | case e1000_fc_tx_pause: /* 2 */ | ||
1397 | /* TX Flow control is enabled, and RX Flow control is | ||
1398 | * disabled, by a software over-ride. | ||
1399 | */ | ||
1400 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
1401 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
1402 | break; | ||
1403 | case e1000_fc_full: /* 3 */ | ||
1404 | /* Flow control (both RX and TX) is enabled by a software | ||
1405 | * over-ride. | ||
1406 | */ | ||
1407 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1408 | break; | ||
1409 | default: | ||
1410 | DEBUGOUT("Flow control param set incorrectly\n"); | ||
1411 | return -E1000_ERR_CONFIG; | ||
1412 | } | ||
1413 | |||
1414 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | ||
1415 | if(ret_val) | ||
1416 | return ret_val; | ||
1417 | |||
1418 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
1419 | |||
1420 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | ||
1421 | if(ret_val) | ||
1422 | return ret_val; | ||
1423 | |||
1424 | return E1000_SUCCESS; | ||
1425 | } | ||
1426 | |||
1427 | /****************************************************************************** | ||
1428 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | ||
1429 | * | ||
1430 | * hw - Struct containing variables accessed by shared code | ||
1431 | ******************************************************************************/ | ||
1432 | static int32_t | ||
1433 | e1000_phy_force_speed_duplex(struct e1000_hw *hw) | ||
1434 | { | ||
1435 | uint32_t ctrl; | ||
1436 | int32_t ret_val; | ||
1437 | uint16_t mii_ctrl_reg; | ||
1438 | uint16_t mii_status_reg; | ||
1439 | uint16_t phy_data; | ||
1440 | uint16_t i; | ||
1441 | |||
1442 | DEBUGFUNC("e1000_phy_force_speed_duplex"); | ||
1443 | |||
1444 | /* Turn off Flow control if we are forcing speed and duplex. */ | ||
1445 | hw->fc = e1000_fc_none; | ||
1446 | |||
1447 | DEBUGOUT1("hw->fc = %d\n", hw->fc); | ||
1448 | |||
1449 | /* Read the Device Control Register. */ | ||
1450 | ctrl = E1000_READ_REG(hw, CTRL); | ||
1451 | |||
1452 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | ||
1453 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1454 | ctrl &= ~(DEVICE_SPEED_MASK); | ||
1455 | |||
1456 | /* Clear the Auto Speed Detect Enable bit. */ | ||
1457 | ctrl &= ~E1000_CTRL_ASDE; | ||
1458 | |||
1459 | /* Read the MII Control Register. */ | ||
1460 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); | ||
1461 | if(ret_val) | ||
1462 | return ret_val; | ||
1463 | |||
1464 | /* We need to disable autoneg in order to force link and duplex. */ | ||
1465 | |||
1466 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | ||
1467 | |||
1468 | /* Are we forcing Full or Half Duplex? */ | ||
1469 | if(hw->forced_speed_duplex == e1000_100_full || | ||
1470 | hw->forced_speed_duplex == e1000_10_full) { | ||
1471 | /* We want to force full duplex so we SET the full duplex bits in the | ||
1472 | * Device and MII Control Registers. | ||
1473 | */ | ||
1474 | ctrl |= E1000_CTRL_FD; | ||
1475 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | ||
1476 | DEBUGOUT("Full Duplex\n"); | ||
1477 | } else { | ||
1478 | /* We want to force half duplex so we CLEAR the full duplex bits in | ||
1479 | * the Device and MII Control Registers. | ||
1480 | */ | ||
1481 | ctrl &= ~E1000_CTRL_FD; | ||
1482 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | ||
1483 | DEBUGOUT("Half Duplex\n"); | ||
1484 | } | ||
1485 | |||
1486 | /* Are we forcing 100Mbps??? */ | ||
1487 | if(hw->forced_speed_duplex == e1000_100_full || | ||
1488 | hw->forced_speed_duplex == e1000_100_half) { | ||
1489 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | ||
1490 | ctrl |= E1000_CTRL_SPD_100; | ||
1491 | mii_ctrl_reg |= MII_CR_SPEED_100; | ||
1492 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | ||
1493 | DEBUGOUT("Forcing 100mb "); | ||
1494 | } else { | ||
1495 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | ||
1496 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1497 | mii_ctrl_reg |= MII_CR_SPEED_10; | ||
1498 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | ||
1499 | DEBUGOUT("Forcing 10mb "); | ||
1500 | } | ||
1501 | |||
1502 | e1000_config_collision_dist(hw); | ||
1503 | |||
1504 | /* Write the configured values back to the Device Control Reg. */ | ||
1505 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
1506 | |||
1507 | if (hw->phy_type == e1000_phy_m88) { | ||
1508 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1509 | if(ret_val) | ||
1510 | return ret_val; | ||
1511 | |||
1512 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
1513 | * forced whenever speed are duplex are forced. | ||
1514 | */ | ||
1515 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1516 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1517 | if(ret_val) | ||
1518 | return ret_val; | ||
1519 | |||
1520 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | ||
1521 | |||
1522 | /* Need to reset the PHY or these changes will be ignored */ | ||
1523 | mii_ctrl_reg |= MII_CR_RESET; | ||
1524 | } else { | ||
1525 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | ||
1526 | * forced whenever speed or duplex are forced. | ||
1527 | */ | ||
1528 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1529 | if(ret_val) | ||
1530 | return ret_val; | ||
1531 | |||
1532 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1533 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1534 | |||
1535 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | ||
1536 | if(ret_val) | ||
1537 | return ret_val; | ||
1538 | } | ||
1539 | |||
1540 | /* Write back the modified PHY MII control register. */ | ||
1541 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | ||
1542 | if(ret_val) | ||
1543 | return ret_val; | ||
1544 | |||
1545 | udelay(1); | ||
1546 | |||
1547 | /* The wait_autoneg_complete flag may be a little misleading here. | ||
1548 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | ||
1549 | * But we do want to delay for a period while forcing only so we | ||
1550 | * don't generate false No Link messages. So we will wait here | ||
1551 | * only if the user has set wait_autoneg_complete to 1, which is | ||
1552 | * the default. | ||
1553 | */ | ||
1554 | if(hw->wait_autoneg_complete) { | ||
1555 | /* We will wait for autoneg to complete. */ | ||
1556 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); | ||
1557 | mii_status_reg = 0; | ||
1558 | |||
1559 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | ||
1560 | for(i = PHY_FORCE_TIME; i > 0; i--) { | ||
1561 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | ||
1562 | * to be set. | ||
1563 | */ | ||
1564 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1565 | if(ret_val) | ||
1566 | return ret_val; | ||
1567 | |||
1568 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1569 | if(ret_val) | ||
1570 | return ret_val; | ||
1571 | |||
1572 | if(mii_status_reg & MII_SR_LINK_STATUS) break; | ||
1573 | msec_delay(100); | ||
1574 | } | ||
1575 | if((i == 0) && | ||
1576 | (hw->phy_type == e1000_phy_m88)) { | ||
1577 | /* We didn't get link. Reset the DSP and wait again for link. */ | ||
1578 | ret_val = e1000_phy_reset_dsp(hw); | ||
1579 | if(ret_val) { | ||
1580 | DEBUGOUT("Error Resetting PHY DSP\n"); | ||
1581 | return ret_val; | ||
1582 | } | ||
1583 | } | ||
1584 | /* This loop will early-out if the link condition has been met. */ | ||
1585 | for(i = PHY_FORCE_TIME; i > 0; i--) { | ||
1586 | if(mii_status_reg & MII_SR_LINK_STATUS) break; | ||
1587 | msec_delay(100); | ||
1588 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | ||
1589 | * to be set. | ||
1590 | */ | ||
1591 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1592 | if(ret_val) | ||
1593 | return ret_val; | ||
1594 | |||
1595 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1596 | if(ret_val) | ||
1597 | return ret_val; | ||
1598 | } | ||
1599 | } | ||
1600 | |||
1601 | if (hw->phy_type == e1000_phy_m88) { | ||
1602 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | ||
1603 | * Extended PHY Specific Control Register to 25MHz clock. This value | ||
1604 | * defaults back to a 2.5MHz clock when the PHY is reset. | ||
1605 | */ | ||
1606 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1607 | if(ret_val) | ||
1608 | return ret_val; | ||
1609 | |||
1610 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1611 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
1612 | if(ret_val) | ||
1613 | return ret_val; | ||
1614 | |||
1615 | /* In addition, because of the s/w reset above, we need to enable CRS on | ||
1616 | * TX. This must be set for both full and half duplex operation. | ||
1617 | */ | ||
1618 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1619 | if(ret_val) | ||
1620 | return ret_val; | ||
1621 | |||
1622 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1623 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1624 | if(ret_val) | ||
1625 | return ret_val; | ||
1626 | |||
1627 | if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | ||
1628 | (!hw->autoneg) && | ||
1629 | (hw->forced_speed_duplex == e1000_10_full || | ||
1630 | hw->forced_speed_duplex == e1000_10_half)) { | ||
1631 | ret_val = e1000_polarity_reversal_workaround(hw); | ||
1632 | if(ret_val) | ||
1633 | return ret_val; | ||
1634 | } | ||
1635 | } | ||
1636 | return E1000_SUCCESS; | ||
1637 | } | ||
1638 | |||
1639 | /****************************************************************************** | ||
1640 | * Sets the collision distance in the Transmit Control register | ||
1641 | * | ||
1642 | * hw - Struct containing variables accessed by shared code | ||
1643 | * | ||
1644 | * Link should have been established previously. Reads the speed and duplex | ||
1645 | * information from the Device Status register. | ||
1646 | ******************************************************************************/ | ||
1647 | void | ||
1648 | e1000_config_collision_dist(struct e1000_hw *hw) | ||
1649 | { | ||
1650 | uint32_t tctl; | ||
1651 | |||
1652 | DEBUGFUNC("e1000_config_collision_dist"); | ||
1653 | |||
1654 | tctl = E1000_READ_REG(hw, TCTL); | ||
1655 | |||
1656 | tctl &= ~E1000_TCTL_COLD; | ||
1657 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
1658 | |||
1659 | E1000_WRITE_REG(hw, TCTL, tctl); | ||
1660 | E1000_WRITE_FLUSH(hw); | ||
1661 | } | ||
1662 | |||
1663 | /****************************************************************************** | ||
1664 | * Sets MAC speed and duplex settings to reflect the those in the PHY | ||
1665 | * | ||
1666 | * hw - Struct containing variables accessed by shared code | ||
1667 | * mii_reg - data to write to the MII control register | ||
1668 | * | ||
1669 | * The contents of the PHY register containing the needed information need to | ||
1670 | * be passed in. | ||
1671 | ******************************************************************************/ | ||
1672 | static int32_t | ||
1673 | e1000_config_mac_to_phy(struct e1000_hw *hw) | ||
1674 | { | ||
1675 | uint32_t ctrl; | ||
1676 | int32_t ret_val; | ||
1677 | uint16_t phy_data; | ||
1678 | |||
1679 | DEBUGFUNC("e1000_config_mac_to_phy"); | ||
1680 | |||
1681 | /* Read the Device Control Register and set the bits to Force Speed | ||
1682 | * and Duplex. | ||
1683 | */ | ||
1684 | ctrl = E1000_READ_REG(hw, CTRL); | ||
1685 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1686 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | ||
1687 | |||
1688 | /* Set up duplex in the Device Control and Transmit Control | ||
1689 | * registers depending on negotiated values. | ||
1690 | */ | ||
1691 | if (hw->phy_type == e1000_phy_igp) { | ||
1692 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | ||
1693 | &phy_data); | ||
1694 | if(ret_val) | ||
1695 | return ret_val; | ||
1696 | |||
1697 | if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD; | ||
1698 | else ctrl &= ~E1000_CTRL_FD; | ||
1699 | |||
1700 | e1000_config_collision_dist(hw); | ||
1701 | |||
1702 | /* Set up speed in the Device Control register depending on | ||
1703 | * negotiated values. | ||
1704 | */ | ||
1705 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1706 | IGP01E1000_PSSR_SPEED_1000MBPS) | ||
1707 | ctrl |= E1000_CTRL_SPD_1000; | ||
1708 | else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1709 | IGP01E1000_PSSR_SPEED_100MBPS) | ||
1710 | ctrl |= E1000_CTRL_SPD_100; | ||
1711 | } else { | ||
1712 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1713 | &phy_data); | ||
1714 | if(ret_val) | ||
1715 | return ret_val; | ||
1716 | |||
1717 | if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; | ||
1718 | else ctrl &= ~E1000_CTRL_FD; | ||
1719 | |||
1720 | e1000_config_collision_dist(hw); | ||
1721 | |||
1722 | /* Set up speed in the Device Control register depending on | ||
1723 | * negotiated values. | ||
1724 | */ | ||
1725 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | ||
1726 | ctrl |= E1000_CTRL_SPD_1000; | ||
1727 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | ||
1728 | ctrl |= E1000_CTRL_SPD_100; | ||
1729 | } | ||
1730 | /* Write the configured values back to the Device Control Reg. */ | ||
1731 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
1732 | return E1000_SUCCESS; | ||
1733 | } | ||
1734 | |||
1735 | /****************************************************************************** | ||
1736 | * Forces the MAC's flow control settings. | ||
1737 | * | ||
1738 | * hw - Struct containing variables accessed by shared code | ||
1739 | * | ||
1740 | * Sets the TFCE and RFCE bits in the device control register to reflect | ||
1741 | * the adapter settings. TFCE and RFCE need to be explicitly set by | ||
1742 | * software when a Copper PHY is used because autonegotiation is managed | ||
1743 | * by the PHY rather than the MAC. Software must also configure these | ||
1744 | * bits when link is forced on a fiber connection. | ||
1745 | *****************************************************************************/ | ||
1746 | int32_t | ||
1747 | e1000_force_mac_fc(struct e1000_hw *hw) | ||
1748 | { | ||
1749 | uint32_t ctrl; | ||
1750 | |||
1751 | DEBUGFUNC("e1000_force_mac_fc"); | ||
1752 | |||
1753 | /* Get the current configuration of the Device Control Register */ | ||
1754 | ctrl = E1000_READ_REG(hw, CTRL); | ||
1755 | |||
1756 | /* Because we didn't get link via the internal auto-negotiation | ||
1757 | * mechanism (we either forced link or we got link via PHY | ||
1758 | * auto-neg), we have to manually enable/disable transmit an | ||
1759 | * receive flow control. | ||
1760 | * | ||
1761 | * The "Case" statement below enables/disable flow control | ||
1762 | * according to the "hw->fc" parameter. | ||
1763 | * | ||
1764 | * The possible values of the "fc" parameter are: | ||
1765 | * 0: Flow control is completely disabled | ||
1766 | * 1: Rx flow control is enabled (we can receive pause | ||
1767 | * frames but not send pause frames). | ||
1768 | * 2: Tx flow control is enabled (we can send pause frames | ||
1769 | * frames but we do not receive pause frames). | ||
1770 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
1771 | * other: No other values should be possible at this point. | ||
1772 | */ | ||
1773 | |||
1774 | switch (hw->fc) { | ||
1775 | case e1000_fc_none: | ||
1776 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
1777 | break; | ||
1778 | case e1000_fc_rx_pause: | ||
1779 | ctrl &= (~E1000_CTRL_TFCE); | ||
1780 | ctrl |= E1000_CTRL_RFCE; | ||
1781 | break; | ||
1782 | case e1000_fc_tx_pause: | ||
1783 | ctrl &= (~E1000_CTRL_RFCE); | ||
1784 | ctrl |= E1000_CTRL_TFCE; | ||
1785 | break; | ||
1786 | case e1000_fc_full: | ||
1787 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
1788 | break; | ||
1789 | default: | ||
1790 | DEBUGOUT("Flow control param set incorrectly\n"); | ||
1791 | return -E1000_ERR_CONFIG; | ||
1792 | } | ||
1793 | |||
1794 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | ||
1795 | if(hw->mac_type == e1000_82542_rev2_0) | ||
1796 | ctrl &= (~E1000_CTRL_TFCE); | ||
1797 | |||
1798 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
1799 | return E1000_SUCCESS; | ||
1800 | } | ||
1801 | |||
1802 | /****************************************************************************** | ||
1803 | * Configures flow control settings after link is established | ||
1804 | * | ||
1805 | * hw - Struct containing variables accessed by shared code | ||
1806 | * | ||
1807 | * Should be called immediately after a valid link has been established. | ||
1808 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | ||
1809 | * and autonegotiation is enabled, the MAC flow control settings will be set | ||
1810 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | ||
1811 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. | ||
1812 | *****************************************************************************/ | ||
1813 | int32_t | ||
1814 | e1000_config_fc_after_link_up(struct e1000_hw *hw) | ||
1815 | { | ||
1816 | int32_t ret_val; | ||
1817 | uint16_t mii_status_reg; | ||
1818 | uint16_t mii_nway_adv_reg; | ||
1819 | uint16_t mii_nway_lp_ability_reg; | ||
1820 | uint16_t speed; | ||
1821 | uint16_t duplex; | ||
1822 | |||
1823 | DEBUGFUNC("e1000_config_fc_after_link_up"); | ||
1824 | |||
1825 | /* Check for the case where we have fiber media and auto-neg failed | ||
1826 | * so we had to force link. In this case, we need to force the | ||
1827 | * configuration of the MAC to match the "fc" parameter. | ||
1828 | */ | ||
1829 | if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || | ||
1830 | ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) || | ||
1831 | ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { | ||
1832 | ret_val = e1000_force_mac_fc(hw); | ||
1833 | if(ret_val) { | ||
1834 | DEBUGOUT("Error forcing flow control settings\n"); | ||
1835 | return ret_val; | ||
1836 | } | ||
1837 | } | ||
1838 | |||
1839 | /* Check for the case where we have copper media and auto-neg is | ||
1840 | * enabled. In this case, we need to check and see if Auto-Neg | ||
1841 | * has completed, and if so, how the PHY and link partner has | ||
1842 | * flow control configured. | ||
1843 | */ | ||
1844 | if((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | ||
1845 | /* Read the MII Status Register and check to see if AutoNeg | ||
1846 | * has completed. We read this twice because this reg has | ||
1847 | * some "sticky" (latched) bits. | ||
1848 | */ | ||
1849 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1850 | if(ret_val) | ||
1851 | return ret_val; | ||
1852 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1853 | if(ret_val) | ||
1854 | return ret_val; | ||
1855 | |||
1856 | if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | ||
1857 | /* The AutoNeg process has completed, so we now need to | ||
1858 | * read both the Auto Negotiation Advertisement Register | ||
1859 | * (Address 4) and the Auto_Negotiation Base Page Ability | ||
1860 | * Register (Address 5) to determine how flow control was | ||
1861 | * negotiated. | ||
1862 | */ | ||
1863 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | ||
1864 | &mii_nway_adv_reg); | ||
1865 | if(ret_val) | ||
1866 | return ret_val; | ||
1867 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | ||
1868 | &mii_nway_lp_ability_reg); | ||
1869 | if(ret_val) | ||
1870 | return ret_val; | ||
1871 | |||
1872 | /* Two bits in the Auto Negotiation Advertisement Register | ||
1873 | * (Address 4) and two bits in the Auto Negotiation Base | ||
1874 | * Page Ability Register (Address 5) determine flow control | ||
1875 | * for both the PHY and the link partner. The following | ||
1876 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
1877 | * 1999, describes these PAUSE resolution bits and how flow | ||
1878 | * control is determined based upon these settings. | ||
1879 | * NOTE: DC = Don't Care | ||
1880 | * | ||
1881 | * LOCAL DEVICE | LINK PARTNER | ||
1882 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
1883 | *-------|---------|-------|---------|-------------------- | ||
1884 | * 0 | 0 | DC | DC | e1000_fc_none | ||
1885 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
1886 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
1887 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1888 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
1889 | * 1 | DC | 1 | DC | e1000_fc_full | ||
1890 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
1891 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1892 | * | ||
1893 | */ | ||
1894 | /* Are both PAUSE bits set to 1? If so, this implies | ||
1895 | * Symmetric Flow Control is enabled at both ends. The | ||
1896 | * ASM_DIR bits are irrelevant per the spec. | ||
1897 | * | ||
1898 | * For Symmetric Flow Control: | ||
1899 | * | ||
1900 | * LOCAL DEVICE | LINK PARTNER | ||
1901 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1902 | *-------|---------|-------|---------|-------------------- | ||
1903 | * 1 | DC | 1 | DC | e1000_fc_full | ||
1904 | * | ||
1905 | */ | ||
1906 | if((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1907 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
1908 | /* Now we need to check if the user selected RX ONLY | ||
1909 | * of pause frames. In this case, we had to advertise | ||
1910 | * FULL flow control because we could not advertise RX | ||
1911 | * ONLY. Hence, we must now check to see if we need to | ||
1912 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
1913 | */ | ||
1914 | if(hw->original_fc == e1000_fc_full) { | ||
1915 | hw->fc = e1000_fc_full; | ||
1916 | DEBUGOUT("Flow Control = FULL.\r\n"); | ||
1917 | } else { | ||
1918 | hw->fc = e1000_fc_rx_pause; | ||
1919 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | ||
1920 | } | ||
1921 | } | ||
1922 | /* For receiving PAUSE frames ONLY. | ||
1923 | * | ||
1924 | * LOCAL DEVICE | LINK PARTNER | ||
1925 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1926 | *-------|---------|-------|---------|-------------------- | ||
1927 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1928 | * | ||
1929 | */ | ||
1930 | else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1931 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1932 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1933 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1934 | hw->fc = e1000_fc_tx_pause; | ||
1935 | DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); | ||
1936 | } | ||
1937 | /* For transmitting PAUSE frames ONLY. | ||
1938 | * | ||
1939 | * LOCAL DEVICE | LINK PARTNER | ||
1940 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1941 | *-------|---------|-------|---------|-------------------- | ||
1942 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1943 | * | ||
1944 | */ | ||
1945 | else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1946 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1947 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1948 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1949 | hw->fc = e1000_fc_rx_pause; | ||
1950 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | ||
1951 | } | ||
1952 | /* Per the IEEE spec, at this point flow control should be | ||
1953 | * disabled. However, we want to consider that we could | ||
1954 | * be connected to a legacy switch that doesn't advertise | ||
1955 | * desired flow control, but can be forced on the link | ||
1956 | * partner. So if we advertised no flow control, that is | ||
1957 | * what we will resolve to. If we advertised some kind of | ||
1958 | * receive capability (Rx Pause Only or Full Flow Control) | ||
1959 | * and the link partner advertised none, we will configure | ||
1960 | * ourselves to enable Rx Flow Control only. We can do | ||
1961 | * this safely for two reasons: If the link partner really | ||
1962 | * didn't want flow control enabled, and we enable Rx, no | ||
1963 | * harm done since we won't be receiving any PAUSE frames | ||
1964 | * anyway. If the intent on the link partner was to have | ||
1965 | * flow control enabled, then by us enabling RX only, we | ||
1966 | * can at least receive pause frames and process them. | ||
1967 | * This is a good idea because in most cases, since we are | ||
1968 | * predominantly a server NIC, more times than not we will | ||
1969 | * be asked to delay transmission of packets than asking | ||
1970 | * our link partner to pause transmission of frames. | ||
1971 | */ | ||
1972 | else if((hw->original_fc == e1000_fc_none || | ||
1973 | hw->original_fc == e1000_fc_tx_pause) || | ||
1974 | hw->fc_strict_ieee) { | ||
1975 | hw->fc = e1000_fc_none; | ||
1976 | DEBUGOUT("Flow Control = NONE.\r\n"); | ||
1977 | } else { | ||
1978 | hw->fc = e1000_fc_rx_pause; | ||
1979 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | ||
1980 | } | ||
1981 | |||
1982 | /* Now we need to do one last check... If we auto- | ||
1983 | * negotiated to HALF DUPLEX, flow control should not be | ||
1984 | * enabled per IEEE 802.3 spec. | ||
1985 | */ | ||
1986 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
1987 | if(ret_val) { | ||
1988 | DEBUGOUT("Error getting link speed and duplex\n"); | ||
1989 | return ret_val; | ||
1990 | } | ||
1991 | |||
1992 | if(duplex == HALF_DUPLEX) | ||
1993 | hw->fc = e1000_fc_none; | ||
1994 | |||
1995 | /* Now we call a subroutine to actually force the MAC | ||
1996 | * controller to use the correct flow control settings. | ||
1997 | */ | ||
1998 | ret_val = e1000_force_mac_fc(hw); | ||
1999 | if(ret_val) { | ||
2000 | DEBUGOUT("Error forcing flow control settings\n"); | ||
2001 | return ret_val; | ||
2002 | } | ||
2003 | } else { | ||
2004 | DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); | ||
2005 | } | ||
2006 | } | ||
2007 | return E1000_SUCCESS; | ||
2008 | } | ||
2009 | |||
2010 | /****************************************************************************** | ||
2011 | * Checks to see if the link status of the hardware has changed. | ||
2012 | * | ||
2013 | * hw - Struct containing variables accessed by shared code | ||
2014 | * | ||
2015 | * Called by any function that needs to check the link status of the adapter. | ||
2016 | *****************************************************************************/ | ||
2017 | int32_t | ||
2018 | e1000_check_for_link(struct e1000_hw *hw) | ||
2019 | { | ||
2020 | uint32_t rxcw = 0; | ||
2021 | uint32_t ctrl; | ||
2022 | uint32_t status; | ||
2023 | uint32_t rctl; | ||
2024 | uint32_t icr; | ||
2025 | uint32_t signal = 0; | ||
2026 | int32_t ret_val; | ||
2027 | uint16_t phy_data; | ||
2028 | |||
2029 | DEBUGFUNC("e1000_check_for_link"); | ||
2030 | |||
2031 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2032 | status = E1000_READ_REG(hw, STATUS); | ||
2033 | |||
2034 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | ||
2035 | * set when the optics detect a signal. On older adapters, it will be | ||
2036 | * cleared when there is a signal. This applies to fiber media only. | ||
2037 | */ | ||
2038 | if((hw->media_type == e1000_media_type_fiber) || | ||
2039 | (hw->media_type == e1000_media_type_internal_serdes)) { | ||
2040 | rxcw = E1000_READ_REG(hw, RXCW); | ||
2041 | |||
2042 | if(hw->media_type == e1000_media_type_fiber) { | ||
2043 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | ||
2044 | if(status & E1000_STATUS_LU) | ||
2045 | hw->get_link_status = FALSE; | ||
2046 | } | ||
2047 | } | ||
2048 | |||
2049 | /* If we have a copper PHY then we only want to go out to the PHY | ||
2050 | * registers to see if Auto-Neg has completed and/or if our link | ||
2051 | * status has changed. The get_link_status flag will be set if we | ||
2052 | * receive a Link Status Change interrupt or we have Rx Sequence | ||
2053 | * Errors. | ||
2054 | */ | ||
2055 | if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | ||
2056 | /* First we want to see if the MII Status Register reports | ||
2057 | * link. If so, then we want to get the current speed/duplex | ||
2058 | * of the PHY. | ||
2059 | * Read the register twice since the link bit is sticky. | ||
2060 | */ | ||
2061 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2062 | if(ret_val) | ||
2063 | return ret_val; | ||
2064 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2065 | if(ret_val) | ||
2066 | return ret_val; | ||
2067 | |||
2068 | if(phy_data & MII_SR_LINK_STATUS) { | ||
2069 | hw->get_link_status = FALSE; | ||
2070 | /* Check if there was DownShift, must be checked immediately after | ||
2071 | * link-up */ | ||
2072 | e1000_check_downshift(hw); | ||
2073 | |||
2074 | /* If we are on 82544 or 82543 silicon and speed/duplex | ||
2075 | * are forced to 10H or 10F, then we will implement the polarity | ||
2076 | * reversal workaround. We disable interrupts first, and upon | ||
2077 | * returning, place the devices interrupt state to its previous | ||
2078 | * value except for the link status change interrupt which will | ||
2079 | * happen due to the execution of this workaround. | ||
2080 | */ | ||
2081 | |||
2082 | if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | ||
2083 | (!hw->autoneg) && | ||
2084 | (hw->forced_speed_duplex == e1000_10_full || | ||
2085 | hw->forced_speed_duplex == e1000_10_half)) { | ||
2086 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | ||
2087 | ret_val = e1000_polarity_reversal_workaround(hw); | ||
2088 | icr = E1000_READ_REG(hw, ICR); | ||
2089 | E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); | ||
2090 | E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); | ||
2091 | } | ||
2092 | |||
2093 | } else { | ||
2094 | /* No link detected */ | ||
2095 | e1000_config_dsp_after_link_change(hw, FALSE); | ||
2096 | return 0; | ||
2097 | } | ||
2098 | |||
2099 | /* If we are forcing speed/duplex, then we simply return since | ||
2100 | * we have already determined whether we have link or not. | ||
2101 | */ | ||
2102 | if(!hw->autoneg) return -E1000_ERR_CONFIG; | ||
2103 | |||
2104 | /* optimize the dsp settings for the igp phy */ | ||
2105 | e1000_config_dsp_after_link_change(hw, TRUE); | ||
2106 | |||
2107 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we | ||
2108 | * have Si on board that is 82544 or newer, Auto | ||
2109 | * Speed Detection takes care of MAC speed/duplex | ||
2110 | * configuration. So we only need to configure Collision | ||
2111 | * Distance in the MAC. Otherwise, we need to force | ||
2112 | * speed/duplex on the MAC to the current PHY speed/duplex | ||
2113 | * settings. | ||
2114 | */ | ||
2115 | if(hw->mac_type >= e1000_82544) | ||
2116 | e1000_config_collision_dist(hw); | ||
2117 | else { | ||
2118 | ret_val = e1000_config_mac_to_phy(hw); | ||
2119 | if(ret_val) { | ||
2120 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
2121 | return ret_val; | ||
2122 | } | ||
2123 | } | ||
2124 | |||
2125 | /* Configure Flow Control now that Auto-Neg has completed. First, we | ||
2126 | * need to restore the desired flow control settings because we may | ||
2127 | * have had to re-autoneg with a different link partner. | ||
2128 | */ | ||
2129 | ret_val = e1000_config_fc_after_link_up(hw); | ||
2130 | if(ret_val) { | ||
2131 | DEBUGOUT("Error configuring flow control\n"); | ||
2132 | return ret_val; | ||
2133 | } | ||
2134 | |||
2135 | /* At this point we know that we are on copper and we have | ||
2136 | * auto-negotiated link. These are conditions for checking the link | ||
2137 | * partner capability register. We use the link speed to determine if | ||
2138 | * TBI compatibility needs to be turned on or off. If the link is not | ||
2139 | * at gigabit speed, then TBI compatibility is not needed. If we are | ||
2140 | * at gigabit speed, we turn on TBI compatibility. | ||
2141 | */ | ||
2142 | if(hw->tbi_compatibility_en) { | ||
2143 | uint16_t speed, duplex; | ||
2144 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
2145 | if(speed != SPEED_1000) { | ||
2146 | /* If link speed is not set to gigabit speed, we do not need | ||
2147 | * to enable TBI compatibility. | ||
2148 | */ | ||
2149 | if(hw->tbi_compatibility_on) { | ||
2150 | /* If we previously were in the mode, turn it off. */ | ||
2151 | rctl = E1000_READ_REG(hw, RCTL); | ||
2152 | rctl &= ~E1000_RCTL_SBP; | ||
2153 | E1000_WRITE_REG(hw, RCTL, rctl); | ||
2154 | hw->tbi_compatibility_on = FALSE; | ||
2155 | } | ||
2156 | } else { | ||
2157 | /* If TBI compatibility is was previously off, turn it on. For | ||
2158 | * compatibility with a TBI link partner, we will store bad | ||
2159 | * packets. Some frames have an additional byte on the end and | ||
2160 | * will look like CRC errors to to the hardware. | ||
2161 | */ | ||
2162 | if(!hw->tbi_compatibility_on) { | ||
2163 | hw->tbi_compatibility_on = TRUE; | ||
2164 | rctl = E1000_READ_REG(hw, RCTL); | ||
2165 | rctl |= E1000_RCTL_SBP; | ||
2166 | E1000_WRITE_REG(hw, RCTL, rctl); | ||
2167 | } | ||
2168 | } | ||
2169 | } | ||
2170 | } | ||
2171 | /* If we don't have link (auto-negotiation failed or link partner cannot | ||
2172 | * auto-negotiate), the cable is plugged in (we have signal), and our | ||
2173 | * link partner is not trying to auto-negotiate with us (we are receiving | ||
2174 | * idles or data), we need to force link up. We also need to give | ||
2175 | * auto-negotiation time to complete, in case the cable was just plugged | ||
2176 | * in. The autoneg_failed flag does this. | ||
2177 | */ | ||
2178 | else if((((hw->media_type == e1000_media_type_fiber) && | ||
2179 | ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || | ||
2180 | (hw->media_type == e1000_media_type_internal_serdes)) && | ||
2181 | (!(status & E1000_STATUS_LU)) && | ||
2182 | (!(rxcw & E1000_RXCW_C))) { | ||
2183 | if(hw->autoneg_failed == 0) { | ||
2184 | hw->autoneg_failed = 1; | ||
2185 | return 0; | ||
2186 | } | ||
2187 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); | ||
2188 | |||
2189 | /* Disable auto-negotiation in the TXCW register */ | ||
2190 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | ||
2191 | |||
2192 | /* Force link-up and also force full-duplex. */ | ||
2193 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2194 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
2195 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
2196 | |||
2197 | /* Configure Flow Control after forcing link up. */ | ||
2198 | ret_val = e1000_config_fc_after_link_up(hw); | ||
2199 | if(ret_val) { | ||
2200 | DEBUGOUT("Error configuring flow control\n"); | ||
2201 | return ret_val; | ||
2202 | } | ||
2203 | } | ||
2204 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable | ||
2205 | * auto-negotiation in the TXCW register and disable forced link in the | ||
2206 | * Device Control register in an attempt to auto-negotiate with our link | ||
2207 | * partner. | ||
2208 | */ | ||
2209 | else if(((hw->media_type == e1000_media_type_fiber) || | ||
2210 | (hw->media_type == e1000_media_type_internal_serdes)) && | ||
2211 | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
2212 | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); | ||
2213 | E1000_WRITE_REG(hw, TXCW, hw->txcw); | ||
2214 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
2215 | |||
2216 | hw->serdes_link_down = FALSE; | ||
2217 | } | ||
2218 | /* If we force link for non-auto-negotiation switch, check link status | ||
2219 | * based on MAC synchronization for internal serdes media type. | ||
2220 | */ | ||
2221 | else if((hw->media_type == e1000_media_type_internal_serdes) && | ||
2222 | !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { | ||
2223 | /* SYNCH bit and IV bit are sticky. */ | ||
2224 | udelay(10); | ||
2225 | if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { | ||
2226 | if(!(rxcw & E1000_RXCW_IV)) { | ||
2227 | hw->serdes_link_down = FALSE; | ||
2228 | DEBUGOUT("SERDES: Link is up.\n"); | ||
2229 | } | ||
2230 | } else { | ||
2231 | hw->serdes_link_down = TRUE; | ||
2232 | DEBUGOUT("SERDES: Link is down.\n"); | ||
2233 | } | ||
2234 | } | ||
2235 | if((hw->media_type == e1000_media_type_internal_serdes) && | ||
2236 | (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { | ||
2237 | hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); | ||
2238 | } | ||
2239 | return E1000_SUCCESS; | ||
2240 | } | ||
2241 | |||
2242 | /****************************************************************************** | ||
2243 | * Detects the current speed and duplex settings of the hardware. | ||
2244 | * | ||
2245 | * hw - Struct containing variables accessed by shared code | ||
2246 | * speed - Speed of the connection | ||
2247 | * duplex - Duplex setting of the connection | ||
2248 | *****************************************************************************/ | ||
2249 | int32_t | ||
2250 | e1000_get_speed_and_duplex(struct e1000_hw *hw, | ||
2251 | uint16_t *speed, | ||
2252 | uint16_t *duplex) | ||
2253 | { | ||
2254 | uint32_t status; | ||
2255 | int32_t ret_val; | ||
2256 | uint16_t phy_data; | ||
2257 | |||
2258 | DEBUGFUNC("e1000_get_speed_and_duplex"); | ||
2259 | |||
2260 | if(hw->mac_type >= e1000_82543) { | ||
2261 | status = E1000_READ_REG(hw, STATUS); | ||
2262 | if(status & E1000_STATUS_SPEED_1000) { | ||
2263 | *speed = SPEED_1000; | ||
2264 | DEBUGOUT("1000 Mbs, "); | ||
2265 | } else if(status & E1000_STATUS_SPEED_100) { | ||
2266 | *speed = SPEED_100; | ||
2267 | DEBUGOUT("100 Mbs, "); | ||
2268 | } else { | ||
2269 | *speed = SPEED_10; | ||
2270 | DEBUGOUT("10 Mbs, "); | ||
2271 | } | ||
2272 | |||
2273 | if(status & E1000_STATUS_FD) { | ||
2274 | *duplex = FULL_DUPLEX; | ||
2275 | DEBUGOUT("Full Duplex\r\n"); | ||
2276 | } else { | ||
2277 | *duplex = HALF_DUPLEX; | ||
2278 | DEBUGOUT(" Half Duplex\r\n"); | ||
2279 | } | ||
2280 | } else { | ||
2281 | DEBUGOUT("1000 Mbs, Full Duplex\r\n"); | ||
2282 | *speed = SPEED_1000; | ||
2283 | *duplex = FULL_DUPLEX; | ||
2284 | } | ||
2285 | |||
2286 | /* IGP01 PHY may advertise full duplex operation after speed downgrade even | ||
2287 | * if it is operating at half duplex. Here we set the duplex settings to | ||
2288 | * match the duplex in the link partner's capabilities. | ||
2289 | */ | ||
2290 | if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | ||
2291 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | ||
2292 | if(ret_val) | ||
2293 | return ret_val; | ||
2294 | |||
2295 | if(!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | ||
2296 | *duplex = HALF_DUPLEX; | ||
2297 | else { | ||
2298 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); | ||
2299 | if(ret_val) | ||
2300 | return ret_val; | ||
2301 | if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || | ||
2302 | (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | ||
2303 | *duplex = HALF_DUPLEX; | ||
2304 | } | ||
2305 | } | ||
2306 | |||
2307 | return E1000_SUCCESS; | ||
2308 | } | ||
2309 | |||
2310 | /****************************************************************************** | ||
2311 | * Blocks until autoneg completes or times out (~4.5 seconds) | ||
2312 | * | ||
2313 | * hw - Struct containing variables accessed by shared code | ||
2314 | ******************************************************************************/ | ||
2315 | int32_t | ||
2316 | e1000_wait_autoneg(struct e1000_hw *hw) | ||
2317 | { | ||
2318 | int32_t ret_val; | ||
2319 | uint16_t i; | ||
2320 | uint16_t phy_data; | ||
2321 | |||
2322 | DEBUGFUNC("e1000_wait_autoneg"); | ||
2323 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | ||
2324 | |||
2325 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | ||
2326 | for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { | ||
2327 | /* Read the MII Status Register and wait for Auto-Neg | ||
2328 | * Complete bit to be set. | ||
2329 | */ | ||
2330 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2331 | if(ret_val) | ||
2332 | return ret_val; | ||
2333 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2334 | if(ret_val) | ||
2335 | return ret_val; | ||
2336 | if(phy_data & MII_SR_AUTONEG_COMPLETE) { | ||
2337 | return E1000_SUCCESS; | ||
2338 | } | ||
2339 | msec_delay(100); | ||
2340 | } | ||
2341 | return E1000_SUCCESS; | ||
2342 | } | ||
2343 | |||
2344 | /****************************************************************************** | ||
2345 | * Raises the Management Data Clock | ||
2346 | * | ||
2347 | * hw - Struct containing variables accessed by shared code | ||
2348 | * ctrl - Device control register's current value | ||
2349 | ******************************************************************************/ | ||
2350 | static void | ||
2351 | e1000_raise_mdi_clk(struct e1000_hw *hw, | ||
2352 | uint32_t *ctrl) | ||
2353 | { | ||
2354 | /* Raise the clock input to the Management Data Clock (by setting the MDC | ||
2355 | * bit), and then delay 10 microseconds. | ||
2356 | */ | ||
2357 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); | ||
2358 | E1000_WRITE_FLUSH(hw); | ||
2359 | udelay(10); | ||
2360 | } | ||
2361 | |||
2362 | /****************************************************************************** | ||
2363 | * Lowers the Management Data Clock | ||
2364 | * | ||
2365 | * hw - Struct containing variables accessed by shared code | ||
2366 | * ctrl - Device control register's current value | ||
2367 | ******************************************************************************/ | ||
2368 | static void | ||
2369 | e1000_lower_mdi_clk(struct e1000_hw *hw, | ||
2370 | uint32_t *ctrl) | ||
2371 | { | ||
2372 | /* Lower the clock input to the Management Data Clock (by clearing the MDC | ||
2373 | * bit), and then delay 10 microseconds. | ||
2374 | */ | ||
2375 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); | ||
2376 | E1000_WRITE_FLUSH(hw); | ||
2377 | udelay(10); | ||
2378 | } | ||
2379 | |||
2380 | /****************************************************************************** | ||
2381 | * Shifts data bits out to the PHY | ||
2382 | * | ||
2383 | * hw - Struct containing variables accessed by shared code | ||
2384 | * data - Data to send out to the PHY | ||
2385 | * count - Number of bits to shift out | ||
2386 | * | ||
2387 | * Bits are shifted out in MSB to LSB order. | ||
2388 | ******************************************************************************/ | ||
2389 | static void | ||
2390 | e1000_shift_out_mdi_bits(struct e1000_hw *hw, | ||
2391 | uint32_t data, | ||
2392 | uint16_t count) | ||
2393 | { | ||
2394 | uint32_t ctrl; | ||
2395 | uint32_t mask; | ||
2396 | |||
2397 | /* We need to shift "count" number of bits out to the PHY. So, the value | ||
2398 | * in the "data" parameter will be shifted out to the PHY one bit at a | ||
2399 | * time. In order to do this, "data" must be broken down into bits. | ||
2400 | */ | ||
2401 | mask = 0x01; | ||
2402 | mask <<= (count - 1); | ||
2403 | |||
2404 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2405 | |||
2406 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | ||
2407 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | ||
2408 | |||
2409 | while(mask) { | ||
2410 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | ||
2411 | * then raising and lowering the Management Data Clock. A "0" is | ||
2412 | * shifted out to the PHY by setting the MDIO bit to "0" and then | ||
2413 | * raising and lowering the clock. | ||
2414 | */ | ||
2415 | if(data & mask) ctrl |= E1000_CTRL_MDIO; | ||
2416 | else ctrl &= ~E1000_CTRL_MDIO; | ||
2417 | |||
2418 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
2419 | E1000_WRITE_FLUSH(hw); | ||
2420 | |||
2421 | udelay(10); | ||
2422 | |||
2423 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2424 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2425 | |||
2426 | mask = mask >> 1; | ||
2427 | } | ||
2428 | } | ||
2429 | |||
2430 | /****************************************************************************** | ||
2431 | * Shifts data bits in from the PHY | ||
2432 | * | ||
2433 | * hw - Struct containing variables accessed by shared code | ||
2434 | * | ||
2435 | * Bits are shifted in in MSB to LSB order. | ||
2436 | ******************************************************************************/ | ||
2437 | static uint16_t | ||
2438 | e1000_shift_in_mdi_bits(struct e1000_hw *hw) | ||
2439 | { | ||
2440 | uint32_t ctrl; | ||
2441 | uint16_t data = 0; | ||
2442 | uint8_t i; | ||
2443 | |||
2444 | /* In order to read a register from the PHY, we need to shift in a total | ||
2445 | * of 18 bits from the PHY. The first two bit (turnaround) times are used | ||
2446 | * to avoid contention on the MDIO pin when a read operation is performed. | ||
2447 | * These two bits are ignored by us and thrown away. Bits are "shifted in" | ||
2448 | * by raising the input to the Management Data Clock (setting the MDC bit), | ||
2449 | * and then reading the value of the MDIO bit. | ||
2450 | */ | ||
2451 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2452 | |||
2453 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | ||
2454 | ctrl &= ~E1000_CTRL_MDIO_DIR; | ||
2455 | ctrl &= ~E1000_CTRL_MDIO; | ||
2456 | |||
2457 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
2458 | E1000_WRITE_FLUSH(hw); | ||
2459 | |||
2460 | /* Raise and Lower the clock before reading in the data. This accounts for | ||
2461 | * the turnaround bits. The first clock occurred when we clocked out the | ||
2462 | * last bit of the Register Address. | ||
2463 | */ | ||
2464 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2465 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2466 | |||
2467 | for(data = 0, i = 0; i < 16; i++) { | ||
2468 | data = data << 1; | ||
2469 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2470 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2471 | /* Check to see if we shifted in a "1". */ | ||
2472 | if(ctrl & E1000_CTRL_MDIO) data |= 1; | ||
2473 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2474 | } | ||
2475 | |||
2476 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2477 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2478 | |||
2479 | return data; | ||
2480 | } | ||
2481 | |||
2482 | /***************************************************************************** | ||
2483 | * Reads the value from a PHY register, if the value is on a specific non zero | ||
2484 | * page, sets the page first. | ||
2485 | * hw - Struct containing variables accessed by shared code | ||
2486 | * reg_addr - address of the PHY register to read | ||
2487 | ******************************************************************************/ | ||
2488 | int32_t | ||
2489 | e1000_read_phy_reg(struct e1000_hw *hw, | ||
2490 | uint32_t reg_addr, | ||
2491 | uint16_t *phy_data) | ||
2492 | { | ||
2493 | uint32_t ret_val; | ||
2494 | |||
2495 | DEBUGFUNC("e1000_read_phy_reg"); | ||
2496 | |||
2497 | |||
2498 | if(hw->phy_type == e1000_phy_igp && | ||
2499 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
2500 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
2501 | (uint16_t)reg_addr); | ||
2502 | if(ret_val) { | ||
2503 | return ret_val; | ||
2504 | } | ||
2505 | } | ||
2506 | |||
2507 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | ||
2508 | phy_data); | ||
2509 | |||
2510 | return ret_val; | ||
2511 | } | ||
2512 | |||
2513 | int32_t | ||
2514 | e1000_read_phy_reg_ex(struct e1000_hw *hw, | ||
2515 | uint32_t reg_addr, | ||
2516 | uint16_t *phy_data) | ||
2517 | { | ||
2518 | uint32_t i; | ||
2519 | uint32_t mdic = 0; | ||
2520 | const uint32_t phy_addr = 1; | ||
2521 | |||
2522 | DEBUGFUNC("e1000_read_phy_reg_ex"); | ||
2523 | |||
2524 | if(reg_addr > MAX_PHY_REG_ADDRESS) { | ||
2525 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | ||
2526 | return -E1000_ERR_PARAM; | ||
2527 | } | ||
2528 | |||
2529 | if(hw->mac_type > e1000_82543) { | ||
2530 | /* Set up Op-code, Phy Address, and register address in the MDI | ||
2531 | * Control register. The MAC will take care of interfacing with the | ||
2532 | * PHY to retrieve the desired data. | ||
2533 | */ | ||
2534 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | ||
2535 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | ||
2536 | (E1000_MDIC_OP_READ)); | ||
2537 | |||
2538 | E1000_WRITE_REG(hw, MDIC, mdic); | ||
2539 | |||
2540 | /* Poll the ready bit to see if the MDI read completed */ | ||
2541 | for(i = 0; i < 64; i++) { | ||
2542 | udelay(50); | ||
2543 | mdic = E1000_READ_REG(hw, MDIC); | ||
2544 | if(mdic & E1000_MDIC_READY) break; | ||
2545 | } | ||
2546 | if(!(mdic & E1000_MDIC_READY)) { | ||
2547 | DEBUGOUT("MDI Read did not complete\n"); | ||
2548 | return -E1000_ERR_PHY; | ||
2549 | } | ||
2550 | if(mdic & E1000_MDIC_ERROR) { | ||
2551 | DEBUGOUT("MDI Error\n"); | ||
2552 | return -E1000_ERR_PHY; | ||
2553 | } | ||
2554 | *phy_data = (uint16_t) mdic; | ||
2555 | } else { | ||
2556 | /* We must first send a preamble through the MDIO pin to signal the | ||
2557 | * beginning of an MII instruction. This is done by sending 32 | ||
2558 | * consecutive "1" bits. | ||
2559 | */ | ||
2560 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | ||
2561 | |||
2562 | /* Now combine the next few fields that are required for a read | ||
2563 | * operation. We use this method instead of calling the | ||
2564 | * e1000_shift_out_mdi_bits routine five different times. The format of | ||
2565 | * a MII read instruction consists of a shift out of 14 bits and is | ||
2566 | * defined as follows: | ||
2567 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | ||
2568 | * followed by a shift in of 18 bits. This first two bits shifted in | ||
2569 | * are TurnAround bits used to avoid contention on the MDIO pin when a | ||
2570 | * READ operation is performed. These two bits are thrown away | ||
2571 | * followed by a shift in of 16 bits which contains the desired data. | ||
2572 | */ | ||
2573 | mdic = ((reg_addr) | (phy_addr << 5) | | ||
2574 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | ||
2575 | |||
2576 | e1000_shift_out_mdi_bits(hw, mdic, 14); | ||
2577 | |||
2578 | /* Now that we've shifted out the read command to the MII, we need to | ||
2579 | * "shift in" the 16-bit value (18 total bits) of the requested PHY | ||
2580 | * register address. | ||
2581 | */ | ||
2582 | *phy_data = e1000_shift_in_mdi_bits(hw); | ||
2583 | } | ||
2584 | return E1000_SUCCESS; | ||
2585 | } | ||
2586 | |||
2587 | /****************************************************************************** | ||
2588 | * Writes a value to a PHY register | ||
2589 | * | ||
2590 | * hw - Struct containing variables accessed by shared code | ||
2591 | * reg_addr - address of the PHY register to write | ||
2592 | * data - data to write to the PHY | ||
2593 | ******************************************************************************/ | ||
2594 | int32_t | ||
2595 | e1000_write_phy_reg(struct e1000_hw *hw, | ||
2596 | uint32_t reg_addr, | ||
2597 | uint16_t phy_data) | ||
2598 | { | ||
2599 | uint32_t ret_val; | ||
2600 | |||
2601 | DEBUGFUNC("e1000_write_phy_reg"); | ||
2602 | |||
2603 | |||
2604 | if(hw->phy_type == e1000_phy_igp && | ||
2605 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
2606 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
2607 | (uint16_t)reg_addr); | ||
2608 | if(ret_val) { | ||
2609 | return ret_val; | ||
2610 | } | ||
2611 | } | ||
2612 | |||
2613 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | ||
2614 | phy_data); | ||
2615 | |||
2616 | return ret_val; | ||
2617 | } | ||
2618 | |||
2619 | int32_t | ||
2620 | e1000_write_phy_reg_ex(struct e1000_hw *hw, | ||
2621 | uint32_t reg_addr, | ||
2622 | uint16_t phy_data) | ||
2623 | { | ||
2624 | uint32_t i; | ||
2625 | uint32_t mdic = 0; | ||
2626 | const uint32_t phy_addr = 1; | ||
2627 | |||
2628 | DEBUGFUNC("e1000_write_phy_reg_ex"); | ||
2629 | |||
2630 | if(reg_addr > MAX_PHY_REG_ADDRESS) { | ||
2631 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | ||
2632 | return -E1000_ERR_PARAM; | ||
2633 | } | ||
2634 | |||
2635 | if(hw->mac_type > e1000_82543) { | ||
2636 | /* Set up Op-code, Phy Address, register address, and data intended | ||
2637 | * for the PHY register in the MDI Control register. The MAC will take | ||
2638 | * care of interfacing with the PHY to send the desired data. | ||
2639 | */ | ||
2640 | mdic = (((uint32_t) phy_data) | | ||
2641 | (reg_addr << E1000_MDIC_REG_SHIFT) | | ||
2642 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | ||
2643 | (E1000_MDIC_OP_WRITE)); | ||
2644 | |||
2645 | E1000_WRITE_REG(hw, MDIC, mdic); | ||
2646 | |||
2647 | /* Poll the ready bit to see if the MDI read completed */ | ||
2648 | for(i = 0; i < 640; i++) { | ||
2649 | udelay(5); | ||
2650 | mdic = E1000_READ_REG(hw, MDIC); | ||
2651 | if(mdic & E1000_MDIC_READY) break; | ||
2652 | } | ||
2653 | if(!(mdic & E1000_MDIC_READY)) { | ||
2654 | DEBUGOUT("MDI Write did not complete\n"); | ||
2655 | return -E1000_ERR_PHY; | ||
2656 | } | ||
2657 | } else { | ||
2658 | /* We'll need to use the SW defined pins to shift the write command | ||
2659 | * out to the PHY. We first send a preamble to the PHY to signal the | ||
2660 | * beginning of the MII instruction. This is done by sending 32 | ||
2661 | * consecutive "1" bits. | ||
2662 | */ | ||
2663 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | ||
2664 | |||
2665 | /* Now combine the remaining required fields that will indicate a | ||
2666 | * write operation. We use this method instead of calling the | ||
2667 | * e1000_shift_out_mdi_bits routine for each field in the command. The | ||
2668 | * format of a MII write instruction is as follows: | ||
2669 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | ||
2670 | */ | ||
2671 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | ||
2672 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | ||
2673 | mdic <<= 16; | ||
2674 | mdic |= (uint32_t) phy_data; | ||
2675 | |||
2676 | e1000_shift_out_mdi_bits(hw, mdic, 32); | ||
2677 | } | ||
2678 | |||
2679 | return E1000_SUCCESS; | ||
2680 | } | ||
2681 | |||
2682 | /****************************************************************************** | ||
2683 | * Returns the PHY to the power-on reset state | ||
2684 | * | ||
2685 | * hw - Struct containing variables accessed by shared code | ||
2686 | ******************************************************************************/ | ||
2687 | void | ||
2688 | e1000_phy_hw_reset(struct e1000_hw *hw) | ||
2689 | { | ||
2690 | uint32_t ctrl, ctrl_ext; | ||
2691 | uint32_t led_ctrl; | ||
2692 | |||
2693 | DEBUGFUNC("e1000_phy_hw_reset"); | ||
2694 | |||
2695 | DEBUGOUT("Resetting Phy...\n"); | ||
2696 | |||
2697 | if(hw->mac_type > e1000_82543) { | ||
2698 | /* Read the device control register and assert the E1000_CTRL_PHY_RST | ||
2699 | * bit. Then, take it out of reset. | ||
2700 | */ | ||
2701 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2702 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); | ||
2703 | E1000_WRITE_FLUSH(hw); | ||
2704 | msec_delay(10); | ||
2705 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
2706 | E1000_WRITE_FLUSH(hw); | ||
2707 | } else { | ||
2708 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | ||
2709 | * bit to put the PHY into reset. Then, take it out of reset. | ||
2710 | */ | ||
2711 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
2712 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | ||
2713 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | ||
2714 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
2715 | E1000_WRITE_FLUSH(hw); | ||
2716 | msec_delay(10); | ||
2717 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | ||
2718 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
2719 | E1000_WRITE_FLUSH(hw); | ||
2720 | } | ||
2721 | udelay(150); | ||
2722 | |||
2723 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
2724 | /* Configure activity LED after PHY reset */ | ||
2725 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | ||
2726 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
2727 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
2728 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | ||
2729 | } | ||
2730 | } | ||
2731 | |||
2732 | /****************************************************************************** | ||
2733 | * Resets the PHY | ||
2734 | * | ||
2735 | * hw - Struct containing variables accessed by shared code | ||
2736 | * | ||
2737 | * Sets bit 15 of the MII Control regiser | ||
2738 | ******************************************************************************/ | ||
2739 | int32_t | ||
2740 | e1000_phy_reset(struct e1000_hw *hw) | ||
2741 | { | ||
2742 | int32_t ret_val; | ||
2743 | uint16_t phy_data; | ||
2744 | |||
2745 | DEBUGFUNC("e1000_phy_reset"); | ||
2746 | |||
2747 | if(hw->mac_type != e1000_82541_rev_2) { | ||
2748 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
2749 | if(ret_val) | ||
2750 | return ret_val; | ||
2751 | |||
2752 | phy_data |= MII_CR_RESET; | ||
2753 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
2754 | if(ret_val) | ||
2755 | return ret_val; | ||
2756 | |||
2757 | udelay(1); | ||
2758 | } else e1000_phy_hw_reset(hw); | ||
2759 | |||
2760 | if(hw->phy_type == e1000_phy_igp) | ||
2761 | e1000_phy_init_script(hw); | ||
2762 | |||
2763 | return E1000_SUCCESS; | ||
2764 | } | ||
2765 | |||
2766 | /****************************************************************************** | ||
2767 | * Probes the expected PHY address for known PHY IDs | ||
2768 | * | ||
2769 | * hw - Struct containing variables accessed by shared code | ||
2770 | ******************************************************************************/ | ||
2771 | int32_t | ||
2772 | e1000_detect_gig_phy(struct e1000_hw *hw) | ||
2773 | { | ||
2774 | int32_t phy_init_status, ret_val; | ||
2775 | uint16_t phy_id_high, phy_id_low; | ||
2776 | boolean_t match = FALSE; | ||
2777 | |||
2778 | DEBUGFUNC("e1000_detect_gig_phy"); | ||
2779 | |||
2780 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | ||
2781 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | ||
2782 | if(ret_val) | ||
2783 | return ret_val; | ||
2784 | |||
2785 | hw->phy_id = (uint32_t) (phy_id_high << 16); | ||
2786 | udelay(20); | ||
2787 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | ||
2788 | if(ret_val) | ||
2789 | return ret_val; | ||
2790 | |||
2791 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); | ||
2792 | hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; | ||
2793 | |||
2794 | switch(hw->mac_type) { | ||
2795 | case e1000_82543: | ||
2796 | if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; | ||
2797 | break; | ||
2798 | case e1000_82544: | ||
2799 | if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; | ||
2800 | break; | ||
2801 | case e1000_82540: | ||
2802 | case e1000_82545: | ||
2803 | case e1000_82545_rev_3: | ||
2804 | case e1000_82546: | ||
2805 | case e1000_82546_rev_3: | ||
2806 | if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; | ||
2807 | break; | ||
2808 | case e1000_82541: | ||
2809 | case e1000_82541_rev_2: | ||
2810 | case e1000_82547: | ||
2811 | case e1000_82547_rev_2: | ||
2812 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; | ||
2813 | break; | ||
2814 | default: | ||
2815 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | ||
2816 | return -E1000_ERR_CONFIG; | ||
2817 | } | ||
2818 | phy_init_status = e1000_set_phy_type(hw); | ||
2819 | |||
2820 | if ((match) && (phy_init_status == E1000_SUCCESS)) { | ||
2821 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | ||
2822 | return E1000_SUCCESS; | ||
2823 | } | ||
2824 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | ||
2825 | return -E1000_ERR_PHY; | ||
2826 | } | ||
2827 | |||
2828 | /****************************************************************************** | ||
2829 | * Resets the PHY's DSP | ||
2830 | * | ||
2831 | * hw - Struct containing variables accessed by shared code | ||
2832 | ******************************************************************************/ | ||
2833 | static int32_t | ||
2834 | e1000_phy_reset_dsp(struct e1000_hw *hw) | ||
2835 | { | ||
2836 | int32_t ret_val; | ||
2837 | DEBUGFUNC("e1000_phy_reset_dsp"); | ||
2838 | |||
2839 | do { | ||
2840 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | ||
2841 | if(ret_val) break; | ||
2842 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | ||
2843 | if(ret_val) break; | ||
2844 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | ||
2845 | if(ret_val) break; | ||
2846 | ret_val = E1000_SUCCESS; | ||
2847 | } while(0); | ||
2848 | |||
2849 | return ret_val; | ||
2850 | } | ||
2851 | |||
2852 | /****************************************************************************** | ||
2853 | * Get PHY information from various PHY registers for igp PHY only. | ||
2854 | * | ||
2855 | * hw - Struct containing variables accessed by shared code | ||
2856 | * phy_info - PHY information structure | ||
2857 | ******************************************************************************/ | ||
2858 | int32_t | ||
2859 | e1000_phy_igp_get_info(struct e1000_hw *hw, | ||
2860 | struct e1000_phy_info *phy_info) | ||
2861 | { | ||
2862 | int32_t ret_val; | ||
2863 | uint16_t phy_data, polarity, min_length, max_length, average; | ||
2864 | |||
2865 | DEBUGFUNC("e1000_phy_igp_get_info"); | ||
2866 | |||
2867 | /* The downshift status is checked only once, after link is established, | ||
2868 | * and it stored in the hw->speed_downgraded parameter. */ | ||
2869 | phy_info->downshift = hw->speed_downgraded; | ||
2870 | |||
2871 | /* IGP01E1000 does not need to support it. */ | ||
2872 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | ||
2873 | |||
2874 | /* IGP01E1000 always correct polarity reversal */ | ||
2875 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; | ||
2876 | |||
2877 | /* Check polarity status */ | ||
2878 | ret_val = e1000_check_polarity(hw, &polarity); | ||
2879 | if(ret_val) | ||
2880 | return ret_val; | ||
2881 | |||
2882 | phy_info->cable_polarity = polarity; | ||
2883 | |||
2884 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); | ||
2885 | if(ret_val) | ||
2886 | return ret_val; | ||
2887 | |||
2888 | phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >> | ||
2889 | IGP01E1000_PSSR_MDIX_SHIFT; | ||
2890 | |||
2891 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
2892 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
2893 | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ | ||
2894 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
2895 | if(ret_val) | ||
2896 | return ret_val; | ||
2897 | |||
2898 | phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> | ||
2899 | SR_1000T_LOCAL_RX_STATUS_SHIFT; | ||
2900 | phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> | ||
2901 | SR_1000T_REMOTE_RX_STATUS_SHIFT; | ||
2902 | |||
2903 | /* Get cable length */ | ||
2904 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | ||
2905 | if(ret_val) | ||
2906 | return ret_val; | ||
2907 | |||
2908 | /* transalte to old method */ | ||
2909 | average = (max_length + min_length) / 2; | ||
2910 | |||
2911 | if(average <= e1000_igp_cable_length_50) | ||
2912 | phy_info->cable_length = e1000_cable_length_50; | ||
2913 | else if(average <= e1000_igp_cable_length_80) | ||
2914 | phy_info->cable_length = e1000_cable_length_50_80; | ||
2915 | else if(average <= e1000_igp_cable_length_110) | ||
2916 | phy_info->cable_length = e1000_cable_length_80_110; | ||
2917 | else if(average <= e1000_igp_cable_length_140) | ||
2918 | phy_info->cable_length = e1000_cable_length_110_140; | ||
2919 | else | ||
2920 | phy_info->cable_length = e1000_cable_length_140; | ||
2921 | } | ||
2922 | |||
2923 | return E1000_SUCCESS; | ||
2924 | } | ||
2925 | |||
2926 | /****************************************************************************** | ||
2927 | * Get PHY information from various PHY registers fot m88 PHY only. | ||
2928 | * | ||
2929 | * hw - Struct containing variables accessed by shared code | ||
2930 | * phy_info - PHY information structure | ||
2931 | ******************************************************************************/ | ||
2932 | int32_t | ||
2933 | e1000_phy_m88_get_info(struct e1000_hw *hw, | ||
2934 | struct e1000_phy_info *phy_info) | ||
2935 | { | ||
2936 | int32_t ret_val; | ||
2937 | uint16_t phy_data, polarity; | ||
2938 | |||
2939 | DEBUGFUNC("e1000_phy_m88_get_info"); | ||
2940 | |||
2941 | /* The downshift status is checked only once, after link is established, | ||
2942 | * and it stored in the hw->speed_downgraded parameter. */ | ||
2943 | phy_info->downshift = hw->speed_downgraded; | ||
2944 | |||
2945 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
2946 | if(ret_val) | ||
2947 | return ret_val; | ||
2948 | |||
2949 | phy_info->extended_10bt_distance = | ||
2950 | (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> | ||
2951 | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT; | ||
2952 | phy_info->polarity_correction = | ||
2953 | (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> | ||
2954 | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT; | ||
2955 | |||
2956 | /* Check polarity status */ | ||
2957 | ret_val = e1000_check_polarity(hw, &polarity); | ||
2958 | if(ret_val) | ||
2959 | return ret_val; | ||
2960 | phy_info->cable_polarity = polarity; | ||
2961 | |||
2962 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
2963 | if(ret_val) | ||
2964 | return ret_val; | ||
2965 | |||
2966 | phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> | ||
2967 | M88E1000_PSSR_MDIX_SHIFT; | ||
2968 | |||
2969 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | ||
2970 | /* Cable Length Estimation and Local/Remote Receiver Information | ||
2971 | * are only valid at 1000 Mbps. | ||
2972 | */ | ||
2973 | phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
2974 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); | ||
2975 | |||
2976 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
2977 | if(ret_val) | ||
2978 | return ret_val; | ||
2979 | |||
2980 | phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> | ||
2981 | SR_1000T_LOCAL_RX_STATUS_SHIFT; | ||
2982 | |||
2983 | phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> | ||
2984 | SR_1000T_REMOTE_RX_STATUS_SHIFT; | ||
2985 | } | ||
2986 | |||
2987 | return E1000_SUCCESS; | ||
2988 | } | ||
2989 | |||
2990 | /****************************************************************************** | ||
2991 | * Get PHY information from various PHY registers | ||
2992 | * | ||
2993 | * hw - Struct containing variables accessed by shared code | ||
2994 | * phy_info - PHY information structure | ||
2995 | ******************************************************************************/ | ||
2996 | int32_t | ||
2997 | e1000_phy_get_info(struct e1000_hw *hw, | ||
2998 | struct e1000_phy_info *phy_info) | ||
2999 | { | ||
3000 | int32_t ret_val; | ||
3001 | uint16_t phy_data; | ||
3002 | |||
3003 | DEBUGFUNC("e1000_phy_get_info"); | ||
3004 | |||
3005 | phy_info->cable_length = e1000_cable_length_undefined; | ||
3006 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | ||
3007 | phy_info->cable_polarity = e1000_rev_polarity_undefined; | ||
3008 | phy_info->downshift = e1000_downshift_undefined; | ||
3009 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; | ||
3010 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; | ||
3011 | phy_info->local_rx = e1000_1000t_rx_status_undefined; | ||
3012 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; | ||
3013 | |||
3014 | if(hw->media_type != e1000_media_type_copper) { | ||
3015 | DEBUGOUT("PHY info is only valid for copper media\n"); | ||
3016 | return -E1000_ERR_CONFIG; | ||
3017 | } | ||
3018 | |||
3019 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3020 | if(ret_val) | ||
3021 | return ret_val; | ||
3022 | |||
3023 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3024 | if(ret_val) | ||
3025 | return ret_val; | ||
3026 | |||
3027 | if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | ||
3028 | DEBUGOUT("PHY info is only valid if link is up\n"); | ||
3029 | return -E1000_ERR_CONFIG; | ||
3030 | } | ||
3031 | |||
3032 | if(hw->phy_type == e1000_phy_igp) | ||
3033 | return e1000_phy_igp_get_info(hw, phy_info); | ||
3034 | else | ||
3035 | return e1000_phy_m88_get_info(hw, phy_info); | ||
3036 | } | ||
3037 | |||
3038 | int32_t | ||
3039 | e1000_validate_mdi_setting(struct e1000_hw *hw) | ||
3040 | { | ||
3041 | DEBUGFUNC("e1000_validate_mdi_settings"); | ||
3042 | |||
3043 | if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | ||
3044 | DEBUGOUT("Invalid MDI setting detected\n"); | ||
3045 | hw->mdix = 1; | ||
3046 | return -E1000_ERR_CONFIG; | ||
3047 | } | ||
3048 | return E1000_SUCCESS; | ||
3049 | } | ||
3050 | |||
3051 | |||
3052 | /****************************************************************************** | ||
3053 | * Sets up eeprom variables in the hw struct. Must be called after mac_type | ||
3054 | * is configured. | ||
3055 | * | ||
3056 | * hw - Struct containing variables accessed by shared code | ||
3057 | *****************************************************************************/ | ||
3058 | void | ||
3059 | e1000_init_eeprom_params(struct e1000_hw *hw) | ||
3060 | { | ||
3061 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3062 | uint32_t eecd = E1000_READ_REG(hw, EECD); | ||
3063 | uint16_t eeprom_size; | ||
3064 | |||
3065 | DEBUGFUNC("e1000_init_eeprom_params"); | ||
3066 | |||
3067 | switch (hw->mac_type) { | ||
3068 | case e1000_82542_rev2_0: | ||
3069 | case e1000_82542_rev2_1: | ||
3070 | case e1000_82543: | ||
3071 | case e1000_82544: | ||
3072 | eeprom->type = e1000_eeprom_microwire; | ||
3073 | eeprom->word_size = 64; | ||
3074 | eeprom->opcode_bits = 3; | ||
3075 | eeprom->address_bits = 6; | ||
3076 | eeprom->delay_usec = 50; | ||
3077 | break; | ||
3078 | case e1000_82540: | ||
3079 | case e1000_82545: | ||
3080 | case e1000_82545_rev_3: | ||
3081 | case e1000_82546: | ||
3082 | case e1000_82546_rev_3: | ||
3083 | eeprom->type = e1000_eeprom_microwire; | ||
3084 | eeprom->opcode_bits = 3; | ||
3085 | eeprom->delay_usec = 50; | ||
3086 | if(eecd & E1000_EECD_SIZE) { | ||
3087 | eeprom->word_size = 256; | ||
3088 | eeprom->address_bits = 8; | ||
3089 | } else { | ||
3090 | eeprom->word_size = 64; | ||
3091 | eeprom->address_bits = 6; | ||
3092 | } | ||
3093 | break; | ||
3094 | case e1000_82541: | ||
3095 | case e1000_82541_rev_2: | ||
3096 | case e1000_82547: | ||
3097 | case e1000_82547_rev_2: | ||
3098 | if (eecd & E1000_EECD_TYPE) { | ||
3099 | eeprom->type = e1000_eeprom_spi; | ||
3100 | eeprom->opcode_bits = 8; | ||
3101 | eeprom->delay_usec = 1; | ||
3102 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
3103 | eeprom->page_size = 32; | ||
3104 | eeprom->address_bits = 16; | ||
3105 | } else { | ||
3106 | eeprom->page_size = 8; | ||
3107 | eeprom->address_bits = 8; | ||
3108 | } | ||
3109 | } else { | ||
3110 | eeprom->type = e1000_eeprom_microwire; | ||
3111 | eeprom->opcode_bits = 3; | ||
3112 | eeprom->delay_usec = 50; | ||
3113 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
3114 | eeprom->word_size = 256; | ||
3115 | eeprom->address_bits = 8; | ||
3116 | } else { | ||
3117 | eeprom->word_size = 64; | ||
3118 | eeprom->address_bits = 6; | ||
3119 | } | ||
3120 | } | ||
3121 | break; | ||
3122 | default: | ||
3123 | break; | ||
3124 | } | ||
3125 | |||
3126 | if (eeprom->type == e1000_eeprom_spi) { | ||
3127 | eeprom->word_size = 64; | ||
3128 | if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) { | ||
3129 | eeprom_size &= EEPROM_SIZE_MASK; | ||
3130 | |||
3131 | switch (eeprom_size) { | ||
3132 | case EEPROM_SIZE_16KB: | ||
3133 | eeprom->word_size = 8192; | ||
3134 | break; | ||
3135 | case EEPROM_SIZE_8KB: | ||
3136 | eeprom->word_size = 4096; | ||
3137 | break; | ||
3138 | case EEPROM_SIZE_4KB: | ||
3139 | eeprom->word_size = 2048; | ||
3140 | break; | ||
3141 | case EEPROM_SIZE_2KB: | ||
3142 | eeprom->word_size = 1024; | ||
3143 | break; | ||
3144 | case EEPROM_SIZE_1KB: | ||
3145 | eeprom->word_size = 512; | ||
3146 | break; | ||
3147 | case EEPROM_SIZE_512B: | ||
3148 | eeprom->word_size = 256; | ||
3149 | break; | ||
3150 | case EEPROM_SIZE_128B: | ||
3151 | default: | ||
3152 | eeprom->word_size = 64; | ||
3153 | break; | ||
3154 | } | ||
3155 | } | ||
3156 | } | ||
3157 | } | ||
3158 | |||
3159 | /****************************************************************************** | ||
3160 | * Raises the EEPROM's clock input. | ||
3161 | * | ||
3162 | * hw - Struct containing variables accessed by shared code | ||
3163 | * eecd - EECD's current value | ||
3164 | *****************************************************************************/ | ||
3165 | static void | ||
3166 | e1000_raise_ee_clk(struct e1000_hw *hw, | ||
3167 | uint32_t *eecd) | ||
3168 | { | ||
3169 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | ||
3170 | * wait <delay> microseconds. | ||
3171 | */ | ||
3172 | *eecd = *eecd | E1000_EECD_SK; | ||
3173 | E1000_WRITE_REG(hw, EECD, *eecd); | ||
3174 | E1000_WRITE_FLUSH(hw); | ||
3175 | udelay(hw->eeprom.delay_usec); | ||
3176 | } | ||
3177 | |||
3178 | /****************************************************************************** | ||
3179 | * Lowers the EEPROM's clock input. | ||
3180 | * | ||
3181 | * hw - Struct containing variables accessed by shared code | ||
3182 | * eecd - EECD's current value | ||
3183 | *****************************************************************************/ | ||
3184 | static void | ||
3185 | e1000_lower_ee_clk(struct e1000_hw *hw, | ||
3186 | uint32_t *eecd) | ||
3187 | { | ||
3188 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | ||
3189 | * wait 50 microseconds. | ||
3190 | */ | ||
3191 | *eecd = *eecd & ~E1000_EECD_SK; | ||
3192 | E1000_WRITE_REG(hw, EECD, *eecd); | ||
3193 | E1000_WRITE_FLUSH(hw); | ||
3194 | udelay(hw->eeprom.delay_usec); | ||
3195 | } | ||
3196 | |||
3197 | /****************************************************************************** | ||
3198 | * Shift data bits out to the EEPROM. | ||
3199 | * | ||
3200 | * hw - Struct containing variables accessed by shared code | ||
3201 | * data - data to send to the EEPROM | ||
3202 | * count - number of bits to shift out | ||
3203 | *****************************************************************************/ | ||
3204 | static void | ||
3205 | e1000_shift_out_ee_bits(struct e1000_hw *hw, | ||
3206 | uint16_t data, | ||
3207 | uint16_t count) | ||
3208 | { | ||
3209 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3210 | uint32_t eecd; | ||
3211 | uint32_t mask; | ||
3212 | |||
3213 | /* We need to shift "count" bits out to the EEPROM. So, value in the | ||
3214 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | ||
3215 | * In order to do this, "data" must be broken down into bits. | ||
3216 | */ | ||
3217 | mask = 0x01 << (count - 1); | ||
3218 | eecd = E1000_READ_REG(hw, EECD); | ||
3219 | if (eeprom->type == e1000_eeprom_microwire) { | ||
3220 | eecd &= ~E1000_EECD_DO; | ||
3221 | } else if (eeprom->type == e1000_eeprom_spi) { | ||
3222 | eecd |= E1000_EECD_DO; | ||
3223 | } | ||
3224 | do { | ||
3225 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | ||
3226 | * and then raising and then lowering the clock (the SK bit controls | ||
3227 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM | ||
3228 | * by setting "DI" to "0" and then raising and then lowering the clock. | ||
3229 | */ | ||
3230 | eecd &= ~E1000_EECD_DI; | ||
3231 | |||
3232 | if(data & mask) | ||
3233 | eecd |= E1000_EECD_DI; | ||
3234 | |||
3235 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3236 | E1000_WRITE_FLUSH(hw); | ||
3237 | |||
3238 | udelay(eeprom->delay_usec); | ||
3239 | |||
3240 | e1000_raise_ee_clk(hw, &eecd); | ||
3241 | e1000_lower_ee_clk(hw, &eecd); | ||
3242 | |||
3243 | mask = mask >> 1; | ||
3244 | |||
3245 | } while(mask); | ||
3246 | |||
3247 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | ||
3248 | eecd &= ~E1000_EECD_DI; | ||
3249 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3250 | } | ||
3251 | |||
3252 | /****************************************************************************** | ||
3253 | * Shift data bits in from the EEPROM | ||
3254 | * | ||
3255 | * hw - Struct containing variables accessed by shared code | ||
3256 | *****************************************************************************/ | ||
3257 | static uint16_t | ||
3258 | e1000_shift_in_ee_bits(struct e1000_hw *hw, | ||
3259 | uint16_t count) | ||
3260 | { | ||
3261 | uint32_t eecd; | ||
3262 | uint32_t i; | ||
3263 | uint16_t data; | ||
3264 | |||
3265 | /* In order to read a register from the EEPROM, we need to shift 'count' | ||
3266 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | ||
3267 | * input to the EEPROM (setting the SK bit), and then reading the value of | ||
3268 | * the "DO" bit. During this "shifting in" process the "DI" bit should | ||
3269 | * always be clear. | ||
3270 | */ | ||
3271 | |||
3272 | eecd = E1000_READ_REG(hw, EECD); | ||
3273 | |||
3274 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | ||
3275 | data = 0; | ||
3276 | |||
3277 | for(i = 0; i < count; i++) { | ||
3278 | data = data << 1; | ||
3279 | e1000_raise_ee_clk(hw, &eecd); | ||
3280 | |||
3281 | eecd = E1000_READ_REG(hw, EECD); | ||
3282 | |||
3283 | eecd &= ~(E1000_EECD_DI); | ||
3284 | if(eecd & E1000_EECD_DO) | ||
3285 | data |= 1; | ||
3286 | |||
3287 | e1000_lower_ee_clk(hw, &eecd); | ||
3288 | } | ||
3289 | |||
3290 | return data; | ||
3291 | } | ||
3292 | |||
3293 | /****************************************************************************** | ||
3294 | * Prepares EEPROM for access | ||
3295 | * | ||
3296 | * hw - Struct containing variables accessed by shared code | ||
3297 | * | ||
3298 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | ||
3299 | * function should be called before issuing a command to the EEPROM. | ||
3300 | *****************************************************************************/ | ||
3301 | static int32_t | ||
3302 | e1000_acquire_eeprom(struct e1000_hw *hw) | ||
3303 | { | ||
3304 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3305 | uint32_t eecd, i=0; | ||
3306 | |||
3307 | DEBUGFUNC("e1000_acquire_eeprom"); | ||
3308 | |||
3309 | eecd = E1000_READ_REG(hw, EECD); | ||
3310 | |||
3311 | /* Request EEPROM Access */ | ||
3312 | if(hw->mac_type > e1000_82544) { | ||
3313 | eecd |= E1000_EECD_REQ; | ||
3314 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3315 | eecd = E1000_READ_REG(hw, EECD); | ||
3316 | while((!(eecd & E1000_EECD_GNT)) && | ||
3317 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | ||
3318 | i++; | ||
3319 | udelay(5); | ||
3320 | eecd = E1000_READ_REG(hw, EECD); | ||
3321 | } | ||
3322 | if(!(eecd & E1000_EECD_GNT)) { | ||
3323 | eecd &= ~E1000_EECD_REQ; | ||
3324 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3325 | DEBUGOUT("Could not acquire EEPROM grant\n"); | ||
3326 | return -E1000_ERR_EEPROM; | ||
3327 | } | ||
3328 | } | ||
3329 | |||
3330 | /* Setup EEPROM for Read/Write */ | ||
3331 | |||
3332 | if (eeprom->type == e1000_eeprom_microwire) { | ||
3333 | /* Clear SK and DI */ | ||
3334 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | ||
3335 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3336 | |||
3337 | /* Set CS */ | ||
3338 | eecd |= E1000_EECD_CS; | ||
3339 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3340 | } else if (eeprom->type == e1000_eeprom_spi) { | ||
3341 | /* Clear SK and CS */ | ||
3342 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
3343 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3344 | udelay(1); | ||
3345 | } | ||
3346 | |||
3347 | return E1000_SUCCESS; | ||
3348 | } | ||
3349 | |||
3350 | /****************************************************************************** | ||
3351 | * Returns EEPROM to a "standby" state | ||
3352 | * | ||
3353 | * hw - Struct containing variables accessed by shared code | ||
3354 | *****************************************************************************/ | ||
3355 | static void | ||
3356 | e1000_standby_eeprom(struct e1000_hw *hw) | ||
3357 | { | ||
3358 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3359 | uint32_t eecd; | ||
3360 | |||
3361 | eecd = E1000_READ_REG(hw, EECD); | ||
3362 | |||
3363 | if(eeprom->type == e1000_eeprom_microwire) { | ||
3364 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
3365 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3366 | E1000_WRITE_FLUSH(hw); | ||
3367 | udelay(eeprom->delay_usec); | ||
3368 | |||
3369 | /* Clock high */ | ||
3370 | eecd |= E1000_EECD_SK; | ||
3371 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3372 | E1000_WRITE_FLUSH(hw); | ||
3373 | udelay(eeprom->delay_usec); | ||
3374 | |||
3375 | /* Select EEPROM */ | ||
3376 | eecd |= E1000_EECD_CS; | ||
3377 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3378 | E1000_WRITE_FLUSH(hw); | ||
3379 | udelay(eeprom->delay_usec); | ||
3380 | |||
3381 | /* Clock low */ | ||
3382 | eecd &= ~E1000_EECD_SK; | ||
3383 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3384 | E1000_WRITE_FLUSH(hw); | ||
3385 | udelay(eeprom->delay_usec); | ||
3386 | } else if(eeprom->type == e1000_eeprom_spi) { | ||
3387 | /* Toggle CS to flush commands */ | ||
3388 | eecd |= E1000_EECD_CS; | ||
3389 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3390 | E1000_WRITE_FLUSH(hw); | ||
3391 | udelay(eeprom->delay_usec); | ||
3392 | eecd &= ~E1000_EECD_CS; | ||
3393 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3394 | E1000_WRITE_FLUSH(hw); | ||
3395 | udelay(eeprom->delay_usec); | ||
3396 | } | ||
3397 | } | ||
3398 | |||
3399 | /****************************************************************************** | ||
3400 | * Terminates a command by inverting the EEPROM's chip select pin | ||
3401 | * | ||
3402 | * hw - Struct containing variables accessed by shared code | ||
3403 | *****************************************************************************/ | ||
3404 | static void | ||
3405 | e1000_release_eeprom(struct e1000_hw *hw) | ||
3406 | { | ||
3407 | uint32_t eecd; | ||
3408 | |||
3409 | DEBUGFUNC("e1000_release_eeprom"); | ||
3410 | |||
3411 | eecd = E1000_READ_REG(hw, EECD); | ||
3412 | |||
3413 | if (hw->eeprom.type == e1000_eeprom_spi) { | ||
3414 | eecd |= E1000_EECD_CS; /* Pull CS high */ | ||
3415 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ | ||
3416 | |||
3417 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3418 | |||
3419 | udelay(hw->eeprom.delay_usec); | ||
3420 | } else if(hw->eeprom.type == e1000_eeprom_microwire) { | ||
3421 | /* cleanup eeprom */ | ||
3422 | |||
3423 | /* CS on Microwire is active-high */ | ||
3424 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | ||
3425 | |||
3426 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3427 | |||
3428 | /* Rising edge of clock */ | ||
3429 | eecd |= E1000_EECD_SK; | ||
3430 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3431 | E1000_WRITE_FLUSH(hw); | ||
3432 | udelay(hw->eeprom.delay_usec); | ||
3433 | |||
3434 | /* Falling edge of clock */ | ||
3435 | eecd &= ~E1000_EECD_SK; | ||
3436 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3437 | E1000_WRITE_FLUSH(hw); | ||
3438 | udelay(hw->eeprom.delay_usec); | ||
3439 | } | ||
3440 | |||
3441 | /* Stop requesting EEPROM access */ | ||
3442 | if(hw->mac_type > e1000_82544) { | ||
3443 | eecd &= ~E1000_EECD_REQ; | ||
3444 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3445 | } | ||
3446 | } | ||
3447 | |||
3448 | /****************************************************************************** | ||
3449 | * Reads a 16 bit word from the EEPROM. | ||
3450 | * | ||
3451 | * hw - Struct containing variables accessed by shared code | ||
3452 | *****************************************************************************/ | ||
3453 | int32_t | ||
3454 | e1000_spi_eeprom_ready(struct e1000_hw *hw) | ||
3455 | { | ||
3456 | uint16_t retry_count = 0; | ||
3457 | uint8_t spi_stat_reg; | ||
3458 | |||
3459 | DEBUGFUNC("e1000_spi_eeprom_ready"); | ||
3460 | |||
3461 | /* Read "Status Register" repeatedly until the LSB is cleared. The | ||
3462 | * EEPROM will signal that the command has been completed by clearing | ||
3463 | * bit 0 of the internal status register. If it's not cleared within | ||
3464 | * 5 milliseconds, then error out. | ||
3465 | */ | ||
3466 | retry_count = 0; | ||
3467 | do { | ||
3468 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | ||
3469 | hw->eeprom.opcode_bits); | ||
3470 | spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); | ||
3471 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | ||
3472 | break; | ||
3473 | |||
3474 | udelay(5); | ||
3475 | retry_count += 5; | ||
3476 | |||
3477 | e1000_standby_eeprom(hw); | ||
3478 | } while(retry_count < EEPROM_MAX_RETRY_SPI); | ||
3479 | |||
3480 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | ||
3481 | * only 0-5mSec on 5V devices) | ||
3482 | */ | ||
3483 | if(retry_count >= EEPROM_MAX_RETRY_SPI) { | ||
3484 | DEBUGOUT("SPI EEPROM Status error\n"); | ||
3485 | return -E1000_ERR_EEPROM; | ||
3486 | } | ||
3487 | |||
3488 | return E1000_SUCCESS; | ||
3489 | } | ||
3490 | |||
3491 | /****************************************************************************** | ||
3492 | * Reads a 16 bit word from the EEPROM. | ||
3493 | * | ||
3494 | * hw - Struct containing variables accessed by shared code | ||
3495 | * offset - offset of word in the EEPROM to read | ||
3496 | * data - word read from the EEPROM | ||
3497 | * words - number of words to read | ||
3498 | *****************************************************************************/ | ||
3499 | int32_t | ||
3500 | e1000_read_eeprom(struct e1000_hw *hw, | ||
3501 | uint16_t offset, | ||
3502 | uint16_t words, | ||
3503 | uint16_t *data) | ||
3504 | { | ||
3505 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3506 | uint32_t i = 0; | ||
3507 | |||
3508 | DEBUGFUNC("e1000_read_eeprom"); | ||
3509 | /* A check for invalid values: offset too large, too many words, and not | ||
3510 | * enough words. | ||
3511 | */ | ||
3512 | if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | ||
3513 | (words == 0)) { | ||
3514 | DEBUGOUT("\"words\" parameter out of bounds\n"); | ||
3515 | return -E1000_ERR_EEPROM; | ||
3516 | } | ||
3517 | |||
3518 | /* Prepare the EEPROM for reading */ | ||
3519 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
3520 | return -E1000_ERR_EEPROM; | ||
3521 | |||
3522 | if(eeprom->type == e1000_eeprom_spi) { | ||
3523 | uint16_t word_in; | ||
3524 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; | ||
3525 | |||
3526 | if(e1000_spi_eeprom_ready(hw)) { | ||
3527 | e1000_release_eeprom(hw); | ||
3528 | return -E1000_ERR_EEPROM; | ||
3529 | } | ||
3530 | |||
3531 | e1000_standby_eeprom(hw); | ||
3532 | |||
3533 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | ||
3534 | if((eeprom->address_bits == 8) && (offset >= 128)) | ||
3535 | read_opcode |= EEPROM_A8_OPCODE_SPI; | ||
3536 | |||
3537 | /* Send the READ command (opcode + addr) */ | ||
3538 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | ||
3539 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); | ||
3540 | |||
3541 | /* Read the data. The address of the eeprom internally increments with | ||
3542 | * each byte (spi) being read, saving on the overhead of eeprom setup | ||
3543 | * and tear-down. The address counter will roll over if reading beyond | ||
3544 | * the size of the eeprom, thus allowing the entire memory to be read | ||
3545 | * starting from any offset. */ | ||
3546 | for (i = 0; i < words; i++) { | ||
3547 | word_in = e1000_shift_in_ee_bits(hw, 16); | ||
3548 | data[i] = (word_in >> 8) | (word_in << 8); | ||
3549 | } | ||
3550 | } else if(eeprom->type == e1000_eeprom_microwire) { | ||
3551 | for (i = 0; i < words; i++) { | ||
3552 | /* Send the READ command (opcode + addr) */ | ||
3553 | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, | ||
3554 | eeprom->opcode_bits); | ||
3555 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), | ||
3556 | eeprom->address_bits); | ||
3557 | |||
3558 | /* Read the data. For microwire, each word requires the overhead | ||
3559 | * of eeprom setup and tear-down. */ | ||
3560 | data[i] = e1000_shift_in_ee_bits(hw, 16); | ||
3561 | e1000_standby_eeprom(hw); | ||
3562 | } | ||
3563 | } | ||
3564 | |||
3565 | /* End this read operation */ | ||
3566 | e1000_release_eeprom(hw); | ||
3567 | |||
3568 | return E1000_SUCCESS; | ||
3569 | } | ||
3570 | |||
3571 | /****************************************************************************** | ||
3572 | * Verifies that the EEPROM has a valid checksum | ||
3573 | * | ||
3574 | * hw - Struct containing variables accessed by shared code | ||
3575 | * | ||
3576 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | ||
3577 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | ||
3578 | * valid. | ||
3579 | *****************************************************************************/ | ||
3580 | int32_t | ||
3581 | e1000_validate_eeprom_checksum(struct e1000_hw *hw) | ||
3582 | { | ||
3583 | uint16_t checksum = 0; | ||
3584 | uint16_t i, eeprom_data; | ||
3585 | |||
3586 | DEBUGFUNC("e1000_validate_eeprom_checksum"); | ||
3587 | |||
3588 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
3589 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
3590 | DEBUGOUT("EEPROM Read Error\n"); | ||
3591 | return -E1000_ERR_EEPROM; | ||
3592 | } | ||
3593 | checksum += eeprom_data; | ||
3594 | } | ||
3595 | |||
3596 | if(checksum == (uint16_t) EEPROM_SUM) | ||
3597 | return E1000_SUCCESS; | ||
3598 | else { | ||
3599 | DEBUGOUT("EEPROM Checksum Invalid\n"); | ||
3600 | return -E1000_ERR_EEPROM; | ||
3601 | } | ||
3602 | } | ||
3603 | |||
3604 | /****************************************************************************** | ||
3605 | * Calculates the EEPROM checksum and writes it to the EEPROM | ||
3606 | * | ||
3607 | * hw - Struct containing variables accessed by shared code | ||
3608 | * | ||
3609 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | ||
3610 | * Writes the difference to word offset 63 of the EEPROM. | ||
3611 | *****************************************************************************/ | ||
3612 | int32_t | ||
3613 | e1000_update_eeprom_checksum(struct e1000_hw *hw) | ||
3614 | { | ||
3615 | uint16_t checksum = 0; | ||
3616 | uint16_t i, eeprom_data; | ||
3617 | |||
3618 | DEBUGFUNC("e1000_update_eeprom_checksum"); | ||
3619 | |||
3620 | for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { | ||
3621 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
3622 | DEBUGOUT("EEPROM Read Error\n"); | ||
3623 | return -E1000_ERR_EEPROM; | ||
3624 | } | ||
3625 | checksum += eeprom_data; | ||
3626 | } | ||
3627 | checksum = (uint16_t) EEPROM_SUM - checksum; | ||
3628 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | ||
3629 | DEBUGOUT("EEPROM Write Error\n"); | ||
3630 | return -E1000_ERR_EEPROM; | ||
3631 | } | ||
3632 | return E1000_SUCCESS; | ||
3633 | } | ||
3634 | |||
3635 | /****************************************************************************** | ||
3636 | * Parent function for writing words to the different EEPROM types. | ||
3637 | * | ||
3638 | * hw - Struct containing variables accessed by shared code | ||
3639 | * offset - offset within the EEPROM to be written to | ||
3640 | * words - number of words to write | ||
3641 | * data - 16 bit word to be written to the EEPROM | ||
3642 | * | ||
3643 | * If e1000_update_eeprom_checksum is not called after this function, the | ||
3644 | * EEPROM will most likely contain an invalid checksum. | ||
3645 | *****************************************************************************/ | ||
3646 | int32_t | ||
3647 | e1000_write_eeprom(struct e1000_hw *hw, | ||
3648 | uint16_t offset, | ||
3649 | uint16_t words, | ||
3650 | uint16_t *data) | ||
3651 | { | ||
3652 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3653 | int32_t status = 0; | ||
3654 | |||
3655 | DEBUGFUNC("e1000_write_eeprom"); | ||
3656 | |||
3657 | /* A check for invalid values: offset too large, too many words, and not | ||
3658 | * enough words. | ||
3659 | */ | ||
3660 | if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | ||
3661 | (words == 0)) { | ||
3662 | DEBUGOUT("\"words\" parameter out of bounds\n"); | ||
3663 | return -E1000_ERR_EEPROM; | ||
3664 | } | ||
3665 | |||
3666 | /* Prepare the EEPROM for writing */ | ||
3667 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
3668 | return -E1000_ERR_EEPROM; | ||
3669 | |||
3670 | if(eeprom->type == e1000_eeprom_microwire) { | ||
3671 | status = e1000_write_eeprom_microwire(hw, offset, words, data); | ||
3672 | } else { | ||
3673 | status = e1000_write_eeprom_spi(hw, offset, words, data); | ||
3674 | msec_delay(10); | ||
3675 | } | ||
3676 | |||
3677 | /* Done with writing */ | ||
3678 | e1000_release_eeprom(hw); | ||
3679 | |||
3680 | return status; | ||
3681 | } | ||
3682 | |||
3683 | /****************************************************************************** | ||
3684 | * Writes a 16 bit word to a given offset in an SPI EEPROM. | ||
3685 | * | ||
3686 | * hw - Struct containing variables accessed by shared code | ||
3687 | * offset - offset within the EEPROM to be written to | ||
3688 | * words - number of words to write | ||
3689 | * data - pointer to array of 8 bit words to be written to the EEPROM | ||
3690 | * | ||
3691 | *****************************************************************************/ | ||
3692 | int32_t | ||
3693 | e1000_write_eeprom_spi(struct e1000_hw *hw, | ||
3694 | uint16_t offset, | ||
3695 | uint16_t words, | ||
3696 | uint16_t *data) | ||
3697 | { | ||
3698 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3699 | uint16_t widx = 0; | ||
3700 | |||
3701 | DEBUGFUNC("e1000_write_eeprom_spi"); | ||
3702 | |||
3703 | while (widx < words) { | ||
3704 | uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; | ||
3705 | |||
3706 | if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; | ||
3707 | |||
3708 | e1000_standby_eeprom(hw); | ||
3709 | |||
3710 | /* Send the WRITE ENABLE command (8 bit opcode ) */ | ||
3711 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | ||
3712 | eeprom->opcode_bits); | ||
3713 | |||
3714 | e1000_standby_eeprom(hw); | ||
3715 | |||
3716 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | ||
3717 | if((eeprom->address_bits == 8) && (offset >= 128)) | ||
3718 | write_opcode |= EEPROM_A8_OPCODE_SPI; | ||
3719 | |||
3720 | /* Send the Write command (8-bit opcode + addr) */ | ||
3721 | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | ||
3722 | |||
3723 | e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), | ||
3724 | eeprom->address_bits); | ||
3725 | |||
3726 | /* Send the data */ | ||
3727 | |||
3728 | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ | ||
3729 | while (widx < words) { | ||
3730 | uint16_t word_out = data[widx]; | ||
3731 | word_out = (word_out >> 8) | (word_out << 8); | ||
3732 | e1000_shift_out_ee_bits(hw, word_out, 16); | ||
3733 | widx++; | ||
3734 | |||
3735 | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE | ||
3736 | * operation, while the smaller eeproms are capable of an 8-byte | ||
3737 | * PAGE WRITE operation. Break the inner loop to pass new address | ||
3738 | */ | ||
3739 | if((((offset + widx)*2) % eeprom->page_size) == 0) { | ||
3740 | e1000_standby_eeprom(hw); | ||
3741 | break; | ||
3742 | } | ||
3743 | } | ||
3744 | } | ||
3745 | |||
3746 | return E1000_SUCCESS; | ||
3747 | } | ||
3748 | |||
3749 | /****************************************************************************** | ||
3750 | * Writes a 16 bit word to a given offset in a Microwire EEPROM. | ||
3751 | * | ||
3752 | * hw - Struct containing variables accessed by shared code | ||
3753 | * offset - offset within the EEPROM to be written to | ||
3754 | * words - number of words to write | ||
3755 | * data - pointer to array of 16 bit words to be written to the EEPROM | ||
3756 | * | ||
3757 | *****************************************************************************/ | ||
3758 | int32_t | ||
3759 | e1000_write_eeprom_microwire(struct e1000_hw *hw, | ||
3760 | uint16_t offset, | ||
3761 | uint16_t words, | ||
3762 | uint16_t *data) | ||
3763 | { | ||
3764 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3765 | uint32_t eecd; | ||
3766 | uint16_t words_written = 0; | ||
3767 | uint16_t i = 0; | ||
3768 | |||
3769 | DEBUGFUNC("e1000_write_eeprom_microwire"); | ||
3770 | |||
3771 | /* Send the write enable command to the EEPROM (3-bit opcode plus | ||
3772 | * 6/8-bit dummy address beginning with 11). It's less work to include | ||
3773 | * the 11 of the dummy address as part of the opcode than it is to shift | ||
3774 | * it over the correct number of bits for the address. This puts the | ||
3775 | * EEPROM into write/erase mode. | ||
3776 | */ | ||
3777 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | ||
3778 | (uint16_t)(eeprom->opcode_bits + 2)); | ||
3779 | |||
3780 | e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); | ||
3781 | |||
3782 | /* Prepare the EEPROM */ | ||
3783 | e1000_standby_eeprom(hw); | ||
3784 | |||
3785 | while (words_written < words) { | ||
3786 | /* Send the Write command (3-bit opcode + addr) */ | ||
3787 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | ||
3788 | eeprom->opcode_bits); | ||
3789 | |||
3790 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), | ||
3791 | eeprom->address_bits); | ||
3792 | |||
3793 | /* Send the data */ | ||
3794 | e1000_shift_out_ee_bits(hw, data[words_written], 16); | ||
3795 | |||
3796 | /* Toggle the CS line. This in effect tells the EEPROM to execute | ||
3797 | * the previous command. | ||
3798 | */ | ||
3799 | e1000_standby_eeprom(hw); | ||
3800 | |||
3801 | /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will | ||
3802 | * signal that the command has been completed by raising the DO signal. | ||
3803 | * If DO does not go high in 10 milliseconds, then error out. | ||
3804 | */ | ||
3805 | for(i = 0; i < 200; i++) { | ||
3806 | eecd = E1000_READ_REG(hw, EECD); | ||
3807 | if(eecd & E1000_EECD_DO) break; | ||
3808 | udelay(50); | ||
3809 | } | ||
3810 | if(i == 200) { | ||
3811 | DEBUGOUT("EEPROM Write did not complete\n"); | ||
3812 | return -E1000_ERR_EEPROM; | ||
3813 | } | ||
3814 | |||
3815 | /* Recover from write */ | ||
3816 | e1000_standby_eeprom(hw); | ||
3817 | |||
3818 | words_written++; | ||
3819 | } | ||
3820 | |||
3821 | /* Send the write disable command to the EEPROM (3-bit opcode plus | ||
3822 | * 6/8-bit dummy address beginning with 10). It's less work to include | ||
3823 | * the 10 of the dummy address as part of the opcode than it is to shift | ||
3824 | * it over the correct number of bits for the address. This takes the | ||
3825 | * EEPROM out of write/erase mode. | ||
3826 | */ | ||
3827 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | ||
3828 | (uint16_t)(eeprom->opcode_bits + 2)); | ||
3829 | |||
3830 | e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); | ||
3831 | |||
3832 | return E1000_SUCCESS; | ||
3833 | } | ||
3834 | |||
3835 | /****************************************************************************** | ||
3836 | * Reads the adapter's part number from the EEPROM | ||
3837 | * | ||
3838 | * hw - Struct containing variables accessed by shared code | ||
3839 | * part_num - Adapter's part number | ||
3840 | *****************************************************************************/ | ||
3841 | int32_t | ||
3842 | e1000_read_part_num(struct e1000_hw *hw, | ||
3843 | uint32_t *part_num) | ||
3844 | { | ||
3845 | uint16_t offset = EEPROM_PBA_BYTE_1; | ||
3846 | uint16_t eeprom_data; | ||
3847 | |||
3848 | DEBUGFUNC("e1000_read_part_num"); | ||
3849 | |||
3850 | /* Get word 0 from EEPROM */ | ||
3851 | if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | ||
3852 | DEBUGOUT("EEPROM Read Error\n"); | ||
3853 | return -E1000_ERR_EEPROM; | ||
3854 | } | ||
3855 | /* Save word 0 in upper half of part_num */ | ||
3856 | *part_num = (uint32_t) (eeprom_data << 16); | ||
3857 | |||
3858 | /* Get word 1 from EEPROM */ | ||
3859 | if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { | ||
3860 | DEBUGOUT("EEPROM Read Error\n"); | ||
3861 | return -E1000_ERR_EEPROM; | ||
3862 | } | ||
3863 | /* Save word 1 in lower half of part_num */ | ||
3864 | *part_num |= eeprom_data; | ||
3865 | |||
3866 | return E1000_SUCCESS; | ||
3867 | } | ||
3868 | |||
3869 | /****************************************************************************** | ||
3870 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | ||
3871 | * second function of dual function devices | ||
3872 | * | ||
3873 | * hw - Struct containing variables accessed by shared code | ||
3874 | *****************************************************************************/ | ||
3875 | int32_t | ||
3876 | e1000_read_mac_addr(struct e1000_hw * hw) | ||
3877 | { | ||
3878 | uint16_t offset; | ||
3879 | uint16_t eeprom_data, i; | ||
3880 | |||
3881 | DEBUGFUNC("e1000_read_mac_addr"); | ||
3882 | |||
3883 | for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | ||
3884 | offset = i >> 1; | ||
3885 | if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | ||
3886 | DEBUGOUT("EEPROM Read Error\n"); | ||
3887 | return -E1000_ERR_EEPROM; | ||
3888 | } | ||
3889 | hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); | ||
3890 | hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); | ||
3891 | } | ||
3892 | if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) && | ||
3893 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) | ||
3894 | hw->perm_mac_addr[5] ^= 0x01; | ||
3895 | |||
3896 | for(i = 0; i < NODE_ADDRESS_SIZE; i++) | ||
3897 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | ||
3898 | return E1000_SUCCESS; | ||
3899 | } | ||
3900 | |||
3901 | /****************************************************************************** | ||
3902 | * Initializes receive address filters. | ||
3903 | * | ||
3904 | * hw - Struct containing variables accessed by shared code | ||
3905 | * | ||
3906 | * Places the MAC address in receive address register 0 and clears the rest | ||
3907 | * of the receive addresss registers. Clears the multicast table. Assumes | ||
3908 | * the receiver is in reset when the routine is called. | ||
3909 | *****************************************************************************/ | ||
3910 | void | ||
3911 | e1000_init_rx_addrs(struct e1000_hw *hw) | ||
3912 | { | ||
3913 | uint32_t i; | ||
3914 | |||
3915 | DEBUGFUNC("e1000_init_rx_addrs"); | ||
3916 | |||
3917 | /* Setup the receive address. */ | ||
3918 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | ||
3919 | |||
3920 | e1000_rar_set(hw, hw->mac_addr, 0); | ||
3921 | |||
3922 | /* Zero out the other 15 receive addresses. */ | ||
3923 | DEBUGOUT("Clearing RAR[1-15]\n"); | ||
3924 | for(i = 1; i < E1000_RAR_ENTRIES; i++) { | ||
3925 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | ||
3926 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | ||
3927 | } | ||
3928 | } | ||
3929 | |||
3930 | /****************************************************************************** | ||
3931 | * Updates the MAC's list of multicast addresses. | ||
3932 | * | ||
3933 | * hw - Struct containing variables accessed by shared code | ||
3934 | * mc_addr_list - the list of new multicast addresses | ||
3935 | * mc_addr_count - number of addresses | ||
3936 | * pad - number of bytes between addresses in the list | ||
3937 | * rar_used_count - offset where to start adding mc addresses into the RAR's | ||
3938 | * | ||
3939 | * The given list replaces any existing list. Clears the last 15 receive | ||
3940 | * address registers and the multicast table. Uses receive address registers | ||
3941 | * for the first 15 multicast addresses, and hashes the rest into the | ||
3942 | * multicast table. | ||
3943 | *****************************************************************************/ | ||
3944 | void | ||
3945 | e1000_mc_addr_list_update(struct e1000_hw *hw, | ||
3946 | uint8_t *mc_addr_list, | ||
3947 | uint32_t mc_addr_count, | ||
3948 | uint32_t pad, | ||
3949 | uint32_t rar_used_count) | ||
3950 | { | ||
3951 | uint32_t hash_value; | ||
3952 | uint32_t i; | ||
3953 | |||
3954 | DEBUGFUNC("e1000_mc_addr_list_update"); | ||
3955 | |||
3956 | /* Set the new number of MC addresses that we are being requested to use. */ | ||
3957 | hw->num_mc_addrs = mc_addr_count; | ||
3958 | |||
3959 | /* Clear RAR[1-15] */ | ||
3960 | DEBUGOUT(" Clearing RAR[1-15]\n"); | ||
3961 | for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) { | ||
3962 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | ||
3963 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | ||
3964 | } | ||
3965 | |||
3966 | /* Clear the MTA */ | ||
3967 | DEBUGOUT(" Clearing MTA\n"); | ||
3968 | for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) { | ||
3969 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | ||
3970 | } | ||
3971 | |||
3972 | /* Add the new addresses */ | ||
3973 | for(i = 0; i < mc_addr_count; i++) { | ||
3974 | DEBUGOUT(" Adding the multicast addresses:\n"); | ||
3975 | DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, | ||
3976 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], | ||
3977 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], | ||
3978 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], | ||
3979 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], | ||
3980 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], | ||
3981 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); | ||
3982 | |||
3983 | hash_value = e1000_hash_mc_addr(hw, | ||
3984 | mc_addr_list + | ||
3985 | (i * (ETH_LENGTH_OF_ADDRESS + pad))); | ||
3986 | |||
3987 | DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); | ||
3988 | |||
3989 | /* Place this multicast address in the RAR if there is room, * | ||
3990 | * else put it in the MTA | ||
3991 | */ | ||
3992 | if(rar_used_count < E1000_RAR_ENTRIES) { | ||
3993 | e1000_rar_set(hw, | ||
3994 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), | ||
3995 | rar_used_count); | ||
3996 | rar_used_count++; | ||
3997 | } else { | ||
3998 | e1000_mta_set(hw, hash_value); | ||
3999 | } | ||
4000 | } | ||
4001 | DEBUGOUT("MC Update Complete\n"); | ||
4002 | } | ||
4003 | |||
4004 | /****************************************************************************** | ||
4005 | * Hashes an address to determine its location in the multicast table | ||
4006 | * | ||
4007 | * hw - Struct containing variables accessed by shared code | ||
4008 | * mc_addr - the multicast address to hash | ||
4009 | *****************************************************************************/ | ||
4010 | uint32_t | ||
4011 | e1000_hash_mc_addr(struct e1000_hw *hw, | ||
4012 | uint8_t *mc_addr) | ||
4013 | { | ||
4014 | uint32_t hash_value = 0; | ||
4015 | |||
4016 | /* The portion of the address that is used for the hash table is | ||
4017 | * determined by the mc_filter_type setting. | ||
4018 | */ | ||
4019 | switch (hw->mc_filter_type) { | ||
4020 | /* [0] [1] [2] [3] [4] [5] | ||
4021 | * 01 AA 00 12 34 56 | ||
4022 | * LSB MSB | ||
4023 | */ | ||
4024 | case 0: | ||
4025 | /* [47:36] i.e. 0x563 for above example address */ | ||
4026 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | ||
4027 | break; | ||
4028 | case 1: | ||
4029 | /* [46:35] i.e. 0xAC6 for above example address */ | ||
4030 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | ||
4031 | break; | ||
4032 | case 2: | ||
4033 | /* [45:34] i.e. 0x5D8 for above example address */ | ||
4034 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | ||
4035 | break; | ||
4036 | case 3: | ||
4037 | /* [43:32] i.e. 0x634 for above example address */ | ||
4038 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | ||
4039 | break; | ||
4040 | } | ||
4041 | |||
4042 | hash_value &= 0xFFF; | ||
4043 | return hash_value; | ||
4044 | } | ||
4045 | |||
4046 | /****************************************************************************** | ||
4047 | * Sets the bit in the multicast table corresponding to the hash value. | ||
4048 | * | ||
4049 | * hw - Struct containing variables accessed by shared code | ||
4050 | * hash_value - Multicast address hash value | ||
4051 | *****************************************************************************/ | ||
4052 | void | ||
4053 | e1000_mta_set(struct e1000_hw *hw, | ||
4054 | uint32_t hash_value) | ||
4055 | { | ||
4056 | uint32_t hash_bit, hash_reg; | ||
4057 | uint32_t mta; | ||
4058 | uint32_t temp; | ||
4059 | |||
4060 | /* The MTA is a register array of 128 32-bit registers. | ||
4061 | * It is treated like an array of 4096 bits. We want to set | ||
4062 | * bit BitArray[hash_value]. So we figure out what register | ||
4063 | * the bit is in, read it, OR in the new bit, then write | ||
4064 | * back the new value. The register is determined by the | ||
4065 | * upper 7 bits of the hash value and the bit within that | ||
4066 | * register are determined by the lower 5 bits of the value. | ||
4067 | */ | ||
4068 | hash_reg = (hash_value >> 5) & 0x7F; | ||
4069 | hash_bit = hash_value & 0x1F; | ||
4070 | |||
4071 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); | ||
4072 | |||
4073 | mta |= (1 << hash_bit); | ||
4074 | |||
4075 | /* If we are on an 82544 and we are trying to write an odd offset | ||
4076 | * in the MTA, save off the previous entry before writing and | ||
4077 | * restore the old value after writing. | ||
4078 | */ | ||
4079 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { | ||
4080 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); | ||
4081 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | ||
4082 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); | ||
4083 | } else { | ||
4084 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | ||
4085 | } | ||
4086 | } | ||
4087 | |||
4088 | /****************************************************************************** | ||
4089 | * Puts an ethernet address into a receive address register. | ||
4090 | * | ||
4091 | * hw - Struct containing variables accessed by shared code | ||
4092 | * addr - Address to put into receive address register | ||
4093 | * index - Receive address register to write | ||
4094 | *****************************************************************************/ | ||
4095 | void | ||
4096 | e1000_rar_set(struct e1000_hw *hw, | ||
4097 | uint8_t *addr, | ||
4098 | uint32_t index) | ||
4099 | { | ||
4100 | uint32_t rar_low, rar_high; | ||
4101 | |||
4102 | /* HW expects these in little endian so we reverse the byte order | ||
4103 | * from network order (big endian) to little endian | ||
4104 | */ | ||
4105 | rar_low = ((uint32_t) addr[0] | | ||
4106 | ((uint32_t) addr[1] << 8) | | ||
4107 | ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); | ||
4108 | |||
4109 | rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV); | ||
4110 | |||
4111 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | ||
4112 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | ||
4113 | } | ||
4114 | |||
4115 | /****************************************************************************** | ||
4116 | * Writes a value to the specified offset in the VLAN filter table. | ||
4117 | * | ||
4118 | * hw - Struct containing variables accessed by shared code | ||
4119 | * offset - Offset in VLAN filer table to write | ||
4120 | * value - Value to write into VLAN filter table | ||
4121 | *****************************************************************************/ | ||
4122 | void | ||
4123 | e1000_write_vfta(struct e1000_hw *hw, | ||
4124 | uint32_t offset, | ||
4125 | uint32_t value) | ||
4126 | { | ||
4127 | uint32_t temp; | ||
4128 | |||
4129 | if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | ||
4130 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | ||
4131 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | ||
4132 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | ||
4133 | } else { | ||
4134 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | ||
4135 | } | ||
4136 | } | ||
4137 | |||
4138 | /****************************************************************************** | ||
4139 | * Clears the VLAN filer table | ||
4140 | * | ||
4141 | * hw - Struct containing variables accessed by shared code | ||
4142 | *****************************************************************************/ | ||
4143 | void | ||
4144 | e1000_clear_vfta(struct e1000_hw *hw) | ||
4145 | { | ||
4146 | uint32_t offset; | ||
4147 | |||
4148 | for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) | ||
4149 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); | ||
4150 | } | ||
4151 | |||
4152 | static int32_t | ||
4153 | e1000_id_led_init(struct e1000_hw * hw) | ||
4154 | { | ||
4155 | uint32_t ledctl; | ||
4156 | const uint32_t ledctl_mask = 0x000000FF; | ||
4157 | const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
4158 | const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
4159 | uint16_t eeprom_data, i, temp; | ||
4160 | const uint16_t led_mask = 0x0F; | ||
4161 | |||
4162 | DEBUGFUNC("e1000_id_led_init"); | ||
4163 | |||
4164 | if(hw->mac_type < e1000_82540) { | ||
4165 | /* Nothing to do */ | ||
4166 | return E1000_SUCCESS; | ||
4167 | } | ||
4168 | |||
4169 | ledctl = E1000_READ_REG(hw, LEDCTL); | ||
4170 | hw->ledctl_default = ledctl; | ||
4171 | hw->ledctl_mode1 = hw->ledctl_default; | ||
4172 | hw->ledctl_mode2 = hw->ledctl_default; | ||
4173 | |||
4174 | if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { | ||
4175 | DEBUGOUT("EEPROM Read Error\n"); | ||
4176 | return -E1000_ERR_EEPROM; | ||
4177 | } | ||
4178 | if((eeprom_data== ID_LED_RESERVED_0000) || | ||
4179 | (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; | ||
4180 | for(i = 0; i < 4; i++) { | ||
4181 | temp = (eeprom_data >> (i << 2)) & led_mask; | ||
4182 | switch(temp) { | ||
4183 | case ID_LED_ON1_DEF2: | ||
4184 | case ID_LED_ON1_ON2: | ||
4185 | case ID_LED_ON1_OFF2: | ||
4186 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
4187 | hw->ledctl_mode1 |= ledctl_on << (i << 3); | ||
4188 | break; | ||
4189 | case ID_LED_OFF1_DEF2: | ||
4190 | case ID_LED_OFF1_ON2: | ||
4191 | case ID_LED_OFF1_OFF2: | ||
4192 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
4193 | hw->ledctl_mode1 |= ledctl_off << (i << 3); | ||
4194 | break; | ||
4195 | default: | ||
4196 | /* Do nothing */ | ||
4197 | break; | ||
4198 | } | ||
4199 | switch(temp) { | ||
4200 | case ID_LED_DEF1_ON2: | ||
4201 | case ID_LED_ON1_ON2: | ||
4202 | case ID_LED_OFF1_ON2: | ||
4203 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
4204 | hw->ledctl_mode2 |= ledctl_on << (i << 3); | ||
4205 | break; | ||
4206 | case ID_LED_DEF1_OFF2: | ||
4207 | case ID_LED_ON1_OFF2: | ||
4208 | case ID_LED_OFF1_OFF2: | ||
4209 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
4210 | hw->ledctl_mode2 |= ledctl_off << (i << 3); | ||
4211 | break; | ||
4212 | default: | ||
4213 | /* Do nothing */ | ||
4214 | break; | ||
4215 | } | ||
4216 | } | ||
4217 | return E1000_SUCCESS; | ||
4218 | } | ||
4219 | |||
4220 | /****************************************************************************** | ||
4221 | * Prepares SW controlable LED for use and saves the current state of the LED. | ||
4222 | * | ||
4223 | * hw - Struct containing variables accessed by shared code | ||
4224 | *****************************************************************************/ | ||
4225 | int32_t | ||
4226 | e1000_setup_led(struct e1000_hw *hw) | ||
4227 | { | ||
4228 | uint32_t ledctl; | ||
4229 | int32_t ret_val = E1000_SUCCESS; | ||
4230 | |||
4231 | DEBUGFUNC("e1000_setup_led"); | ||
4232 | |||
4233 | switch(hw->mac_type) { | ||
4234 | case e1000_82542_rev2_0: | ||
4235 | case e1000_82542_rev2_1: | ||
4236 | case e1000_82543: | ||
4237 | case e1000_82544: | ||
4238 | /* No setup necessary */ | ||
4239 | break; | ||
4240 | case e1000_82541: | ||
4241 | case e1000_82547: | ||
4242 | case e1000_82541_rev_2: | ||
4243 | case e1000_82547_rev_2: | ||
4244 | /* Turn off PHY Smart Power Down (if enabled) */ | ||
4245 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
4246 | &hw->phy_spd_default); | ||
4247 | if(ret_val) | ||
4248 | return ret_val; | ||
4249 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
4250 | (uint16_t)(hw->phy_spd_default & | ||
4251 | ~IGP01E1000_GMII_SPD)); | ||
4252 | if(ret_val) | ||
4253 | return ret_val; | ||
4254 | /* Fall Through */ | ||
4255 | default: | ||
4256 | if(hw->media_type == e1000_media_type_fiber) { | ||
4257 | ledctl = E1000_READ_REG(hw, LEDCTL); | ||
4258 | /* Save current LEDCTL settings */ | ||
4259 | hw->ledctl_default = ledctl; | ||
4260 | /* Turn off LED0 */ | ||
4261 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | ||
4262 | E1000_LEDCTL_LED0_BLINK | | ||
4263 | E1000_LEDCTL_LED0_MODE_MASK); | ||
4264 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | ||
4265 | E1000_LEDCTL_LED0_MODE_SHIFT); | ||
4266 | E1000_WRITE_REG(hw, LEDCTL, ledctl); | ||
4267 | } else if(hw->media_type == e1000_media_type_copper) | ||
4268 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | ||
4269 | break; | ||
4270 | } | ||
4271 | |||
4272 | return E1000_SUCCESS; | ||
4273 | } | ||
4274 | |||
4275 | /****************************************************************************** | ||
4276 | * Restores the saved state of the SW controlable LED. | ||
4277 | * | ||
4278 | * hw - Struct containing variables accessed by shared code | ||
4279 | *****************************************************************************/ | ||
4280 | int32_t | ||
4281 | e1000_cleanup_led(struct e1000_hw *hw) | ||
4282 | { | ||
4283 | int32_t ret_val = E1000_SUCCESS; | ||
4284 | |||
4285 | DEBUGFUNC("e1000_cleanup_led"); | ||
4286 | |||
4287 | switch(hw->mac_type) { | ||
4288 | case e1000_82542_rev2_0: | ||
4289 | case e1000_82542_rev2_1: | ||
4290 | case e1000_82543: | ||
4291 | case e1000_82544: | ||
4292 | /* No cleanup necessary */ | ||
4293 | break; | ||
4294 | case e1000_82541: | ||
4295 | case e1000_82547: | ||
4296 | case e1000_82541_rev_2: | ||
4297 | case e1000_82547_rev_2: | ||
4298 | /* Turn on PHY Smart Power Down (if previously enabled) */ | ||
4299 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
4300 | hw->phy_spd_default); | ||
4301 | if(ret_val) | ||
4302 | return ret_val; | ||
4303 | /* Fall Through */ | ||
4304 | default: | ||
4305 | /* Restore LEDCTL settings */ | ||
4306 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); | ||
4307 | break; | ||
4308 | } | ||
4309 | |||
4310 | return E1000_SUCCESS; | ||
4311 | } | ||
4312 | |||
4313 | /****************************************************************************** | ||
4314 | * Turns on the software controllable LED | ||
4315 | * | ||
4316 | * hw - Struct containing variables accessed by shared code | ||
4317 | *****************************************************************************/ | ||
4318 | int32_t | ||
4319 | e1000_led_on(struct e1000_hw *hw) | ||
4320 | { | ||
4321 | uint32_t ctrl = E1000_READ_REG(hw, CTRL); | ||
4322 | |||
4323 | DEBUGFUNC("e1000_led_on"); | ||
4324 | |||
4325 | switch(hw->mac_type) { | ||
4326 | case e1000_82542_rev2_0: | ||
4327 | case e1000_82542_rev2_1: | ||
4328 | case e1000_82543: | ||
4329 | /* Set SW Defineable Pin 0 to turn on the LED */ | ||
4330 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4331 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4332 | break; | ||
4333 | case e1000_82544: | ||
4334 | if(hw->media_type == e1000_media_type_fiber) { | ||
4335 | /* Set SW Defineable Pin 0 to turn on the LED */ | ||
4336 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4337 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4338 | } else { | ||
4339 | /* Clear SW Defineable Pin 0 to turn on the LED */ | ||
4340 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4341 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4342 | } | ||
4343 | break; | ||
4344 | default: | ||
4345 | if(hw->media_type == e1000_media_type_fiber) { | ||
4346 | /* Clear SW Defineable Pin 0 to turn on the LED */ | ||
4347 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4348 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4349 | } else if(hw->media_type == e1000_media_type_copper) { | ||
4350 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); | ||
4351 | return E1000_SUCCESS; | ||
4352 | } | ||
4353 | break; | ||
4354 | } | ||
4355 | |||
4356 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
4357 | |||
4358 | return E1000_SUCCESS; | ||
4359 | } | ||
4360 | |||
4361 | /****************************************************************************** | ||
4362 | * Turns off the software controllable LED | ||
4363 | * | ||
4364 | * hw - Struct containing variables accessed by shared code | ||
4365 | *****************************************************************************/ | ||
4366 | int32_t | ||
4367 | e1000_led_off(struct e1000_hw *hw) | ||
4368 | { | ||
4369 | uint32_t ctrl = E1000_READ_REG(hw, CTRL); | ||
4370 | |||
4371 | DEBUGFUNC("e1000_led_off"); | ||
4372 | |||
4373 | switch(hw->mac_type) { | ||
4374 | case e1000_82542_rev2_0: | ||
4375 | case e1000_82542_rev2_1: | ||
4376 | case e1000_82543: | ||
4377 | /* Clear SW Defineable Pin 0 to turn off the LED */ | ||
4378 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4379 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4380 | break; | ||
4381 | case e1000_82544: | ||
4382 | if(hw->media_type == e1000_media_type_fiber) { | ||
4383 | /* Clear SW Defineable Pin 0 to turn off the LED */ | ||
4384 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4385 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4386 | } else { | ||
4387 | /* Set SW Defineable Pin 0 to turn off the LED */ | ||
4388 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4389 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4390 | } | ||
4391 | break; | ||
4392 | default: | ||
4393 | if(hw->media_type == e1000_media_type_fiber) { | ||
4394 | /* Set SW Defineable Pin 0 to turn off the LED */ | ||
4395 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4396 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4397 | } else if(hw->media_type == e1000_media_type_copper) { | ||
4398 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | ||
4399 | return E1000_SUCCESS; | ||
4400 | } | ||
4401 | break; | ||
4402 | } | ||
4403 | |||
4404 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
4405 | |||
4406 | return E1000_SUCCESS; | ||
4407 | } | ||
4408 | |||
4409 | /****************************************************************************** | ||
4410 | * Clears all hardware statistics counters. | ||
4411 | * | ||
4412 | * hw - Struct containing variables accessed by shared code | ||
4413 | *****************************************************************************/ | ||
4414 | void | ||
4415 | e1000_clear_hw_cntrs(struct e1000_hw *hw) | ||
4416 | { | ||
4417 | volatile uint32_t temp; | ||
4418 | |||
4419 | temp = E1000_READ_REG(hw, CRCERRS); | ||
4420 | temp = E1000_READ_REG(hw, SYMERRS); | ||
4421 | temp = E1000_READ_REG(hw, MPC); | ||
4422 | temp = E1000_READ_REG(hw, SCC); | ||
4423 | temp = E1000_READ_REG(hw, ECOL); | ||
4424 | temp = E1000_READ_REG(hw, MCC); | ||
4425 | temp = E1000_READ_REG(hw, LATECOL); | ||
4426 | temp = E1000_READ_REG(hw, COLC); | ||
4427 | temp = E1000_READ_REG(hw, DC); | ||
4428 | temp = E1000_READ_REG(hw, SEC); | ||
4429 | temp = E1000_READ_REG(hw, RLEC); | ||
4430 | temp = E1000_READ_REG(hw, XONRXC); | ||
4431 | temp = E1000_READ_REG(hw, XONTXC); | ||
4432 | temp = E1000_READ_REG(hw, XOFFRXC); | ||
4433 | temp = E1000_READ_REG(hw, XOFFTXC); | ||
4434 | temp = E1000_READ_REG(hw, FCRUC); | ||
4435 | temp = E1000_READ_REG(hw, PRC64); | ||
4436 | temp = E1000_READ_REG(hw, PRC127); | ||
4437 | temp = E1000_READ_REG(hw, PRC255); | ||
4438 | temp = E1000_READ_REG(hw, PRC511); | ||
4439 | temp = E1000_READ_REG(hw, PRC1023); | ||
4440 | temp = E1000_READ_REG(hw, PRC1522); | ||
4441 | temp = E1000_READ_REG(hw, GPRC); | ||
4442 | temp = E1000_READ_REG(hw, BPRC); | ||
4443 | temp = E1000_READ_REG(hw, MPRC); | ||
4444 | temp = E1000_READ_REG(hw, GPTC); | ||
4445 | temp = E1000_READ_REG(hw, GORCL); | ||
4446 | temp = E1000_READ_REG(hw, GORCH); | ||
4447 | temp = E1000_READ_REG(hw, GOTCL); | ||
4448 | temp = E1000_READ_REG(hw, GOTCH); | ||
4449 | temp = E1000_READ_REG(hw, RNBC); | ||
4450 | temp = E1000_READ_REG(hw, RUC); | ||
4451 | temp = E1000_READ_REG(hw, RFC); | ||
4452 | temp = E1000_READ_REG(hw, ROC); | ||
4453 | temp = E1000_READ_REG(hw, RJC); | ||
4454 | temp = E1000_READ_REG(hw, TORL); | ||
4455 | temp = E1000_READ_REG(hw, TORH); | ||
4456 | temp = E1000_READ_REG(hw, TOTL); | ||
4457 | temp = E1000_READ_REG(hw, TOTH); | ||
4458 | temp = E1000_READ_REG(hw, TPR); | ||
4459 | temp = E1000_READ_REG(hw, TPT); | ||
4460 | temp = E1000_READ_REG(hw, PTC64); | ||
4461 | temp = E1000_READ_REG(hw, PTC127); | ||
4462 | temp = E1000_READ_REG(hw, PTC255); | ||
4463 | temp = E1000_READ_REG(hw, PTC511); | ||
4464 | temp = E1000_READ_REG(hw, PTC1023); | ||
4465 | temp = E1000_READ_REG(hw, PTC1522); | ||
4466 | temp = E1000_READ_REG(hw, MPTC); | ||
4467 | temp = E1000_READ_REG(hw, BPTC); | ||
4468 | |||
4469 | if(hw->mac_type < e1000_82543) return; | ||
4470 | |||
4471 | temp = E1000_READ_REG(hw, ALGNERRC); | ||
4472 | temp = E1000_READ_REG(hw, RXERRC); | ||
4473 | temp = E1000_READ_REG(hw, TNCRS); | ||
4474 | temp = E1000_READ_REG(hw, CEXTERR); | ||
4475 | temp = E1000_READ_REG(hw, TSCTC); | ||
4476 | temp = E1000_READ_REG(hw, TSCTFC); | ||
4477 | |||
4478 | if(hw->mac_type <= e1000_82544) return; | ||
4479 | |||
4480 | temp = E1000_READ_REG(hw, MGTPRC); | ||
4481 | temp = E1000_READ_REG(hw, MGTPDC); | ||
4482 | temp = E1000_READ_REG(hw, MGTPTC); | ||
4483 | } | ||
4484 | |||
4485 | /****************************************************************************** | ||
4486 | * Resets Adaptive IFS to its default state. | ||
4487 | * | ||
4488 | * hw - Struct containing variables accessed by shared code | ||
4489 | * | ||
4490 | * Call this after e1000_init_hw. You may override the IFS defaults by setting | ||
4491 | * hw->ifs_params_forced to TRUE. However, you must initialize hw-> | ||
4492 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | ||
4493 | * before calling this function. | ||
4494 | *****************************************************************************/ | ||
4495 | void | ||
4496 | e1000_reset_adaptive(struct e1000_hw *hw) | ||
4497 | { | ||
4498 | DEBUGFUNC("e1000_reset_adaptive"); | ||
4499 | |||
4500 | if(hw->adaptive_ifs) { | ||
4501 | if(!hw->ifs_params_forced) { | ||
4502 | hw->current_ifs_val = 0; | ||
4503 | hw->ifs_min_val = IFS_MIN; | ||
4504 | hw->ifs_max_val = IFS_MAX; | ||
4505 | hw->ifs_step_size = IFS_STEP; | ||
4506 | hw->ifs_ratio = IFS_RATIO; | ||
4507 | } | ||
4508 | hw->in_ifs_mode = FALSE; | ||
4509 | E1000_WRITE_REG(hw, AIT, 0); | ||
4510 | } else { | ||
4511 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | ||
4512 | } | ||
4513 | } | ||
4514 | |||
4515 | /****************************************************************************** | ||
4516 | * Called during the callback/watchdog routine to update IFS value based on | ||
4517 | * the ratio of transmits to collisions. | ||
4518 | * | ||
4519 | * hw - Struct containing variables accessed by shared code | ||
4520 | * tx_packets - Number of transmits since last callback | ||
4521 | * total_collisions - Number of collisions since last callback | ||
4522 | *****************************************************************************/ | ||
4523 | void | ||
4524 | e1000_update_adaptive(struct e1000_hw *hw) | ||
4525 | { | ||
4526 | DEBUGFUNC("e1000_update_adaptive"); | ||
4527 | |||
4528 | if(hw->adaptive_ifs) { | ||
4529 | if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { | ||
4530 | if(hw->tx_packet_delta > MIN_NUM_XMITS) { | ||
4531 | hw->in_ifs_mode = TRUE; | ||
4532 | if(hw->current_ifs_val < hw->ifs_max_val) { | ||
4533 | if(hw->current_ifs_val == 0) | ||
4534 | hw->current_ifs_val = hw->ifs_min_val; | ||
4535 | else | ||
4536 | hw->current_ifs_val += hw->ifs_step_size; | ||
4537 | E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); | ||
4538 | } | ||
4539 | } | ||
4540 | } else { | ||
4541 | if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | ||
4542 | hw->current_ifs_val = 0; | ||
4543 | hw->in_ifs_mode = FALSE; | ||
4544 | E1000_WRITE_REG(hw, AIT, 0); | ||
4545 | } | ||
4546 | } | ||
4547 | } else { | ||
4548 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | ||
4549 | } | ||
4550 | } | ||
4551 | |||
4552 | /****************************************************************************** | ||
4553 | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | ||
4554 | * | ||
4555 | * hw - Struct containing variables accessed by shared code | ||
4556 | * frame_len - The length of the frame in question | ||
4557 | * mac_addr - The Ethernet destination address of the frame in question | ||
4558 | *****************************************************************************/ | ||
4559 | void | ||
4560 | e1000_tbi_adjust_stats(struct e1000_hw *hw, | ||
4561 | struct e1000_hw_stats *stats, | ||
4562 | uint32_t frame_len, | ||
4563 | uint8_t *mac_addr) | ||
4564 | { | ||
4565 | uint64_t carry_bit; | ||
4566 | |||
4567 | /* First adjust the frame length. */ | ||
4568 | frame_len--; | ||
4569 | /* We need to adjust the statistics counters, since the hardware | ||
4570 | * counters overcount this packet as a CRC error and undercount | ||
4571 | * the packet as a good packet | ||
4572 | */ | ||
4573 | /* This packet should not be counted as a CRC error. */ | ||
4574 | stats->crcerrs--; | ||
4575 | /* This packet does count as a Good Packet Received. */ | ||
4576 | stats->gprc++; | ||
4577 | |||
4578 | /* Adjust the Good Octets received counters */ | ||
4579 | carry_bit = 0x80000000 & stats->gorcl; | ||
4580 | stats->gorcl += frame_len; | ||
4581 | /* If the high bit of Gorcl (the low 32 bits of the Good Octets | ||
4582 | * Received Count) was one before the addition, | ||
4583 | * AND it is zero after, then we lost the carry out, | ||
4584 | * need to add one to Gorch (Good Octets Received Count High). | ||
4585 | * This could be simplified if all environments supported | ||
4586 | * 64-bit integers. | ||
4587 | */ | ||
4588 | if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) | ||
4589 | stats->gorch++; | ||
4590 | /* Is this a broadcast or multicast? Check broadcast first, | ||
4591 | * since the test for a multicast frame will test positive on | ||
4592 | * a broadcast frame. | ||
4593 | */ | ||
4594 | if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) | ||
4595 | /* Broadcast packet */ | ||
4596 | stats->bprc++; | ||
4597 | else if(*mac_addr & 0x01) | ||
4598 | /* Multicast packet */ | ||
4599 | stats->mprc++; | ||
4600 | |||
4601 | if(frame_len == hw->max_frame_size) { | ||
4602 | /* In this case, the hardware has overcounted the number of | ||
4603 | * oversize frames. | ||
4604 | */ | ||
4605 | if(stats->roc > 0) | ||
4606 | stats->roc--; | ||
4607 | } | ||
4608 | |||
4609 | /* Adjust the bin counters when the extra byte put the frame in the | ||
4610 | * wrong bin. Remember that the frame_len was adjusted above. | ||
4611 | */ | ||
4612 | if(frame_len == 64) { | ||
4613 | stats->prc64++; | ||
4614 | stats->prc127--; | ||
4615 | } else if(frame_len == 127) { | ||
4616 | stats->prc127++; | ||
4617 | stats->prc255--; | ||
4618 | } else if(frame_len == 255) { | ||
4619 | stats->prc255++; | ||
4620 | stats->prc511--; | ||
4621 | } else if(frame_len == 511) { | ||
4622 | stats->prc511++; | ||
4623 | stats->prc1023--; | ||
4624 | } else if(frame_len == 1023) { | ||
4625 | stats->prc1023++; | ||
4626 | stats->prc1522--; | ||
4627 | } else if(frame_len == 1522) { | ||
4628 | stats->prc1522++; | ||
4629 | } | ||
4630 | } | ||
4631 | |||
4632 | /****************************************************************************** | ||
4633 | * Gets the current PCI bus type, speed, and width of the hardware | ||
4634 | * | ||
4635 | * hw - Struct containing variables accessed by shared code | ||
4636 | *****************************************************************************/ | ||
4637 | void | ||
4638 | e1000_get_bus_info(struct e1000_hw *hw) | ||
4639 | { | ||
4640 | uint32_t status; | ||
4641 | |||
4642 | switch (hw->mac_type) { | ||
4643 | case e1000_82542_rev2_0: | ||
4644 | case e1000_82542_rev2_1: | ||
4645 | hw->bus_type = e1000_bus_type_unknown; | ||
4646 | hw->bus_speed = e1000_bus_speed_unknown; | ||
4647 | hw->bus_width = e1000_bus_width_unknown; | ||
4648 | break; | ||
4649 | default: | ||
4650 | status = E1000_READ_REG(hw, STATUS); | ||
4651 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | ||
4652 | e1000_bus_type_pcix : e1000_bus_type_pci; | ||
4653 | |||
4654 | if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | ||
4655 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | ||
4656 | e1000_bus_speed_66 : e1000_bus_speed_120; | ||
4657 | } else if(hw->bus_type == e1000_bus_type_pci) { | ||
4658 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? | ||
4659 | e1000_bus_speed_66 : e1000_bus_speed_33; | ||
4660 | } else { | ||
4661 | switch (status & E1000_STATUS_PCIX_SPEED) { | ||
4662 | case E1000_STATUS_PCIX_SPEED_66: | ||
4663 | hw->bus_speed = e1000_bus_speed_66; | ||
4664 | break; | ||
4665 | case E1000_STATUS_PCIX_SPEED_100: | ||
4666 | hw->bus_speed = e1000_bus_speed_100; | ||
4667 | break; | ||
4668 | case E1000_STATUS_PCIX_SPEED_133: | ||
4669 | hw->bus_speed = e1000_bus_speed_133; | ||
4670 | break; | ||
4671 | default: | ||
4672 | hw->bus_speed = e1000_bus_speed_reserved; | ||
4673 | break; | ||
4674 | } | ||
4675 | } | ||
4676 | hw->bus_width = (status & E1000_STATUS_BUS64) ? | ||
4677 | e1000_bus_width_64 : e1000_bus_width_32; | ||
4678 | break; | ||
4679 | } | ||
4680 | } | ||
4681 | /****************************************************************************** | ||
4682 | * Reads a value from one of the devices registers using port I/O (as opposed | ||
4683 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | ||
4684 | * | ||
4685 | * hw - Struct containing variables accessed by shared code | ||
4686 | * offset - offset to read from | ||
4687 | *****************************************************************************/ | ||
4688 | uint32_t | ||
4689 | e1000_read_reg_io(struct e1000_hw *hw, | ||
4690 | uint32_t offset) | ||
4691 | { | ||
4692 | unsigned long io_addr = hw->io_base; | ||
4693 | unsigned long io_data = hw->io_base + 4; | ||
4694 | |||
4695 | e1000_io_write(hw, io_addr, offset); | ||
4696 | return e1000_io_read(hw, io_data); | ||
4697 | } | ||
4698 | |||
4699 | /****************************************************************************** | ||
4700 | * Writes a value to one of the devices registers using port I/O (as opposed to | ||
4701 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | ||
4702 | * | ||
4703 | * hw - Struct containing variables accessed by shared code | ||
4704 | * offset - offset to write to | ||
4705 | * value - value to write | ||
4706 | *****************************************************************************/ | ||
4707 | void | ||
4708 | e1000_write_reg_io(struct e1000_hw *hw, | ||
4709 | uint32_t offset, | ||
4710 | uint32_t value) | ||
4711 | { | ||
4712 | unsigned long io_addr = hw->io_base; | ||
4713 | unsigned long io_data = hw->io_base + 4; | ||
4714 | |||
4715 | e1000_io_write(hw, io_addr, offset); | ||
4716 | e1000_io_write(hw, io_data, value); | ||
4717 | } | ||
4718 | |||
4719 | |||
4720 | /****************************************************************************** | ||
4721 | * Estimates the cable length. | ||
4722 | * | ||
4723 | * hw - Struct containing variables accessed by shared code | ||
4724 | * min_length - The estimated minimum length | ||
4725 | * max_length - The estimated maximum length | ||
4726 | * | ||
4727 | * returns: - E1000_ERR_XXX | ||
4728 | * E1000_SUCCESS | ||
4729 | * | ||
4730 | * This function always returns a ranged length (minimum & maximum). | ||
4731 | * So for M88 phy's, this function interprets the one value returned from the | ||
4732 | * register to the minimum and maximum range. | ||
4733 | * For IGP phy's, the function calculates the range by the AGC registers. | ||
4734 | *****************************************************************************/ | ||
4735 | int32_t | ||
4736 | e1000_get_cable_length(struct e1000_hw *hw, | ||
4737 | uint16_t *min_length, | ||
4738 | uint16_t *max_length) | ||
4739 | { | ||
4740 | int32_t ret_val; | ||
4741 | uint16_t agc_value = 0; | ||
4742 | uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | ||
4743 | uint16_t i, phy_data; | ||
4744 | uint16_t cable_length; | ||
4745 | |||
4746 | DEBUGFUNC("e1000_get_cable_length"); | ||
4747 | |||
4748 | *min_length = *max_length = 0; | ||
4749 | |||
4750 | /* Use old method for Phy older than IGP */ | ||
4751 | if(hw->phy_type == e1000_phy_m88) { | ||
4752 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
4753 | &phy_data); | ||
4754 | if(ret_val) | ||
4755 | return ret_val; | ||
4756 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
4757 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
4758 | |||
4759 | /* Convert the enum value to ranged values */ | ||
4760 | switch (cable_length) { | ||
4761 | case e1000_cable_length_50: | ||
4762 | *min_length = 0; | ||
4763 | *max_length = e1000_igp_cable_length_50; | ||
4764 | break; | ||
4765 | case e1000_cable_length_50_80: | ||
4766 | *min_length = e1000_igp_cable_length_50; | ||
4767 | *max_length = e1000_igp_cable_length_80; | ||
4768 | break; | ||
4769 | case e1000_cable_length_80_110: | ||
4770 | *min_length = e1000_igp_cable_length_80; | ||
4771 | *max_length = e1000_igp_cable_length_110; | ||
4772 | break; | ||
4773 | case e1000_cable_length_110_140: | ||
4774 | *min_length = e1000_igp_cable_length_110; | ||
4775 | *max_length = e1000_igp_cable_length_140; | ||
4776 | break; | ||
4777 | case e1000_cable_length_140: | ||
4778 | *min_length = e1000_igp_cable_length_140; | ||
4779 | *max_length = e1000_igp_cable_length_170; | ||
4780 | break; | ||
4781 | default: | ||
4782 | return -E1000_ERR_PHY; | ||
4783 | break; | ||
4784 | } | ||
4785 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | ||
4786 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | ||
4787 | {IGP01E1000_PHY_AGC_A, | ||
4788 | IGP01E1000_PHY_AGC_B, | ||
4789 | IGP01E1000_PHY_AGC_C, | ||
4790 | IGP01E1000_PHY_AGC_D}; | ||
4791 | /* Read the AGC registers for all channels */ | ||
4792 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
4793 | |||
4794 | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | ||
4795 | if(ret_val) | ||
4796 | return ret_val; | ||
4797 | |||
4798 | cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | ||
4799 | |||
4800 | /* Array bound check. */ | ||
4801 | if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | ||
4802 | (cur_agc == 0)) | ||
4803 | return -E1000_ERR_PHY; | ||
4804 | |||
4805 | agc_value += cur_agc; | ||
4806 | |||
4807 | /* Update minimal AGC value. */ | ||
4808 | if(min_agc > cur_agc) | ||
4809 | min_agc = cur_agc; | ||
4810 | } | ||
4811 | |||
4812 | /* Remove the minimal AGC result for length < 50m */ | ||
4813 | if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | ||
4814 | agc_value -= min_agc; | ||
4815 | |||
4816 | /* Get the average length of the remaining 3 channels */ | ||
4817 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | ||
4818 | } else { | ||
4819 | /* Get the average length of all the 4 channels. */ | ||
4820 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | ||
4821 | } | ||
4822 | |||
4823 | /* Set the range of the calculated length. */ | ||
4824 | *min_length = ((e1000_igp_cable_length_table[agc_value] - | ||
4825 | IGP01E1000_AGC_RANGE) > 0) ? | ||
4826 | (e1000_igp_cable_length_table[agc_value] - | ||
4827 | IGP01E1000_AGC_RANGE) : 0; | ||
4828 | *max_length = e1000_igp_cable_length_table[agc_value] + | ||
4829 | IGP01E1000_AGC_RANGE; | ||
4830 | } | ||
4831 | |||
4832 | return E1000_SUCCESS; | ||
4833 | } | ||
4834 | |||
4835 | /****************************************************************************** | ||
4836 | * Check the cable polarity | ||
4837 | * | ||
4838 | * hw - Struct containing variables accessed by shared code | ||
4839 | * polarity - output parameter : 0 - Polarity is not reversed | ||
4840 | * 1 - Polarity is reversed. | ||
4841 | * | ||
4842 | * returns: - E1000_ERR_XXX | ||
4843 | * E1000_SUCCESS | ||
4844 | * | ||
4845 | * For phy's older then IGP, this function simply reads the polarity bit in the | ||
4846 | * Phy Status register. For IGP phy's, this bit is valid only if link speed is | ||
4847 | * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will | ||
4848 | * return 0. If the link speed is 1000 Mbps the polarity status is in the | ||
4849 | * IGP01E1000_PHY_PCS_INIT_REG. | ||
4850 | *****************************************************************************/ | ||
4851 | int32_t | ||
4852 | e1000_check_polarity(struct e1000_hw *hw, | ||
4853 | uint16_t *polarity) | ||
4854 | { | ||
4855 | int32_t ret_val; | ||
4856 | uint16_t phy_data; | ||
4857 | |||
4858 | DEBUGFUNC("e1000_check_polarity"); | ||
4859 | |||
4860 | if(hw->phy_type == e1000_phy_m88) { | ||
4861 | /* return the Polarity bit in the Status register. */ | ||
4862 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
4863 | &phy_data); | ||
4864 | if(ret_val) | ||
4865 | return ret_val; | ||
4866 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | ||
4867 | M88E1000_PSSR_REV_POLARITY_SHIFT; | ||
4868 | } else if(hw->phy_type == e1000_phy_igp) { | ||
4869 | /* Read the Status register to check the speed */ | ||
4870 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | ||
4871 | &phy_data); | ||
4872 | if(ret_val) | ||
4873 | return ret_val; | ||
4874 | |||
4875 | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to | ||
4876 | * find the polarity status */ | ||
4877 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
4878 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
4879 | |||
4880 | /* Read the GIG initialization PCS register (0x00B4) */ | ||
4881 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | ||
4882 | &phy_data); | ||
4883 | if(ret_val) | ||
4884 | return ret_val; | ||
4885 | |||
4886 | /* Check the polarity bits */ | ||
4887 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0; | ||
4888 | } else { | ||
4889 | /* For 10 Mbps, read the polarity bit in the status register. (for | ||
4890 | * 100 Mbps this bit is always 0) */ | ||
4891 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; | ||
4892 | } | ||
4893 | } | ||
4894 | return E1000_SUCCESS; | ||
4895 | } | ||
4896 | |||
4897 | /****************************************************************************** | ||
4898 | * Check if Downshift occured | ||
4899 | * | ||
4900 | * hw - Struct containing variables accessed by shared code | ||
4901 | * downshift - output parameter : 0 - No Downshift ocured. | ||
4902 | * 1 - Downshift ocured. | ||
4903 | * | ||
4904 | * returns: - E1000_ERR_XXX | ||
4905 | * E1000_SUCCESS | ||
4906 | * | ||
4907 | * For phy's older then IGP, this function reads the Downshift bit in the Phy | ||
4908 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the | ||
4909 | * Link Health register. In IGP this bit is latched high, so the driver must | ||
4910 | * read it immediately after link is established. | ||
4911 | *****************************************************************************/ | ||
4912 | int32_t | ||
4913 | e1000_check_downshift(struct e1000_hw *hw) | ||
4914 | { | ||
4915 | int32_t ret_val; | ||
4916 | uint16_t phy_data; | ||
4917 | |||
4918 | DEBUGFUNC("e1000_check_downshift"); | ||
4919 | |||
4920 | if(hw->phy_type == e1000_phy_igp) { | ||
4921 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | ||
4922 | &phy_data); | ||
4923 | if(ret_val) | ||
4924 | return ret_val; | ||
4925 | |||
4926 | hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | ||
4927 | } else if(hw->phy_type == e1000_phy_m88) { | ||
4928 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
4929 | &phy_data); | ||
4930 | if(ret_val) | ||
4931 | return ret_val; | ||
4932 | |||
4933 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | ||
4934 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | ||
4935 | } | ||
4936 | return E1000_SUCCESS; | ||
4937 | } | ||
4938 | |||
4939 | /***************************************************************************** | ||
4940 | * | ||
4941 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | ||
4942 | * gigabit link is achieved to improve link quality. | ||
4943 | * | ||
4944 | * hw: Struct containing variables accessed by shared code | ||
4945 | * | ||
4946 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
4947 | * E1000_SUCCESS at any other case. | ||
4948 | * | ||
4949 | ****************************************************************************/ | ||
4950 | |||
4951 | int32_t | ||
4952 | e1000_config_dsp_after_link_change(struct e1000_hw *hw, | ||
4953 | boolean_t link_up) | ||
4954 | { | ||
4955 | int32_t ret_val; | ||
4956 | uint16_t phy_data, phy_saved_data, speed, duplex, i; | ||
4957 | uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | ||
4958 | {IGP01E1000_PHY_AGC_PARAM_A, | ||
4959 | IGP01E1000_PHY_AGC_PARAM_B, | ||
4960 | IGP01E1000_PHY_AGC_PARAM_C, | ||
4961 | IGP01E1000_PHY_AGC_PARAM_D}; | ||
4962 | uint16_t min_length, max_length; | ||
4963 | |||
4964 | DEBUGFUNC("e1000_config_dsp_after_link_change"); | ||
4965 | |||
4966 | if(hw->phy_type != e1000_phy_igp) | ||
4967 | return E1000_SUCCESS; | ||
4968 | |||
4969 | if(link_up) { | ||
4970 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
4971 | if(ret_val) { | ||
4972 | DEBUGOUT("Error getting link speed and duplex\n"); | ||
4973 | return ret_val; | ||
4974 | } | ||
4975 | |||
4976 | if(speed == SPEED_1000) { | ||
4977 | |||
4978 | e1000_get_cable_length(hw, &min_length, &max_length); | ||
4979 | |||
4980 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && | ||
4981 | min_length >= e1000_igp_cable_length_50) { | ||
4982 | |||
4983 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
4984 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], | ||
4985 | &phy_data); | ||
4986 | if(ret_val) | ||
4987 | return ret_val; | ||
4988 | |||
4989 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
4990 | |||
4991 | ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], | ||
4992 | phy_data); | ||
4993 | if(ret_val) | ||
4994 | return ret_val; | ||
4995 | } | ||
4996 | hw->dsp_config_state = e1000_dsp_config_activated; | ||
4997 | } | ||
4998 | |||
4999 | if((hw->ffe_config_state == e1000_ffe_config_enabled) && | ||
5000 | (min_length < e1000_igp_cable_length_50)) { | ||
5001 | |||
5002 | uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; | ||
5003 | uint32_t idle_errs = 0; | ||
5004 | |||
5005 | /* clear previous idle error counts */ | ||
5006 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | ||
5007 | &phy_data); | ||
5008 | if(ret_val) | ||
5009 | return ret_val; | ||
5010 | |||
5011 | for(i = 0; i < ffe_idle_err_timeout; i++) { | ||
5012 | udelay(1000); | ||
5013 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | ||
5014 | &phy_data); | ||
5015 | if(ret_val) | ||
5016 | return ret_val; | ||
5017 | |||
5018 | idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); | ||
5019 | if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { | ||
5020 | hw->ffe_config_state = e1000_ffe_config_active; | ||
5021 | |||
5022 | ret_val = e1000_write_phy_reg(hw, | ||
5023 | IGP01E1000_PHY_DSP_FFE, | ||
5024 | IGP01E1000_PHY_DSP_FFE_CM_CP); | ||
5025 | if(ret_val) | ||
5026 | return ret_val; | ||
5027 | break; | ||
5028 | } | ||
5029 | |||
5030 | if(idle_errs) | ||
5031 | ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; | ||
5032 | } | ||
5033 | } | ||
5034 | } | ||
5035 | } else { | ||
5036 | if(hw->dsp_config_state == e1000_dsp_config_activated) { | ||
5037 | /* Save off the current value of register 0x2F5B to be restored at | ||
5038 | * the end of the routines. */ | ||
5039 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
5040 | |||
5041 | if(ret_val) | ||
5042 | return ret_val; | ||
5043 | |||
5044 | /* Disable the PHY transmitter */ | ||
5045 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
5046 | |||
5047 | if(ret_val) | ||
5048 | return ret_val; | ||
5049 | |||
5050 | msec_delay(20); | ||
5051 | |||
5052 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5053 | IGP01E1000_IEEE_FORCE_GIGA); | ||
5054 | if(ret_val) | ||
5055 | return ret_val; | ||
5056 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
5057 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); | ||
5058 | if(ret_val) | ||
5059 | return ret_val; | ||
5060 | |||
5061 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
5062 | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | ||
5063 | |||
5064 | ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); | ||
5065 | if(ret_val) | ||
5066 | return ret_val; | ||
5067 | } | ||
5068 | |||
5069 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5070 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
5071 | if(ret_val) | ||
5072 | return ret_val; | ||
5073 | |||
5074 | msec_delay(20); | ||
5075 | |||
5076 | /* Now enable the transmitter */ | ||
5077 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
5078 | |||
5079 | if(ret_val) | ||
5080 | return ret_val; | ||
5081 | |||
5082 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
5083 | } | ||
5084 | |||
5085 | if(hw->ffe_config_state == e1000_ffe_config_active) { | ||
5086 | /* Save off the current value of register 0x2F5B to be restored at | ||
5087 | * the end of the routines. */ | ||
5088 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
5089 | |||
5090 | if(ret_val) | ||
5091 | return ret_val; | ||
5092 | |||
5093 | /* Disable the PHY transmitter */ | ||
5094 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
5095 | |||
5096 | if(ret_val) | ||
5097 | return ret_val; | ||
5098 | |||
5099 | msec_delay(20); | ||
5100 | |||
5101 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5102 | IGP01E1000_IEEE_FORCE_GIGA); | ||
5103 | if(ret_val) | ||
5104 | return ret_val; | ||
5105 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | ||
5106 | IGP01E1000_PHY_DSP_FFE_DEFAULT); | ||
5107 | if(ret_val) | ||
5108 | return ret_val; | ||
5109 | |||
5110 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5111 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
5112 | if(ret_val) | ||
5113 | return ret_val; | ||
5114 | |||
5115 | msec_delay(20); | ||
5116 | |||
5117 | /* Now enable the transmitter */ | ||
5118 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
5119 | |||
5120 | if(ret_val) | ||
5121 | return ret_val; | ||
5122 | |||
5123 | hw->ffe_config_state = e1000_ffe_config_enabled; | ||
5124 | } | ||
5125 | } | ||
5126 | return E1000_SUCCESS; | ||
5127 | } | ||
5128 | |||
5129 | /***************************************************************************** | ||
5130 | * Set PHY to class A mode | ||
5131 | * Assumes the following operations will follow to enable the new class mode. | ||
5132 | * 1. Do a PHY soft reset | ||
5133 | * 2. Restart auto-negotiation or force link. | ||
5134 | * | ||
5135 | * hw - Struct containing variables accessed by shared code | ||
5136 | ****************************************************************************/ | ||
5137 | static int32_t | ||
5138 | e1000_set_phy_mode(struct e1000_hw *hw) | ||
5139 | { | ||
5140 | int32_t ret_val; | ||
5141 | uint16_t eeprom_data; | ||
5142 | |||
5143 | DEBUGFUNC("e1000_set_phy_mode"); | ||
5144 | |||
5145 | if((hw->mac_type == e1000_82545_rev_3) && | ||
5146 | (hw->media_type == e1000_media_type_copper)) { | ||
5147 | ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); | ||
5148 | if(ret_val) { | ||
5149 | return ret_val; | ||
5150 | } | ||
5151 | |||
5152 | if((eeprom_data != EEPROM_RESERVED_WORD) && | ||
5153 | (eeprom_data & EEPROM_PHY_CLASS_A)) { | ||
5154 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); | ||
5155 | if(ret_val) | ||
5156 | return ret_val; | ||
5157 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); | ||
5158 | if(ret_val) | ||
5159 | return ret_val; | ||
5160 | |||
5161 | hw->phy_reset_disable = FALSE; | ||
5162 | } | ||
5163 | } | ||
5164 | |||
5165 | return E1000_SUCCESS; | ||
5166 | } | ||
5167 | |||
5168 | /***************************************************************************** | ||
5169 | * | ||
5170 | * This function sets the lplu state according to the active flag. When | ||
5171 | * activating lplu this function also disables smart speed and vise versa. | ||
5172 | * lplu will not be activated unless the device autonegotiation advertisment | ||
5173 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
5174 | * hw: Struct containing variables accessed by shared code | ||
5175 | * active - true to enable lplu false to disable lplu. | ||
5176 | * | ||
5177 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
5178 | * E1000_SUCCESS at any other case. | ||
5179 | * | ||
5180 | ****************************************************************************/ | ||
5181 | |||
5182 | int32_t | ||
5183 | e1000_set_d3_lplu_state(struct e1000_hw *hw, | ||
5184 | boolean_t active) | ||
5185 | { | ||
5186 | int32_t ret_val; | ||
5187 | uint16_t phy_data; | ||
5188 | DEBUGFUNC("e1000_set_d3_lplu_state"); | ||
5189 | |||
5190 | if(!((hw->mac_type == e1000_82541_rev_2) || | ||
5191 | (hw->mac_type == e1000_82547_rev_2))) | ||
5192 | return E1000_SUCCESS; | ||
5193 | |||
5194 | /* During driver activity LPLU should not be used or it will attain link | ||
5195 | * from the lowest speeds starting from 10Mbps. The capability is used for | ||
5196 | * Dx transitions and states */ | ||
5197 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | ||
5198 | if(ret_val) | ||
5199 | return ret_val; | ||
5200 | |||
5201 | if(!active) { | ||
5202 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5203 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5204 | if(ret_val) | ||
5205 | return ret_val; | ||
5206 | |||
5207 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | ||
5208 | * Dx states where the power conservation is most important. During | ||
5209 | * driver activity we should enable SmartSpeed, so performance is | ||
5210 | * maintained. */ | ||
5211 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
5212 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5213 | &phy_data); | ||
5214 | if(ret_val) | ||
5215 | return ret_val; | ||
5216 | |||
5217 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
5218 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5219 | phy_data); | ||
5220 | if(ret_val) | ||
5221 | return ret_val; | ||
5222 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
5223 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5224 | &phy_data); | ||
5225 | if (ret_val) | ||
5226 | return ret_val; | ||
5227 | |||
5228 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5229 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5230 | phy_data); | ||
5231 | if(ret_val) | ||
5232 | return ret_val; | ||
5233 | } | ||
5234 | |||
5235 | } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || | ||
5236 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | ||
5237 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | ||
5238 | |||
5239 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | ||
5240 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5241 | if(ret_val) | ||
5242 | return ret_val; | ||
5243 | |||
5244 | /* When LPLU is enabled we should disable SmartSpeed */ | ||
5245 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | ||
5246 | if(ret_val) | ||
5247 | return ret_val; | ||
5248 | |||
5249 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5250 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | ||
5251 | if(ret_val) | ||
5252 | return ret_val; | ||
5253 | |||
5254 | } | ||
5255 | return E1000_SUCCESS; | ||
5256 | } | ||
5257 | |||
5258 | /****************************************************************************** | ||
5259 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | ||
5260 | * | ||
5261 | * hw - Struct containing variables accessed by shared code | ||
5262 | *****************************************************************************/ | ||
5263 | static int32_t | ||
5264 | e1000_set_vco_speed(struct e1000_hw *hw) | ||
5265 | { | ||
5266 | int32_t ret_val; | ||
5267 | uint16_t default_page = 0; | ||
5268 | uint16_t phy_data; | ||
5269 | |||
5270 | DEBUGFUNC("e1000_set_vco_speed"); | ||
5271 | |||
5272 | switch(hw->mac_type) { | ||
5273 | case e1000_82545_rev_3: | ||
5274 | case e1000_82546_rev_3: | ||
5275 | break; | ||
5276 | default: | ||
5277 | return E1000_SUCCESS; | ||
5278 | } | ||
5279 | |||
5280 | /* Set PHY register 30, page 5, bit 8 to 0 */ | ||
5281 | |||
5282 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); | ||
5283 | if(ret_val) | ||
5284 | return ret_val; | ||
5285 | |||
5286 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); | ||
5287 | if(ret_val) | ||
5288 | return ret_val; | ||
5289 | |||
5290 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | ||
5291 | if(ret_val) | ||
5292 | return ret_val; | ||
5293 | |||
5294 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | ||
5295 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | ||
5296 | if(ret_val) | ||
5297 | return ret_val; | ||
5298 | |||
5299 | /* Set PHY register 30, page 4, bit 11 to 1 */ | ||
5300 | |||
5301 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | ||
5302 | if(ret_val) | ||
5303 | return ret_val; | ||
5304 | |||
5305 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | ||
5306 | if(ret_val) | ||
5307 | return ret_val; | ||
5308 | |||
5309 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; | ||
5310 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | ||
5311 | if(ret_val) | ||
5312 | return ret_val; | ||
5313 | |||
5314 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); | ||
5315 | if(ret_val) | ||
5316 | return ret_val; | ||
5317 | |||
5318 | return E1000_SUCCESS; | ||
5319 | } | ||
5320 | |||
5321 | static int32_t | ||
5322 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) | ||
5323 | { | ||
5324 | int32_t ret_val; | ||
5325 | uint16_t mii_status_reg; | ||
5326 | uint16_t i; | ||
5327 | |||
5328 | /* Polarity reversal workaround for forced 10F/10H links. */ | ||
5329 | |||
5330 | /* Disable the transmitter on the PHY */ | ||
5331 | |||
5332 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | ||
5333 | if(ret_val) | ||
5334 | return ret_val; | ||
5335 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); | ||
5336 | if(ret_val) | ||
5337 | return ret_val; | ||
5338 | |||
5339 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | ||
5340 | if(ret_val) | ||
5341 | return ret_val; | ||
5342 | |||
5343 | /* This loop will early-out if the NO link condition has been met. */ | ||
5344 | for(i = PHY_FORCE_TIME; i > 0; i--) { | ||
5345 | /* Read the MII Status Register and wait for Link Status bit | ||
5346 | * to be clear. | ||
5347 | */ | ||
5348 | |||
5349 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5350 | if(ret_val) | ||
5351 | return ret_val; | ||
5352 | |||
5353 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5354 | if(ret_val) | ||
5355 | return ret_val; | ||
5356 | |||
5357 | if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; | ||
5358 | msec_delay_irq(100); | ||
5359 | } | ||
5360 | |||
5361 | /* Recommended delay time after link has been lost */ | ||
5362 | msec_delay_irq(1000); | ||
5363 | |||
5364 | /* Now we will re-enable th transmitter on the PHY */ | ||
5365 | |||
5366 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | ||
5367 | if(ret_val) | ||
5368 | return ret_val; | ||
5369 | msec_delay_irq(50); | ||
5370 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | ||
5371 | if(ret_val) | ||
5372 | return ret_val; | ||
5373 | msec_delay_irq(50); | ||
5374 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | ||
5375 | if(ret_val) | ||
5376 | return ret_val; | ||
5377 | msec_delay_irq(50); | ||
5378 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | ||
5379 | if(ret_val) | ||
5380 | return ret_val; | ||
5381 | |||
5382 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | ||
5383 | if(ret_val) | ||
5384 | return ret_val; | ||
5385 | |||
5386 | /* This loop will early-out if the link condition has been met. */ | ||
5387 | for(i = PHY_FORCE_TIME; i > 0; i--) { | ||
5388 | /* Read the MII Status Register and wait for Link Status bit | ||
5389 | * to be set. | ||
5390 | */ | ||
5391 | |||
5392 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5393 | if(ret_val) | ||
5394 | return ret_val; | ||
5395 | |||
5396 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5397 | if(ret_val) | ||
5398 | return ret_val; | ||
5399 | |||
5400 | if(mii_status_reg & MII_SR_LINK_STATUS) break; | ||
5401 | msec_delay_irq(100); | ||
5402 | } | ||
5403 | return E1000_SUCCESS; | ||
5404 | } | ||
5405 | |||
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h new file mode 100644 index 000000000000..f397e637a3c5 --- /dev/null +++ b/drivers/net/e1000/e1000_hw.h | |||
@@ -0,0 +1,2144 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | |||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the Free | ||
8 | Software Foundation; either version 2 of the License, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along with | ||
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | |||
20 | The full GNU General Public License is included in this distribution in the | ||
21 | file called LICENSE. | ||
22 | |||
23 | Contact Information: | ||
24 | Linux NICS <linux.nics@intel.com> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* e1000_hw.h | ||
30 | * Structures, enums, and macros for the MAC | ||
31 | */ | ||
32 | |||
33 | #ifndef _E1000_HW_H_ | ||
34 | #define _E1000_HW_H_ | ||
35 | |||
36 | #include "e1000_osdep.h" | ||
37 | |||
38 | |||
39 | /* Forward declarations of structures used by the shared code */ | ||
40 | struct e1000_hw; | ||
41 | struct e1000_hw_stats; | ||
42 | |||
43 | /* Enumerated types specific to the e1000 hardware */ | ||
44 | /* Media Access Controlers */ | ||
45 | typedef enum { | ||
46 | e1000_undefined = 0, | ||
47 | e1000_82542_rev2_0, | ||
48 | e1000_82542_rev2_1, | ||
49 | e1000_82543, | ||
50 | e1000_82544, | ||
51 | e1000_82540, | ||
52 | e1000_82545, | ||
53 | e1000_82545_rev_3, | ||
54 | e1000_82546, | ||
55 | e1000_82546_rev_3, | ||
56 | e1000_82541, | ||
57 | e1000_82541_rev_2, | ||
58 | e1000_82547, | ||
59 | e1000_82547_rev_2, | ||
60 | e1000_num_macs | ||
61 | } e1000_mac_type; | ||
62 | |||
63 | typedef enum { | ||
64 | e1000_eeprom_uninitialized = 0, | ||
65 | e1000_eeprom_spi, | ||
66 | e1000_eeprom_microwire, | ||
67 | e1000_num_eeprom_types | ||
68 | } e1000_eeprom_type; | ||
69 | |||
70 | /* Media Types */ | ||
71 | typedef enum { | ||
72 | e1000_media_type_copper = 0, | ||
73 | e1000_media_type_fiber = 1, | ||
74 | e1000_media_type_internal_serdes = 2, | ||
75 | e1000_num_media_types | ||
76 | } e1000_media_type; | ||
77 | |||
78 | typedef enum { | ||
79 | e1000_10_half = 0, | ||
80 | e1000_10_full = 1, | ||
81 | e1000_100_half = 2, | ||
82 | e1000_100_full = 3 | ||
83 | } e1000_speed_duplex_type; | ||
84 | |||
85 | /* Flow Control Settings */ | ||
86 | typedef enum { | ||
87 | e1000_fc_none = 0, | ||
88 | e1000_fc_rx_pause = 1, | ||
89 | e1000_fc_tx_pause = 2, | ||
90 | e1000_fc_full = 3, | ||
91 | e1000_fc_default = 0xFF | ||
92 | } e1000_fc_type; | ||
93 | |||
94 | /* PCI bus types */ | ||
95 | typedef enum { | ||
96 | e1000_bus_type_unknown = 0, | ||
97 | e1000_bus_type_pci, | ||
98 | e1000_bus_type_pcix, | ||
99 | e1000_bus_type_reserved | ||
100 | } e1000_bus_type; | ||
101 | |||
102 | /* PCI bus speeds */ | ||
103 | typedef enum { | ||
104 | e1000_bus_speed_unknown = 0, | ||
105 | e1000_bus_speed_33, | ||
106 | e1000_bus_speed_66, | ||
107 | e1000_bus_speed_100, | ||
108 | e1000_bus_speed_120, | ||
109 | e1000_bus_speed_133, | ||
110 | e1000_bus_speed_reserved | ||
111 | } e1000_bus_speed; | ||
112 | |||
113 | /* PCI bus widths */ | ||
114 | typedef enum { | ||
115 | e1000_bus_width_unknown = 0, | ||
116 | e1000_bus_width_32, | ||
117 | e1000_bus_width_64, | ||
118 | e1000_bus_width_reserved | ||
119 | } e1000_bus_width; | ||
120 | |||
121 | /* PHY status info structure and supporting enums */ | ||
122 | typedef enum { | ||
123 | e1000_cable_length_50 = 0, | ||
124 | e1000_cable_length_50_80, | ||
125 | e1000_cable_length_80_110, | ||
126 | e1000_cable_length_110_140, | ||
127 | e1000_cable_length_140, | ||
128 | e1000_cable_length_undefined = 0xFF | ||
129 | } e1000_cable_length; | ||
130 | |||
131 | typedef enum { | ||
132 | e1000_igp_cable_length_10 = 10, | ||
133 | e1000_igp_cable_length_20 = 20, | ||
134 | e1000_igp_cable_length_30 = 30, | ||
135 | e1000_igp_cable_length_40 = 40, | ||
136 | e1000_igp_cable_length_50 = 50, | ||
137 | e1000_igp_cable_length_60 = 60, | ||
138 | e1000_igp_cable_length_70 = 70, | ||
139 | e1000_igp_cable_length_80 = 80, | ||
140 | e1000_igp_cable_length_90 = 90, | ||
141 | e1000_igp_cable_length_100 = 100, | ||
142 | e1000_igp_cable_length_110 = 110, | ||
143 | e1000_igp_cable_length_120 = 120, | ||
144 | e1000_igp_cable_length_130 = 130, | ||
145 | e1000_igp_cable_length_140 = 140, | ||
146 | e1000_igp_cable_length_150 = 150, | ||
147 | e1000_igp_cable_length_160 = 160, | ||
148 | e1000_igp_cable_length_170 = 170, | ||
149 | e1000_igp_cable_length_180 = 180 | ||
150 | } e1000_igp_cable_length; | ||
151 | |||
152 | typedef enum { | ||
153 | e1000_10bt_ext_dist_enable_normal = 0, | ||
154 | e1000_10bt_ext_dist_enable_lower, | ||
155 | e1000_10bt_ext_dist_enable_undefined = 0xFF | ||
156 | } e1000_10bt_ext_dist_enable; | ||
157 | |||
158 | typedef enum { | ||
159 | e1000_rev_polarity_normal = 0, | ||
160 | e1000_rev_polarity_reversed, | ||
161 | e1000_rev_polarity_undefined = 0xFF | ||
162 | } e1000_rev_polarity; | ||
163 | |||
164 | typedef enum { | ||
165 | e1000_downshift_normal = 0, | ||
166 | e1000_downshift_activated, | ||
167 | e1000_downshift_undefined = 0xFF | ||
168 | } e1000_downshift; | ||
169 | |||
170 | typedef enum { | ||
171 | e1000_smart_speed_default = 0, | ||
172 | e1000_smart_speed_on, | ||
173 | e1000_smart_speed_off | ||
174 | } e1000_smart_speed; | ||
175 | |||
176 | typedef enum { | ||
177 | e1000_polarity_reversal_enabled = 0, | ||
178 | e1000_polarity_reversal_disabled, | ||
179 | e1000_polarity_reversal_undefined = 0xFF | ||
180 | } e1000_polarity_reversal; | ||
181 | |||
182 | typedef enum { | ||
183 | e1000_auto_x_mode_manual_mdi = 0, | ||
184 | e1000_auto_x_mode_manual_mdix, | ||
185 | e1000_auto_x_mode_auto1, | ||
186 | e1000_auto_x_mode_auto2, | ||
187 | e1000_auto_x_mode_undefined = 0xFF | ||
188 | } e1000_auto_x_mode; | ||
189 | |||
190 | typedef enum { | ||
191 | e1000_1000t_rx_status_not_ok = 0, | ||
192 | e1000_1000t_rx_status_ok, | ||
193 | e1000_1000t_rx_status_undefined = 0xFF | ||
194 | } e1000_1000t_rx_status; | ||
195 | |||
196 | typedef enum { | ||
197 | e1000_phy_m88 = 0, | ||
198 | e1000_phy_igp, | ||
199 | e1000_phy_undefined = 0xFF | ||
200 | } e1000_phy_type; | ||
201 | |||
202 | typedef enum { | ||
203 | e1000_ms_hw_default = 0, | ||
204 | e1000_ms_force_master, | ||
205 | e1000_ms_force_slave, | ||
206 | e1000_ms_auto | ||
207 | } e1000_ms_type; | ||
208 | |||
209 | typedef enum { | ||
210 | e1000_ffe_config_enabled = 0, | ||
211 | e1000_ffe_config_active, | ||
212 | e1000_ffe_config_blocked | ||
213 | } e1000_ffe_config; | ||
214 | |||
215 | typedef enum { | ||
216 | e1000_dsp_config_disabled = 0, | ||
217 | e1000_dsp_config_enabled, | ||
218 | e1000_dsp_config_activated, | ||
219 | e1000_dsp_config_undefined = 0xFF | ||
220 | } e1000_dsp_config; | ||
221 | |||
222 | struct e1000_phy_info { | ||
223 | e1000_cable_length cable_length; | ||
224 | e1000_10bt_ext_dist_enable extended_10bt_distance; | ||
225 | e1000_rev_polarity cable_polarity; | ||
226 | e1000_downshift downshift; | ||
227 | e1000_polarity_reversal polarity_correction; | ||
228 | e1000_auto_x_mode mdix_mode; | ||
229 | e1000_1000t_rx_status local_rx; | ||
230 | e1000_1000t_rx_status remote_rx; | ||
231 | }; | ||
232 | |||
233 | struct e1000_phy_stats { | ||
234 | uint32_t idle_errors; | ||
235 | uint32_t receive_errors; | ||
236 | }; | ||
237 | |||
238 | struct e1000_eeprom_info { | ||
239 | e1000_eeprom_type type; | ||
240 | uint16_t word_size; | ||
241 | uint16_t opcode_bits; | ||
242 | uint16_t address_bits; | ||
243 | uint16_t delay_usec; | ||
244 | uint16_t page_size; | ||
245 | }; | ||
246 | |||
247 | |||
248 | |||
249 | /* Error Codes */ | ||
250 | #define E1000_SUCCESS 0 | ||
251 | #define E1000_ERR_EEPROM 1 | ||
252 | #define E1000_ERR_PHY 2 | ||
253 | #define E1000_ERR_CONFIG 3 | ||
254 | #define E1000_ERR_PARAM 4 | ||
255 | #define E1000_ERR_MAC_TYPE 5 | ||
256 | #define E1000_ERR_PHY_TYPE 6 | ||
257 | |||
258 | /* Function prototypes */ | ||
259 | /* Initialization */ | ||
260 | int32_t e1000_reset_hw(struct e1000_hw *hw); | ||
261 | int32_t e1000_init_hw(struct e1000_hw *hw); | ||
262 | int32_t e1000_set_mac_type(struct e1000_hw *hw); | ||
263 | void e1000_set_media_type(struct e1000_hw *hw); | ||
264 | |||
265 | /* Link Configuration */ | ||
266 | int32_t e1000_setup_link(struct e1000_hw *hw); | ||
267 | int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw); | ||
268 | void e1000_config_collision_dist(struct e1000_hw *hw); | ||
269 | int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw); | ||
270 | int32_t e1000_check_for_link(struct e1000_hw *hw); | ||
271 | int32_t e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, uint16_t * duplex); | ||
272 | int32_t e1000_wait_autoneg(struct e1000_hw *hw); | ||
273 | int32_t e1000_force_mac_fc(struct e1000_hw *hw); | ||
274 | |||
275 | /* PHY */ | ||
276 | int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); | ||
277 | int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); | ||
278 | void e1000_phy_hw_reset(struct e1000_hw *hw); | ||
279 | int32_t e1000_phy_reset(struct e1000_hw *hw); | ||
280 | int32_t e1000_detect_gig_phy(struct e1000_hw *hw); | ||
281 | int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); | ||
282 | int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); | ||
283 | int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); | ||
284 | int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length); | ||
285 | int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity); | ||
286 | int32_t e1000_check_downshift(struct e1000_hw *hw); | ||
287 | int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); | ||
288 | |||
289 | /* EEPROM Functions */ | ||
290 | void e1000_init_eeprom_params(struct e1000_hw *hw); | ||
291 | int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); | ||
292 | int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw); | ||
293 | int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw); | ||
294 | int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); | ||
295 | int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); | ||
296 | int32_t e1000_read_mac_addr(struct e1000_hw * hw); | ||
297 | |||
298 | /* Filters (multicast, vlan, receive) */ | ||
299 | void e1000_init_rx_addrs(struct e1000_hw *hw); | ||
300 | void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count); | ||
301 | uint32_t e1000_hash_mc_addr(struct e1000_hw *hw, uint8_t * mc_addr); | ||
302 | void e1000_mta_set(struct e1000_hw *hw, uint32_t hash_value); | ||
303 | void e1000_rar_set(struct e1000_hw *hw, uint8_t * mc_addr, uint32_t rar_index); | ||
304 | void e1000_write_vfta(struct e1000_hw *hw, uint32_t offset, uint32_t value); | ||
305 | void e1000_clear_vfta(struct e1000_hw *hw); | ||
306 | |||
307 | /* LED functions */ | ||
308 | int32_t e1000_setup_led(struct e1000_hw *hw); | ||
309 | int32_t e1000_cleanup_led(struct e1000_hw *hw); | ||
310 | int32_t e1000_led_on(struct e1000_hw *hw); | ||
311 | int32_t e1000_led_off(struct e1000_hw *hw); | ||
312 | |||
313 | /* Adaptive IFS Functions */ | ||
314 | |||
315 | /* Everything else */ | ||
316 | uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); | ||
317 | void e1000_clear_hw_cntrs(struct e1000_hw *hw); | ||
318 | void e1000_reset_adaptive(struct e1000_hw *hw); | ||
319 | void e1000_update_adaptive(struct e1000_hw *hw); | ||
320 | void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr); | ||
321 | void e1000_get_bus_info(struct e1000_hw *hw); | ||
322 | void e1000_pci_set_mwi(struct e1000_hw *hw); | ||
323 | void e1000_pci_clear_mwi(struct e1000_hw *hw); | ||
324 | void e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); | ||
325 | void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); | ||
326 | /* Port I/O is only supported on 82544 and newer */ | ||
327 | uint32_t e1000_io_read(struct e1000_hw *hw, unsigned long port); | ||
328 | uint32_t e1000_read_reg_io(struct e1000_hw *hw, uint32_t offset); | ||
329 | void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value); | ||
330 | void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value); | ||
331 | int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up); | ||
332 | int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | ||
333 | |||
334 | #define E1000_READ_REG_IO(a, reg) \ | ||
335 | e1000_read_reg_io((a), E1000_##reg) | ||
336 | #define E1000_WRITE_REG_IO(a, reg, val) \ | ||
337 | e1000_write_reg_io((a), E1000_##reg, val) | ||
338 | |||
339 | /* PCI Device IDs */ | ||
340 | #define E1000_DEV_ID_82542 0x1000 | ||
341 | #define E1000_DEV_ID_82543GC_FIBER 0x1001 | ||
342 | #define E1000_DEV_ID_82543GC_COPPER 0x1004 | ||
343 | #define E1000_DEV_ID_82544EI_COPPER 0x1008 | ||
344 | #define E1000_DEV_ID_82544EI_FIBER 0x1009 | ||
345 | #define E1000_DEV_ID_82544GC_COPPER 0x100C | ||
346 | #define E1000_DEV_ID_82544GC_LOM 0x100D | ||
347 | #define E1000_DEV_ID_82540EM 0x100E | ||
348 | #define E1000_DEV_ID_82540EM_LOM 0x1015 | ||
349 | #define E1000_DEV_ID_82540EP_LOM 0x1016 | ||
350 | #define E1000_DEV_ID_82540EP 0x1017 | ||
351 | #define E1000_DEV_ID_82540EP_LP 0x101E | ||
352 | #define E1000_DEV_ID_82545EM_COPPER 0x100F | ||
353 | #define E1000_DEV_ID_82545EM_FIBER 0x1011 | ||
354 | #define E1000_DEV_ID_82545GM_COPPER 0x1026 | ||
355 | #define E1000_DEV_ID_82545GM_FIBER 0x1027 | ||
356 | #define E1000_DEV_ID_82545GM_SERDES 0x1028 | ||
357 | #define E1000_DEV_ID_82546EB_COPPER 0x1010 | ||
358 | #define E1000_DEV_ID_82546EB_FIBER 0x1012 | ||
359 | #define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D | ||
360 | #define E1000_DEV_ID_82541EI 0x1013 | ||
361 | #define E1000_DEV_ID_82541EI_MOBILE 0x1018 | ||
362 | #define E1000_DEV_ID_82541ER 0x1078 | ||
363 | #define E1000_DEV_ID_82547GI 0x1075 | ||
364 | #define E1000_DEV_ID_82541GI 0x1076 | ||
365 | #define E1000_DEV_ID_82541GI_MOBILE 0x1077 | ||
366 | #define E1000_DEV_ID_82541GI_LF 0x107C | ||
367 | #define E1000_DEV_ID_82546GB_COPPER 0x1079 | ||
368 | #define E1000_DEV_ID_82546GB_FIBER 0x107A | ||
369 | #define E1000_DEV_ID_82546GB_SERDES 0x107B | ||
370 | #define E1000_DEV_ID_82546GB_PCIE 0x108A | ||
371 | #define E1000_DEV_ID_82547EI 0x1019 | ||
372 | |||
373 | #define NODE_ADDRESS_SIZE 6 | ||
374 | #define ETH_LENGTH_OF_ADDRESS 6 | ||
375 | |||
376 | /* MAC decode size is 128K - This is the size of BAR0 */ | ||
377 | #define MAC_DECODE_SIZE (128 * 1024) | ||
378 | |||
379 | #define E1000_82542_2_0_REV_ID 2 | ||
380 | #define E1000_82542_2_1_REV_ID 3 | ||
381 | #define E1000_REVISION_0 0 | ||
382 | #define E1000_REVISION_1 1 | ||
383 | #define E1000_REVISION_2 2 | ||
384 | |||
385 | #define SPEED_10 10 | ||
386 | #define SPEED_100 100 | ||
387 | #define SPEED_1000 1000 | ||
388 | #define HALF_DUPLEX 1 | ||
389 | #define FULL_DUPLEX 2 | ||
390 | |||
391 | /* The sizes (in bytes) of a ethernet packet */ | ||
392 | #define ENET_HEADER_SIZE 14 | ||
393 | #define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */ | ||
394 | #define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */ | ||
395 | #define ETHERNET_FCS_SIZE 4 | ||
396 | #define MAXIMUM_ETHERNET_PACKET_SIZE \ | ||
397 | (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) | ||
398 | #define MINIMUM_ETHERNET_PACKET_SIZE \ | ||
399 | (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) | ||
400 | #define CRC_LENGTH ETHERNET_FCS_SIZE | ||
401 | #define MAX_JUMBO_FRAME_SIZE 0x3F00 | ||
402 | |||
403 | |||
404 | /* 802.1q VLAN Packet Sizes */ | ||
405 | #define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */ | ||
406 | |||
407 | /* Ethertype field values */ | ||
408 | #define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ | ||
409 | #define ETHERNET_IP_TYPE 0x0800 /* IP packets */ | ||
410 | #define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */ | ||
411 | |||
412 | /* Packet Header defines */ | ||
413 | #define IP_PROTOCOL_TCP 6 | ||
414 | #define IP_PROTOCOL_UDP 0x11 | ||
415 | |||
416 | /* This defines the bits that are set in the Interrupt Mask | ||
417 | * Set/Read Register. Each bit is documented below: | ||
418 | * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) | ||
419 | * o RXSEQ = Receive Sequence Error | ||
420 | */ | ||
421 | #define POLL_IMS_ENABLE_MASK ( \ | ||
422 | E1000_IMS_RXDMT0 | \ | ||
423 | E1000_IMS_RXSEQ) | ||
424 | |||
425 | /* This defines the bits that are set in the Interrupt Mask | ||
426 | * Set/Read Register. Each bit is documented below: | ||
427 | * o RXT0 = Receiver Timer Interrupt (ring 0) | ||
428 | * o TXDW = Transmit Descriptor Written Back | ||
429 | * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) | ||
430 | * o RXSEQ = Receive Sequence Error | ||
431 | * o LSC = Link Status Change | ||
432 | */ | ||
433 | #define IMS_ENABLE_MASK ( \ | ||
434 | E1000_IMS_RXT0 | \ | ||
435 | E1000_IMS_TXDW | \ | ||
436 | E1000_IMS_RXDMT0 | \ | ||
437 | E1000_IMS_RXSEQ | \ | ||
438 | E1000_IMS_LSC) | ||
439 | |||
440 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address | ||
441 | * Registers) holds the directed and multicast addresses that we monitor. We | ||
442 | * reserve one of these spots for our directed address, allowing us room for | ||
443 | * E1000_RAR_ENTRIES - 1 multicast addresses. | ||
444 | */ | ||
445 | #define E1000_RAR_ENTRIES 15 | ||
446 | |||
447 | #define MIN_NUMBER_OF_DESCRIPTORS 8 | ||
448 | #define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 | ||
449 | |||
450 | /* Receive Descriptor */ | ||
451 | struct e1000_rx_desc { | ||
452 | uint64_t buffer_addr; /* Address of the descriptor's data buffer */ | ||
453 | uint16_t length; /* Length of data DMAed into data buffer */ | ||
454 | uint16_t csum; /* Packet checksum */ | ||
455 | uint8_t status; /* Descriptor status */ | ||
456 | uint8_t errors; /* Descriptor Errors */ | ||
457 | uint16_t special; | ||
458 | }; | ||
459 | |||
460 | /* Receive Decriptor bit definitions */ | ||
461 | #define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ | ||
462 | #define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ | ||
463 | #define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ | ||
464 | #define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ | ||
465 | #define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ | ||
466 | #define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ | ||
467 | #define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ | ||
468 | #define E1000_RXD_ERR_CE 0x01 /* CRC Error */ | ||
469 | #define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ | ||
470 | #define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ | ||
471 | #define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ | ||
472 | #define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ | ||
473 | #define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ | ||
474 | #define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ | ||
475 | #define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ | ||
476 | #define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ | ||
477 | #define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */ | ||
478 | #define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ | ||
479 | #define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */ | ||
480 | |||
481 | /* mask to determine if packets should be dropped due to frame errors */ | ||
482 | #define E1000_RXD_ERR_FRAME_ERR_MASK ( \ | ||
483 | E1000_RXD_ERR_CE | \ | ||
484 | E1000_RXD_ERR_SE | \ | ||
485 | E1000_RXD_ERR_SEQ | \ | ||
486 | E1000_RXD_ERR_CXE | \ | ||
487 | E1000_RXD_ERR_RXE) | ||
488 | |||
489 | /* Transmit Descriptor */ | ||
490 | struct e1000_tx_desc { | ||
491 | uint64_t buffer_addr; /* Address of the descriptor's data buffer */ | ||
492 | union { | ||
493 | uint32_t data; | ||
494 | struct { | ||
495 | uint16_t length; /* Data buffer length */ | ||
496 | uint8_t cso; /* Checksum offset */ | ||
497 | uint8_t cmd; /* Descriptor control */ | ||
498 | } flags; | ||
499 | } lower; | ||
500 | union { | ||
501 | uint32_t data; | ||
502 | struct { | ||
503 | uint8_t status; /* Descriptor status */ | ||
504 | uint8_t css; /* Checksum start */ | ||
505 | uint16_t special; | ||
506 | } fields; | ||
507 | } upper; | ||
508 | }; | ||
509 | |||
510 | /* Transmit Descriptor bit definitions */ | ||
511 | #define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ | ||
512 | #define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ | ||
513 | #define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ | ||
514 | #define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ | ||
515 | #define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ | ||
516 | #define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ | ||
517 | #define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ | ||
518 | #define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ | ||
519 | #define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ | ||
520 | #define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ | ||
521 | #define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ | ||
522 | #define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ | ||
523 | #define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ | ||
524 | #define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ | ||
525 | #define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ | ||
526 | #define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ | ||
527 | #define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ | ||
528 | #define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ | ||
529 | #define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ | ||
530 | #define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ | ||
531 | |||
532 | /* Offload Context Descriptor */ | ||
533 | struct e1000_context_desc { | ||
534 | union { | ||
535 | uint32_t ip_config; | ||
536 | struct { | ||
537 | uint8_t ipcss; /* IP checksum start */ | ||
538 | uint8_t ipcso; /* IP checksum offset */ | ||
539 | uint16_t ipcse; /* IP checksum end */ | ||
540 | } ip_fields; | ||
541 | } lower_setup; | ||
542 | union { | ||
543 | uint32_t tcp_config; | ||
544 | struct { | ||
545 | uint8_t tucss; /* TCP checksum start */ | ||
546 | uint8_t tucso; /* TCP checksum offset */ | ||
547 | uint16_t tucse; /* TCP checksum end */ | ||
548 | } tcp_fields; | ||
549 | } upper_setup; | ||
550 | uint32_t cmd_and_length; /* */ | ||
551 | union { | ||
552 | uint32_t data; | ||
553 | struct { | ||
554 | uint8_t status; /* Descriptor status */ | ||
555 | uint8_t hdr_len; /* Header length */ | ||
556 | uint16_t mss; /* Maximum segment size */ | ||
557 | } fields; | ||
558 | } tcp_seg_setup; | ||
559 | }; | ||
560 | |||
561 | /* Offload data descriptor */ | ||
562 | struct e1000_data_desc { | ||
563 | uint64_t buffer_addr; /* Address of the descriptor's buffer address */ | ||
564 | union { | ||
565 | uint32_t data; | ||
566 | struct { | ||
567 | uint16_t length; /* Data buffer length */ | ||
568 | uint8_t typ_len_ext; /* */ | ||
569 | uint8_t cmd; /* */ | ||
570 | } flags; | ||
571 | } lower; | ||
572 | union { | ||
573 | uint32_t data; | ||
574 | struct { | ||
575 | uint8_t status; /* Descriptor status */ | ||
576 | uint8_t popts; /* Packet Options */ | ||
577 | uint16_t special; /* */ | ||
578 | } fields; | ||
579 | } upper; | ||
580 | }; | ||
581 | |||
582 | /* Filters */ | ||
583 | #define E1000_NUM_UNICAST 16 /* Unicast filter entries */ | ||
584 | #define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ | ||
585 | #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ | ||
586 | |||
587 | |||
588 | /* Receive Address Register */ | ||
589 | struct e1000_rar { | ||
590 | volatile uint32_t low; /* receive address low */ | ||
591 | volatile uint32_t high; /* receive address high */ | ||
592 | }; | ||
593 | |||
594 | /* Number of entries in the Multicast Table Array (MTA). */ | ||
595 | #define E1000_NUM_MTA_REGISTERS 128 | ||
596 | |||
597 | /* IPv4 Address Table Entry */ | ||
598 | struct e1000_ipv4_at_entry { | ||
599 | volatile uint32_t ipv4_addr; /* IP Address (RW) */ | ||
600 | volatile uint32_t reserved; | ||
601 | }; | ||
602 | |||
603 | /* Four wakeup IP addresses are supported */ | ||
604 | #define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 | ||
605 | #define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX | ||
606 | #define E1000_IP6AT_SIZE 1 | ||
607 | |||
608 | /* IPv6 Address Table Entry */ | ||
609 | struct e1000_ipv6_at_entry { | ||
610 | volatile uint8_t ipv6_addr[16]; | ||
611 | }; | ||
612 | |||
613 | /* Flexible Filter Length Table Entry */ | ||
614 | struct e1000_fflt_entry { | ||
615 | volatile uint32_t length; /* Flexible Filter Length (RW) */ | ||
616 | volatile uint32_t reserved; | ||
617 | }; | ||
618 | |||
619 | /* Flexible Filter Mask Table Entry */ | ||
620 | struct e1000_ffmt_entry { | ||
621 | volatile uint32_t mask; /* Flexible Filter Mask (RW) */ | ||
622 | volatile uint32_t reserved; | ||
623 | }; | ||
624 | |||
625 | /* Flexible Filter Value Table Entry */ | ||
626 | struct e1000_ffvt_entry { | ||
627 | volatile uint32_t value; /* Flexible Filter Value (RW) */ | ||
628 | volatile uint32_t reserved; | ||
629 | }; | ||
630 | |||
631 | /* Four Flexible Filters are supported */ | ||
632 | #define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 | ||
633 | |||
634 | /* Each Flexible Filter is at most 128 (0x80) bytes in length */ | ||
635 | #define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 | ||
636 | |||
637 | #define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX | ||
638 | #define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX | ||
639 | #define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX | ||
640 | |||
641 | /* Register Set. (82543, 82544) | ||
642 | * | ||
643 | * Registers are defined to be 32 bits and should be accessed as 32 bit values. | ||
644 | * These registers are physically located on the NIC, but are mapped into the | ||
645 | * host memory address space. | ||
646 | * | ||
647 | * RW - register is both readable and writable | ||
648 | * RO - register is read only | ||
649 | * WO - register is write only | ||
650 | * R/clr - register is read only and is cleared when read | ||
651 | * A - register array | ||
652 | */ | ||
653 | #define E1000_CTRL 0x00000 /* Device Control - RW */ | ||
654 | #define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ | ||
655 | #define E1000_STATUS 0x00008 /* Device Status - RO */ | ||
656 | #define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ | ||
657 | #define E1000_EERD 0x00014 /* EEPROM Read - RW */ | ||
658 | #define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ | ||
659 | #define E1000_FLA 0x0001C /* Flash Access - RW */ | ||
660 | #define E1000_MDIC 0x00020 /* MDI Control - RW */ | ||
661 | #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ | ||
662 | #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ | ||
663 | #define E1000_FCT 0x00030 /* Flow Control Type - RW */ | ||
664 | #define E1000_VET 0x00038 /* VLAN Ether Type - RW */ | ||
665 | #define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ | ||
666 | #define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ | ||
667 | #define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ | ||
668 | #define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ | ||
669 | #define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ | ||
670 | #define E1000_RCTL 0x00100 /* RX Control - RW */ | ||
671 | #define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ | ||
672 | #define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ | ||
673 | #define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ | ||
674 | #define E1000_TCTL 0x00400 /* TX Control - RW */ | ||
675 | #define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ | ||
676 | #define E1000_TBT 0x00448 /* TX Burst Timer - RW */ | ||
677 | #define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ | ||
678 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ | ||
679 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ | ||
680 | #define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ | ||
681 | #define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ | ||
682 | #define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ | ||
683 | #define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ | ||
684 | #define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ | ||
685 | #define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ | ||
686 | #define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ | ||
687 | #define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ | ||
688 | #define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ | ||
689 | #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ | ||
690 | #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ | ||
691 | #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ | ||
692 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ | ||
693 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ | ||
694 | #define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ | ||
695 | #define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ | ||
696 | #define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ | ||
697 | #define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ | ||
698 | #define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ | ||
699 | #define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ | ||
700 | #define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ | ||
701 | #define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ | ||
702 | #define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ | ||
703 | #define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ | ||
704 | #define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ | ||
705 | #define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ | ||
706 | #define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ | ||
707 | #define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ | ||
708 | #define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ | ||
709 | #define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ | ||
710 | #define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ | ||
711 | #define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ | ||
712 | #define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ | ||
713 | #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ | ||
714 | #define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ | ||
715 | #define E1000_COLC 0x04028 /* Collision Count - R/clr */ | ||
716 | #define E1000_DC 0x04030 /* Defer Count - R/clr */ | ||
717 | #define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ | ||
718 | #define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ | ||
719 | #define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ | ||
720 | #define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ | ||
721 | #define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ | ||
722 | #define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ | ||
723 | #define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ | ||
724 | #define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ | ||
725 | #define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ | ||
726 | #define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ | ||
727 | #define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ | ||
728 | #define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ | ||
729 | #define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ | ||
730 | #define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ | ||
731 | #define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ | ||
732 | #define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ | ||
733 | #define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ | ||
734 | #define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ | ||
735 | #define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ | ||
736 | #define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ | ||
737 | #define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ | ||
738 | #define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ | ||
739 | #define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ | ||
740 | #define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ | ||
741 | #define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ | ||
742 | #define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ | ||
743 | #define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ | ||
744 | #define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ | ||
745 | #define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ | ||
746 | #define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ | ||
747 | #define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ | ||
748 | #define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ | ||
749 | #define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ | ||
750 | #define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ | ||
751 | #define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ | ||
752 | #define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ | ||
753 | #define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ | ||
754 | #define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ | ||
755 | #define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ | ||
756 | #define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ | ||
757 | #define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ | ||
758 | #define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ | ||
759 | #define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ | ||
760 | #define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ | ||
761 | #define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ | ||
762 | #define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ | ||
763 | #define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ | ||
764 | #define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ | ||
765 | #define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ | ||
766 | #define E1000_RA 0x05400 /* Receive Address - RW Array */ | ||
767 | #define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ | ||
768 | #define E1000_WUC 0x05800 /* Wakeup Control - RW */ | ||
769 | #define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ | ||
770 | #define E1000_WUS 0x05810 /* Wakeup Status - RO */ | ||
771 | #define E1000_MANC 0x05820 /* Management Control - RW */ | ||
772 | #define E1000_IPAV 0x05838 /* IP Address Valid - RW */ | ||
773 | #define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ | ||
774 | #define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ | ||
775 | #define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ | ||
776 | #define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ | ||
777 | #define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ | ||
778 | #define E1000_HOST_IF 0x08800 /* Host Interface */ | ||
779 | #define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ | ||
780 | #define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ | ||
781 | |||
782 | /* Register Set (82542) | ||
783 | * | ||
784 | * Some of the 82542 registers are located at different offsets than they are | ||
785 | * in more current versions of the 8254x. Despite the difference in location, | ||
786 | * the registers function in the same manner. | ||
787 | */ | ||
788 | #define E1000_82542_CTRL E1000_CTRL | ||
789 | #define E1000_82542_CTRL_DUP E1000_CTRL_DUP | ||
790 | #define E1000_82542_STATUS E1000_STATUS | ||
791 | #define E1000_82542_EECD E1000_EECD | ||
792 | #define E1000_82542_EERD E1000_EERD | ||
793 | #define E1000_82542_CTRL_EXT E1000_CTRL_EXT | ||
794 | #define E1000_82542_FLA E1000_FLA | ||
795 | #define E1000_82542_MDIC E1000_MDIC | ||
796 | #define E1000_82542_FCAL E1000_FCAL | ||
797 | #define E1000_82542_FCAH E1000_FCAH | ||
798 | #define E1000_82542_FCT E1000_FCT | ||
799 | #define E1000_82542_VET E1000_VET | ||
800 | #define E1000_82542_RA 0x00040 | ||
801 | #define E1000_82542_ICR E1000_ICR | ||
802 | #define E1000_82542_ITR E1000_ITR | ||
803 | #define E1000_82542_ICS E1000_ICS | ||
804 | #define E1000_82542_IMS E1000_IMS | ||
805 | #define E1000_82542_IMC E1000_IMC | ||
806 | #define E1000_82542_RCTL E1000_RCTL | ||
807 | #define E1000_82542_RDTR 0x00108 | ||
808 | #define E1000_82542_RDBAL 0x00110 | ||
809 | #define E1000_82542_RDBAH 0x00114 | ||
810 | #define E1000_82542_RDLEN 0x00118 | ||
811 | #define E1000_82542_RDH 0x00120 | ||
812 | #define E1000_82542_RDT 0x00128 | ||
813 | #define E1000_82542_FCRTH 0x00160 | ||
814 | #define E1000_82542_FCRTL 0x00168 | ||
815 | #define E1000_82542_FCTTV E1000_FCTTV | ||
816 | #define E1000_82542_TXCW E1000_TXCW | ||
817 | #define E1000_82542_RXCW E1000_RXCW | ||
818 | #define E1000_82542_MTA 0x00200 | ||
819 | #define E1000_82542_TCTL E1000_TCTL | ||
820 | #define E1000_82542_TIPG E1000_TIPG | ||
821 | #define E1000_82542_TDBAL 0x00420 | ||
822 | #define E1000_82542_TDBAH 0x00424 | ||
823 | #define E1000_82542_TDLEN 0x00428 | ||
824 | #define E1000_82542_TDH 0x00430 | ||
825 | #define E1000_82542_TDT 0x00438 | ||
826 | #define E1000_82542_TIDV 0x00440 | ||
827 | #define E1000_82542_TBT E1000_TBT | ||
828 | #define E1000_82542_AIT E1000_AIT | ||
829 | #define E1000_82542_VFTA 0x00600 | ||
830 | #define E1000_82542_LEDCTL E1000_LEDCTL | ||
831 | #define E1000_82542_PBA E1000_PBA | ||
832 | #define E1000_82542_RXDCTL E1000_RXDCTL | ||
833 | #define E1000_82542_RADV E1000_RADV | ||
834 | #define E1000_82542_RSRPD E1000_RSRPD | ||
835 | #define E1000_82542_TXDMAC E1000_TXDMAC | ||
836 | #define E1000_82542_TDFHS E1000_TDFHS | ||
837 | #define E1000_82542_TDFTS E1000_TDFTS | ||
838 | #define E1000_82542_TDFPC E1000_TDFPC | ||
839 | #define E1000_82542_TXDCTL E1000_TXDCTL | ||
840 | #define E1000_82542_TADV E1000_TADV | ||
841 | #define E1000_82542_TSPMT E1000_TSPMT | ||
842 | #define E1000_82542_CRCERRS E1000_CRCERRS | ||
843 | #define E1000_82542_ALGNERRC E1000_ALGNERRC | ||
844 | #define E1000_82542_SYMERRS E1000_SYMERRS | ||
845 | #define E1000_82542_RXERRC E1000_RXERRC | ||
846 | #define E1000_82542_MPC E1000_MPC | ||
847 | #define E1000_82542_SCC E1000_SCC | ||
848 | #define E1000_82542_ECOL E1000_ECOL | ||
849 | #define E1000_82542_MCC E1000_MCC | ||
850 | #define E1000_82542_LATECOL E1000_LATECOL | ||
851 | #define E1000_82542_COLC E1000_COLC | ||
852 | #define E1000_82542_DC E1000_DC | ||
853 | #define E1000_82542_TNCRS E1000_TNCRS | ||
854 | #define E1000_82542_SEC E1000_SEC | ||
855 | #define E1000_82542_CEXTERR E1000_CEXTERR | ||
856 | #define E1000_82542_RLEC E1000_RLEC | ||
857 | #define E1000_82542_XONRXC E1000_XONRXC | ||
858 | #define E1000_82542_XONTXC E1000_XONTXC | ||
859 | #define E1000_82542_XOFFRXC E1000_XOFFRXC | ||
860 | #define E1000_82542_XOFFTXC E1000_XOFFTXC | ||
861 | #define E1000_82542_FCRUC E1000_FCRUC | ||
862 | #define E1000_82542_PRC64 E1000_PRC64 | ||
863 | #define E1000_82542_PRC127 E1000_PRC127 | ||
864 | #define E1000_82542_PRC255 E1000_PRC255 | ||
865 | #define E1000_82542_PRC511 E1000_PRC511 | ||
866 | #define E1000_82542_PRC1023 E1000_PRC1023 | ||
867 | #define E1000_82542_PRC1522 E1000_PRC1522 | ||
868 | #define E1000_82542_GPRC E1000_GPRC | ||
869 | #define E1000_82542_BPRC E1000_BPRC | ||
870 | #define E1000_82542_MPRC E1000_MPRC | ||
871 | #define E1000_82542_GPTC E1000_GPTC | ||
872 | #define E1000_82542_GORCL E1000_GORCL | ||
873 | #define E1000_82542_GORCH E1000_GORCH | ||
874 | #define E1000_82542_GOTCL E1000_GOTCL | ||
875 | #define E1000_82542_GOTCH E1000_GOTCH | ||
876 | #define E1000_82542_RNBC E1000_RNBC | ||
877 | #define E1000_82542_RUC E1000_RUC | ||
878 | #define E1000_82542_RFC E1000_RFC | ||
879 | #define E1000_82542_ROC E1000_ROC | ||
880 | #define E1000_82542_RJC E1000_RJC | ||
881 | #define E1000_82542_MGTPRC E1000_MGTPRC | ||
882 | #define E1000_82542_MGTPDC E1000_MGTPDC | ||
883 | #define E1000_82542_MGTPTC E1000_MGTPTC | ||
884 | #define E1000_82542_TORL E1000_TORL | ||
885 | #define E1000_82542_TORH E1000_TORH | ||
886 | #define E1000_82542_TOTL E1000_TOTL | ||
887 | #define E1000_82542_TOTH E1000_TOTH | ||
888 | #define E1000_82542_TPR E1000_TPR | ||
889 | #define E1000_82542_TPT E1000_TPT | ||
890 | #define E1000_82542_PTC64 E1000_PTC64 | ||
891 | #define E1000_82542_PTC127 E1000_PTC127 | ||
892 | #define E1000_82542_PTC255 E1000_PTC255 | ||
893 | #define E1000_82542_PTC511 E1000_PTC511 | ||
894 | #define E1000_82542_PTC1023 E1000_PTC1023 | ||
895 | #define E1000_82542_PTC1522 E1000_PTC1522 | ||
896 | #define E1000_82542_MPTC E1000_MPTC | ||
897 | #define E1000_82542_BPTC E1000_BPTC | ||
898 | #define E1000_82542_TSCTC E1000_TSCTC | ||
899 | #define E1000_82542_TSCTFC E1000_TSCTFC | ||
900 | #define E1000_82542_RXCSUM E1000_RXCSUM | ||
901 | #define E1000_82542_WUC E1000_WUC | ||
902 | #define E1000_82542_WUFC E1000_WUFC | ||
903 | #define E1000_82542_WUS E1000_WUS | ||
904 | #define E1000_82542_MANC E1000_MANC | ||
905 | #define E1000_82542_IPAV E1000_IPAV | ||
906 | #define E1000_82542_IP4AT E1000_IP4AT | ||
907 | #define E1000_82542_IP6AT E1000_IP6AT | ||
908 | #define E1000_82542_WUPL E1000_WUPL | ||
909 | #define E1000_82542_WUPM E1000_WUPM | ||
910 | #define E1000_82542_FFLT E1000_FFLT | ||
911 | #define E1000_82542_TDFH 0x08010 | ||
912 | #define E1000_82542_TDFT 0x08018 | ||
913 | #define E1000_82542_FFMT E1000_FFMT | ||
914 | #define E1000_82542_FFVT E1000_FFVT | ||
915 | #define E1000_82542_HOST_IF E1000_HOST_IF | ||
916 | |||
917 | /* Statistics counters collected by the MAC */ | ||
918 | struct e1000_hw_stats { | ||
919 | uint64_t crcerrs; | ||
920 | uint64_t algnerrc; | ||
921 | uint64_t symerrs; | ||
922 | uint64_t rxerrc; | ||
923 | uint64_t mpc; | ||
924 | uint64_t scc; | ||
925 | uint64_t ecol; | ||
926 | uint64_t mcc; | ||
927 | uint64_t latecol; | ||
928 | uint64_t colc; | ||
929 | uint64_t dc; | ||
930 | uint64_t tncrs; | ||
931 | uint64_t sec; | ||
932 | uint64_t cexterr; | ||
933 | uint64_t rlec; | ||
934 | uint64_t xonrxc; | ||
935 | uint64_t xontxc; | ||
936 | uint64_t xoffrxc; | ||
937 | uint64_t xofftxc; | ||
938 | uint64_t fcruc; | ||
939 | uint64_t prc64; | ||
940 | uint64_t prc127; | ||
941 | uint64_t prc255; | ||
942 | uint64_t prc511; | ||
943 | uint64_t prc1023; | ||
944 | uint64_t prc1522; | ||
945 | uint64_t gprc; | ||
946 | uint64_t bprc; | ||
947 | uint64_t mprc; | ||
948 | uint64_t gptc; | ||
949 | uint64_t gorcl; | ||
950 | uint64_t gorch; | ||
951 | uint64_t gotcl; | ||
952 | uint64_t gotch; | ||
953 | uint64_t rnbc; | ||
954 | uint64_t ruc; | ||
955 | uint64_t rfc; | ||
956 | uint64_t roc; | ||
957 | uint64_t rjc; | ||
958 | uint64_t mgprc; | ||
959 | uint64_t mgpdc; | ||
960 | uint64_t mgptc; | ||
961 | uint64_t torl; | ||
962 | uint64_t torh; | ||
963 | uint64_t totl; | ||
964 | uint64_t toth; | ||
965 | uint64_t tpr; | ||
966 | uint64_t tpt; | ||
967 | uint64_t ptc64; | ||
968 | uint64_t ptc127; | ||
969 | uint64_t ptc255; | ||
970 | uint64_t ptc511; | ||
971 | uint64_t ptc1023; | ||
972 | uint64_t ptc1522; | ||
973 | uint64_t mptc; | ||
974 | uint64_t bptc; | ||
975 | uint64_t tsctc; | ||
976 | uint64_t tsctfc; | ||
977 | }; | ||
978 | |||
979 | /* Structure containing variables used by the shared code (e1000_hw.c) */ | ||
980 | struct e1000_hw { | ||
981 | uint8_t __iomem *hw_addr; | ||
982 | e1000_mac_type mac_type; | ||
983 | e1000_phy_type phy_type; | ||
984 | uint32_t phy_init_script; | ||
985 | e1000_media_type media_type; | ||
986 | void *back; | ||
987 | e1000_fc_type fc; | ||
988 | e1000_bus_speed bus_speed; | ||
989 | e1000_bus_width bus_width; | ||
990 | e1000_bus_type bus_type; | ||
991 | struct e1000_eeprom_info eeprom; | ||
992 | e1000_ms_type master_slave; | ||
993 | e1000_ms_type original_master_slave; | ||
994 | e1000_ffe_config ffe_config_state; | ||
995 | uint32_t asf_firmware_present; | ||
996 | unsigned long io_base; | ||
997 | uint32_t phy_id; | ||
998 | uint32_t phy_revision; | ||
999 | uint32_t phy_addr; | ||
1000 | uint32_t original_fc; | ||
1001 | uint32_t txcw; | ||
1002 | uint32_t autoneg_failed; | ||
1003 | uint32_t max_frame_size; | ||
1004 | uint32_t min_frame_size; | ||
1005 | uint32_t mc_filter_type; | ||
1006 | uint32_t num_mc_addrs; | ||
1007 | uint32_t collision_delta; | ||
1008 | uint32_t tx_packet_delta; | ||
1009 | uint32_t ledctl_default; | ||
1010 | uint32_t ledctl_mode1; | ||
1011 | uint32_t ledctl_mode2; | ||
1012 | uint16_t phy_spd_default; | ||
1013 | uint16_t autoneg_advertised; | ||
1014 | uint16_t pci_cmd_word; | ||
1015 | uint16_t fc_high_water; | ||
1016 | uint16_t fc_low_water; | ||
1017 | uint16_t fc_pause_time; | ||
1018 | uint16_t current_ifs_val; | ||
1019 | uint16_t ifs_min_val; | ||
1020 | uint16_t ifs_max_val; | ||
1021 | uint16_t ifs_step_size; | ||
1022 | uint16_t ifs_ratio; | ||
1023 | uint16_t device_id; | ||
1024 | uint16_t vendor_id; | ||
1025 | uint16_t subsystem_id; | ||
1026 | uint16_t subsystem_vendor_id; | ||
1027 | uint8_t revision_id; | ||
1028 | uint8_t autoneg; | ||
1029 | uint8_t mdix; | ||
1030 | uint8_t forced_speed_duplex; | ||
1031 | uint8_t wait_autoneg_complete; | ||
1032 | uint8_t dma_fairness; | ||
1033 | uint8_t mac_addr[NODE_ADDRESS_SIZE]; | ||
1034 | uint8_t perm_mac_addr[NODE_ADDRESS_SIZE]; | ||
1035 | boolean_t disable_polarity_correction; | ||
1036 | boolean_t speed_downgraded; | ||
1037 | e1000_smart_speed smart_speed; | ||
1038 | e1000_dsp_config dsp_config_state; | ||
1039 | boolean_t get_link_status; | ||
1040 | boolean_t serdes_link_down; | ||
1041 | boolean_t tbi_compatibility_en; | ||
1042 | boolean_t tbi_compatibility_on; | ||
1043 | boolean_t phy_reset_disable; | ||
1044 | boolean_t fc_send_xon; | ||
1045 | boolean_t fc_strict_ieee; | ||
1046 | boolean_t report_tx_early; | ||
1047 | boolean_t adaptive_ifs; | ||
1048 | boolean_t ifs_params_forced; | ||
1049 | boolean_t in_ifs_mode; | ||
1050 | }; | ||
1051 | |||
1052 | |||
1053 | #define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ | ||
1054 | #define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ | ||
1055 | /* Register Bit Masks */ | ||
1056 | /* Device Control */ | ||
1057 | #define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ | ||
1058 | #define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ | ||
1059 | #define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ | ||
1060 | #define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ | ||
1061 | #define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ | ||
1062 | #define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ | ||
1063 | #define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ | ||
1064 | #define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ | ||
1065 | #define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ | ||
1066 | #define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ | ||
1067 | #define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ | ||
1068 | #define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ | ||
1069 | #define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ | ||
1070 | #define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ | ||
1071 | #define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ | ||
1072 | #define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ | ||
1073 | #define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ | ||
1074 | #define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ | ||
1075 | #define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ | ||
1076 | #define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ | ||
1077 | #define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ | ||
1078 | #define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ | ||
1079 | #define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ | ||
1080 | #define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ | ||
1081 | #define E1000_CTRL_RST 0x04000000 /* Global reset */ | ||
1082 | #define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ | ||
1083 | #define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ | ||
1084 | #define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ | ||
1085 | #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ | ||
1086 | #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ | ||
1087 | |||
1088 | /* Device Status */ | ||
1089 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ | ||
1090 | #define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ | ||
1091 | #define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ | ||
1092 | #define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ | ||
1093 | #define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ | ||
1094 | #define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ | ||
1095 | #define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ | ||
1096 | #define E1000_STATUS_SPEED_MASK 0x000000C0 | ||
1097 | #define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ | ||
1098 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ | ||
1099 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ | ||
1100 | #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ | ||
1101 | #define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ | ||
1102 | #define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ | ||
1103 | #define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ | ||
1104 | #define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ | ||
1105 | #define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ | ||
1106 | |||
1107 | /* Constants used to intrepret the masked PCI-X bus speed. */ | ||
1108 | #define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ | ||
1109 | #define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ | ||
1110 | #define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ | ||
1111 | |||
1112 | /* EEPROM/Flash Control */ | ||
1113 | #define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ | ||
1114 | #define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ | ||
1115 | #define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ | ||
1116 | #define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ | ||
1117 | #define E1000_EECD_FWE_MASK 0x00000030 | ||
1118 | #define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ | ||
1119 | #define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ | ||
1120 | #define E1000_EECD_FWE_SHIFT 4 | ||
1121 | #define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ | ||
1122 | #define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ | ||
1123 | #define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ | ||
1124 | #define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ | ||
1125 | #define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type | ||
1126 | * (0-small, 1-large) */ | ||
1127 | #define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ | ||
1128 | #ifndef E1000_EEPROM_GRANT_ATTEMPTS | ||
1129 | #define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ | ||
1130 | #endif | ||
1131 | |||
1132 | /* EEPROM Read */ | ||
1133 | #define E1000_EERD_START 0x00000001 /* Start Read */ | ||
1134 | #define E1000_EERD_DONE 0x00000010 /* Read Done */ | ||
1135 | #define E1000_EERD_ADDR_SHIFT 8 | ||
1136 | #define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ | ||
1137 | #define E1000_EERD_DATA_SHIFT 16 | ||
1138 | #define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ | ||
1139 | |||
1140 | /* SPI EEPROM Status Register */ | ||
1141 | #define EEPROM_STATUS_RDY_SPI 0x01 | ||
1142 | #define EEPROM_STATUS_WEN_SPI 0x02 | ||
1143 | #define EEPROM_STATUS_BP0_SPI 0x04 | ||
1144 | #define EEPROM_STATUS_BP1_SPI 0x08 | ||
1145 | #define EEPROM_STATUS_WPEN_SPI 0x80 | ||
1146 | |||
1147 | /* Extended Device Control */ | ||
1148 | #define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ | ||
1149 | #define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ | ||
1150 | #define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN | ||
1151 | #define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ | ||
1152 | #define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ | ||
1153 | #define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ | ||
1154 | #define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ | ||
1155 | #define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA | ||
1156 | #define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ | ||
1157 | #define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ | ||
1158 | #define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ | ||
1159 | #define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ | ||
1160 | #define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ | ||
1161 | #define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ | ||
1162 | #define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ | ||
1163 | #define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ | ||
1164 | #define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ | ||
1165 | #define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ | ||
1166 | #define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 | ||
1167 | #define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 | ||
1168 | #define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 | ||
1169 | #define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 | ||
1170 | #define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 | ||
1171 | #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 | ||
1172 | #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 | ||
1173 | #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 | ||
1174 | |||
1175 | /* MDI Control */ | ||
1176 | #define E1000_MDIC_DATA_MASK 0x0000FFFF | ||
1177 | #define E1000_MDIC_REG_MASK 0x001F0000 | ||
1178 | #define E1000_MDIC_REG_SHIFT 16 | ||
1179 | #define E1000_MDIC_PHY_MASK 0x03E00000 | ||
1180 | #define E1000_MDIC_PHY_SHIFT 21 | ||
1181 | #define E1000_MDIC_OP_WRITE 0x04000000 | ||
1182 | #define E1000_MDIC_OP_READ 0x08000000 | ||
1183 | #define E1000_MDIC_READY 0x10000000 | ||
1184 | #define E1000_MDIC_INT_EN 0x20000000 | ||
1185 | #define E1000_MDIC_ERROR 0x40000000 | ||
1186 | |||
1187 | /* LED Control */ | ||
1188 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F | ||
1189 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 | ||
1190 | #define E1000_LEDCTL_LED0_IVRT 0x00000040 | ||
1191 | #define E1000_LEDCTL_LED0_BLINK 0x00000080 | ||
1192 | #define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 | ||
1193 | #define E1000_LEDCTL_LED1_MODE_SHIFT 8 | ||
1194 | #define E1000_LEDCTL_LED1_IVRT 0x00004000 | ||
1195 | #define E1000_LEDCTL_LED1_BLINK 0x00008000 | ||
1196 | #define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 | ||
1197 | #define E1000_LEDCTL_LED2_MODE_SHIFT 16 | ||
1198 | #define E1000_LEDCTL_LED2_IVRT 0x00400000 | ||
1199 | #define E1000_LEDCTL_LED2_BLINK 0x00800000 | ||
1200 | #define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 | ||
1201 | #define E1000_LEDCTL_LED3_MODE_SHIFT 24 | ||
1202 | #define E1000_LEDCTL_LED3_IVRT 0x40000000 | ||
1203 | #define E1000_LEDCTL_LED3_BLINK 0x80000000 | ||
1204 | |||
1205 | #define E1000_LEDCTL_MODE_LINK_10_1000 0x0 | ||
1206 | #define E1000_LEDCTL_MODE_LINK_100_1000 0x1 | ||
1207 | #define E1000_LEDCTL_MODE_LINK_UP 0x2 | ||
1208 | #define E1000_LEDCTL_MODE_ACTIVITY 0x3 | ||
1209 | #define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 | ||
1210 | #define E1000_LEDCTL_MODE_LINK_10 0x5 | ||
1211 | #define E1000_LEDCTL_MODE_LINK_100 0x6 | ||
1212 | #define E1000_LEDCTL_MODE_LINK_1000 0x7 | ||
1213 | #define E1000_LEDCTL_MODE_PCIX_MODE 0x8 | ||
1214 | #define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 | ||
1215 | #define E1000_LEDCTL_MODE_COLLISION 0xA | ||
1216 | #define E1000_LEDCTL_MODE_BUS_SPEED 0xB | ||
1217 | #define E1000_LEDCTL_MODE_BUS_SIZE 0xC | ||
1218 | #define E1000_LEDCTL_MODE_PAUSED 0xD | ||
1219 | #define E1000_LEDCTL_MODE_LED_ON 0xE | ||
1220 | #define E1000_LEDCTL_MODE_LED_OFF 0xF | ||
1221 | |||
1222 | /* Receive Address */ | ||
1223 | #define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ | ||
1224 | |||
1225 | /* Interrupt Cause Read */ | ||
1226 | #define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ | ||
1227 | #define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ | ||
1228 | #define E1000_ICR_LSC 0x00000004 /* Link Status Change */ | ||
1229 | #define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ | ||
1230 | #define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ | ||
1231 | #define E1000_ICR_RXO 0x00000040 /* rx overrun */ | ||
1232 | #define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ | ||
1233 | #define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ | ||
1234 | #define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ | ||
1235 | #define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ | ||
1236 | #define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ | ||
1237 | #define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ | ||
1238 | #define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ | ||
1239 | #define E1000_ICR_TXD_LOW 0x00008000 | ||
1240 | #define E1000_ICR_SRPD 0x00010000 | ||
1241 | |||
1242 | /* Interrupt Cause Set */ | ||
1243 | #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | ||
1244 | #define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ | ||
1245 | #define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ | ||
1246 | #define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ | ||
1247 | #define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ | ||
1248 | #define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ | ||
1249 | #define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ | ||
1250 | #define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ | ||
1251 | #define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ | ||
1252 | #define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ | ||
1253 | #define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ | ||
1254 | #define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ | ||
1255 | #define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ | ||
1256 | #define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW | ||
1257 | #define E1000_ICS_SRPD E1000_ICR_SRPD | ||
1258 | |||
1259 | /* Interrupt Mask Set */ | ||
1260 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | ||
1261 | #define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ | ||
1262 | #define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ | ||
1263 | #define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ | ||
1264 | #define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ | ||
1265 | #define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ | ||
1266 | #define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ | ||
1267 | #define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ | ||
1268 | #define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ | ||
1269 | #define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ | ||
1270 | #define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ | ||
1271 | #define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ | ||
1272 | #define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ | ||
1273 | #define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW | ||
1274 | #define E1000_IMS_SRPD E1000_ICR_SRPD | ||
1275 | |||
1276 | /* Interrupt Mask Clear */ | ||
1277 | #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | ||
1278 | #define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ | ||
1279 | #define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ | ||
1280 | #define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ | ||
1281 | #define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ | ||
1282 | #define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ | ||
1283 | #define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ | ||
1284 | #define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ | ||
1285 | #define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ | ||
1286 | #define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ | ||
1287 | #define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ | ||
1288 | #define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ | ||
1289 | #define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ | ||
1290 | #define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW | ||
1291 | #define E1000_IMC_SRPD E1000_ICR_SRPD | ||
1292 | |||
1293 | /* Receive Control */ | ||
1294 | #define E1000_RCTL_RST 0x00000001 /* Software reset */ | ||
1295 | #define E1000_RCTL_EN 0x00000002 /* enable */ | ||
1296 | #define E1000_RCTL_SBP 0x00000004 /* store bad packet */ | ||
1297 | #define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ | ||
1298 | #define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ | ||
1299 | #define E1000_RCTL_LPE 0x00000020 /* long packet enable */ | ||
1300 | #define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ | ||
1301 | #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ | ||
1302 | #define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ | ||
1303 | #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ | ||
1304 | #define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ | ||
1305 | #define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ | ||
1306 | #define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ | ||
1307 | #define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ | ||
1308 | #define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ | ||
1309 | #define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ | ||
1310 | #define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ | ||
1311 | #define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ | ||
1312 | #define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ | ||
1313 | #define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ | ||
1314 | /* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ | ||
1315 | #define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ | ||
1316 | #define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ | ||
1317 | #define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ | ||
1318 | #define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ | ||
1319 | /* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ | ||
1320 | #define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ | ||
1321 | #define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ | ||
1322 | #define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ | ||
1323 | #define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ | ||
1324 | #define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ | ||
1325 | #define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ | ||
1326 | #define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ | ||
1327 | #define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ | ||
1328 | #define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ | ||
1329 | #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ | ||
1330 | |||
1331 | /* Receive Descriptor */ | ||
1332 | #define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ | ||
1333 | #define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ | ||
1334 | #define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ | ||
1335 | #define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ | ||
1336 | #define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ | ||
1337 | |||
1338 | /* Flow Control */ | ||
1339 | #define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ | ||
1340 | #define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ | ||
1341 | #define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ | ||
1342 | #define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ | ||
1343 | |||
1344 | /* Receive Descriptor Control */ | ||
1345 | #define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ | ||
1346 | #define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ | ||
1347 | #define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ | ||
1348 | #define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ | ||
1349 | |||
1350 | /* Transmit Descriptor Control */ | ||
1351 | #define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */ | ||
1352 | #define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */ | ||
1353 | #define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */ | ||
1354 | #define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ | ||
1355 | #define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ | ||
1356 | #define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ | ||
1357 | |||
1358 | /* Transmit Configuration Word */ | ||
1359 | #define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ | ||
1360 | #define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ | ||
1361 | #define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ | ||
1362 | #define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ | ||
1363 | #define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ | ||
1364 | #define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ | ||
1365 | #define E1000_TXCW_NP 0x00008000 /* TXCW next page */ | ||
1366 | #define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ | ||
1367 | #define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ | ||
1368 | #define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ | ||
1369 | |||
1370 | /* Receive Configuration Word */ | ||
1371 | #define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ | ||
1372 | #define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ | ||
1373 | #define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ | ||
1374 | #define E1000_RXCW_CC 0x10000000 /* Receive config change */ | ||
1375 | #define E1000_RXCW_C 0x20000000 /* Receive config */ | ||
1376 | #define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ | ||
1377 | #define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ | ||
1378 | |||
1379 | /* Transmit Control */ | ||
1380 | #define E1000_TCTL_RST 0x00000001 /* software reset */ | ||
1381 | #define E1000_TCTL_EN 0x00000002 /* enable tx */ | ||
1382 | #define E1000_TCTL_BCE 0x00000004 /* busy check enable */ | ||
1383 | #define E1000_TCTL_PSP 0x00000008 /* pad short packets */ | ||
1384 | #define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ | ||
1385 | #define E1000_TCTL_COLD 0x003ff000 /* collision distance */ | ||
1386 | #define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ | ||
1387 | #define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ | ||
1388 | #define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ | ||
1389 | #define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ | ||
1390 | |||
1391 | /* Receive Checksum Control */ | ||
1392 | #define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ | ||
1393 | #define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ | ||
1394 | #define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ | ||
1395 | #define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ | ||
1396 | |||
1397 | /* Definitions for power management and wakeup registers */ | ||
1398 | /* Wake Up Control */ | ||
1399 | #define E1000_WUC_APME 0x00000001 /* APM Enable */ | ||
1400 | #define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ | ||
1401 | #define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ | ||
1402 | #define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ | ||
1403 | #define E1000_WUC_SPM 0x80000000 /* Enable SPM */ | ||
1404 | |||
1405 | /* Wake Up Filter Control */ | ||
1406 | #define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ | ||
1407 | #define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ | ||
1408 | #define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ | ||
1409 | #define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ | ||
1410 | #define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ | ||
1411 | #define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ | ||
1412 | #define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ | ||
1413 | #define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ | ||
1414 | #define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ | ||
1415 | #define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ | ||
1416 | #define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ | ||
1417 | #define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ | ||
1418 | #define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ | ||
1419 | #define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ | ||
1420 | #define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ | ||
1421 | |||
1422 | /* Wake Up Status */ | ||
1423 | #define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ | ||
1424 | #define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ | ||
1425 | #define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ | ||
1426 | #define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ | ||
1427 | #define E1000_WUS_BC 0x00000010 /* Broadcast Received */ | ||
1428 | #define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ | ||
1429 | #define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ | ||
1430 | #define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ | ||
1431 | #define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ | ||
1432 | #define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ | ||
1433 | #define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ | ||
1434 | #define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ | ||
1435 | #define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ | ||
1436 | |||
1437 | /* Management Control */ | ||
1438 | #define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ | ||
1439 | #define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ | ||
1440 | #define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ | ||
1441 | #define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ | ||
1442 | #define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ | ||
1443 | #define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ | ||
1444 | #define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ | ||
1445 | #define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ | ||
1446 | #define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ | ||
1447 | #define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery | ||
1448 | * Filtering */ | ||
1449 | #define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ | ||
1450 | #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ | ||
1451 | #define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ | ||
1452 | #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address | ||
1453 | * filtering */ | ||
1454 | #define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host | ||
1455 | * memory */ | ||
1456 | #define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ | ||
1457 | #define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ | ||
1458 | #define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ | ||
1459 | #define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ | ||
1460 | #define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ | ||
1461 | #define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ | ||
1462 | |||
1463 | #define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ | ||
1464 | #define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ | ||
1465 | |||
1466 | /* Wake Up Packet Length */ | ||
1467 | #define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ | ||
1468 | |||
1469 | #define E1000_MDALIGN 4096 | ||
1470 | |||
1471 | /* EEPROM Commands - Microwire */ | ||
1472 | #define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ | ||
1473 | #define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ | ||
1474 | #define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ | ||
1475 | #define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ | ||
1476 | #define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */ | ||
1477 | |||
1478 | /* EEPROM Commands - SPI */ | ||
1479 | #define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ | ||
1480 | #define EEPROM_READ_OPCODE_SPI 0x3 /* EEPROM read opcode */ | ||
1481 | #define EEPROM_WRITE_OPCODE_SPI 0x2 /* EEPROM write opcode */ | ||
1482 | #define EEPROM_A8_OPCODE_SPI 0x8 /* opcode bit-3 = address bit-8 */ | ||
1483 | #define EEPROM_WREN_OPCODE_SPI 0x6 /* EEPROM set Write Enable latch */ | ||
1484 | #define EEPROM_WRDI_OPCODE_SPI 0x4 /* EEPROM reset Write Enable latch */ | ||
1485 | #define EEPROM_RDSR_OPCODE_SPI 0x5 /* EEPROM read Status register */ | ||
1486 | #define EEPROM_WRSR_OPCODE_SPI 0x1 /* EEPROM write Status register */ | ||
1487 | |||
1488 | /* EEPROM Size definitions */ | ||
1489 | #define EEPROM_SIZE_16KB 0x1800 | ||
1490 | #define EEPROM_SIZE_8KB 0x1400 | ||
1491 | #define EEPROM_SIZE_4KB 0x1000 | ||
1492 | #define EEPROM_SIZE_2KB 0x0C00 | ||
1493 | #define EEPROM_SIZE_1KB 0x0800 | ||
1494 | #define EEPROM_SIZE_512B 0x0400 | ||
1495 | #define EEPROM_SIZE_128B 0x0000 | ||
1496 | #define EEPROM_SIZE_MASK 0x1C00 | ||
1497 | |||
1498 | /* EEPROM Word Offsets */ | ||
1499 | #define EEPROM_COMPAT 0x0003 | ||
1500 | #define EEPROM_ID_LED_SETTINGS 0x0004 | ||
1501 | #define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */ | ||
1502 | #define EEPROM_PHY_CLASS_WORD 0x0007 | ||
1503 | #define EEPROM_INIT_CONTROL1_REG 0x000A | ||
1504 | #define EEPROM_INIT_CONTROL2_REG 0x000F | ||
1505 | #define EEPROM_INIT_CONTROL3_PORT_B 0x0014 | ||
1506 | #define EEPROM_INIT_CONTROL3_PORT_A 0x0024 | ||
1507 | #define EEPROM_CFG 0x0012 | ||
1508 | #define EEPROM_FLASH_VERSION 0x0032 | ||
1509 | #define EEPROM_CHECKSUM_REG 0x003F | ||
1510 | |||
1511 | /* Word definitions for ID LED Settings */ | ||
1512 | #define ID_LED_RESERVED_0000 0x0000 | ||
1513 | #define ID_LED_RESERVED_FFFF 0xFFFF | ||
1514 | #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ | ||
1515 | (ID_LED_OFF1_OFF2 << 8) | \ | ||
1516 | (ID_LED_DEF1_DEF2 << 4) | \ | ||
1517 | (ID_LED_DEF1_DEF2)) | ||
1518 | #define ID_LED_DEF1_DEF2 0x1 | ||
1519 | #define ID_LED_DEF1_ON2 0x2 | ||
1520 | #define ID_LED_DEF1_OFF2 0x3 | ||
1521 | #define ID_LED_ON1_DEF2 0x4 | ||
1522 | #define ID_LED_ON1_ON2 0x5 | ||
1523 | #define ID_LED_ON1_OFF2 0x6 | ||
1524 | #define ID_LED_OFF1_DEF2 0x7 | ||
1525 | #define ID_LED_OFF1_ON2 0x8 | ||
1526 | #define ID_LED_OFF1_OFF2 0x9 | ||
1527 | |||
1528 | #define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF | ||
1529 | #define IGP_ACTIVITY_LED_ENABLE 0x0300 | ||
1530 | #define IGP_LED3_MODE 0x07000000 | ||
1531 | |||
1532 | |||
1533 | /* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */ | ||
1534 | #define EEPROM_SERDES_AMPLITUDE_MASK 0x000F | ||
1535 | |||
1536 | /* Mask bit for PHY class in Word 7 of the EEPROM */ | ||
1537 | #define EEPROM_PHY_CLASS_A 0x8000 | ||
1538 | |||
1539 | /* Mask bits for fields in Word 0x0a of the EEPROM */ | ||
1540 | #define EEPROM_WORD0A_ILOS 0x0010 | ||
1541 | #define EEPROM_WORD0A_SWDPIO 0x01E0 | ||
1542 | #define EEPROM_WORD0A_LRST 0x0200 | ||
1543 | #define EEPROM_WORD0A_FD 0x0400 | ||
1544 | #define EEPROM_WORD0A_66MHZ 0x0800 | ||
1545 | |||
1546 | /* Mask bits for fields in Word 0x0f of the EEPROM */ | ||
1547 | #define EEPROM_WORD0F_PAUSE_MASK 0x3000 | ||
1548 | #define EEPROM_WORD0F_PAUSE 0x1000 | ||
1549 | #define EEPROM_WORD0F_ASM_DIR 0x2000 | ||
1550 | #define EEPROM_WORD0F_ANE 0x0800 | ||
1551 | #define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 | ||
1552 | |||
1553 | /* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ | ||
1554 | #define EEPROM_SUM 0xBABA | ||
1555 | |||
1556 | /* EEPROM Map defines (WORD OFFSETS)*/ | ||
1557 | #define EEPROM_NODE_ADDRESS_BYTE_0 0 | ||
1558 | #define EEPROM_PBA_BYTE_1 8 | ||
1559 | |||
1560 | #define EEPROM_RESERVED_WORD 0xFFFF | ||
1561 | |||
1562 | /* EEPROM Map Sizes (Byte Counts) */ | ||
1563 | #define PBA_SIZE 4 | ||
1564 | |||
1565 | /* Collision related configuration parameters */ | ||
1566 | #define E1000_COLLISION_THRESHOLD 15 | ||
1567 | #define E1000_CT_SHIFT 4 | ||
1568 | #define E1000_COLLISION_DISTANCE 64 | ||
1569 | #define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE | ||
1570 | #define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE | ||
1571 | #define E1000_COLD_SHIFT 12 | ||
1572 | |||
1573 | /* Number of Transmit and Receive Descriptors must be a multiple of 8 */ | ||
1574 | #define REQ_TX_DESCRIPTOR_MULTIPLE 8 | ||
1575 | #define REQ_RX_DESCRIPTOR_MULTIPLE 8 | ||
1576 | |||
1577 | /* Default values for the transmit IPG register */ | ||
1578 | #define DEFAULT_82542_TIPG_IPGT 10 | ||
1579 | #define DEFAULT_82543_TIPG_IPGT_FIBER 9 | ||
1580 | #define DEFAULT_82543_TIPG_IPGT_COPPER 8 | ||
1581 | |||
1582 | #define E1000_TIPG_IPGT_MASK 0x000003FF | ||
1583 | #define E1000_TIPG_IPGR1_MASK 0x000FFC00 | ||
1584 | #define E1000_TIPG_IPGR2_MASK 0x3FF00000 | ||
1585 | |||
1586 | #define DEFAULT_82542_TIPG_IPGR1 2 | ||
1587 | #define DEFAULT_82543_TIPG_IPGR1 8 | ||
1588 | #define E1000_TIPG_IPGR1_SHIFT 10 | ||
1589 | |||
1590 | #define DEFAULT_82542_TIPG_IPGR2 10 | ||
1591 | #define DEFAULT_82543_TIPG_IPGR2 6 | ||
1592 | #define E1000_TIPG_IPGR2_SHIFT 20 | ||
1593 | |||
1594 | #define E1000_TXDMAC_DPP 0x00000001 | ||
1595 | |||
1596 | /* Adaptive IFS defines */ | ||
1597 | #define TX_THRESHOLD_START 8 | ||
1598 | #define TX_THRESHOLD_INCREMENT 10 | ||
1599 | #define TX_THRESHOLD_DECREMENT 1 | ||
1600 | #define TX_THRESHOLD_STOP 190 | ||
1601 | #define TX_THRESHOLD_DISABLE 0 | ||
1602 | #define TX_THRESHOLD_TIMER_MS 10000 | ||
1603 | #define MIN_NUM_XMITS 1000 | ||
1604 | #define IFS_MAX 80 | ||
1605 | #define IFS_STEP 10 | ||
1606 | #define IFS_MIN 40 | ||
1607 | #define IFS_RATIO 4 | ||
1608 | |||
1609 | /* PBA constants */ | ||
1610 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ | ||
1611 | #define E1000_PBA_22K 0x0016 | ||
1612 | #define E1000_PBA_24K 0x0018 | ||
1613 | #define E1000_PBA_30K 0x001E | ||
1614 | #define E1000_PBA_40K 0x0028 | ||
1615 | #define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ | ||
1616 | |||
1617 | /* Flow Control Constants */ | ||
1618 | #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 | ||
1619 | #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 | ||
1620 | #define FLOW_CONTROL_TYPE 0x8808 | ||
1621 | |||
1622 | /* The historical defaults for the flow control values are given below. */ | ||
1623 | #define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ | ||
1624 | #define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ | ||
1625 | #define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ | ||
1626 | |||
1627 | /* PCIX Config space */ | ||
1628 | #define PCIX_COMMAND_REGISTER 0xE6 | ||
1629 | #define PCIX_STATUS_REGISTER_LO 0xE8 | ||
1630 | #define PCIX_STATUS_REGISTER_HI 0xEA | ||
1631 | |||
1632 | #define PCIX_COMMAND_MMRBC_MASK 0x000C | ||
1633 | #define PCIX_COMMAND_MMRBC_SHIFT 0x2 | ||
1634 | #define PCIX_STATUS_HI_MMRBC_MASK 0x0060 | ||
1635 | #define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 | ||
1636 | #define PCIX_STATUS_HI_MMRBC_4K 0x3 | ||
1637 | #define PCIX_STATUS_HI_MMRBC_2K 0x2 | ||
1638 | |||
1639 | |||
1640 | /* Number of bits required to shift right the "pause" bits from the | ||
1641 | * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register. | ||
1642 | */ | ||
1643 | #define PAUSE_SHIFT 5 | ||
1644 | |||
1645 | /* Number of bits required to shift left the "SWDPIO" bits from the | ||
1646 | * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register. | ||
1647 | */ | ||
1648 | #define SWDPIO_SHIFT 17 | ||
1649 | |||
1650 | /* Number of bits required to shift left the "SWDPIO_EXT" bits from the | ||
1651 | * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register. | ||
1652 | */ | ||
1653 | #define SWDPIO__EXT_SHIFT 4 | ||
1654 | |||
1655 | /* Number of bits required to shift left the "ILOS" bit from the EEPROM | ||
1656 | * (bit 4) to the "ILOS" (bit 7) field in the CTRL register. | ||
1657 | */ | ||
1658 | #define ILOS_SHIFT 3 | ||
1659 | |||
1660 | |||
1661 | #define RECEIVE_BUFFER_ALIGN_SIZE (256) | ||
1662 | |||
1663 | /* Number of milliseconds we wait for auto-negotiation to complete */ | ||
1664 | #define LINK_UP_TIMEOUT 500 | ||
1665 | |||
1666 | #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) | ||
1667 | |||
1668 | /* The carrier extension symbol, as received by the NIC. */ | ||
1669 | #define CARRIER_EXTENSION 0x0F | ||
1670 | |||
1671 | /* TBI_ACCEPT macro definition: | ||
1672 | * | ||
1673 | * This macro requires: | ||
1674 | * adapter = a pointer to struct e1000_hw | ||
1675 | * status = the 8 bit status field of the RX descriptor with EOP set | ||
1676 | * error = the 8 bit error field of the RX descriptor with EOP set | ||
1677 | * length = the sum of all the length fields of the RX descriptors that | ||
1678 | * make up the current frame | ||
1679 | * last_byte = the last byte of the frame DMAed by the hardware | ||
1680 | * max_frame_length = the maximum frame length we want to accept. | ||
1681 | * min_frame_length = the minimum frame length we want to accept. | ||
1682 | * | ||
1683 | * This macro is a conditional that should be used in the interrupt | ||
1684 | * handler's Rx processing routine when RxErrors have been detected. | ||
1685 | * | ||
1686 | * Typical use: | ||
1687 | * ... | ||
1688 | * if (TBI_ACCEPT) { | ||
1689 | * accept_frame = TRUE; | ||
1690 | * e1000_tbi_adjust_stats(adapter, MacAddress); | ||
1691 | * frame_length--; | ||
1692 | * } else { | ||
1693 | * accept_frame = FALSE; | ||
1694 | * } | ||
1695 | * ... | ||
1696 | */ | ||
1697 | |||
1698 | #define TBI_ACCEPT(adapter, status, errors, length, last_byte) \ | ||
1699 | ((adapter)->tbi_compatibility_on && \ | ||
1700 | (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ | ||
1701 | ((last_byte) == CARRIER_EXTENSION) && \ | ||
1702 | (((status) & E1000_RXD_STAT_VP) ? \ | ||
1703 | (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \ | ||
1704 | ((length) <= ((adapter)->max_frame_size + 1))) : \ | ||
1705 | (((length) > (adapter)->min_frame_size) && \ | ||
1706 | ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1))))) | ||
1707 | |||
1708 | |||
1709 | /* Structures, enums, and macros for the PHY */ | ||
1710 | |||
1711 | /* Bit definitions for the Management Data IO (MDIO) and Management Data | ||
1712 | * Clock (MDC) pins in the Device Control Register. | ||
1713 | */ | ||
1714 | #define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 | ||
1715 | #define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 | ||
1716 | #define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 | ||
1717 | #define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 | ||
1718 | #define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 | ||
1719 | #define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 | ||
1720 | #define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR | ||
1721 | #define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA | ||
1722 | |||
1723 | /* PHY 1000 MII Register/Bit Definitions */ | ||
1724 | /* PHY Registers defined by IEEE */ | ||
1725 | #define PHY_CTRL 0x00 /* Control Register */ | ||
1726 | #define PHY_STATUS 0x01 /* Status Regiser */ | ||
1727 | #define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ | ||
1728 | #define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ | ||
1729 | #define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ | ||
1730 | #define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ | ||
1731 | #define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ | ||
1732 | #define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ | ||
1733 | #define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ | ||
1734 | #define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ | ||
1735 | #define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ | ||
1736 | #define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ | ||
1737 | |||
1738 | #define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ | ||
1739 | #define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */ | ||
1740 | |||
1741 | /* M88E1000 Specific Registers */ | ||
1742 | #define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ | ||
1743 | #define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ | ||
1744 | #define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ | ||
1745 | #define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ | ||
1746 | #define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ | ||
1747 | #define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ | ||
1748 | |||
1749 | #define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ | ||
1750 | #define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ | ||
1751 | #define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ | ||
1752 | #define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ | ||
1753 | #define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ | ||
1754 | |||
1755 | #define IGP01E1000_IEEE_REGS_PAGE 0x0000 | ||
1756 | #define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 | ||
1757 | #define IGP01E1000_IEEE_FORCE_GIGA 0x0140 | ||
1758 | |||
1759 | /* IGP01E1000 Specific Registers */ | ||
1760 | #define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ | ||
1761 | #define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ | ||
1762 | #define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ | ||
1763 | #define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ | ||
1764 | #define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ | ||
1765 | #define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ | ||
1766 | #define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ | ||
1767 | |||
1768 | /* IGP01E1000 AGC Registers - stores the cable length values*/ | ||
1769 | #define IGP01E1000_PHY_AGC_A 0x1172 | ||
1770 | #define IGP01E1000_PHY_AGC_B 0x1272 | ||
1771 | #define IGP01E1000_PHY_AGC_C 0x1472 | ||
1772 | #define IGP01E1000_PHY_AGC_D 0x1872 | ||
1773 | |||
1774 | /* IGP01E1000 DSP Reset Register */ | ||
1775 | #define IGP01E1000_PHY_DSP_RESET 0x1F33 | ||
1776 | #define IGP01E1000_PHY_DSP_SET 0x1F71 | ||
1777 | #define IGP01E1000_PHY_DSP_FFE 0x1F35 | ||
1778 | |||
1779 | #define IGP01E1000_PHY_CHANNEL_NUM 4 | ||
1780 | #define IGP01E1000_PHY_AGC_PARAM_A 0x1171 | ||
1781 | #define IGP01E1000_PHY_AGC_PARAM_B 0x1271 | ||
1782 | #define IGP01E1000_PHY_AGC_PARAM_C 0x1471 | ||
1783 | #define IGP01E1000_PHY_AGC_PARAM_D 0x1871 | ||
1784 | |||
1785 | #define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 | ||
1786 | #define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 | ||
1787 | |||
1788 | #define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890 | ||
1789 | #define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000 | ||
1790 | #define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004 | ||
1791 | #define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 | ||
1792 | |||
1793 | #define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A | ||
1794 | /* IGP01E1000 PCS Initialization register - stores the polarity status when | ||
1795 | * speed = 1000 Mbps. */ | ||
1796 | #define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 | ||
1797 | #define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5 | ||
1798 | |||
1799 | #define IGP01E1000_ANALOG_REGS_PAGE 0x20C0 | ||
1800 | |||
1801 | |||
1802 | /* PHY Control Register */ | ||
1803 | #define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ | ||
1804 | #define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ | ||
1805 | #define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ | ||
1806 | #define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ | ||
1807 | #define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ | ||
1808 | #define MII_CR_POWER_DOWN 0x0800 /* Power down */ | ||
1809 | #define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ | ||
1810 | #define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ | ||
1811 | #define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ | ||
1812 | #define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ | ||
1813 | |||
1814 | /* PHY Status Register */ | ||
1815 | #define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ | ||
1816 | #define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ | ||
1817 | #define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ | ||
1818 | #define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ | ||
1819 | #define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ | ||
1820 | #define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ | ||
1821 | #define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ | ||
1822 | #define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ | ||
1823 | #define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ | ||
1824 | #define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ | ||
1825 | #define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ | ||
1826 | #define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ | ||
1827 | #define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ | ||
1828 | #define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ | ||
1829 | #define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ | ||
1830 | |||
1831 | /* Autoneg Advertisement Register */ | ||
1832 | #define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ | ||
1833 | #define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ | ||
1834 | #define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ | ||
1835 | #define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ | ||
1836 | #define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ | ||
1837 | #define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ | ||
1838 | #define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ | ||
1839 | #define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ | ||
1840 | #define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ | ||
1841 | #define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ | ||
1842 | |||
1843 | /* Link Partner Ability Register (Base Page) */ | ||
1844 | #define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ | ||
1845 | #define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ | ||
1846 | #define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ | ||
1847 | #define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ | ||
1848 | #define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ | ||
1849 | #define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ | ||
1850 | #define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ | ||
1851 | #define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ | ||
1852 | #define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ | ||
1853 | #define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ | ||
1854 | #define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ | ||
1855 | |||
1856 | /* Autoneg Expansion Register */ | ||
1857 | #define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ | ||
1858 | #define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ | ||
1859 | #define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ | ||
1860 | #define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ | ||
1861 | #define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ | ||
1862 | |||
1863 | /* Next Page TX Register */ | ||
1864 | #define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ | ||
1865 | #define NPTX_TOGGLE 0x0800 /* Toggles between exchanges | ||
1866 | * of different NP | ||
1867 | */ | ||
1868 | #define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg | ||
1869 | * 0 = cannot comply with msg | ||
1870 | */ | ||
1871 | #define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ | ||
1872 | #define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow | ||
1873 | * 0 = sending last NP | ||
1874 | */ | ||
1875 | |||
1876 | /* Link Partner Next Page Register */ | ||
1877 | #define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ | ||
1878 | #define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges | ||
1879 | * of different NP | ||
1880 | */ | ||
1881 | #define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg | ||
1882 | * 0 = cannot comply with msg | ||
1883 | */ | ||
1884 | #define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ | ||
1885 | #define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ | ||
1886 | #define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow | ||
1887 | * 0 = sending last NP | ||
1888 | */ | ||
1889 | |||
1890 | /* 1000BASE-T Control Register */ | ||
1891 | #define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ | ||
1892 | #define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ | ||
1893 | #define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ | ||
1894 | #define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ | ||
1895 | /* 0=DTE device */ | ||
1896 | #define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ | ||
1897 | /* 0=Configure PHY as Slave */ | ||
1898 | #define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ | ||
1899 | /* 0=Automatic Master/Slave config */ | ||
1900 | #define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ | ||
1901 | #define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ | ||
1902 | #define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ | ||
1903 | #define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ | ||
1904 | #define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ | ||
1905 | |||
1906 | /* 1000BASE-T Status Register */ | ||
1907 | #define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ | ||
1908 | #define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ | ||
1909 | #define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ | ||
1910 | #define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ | ||
1911 | #define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ | ||
1912 | #define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ | ||
1913 | #define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ | ||
1914 | #define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ | ||
1915 | #define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 | ||
1916 | #define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 | ||
1917 | #define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 | ||
1918 | #define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 | ||
1919 | #define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 | ||
1920 | |||
1921 | /* Extended Status Register */ | ||
1922 | #define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ | ||
1923 | #define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ | ||
1924 | #define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ | ||
1925 | #define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ | ||
1926 | |||
1927 | #define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ | ||
1928 | #define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ | ||
1929 | |||
1930 | #define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ | ||
1931 | /* (0=enable, 1=disable) */ | ||
1932 | |||
1933 | /* M88E1000 PHY Specific Control Register */ | ||
1934 | #define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ | ||
1935 | #define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ | ||
1936 | #define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ | ||
1937 | #define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, | ||
1938 | * 0=CLK125 toggling | ||
1939 | */ | ||
1940 | #define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ | ||
1941 | /* Manual MDI configuration */ | ||
1942 | #define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ | ||
1943 | #define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, | ||
1944 | * 100BASE-TX/10BASE-T: | ||
1945 | * MDI Mode | ||
1946 | */ | ||
1947 | #define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled | ||
1948 | * all speeds. | ||
1949 | */ | ||
1950 | #define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 | ||
1951 | /* 1=Enable Extended 10BASE-T distance | ||
1952 | * (Lower 10BASE-T RX Threshold) | ||
1953 | * 0=Normal 10BASE-T RX Threshold */ | ||
1954 | #define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 | ||
1955 | /* 1=5-Bit interface in 100BASE-TX | ||
1956 | * 0=MII interface in 100BASE-TX */ | ||
1957 | #define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ | ||
1958 | #define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ | ||
1959 | #define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ | ||
1960 | |||
1961 | #define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 | ||
1962 | #define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 | ||
1963 | #define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 | ||
1964 | |||
1965 | /* M88E1000 PHY Specific Status Register */ | ||
1966 | #define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ | ||
1967 | #define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ | ||
1968 | #define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ | ||
1969 | #define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ | ||
1970 | #define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; | ||
1971 | * 3=110-140M;4=>140M */ | ||
1972 | #define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ | ||
1973 | #define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ | ||
1974 | #define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ | ||
1975 | #define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ | ||
1976 | #define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ | ||
1977 | #define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ | ||
1978 | #define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ | ||
1979 | #define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ | ||
1980 | |||
1981 | #define M88E1000_PSSR_REV_POLARITY_SHIFT 1 | ||
1982 | #define M88E1000_PSSR_DOWNSHIFT_SHIFT 5 | ||
1983 | #define M88E1000_PSSR_MDIX_SHIFT 6 | ||
1984 | #define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 | ||
1985 | |||
1986 | /* M88E1000 Extended PHY Specific Control Register */ | ||
1987 | #define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ | ||
1988 | #define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. | ||
1989 | * Will assert lost lock and bring | ||
1990 | * link down if idle not seen | ||
1991 | * within 1ms in 1000BASE-T | ||
1992 | */ | ||
1993 | /* Number of times we will attempt to autonegotiate before downshifting if we | ||
1994 | * are the master */ | ||
1995 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 | ||
1996 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 | ||
1997 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 | ||
1998 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 | ||
1999 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 | ||
2000 | /* Number of times we will attempt to autonegotiate before downshifting if we | ||
2001 | * are the slave */ | ||
2002 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 | ||
2003 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 | ||
2004 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 | ||
2005 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 | ||
2006 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 | ||
2007 | #define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ | ||
2008 | #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ | ||
2009 | #define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ | ||
2010 | |||
2011 | /* IGP01E1000 Specific Port Config Register - R/W */ | ||
2012 | #define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 | ||
2013 | #define IGP01E1000_PSCFR_PRE_EN 0x0020 | ||
2014 | #define IGP01E1000_PSCFR_SMART_SPEED 0x0080 | ||
2015 | #define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100 | ||
2016 | #define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400 | ||
2017 | #define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000 | ||
2018 | |||
2019 | /* IGP01E1000 Specific Port Status Register - R/O */ | ||
2020 | #define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */ | ||
2021 | #define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 | ||
2022 | #define IGP01E1000_PSSR_CABLE_LENGTH 0x007C | ||
2023 | #define IGP01E1000_PSSR_FULL_DUPLEX 0x0200 | ||
2024 | #define IGP01E1000_PSSR_LINK_UP 0x0400 | ||
2025 | #define IGP01E1000_PSSR_MDIX 0x0800 | ||
2026 | #define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */ | ||
2027 | #define IGP01E1000_PSSR_SPEED_10MBPS 0x4000 | ||
2028 | #define IGP01E1000_PSSR_SPEED_100MBPS 0x8000 | ||
2029 | #define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 | ||
2030 | #define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */ | ||
2031 | #define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */ | ||
2032 | |||
2033 | /* IGP01E1000 Specific Port Control Register - R/W */ | ||
2034 | #define IGP01E1000_PSCR_TP_LOOPBACK 0x0010 | ||
2035 | #define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200 | ||
2036 | #define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400 | ||
2037 | #define IGP01E1000_PSCR_FLIP_CHIP 0x0800 | ||
2038 | #define IGP01E1000_PSCR_AUTO_MDIX 0x1000 | ||
2039 | #define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ | ||
2040 | |||
2041 | /* IGP01E1000 Specific Port Link Health Register */ | ||
2042 | #define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 | ||
2043 | #define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000 | ||
2044 | #define IGP01E1000_PLHR_MASTER_FAULT 0x2000 | ||
2045 | #define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000 | ||
2046 | #define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */ | ||
2047 | #define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */ | ||
2048 | #define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */ | ||
2049 | #define IGP01E1000_PLHR_DATA_ERR_0 0x0100 | ||
2050 | #define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040 | ||
2051 | #define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010 | ||
2052 | #define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0008 | ||
2053 | #define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0004 | ||
2054 | #define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0002 | ||
2055 | #define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0001 | ||
2056 | |||
2057 | /* IGP01E1000 Channel Quality Register */ | ||
2058 | #define IGP01E1000_MSE_CHANNEL_D 0x000F | ||
2059 | #define IGP01E1000_MSE_CHANNEL_C 0x00F0 | ||
2060 | #define IGP01E1000_MSE_CHANNEL_B 0x0F00 | ||
2061 | #define IGP01E1000_MSE_CHANNEL_A 0xF000 | ||
2062 | |||
2063 | /* IGP01E1000 DSP reset macros */ | ||
2064 | #define DSP_RESET_ENABLE 0x0 | ||
2065 | #define DSP_RESET_DISABLE 0x2 | ||
2066 | #define E1000_MAX_DSP_RESETS 10 | ||
2067 | |||
2068 | /* IGP01E1000 AGC Registers */ | ||
2069 | |||
2070 | #define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ | ||
2071 | |||
2072 | /* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ | ||
2073 | #define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 | ||
2074 | |||
2075 | /* The precision of the length is +/- 10 meters */ | ||
2076 | #define IGP01E1000_AGC_RANGE 10 | ||
2077 | |||
2078 | /* IGP01E1000 PCS Initialization register */ | ||
2079 | /* bits 3:6 in the PCS registers stores the channels polarity */ | ||
2080 | #define IGP01E1000_PHY_POLARITY_MASK 0x0078 | ||
2081 | |||
2082 | /* IGP01E1000 GMII FIFO Register */ | ||
2083 | #define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed | ||
2084 | * on Link-Up */ | ||
2085 | #define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ | ||
2086 | |||
2087 | /* IGP01E1000 Analog Register */ | ||
2088 | #define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 | ||
2089 | #define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 | ||
2090 | #define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC | ||
2091 | #define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE | ||
2092 | |||
2093 | #define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 | ||
2094 | #define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 | ||
2095 | #define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 | ||
2096 | #define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 | ||
2097 | #define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 | ||
2098 | |||
2099 | #define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 | ||
2100 | #define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 | ||
2101 | #define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 | ||
2102 | #define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 | ||
2103 | |||
2104 | |||
2105 | /* Bit definitions for valid PHY IDs. */ | ||
2106 | /* I = Integrated | ||
2107 | * E = External | ||
2108 | */ | ||
2109 | #define M88E1000_E_PHY_ID 0x01410C50 | ||
2110 | #define M88E1000_I_PHY_ID 0x01410C30 | ||
2111 | #define M88E1011_I_PHY_ID 0x01410C20 | ||
2112 | #define IGP01E1000_I_PHY_ID 0x02A80380 | ||
2113 | #define M88E1000_12_PHY_ID M88E1000_E_PHY_ID | ||
2114 | #define M88E1000_14_PHY_ID M88E1000_E_PHY_ID | ||
2115 | #define M88E1011_I_REV_4 0x04 | ||
2116 | |||
2117 | /* Miscellaneous PHY bit definitions. */ | ||
2118 | #define PHY_PREAMBLE 0xFFFFFFFF | ||
2119 | #define PHY_SOF 0x01 | ||
2120 | #define PHY_OP_READ 0x02 | ||
2121 | #define PHY_OP_WRITE 0x01 | ||
2122 | #define PHY_TURNAROUND 0x02 | ||
2123 | #define PHY_PREAMBLE_SIZE 32 | ||
2124 | #define MII_CR_SPEED_1000 0x0040 | ||
2125 | #define MII_CR_SPEED_100 0x2000 | ||
2126 | #define MII_CR_SPEED_10 0x0000 | ||
2127 | #define E1000_PHY_ADDRESS 0x01 | ||
2128 | #define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ | ||
2129 | #define PHY_FORCE_TIME 20 /* 2.0 Seconds */ | ||
2130 | #define PHY_REVISION_MASK 0xFFFFFFF0 | ||
2131 | #define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ | ||
2132 | #define REG4_SPEED_MASK 0x01E0 | ||
2133 | #define REG9_SPEED_MASK 0x0300 | ||
2134 | #define ADVERTISE_10_HALF 0x0001 | ||
2135 | #define ADVERTISE_10_FULL 0x0002 | ||
2136 | #define ADVERTISE_100_HALF 0x0004 | ||
2137 | #define ADVERTISE_100_FULL 0x0008 | ||
2138 | #define ADVERTISE_1000_HALF 0x0010 | ||
2139 | #define ADVERTISE_1000_FULL 0x0020 | ||
2140 | #define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ | ||
2141 | #define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/ | ||
2142 | #define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/ | ||
2143 | |||
2144 | #endif /* _E1000_HW_H_ */ | ||
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c new file mode 100644 index 000000000000..82549a6fcfb3 --- /dev/null +++ b/drivers/net/e1000/e1000_main.c | |||
@@ -0,0 +1,3162 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | |||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the Free | ||
8 | Software Foundation; either version 2 of the License, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along with | ||
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | |||
20 | The full GNU General Public License is included in this distribution in the | ||
21 | file called LICENSE. | ||
22 | |||
23 | Contact Information: | ||
24 | Linux NICS <linux.nics@intel.com> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include "e1000.h" | ||
30 | |||
31 | /* Change Log | ||
32 | * 5.3.12 6/7/04 | ||
33 | * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com> | ||
34 | * - if_mii support and associated kcompat for older kernels | ||
35 | * - More errlogging support from Jon Mason <jonmason@us.ibm.com> | ||
36 | * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com> | ||
37 | * | ||
38 | * 5.7.1 12/16/04 | ||
39 | * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This | ||
40 | * fix was removed as it caused system instability. The suspected cause of | ||
41 | * this is the called to e1000_irq_disable in e1000_intr. Inlined the | ||
42 | * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard | ||
43 | * 5.7.0 12/10/04 | ||
44 | * - include fix to the condition that determines when to quit NAPI - Robert Olsson | ||
45 | * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down | ||
46 | * 5.6.5 11/01/04 | ||
47 | * - Enabling NETIF_F_SG without checksum offload is illegal - | ||
48 | John Mason <jdmason@us.ibm.com> | ||
49 | * 5.6.3 10/26/04 | ||
50 | * - Remove redundant initialization - Jamal Hadi | ||
51 | * - Reset buffer_info->dma in tx resource cleanup logic | ||
52 | * 5.6.2 10/12/04 | ||
53 | * - Avoid filling tx_ring completely - shemminger@osdl.org | ||
54 | * - Replace schedule_timeout() with msleep()/msleep_interruptible() - | ||
55 | * nacc@us.ibm.com | ||
56 | * - Sparse cleanup - shemminger@osdl.org | ||
57 | * - Fix tx resource cleanup logic | ||
58 | * - LLTX support - ak@suse.de and hadi@cyberus.ca | ||
59 | */ | ||
60 | |||
61 | char e1000_driver_name[] = "e1000"; | ||
62 | char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; | ||
63 | #ifndef CONFIG_E1000_NAPI | ||
64 | #define DRIVERNAPI | ||
65 | #else | ||
66 | #define DRIVERNAPI "-NAPI" | ||
67 | #endif | ||
68 | #define DRV_VERSION "5.7.6-k2"DRIVERNAPI | ||
69 | char e1000_driver_version[] = DRV_VERSION; | ||
70 | char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation."; | ||
71 | |||
72 | /* e1000_pci_tbl - PCI Device ID Table | ||
73 | * | ||
74 | * Last entry must be all 0s | ||
75 | * | ||
76 | * Macro expands to... | ||
77 | * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} | ||
78 | */ | ||
79 | static struct pci_device_id e1000_pci_tbl[] = { | ||
80 | INTEL_E1000_ETHERNET_DEVICE(0x1000), | ||
81 | INTEL_E1000_ETHERNET_DEVICE(0x1001), | ||
82 | INTEL_E1000_ETHERNET_DEVICE(0x1004), | ||
83 | INTEL_E1000_ETHERNET_DEVICE(0x1008), | ||
84 | INTEL_E1000_ETHERNET_DEVICE(0x1009), | ||
85 | INTEL_E1000_ETHERNET_DEVICE(0x100C), | ||
86 | INTEL_E1000_ETHERNET_DEVICE(0x100D), | ||
87 | INTEL_E1000_ETHERNET_DEVICE(0x100E), | ||
88 | INTEL_E1000_ETHERNET_DEVICE(0x100F), | ||
89 | INTEL_E1000_ETHERNET_DEVICE(0x1010), | ||
90 | INTEL_E1000_ETHERNET_DEVICE(0x1011), | ||
91 | INTEL_E1000_ETHERNET_DEVICE(0x1012), | ||
92 | INTEL_E1000_ETHERNET_DEVICE(0x1013), | ||
93 | INTEL_E1000_ETHERNET_DEVICE(0x1014), | ||
94 | INTEL_E1000_ETHERNET_DEVICE(0x1015), | ||
95 | INTEL_E1000_ETHERNET_DEVICE(0x1016), | ||
96 | INTEL_E1000_ETHERNET_DEVICE(0x1017), | ||
97 | INTEL_E1000_ETHERNET_DEVICE(0x1018), | ||
98 | INTEL_E1000_ETHERNET_DEVICE(0x1019), | ||
99 | INTEL_E1000_ETHERNET_DEVICE(0x101D), | ||
100 | INTEL_E1000_ETHERNET_DEVICE(0x101E), | ||
101 | INTEL_E1000_ETHERNET_DEVICE(0x1026), | ||
102 | INTEL_E1000_ETHERNET_DEVICE(0x1027), | ||
103 | INTEL_E1000_ETHERNET_DEVICE(0x1028), | ||
104 | INTEL_E1000_ETHERNET_DEVICE(0x1075), | ||
105 | INTEL_E1000_ETHERNET_DEVICE(0x1076), | ||
106 | INTEL_E1000_ETHERNET_DEVICE(0x1077), | ||
107 | INTEL_E1000_ETHERNET_DEVICE(0x1078), | ||
108 | INTEL_E1000_ETHERNET_DEVICE(0x1079), | ||
109 | INTEL_E1000_ETHERNET_DEVICE(0x107A), | ||
110 | INTEL_E1000_ETHERNET_DEVICE(0x107B), | ||
111 | INTEL_E1000_ETHERNET_DEVICE(0x107C), | ||
112 | INTEL_E1000_ETHERNET_DEVICE(0x108A), | ||
113 | /* required last entry */ | ||
114 | {0,} | ||
115 | }; | ||
116 | |||
117 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | ||
118 | |||
119 | int e1000_up(struct e1000_adapter *adapter); | ||
120 | void e1000_down(struct e1000_adapter *adapter); | ||
121 | void e1000_reset(struct e1000_adapter *adapter); | ||
122 | int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); | ||
123 | int e1000_setup_tx_resources(struct e1000_adapter *adapter); | ||
124 | int e1000_setup_rx_resources(struct e1000_adapter *adapter); | ||
125 | void e1000_free_tx_resources(struct e1000_adapter *adapter); | ||
126 | void e1000_free_rx_resources(struct e1000_adapter *adapter); | ||
127 | void e1000_update_stats(struct e1000_adapter *adapter); | ||
128 | |||
129 | /* Local Function Prototypes */ | ||
130 | |||
131 | static int e1000_init_module(void); | ||
132 | static void e1000_exit_module(void); | ||
133 | static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); | ||
134 | static void __devexit e1000_remove(struct pci_dev *pdev); | ||
135 | static int e1000_sw_init(struct e1000_adapter *adapter); | ||
136 | static int e1000_open(struct net_device *netdev); | ||
137 | static int e1000_close(struct net_device *netdev); | ||
138 | static void e1000_configure_tx(struct e1000_adapter *adapter); | ||
139 | static void e1000_configure_rx(struct e1000_adapter *adapter); | ||
140 | static void e1000_setup_rctl(struct e1000_adapter *adapter); | ||
141 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter); | ||
142 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter); | ||
143 | static void e1000_set_multi(struct net_device *netdev); | ||
144 | static void e1000_update_phy_info(unsigned long data); | ||
145 | static void e1000_watchdog(unsigned long data); | ||
146 | static void e1000_watchdog_task(struct e1000_adapter *adapter); | ||
147 | static void e1000_82547_tx_fifo_stall(unsigned long data); | ||
148 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); | ||
149 | static struct net_device_stats * e1000_get_stats(struct net_device *netdev); | ||
150 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu); | ||
151 | static int e1000_set_mac(struct net_device *netdev, void *p); | ||
152 | static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs); | ||
153 | static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter); | ||
154 | #ifdef CONFIG_E1000_NAPI | ||
155 | static int e1000_clean(struct net_device *netdev, int *budget); | ||
156 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, | ||
157 | int *work_done, int work_to_do); | ||
158 | #else | ||
159 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter); | ||
160 | #endif | ||
161 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter); | ||
162 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); | ||
163 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | ||
164 | int cmd); | ||
165 | void e1000_set_ethtool_ops(struct net_device *netdev); | ||
166 | static void e1000_enter_82542_rst(struct e1000_adapter *adapter); | ||
167 | static void e1000_leave_82542_rst(struct e1000_adapter *adapter); | ||
168 | static void e1000_tx_timeout(struct net_device *dev); | ||
169 | static void e1000_tx_timeout_task(struct net_device *dev); | ||
170 | static void e1000_smartspeed(struct e1000_adapter *adapter); | ||
171 | static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | ||
172 | struct sk_buff *skb); | ||
173 | |||
174 | static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); | ||
175 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); | ||
176 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); | ||
177 | static void e1000_restore_vlan(struct e1000_adapter *adapter); | ||
178 | |||
179 | static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr); | ||
180 | static int e1000_suspend(struct pci_dev *pdev, uint32_t state); | ||
181 | #ifdef CONFIG_PM | ||
182 | static int e1000_resume(struct pci_dev *pdev); | ||
183 | #endif | ||
184 | |||
185 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
186 | /* for netdump / net console */ | ||
187 | static void e1000_netpoll (struct net_device *netdev); | ||
188 | #endif | ||
189 | |||
190 | struct notifier_block e1000_notifier_reboot = { | ||
191 | .notifier_call = e1000_notify_reboot, | ||
192 | .next = NULL, | ||
193 | .priority = 0 | ||
194 | }; | ||
195 | |||
196 | /* Exported from other modules */ | ||
197 | |||
198 | extern void e1000_check_options(struct e1000_adapter *adapter); | ||
199 | |||
200 | static struct pci_driver e1000_driver = { | ||
201 | .name = e1000_driver_name, | ||
202 | .id_table = e1000_pci_tbl, | ||
203 | .probe = e1000_probe, | ||
204 | .remove = __devexit_p(e1000_remove), | ||
205 | /* Power Managment Hooks */ | ||
206 | #ifdef CONFIG_PM | ||
207 | .suspend = e1000_suspend, | ||
208 | .resume = e1000_resume | ||
209 | #endif | ||
210 | }; | ||
211 | |||
212 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | ||
213 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | ||
214 | MODULE_LICENSE("GPL"); | ||
215 | MODULE_VERSION(DRV_VERSION); | ||
216 | |||
217 | static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; | ||
218 | module_param(debug, int, 0); | ||
219 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | ||
220 | |||
221 | /** | ||
222 | * e1000_init_module - Driver Registration Routine | ||
223 | * | ||
224 | * e1000_init_module is the first routine called when the driver is | ||
225 | * loaded. All it does is register with the PCI subsystem. | ||
226 | **/ | ||
227 | |||
228 | static int __init | ||
229 | e1000_init_module(void) | ||
230 | { | ||
231 | int ret; | ||
232 | printk(KERN_INFO "%s - version %s\n", | ||
233 | e1000_driver_string, e1000_driver_version); | ||
234 | |||
235 | printk(KERN_INFO "%s\n", e1000_copyright); | ||
236 | |||
237 | ret = pci_module_init(&e1000_driver); | ||
238 | if(ret >= 0) { | ||
239 | register_reboot_notifier(&e1000_notifier_reboot); | ||
240 | } | ||
241 | return ret; | ||
242 | } | ||
243 | |||
244 | module_init(e1000_init_module); | ||
245 | |||
246 | /** | ||
247 | * e1000_exit_module - Driver Exit Cleanup Routine | ||
248 | * | ||
249 | * e1000_exit_module is called just before the driver is removed | ||
250 | * from memory. | ||
251 | **/ | ||
252 | |||
253 | static void __exit | ||
254 | e1000_exit_module(void) | ||
255 | { | ||
256 | unregister_reboot_notifier(&e1000_notifier_reboot); | ||
257 | pci_unregister_driver(&e1000_driver); | ||
258 | } | ||
259 | |||
260 | module_exit(e1000_exit_module); | ||
261 | |||
262 | /** | ||
263 | * e1000_irq_disable - Mask off interrupt generation on the NIC | ||
264 | * @adapter: board private structure | ||
265 | **/ | ||
266 | |||
267 | static inline void | ||
268 | e1000_irq_disable(struct e1000_adapter *adapter) | ||
269 | { | ||
270 | atomic_inc(&adapter->irq_sem); | ||
271 | E1000_WRITE_REG(&adapter->hw, IMC, ~0); | ||
272 | E1000_WRITE_FLUSH(&adapter->hw); | ||
273 | synchronize_irq(adapter->pdev->irq); | ||
274 | } | ||
275 | |||
276 | /** | ||
277 | * e1000_irq_enable - Enable default interrupt generation settings | ||
278 | * @adapter: board private structure | ||
279 | **/ | ||
280 | |||
281 | static inline void | ||
282 | e1000_irq_enable(struct e1000_adapter *adapter) | ||
283 | { | ||
284 | if(likely(atomic_dec_and_test(&adapter->irq_sem))) { | ||
285 | E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK); | ||
286 | E1000_WRITE_FLUSH(&adapter->hw); | ||
287 | } | ||
288 | } | ||
289 | |||
290 | int | ||
291 | e1000_up(struct e1000_adapter *adapter) | ||
292 | { | ||
293 | struct net_device *netdev = adapter->netdev; | ||
294 | int err; | ||
295 | |||
296 | /* hardware has been reset, we need to reload some things */ | ||
297 | |||
298 | /* Reset the PHY if it was previously powered down */ | ||
299 | if(adapter->hw.media_type == e1000_media_type_copper) { | ||
300 | uint16_t mii_reg; | ||
301 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
302 | if(mii_reg & MII_CR_POWER_DOWN) | ||
303 | e1000_phy_reset(&adapter->hw); | ||
304 | } | ||
305 | |||
306 | e1000_set_multi(netdev); | ||
307 | |||
308 | e1000_restore_vlan(adapter); | ||
309 | |||
310 | e1000_configure_tx(adapter); | ||
311 | e1000_setup_rctl(adapter); | ||
312 | e1000_configure_rx(adapter); | ||
313 | e1000_alloc_rx_buffers(adapter); | ||
314 | |||
315 | if((err = request_irq(adapter->pdev->irq, &e1000_intr, | ||
316 | SA_SHIRQ | SA_SAMPLE_RANDOM, | ||
317 | netdev->name, netdev))) | ||
318 | return err; | ||
319 | |||
320 | mod_timer(&adapter->watchdog_timer, jiffies); | ||
321 | e1000_irq_enable(adapter); | ||
322 | |||
323 | #ifdef CONFIG_E1000_NAPI | ||
324 | netif_poll_enable(netdev); | ||
325 | #endif | ||
326 | return 0; | ||
327 | } | ||
328 | |||
329 | void | ||
330 | e1000_down(struct e1000_adapter *adapter) | ||
331 | { | ||
332 | struct net_device *netdev = adapter->netdev; | ||
333 | |||
334 | e1000_irq_disable(adapter); | ||
335 | free_irq(adapter->pdev->irq, netdev); | ||
336 | del_timer_sync(&adapter->tx_fifo_stall_timer); | ||
337 | del_timer_sync(&adapter->watchdog_timer); | ||
338 | del_timer_sync(&adapter->phy_info_timer); | ||
339 | |||
340 | #ifdef CONFIG_E1000_NAPI | ||
341 | netif_poll_disable(netdev); | ||
342 | #endif | ||
343 | adapter->link_speed = 0; | ||
344 | adapter->link_duplex = 0; | ||
345 | netif_carrier_off(netdev); | ||
346 | netif_stop_queue(netdev); | ||
347 | |||
348 | e1000_reset(adapter); | ||
349 | e1000_clean_tx_ring(adapter); | ||
350 | e1000_clean_rx_ring(adapter); | ||
351 | |||
352 | /* If WoL is not enabled | ||
353 | * Power down the PHY so no link is implied when interface is down */ | ||
354 | if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) { | ||
355 | uint16_t mii_reg; | ||
356 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | ||
357 | mii_reg |= MII_CR_POWER_DOWN; | ||
358 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | ||
359 | } | ||
360 | } | ||
361 | |||
362 | void | ||
363 | e1000_reset(struct e1000_adapter *adapter) | ||
364 | { | ||
365 | uint32_t pba; | ||
366 | |||
367 | /* Repartition Pba for greater than 9k mtu | ||
368 | * To take effect CTRL.RST is required. | ||
369 | */ | ||
370 | |||
371 | if(adapter->hw.mac_type < e1000_82547) { | ||
372 | if(adapter->rx_buffer_len > E1000_RXBUFFER_8192) | ||
373 | pba = E1000_PBA_40K; | ||
374 | else | ||
375 | pba = E1000_PBA_48K; | ||
376 | } else { | ||
377 | if(adapter->rx_buffer_len > E1000_RXBUFFER_8192) | ||
378 | pba = E1000_PBA_22K; | ||
379 | else | ||
380 | pba = E1000_PBA_30K; | ||
381 | adapter->tx_fifo_head = 0; | ||
382 | adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; | ||
383 | adapter->tx_fifo_size = | ||
384 | (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; | ||
385 | atomic_set(&adapter->tx_fifo_stall, 0); | ||
386 | } | ||
387 | E1000_WRITE_REG(&adapter->hw, PBA, pba); | ||
388 | |||
389 | /* flow control settings */ | ||
390 | adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) - | ||
391 | E1000_FC_HIGH_DIFF; | ||
392 | adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) - | ||
393 | E1000_FC_LOW_DIFF; | ||
394 | adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; | ||
395 | adapter->hw.fc_send_xon = 1; | ||
396 | adapter->hw.fc = adapter->hw.original_fc; | ||
397 | |||
398 | e1000_reset_hw(&adapter->hw); | ||
399 | if(adapter->hw.mac_type >= e1000_82544) | ||
400 | E1000_WRITE_REG(&adapter->hw, WUC, 0); | ||
401 | if(e1000_init_hw(&adapter->hw)) | ||
402 | DPRINTK(PROBE, ERR, "Hardware Error\n"); | ||
403 | |||
404 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
405 | E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); | ||
406 | |||
407 | e1000_reset_adaptive(&adapter->hw); | ||
408 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | ||
409 | } | ||
410 | |||
411 | /** | ||
412 | * e1000_probe - Device Initialization Routine | ||
413 | * @pdev: PCI device information struct | ||
414 | * @ent: entry in e1000_pci_tbl | ||
415 | * | ||
416 | * Returns 0 on success, negative on failure | ||
417 | * | ||
418 | * e1000_probe initializes an adapter identified by a pci_dev structure. | ||
419 | * The OS initialization, configuring of the adapter private structure, | ||
420 | * and a hardware reset occur. | ||
421 | **/ | ||
422 | |||
423 | static int __devinit | ||
424 | e1000_probe(struct pci_dev *pdev, | ||
425 | const struct pci_device_id *ent) | ||
426 | { | ||
427 | struct net_device *netdev; | ||
428 | struct e1000_adapter *adapter; | ||
429 | static int cards_found = 0; | ||
430 | unsigned long mmio_start; | ||
431 | int mmio_len; | ||
432 | int pci_using_dac; | ||
433 | int i; | ||
434 | int err; | ||
435 | uint16_t eeprom_data; | ||
436 | uint16_t eeprom_apme_mask = E1000_EEPROM_APME; | ||
437 | |||
438 | if((err = pci_enable_device(pdev))) | ||
439 | return err; | ||
440 | |||
441 | if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) { | ||
442 | pci_using_dac = 1; | ||
443 | } else { | ||
444 | if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { | ||
445 | E1000_ERR("No usable DMA configuration, aborting\n"); | ||
446 | return err; | ||
447 | } | ||
448 | pci_using_dac = 0; | ||
449 | } | ||
450 | |||
451 | if((err = pci_request_regions(pdev, e1000_driver_name))) | ||
452 | return err; | ||
453 | |||
454 | pci_set_master(pdev); | ||
455 | |||
456 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | ||
457 | if(!netdev) { | ||
458 | err = -ENOMEM; | ||
459 | goto err_alloc_etherdev; | ||
460 | } | ||
461 | |||
462 | SET_MODULE_OWNER(netdev); | ||
463 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
464 | |||
465 | pci_set_drvdata(pdev, netdev); | ||
466 | adapter = netdev->priv; | ||
467 | adapter->netdev = netdev; | ||
468 | adapter->pdev = pdev; | ||
469 | adapter->hw.back = adapter; | ||
470 | adapter->msg_enable = (1 << debug) - 1; | ||
471 | |||
472 | mmio_start = pci_resource_start(pdev, BAR_0); | ||
473 | mmio_len = pci_resource_len(pdev, BAR_0); | ||
474 | |||
475 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | ||
476 | if(!adapter->hw.hw_addr) { | ||
477 | err = -EIO; | ||
478 | goto err_ioremap; | ||
479 | } | ||
480 | |||
481 | for(i = BAR_1; i <= BAR_5; i++) { | ||
482 | if(pci_resource_len(pdev, i) == 0) | ||
483 | continue; | ||
484 | if(pci_resource_flags(pdev, i) & IORESOURCE_IO) { | ||
485 | adapter->hw.io_base = pci_resource_start(pdev, i); | ||
486 | break; | ||
487 | } | ||
488 | } | ||
489 | |||
490 | netdev->open = &e1000_open; | ||
491 | netdev->stop = &e1000_close; | ||
492 | netdev->hard_start_xmit = &e1000_xmit_frame; | ||
493 | netdev->get_stats = &e1000_get_stats; | ||
494 | netdev->set_multicast_list = &e1000_set_multi; | ||
495 | netdev->set_mac_address = &e1000_set_mac; | ||
496 | netdev->change_mtu = &e1000_change_mtu; | ||
497 | netdev->do_ioctl = &e1000_ioctl; | ||
498 | e1000_set_ethtool_ops(netdev); | ||
499 | netdev->tx_timeout = &e1000_tx_timeout; | ||
500 | netdev->watchdog_timeo = 5 * HZ; | ||
501 | #ifdef CONFIG_E1000_NAPI | ||
502 | netdev->poll = &e1000_clean; | ||
503 | netdev->weight = 64; | ||
504 | #endif | ||
505 | netdev->vlan_rx_register = e1000_vlan_rx_register; | ||
506 | netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; | ||
507 | netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; | ||
508 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
509 | netdev->poll_controller = e1000_netpoll; | ||
510 | #endif | ||
511 | strcpy(netdev->name, pci_name(pdev)); | ||
512 | |||
513 | netdev->mem_start = mmio_start; | ||
514 | netdev->mem_end = mmio_start + mmio_len; | ||
515 | netdev->base_addr = adapter->hw.io_base; | ||
516 | |||
517 | adapter->bd_number = cards_found; | ||
518 | |||
519 | /* setup the private structure */ | ||
520 | |||
521 | if((err = e1000_sw_init(adapter))) | ||
522 | goto err_sw_init; | ||
523 | |||
524 | if(adapter->hw.mac_type >= e1000_82543) { | ||
525 | netdev->features = NETIF_F_SG | | ||
526 | NETIF_F_HW_CSUM | | ||
527 | NETIF_F_HW_VLAN_TX | | ||
528 | NETIF_F_HW_VLAN_RX | | ||
529 | NETIF_F_HW_VLAN_FILTER; | ||
530 | } | ||
531 | |||
532 | #ifdef NETIF_F_TSO | ||
533 | if((adapter->hw.mac_type >= e1000_82544) && | ||
534 | (adapter->hw.mac_type != e1000_82547)) | ||
535 | netdev->features |= NETIF_F_TSO; | ||
536 | #endif | ||
537 | if(pci_using_dac) | ||
538 | netdev->features |= NETIF_F_HIGHDMA; | ||
539 | |||
540 | /* hard_start_xmit is safe against parallel locking */ | ||
541 | netdev->features |= NETIF_F_LLTX; | ||
542 | |||
543 | /* before reading the EEPROM, reset the controller to | ||
544 | * put the device in a known good starting state */ | ||
545 | |||
546 | e1000_reset_hw(&adapter->hw); | ||
547 | |||
548 | /* make sure the EEPROM is good */ | ||
549 | |||
550 | if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) { | ||
551 | DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); | ||
552 | err = -EIO; | ||
553 | goto err_eeprom; | ||
554 | } | ||
555 | |||
556 | /* copy the MAC address out of the EEPROM */ | ||
557 | |||
558 | if (e1000_read_mac_addr(&adapter->hw)) | ||
559 | DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); | ||
560 | memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); | ||
561 | |||
562 | if(!is_valid_ether_addr(netdev->dev_addr)) { | ||
563 | DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); | ||
564 | err = -EIO; | ||
565 | goto err_eeprom; | ||
566 | } | ||
567 | |||
568 | e1000_read_part_num(&adapter->hw, &(adapter->part_num)); | ||
569 | |||
570 | e1000_get_bus_info(&adapter->hw); | ||
571 | |||
572 | init_timer(&adapter->tx_fifo_stall_timer); | ||
573 | adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; | ||
574 | adapter->tx_fifo_stall_timer.data = (unsigned long) adapter; | ||
575 | |||
576 | init_timer(&adapter->watchdog_timer); | ||
577 | adapter->watchdog_timer.function = &e1000_watchdog; | ||
578 | adapter->watchdog_timer.data = (unsigned long) adapter; | ||
579 | |||
580 | INIT_WORK(&adapter->watchdog_task, | ||
581 | (void (*)(void *))e1000_watchdog_task, adapter); | ||
582 | |||
583 | init_timer(&adapter->phy_info_timer); | ||
584 | adapter->phy_info_timer.function = &e1000_update_phy_info; | ||
585 | adapter->phy_info_timer.data = (unsigned long) adapter; | ||
586 | |||
587 | INIT_WORK(&adapter->tx_timeout_task, | ||
588 | (void (*)(void *))e1000_tx_timeout_task, netdev); | ||
589 | |||
590 | /* we're going to reset, so assume we have no link for now */ | ||
591 | |||
592 | netif_carrier_off(netdev); | ||
593 | netif_stop_queue(netdev); | ||
594 | |||
595 | e1000_check_options(adapter); | ||
596 | |||
597 | /* Initial Wake on LAN setting | ||
598 | * If APM wake is enabled in the EEPROM, | ||
599 | * enable the ACPI Magic Packet filter | ||
600 | */ | ||
601 | |||
602 | switch(adapter->hw.mac_type) { | ||
603 | case e1000_82542_rev2_0: | ||
604 | case e1000_82542_rev2_1: | ||
605 | case e1000_82543: | ||
606 | break; | ||
607 | case e1000_82544: | ||
608 | e1000_read_eeprom(&adapter->hw, | ||
609 | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); | ||
610 | eeprom_apme_mask = E1000_EEPROM_82544_APM; | ||
611 | break; | ||
612 | case e1000_82546: | ||
613 | case e1000_82546_rev_3: | ||
614 | if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1) | ||
615 | && (adapter->hw.media_type == e1000_media_type_copper)) { | ||
616 | e1000_read_eeprom(&adapter->hw, | ||
617 | EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | ||
618 | break; | ||
619 | } | ||
620 | /* Fall Through */ | ||
621 | default: | ||
622 | e1000_read_eeprom(&adapter->hw, | ||
623 | EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | ||
624 | break; | ||
625 | } | ||
626 | if(eeprom_data & eeprom_apme_mask) | ||
627 | adapter->wol |= E1000_WUFC_MAG; | ||
628 | |||
629 | /* reset the hardware with the new settings */ | ||
630 | e1000_reset(adapter); | ||
631 | |||
632 | strcpy(netdev->name, "eth%d"); | ||
633 | if((err = register_netdev(netdev))) | ||
634 | goto err_register; | ||
635 | |||
636 | DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); | ||
637 | |||
638 | cards_found++; | ||
639 | return 0; | ||
640 | |||
641 | err_register: | ||
642 | err_sw_init: | ||
643 | err_eeprom: | ||
644 | iounmap(adapter->hw.hw_addr); | ||
645 | err_ioremap: | ||
646 | free_netdev(netdev); | ||
647 | err_alloc_etherdev: | ||
648 | pci_release_regions(pdev); | ||
649 | return err; | ||
650 | } | ||
651 | |||
652 | /** | ||
653 | * e1000_remove - Device Removal Routine | ||
654 | * @pdev: PCI device information struct | ||
655 | * | ||
656 | * e1000_remove is called by the PCI subsystem to alert the driver | ||
657 | * that it should release a PCI device. The could be caused by a | ||
658 | * Hot-Plug event, or because the driver is going to be removed from | ||
659 | * memory. | ||
660 | **/ | ||
661 | |||
662 | static void __devexit | ||
663 | e1000_remove(struct pci_dev *pdev) | ||
664 | { | ||
665 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
666 | struct e1000_adapter *adapter = netdev->priv; | ||
667 | uint32_t manc; | ||
668 | |||
669 | flush_scheduled_work(); | ||
670 | |||
671 | if(adapter->hw.mac_type >= e1000_82540 && | ||
672 | adapter->hw.media_type == e1000_media_type_copper) { | ||
673 | manc = E1000_READ_REG(&adapter->hw, MANC); | ||
674 | if(manc & E1000_MANC_SMBUS_EN) { | ||
675 | manc |= E1000_MANC_ARP_EN; | ||
676 | E1000_WRITE_REG(&adapter->hw, MANC, manc); | ||
677 | } | ||
678 | } | ||
679 | |||
680 | unregister_netdev(netdev); | ||
681 | |||
682 | e1000_phy_hw_reset(&adapter->hw); | ||
683 | |||
684 | iounmap(adapter->hw.hw_addr); | ||
685 | pci_release_regions(pdev); | ||
686 | |||
687 | free_netdev(netdev); | ||
688 | |||
689 | pci_disable_device(pdev); | ||
690 | } | ||
691 | |||
692 | /** | ||
693 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | ||
694 | * @adapter: board private structure to initialize | ||
695 | * | ||
696 | * e1000_sw_init initializes the Adapter private data structure. | ||
697 | * Fields are initialized based on PCI device information and | ||
698 | * OS network device settings (MTU size). | ||
699 | **/ | ||
700 | |||
701 | static int __devinit | ||
702 | e1000_sw_init(struct e1000_adapter *adapter) | ||
703 | { | ||
704 | struct e1000_hw *hw = &adapter->hw; | ||
705 | struct net_device *netdev = adapter->netdev; | ||
706 | struct pci_dev *pdev = adapter->pdev; | ||
707 | |||
708 | /* PCI config space info */ | ||
709 | |||
710 | hw->vendor_id = pdev->vendor; | ||
711 | hw->device_id = pdev->device; | ||
712 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
713 | hw->subsystem_id = pdev->subsystem_device; | ||
714 | |||
715 | pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); | ||
716 | |||
717 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); | ||
718 | |||
719 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | ||
720 | hw->max_frame_size = netdev->mtu + | ||
721 | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | ||
722 | hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; | ||
723 | |||
724 | /* identify the MAC */ | ||
725 | |||
726 | if(e1000_set_mac_type(hw)) { | ||
727 | DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); | ||
728 | return -EIO; | ||
729 | } | ||
730 | |||
731 | /* initialize eeprom parameters */ | ||
732 | |||
733 | e1000_init_eeprom_params(hw); | ||
734 | |||
735 | switch(hw->mac_type) { | ||
736 | default: | ||
737 | break; | ||
738 | case e1000_82541: | ||
739 | case e1000_82547: | ||
740 | case e1000_82541_rev_2: | ||
741 | case e1000_82547_rev_2: | ||
742 | hw->phy_init_script = 1; | ||
743 | break; | ||
744 | } | ||
745 | |||
746 | e1000_set_media_type(hw); | ||
747 | |||
748 | hw->wait_autoneg_complete = FALSE; | ||
749 | hw->tbi_compatibility_en = TRUE; | ||
750 | hw->adaptive_ifs = TRUE; | ||
751 | |||
752 | /* Copper options */ | ||
753 | |||
754 | if(hw->media_type == e1000_media_type_copper) { | ||
755 | hw->mdix = AUTO_ALL_MODES; | ||
756 | hw->disable_polarity_correction = FALSE; | ||
757 | hw->master_slave = E1000_MASTER_SLAVE; | ||
758 | } | ||
759 | |||
760 | atomic_set(&adapter->irq_sem, 1); | ||
761 | spin_lock_init(&adapter->stats_lock); | ||
762 | spin_lock_init(&adapter->tx_lock); | ||
763 | |||
764 | return 0; | ||
765 | } | ||
766 | |||
767 | /** | ||
768 | * e1000_open - Called when a network interface is made active | ||
769 | * @netdev: network interface device structure | ||
770 | * | ||
771 | * Returns 0 on success, negative value on failure | ||
772 | * | ||
773 | * The open entry point is called when a network interface is made | ||
774 | * active by the system (IFF_UP). At this point all resources needed | ||
775 | * for transmit and receive operations are allocated, the interrupt | ||
776 | * handler is registered with the OS, the watchdog timer is started, | ||
777 | * and the stack is notified that the interface is ready. | ||
778 | **/ | ||
779 | |||
780 | static int | ||
781 | e1000_open(struct net_device *netdev) | ||
782 | { | ||
783 | struct e1000_adapter *adapter = netdev->priv; | ||
784 | int err; | ||
785 | |||
786 | /* allocate transmit descriptors */ | ||
787 | |||
788 | if((err = e1000_setup_tx_resources(adapter))) | ||
789 | goto err_setup_tx; | ||
790 | |||
791 | /* allocate receive descriptors */ | ||
792 | |||
793 | if((err = e1000_setup_rx_resources(adapter))) | ||
794 | goto err_setup_rx; | ||
795 | |||
796 | if((err = e1000_up(adapter))) | ||
797 | goto err_up; | ||
798 | |||
799 | return E1000_SUCCESS; | ||
800 | |||
801 | err_up: | ||
802 | e1000_free_rx_resources(adapter); | ||
803 | err_setup_rx: | ||
804 | e1000_free_tx_resources(adapter); | ||
805 | err_setup_tx: | ||
806 | e1000_reset(adapter); | ||
807 | |||
808 | return err; | ||
809 | } | ||
810 | |||
811 | /** | ||
812 | * e1000_close - Disables a network interface | ||
813 | * @netdev: network interface device structure | ||
814 | * | ||
815 | * Returns 0, this is not allowed to fail | ||
816 | * | ||
817 | * The close entry point is called when an interface is de-activated | ||
818 | * by the OS. The hardware is still under the drivers control, but | ||
819 | * needs to be disabled. A global MAC reset is issued to stop the | ||
820 | * hardware, and all transmit and receive resources are freed. | ||
821 | **/ | ||
822 | |||
823 | static int | ||
824 | e1000_close(struct net_device *netdev) | ||
825 | { | ||
826 | struct e1000_adapter *adapter = netdev->priv; | ||
827 | |||
828 | e1000_down(adapter); | ||
829 | |||
830 | e1000_free_tx_resources(adapter); | ||
831 | e1000_free_rx_resources(adapter); | ||
832 | |||
833 | return 0; | ||
834 | } | ||
835 | |||
836 | /** | ||
837 | * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary | ||
838 | * @adapter: address of board private structure | ||
839 | * @begin: address of beginning of memory | ||
840 | * @end: address of end of memory | ||
841 | **/ | ||
842 | static inline boolean_t | ||
843 | e1000_check_64k_bound(struct e1000_adapter *adapter, | ||
844 | void *start, unsigned long len) | ||
845 | { | ||
846 | unsigned long begin = (unsigned long) start; | ||
847 | unsigned long end = begin + len; | ||
848 | |||
849 | /* first rev 82545 and 82546 need to not allow any memory | ||
850 | * write location to cross a 64k boundary due to errata 23 */ | ||
851 | if (adapter->hw.mac_type == e1000_82545 || | ||
852 | adapter->hw.mac_type == e1000_82546 ) { | ||
853 | |||
854 | /* check buffer doesn't cross 64kB */ | ||
855 | return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE; | ||
856 | } | ||
857 | |||
858 | return TRUE; | ||
859 | } | ||
860 | |||
861 | /** | ||
862 | * e1000_setup_tx_resources - allocate Tx resources (Descriptors) | ||
863 | * @adapter: board private structure | ||
864 | * | ||
865 | * Return 0 on success, negative on failure | ||
866 | **/ | ||
867 | |||
868 | int | ||
869 | e1000_setup_tx_resources(struct e1000_adapter *adapter) | ||
870 | { | ||
871 | struct e1000_desc_ring *txdr = &adapter->tx_ring; | ||
872 | struct pci_dev *pdev = adapter->pdev; | ||
873 | int size; | ||
874 | |||
875 | size = sizeof(struct e1000_buffer) * txdr->count; | ||
876 | txdr->buffer_info = vmalloc(size); | ||
877 | if(!txdr->buffer_info) { | ||
878 | DPRINTK(PROBE, ERR, | ||
879 | "Unable to Allocate Memory for the Transmit descriptor ring\n"); | ||
880 | return -ENOMEM; | ||
881 | } | ||
882 | memset(txdr->buffer_info, 0, size); | ||
883 | |||
884 | /* round up to nearest 4K */ | ||
885 | |||
886 | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | ||
887 | E1000_ROUNDUP(txdr->size, 4096); | ||
888 | |||
889 | txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); | ||
890 | if(!txdr->desc) { | ||
891 | setup_tx_desc_die: | ||
892 | DPRINTK(PROBE, ERR, | ||
893 | "Unable to Allocate Memory for the Transmit descriptor ring\n"); | ||
894 | vfree(txdr->buffer_info); | ||
895 | return -ENOMEM; | ||
896 | } | ||
897 | |||
898 | /* fix for errata 23, cant cross 64kB boundary */ | ||
899 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | ||
900 | void *olddesc = txdr->desc; | ||
901 | dma_addr_t olddma = txdr->dma; | ||
902 | DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n", | ||
903 | txdr->size, txdr->desc); | ||
904 | /* try again, without freeing the previous */ | ||
905 | txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); | ||
906 | /* failed allocation, critial failure */ | ||
907 | if(!txdr->desc) { | ||
908 | pci_free_consistent(pdev, txdr->size, olddesc, olddma); | ||
909 | goto setup_tx_desc_die; | ||
910 | } | ||
911 | |||
912 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | ||
913 | /* give up */ | ||
914 | pci_free_consistent(pdev, txdr->size, | ||
915 | txdr->desc, txdr->dma); | ||
916 | pci_free_consistent(pdev, txdr->size, olddesc, olddma); | ||
917 | DPRINTK(PROBE, ERR, | ||
918 | "Unable to Allocate aligned Memory for the Transmit" | ||
919 | " descriptor ring\n"); | ||
920 | vfree(txdr->buffer_info); | ||
921 | return -ENOMEM; | ||
922 | } else { | ||
923 | /* free old, move on with the new one since its okay */ | ||
924 | pci_free_consistent(pdev, txdr->size, olddesc, olddma); | ||
925 | } | ||
926 | } | ||
927 | memset(txdr->desc, 0, txdr->size); | ||
928 | |||
929 | txdr->next_to_use = 0; | ||
930 | txdr->next_to_clean = 0; | ||
931 | |||
932 | return 0; | ||
933 | } | ||
934 | |||
935 | /** | ||
936 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | ||
937 | * @adapter: board private structure | ||
938 | * | ||
939 | * Configure the Tx unit of the MAC after a reset. | ||
940 | **/ | ||
941 | |||
942 | static void | ||
943 | e1000_configure_tx(struct e1000_adapter *adapter) | ||
944 | { | ||
945 | uint64_t tdba = adapter->tx_ring.dma; | ||
946 | uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc); | ||
947 | uint32_t tctl, tipg; | ||
948 | |||
949 | E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL)); | ||
950 | E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32)); | ||
951 | |||
952 | E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen); | ||
953 | |||
954 | /* Setup the HW Tx Head and Tail descriptor pointers */ | ||
955 | |||
956 | E1000_WRITE_REG(&adapter->hw, TDH, 0); | ||
957 | E1000_WRITE_REG(&adapter->hw, TDT, 0); | ||
958 | |||
959 | /* Set the default values for the Tx Inter Packet Gap timer */ | ||
960 | |||
961 | switch (adapter->hw.mac_type) { | ||
962 | case e1000_82542_rev2_0: | ||
963 | case e1000_82542_rev2_1: | ||
964 | tipg = DEFAULT_82542_TIPG_IPGT; | ||
965 | tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; | ||
966 | tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; | ||
967 | break; | ||
968 | default: | ||
969 | if(adapter->hw.media_type == e1000_media_type_fiber || | ||
970 | adapter->hw.media_type == e1000_media_type_internal_serdes) | ||
971 | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; | ||
972 | else | ||
973 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; | ||
974 | tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; | ||
975 | tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; | ||
976 | } | ||
977 | E1000_WRITE_REG(&adapter->hw, TIPG, tipg); | ||
978 | |||
979 | /* Set the Tx Interrupt Delay register */ | ||
980 | |||
981 | E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay); | ||
982 | if(adapter->hw.mac_type >= e1000_82540) | ||
983 | E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay); | ||
984 | |||
985 | /* Program the Transmit Control Register */ | ||
986 | |||
987 | tctl = E1000_READ_REG(&adapter->hw, TCTL); | ||
988 | |||
989 | tctl &= ~E1000_TCTL_CT; | ||
990 | tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | | ||
991 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
992 | |||
993 | E1000_WRITE_REG(&adapter->hw, TCTL, tctl); | ||
994 | |||
995 | e1000_config_collision_dist(&adapter->hw); | ||
996 | |||
997 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
998 | adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP | | ||
999 | E1000_TXD_CMD_IFCS; | ||
1000 | |||
1001 | if(adapter->hw.mac_type < e1000_82543) | ||
1002 | adapter->txd_cmd |= E1000_TXD_CMD_RPS; | ||
1003 | else | ||
1004 | adapter->txd_cmd |= E1000_TXD_CMD_RS; | ||
1005 | |||
1006 | /* Cache if we're 82544 running in PCI-X because we'll | ||
1007 | * need this to apply a workaround later in the send path. */ | ||
1008 | if(adapter->hw.mac_type == e1000_82544 && | ||
1009 | adapter->hw.bus_type == e1000_bus_type_pcix) | ||
1010 | adapter->pcix_82544 = 1; | ||
1011 | } | ||
1012 | |||
1013 | /** | ||
1014 | * e1000_setup_rx_resources - allocate Rx resources (Descriptors) | ||
1015 | * @adapter: board private structure | ||
1016 | * | ||
1017 | * Returns 0 on success, negative on failure | ||
1018 | **/ | ||
1019 | |||
1020 | int | ||
1021 | e1000_setup_rx_resources(struct e1000_adapter *adapter) | ||
1022 | { | ||
1023 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; | ||
1024 | struct pci_dev *pdev = adapter->pdev; | ||
1025 | int size; | ||
1026 | |||
1027 | size = sizeof(struct e1000_buffer) * rxdr->count; | ||
1028 | rxdr->buffer_info = vmalloc(size); | ||
1029 | if(!rxdr->buffer_info) { | ||
1030 | DPRINTK(PROBE, ERR, | ||
1031 | "Unable to Allocate Memory for the Recieve descriptor ring\n"); | ||
1032 | return -ENOMEM; | ||
1033 | } | ||
1034 | memset(rxdr->buffer_info, 0, size); | ||
1035 | |||
1036 | /* Round up to nearest 4K */ | ||
1037 | |||
1038 | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | ||
1039 | E1000_ROUNDUP(rxdr->size, 4096); | ||
1040 | |||
1041 | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); | ||
1042 | |||
1043 | if(!rxdr->desc) { | ||
1044 | setup_rx_desc_die: | ||
1045 | DPRINTK(PROBE, ERR, | ||
1046 | "Unble to Allocate Memory for the Recieve descriptor ring\n"); | ||
1047 | vfree(rxdr->buffer_info); | ||
1048 | return -ENOMEM; | ||
1049 | } | ||
1050 | |||
1051 | /* fix for errata 23, cant cross 64kB boundary */ | ||
1052 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | ||
1053 | void *olddesc = rxdr->desc; | ||
1054 | dma_addr_t olddma = rxdr->dma; | ||
1055 | DPRINTK(RX_ERR,ERR, | ||
1056 | "rxdr align check failed: %u bytes at %p\n", | ||
1057 | rxdr->size, rxdr->desc); | ||
1058 | /* try again, without freeing the previous */ | ||
1059 | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); | ||
1060 | /* failed allocation, critial failure */ | ||
1061 | if(!rxdr->desc) { | ||
1062 | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | ||
1063 | goto setup_rx_desc_die; | ||
1064 | } | ||
1065 | |||
1066 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | ||
1067 | /* give up */ | ||
1068 | pci_free_consistent(pdev, rxdr->size, | ||
1069 | rxdr->desc, rxdr->dma); | ||
1070 | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | ||
1071 | DPRINTK(PROBE, ERR, | ||
1072 | "Unable to Allocate aligned Memory for the" | ||
1073 | " Receive descriptor ring\n"); | ||
1074 | vfree(rxdr->buffer_info); | ||
1075 | return -ENOMEM; | ||
1076 | } else { | ||
1077 | /* free old, move on with the new one since its okay */ | ||
1078 | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | ||
1079 | } | ||
1080 | } | ||
1081 | memset(rxdr->desc, 0, rxdr->size); | ||
1082 | |||
1083 | rxdr->next_to_clean = 0; | ||
1084 | rxdr->next_to_use = 0; | ||
1085 | |||
1086 | return 0; | ||
1087 | } | ||
1088 | |||
1089 | /** | ||
1090 | * e1000_setup_rctl - configure the receive control register | ||
1091 | * @adapter: Board private structure | ||
1092 | **/ | ||
1093 | |||
1094 | static void | ||
1095 | e1000_setup_rctl(struct e1000_adapter *adapter) | ||
1096 | { | ||
1097 | uint32_t rctl; | ||
1098 | |||
1099 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
1100 | |||
1101 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
1102 | |||
1103 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | ||
1104 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1105 | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1106 | |||
1107 | if(adapter->hw.tbi_compatibility_on == 1) | ||
1108 | rctl |= E1000_RCTL_SBP; | ||
1109 | else | ||
1110 | rctl &= ~E1000_RCTL_SBP; | ||
1111 | |||
1112 | /* Setup buffer sizes */ | ||
1113 | rctl &= ~(E1000_RCTL_SZ_4096); | ||
1114 | rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE); | ||
1115 | switch (adapter->rx_buffer_len) { | ||
1116 | case E1000_RXBUFFER_2048: | ||
1117 | default: | ||
1118 | rctl |= E1000_RCTL_SZ_2048; | ||
1119 | rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); | ||
1120 | break; | ||
1121 | case E1000_RXBUFFER_4096: | ||
1122 | rctl |= E1000_RCTL_SZ_4096; | ||
1123 | break; | ||
1124 | case E1000_RXBUFFER_8192: | ||
1125 | rctl |= E1000_RCTL_SZ_8192; | ||
1126 | break; | ||
1127 | case E1000_RXBUFFER_16384: | ||
1128 | rctl |= E1000_RCTL_SZ_16384; | ||
1129 | break; | ||
1130 | } | ||
1131 | |||
1132 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1133 | } | ||
1134 | |||
1135 | /** | ||
1136 | * e1000_configure_rx - Configure 8254x Receive Unit after Reset | ||
1137 | * @adapter: board private structure | ||
1138 | * | ||
1139 | * Configure the Rx unit of the MAC after a reset. | ||
1140 | **/ | ||
1141 | |||
1142 | static void | ||
1143 | e1000_configure_rx(struct e1000_adapter *adapter) | ||
1144 | { | ||
1145 | uint64_t rdba = adapter->rx_ring.dma; | ||
1146 | uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc); | ||
1147 | uint32_t rctl; | ||
1148 | uint32_t rxcsum; | ||
1149 | |||
1150 | /* disable receives while setting up the descriptors */ | ||
1151 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
1152 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); | ||
1153 | |||
1154 | /* set the Receive Delay Timer Register */ | ||
1155 | E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay); | ||
1156 | |||
1157 | if(adapter->hw.mac_type >= e1000_82540) { | ||
1158 | E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay); | ||
1159 | if(adapter->itr > 1) | ||
1160 | E1000_WRITE_REG(&adapter->hw, ITR, | ||
1161 | 1000000000 / (adapter->itr * 256)); | ||
1162 | } | ||
1163 | |||
1164 | /* Setup the Base and Length of the Rx Descriptor Ring */ | ||
1165 | E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL)); | ||
1166 | E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32)); | ||
1167 | |||
1168 | E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen); | ||
1169 | |||
1170 | /* Setup the HW Rx Head and Tail Descriptor Pointers */ | ||
1171 | E1000_WRITE_REG(&adapter->hw, RDH, 0); | ||
1172 | E1000_WRITE_REG(&adapter->hw, RDT, 0); | ||
1173 | |||
1174 | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ | ||
1175 | if((adapter->hw.mac_type >= e1000_82543) && | ||
1176 | (adapter->rx_csum == TRUE)) { | ||
1177 | rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM); | ||
1178 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
1179 | E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum); | ||
1180 | } | ||
1181 | |||
1182 | /* Enable Receives */ | ||
1183 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1184 | } | ||
1185 | |||
1186 | /** | ||
1187 | * e1000_free_tx_resources - Free Tx Resources | ||
1188 | * @adapter: board private structure | ||
1189 | * | ||
1190 | * Free all transmit software resources | ||
1191 | **/ | ||
1192 | |||
1193 | void | ||
1194 | e1000_free_tx_resources(struct e1000_adapter *adapter) | ||
1195 | { | ||
1196 | struct pci_dev *pdev = adapter->pdev; | ||
1197 | |||
1198 | e1000_clean_tx_ring(adapter); | ||
1199 | |||
1200 | vfree(adapter->tx_ring.buffer_info); | ||
1201 | adapter->tx_ring.buffer_info = NULL; | ||
1202 | |||
1203 | pci_free_consistent(pdev, adapter->tx_ring.size, | ||
1204 | adapter->tx_ring.desc, adapter->tx_ring.dma); | ||
1205 | |||
1206 | adapter->tx_ring.desc = NULL; | ||
1207 | } | ||
1208 | |||
1209 | static inline void | ||
1210 | e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, | ||
1211 | struct e1000_buffer *buffer_info) | ||
1212 | { | ||
1213 | struct pci_dev *pdev = adapter->pdev; | ||
1214 | |||
1215 | if(buffer_info->dma) { | ||
1216 | pci_unmap_page(pdev, | ||
1217 | buffer_info->dma, | ||
1218 | buffer_info->length, | ||
1219 | PCI_DMA_TODEVICE); | ||
1220 | buffer_info->dma = 0; | ||
1221 | } | ||
1222 | if(buffer_info->skb) { | ||
1223 | dev_kfree_skb_any(buffer_info->skb); | ||
1224 | buffer_info->skb = NULL; | ||
1225 | } | ||
1226 | } | ||
1227 | |||
1228 | /** | ||
1229 | * e1000_clean_tx_ring - Free Tx Buffers | ||
1230 | * @adapter: board private structure | ||
1231 | **/ | ||
1232 | |||
1233 | static void | ||
1234 | e1000_clean_tx_ring(struct e1000_adapter *adapter) | ||
1235 | { | ||
1236 | struct e1000_desc_ring *tx_ring = &adapter->tx_ring; | ||
1237 | struct e1000_buffer *buffer_info; | ||
1238 | unsigned long size; | ||
1239 | unsigned int i; | ||
1240 | |||
1241 | /* Free all the Tx ring sk_buffs */ | ||
1242 | |||
1243 | if (likely(adapter->previous_buffer_info.skb != NULL)) { | ||
1244 | e1000_unmap_and_free_tx_resource(adapter, | ||
1245 | &adapter->previous_buffer_info); | ||
1246 | } | ||
1247 | |||
1248 | for(i = 0; i < tx_ring->count; i++) { | ||
1249 | buffer_info = &tx_ring->buffer_info[i]; | ||
1250 | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | ||
1251 | } | ||
1252 | |||
1253 | size = sizeof(struct e1000_buffer) * tx_ring->count; | ||
1254 | memset(tx_ring->buffer_info, 0, size); | ||
1255 | |||
1256 | /* Zero out the descriptor ring */ | ||
1257 | |||
1258 | memset(tx_ring->desc, 0, tx_ring->size); | ||
1259 | |||
1260 | tx_ring->next_to_use = 0; | ||
1261 | tx_ring->next_to_clean = 0; | ||
1262 | |||
1263 | E1000_WRITE_REG(&adapter->hw, TDH, 0); | ||
1264 | E1000_WRITE_REG(&adapter->hw, TDT, 0); | ||
1265 | } | ||
1266 | |||
1267 | /** | ||
1268 | * e1000_free_rx_resources - Free Rx Resources | ||
1269 | * @adapter: board private structure | ||
1270 | * | ||
1271 | * Free all receive software resources | ||
1272 | **/ | ||
1273 | |||
1274 | void | ||
1275 | e1000_free_rx_resources(struct e1000_adapter *adapter) | ||
1276 | { | ||
1277 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | ||
1278 | struct pci_dev *pdev = adapter->pdev; | ||
1279 | |||
1280 | e1000_clean_rx_ring(adapter); | ||
1281 | |||
1282 | vfree(rx_ring->buffer_info); | ||
1283 | rx_ring->buffer_info = NULL; | ||
1284 | |||
1285 | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); | ||
1286 | |||
1287 | rx_ring->desc = NULL; | ||
1288 | } | ||
1289 | |||
1290 | /** | ||
1291 | * e1000_clean_rx_ring - Free Rx Buffers | ||
1292 | * @adapter: board private structure | ||
1293 | **/ | ||
1294 | |||
1295 | static void | ||
1296 | e1000_clean_rx_ring(struct e1000_adapter *adapter) | ||
1297 | { | ||
1298 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | ||
1299 | struct e1000_buffer *buffer_info; | ||
1300 | struct pci_dev *pdev = adapter->pdev; | ||
1301 | unsigned long size; | ||
1302 | unsigned int i; | ||
1303 | |||
1304 | /* Free all the Rx ring sk_buffs */ | ||
1305 | |||
1306 | for(i = 0; i < rx_ring->count; i++) { | ||
1307 | buffer_info = &rx_ring->buffer_info[i]; | ||
1308 | if(buffer_info->skb) { | ||
1309 | |||
1310 | pci_unmap_single(pdev, | ||
1311 | buffer_info->dma, | ||
1312 | buffer_info->length, | ||
1313 | PCI_DMA_FROMDEVICE); | ||
1314 | |||
1315 | dev_kfree_skb(buffer_info->skb); | ||
1316 | buffer_info->skb = NULL; | ||
1317 | } | ||
1318 | } | ||
1319 | |||
1320 | size = sizeof(struct e1000_buffer) * rx_ring->count; | ||
1321 | memset(rx_ring->buffer_info, 0, size); | ||
1322 | |||
1323 | /* Zero out the descriptor ring */ | ||
1324 | |||
1325 | memset(rx_ring->desc, 0, rx_ring->size); | ||
1326 | |||
1327 | rx_ring->next_to_clean = 0; | ||
1328 | rx_ring->next_to_use = 0; | ||
1329 | |||
1330 | E1000_WRITE_REG(&adapter->hw, RDH, 0); | ||
1331 | E1000_WRITE_REG(&adapter->hw, RDT, 0); | ||
1332 | } | ||
1333 | |||
1334 | /* The 82542 2.0 (revision 2) needs to have the receive unit in reset | ||
1335 | * and memory write and invalidate disabled for certain operations | ||
1336 | */ | ||
1337 | static void | ||
1338 | e1000_enter_82542_rst(struct e1000_adapter *adapter) | ||
1339 | { | ||
1340 | struct net_device *netdev = adapter->netdev; | ||
1341 | uint32_t rctl; | ||
1342 | |||
1343 | e1000_pci_clear_mwi(&adapter->hw); | ||
1344 | |||
1345 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
1346 | rctl |= E1000_RCTL_RST; | ||
1347 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1348 | E1000_WRITE_FLUSH(&adapter->hw); | ||
1349 | mdelay(5); | ||
1350 | |||
1351 | if(netif_running(netdev)) | ||
1352 | e1000_clean_rx_ring(adapter); | ||
1353 | } | ||
1354 | |||
1355 | static void | ||
1356 | e1000_leave_82542_rst(struct e1000_adapter *adapter) | ||
1357 | { | ||
1358 | struct net_device *netdev = adapter->netdev; | ||
1359 | uint32_t rctl; | ||
1360 | |||
1361 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
1362 | rctl &= ~E1000_RCTL_RST; | ||
1363 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1364 | E1000_WRITE_FLUSH(&adapter->hw); | ||
1365 | mdelay(5); | ||
1366 | |||
1367 | if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE) | ||
1368 | e1000_pci_set_mwi(&adapter->hw); | ||
1369 | |||
1370 | if(netif_running(netdev)) { | ||
1371 | e1000_configure_rx(adapter); | ||
1372 | e1000_alloc_rx_buffers(adapter); | ||
1373 | } | ||
1374 | } | ||
1375 | |||
1376 | /** | ||
1377 | * e1000_set_mac - Change the Ethernet Address of the NIC | ||
1378 | * @netdev: network interface device structure | ||
1379 | * @p: pointer to an address structure | ||
1380 | * | ||
1381 | * Returns 0 on success, negative on failure | ||
1382 | **/ | ||
1383 | |||
1384 | static int | ||
1385 | e1000_set_mac(struct net_device *netdev, void *p) | ||
1386 | { | ||
1387 | struct e1000_adapter *adapter = netdev->priv; | ||
1388 | struct sockaddr *addr = p; | ||
1389 | |||
1390 | if(!is_valid_ether_addr(addr->sa_data)) | ||
1391 | return -EADDRNOTAVAIL; | ||
1392 | |||
1393 | /* 82542 2.0 needs to be in reset to write receive address registers */ | ||
1394 | |||
1395 | if(adapter->hw.mac_type == e1000_82542_rev2_0) | ||
1396 | e1000_enter_82542_rst(adapter); | ||
1397 | |||
1398 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
1399 | memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); | ||
1400 | |||
1401 | e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); | ||
1402 | |||
1403 | if(adapter->hw.mac_type == e1000_82542_rev2_0) | ||
1404 | e1000_leave_82542_rst(adapter); | ||
1405 | |||
1406 | return 0; | ||
1407 | } | ||
1408 | |||
1409 | /** | ||
1410 | * e1000_set_multi - Multicast and Promiscuous mode set | ||
1411 | * @netdev: network interface device structure | ||
1412 | * | ||
1413 | * The set_multi entry point is called whenever the multicast address | ||
1414 | * list or the network interface flags are updated. This routine is | ||
1415 | * responsible for configuring the hardware for proper multicast, | ||
1416 | * promiscuous mode, and all-multi behavior. | ||
1417 | **/ | ||
1418 | |||
1419 | static void | ||
1420 | e1000_set_multi(struct net_device *netdev) | ||
1421 | { | ||
1422 | struct e1000_adapter *adapter = netdev->priv; | ||
1423 | struct e1000_hw *hw = &adapter->hw; | ||
1424 | struct dev_mc_list *mc_ptr; | ||
1425 | uint32_t rctl; | ||
1426 | uint32_t hash_value; | ||
1427 | int i; | ||
1428 | unsigned long flags; | ||
1429 | |||
1430 | /* Check for Promiscuous and All Multicast modes */ | ||
1431 | |||
1432 | spin_lock_irqsave(&adapter->tx_lock, flags); | ||
1433 | |||
1434 | rctl = E1000_READ_REG(hw, RCTL); | ||
1435 | |||
1436 | if(netdev->flags & IFF_PROMISC) { | ||
1437 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
1438 | } else if(netdev->flags & IFF_ALLMULTI) { | ||
1439 | rctl |= E1000_RCTL_MPE; | ||
1440 | rctl &= ~E1000_RCTL_UPE; | ||
1441 | } else { | ||
1442 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
1443 | } | ||
1444 | |||
1445 | E1000_WRITE_REG(hw, RCTL, rctl); | ||
1446 | |||
1447 | /* 82542 2.0 needs to be in reset to write receive address registers */ | ||
1448 | |||
1449 | if(hw->mac_type == e1000_82542_rev2_0) | ||
1450 | e1000_enter_82542_rst(adapter); | ||
1451 | |||
1452 | /* load the first 14 multicast address into the exact filters 1-14 | ||
1453 | * RAR 0 is used for the station MAC adddress | ||
1454 | * if there are not 14 addresses, go ahead and clear the filters | ||
1455 | */ | ||
1456 | mc_ptr = netdev->mc_list; | ||
1457 | |||
1458 | for(i = 1; i < E1000_RAR_ENTRIES; i++) { | ||
1459 | if(mc_ptr) { | ||
1460 | e1000_rar_set(hw, mc_ptr->dmi_addr, i); | ||
1461 | mc_ptr = mc_ptr->next; | ||
1462 | } else { | ||
1463 | E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); | ||
1464 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); | ||
1465 | } | ||
1466 | } | ||
1467 | |||
1468 | /* clear the old settings from the multicast hash table */ | ||
1469 | |||
1470 | for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) | ||
1471 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | ||
1472 | |||
1473 | /* load any remaining addresses into the hash table */ | ||
1474 | |||
1475 | for(; mc_ptr; mc_ptr = mc_ptr->next) { | ||
1476 | hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr); | ||
1477 | e1000_mta_set(hw, hash_value); | ||
1478 | } | ||
1479 | |||
1480 | if(hw->mac_type == e1000_82542_rev2_0) | ||
1481 | e1000_leave_82542_rst(adapter); | ||
1482 | |||
1483 | spin_unlock_irqrestore(&adapter->tx_lock, flags); | ||
1484 | } | ||
1485 | |||
1486 | /* Need to wait a few seconds after link up to get diagnostic information from | ||
1487 | * the phy */ | ||
1488 | |||
1489 | static void | ||
1490 | e1000_update_phy_info(unsigned long data) | ||
1491 | { | ||
1492 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
1493 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | ||
1494 | } | ||
1495 | |||
1496 | /** | ||
1497 | * e1000_82547_tx_fifo_stall - Timer Call-back | ||
1498 | * @data: pointer to adapter cast into an unsigned long | ||
1499 | **/ | ||
1500 | |||
1501 | static void | ||
1502 | e1000_82547_tx_fifo_stall(unsigned long data) | ||
1503 | { | ||
1504 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
1505 | struct net_device *netdev = adapter->netdev; | ||
1506 | uint32_t tctl; | ||
1507 | |||
1508 | if(atomic_read(&adapter->tx_fifo_stall)) { | ||
1509 | if((E1000_READ_REG(&adapter->hw, TDT) == | ||
1510 | E1000_READ_REG(&adapter->hw, TDH)) && | ||
1511 | (E1000_READ_REG(&adapter->hw, TDFT) == | ||
1512 | E1000_READ_REG(&adapter->hw, TDFH)) && | ||
1513 | (E1000_READ_REG(&adapter->hw, TDFTS) == | ||
1514 | E1000_READ_REG(&adapter->hw, TDFHS))) { | ||
1515 | tctl = E1000_READ_REG(&adapter->hw, TCTL); | ||
1516 | E1000_WRITE_REG(&adapter->hw, TCTL, | ||
1517 | tctl & ~E1000_TCTL_EN); | ||
1518 | E1000_WRITE_REG(&adapter->hw, TDFT, | ||
1519 | adapter->tx_head_addr); | ||
1520 | E1000_WRITE_REG(&adapter->hw, TDFH, | ||
1521 | adapter->tx_head_addr); | ||
1522 | E1000_WRITE_REG(&adapter->hw, TDFTS, | ||
1523 | adapter->tx_head_addr); | ||
1524 | E1000_WRITE_REG(&adapter->hw, TDFHS, | ||
1525 | adapter->tx_head_addr); | ||
1526 | E1000_WRITE_REG(&adapter->hw, TCTL, tctl); | ||
1527 | E1000_WRITE_FLUSH(&adapter->hw); | ||
1528 | |||
1529 | adapter->tx_fifo_head = 0; | ||
1530 | atomic_set(&adapter->tx_fifo_stall, 0); | ||
1531 | netif_wake_queue(netdev); | ||
1532 | } else { | ||
1533 | mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); | ||
1534 | } | ||
1535 | } | ||
1536 | } | ||
1537 | |||
1538 | /** | ||
1539 | * e1000_watchdog - Timer Call-back | ||
1540 | * @data: pointer to adapter cast into an unsigned long | ||
1541 | **/ | ||
1542 | static void | ||
1543 | e1000_watchdog(unsigned long data) | ||
1544 | { | ||
1545 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
1546 | |||
1547 | /* Do the rest outside of interrupt context */ | ||
1548 | schedule_work(&adapter->watchdog_task); | ||
1549 | } | ||
1550 | |||
1551 | static void | ||
1552 | e1000_watchdog_task(struct e1000_adapter *adapter) | ||
1553 | { | ||
1554 | struct net_device *netdev = adapter->netdev; | ||
1555 | struct e1000_desc_ring *txdr = &adapter->tx_ring; | ||
1556 | uint32_t link; | ||
1557 | |||
1558 | e1000_check_for_link(&adapter->hw); | ||
1559 | |||
1560 | if((adapter->hw.media_type == e1000_media_type_internal_serdes) && | ||
1561 | !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) | ||
1562 | link = !adapter->hw.serdes_link_down; | ||
1563 | else | ||
1564 | link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU; | ||
1565 | |||
1566 | if(link) { | ||
1567 | if(!netif_carrier_ok(netdev)) { | ||
1568 | e1000_get_speed_and_duplex(&adapter->hw, | ||
1569 | &adapter->link_speed, | ||
1570 | &adapter->link_duplex); | ||
1571 | |||
1572 | DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n", | ||
1573 | adapter->link_speed, | ||
1574 | adapter->link_duplex == FULL_DUPLEX ? | ||
1575 | "Full Duplex" : "Half Duplex"); | ||
1576 | |||
1577 | netif_carrier_on(netdev); | ||
1578 | netif_wake_queue(netdev); | ||
1579 | mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); | ||
1580 | adapter->smartspeed = 0; | ||
1581 | } | ||
1582 | } else { | ||
1583 | if(netif_carrier_ok(netdev)) { | ||
1584 | adapter->link_speed = 0; | ||
1585 | adapter->link_duplex = 0; | ||
1586 | DPRINTK(LINK, INFO, "NIC Link is Down\n"); | ||
1587 | netif_carrier_off(netdev); | ||
1588 | netif_stop_queue(netdev); | ||
1589 | mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); | ||
1590 | } | ||
1591 | |||
1592 | e1000_smartspeed(adapter); | ||
1593 | } | ||
1594 | |||
1595 | e1000_update_stats(adapter); | ||
1596 | |||
1597 | adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | ||
1598 | adapter->tpt_old = adapter->stats.tpt; | ||
1599 | adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old; | ||
1600 | adapter->colc_old = adapter->stats.colc; | ||
1601 | |||
1602 | adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | ||
1603 | adapter->gorcl_old = adapter->stats.gorcl; | ||
1604 | adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | ||
1605 | adapter->gotcl_old = adapter->stats.gotcl; | ||
1606 | |||
1607 | e1000_update_adaptive(&adapter->hw); | ||
1608 | |||
1609 | if(!netif_carrier_ok(netdev)) { | ||
1610 | if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { | ||
1611 | /* We've lost link, so the controller stops DMA, | ||
1612 | * but we've got queued Tx work that's never going | ||
1613 | * to get done, so reset controller to flush Tx. | ||
1614 | * (Do the reset outside of interrupt context). */ | ||
1615 | schedule_work(&adapter->tx_timeout_task); | ||
1616 | } | ||
1617 | } | ||
1618 | |||
1619 | /* Dynamic mode for Interrupt Throttle Rate (ITR) */ | ||
1620 | if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) { | ||
1621 | /* Symmetric Tx/Rx gets a reduced ITR=2000; Total | ||
1622 | * asymmetrical Tx or Rx gets ITR=8000; everyone | ||
1623 | * else is between 2000-8000. */ | ||
1624 | uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000; | ||
1625 | uint32_t dif = (adapter->gotcl > adapter->gorcl ? | ||
1626 | adapter->gotcl - adapter->gorcl : | ||
1627 | adapter->gorcl - adapter->gotcl) / 10000; | ||
1628 | uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; | ||
1629 | E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256)); | ||
1630 | } | ||
1631 | |||
1632 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
1633 | E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); | ||
1634 | |||
1635 | /* Force detection of hung controller every watchdog period*/ | ||
1636 | adapter->detect_tx_hung = TRUE; | ||
1637 | |||
1638 | /* Reset the timer */ | ||
1639 | mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); | ||
1640 | } | ||
1641 | |||
1642 | #define E1000_TX_FLAGS_CSUM 0x00000001 | ||
1643 | #define E1000_TX_FLAGS_VLAN 0x00000002 | ||
1644 | #define E1000_TX_FLAGS_TSO 0x00000004 | ||
1645 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
1646 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | ||
1647 | |||
1648 | static inline int | ||
1649 | e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb) | ||
1650 | { | ||
1651 | #ifdef NETIF_F_TSO | ||
1652 | struct e1000_context_desc *context_desc; | ||
1653 | unsigned int i; | ||
1654 | uint32_t cmd_length = 0; | ||
1655 | uint16_t ipcse, tucse, mss; | ||
1656 | uint8_t ipcss, ipcso, tucss, tucso, hdr_len; | ||
1657 | int err; | ||
1658 | |||
1659 | if(skb_shinfo(skb)->tso_size) { | ||
1660 | if (skb_header_cloned(skb)) { | ||
1661 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
1662 | if (err) | ||
1663 | return err; | ||
1664 | } | ||
1665 | |||
1666 | hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); | ||
1667 | mss = skb_shinfo(skb)->tso_size; | ||
1668 | skb->nh.iph->tot_len = 0; | ||
1669 | skb->nh.iph->check = 0; | ||
1670 | skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr, | ||
1671 | skb->nh.iph->daddr, | ||
1672 | 0, | ||
1673 | IPPROTO_TCP, | ||
1674 | 0); | ||
1675 | ipcss = skb->nh.raw - skb->data; | ||
1676 | ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; | ||
1677 | ipcse = skb->h.raw - skb->data - 1; | ||
1678 | tucss = skb->h.raw - skb->data; | ||
1679 | tucso = (void *)&(skb->h.th->check) - (void *)skb->data; | ||
1680 | tucse = 0; | ||
1681 | |||
1682 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | ||
1683 | E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP | | ||
1684 | (skb->len - (hdr_len))); | ||
1685 | |||
1686 | i = adapter->tx_ring.next_to_use; | ||
1687 | context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); | ||
1688 | |||
1689 | context_desc->lower_setup.ip_fields.ipcss = ipcss; | ||
1690 | context_desc->lower_setup.ip_fields.ipcso = ipcso; | ||
1691 | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); | ||
1692 | context_desc->upper_setup.tcp_fields.tucss = tucss; | ||
1693 | context_desc->upper_setup.tcp_fields.tucso = tucso; | ||
1694 | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | ||
1695 | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); | ||
1696 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | ||
1697 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | ||
1698 | |||
1699 | if(++i == adapter->tx_ring.count) i = 0; | ||
1700 | adapter->tx_ring.next_to_use = i; | ||
1701 | |||
1702 | return 1; | ||
1703 | } | ||
1704 | #endif | ||
1705 | |||
1706 | return 0; | ||
1707 | } | ||
1708 | |||
1709 | static inline boolean_t | ||
1710 | e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) | ||
1711 | { | ||
1712 | struct e1000_context_desc *context_desc; | ||
1713 | unsigned int i; | ||
1714 | uint8_t css; | ||
1715 | |||
1716 | if(likely(skb->ip_summed == CHECKSUM_HW)) { | ||
1717 | css = skb->h.raw - skb->data; | ||
1718 | |||
1719 | i = adapter->tx_ring.next_to_use; | ||
1720 | context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); | ||
1721 | |||
1722 | context_desc->upper_setup.tcp_fields.tucss = css; | ||
1723 | context_desc->upper_setup.tcp_fields.tucso = css + skb->csum; | ||
1724 | context_desc->upper_setup.tcp_fields.tucse = 0; | ||
1725 | context_desc->tcp_seg_setup.data = 0; | ||
1726 | context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); | ||
1727 | |||
1728 | if(unlikely(++i == adapter->tx_ring.count)) i = 0; | ||
1729 | adapter->tx_ring.next_to_use = i; | ||
1730 | |||
1731 | return TRUE; | ||
1732 | } | ||
1733 | |||
1734 | return FALSE; | ||
1735 | } | ||
1736 | |||
1737 | #define E1000_MAX_TXD_PWR 12 | ||
1738 | #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) | ||
1739 | |||
1740 | static inline int | ||
1741 | e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb, | ||
1742 | unsigned int first, unsigned int max_per_txd, | ||
1743 | unsigned int nr_frags, unsigned int mss) | ||
1744 | { | ||
1745 | struct e1000_desc_ring *tx_ring = &adapter->tx_ring; | ||
1746 | struct e1000_buffer *buffer_info; | ||
1747 | unsigned int len = skb->len; | ||
1748 | unsigned int offset = 0, size, count = 0, i; | ||
1749 | unsigned int f; | ||
1750 | len -= skb->data_len; | ||
1751 | |||
1752 | i = tx_ring->next_to_use; | ||
1753 | |||
1754 | while(len) { | ||
1755 | buffer_info = &tx_ring->buffer_info[i]; | ||
1756 | size = min(len, max_per_txd); | ||
1757 | #ifdef NETIF_F_TSO | ||
1758 | /* Workaround for premature desc write-backs | ||
1759 | * in TSO mode. Append 4-byte sentinel desc */ | ||
1760 | if(unlikely(mss && !nr_frags && size == len && size > 8)) | ||
1761 | size -= 4; | ||
1762 | #endif | ||
1763 | /* Workaround for potential 82544 hang in PCI-X. Avoid | ||
1764 | * terminating buffers within evenly-aligned dwords. */ | ||
1765 | if(unlikely(adapter->pcix_82544 && | ||
1766 | !((unsigned long)(skb->data + offset + size - 1) & 4) && | ||
1767 | size > 4)) | ||
1768 | size -= 4; | ||
1769 | |||
1770 | buffer_info->length = size; | ||
1771 | buffer_info->dma = | ||
1772 | pci_map_single(adapter->pdev, | ||
1773 | skb->data + offset, | ||
1774 | size, | ||
1775 | PCI_DMA_TODEVICE); | ||
1776 | buffer_info->time_stamp = jiffies; | ||
1777 | |||
1778 | len -= size; | ||
1779 | offset += size; | ||
1780 | count++; | ||
1781 | if(unlikely(++i == tx_ring->count)) i = 0; | ||
1782 | } | ||
1783 | |||
1784 | for(f = 0; f < nr_frags; f++) { | ||
1785 | struct skb_frag_struct *frag; | ||
1786 | |||
1787 | frag = &skb_shinfo(skb)->frags[f]; | ||
1788 | len = frag->size; | ||
1789 | offset = frag->page_offset; | ||
1790 | |||
1791 | while(len) { | ||
1792 | buffer_info = &tx_ring->buffer_info[i]; | ||
1793 | size = min(len, max_per_txd); | ||
1794 | #ifdef NETIF_F_TSO | ||
1795 | /* Workaround for premature desc write-backs | ||
1796 | * in TSO mode. Append 4-byte sentinel desc */ | ||
1797 | if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) | ||
1798 | size -= 4; | ||
1799 | #endif | ||
1800 | /* Workaround for potential 82544 hang in PCI-X. | ||
1801 | * Avoid terminating buffers within evenly-aligned | ||
1802 | * dwords. */ | ||
1803 | if(unlikely(adapter->pcix_82544 && | ||
1804 | !((unsigned long)(frag->page+offset+size-1) & 4) && | ||
1805 | size > 4)) | ||
1806 | size -= 4; | ||
1807 | |||
1808 | buffer_info->length = size; | ||
1809 | buffer_info->dma = | ||
1810 | pci_map_page(adapter->pdev, | ||
1811 | frag->page, | ||
1812 | offset, | ||
1813 | size, | ||
1814 | PCI_DMA_TODEVICE); | ||
1815 | buffer_info->time_stamp = jiffies; | ||
1816 | |||
1817 | len -= size; | ||
1818 | offset += size; | ||
1819 | count++; | ||
1820 | if(unlikely(++i == tx_ring->count)) i = 0; | ||
1821 | } | ||
1822 | } | ||
1823 | |||
1824 | i = (i == 0) ? tx_ring->count - 1 : i - 1; | ||
1825 | tx_ring->buffer_info[i].skb = skb; | ||
1826 | tx_ring->buffer_info[first].next_to_watch = i; | ||
1827 | |||
1828 | return count; | ||
1829 | } | ||
1830 | |||
1831 | static inline void | ||
1832 | e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags) | ||
1833 | { | ||
1834 | struct e1000_desc_ring *tx_ring = &adapter->tx_ring; | ||
1835 | struct e1000_tx_desc *tx_desc = NULL; | ||
1836 | struct e1000_buffer *buffer_info; | ||
1837 | uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | ||
1838 | unsigned int i; | ||
1839 | |||
1840 | if(likely(tx_flags & E1000_TX_FLAGS_TSO)) { | ||
1841 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | ||
1842 | E1000_TXD_CMD_TSE; | ||
1843 | txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8; | ||
1844 | } | ||
1845 | |||
1846 | if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) { | ||
1847 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | ||
1848 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
1849 | } | ||
1850 | |||
1851 | if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { | ||
1852 | txd_lower |= E1000_TXD_CMD_VLE; | ||
1853 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | ||
1854 | } | ||
1855 | |||
1856 | i = tx_ring->next_to_use; | ||
1857 | |||
1858 | while(count--) { | ||
1859 | buffer_info = &tx_ring->buffer_info[i]; | ||
1860 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
1861 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
1862 | tx_desc->lower.data = | ||
1863 | cpu_to_le32(txd_lower | buffer_info->length); | ||
1864 | tx_desc->upper.data = cpu_to_le32(txd_upper); | ||
1865 | if(unlikely(++i == tx_ring->count)) i = 0; | ||
1866 | } | ||
1867 | |||
1868 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | ||
1869 | |||
1870 | /* Force memory writes to complete before letting h/w | ||
1871 | * know there are new descriptors to fetch. (Only | ||
1872 | * applicable for weak-ordered memory model archs, | ||
1873 | * such as IA-64). */ | ||
1874 | wmb(); | ||
1875 | |||
1876 | tx_ring->next_to_use = i; | ||
1877 | E1000_WRITE_REG(&adapter->hw, TDT, i); | ||
1878 | } | ||
1879 | |||
1880 | /** | ||
1881 | * 82547 workaround to avoid controller hang in half-duplex environment. | ||
1882 | * The workaround is to avoid queuing a large packet that would span | ||
1883 | * the internal Tx FIFO ring boundary by notifying the stack to resend | ||
1884 | * the packet at a later time. This gives the Tx FIFO an opportunity to | ||
1885 | * flush all packets. When that occurs, we reset the Tx FIFO pointers | ||
1886 | * to the beginning of the Tx FIFO. | ||
1887 | **/ | ||
1888 | |||
1889 | #define E1000_FIFO_HDR 0x10 | ||
1890 | #define E1000_82547_PAD_LEN 0x3E0 | ||
1891 | |||
1892 | static inline int | ||
1893 | e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb) | ||
1894 | { | ||
1895 | uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; | ||
1896 | uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR; | ||
1897 | |||
1898 | E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR); | ||
1899 | |||
1900 | if(adapter->link_duplex != HALF_DUPLEX) | ||
1901 | goto no_fifo_stall_required; | ||
1902 | |||
1903 | if(atomic_read(&adapter->tx_fifo_stall)) | ||
1904 | return 1; | ||
1905 | |||
1906 | if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { | ||
1907 | atomic_set(&adapter->tx_fifo_stall, 1); | ||
1908 | return 1; | ||
1909 | } | ||
1910 | |||
1911 | no_fifo_stall_required: | ||
1912 | adapter->tx_fifo_head += skb_fifo_len; | ||
1913 | if(adapter->tx_fifo_head >= adapter->tx_fifo_size) | ||
1914 | adapter->tx_fifo_head -= adapter->tx_fifo_size; | ||
1915 | return 0; | ||
1916 | } | ||
1917 | |||
1918 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | ||
1919 | static int | ||
1920 | e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | ||
1921 | { | ||
1922 | struct e1000_adapter *adapter = netdev->priv; | ||
1923 | unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; | ||
1924 | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | ||
1925 | unsigned int tx_flags = 0; | ||
1926 | unsigned int len = skb->len; | ||
1927 | unsigned long flags; | ||
1928 | unsigned int nr_frags = 0; | ||
1929 | unsigned int mss = 0; | ||
1930 | int count = 0; | ||
1931 | int tso; | ||
1932 | unsigned int f; | ||
1933 | len -= skb->data_len; | ||
1934 | |||
1935 | if(unlikely(skb->len <= 0)) { | ||
1936 | dev_kfree_skb_any(skb); | ||
1937 | return NETDEV_TX_OK; | ||
1938 | } | ||
1939 | |||
1940 | #ifdef NETIF_F_TSO | ||
1941 | mss = skb_shinfo(skb)->tso_size; | ||
1942 | /* The controller does a simple calculation to | ||
1943 | * make sure there is enough room in the FIFO before | ||
1944 | * initiating the DMA for each buffer. The calc is: | ||
1945 | * 4 = ceil(buffer len/mss). To make sure we don't | ||
1946 | * overrun the FIFO, adjust the max buffer len if mss | ||
1947 | * drops. */ | ||
1948 | if(mss) { | ||
1949 | max_per_txd = min(mss << 2, max_per_txd); | ||
1950 | max_txd_pwr = fls(max_per_txd) - 1; | ||
1951 | } | ||
1952 | |||
1953 | if((mss) || (skb->ip_summed == CHECKSUM_HW)) | ||
1954 | count++; | ||
1955 | count++; /* for sentinel desc */ | ||
1956 | #else | ||
1957 | if(skb->ip_summed == CHECKSUM_HW) | ||
1958 | count++; | ||
1959 | #endif | ||
1960 | count += TXD_USE_COUNT(len, max_txd_pwr); | ||
1961 | |||
1962 | if(adapter->pcix_82544) | ||
1963 | count++; | ||
1964 | |||
1965 | nr_frags = skb_shinfo(skb)->nr_frags; | ||
1966 | for(f = 0; f < nr_frags; f++) | ||
1967 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | ||
1968 | max_txd_pwr); | ||
1969 | if(adapter->pcix_82544) | ||
1970 | count += nr_frags; | ||
1971 | |||
1972 | local_irq_save(flags); | ||
1973 | if (!spin_trylock(&adapter->tx_lock)) { | ||
1974 | /* Collision - tell upper layer to requeue */ | ||
1975 | local_irq_restore(flags); | ||
1976 | return NETDEV_TX_LOCKED; | ||
1977 | } | ||
1978 | |||
1979 | /* need: count + 2 desc gap to keep tail from touching | ||
1980 | * head, otherwise try next time */ | ||
1981 | if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) { | ||
1982 | netif_stop_queue(netdev); | ||
1983 | spin_unlock_irqrestore(&adapter->tx_lock, flags); | ||
1984 | return NETDEV_TX_BUSY; | ||
1985 | } | ||
1986 | |||
1987 | if(unlikely(adapter->hw.mac_type == e1000_82547)) { | ||
1988 | if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) { | ||
1989 | netif_stop_queue(netdev); | ||
1990 | mod_timer(&adapter->tx_fifo_stall_timer, jiffies); | ||
1991 | spin_unlock_irqrestore(&adapter->tx_lock, flags); | ||
1992 | return NETDEV_TX_BUSY; | ||
1993 | } | ||
1994 | } | ||
1995 | |||
1996 | if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { | ||
1997 | tx_flags |= E1000_TX_FLAGS_VLAN; | ||
1998 | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | ||
1999 | } | ||
2000 | |||
2001 | first = adapter->tx_ring.next_to_use; | ||
2002 | |||
2003 | tso = e1000_tso(adapter, skb); | ||
2004 | if (tso < 0) { | ||
2005 | dev_kfree_skb_any(skb); | ||
2006 | return NETDEV_TX_OK; | ||
2007 | } | ||
2008 | |||
2009 | if (likely(tso)) | ||
2010 | tx_flags |= E1000_TX_FLAGS_TSO; | ||
2011 | else if(likely(e1000_tx_csum(adapter, skb))) | ||
2012 | tx_flags |= E1000_TX_FLAGS_CSUM; | ||
2013 | |||
2014 | e1000_tx_queue(adapter, | ||
2015 | e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss), | ||
2016 | tx_flags); | ||
2017 | |||
2018 | netdev->trans_start = jiffies; | ||
2019 | |||
2020 | /* Make sure there is space in the ring for the next send. */ | ||
2021 | if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2)) | ||
2022 | netif_stop_queue(netdev); | ||
2023 | |||
2024 | spin_unlock_irqrestore(&adapter->tx_lock, flags); | ||
2025 | return NETDEV_TX_OK; | ||
2026 | } | ||
2027 | |||
2028 | /** | ||
2029 | * e1000_tx_timeout - Respond to a Tx Hang | ||
2030 | * @netdev: network interface device structure | ||
2031 | **/ | ||
2032 | |||
2033 | static void | ||
2034 | e1000_tx_timeout(struct net_device *netdev) | ||
2035 | { | ||
2036 | struct e1000_adapter *adapter = netdev->priv; | ||
2037 | |||
2038 | /* Do the reset outside of interrupt context */ | ||
2039 | schedule_work(&adapter->tx_timeout_task); | ||
2040 | } | ||
2041 | |||
2042 | static void | ||
2043 | e1000_tx_timeout_task(struct net_device *netdev) | ||
2044 | { | ||
2045 | struct e1000_adapter *adapter = netdev->priv; | ||
2046 | |||
2047 | e1000_down(adapter); | ||
2048 | e1000_up(adapter); | ||
2049 | } | ||
2050 | |||
2051 | /** | ||
2052 | * e1000_get_stats - Get System Network Statistics | ||
2053 | * @netdev: network interface device structure | ||
2054 | * | ||
2055 | * Returns the address of the device statistics structure. | ||
2056 | * The statistics are actually updated from the timer callback. | ||
2057 | **/ | ||
2058 | |||
2059 | static struct net_device_stats * | ||
2060 | e1000_get_stats(struct net_device *netdev) | ||
2061 | { | ||
2062 | struct e1000_adapter *adapter = netdev->priv; | ||
2063 | |||
2064 | e1000_update_stats(adapter); | ||
2065 | return &adapter->net_stats; | ||
2066 | } | ||
2067 | |||
2068 | /** | ||
2069 | * e1000_change_mtu - Change the Maximum Transfer Unit | ||
2070 | * @netdev: network interface device structure | ||
2071 | * @new_mtu: new value for maximum frame size | ||
2072 | * | ||
2073 | * Returns 0 on success, negative on failure | ||
2074 | **/ | ||
2075 | |||
2076 | static int | ||
2077 | e1000_change_mtu(struct net_device *netdev, int new_mtu) | ||
2078 | { | ||
2079 | struct e1000_adapter *adapter = netdev->priv; | ||
2080 | int old_mtu = adapter->rx_buffer_len; | ||
2081 | int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | ||
2082 | |||
2083 | if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || | ||
2084 | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
2085 | DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); | ||
2086 | return -EINVAL; | ||
2087 | } | ||
2088 | |||
2089 | if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) { | ||
2090 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | ||
2091 | |||
2092 | } else if(adapter->hw.mac_type < e1000_82543) { | ||
2093 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n"); | ||
2094 | return -EINVAL; | ||
2095 | |||
2096 | } else if(max_frame <= E1000_RXBUFFER_4096) { | ||
2097 | adapter->rx_buffer_len = E1000_RXBUFFER_4096; | ||
2098 | |||
2099 | } else if(max_frame <= E1000_RXBUFFER_8192) { | ||
2100 | adapter->rx_buffer_len = E1000_RXBUFFER_8192; | ||
2101 | |||
2102 | } else { | ||
2103 | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | ||
2104 | } | ||
2105 | |||
2106 | if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) { | ||
2107 | e1000_down(adapter); | ||
2108 | e1000_up(adapter); | ||
2109 | } | ||
2110 | |||
2111 | netdev->mtu = new_mtu; | ||
2112 | adapter->hw.max_frame_size = max_frame; | ||
2113 | |||
2114 | return 0; | ||
2115 | } | ||
2116 | |||
2117 | /** | ||
2118 | * e1000_update_stats - Update the board statistics counters | ||
2119 | * @adapter: board private structure | ||
2120 | **/ | ||
2121 | |||
2122 | void | ||
2123 | e1000_update_stats(struct e1000_adapter *adapter) | ||
2124 | { | ||
2125 | struct e1000_hw *hw = &adapter->hw; | ||
2126 | unsigned long flags; | ||
2127 | uint16_t phy_tmp; | ||
2128 | |||
2129 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
2130 | |||
2131 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
2132 | |||
2133 | /* these counters are modified from e1000_adjust_tbi_stats, | ||
2134 | * called from the interrupt context, so they must only | ||
2135 | * be written while holding adapter->stats_lock | ||
2136 | */ | ||
2137 | |||
2138 | adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS); | ||
2139 | adapter->stats.gprc += E1000_READ_REG(hw, GPRC); | ||
2140 | adapter->stats.gorcl += E1000_READ_REG(hw, GORCL); | ||
2141 | adapter->stats.gorch += E1000_READ_REG(hw, GORCH); | ||
2142 | adapter->stats.bprc += E1000_READ_REG(hw, BPRC); | ||
2143 | adapter->stats.mprc += E1000_READ_REG(hw, MPRC); | ||
2144 | adapter->stats.roc += E1000_READ_REG(hw, ROC); | ||
2145 | adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); | ||
2146 | adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); | ||
2147 | adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); | ||
2148 | adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); | ||
2149 | adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); | ||
2150 | adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); | ||
2151 | |||
2152 | adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); | ||
2153 | adapter->stats.mpc += E1000_READ_REG(hw, MPC); | ||
2154 | adapter->stats.scc += E1000_READ_REG(hw, SCC); | ||
2155 | adapter->stats.ecol += E1000_READ_REG(hw, ECOL); | ||
2156 | adapter->stats.mcc += E1000_READ_REG(hw, MCC); | ||
2157 | adapter->stats.latecol += E1000_READ_REG(hw, LATECOL); | ||
2158 | adapter->stats.dc += E1000_READ_REG(hw, DC); | ||
2159 | adapter->stats.sec += E1000_READ_REG(hw, SEC); | ||
2160 | adapter->stats.rlec += E1000_READ_REG(hw, RLEC); | ||
2161 | adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC); | ||
2162 | adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC); | ||
2163 | adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC); | ||
2164 | adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC); | ||
2165 | adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC); | ||
2166 | adapter->stats.gptc += E1000_READ_REG(hw, GPTC); | ||
2167 | adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL); | ||
2168 | adapter->stats.gotch += E1000_READ_REG(hw, GOTCH); | ||
2169 | adapter->stats.rnbc += E1000_READ_REG(hw, RNBC); | ||
2170 | adapter->stats.ruc += E1000_READ_REG(hw, RUC); | ||
2171 | adapter->stats.rfc += E1000_READ_REG(hw, RFC); | ||
2172 | adapter->stats.rjc += E1000_READ_REG(hw, RJC); | ||
2173 | adapter->stats.torl += E1000_READ_REG(hw, TORL); | ||
2174 | adapter->stats.torh += E1000_READ_REG(hw, TORH); | ||
2175 | adapter->stats.totl += E1000_READ_REG(hw, TOTL); | ||
2176 | adapter->stats.toth += E1000_READ_REG(hw, TOTH); | ||
2177 | adapter->stats.tpr += E1000_READ_REG(hw, TPR); | ||
2178 | adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); | ||
2179 | adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); | ||
2180 | adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); | ||
2181 | adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); | ||
2182 | adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); | ||
2183 | adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); | ||
2184 | adapter->stats.mptc += E1000_READ_REG(hw, MPTC); | ||
2185 | adapter->stats.bptc += E1000_READ_REG(hw, BPTC); | ||
2186 | |||
2187 | /* used for adaptive IFS */ | ||
2188 | |||
2189 | hw->tx_packet_delta = E1000_READ_REG(hw, TPT); | ||
2190 | adapter->stats.tpt += hw->tx_packet_delta; | ||
2191 | hw->collision_delta = E1000_READ_REG(hw, COLC); | ||
2192 | adapter->stats.colc += hw->collision_delta; | ||
2193 | |||
2194 | if(hw->mac_type >= e1000_82543) { | ||
2195 | adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC); | ||
2196 | adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC); | ||
2197 | adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS); | ||
2198 | adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR); | ||
2199 | adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); | ||
2200 | adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); | ||
2201 | } | ||
2202 | |||
2203 | /* Fill out the OS statistics structure */ | ||
2204 | |||
2205 | adapter->net_stats.rx_packets = adapter->stats.gprc; | ||
2206 | adapter->net_stats.tx_packets = adapter->stats.gptc; | ||
2207 | adapter->net_stats.rx_bytes = adapter->stats.gorcl; | ||
2208 | adapter->net_stats.tx_bytes = adapter->stats.gotcl; | ||
2209 | adapter->net_stats.multicast = adapter->stats.mprc; | ||
2210 | adapter->net_stats.collisions = adapter->stats.colc; | ||
2211 | |||
2212 | /* Rx Errors */ | ||
2213 | |||
2214 | adapter->net_stats.rx_errors = adapter->stats.rxerrc + | ||
2215 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
2216 | adapter->stats.rlec + adapter->stats.rnbc + | ||
2217 | adapter->stats.mpc + adapter->stats.cexterr; | ||
2218 | adapter->net_stats.rx_dropped = adapter->stats.rnbc; | ||
2219 | adapter->net_stats.rx_length_errors = adapter->stats.rlec; | ||
2220 | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | ||
2221 | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | ||
2222 | adapter->net_stats.rx_fifo_errors = adapter->stats.mpc; | ||
2223 | adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | ||
2224 | |||
2225 | /* Tx Errors */ | ||
2226 | |||
2227 | adapter->net_stats.tx_errors = adapter->stats.ecol + | ||
2228 | adapter->stats.latecol; | ||
2229 | adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | ||
2230 | adapter->net_stats.tx_window_errors = adapter->stats.latecol; | ||
2231 | adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | ||
2232 | |||
2233 | /* Tx Dropped needs to be maintained elsewhere */ | ||
2234 | |||
2235 | /* Phy Stats */ | ||
2236 | |||
2237 | if(hw->media_type == e1000_media_type_copper) { | ||
2238 | if((adapter->link_speed == SPEED_1000) && | ||
2239 | (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | ||
2240 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
2241 | adapter->phy_stats.idle_errors += phy_tmp; | ||
2242 | } | ||
2243 | |||
2244 | if((hw->mac_type <= e1000_82546) && | ||
2245 | (hw->phy_type == e1000_phy_m88) && | ||
2246 | !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) | ||
2247 | adapter->phy_stats.receive_errors += phy_tmp; | ||
2248 | } | ||
2249 | |||
2250 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
2251 | } | ||
2252 | |||
2253 | /** | ||
2254 | * e1000_intr - Interrupt Handler | ||
2255 | * @irq: interrupt number | ||
2256 | * @data: pointer to a network interface device structure | ||
2257 | * @pt_regs: CPU registers structure | ||
2258 | **/ | ||
2259 | |||
2260 | static irqreturn_t | ||
2261 | e1000_intr(int irq, void *data, struct pt_regs *regs) | ||
2262 | { | ||
2263 | struct net_device *netdev = data; | ||
2264 | struct e1000_adapter *adapter = netdev->priv; | ||
2265 | struct e1000_hw *hw = &adapter->hw; | ||
2266 | uint32_t icr = E1000_READ_REG(hw, ICR); | ||
2267 | #ifndef CONFIG_E1000_NAPI | ||
2268 | unsigned int i; | ||
2269 | #endif | ||
2270 | |||
2271 | if(unlikely(!icr)) | ||
2272 | return IRQ_NONE; /* Not our interrupt */ | ||
2273 | |||
2274 | if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { | ||
2275 | hw->get_link_status = 1; | ||
2276 | mod_timer(&adapter->watchdog_timer, jiffies); | ||
2277 | } | ||
2278 | |||
2279 | #ifdef CONFIG_E1000_NAPI | ||
2280 | if(likely(netif_rx_schedule_prep(netdev))) { | ||
2281 | |||
2282 | /* Disable interrupts and register for poll. The flush | ||
2283 | of the posted write is intentionally left out. | ||
2284 | */ | ||
2285 | |||
2286 | atomic_inc(&adapter->irq_sem); | ||
2287 | E1000_WRITE_REG(hw, IMC, ~0); | ||
2288 | __netif_rx_schedule(netdev); | ||
2289 | } | ||
2290 | #else | ||
2291 | /* Writing IMC and IMS is needed for 82547. | ||
2292 | Due to Hub Link bus being occupied, an interrupt | ||
2293 | de-assertion message is not able to be sent. | ||
2294 | When an interrupt assertion message is generated later, | ||
2295 | two messages are re-ordered and sent out. | ||
2296 | That causes APIC to think 82547 is in de-assertion | ||
2297 | state, while 82547 is in assertion state, resulting | ||
2298 | in dead lock. Writing IMC forces 82547 into | ||
2299 | de-assertion state. | ||
2300 | */ | ||
2301 | if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){ | ||
2302 | atomic_inc(&adapter->irq_sem); | ||
2303 | E1000_WRITE_REG(&adapter->hw, IMC, ~0); | ||
2304 | } | ||
2305 | |||
2306 | for(i = 0; i < E1000_MAX_INTR; i++) | ||
2307 | if(unlikely(!e1000_clean_rx_irq(adapter) & | ||
2308 | !e1000_clean_tx_irq(adapter))) | ||
2309 | break; | ||
2310 | |||
2311 | if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) | ||
2312 | e1000_irq_enable(adapter); | ||
2313 | #endif | ||
2314 | |||
2315 | return IRQ_HANDLED; | ||
2316 | } | ||
2317 | |||
2318 | #ifdef CONFIG_E1000_NAPI | ||
2319 | /** | ||
2320 | * e1000_clean - NAPI Rx polling callback | ||
2321 | * @adapter: board private structure | ||
2322 | **/ | ||
2323 | |||
2324 | static int | ||
2325 | e1000_clean(struct net_device *netdev, int *budget) | ||
2326 | { | ||
2327 | struct e1000_adapter *adapter = netdev->priv; | ||
2328 | int work_to_do = min(*budget, netdev->quota); | ||
2329 | int tx_cleaned; | ||
2330 | int work_done = 0; | ||
2331 | |||
2332 | tx_cleaned = e1000_clean_tx_irq(adapter); | ||
2333 | e1000_clean_rx_irq(adapter, &work_done, work_to_do); | ||
2334 | |||
2335 | *budget -= work_done; | ||
2336 | netdev->quota -= work_done; | ||
2337 | |||
2338 | /* if no Tx and not enough Rx work done, exit the polling mode */ | ||
2339 | if((!tx_cleaned && (work_done < work_to_do)) || | ||
2340 | !netif_running(netdev)) { | ||
2341 | netif_rx_complete(netdev); | ||
2342 | e1000_irq_enable(adapter); | ||
2343 | return 0; | ||
2344 | } | ||
2345 | |||
2346 | return 1; | ||
2347 | } | ||
2348 | |||
2349 | #endif | ||
2350 | /** | ||
2351 | * e1000_clean_tx_irq - Reclaim resources after transmit completes | ||
2352 | * @adapter: board private structure | ||
2353 | **/ | ||
2354 | |||
2355 | static boolean_t | ||
2356 | e1000_clean_tx_irq(struct e1000_adapter *adapter) | ||
2357 | { | ||
2358 | struct e1000_desc_ring *tx_ring = &adapter->tx_ring; | ||
2359 | struct net_device *netdev = adapter->netdev; | ||
2360 | struct e1000_tx_desc *tx_desc, *eop_desc; | ||
2361 | struct e1000_buffer *buffer_info; | ||
2362 | unsigned int i, eop; | ||
2363 | boolean_t cleaned = FALSE; | ||
2364 | |||
2365 | i = tx_ring->next_to_clean; | ||
2366 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
2367 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
2368 | |||
2369 | while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { | ||
2370 | /* pre-mature writeback of Tx descriptors */ | ||
2371 | /* clear (free buffers and unmap pci_mapping) */ | ||
2372 | /* previous_buffer_info */ | ||
2373 | if (likely(adapter->previous_buffer_info.skb != NULL)) { | ||
2374 | e1000_unmap_and_free_tx_resource(adapter, | ||
2375 | &adapter->previous_buffer_info); | ||
2376 | } | ||
2377 | |||
2378 | for(cleaned = FALSE; !cleaned; ) { | ||
2379 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
2380 | buffer_info = &tx_ring->buffer_info[i]; | ||
2381 | cleaned = (i == eop); | ||
2382 | |||
2383 | /* pre-mature writeback of Tx descriptors */ | ||
2384 | /* save the cleaning of the this for the */ | ||
2385 | /* next iteration */ | ||
2386 | if (cleaned) { | ||
2387 | memcpy(&adapter->previous_buffer_info, | ||
2388 | buffer_info, | ||
2389 | sizeof(struct e1000_buffer)); | ||
2390 | memset(buffer_info, | ||
2391 | 0, | ||
2392 | sizeof(struct e1000_buffer)); | ||
2393 | } else { | ||
2394 | e1000_unmap_and_free_tx_resource(adapter, | ||
2395 | buffer_info); | ||
2396 | } | ||
2397 | |||
2398 | tx_desc->buffer_addr = 0; | ||
2399 | tx_desc->lower.data = 0; | ||
2400 | tx_desc->upper.data = 0; | ||
2401 | |||
2402 | cleaned = (i == eop); | ||
2403 | if(unlikely(++i == tx_ring->count)) i = 0; | ||
2404 | } | ||
2405 | |||
2406 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
2407 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
2408 | } | ||
2409 | |||
2410 | tx_ring->next_to_clean = i; | ||
2411 | |||
2412 | spin_lock(&adapter->tx_lock); | ||
2413 | |||
2414 | if(unlikely(cleaned && netif_queue_stopped(netdev) && | ||
2415 | netif_carrier_ok(netdev))) | ||
2416 | netif_wake_queue(netdev); | ||
2417 | |||
2418 | spin_unlock(&adapter->tx_lock); | ||
2419 | |||
2420 | if(adapter->detect_tx_hung) { | ||
2421 | /* detect a transmit hang in hardware, this serializes the | ||
2422 | * check with the clearing of time_stamp and movement of i */ | ||
2423 | adapter->detect_tx_hung = FALSE; | ||
2424 | if(tx_ring->buffer_info[i].dma && | ||
2425 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) && | ||
2426 | !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF)) | ||
2427 | netif_stop_queue(netdev); | ||
2428 | } | ||
2429 | |||
2430 | return cleaned; | ||
2431 | } | ||
2432 | |||
2433 | /** | ||
2434 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | ||
2435 | * @adapter: board private structure | ||
2436 | * @rx_desc: receive descriptor | ||
2437 | * @sk_buff: socket buffer with received data | ||
2438 | **/ | ||
2439 | |||
2440 | static inline void | ||
2441 | e1000_rx_checksum(struct e1000_adapter *adapter, | ||
2442 | struct e1000_rx_desc *rx_desc, | ||
2443 | struct sk_buff *skb) | ||
2444 | { | ||
2445 | /* 82543 or newer only */ | ||
2446 | if(unlikely((adapter->hw.mac_type < e1000_82543) || | ||
2447 | /* Ignore Checksum bit is set */ | ||
2448 | (rx_desc->status & E1000_RXD_STAT_IXSM) || | ||
2449 | /* TCP Checksum has not been calculated */ | ||
2450 | (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) { | ||
2451 | skb->ip_summed = CHECKSUM_NONE; | ||
2452 | return; | ||
2453 | } | ||
2454 | |||
2455 | /* At this point we know the hardware did the TCP checksum */ | ||
2456 | /* now look at the TCP checksum error bit */ | ||
2457 | if(rx_desc->errors & E1000_RXD_ERR_TCPE) { | ||
2458 | /* let the stack verify checksum errors */ | ||
2459 | skb->ip_summed = CHECKSUM_NONE; | ||
2460 | adapter->hw_csum_err++; | ||
2461 | } else { | ||
2462 | /* TCP checksum is good */ | ||
2463 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
2464 | adapter->hw_csum_good++; | ||
2465 | } | ||
2466 | } | ||
2467 | |||
2468 | /** | ||
2469 | * e1000_clean_rx_irq - Send received data up the network stack | ||
2470 | * @adapter: board private structure | ||
2471 | **/ | ||
2472 | |||
2473 | static boolean_t | ||
2474 | #ifdef CONFIG_E1000_NAPI | ||
2475 | e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done, | ||
2476 | int work_to_do) | ||
2477 | #else | ||
2478 | e1000_clean_rx_irq(struct e1000_adapter *adapter) | ||
2479 | #endif | ||
2480 | { | ||
2481 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | ||
2482 | struct net_device *netdev = adapter->netdev; | ||
2483 | struct pci_dev *pdev = adapter->pdev; | ||
2484 | struct e1000_rx_desc *rx_desc; | ||
2485 | struct e1000_buffer *buffer_info; | ||
2486 | struct sk_buff *skb; | ||
2487 | unsigned long flags; | ||
2488 | uint32_t length; | ||
2489 | uint8_t last_byte; | ||
2490 | unsigned int i; | ||
2491 | boolean_t cleaned = FALSE; | ||
2492 | |||
2493 | i = rx_ring->next_to_clean; | ||
2494 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
2495 | |||
2496 | while(rx_desc->status & E1000_RXD_STAT_DD) { | ||
2497 | buffer_info = &rx_ring->buffer_info[i]; | ||
2498 | #ifdef CONFIG_E1000_NAPI | ||
2499 | if(*work_done >= work_to_do) | ||
2500 | break; | ||
2501 | (*work_done)++; | ||
2502 | #endif | ||
2503 | cleaned = TRUE; | ||
2504 | |||
2505 | pci_unmap_single(pdev, | ||
2506 | buffer_info->dma, | ||
2507 | buffer_info->length, | ||
2508 | PCI_DMA_FROMDEVICE); | ||
2509 | |||
2510 | skb = buffer_info->skb; | ||
2511 | length = le16_to_cpu(rx_desc->length); | ||
2512 | |||
2513 | if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) { | ||
2514 | /* All receives must fit into a single buffer */ | ||
2515 | E1000_DBG("%s: Receive packet consumed multiple" | ||
2516 | " buffers\n", netdev->name); | ||
2517 | dev_kfree_skb_irq(skb); | ||
2518 | goto next_desc; | ||
2519 | } | ||
2520 | |||
2521 | if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { | ||
2522 | last_byte = *(skb->data + length - 1); | ||
2523 | if(TBI_ACCEPT(&adapter->hw, rx_desc->status, | ||
2524 | rx_desc->errors, length, last_byte)) { | ||
2525 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
2526 | e1000_tbi_adjust_stats(&adapter->hw, | ||
2527 | &adapter->stats, | ||
2528 | length, skb->data); | ||
2529 | spin_unlock_irqrestore(&adapter->stats_lock, | ||
2530 | flags); | ||
2531 | length--; | ||
2532 | } else { | ||
2533 | dev_kfree_skb_irq(skb); | ||
2534 | goto next_desc; | ||
2535 | } | ||
2536 | } | ||
2537 | |||
2538 | /* Good Receive */ | ||
2539 | skb_put(skb, length - ETHERNET_FCS_SIZE); | ||
2540 | |||
2541 | /* Receive Checksum Offload */ | ||
2542 | e1000_rx_checksum(adapter, rx_desc, skb); | ||
2543 | |||
2544 | skb->protocol = eth_type_trans(skb, netdev); | ||
2545 | #ifdef CONFIG_E1000_NAPI | ||
2546 | if(unlikely(adapter->vlgrp && | ||
2547 | (rx_desc->status & E1000_RXD_STAT_VP))) { | ||
2548 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | ||
2549 | le16_to_cpu(rx_desc->special) & | ||
2550 | E1000_RXD_SPC_VLAN_MASK); | ||
2551 | } else { | ||
2552 | netif_receive_skb(skb); | ||
2553 | } | ||
2554 | #else /* CONFIG_E1000_NAPI */ | ||
2555 | if(unlikely(adapter->vlgrp && | ||
2556 | (rx_desc->status & E1000_RXD_STAT_VP))) { | ||
2557 | vlan_hwaccel_rx(skb, adapter->vlgrp, | ||
2558 | le16_to_cpu(rx_desc->special) & | ||
2559 | E1000_RXD_SPC_VLAN_MASK); | ||
2560 | } else { | ||
2561 | netif_rx(skb); | ||
2562 | } | ||
2563 | #endif /* CONFIG_E1000_NAPI */ | ||
2564 | netdev->last_rx = jiffies; | ||
2565 | |||
2566 | next_desc: | ||
2567 | rx_desc->status = 0; | ||
2568 | buffer_info->skb = NULL; | ||
2569 | if(unlikely(++i == rx_ring->count)) i = 0; | ||
2570 | |||
2571 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
2572 | } | ||
2573 | |||
2574 | rx_ring->next_to_clean = i; | ||
2575 | |||
2576 | e1000_alloc_rx_buffers(adapter); | ||
2577 | |||
2578 | return cleaned; | ||
2579 | } | ||
2580 | |||
2581 | /** | ||
2582 | * e1000_alloc_rx_buffers - Replace used receive buffers | ||
2583 | * @adapter: address of board private structure | ||
2584 | **/ | ||
2585 | |||
2586 | static void | ||
2587 | e1000_alloc_rx_buffers(struct e1000_adapter *adapter) | ||
2588 | { | ||
2589 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | ||
2590 | struct net_device *netdev = adapter->netdev; | ||
2591 | struct pci_dev *pdev = adapter->pdev; | ||
2592 | struct e1000_rx_desc *rx_desc; | ||
2593 | struct e1000_buffer *buffer_info; | ||
2594 | struct sk_buff *skb; | ||
2595 | unsigned int i, bufsz; | ||
2596 | |||
2597 | i = rx_ring->next_to_use; | ||
2598 | buffer_info = &rx_ring->buffer_info[i]; | ||
2599 | |||
2600 | while(!buffer_info->skb) { | ||
2601 | bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | ||
2602 | |||
2603 | skb = dev_alloc_skb(bufsz); | ||
2604 | if(unlikely(!skb)) { | ||
2605 | /* Better luck next round */ | ||
2606 | break; | ||
2607 | } | ||
2608 | |||
2609 | /* fix for errata 23, cant cross 64kB boundary */ | ||
2610 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
2611 | struct sk_buff *oldskb = skb; | ||
2612 | DPRINTK(RX_ERR,ERR, | ||
2613 | "skb align check failed: %u bytes at %p\n", | ||
2614 | bufsz, skb->data); | ||
2615 | /* try again, without freeing the previous */ | ||
2616 | skb = dev_alloc_skb(bufsz); | ||
2617 | if (!skb) { | ||
2618 | dev_kfree_skb(oldskb); | ||
2619 | break; | ||
2620 | } | ||
2621 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
2622 | /* give up */ | ||
2623 | dev_kfree_skb(skb); | ||
2624 | dev_kfree_skb(oldskb); | ||
2625 | break; /* while !buffer_info->skb */ | ||
2626 | } else { | ||
2627 | /* move on with the new one */ | ||
2628 | dev_kfree_skb(oldskb); | ||
2629 | } | ||
2630 | } | ||
2631 | |||
2632 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
2633 | * this will result in a 16 byte aligned IP header after | ||
2634 | * the 14 byte MAC header is removed | ||
2635 | */ | ||
2636 | skb_reserve(skb, NET_IP_ALIGN); | ||
2637 | |||
2638 | skb->dev = netdev; | ||
2639 | |||
2640 | buffer_info->skb = skb; | ||
2641 | buffer_info->length = adapter->rx_buffer_len; | ||
2642 | buffer_info->dma = pci_map_single(pdev, | ||
2643 | skb->data, | ||
2644 | adapter->rx_buffer_len, | ||
2645 | PCI_DMA_FROMDEVICE); | ||
2646 | |||
2647 | /* fix for errata 23, cant cross 64kB boundary */ | ||
2648 | if(!e1000_check_64k_bound(adapter, | ||
2649 | (void *)(unsigned long)buffer_info->dma, | ||
2650 | adapter->rx_buffer_len)) { | ||
2651 | DPRINTK(RX_ERR,ERR, | ||
2652 | "dma align check failed: %u bytes at %ld\n", | ||
2653 | adapter->rx_buffer_len, (unsigned long)buffer_info->dma); | ||
2654 | |||
2655 | dev_kfree_skb(skb); | ||
2656 | buffer_info->skb = NULL; | ||
2657 | |||
2658 | pci_unmap_single(pdev, | ||
2659 | buffer_info->dma, | ||
2660 | adapter->rx_buffer_len, | ||
2661 | PCI_DMA_FROMDEVICE); | ||
2662 | |||
2663 | break; /* while !buffer_info->skb */ | ||
2664 | } | ||
2665 | |||
2666 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
2667 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
2668 | |||
2669 | if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) { | ||
2670 | /* Force memory writes to complete before letting h/w | ||
2671 | * know there are new descriptors to fetch. (Only | ||
2672 | * applicable for weak-ordered memory model archs, | ||
2673 | * such as IA-64). */ | ||
2674 | wmb(); | ||
2675 | |||
2676 | E1000_WRITE_REG(&adapter->hw, RDT, i); | ||
2677 | } | ||
2678 | |||
2679 | if(unlikely(++i == rx_ring->count)) i = 0; | ||
2680 | buffer_info = &rx_ring->buffer_info[i]; | ||
2681 | } | ||
2682 | |||
2683 | rx_ring->next_to_use = i; | ||
2684 | } | ||
2685 | |||
2686 | /** | ||
2687 | * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. | ||
2688 | * @adapter: | ||
2689 | **/ | ||
2690 | |||
2691 | static void | ||
2692 | e1000_smartspeed(struct e1000_adapter *adapter) | ||
2693 | { | ||
2694 | uint16_t phy_status; | ||
2695 | uint16_t phy_ctrl; | ||
2696 | |||
2697 | if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg || | ||
2698 | !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL)) | ||
2699 | return; | ||
2700 | |||
2701 | if(adapter->smartspeed == 0) { | ||
2702 | /* If Master/Slave config fault is asserted twice, | ||
2703 | * we assume back-to-back */ | ||
2704 | e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); | ||
2705 | if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | ||
2706 | e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); | ||
2707 | if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | ||
2708 | e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); | ||
2709 | if(phy_ctrl & CR_1000T_MS_ENABLE) { | ||
2710 | phy_ctrl &= ~CR_1000T_MS_ENABLE; | ||
2711 | e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, | ||
2712 | phy_ctrl); | ||
2713 | adapter->smartspeed++; | ||
2714 | if(!e1000_phy_setup_autoneg(&adapter->hw) && | ||
2715 | !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, | ||
2716 | &phy_ctrl)) { | ||
2717 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | ||
2718 | MII_CR_RESTART_AUTO_NEG); | ||
2719 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, | ||
2720 | phy_ctrl); | ||
2721 | } | ||
2722 | } | ||
2723 | return; | ||
2724 | } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { | ||
2725 | /* If still no link, perhaps using 2/3 pair cable */ | ||
2726 | e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); | ||
2727 | phy_ctrl |= CR_1000T_MS_ENABLE; | ||
2728 | e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl); | ||
2729 | if(!e1000_phy_setup_autoneg(&adapter->hw) && | ||
2730 | !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) { | ||
2731 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | ||
2732 | MII_CR_RESTART_AUTO_NEG); | ||
2733 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl); | ||
2734 | } | ||
2735 | } | ||
2736 | /* Restart process after E1000_SMARTSPEED_MAX iterations */ | ||
2737 | if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX) | ||
2738 | adapter->smartspeed = 0; | ||
2739 | } | ||
2740 | |||
2741 | /** | ||
2742 | * e1000_ioctl - | ||
2743 | * @netdev: | ||
2744 | * @ifreq: | ||
2745 | * @cmd: | ||
2746 | **/ | ||
2747 | |||
2748 | static int | ||
2749 | e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
2750 | { | ||
2751 | switch (cmd) { | ||
2752 | case SIOCGMIIPHY: | ||
2753 | case SIOCGMIIREG: | ||
2754 | case SIOCSMIIREG: | ||
2755 | return e1000_mii_ioctl(netdev, ifr, cmd); | ||
2756 | default: | ||
2757 | return -EOPNOTSUPP; | ||
2758 | } | ||
2759 | } | ||
2760 | |||
2761 | /** | ||
2762 | * e1000_mii_ioctl - | ||
2763 | * @netdev: | ||
2764 | * @ifreq: | ||
2765 | * @cmd: | ||
2766 | **/ | ||
2767 | |||
2768 | static int | ||
2769 | e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
2770 | { | ||
2771 | struct e1000_adapter *adapter = netdev->priv; | ||
2772 | struct mii_ioctl_data *data = if_mii(ifr); | ||
2773 | int retval; | ||
2774 | uint16_t mii_reg; | ||
2775 | uint16_t spddplx; | ||
2776 | |||
2777 | if(adapter->hw.media_type != e1000_media_type_copper) | ||
2778 | return -EOPNOTSUPP; | ||
2779 | |||
2780 | switch (cmd) { | ||
2781 | case SIOCGMIIPHY: | ||
2782 | data->phy_id = adapter->hw.phy_addr; | ||
2783 | break; | ||
2784 | case SIOCGMIIREG: | ||
2785 | if (!capable(CAP_NET_ADMIN)) | ||
2786 | return -EPERM; | ||
2787 | if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, | ||
2788 | &data->val_out)) | ||
2789 | return -EIO; | ||
2790 | break; | ||
2791 | case SIOCSMIIREG: | ||
2792 | if (!capable(CAP_NET_ADMIN)) | ||
2793 | return -EPERM; | ||
2794 | if (data->reg_num & ~(0x1F)) | ||
2795 | return -EFAULT; | ||
2796 | mii_reg = data->val_in; | ||
2797 | if (e1000_write_phy_reg(&adapter->hw, data->reg_num, | ||
2798 | mii_reg)) | ||
2799 | return -EIO; | ||
2800 | if (adapter->hw.phy_type == e1000_phy_m88) { | ||
2801 | switch (data->reg_num) { | ||
2802 | case PHY_CTRL: | ||
2803 | if(mii_reg & MII_CR_POWER_DOWN) | ||
2804 | break; | ||
2805 | if(mii_reg & MII_CR_AUTO_NEG_EN) { | ||
2806 | adapter->hw.autoneg = 1; | ||
2807 | adapter->hw.autoneg_advertised = 0x2F; | ||
2808 | } else { | ||
2809 | if (mii_reg & 0x40) | ||
2810 | spddplx = SPEED_1000; | ||
2811 | else if (mii_reg & 0x2000) | ||
2812 | spddplx = SPEED_100; | ||
2813 | else | ||
2814 | spddplx = SPEED_10; | ||
2815 | spddplx += (mii_reg & 0x100) | ||
2816 | ? FULL_DUPLEX : | ||
2817 | HALF_DUPLEX; | ||
2818 | retval = e1000_set_spd_dplx(adapter, | ||
2819 | spddplx); | ||
2820 | if(retval) | ||
2821 | return retval; | ||
2822 | } | ||
2823 | if(netif_running(adapter->netdev)) { | ||
2824 | e1000_down(adapter); | ||
2825 | e1000_up(adapter); | ||
2826 | } else | ||
2827 | e1000_reset(adapter); | ||
2828 | break; | ||
2829 | case M88E1000_PHY_SPEC_CTRL: | ||
2830 | case M88E1000_EXT_PHY_SPEC_CTRL: | ||
2831 | if (e1000_phy_reset(&adapter->hw)) | ||
2832 | return -EIO; | ||
2833 | break; | ||
2834 | } | ||
2835 | } else { | ||
2836 | switch (data->reg_num) { | ||
2837 | case PHY_CTRL: | ||
2838 | if(mii_reg & MII_CR_POWER_DOWN) | ||
2839 | break; | ||
2840 | if(netif_running(adapter->netdev)) { | ||
2841 | e1000_down(adapter); | ||
2842 | e1000_up(adapter); | ||
2843 | } else | ||
2844 | e1000_reset(adapter); | ||
2845 | break; | ||
2846 | } | ||
2847 | } | ||
2848 | break; | ||
2849 | default: | ||
2850 | return -EOPNOTSUPP; | ||
2851 | } | ||
2852 | return E1000_SUCCESS; | ||
2853 | } | ||
2854 | |||
2855 | void | ||
2856 | e1000_pci_set_mwi(struct e1000_hw *hw) | ||
2857 | { | ||
2858 | struct e1000_adapter *adapter = hw->back; | ||
2859 | |||
2860 | int ret; | ||
2861 | ret = pci_set_mwi(adapter->pdev); | ||
2862 | } | ||
2863 | |||
2864 | void | ||
2865 | e1000_pci_clear_mwi(struct e1000_hw *hw) | ||
2866 | { | ||
2867 | struct e1000_adapter *adapter = hw->back; | ||
2868 | |||
2869 | pci_clear_mwi(adapter->pdev); | ||
2870 | } | ||
2871 | |||
2872 | void | ||
2873 | e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) | ||
2874 | { | ||
2875 | struct e1000_adapter *adapter = hw->back; | ||
2876 | |||
2877 | pci_read_config_word(adapter->pdev, reg, value); | ||
2878 | } | ||
2879 | |||
2880 | void | ||
2881 | e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) | ||
2882 | { | ||
2883 | struct e1000_adapter *adapter = hw->back; | ||
2884 | |||
2885 | pci_write_config_word(adapter->pdev, reg, *value); | ||
2886 | } | ||
2887 | |||
2888 | uint32_t | ||
2889 | e1000_io_read(struct e1000_hw *hw, unsigned long port) | ||
2890 | { | ||
2891 | return inl(port); | ||
2892 | } | ||
2893 | |||
2894 | void | ||
2895 | e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value) | ||
2896 | { | ||
2897 | outl(value, port); | ||
2898 | } | ||
2899 | |||
2900 | static void | ||
2901 | e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | ||
2902 | { | ||
2903 | struct e1000_adapter *adapter = netdev->priv; | ||
2904 | uint32_t ctrl, rctl; | ||
2905 | |||
2906 | e1000_irq_disable(adapter); | ||
2907 | adapter->vlgrp = grp; | ||
2908 | |||
2909 | if(grp) { | ||
2910 | /* enable VLAN tag insert/strip */ | ||
2911 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | ||
2912 | ctrl |= E1000_CTRL_VME; | ||
2913 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | ||
2914 | |||
2915 | /* enable VLAN receive filtering */ | ||
2916 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
2917 | rctl |= E1000_RCTL_VFE; | ||
2918 | rctl &= ~E1000_RCTL_CFIEN; | ||
2919 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
2920 | } else { | ||
2921 | /* disable VLAN tag insert/strip */ | ||
2922 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | ||
2923 | ctrl &= ~E1000_CTRL_VME; | ||
2924 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | ||
2925 | |||
2926 | /* disable VLAN filtering */ | ||
2927 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
2928 | rctl &= ~E1000_RCTL_VFE; | ||
2929 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
2930 | } | ||
2931 | |||
2932 | e1000_irq_enable(adapter); | ||
2933 | } | ||
2934 | |||
2935 | static void | ||
2936 | e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid) | ||
2937 | { | ||
2938 | struct e1000_adapter *adapter = netdev->priv; | ||
2939 | uint32_t vfta, index; | ||
2940 | |||
2941 | /* add VID to filter table */ | ||
2942 | index = (vid >> 5) & 0x7F; | ||
2943 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); | ||
2944 | vfta |= (1 << (vid & 0x1F)); | ||
2945 | e1000_write_vfta(&adapter->hw, index, vfta); | ||
2946 | } | ||
2947 | |||
2948 | static void | ||
2949 | e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid) | ||
2950 | { | ||
2951 | struct e1000_adapter *adapter = netdev->priv; | ||
2952 | uint32_t vfta, index; | ||
2953 | |||
2954 | e1000_irq_disable(adapter); | ||
2955 | |||
2956 | if(adapter->vlgrp) | ||
2957 | adapter->vlgrp->vlan_devices[vid] = NULL; | ||
2958 | |||
2959 | e1000_irq_enable(adapter); | ||
2960 | |||
2961 | /* remove VID from filter table */ | ||
2962 | index = (vid >> 5) & 0x7F; | ||
2963 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); | ||
2964 | vfta &= ~(1 << (vid & 0x1F)); | ||
2965 | e1000_write_vfta(&adapter->hw, index, vfta); | ||
2966 | } | ||
2967 | |||
2968 | static void | ||
2969 | e1000_restore_vlan(struct e1000_adapter *adapter) | ||
2970 | { | ||
2971 | e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | ||
2972 | |||
2973 | if(adapter->vlgrp) { | ||
2974 | uint16_t vid; | ||
2975 | for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | ||
2976 | if(!adapter->vlgrp->vlan_devices[vid]) | ||
2977 | continue; | ||
2978 | e1000_vlan_rx_add_vid(adapter->netdev, vid); | ||
2979 | } | ||
2980 | } | ||
2981 | } | ||
2982 | |||
2983 | int | ||
2984 | e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx) | ||
2985 | { | ||
2986 | adapter->hw.autoneg = 0; | ||
2987 | |||
2988 | switch(spddplx) { | ||
2989 | case SPEED_10 + DUPLEX_HALF: | ||
2990 | adapter->hw.forced_speed_duplex = e1000_10_half; | ||
2991 | break; | ||
2992 | case SPEED_10 + DUPLEX_FULL: | ||
2993 | adapter->hw.forced_speed_duplex = e1000_10_full; | ||
2994 | break; | ||
2995 | case SPEED_100 + DUPLEX_HALF: | ||
2996 | adapter->hw.forced_speed_duplex = e1000_100_half; | ||
2997 | break; | ||
2998 | case SPEED_100 + DUPLEX_FULL: | ||
2999 | adapter->hw.forced_speed_duplex = e1000_100_full; | ||
3000 | break; | ||
3001 | case SPEED_1000 + DUPLEX_FULL: | ||
3002 | adapter->hw.autoneg = 1; | ||
3003 | adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; | ||
3004 | break; | ||
3005 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | ||
3006 | default: | ||
3007 | DPRINTK(PROBE, ERR, | ||
3008 | "Unsupported Speed/Duplexity configuration\n"); | ||
3009 | return -EINVAL; | ||
3010 | } | ||
3011 | return 0; | ||
3012 | } | ||
3013 | |||
3014 | static int | ||
3015 | e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p) | ||
3016 | { | ||
3017 | struct pci_dev *pdev = NULL; | ||
3018 | |||
3019 | switch(event) { | ||
3020 | case SYS_DOWN: | ||
3021 | case SYS_HALT: | ||
3022 | case SYS_POWER_OFF: | ||
3023 | while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { | ||
3024 | if(pci_dev_driver(pdev) == &e1000_driver) | ||
3025 | e1000_suspend(pdev, 3); | ||
3026 | } | ||
3027 | } | ||
3028 | return NOTIFY_DONE; | ||
3029 | } | ||
3030 | |||
3031 | static int | ||
3032 | e1000_suspend(struct pci_dev *pdev, uint32_t state) | ||
3033 | { | ||
3034 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3035 | struct e1000_adapter *adapter = netdev->priv; | ||
3036 | uint32_t ctrl, ctrl_ext, rctl, manc, status; | ||
3037 | uint32_t wufc = adapter->wol; | ||
3038 | |||
3039 | netif_device_detach(netdev); | ||
3040 | |||
3041 | if(netif_running(netdev)) | ||
3042 | e1000_down(adapter); | ||
3043 | |||
3044 | status = E1000_READ_REG(&adapter->hw, STATUS); | ||
3045 | if(status & E1000_STATUS_LU) | ||
3046 | wufc &= ~E1000_WUFC_LNKC; | ||
3047 | |||
3048 | if(wufc) { | ||
3049 | e1000_setup_rctl(adapter); | ||
3050 | e1000_set_multi(netdev); | ||
3051 | |||
3052 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
3053 | if(adapter->wol & E1000_WUFC_MC) { | ||
3054 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
3055 | rctl |= E1000_RCTL_MPE; | ||
3056 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
3057 | } | ||
3058 | |||
3059 | if(adapter->hw.mac_type >= e1000_82540) { | ||
3060 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | ||
3061 | /* advertise wake from D3Cold */ | ||
3062 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
3063 | /* phy power management enable */ | ||
3064 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
3065 | ctrl |= E1000_CTRL_ADVD3WUC | | ||
3066 | E1000_CTRL_EN_PHY_PWR_MGMT; | ||
3067 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | ||
3068 | } | ||
3069 | |||
3070 | if(adapter->hw.media_type == e1000_media_type_fiber || | ||
3071 | adapter->hw.media_type == e1000_media_type_internal_serdes) { | ||
3072 | /* keep the laser running in D3 */ | ||
3073 | ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); | ||
3074 | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | ||
3075 | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); | ||
3076 | } | ||
3077 | |||
3078 | E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); | ||
3079 | E1000_WRITE_REG(&adapter->hw, WUFC, wufc); | ||
3080 | pci_enable_wake(pdev, 3, 1); | ||
3081 | pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */ | ||
3082 | } else { | ||
3083 | E1000_WRITE_REG(&adapter->hw, WUC, 0); | ||
3084 | E1000_WRITE_REG(&adapter->hw, WUFC, 0); | ||
3085 | pci_enable_wake(pdev, 3, 0); | ||
3086 | pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ | ||
3087 | } | ||
3088 | |||
3089 | pci_save_state(pdev); | ||
3090 | |||
3091 | if(adapter->hw.mac_type >= e1000_82540 && | ||
3092 | adapter->hw.media_type == e1000_media_type_copper) { | ||
3093 | manc = E1000_READ_REG(&adapter->hw, MANC); | ||
3094 | if(manc & E1000_MANC_SMBUS_EN) { | ||
3095 | manc |= E1000_MANC_ARP_EN; | ||
3096 | E1000_WRITE_REG(&adapter->hw, MANC, manc); | ||
3097 | pci_enable_wake(pdev, 3, 1); | ||
3098 | pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */ | ||
3099 | } | ||
3100 | } | ||
3101 | |||
3102 | pci_disable_device(pdev); | ||
3103 | |||
3104 | state = (state > 0) ? 3 : 0; | ||
3105 | pci_set_power_state(pdev, state); | ||
3106 | |||
3107 | return 0; | ||
3108 | } | ||
3109 | |||
3110 | #ifdef CONFIG_PM | ||
3111 | static int | ||
3112 | e1000_resume(struct pci_dev *pdev) | ||
3113 | { | ||
3114 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3115 | struct e1000_adapter *adapter = netdev->priv; | ||
3116 | uint32_t manc, ret; | ||
3117 | |||
3118 | pci_set_power_state(pdev, 0); | ||
3119 | pci_restore_state(pdev); | ||
3120 | ret = pci_enable_device(pdev); | ||
3121 | if (pdev->is_busmaster) | ||
3122 | pci_set_master(pdev); | ||
3123 | |||
3124 | pci_enable_wake(pdev, 3, 0); | ||
3125 | pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ | ||
3126 | |||
3127 | e1000_reset(adapter); | ||
3128 | E1000_WRITE_REG(&adapter->hw, WUS, ~0); | ||
3129 | |||
3130 | if(netif_running(netdev)) | ||
3131 | e1000_up(adapter); | ||
3132 | |||
3133 | netif_device_attach(netdev); | ||
3134 | |||
3135 | if(adapter->hw.mac_type >= e1000_82540 && | ||
3136 | adapter->hw.media_type == e1000_media_type_copper) { | ||
3137 | manc = E1000_READ_REG(&adapter->hw, MANC); | ||
3138 | manc &= ~(E1000_MANC_ARP_EN); | ||
3139 | E1000_WRITE_REG(&adapter->hw, MANC, manc); | ||
3140 | } | ||
3141 | |||
3142 | return 0; | ||
3143 | } | ||
3144 | #endif | ||
3145 | |||
3146 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
3147 | /* | ||
3148 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
3149 | * without having to re-enable interrupts. It's not called while | ||
3150 | * the interrupt routine is executing. | ||
3151 | */ | ||
3152 | static void | ||
3153 | e1000_netpoll (struct net_device *netdev) | ||
3154 | { | ||
3155 | struct e1000_adapter *adapter = netdev->priv; | ||
3156 | disable_irq(adapter->pdev->irq); | ||
3157 | e1000_intr(adapter->pdev->irq, netdev, NULL); | ||
3158 | enable_irq(adapter->pdev->irq); | ||
3159 | } | ||
3160 | #endif | ||
3161 | |||
3162 | /* e1000_main.c */ | ||
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h new file mode 100644 index 000000000000..970c656a517c --- /dev/null +++ b/drivers/net/e1000/e1000_osdep.h | |||
@@ -0,0 +1,101 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | |||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the Free | ||
8 | Software Foundation; either version 2 of the License, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along with | ||
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | |||
20 | The full GNU General Public License is included in this distribution in the | ||
21 | file called LICENSE. | ||
22 | |||
23 | Contact Information: | ||
24 | Linux NICS <linux.nics@intel.com> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | |||
30 | /* glue for the OS independent part of e1000 | ||
31 | * includes register access macros | ||
32 | */ | ||
33 | |||
34 | #ifndef _E1000_OSDEP_H_ | ||
35 | #define _E1000_OSDEP_H_ | ||
36 | |||
37 | #include <linux/types.h> | ||
38 | #include <linux/pci.h> | ||
39 | #include <linux/delay.h> | ||
40 | #include <asm/io.h> | ||
41 | #include <linux/interrupt.h> | ||
42 | #include <linux/sched.h> | ||
43 | |||
44 | #ifndef msec_delay | ||
45 | #define msec_delay(x) msleep(x) | ||
46 | |||
47 | /* Some workarounds require millisecond delays and are run during interrupt | ||
48 | * context. Most notably, when establishing link, the phy may need tweaking | ||
49 | * but cannot process phy register reads/writes faster than millisecond | ||
50 | * intervals...and we establish link due to a "link status change" interrupt. | ||
51 | */ | ||
52 | #define msec_delay_irq(x) mdelay(x) | ||
53 | #endif | ||
54 | |||
55 | #define PCI_COMMAND_REGISTER PCI_COMMAND | ||
56 | #define CMD_MEM_WRT_INVALIDATE PCI_COMMAND_INVALIDATE | ||
57 | |||
58 | typedef enum { | ||
59 | #undef FALSE | ||
60 | FALSE = 0, | ||
61 | #undef TRUE | ||
62 | TRUE = 1 | ||
63 | } boolean_t; | ||
64 | |||
65 | #define MSGOUT(S, A, B) printk(KERN_DEBUG S "\n", A, B) | ||
66 | |||
67 | #ifdef DBG | ||
68 | #define DEBUGOUT(S) printk(KERN_DEBUG S "\n") | ||
69 | #define DEBUGOUT1(S, A...) printk(KERN_DEBUG S "\n", A) | ||
70 | #else | ||
71 | #define DEBUGOUT(S) | ||
72 | #define DEBUGOUT1(S, A...) | ||
73 | #endif | ||
74 | |||
75 | #define DEBUGFUNC(F) DEBUGOUT(F) | ||
76 | #define DEBUGOUT2 DEBUGOUT1 | ||
77 | #define DEBUGOUT3 DEBUGOUT2 | ||
78 | #define DEBUGOUT7 DEBUGOUT3 | ||
79 | |||
80 | |||
81 | #define E1000_WRITE_REG(a, reg, value) ( \ | ||
82 | writel((value), ((a)->hw_addr + \ | ||
83 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg)))) | ||
84 | |||
85 | #define E1000_READ_REG(a, reg) ( \ | ||
86 | readl((a)->hw_addr + \ | ||
87 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg))) | ||
88 | |||
89 | #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \ | ||
90 | writel((value), ((a)->hw_addr + \ | ||
91 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
92 | ((offset) << 2)))) | ||
93 | |||
94 | #define E1000_READ_REG_ARRAY(a, reg, offset) ( \ | ||
95 | readl((a)->hw_addr + \ | ||
96 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
97 | ((offset) << 2))) | ||
98 | |||
99 | #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) | ||
100 | |||
101 | #endif /* _E1000_OSDEP_H_ */ | ||
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c new file mode 100644 index 000000000000..e914d09fe6f9 --- /dev/null +++ b/drivers/net/e1000/e1000_param.c | |||
@@ -0,0 +1,744 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | |||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the Free | ||
8 | Software Foundation; either version 2 of the License, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along with | ||
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | |||
20 | The full GNU General Public License is included in this distribution in the | ||
21 | file called LICENSE. | ||
22 | |||
23 | Contact Information: | ||
24 | Linux NICS <linux.nics@intel.com> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include "e1000.h" | ||
30 | |||
31 | /* This is the only thing that needs to be changed to adjust the | ||
32 | * maximum number of ports that the driver can manage. | ||
33 | */ | ||
34 | |||
35 | #define E1000_MAX_NIC 32 | ||
36 | |||
37 | #define OPTION_UNSET -1 | ||
38 | #define OPTION_DISABLED 0 | ||
39 | #define OPTION_ENABLED 1 | ||
40 | |||
41 | /* All parameters are treated the same, as an integer array of values. | ||
42 | * This macro just reduces the need to repeat the same declaration code | ||
43 | * over and over (plus this helps to avoid typo bugs). | ||
44 | */ | ||
45 | |||
46 | #define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } | ||
47 | #define E1000_PARAM(X, desc) \ | ||
48 | static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \ | ||
49 | static int num_##X = 0; \ | ||
50 | module_param_array_named(X, X, int, &num_##X, 0); \ | ||
51 | MODULE_PARM_DESC(X, desc); | ||
52 | |||
53 | /* Transmit Descriptor Count | ||
54 | * | ||
55 | * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers | ||
56 | * Valid Range: 80-4096 for 82544 and newer | ||
57 | * | ||
58 | * Default Value: 256 | ||
59 | */ | ||
60 | |||
61 | E1000_PARAM(TxDescriptors, "Number of transmit descriptors"); | ||
62 | |||
63 | /* Receive Descriptor Count | ||
64 | * | ||
65 | * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers | ||
66 | * Valid Range: 80-4096 for 82544 and newer | ||
67 | * | ||
68 | * Default Value: 256 | ||
69 | */ | ||
70 | |||
71 | E1000_PARAM(RxDescriptors, "Number of receive descriptors"); | ||
72 | |||
73 | /* User Specified Speed Override | ||
74 | * | ||
75 | * Valid Range: 0, 10, 100, 1000 | ||
76 | * - 0 - auto-negotiate at all supported speeds | ||
77 | * - 10 - only link at 10 Mbps | ||
78 | * - 100 - only link at 100 Mbps | ||
79 | * - 1000 - only link at 1000 Mbps | ||
80 | * | ||
81 | * Default Value: 0 | ||
82 | */ | ||
83 | |||
84 | E1000_PARAM(Speed, "Speed setting"); | ||
85 | |||
86 | /* User Specified Duplex Override | ||
87 | * | ||
88 | * Valid Range: 0-2 | ||
89 | * - 0 - auto-negotiate for duplex | ||
90 | * - 1 - only link at half duplex | ||
91 | * - 2 - only link at full duplex | ||
92 | * | ||
93 | * Default Value: 0 | ||
94 | */ | ||
95 | |||
96 | E1000_PARAM(Duplex, "Duplex setting"); | ||
97 | |||
98 | /* Auto-negotiation Advertisement Override | ||
99 | * | ||
100 | * Valid Range: 0x01-0x0F, 0x20-0x2F (copper); 0x20 (fiber) | ||
101 | * | ||
102 | * The AutoNeg value is a bit mask describing which speed and duplex | ||
103 | * combinations should be advertised during auto-negotiation. | ||
104 | * The supported speed and duplex modes are listed below | ||
105 | * | ||
106 | * Bit 7 6 5 4 3 2 1 0 | ||
107 | * Speed (Mbps) N/A N/A 1000 N/A 100 100 10 10 | ||
108 | * Duplex Full Full Half Full Half | ||
109 | * | ||
110 | * Default Value: 0x2F (copper); 0x20 (fiber) | ||
111 | */ | ||
112 | |||
113 | E1000_PARAM(AutoNeg, "Advertised auto-negotiation setting"); | ||
114 | |||
115 | /* User Specified Flow Control Override | ||
116 | * | ||
117 | * Valid Range: 0-3 | ||
118 | * - 0 - No Flow Control | ||
119 | * - 1 - Rx only, respond to PAUSE frames but do not generate them | ||
120 | * - 2 - Tx only, generate PAUSE frames but ignore them on receive | ||
121 | * - 3 - Full Flow Control Support | ||
122 | * | ||
123 | * Default Value: Read flow control settings from the EEPROM | ||
124 | */ | ||
125 | |||
126 | E1000_PARAM(FlowControl, "Flow Control setting"); | ||
127 | |||
128 | /* XsumRX - Receive Checksum Offload Enable/Disable | ||
129 | * | ||
130 | * Valid Range: 0, 1 | ||
131 | * - 0 - disables all checksum offload | ||
132 | * - 1 - enables receive IP/TCP/UDP checksum offload | ||
133 | * on 82543 and newer -based NICs | ||
134 | * | ||
135 | * Default Value: 1 | ||
136 | */ | ||
137 | |||
138 | E1000_PARAM(XsumRX, "Disable or enable Receive Checksum offload"); | ||
139 | |||
140 | /* Transmit Interrupt Delay in units of 1.024 microseconds | ||
141 | * | ||
142 | * Valid Range: 0-65535 | ||
143 | * | ||
144 | * Default Value: 64 | ||
145 | */ | ||
146 | |||
147 | E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay"); | ||
148 | |||
149 | /* Transmit Absolute Interrupt Delay in units of 1.024 microseconds | ||
150 | * | ||
151 | * Valid Range: 0-65535 | ||
152 | * | ||
153 | * Default Value: 0 | ||
154 | */ | ||
155 | |||
156 | E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay"); | ||
157 | |||
158 | /* Receive Interrupt Delay in units of 1.024 microseconds | ||
159 | * | ||
160 | * Valid Range: 0-65535 | ||
161 | * | ||
162 | * Default Value: 0 | ||
163 | */ | ||
164 | |||
165 | E1000_PARAM(RxIntDelay, "Receive Interrupt Delay"); | ||
166 | |||
167 | /* Receive Absolute Interrupt Delay in units of 1.024 microseconds | ||
168 | * | ||
169 | * Valid Range: 0-65535 | ||
170 | * | ||
171 | * Default Value: 128 | ||
172 | */ | ||
173 | |||
174 | E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay"); | ||
175 | |||
176 | /* Interrupt Throttle Rate (interrupts/sec) | ||
177 | * | ||
178 | * Valid Range: 100-100000 (0=off, 1=dynamic) | ||
179 | * | ||
180 | * Default Value: 1 | ||
181 | */ | ||
182 | |||
183 | E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); | ||
184 | |||
185 | #define AUTONEG_ADV_DEFAULT 0x2F | ||
186 | #define AUTONEG_ADV_MASK 0x2F | ||
187 | #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL | ||
188 | |||
189 | #define DEFAULT_RDTR 0 | ||
190 | #define MAX_RXDELAY 0xFFFF | ||
191 | #define MIN_RXDELAY 0 | ||
192 | |||
193 | #define DEFAULT_RADV 128 | ||
194 | #define MAX_RXABSDELAY 0xFFFF | ||
195 | #define MIN_RXABSDELAY 0 | ||
196 | |||
197 | #define DEFAULT_TIDV 64 | ||
198 | #define MAX_TXDELAY 0xFFFF | ||
199 | #define MIN_TXDELAY 0 | ||
200 | |||
201 | #define DEFAULT_TADV 64 | ||
202 | #define MAX_TXABSDELAY 0xFFFF | ||
203 | #define MIN_TXABSDELAY 0 | ||
204 | |||
205 | #define DEFAULT_ITR 8000 | ||
206 | #define MAX_ITR 100000 | ||
207 | #define MIN_ITR 100 | ||
208 | |||
209 | struct e1000_option { | ||
210 | enum { enable_option, range_option, list_option } type; | ||
211 | char *name; | ||
212 | char *err; | ||
213 | int def; | ||
214 | union { | ||
215 | struct { /* range_option info */ | ||
216 | int min; | ||
217 | int max; | ||
218 | } r; | ||
219 | struct { /* list_option info */ | ||
220 | int nr; | ||
221 | struct e1000_opt_list { int i; char *str; } *p; | ||
222 | } l; | ||
223 | } arg; | ||
224 | }; | ||
225 | |||
226 | static int __devinit | ||
227 | e1000_validate_option(int *value, struct e1000_option *opt, | ||
228 | struct e1000_adapter *adapter) | ||
229 | { | ||
230 | if(*value == OPTION_UNSET) { | ||
231 | *value = opt->def; | ||
232 | return 0; | ||
233 | } | ||
234 | |||
235 | switch (opt->type) { | ||
236 | case enable_option: | ||
237 | switch (*value) { | ||
238 | case OPTION_ENABLED: | ||
239 | DPRINTK(PROBE, INFO, "%s Enabled\n", opt->name); | ||
240 | return 0; | ||
241 | case OPTION_DISABLED: | ||
242 | DPRINTK(PROBE, INFO, "%s Disabled\n", opt->name); | ||
243 | return 0; | ||
244 | } | ||
245 | break; | ||
246 | case range_option: | ||
247 | if(*value >= opt->arg.r.min && *value <= opt->arg.r.max) { | ||
248 | DPRINTK(PROBE, INFO, | ||
249 | "%s set to %i\n", opt->name, *value); | ||
250 | return 0; | ||
251 | } | ||
252 | break; | ||
253 | case list_option: { | ||
254 | int i; | ||
255 | struct e1000_opt_list *ent; | ||
256 | |||
257 | for(i = 0; i < opt->arg.l.nr; i++) { | ||
258 | ent = &opt->arg.l.p[i]; | ||
259 | if(*value == ent->i) { | ||
260 | if(ent->str[0] != '\0') | ||
261 | DPRINTK(PROBE, INFO, "%s\n", ent->str); | ||
262 | return 0; | ||
263 | } | ||
264 | } | ||
265 | } | ||
266 | break; | ||
267 | default: | ||
268 | BUG(); | ||
269 | } | ||
270 | |||
271 | DPRINTK(PROBE, INFO, "Invalid %s specified (%i) %s\n", | ||
272 | opt->name, *value, opt->err); | ||
273 | *value = opt->def; | ||
274 | return -1; | ||
275 | } | ||
276 | |||
277 | static void e1000_check_fiber_options(struct e1000_adapter *adapter); | ||
278 | static void e1000_check_copper_options(struct e1000_adapter *adapter); | ||
279 | |||
280 | /** | ||
281 | * e1000_check_options - Range Checking for Command Line Parameters | ||
282 | * @adapter: board private structure | ||
283 | * | ||
284 | * This routine checks all command line parameters for valid user | ||
285 | * input. If an invalid value is given, or if no user specified | ||
286 | * value exists, a default value is used. The final value is stored | ||
287 | * in a variable in the adapter structure. | ||
288 | **/ | ||
289 | |||
290 | void __devinit | ||
291 | e1000_check_options(struct e1000_adapter *adapter) | ||
292 | { | ||
293 | int bd = adapter->bd_number; | ||
294 | if(bd >= E1000_MAX_NIC) { | ||
295 | DPRINTK(PROBE, NOTICE, | ||
296 | "Warning: no configuration for board #%i\n", bd); | ||
297 | DPRINTK(PROBE, NOTICE, "Using defaults for all values\n"); | ||
298 | } | ||
299 | |||
300 | { /* Transmit Descriptor Count */ | ||
301 | struct e1000_option opt = { | ||
302 | .type = range_option, | ||
303 | .name = "Transmit Descriptors", | ||
304 | .err = "using default of " | ||
305 | __MODULE_STRING(E1000_DEFAULT_TXD), | ||
306 | .def = E1000_DEFAULT_TXD, | ||
307 | .arg = { .r = { .min = E1000_MIN_TXD }} | ||
308 | }; | ||
309 | struct e1000_desc_ring *tx_ring = &adapter->tx_ring; | ||
310 | e1000_mac_type mac_type = adapter->hw.mac_type; | ||
311 | opt.arg.r.max = mac_type < e1000_82544 ? | ||
312 | E1000_MAX_TXD : E1000_MAX_82544_TXD; | ||
313 | |||
314 | if (num_TxDescriptors > bd) { | ||
315 | tx_ring->count = TxDescriptors[bd]; | ||
316 | e1000_validate_option(&tx_ring->count, &opt, adapter); | ||
317 | E1000_ROUNDUP(tx_ring->count, | ||
318 | REQ_TX_DESCRIPTOR_MULTIPLE); | ||
319 | } else { | ||
320 | tx_ring->count = opt.def; | ||
321 | } | ||
322 | } | ||
323 | { /* Receive Descriptor Count */ | ||
324 | struct e1000_option opt = { | ||
325 | .type = range_option, | ||
326 | .name = "Receive Descriptors", | ||
327 | .err = "using default of " | ||
328 | __MODULE_STRING(E1000_DEFAULT_RXD), | ||
329 | .def = E1000_DEFAULT_RXD, | ||
330 | .arg = { .r = { .min = E1000_MIN_RXD }} | ||
331 | }; | ||
332 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | ||
333 | e1000_mac_type mac_type = adapter->hw.mac_type; | ||
334 | opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD : | ||
335 | E1000_MAX_82544_RXD; | ||
336 | |||
337 | if (num_RxDescriptors > bd) { | ||
338 | rx_ring->count = RxDescriptors[bd]; | ||
339 | e1000_validate_option(&rx_ring->count, &opt, adapter); | ||
340 | E1000_ROUNDUP(rx_ring->count, | ||
341 | REQ_RX_DESCRIPTOR_MULTIPLE); | ||
342 | } else { | ||
343 | rx_ring->count = opt.def; | ||
344 | } | ||
345 | } | ||
346 | { /* Checksum Offload Enable/Disable */ | ||
347 | struct e1000_option opt = { | ||
348 | .type = enable_option, | ||
349 | .name = "Checksum Offload", | ||
350 | .err = "defaulting to Enabled", | ||
351 | .def = OPTION_ENABLED | ||
352 | }; | ||
353 | |||
354 | if (num_XsumRX > bd) { | ||
355 | int rx_csum = XsumRX[bd]; | ||
356 | e1000_validate_option(&rx_csum, &opt, adapter); | ||
357 | adapter->rx_csum = rx_csum; | ||
358 | } else { | ||
359 | adapter->rx_csum = opt.def; | ||
360 | } | ||
361 | } | ||
362 | { /* Flow Control */ | ||
363 | |||
364 | struct e1000_opt_list fc_list[] = | ||
365 | {{ e1000_fc_none, "Flow Control Disabled" }, | ||
366 | { e1000_fc_rx_pause,"Flow Control Receive Only" }, | ||
367 | { e1000_fc_tx_pause,"Flow Control Transmit Only" }, | ||
368 | { e1000_fc_full, "Flow Control Enabled" }, | ||
369 | { e1000_fc_default, "Flow Control Hardware Default" }}; | ||
370 | |||
371 | struct e1000_option opt = { | ||
372 | .type = list_option, | ||
373 | .name = "Flow Control", | ||
374 | .err = "reading default settings from EEPROM", | ||
375 | .def = e1000_fc_default, | ||
376 | .arg = { .l = { .nr = ARRAY_SIZE(fc_list), | ||
377 | .p = fc_list }} | ||
378 | }; | ||
379 | |||
380 | if (num_FlowControl > bd) { | ||
381 | int fc = FlowControl[bd]; | ||
382 | e1000_validate_option(&fc, &opt, adapter); | ||
383 | adapter->hw.fc = adapter->hw.original_fc = fc; | ||
384 | } else { | ||
385 | adapter->hw.fc = opt.def; | ||
386 | } | ||
387 | } | ||
388 | { /* Transmit Interrupt Delay */ | ||
389 | struct e1000_option opt = { | ||
390 | .type = range_option, | ||
391 | .name = "Transmit Interrupt Delay", | ||
392 | .err = "using default of " __MODULE_STRING(DEFAULT_TIDV), | ||
393 | .def = DEFAULT_TIDV, | ||
394 | .arg = { .r = { .min = MIN_TXDELAY, | ||
395 | .max = MAX_TXDELAY }} | ||
396 | }; | ||
397 | |||
398 | if (num_TxIntDelay > bd) { | ||
399 | adapter->tx_int_delay = TxIntDelay[bd]; | ||
400 | e1000_validate_option(&adapter->tx_int_delay, &opt, | ||
401 | adapter); | ||
402 | } else { | ||
403 | adapter->tx_int_delay = opt.def; | ||
404 | } | ||
405 | } | ||
406 | { /* Transmit Absolute Interrupt Delay */ | ||
407 | struct e1000_option opt = { | ||
408 | .type = range_option, | ||
409 | .name = "Transmit Absolute Interrupt Delay", | ||
410 | .err = "using default of " __MODULE_STRING(DEFAULT_TADV), | ||
411 | .def = DEFAULT_TADV, | ||
412 | .arg = { .r = { .min = MIN_TXABSDELAY, | ||
413 | .max = MAX_TXABSDELAY }} | ||
414 | }; | ||
415 | |||
416 | if (num_TxAbsIntDelay > bd) { | ||
417 | adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; | ||
418 | e1000_validate_option(&adapter->tx_abs_int_delay, &opt, | ||
419 | adapter); | ||
420 | } else { | ||
421 | adapter->tx_abs_int_delay = opt.def; | ||
422 | } | ||
423 | } | ||
424 | { /* Receive Interrupt Delay */ | ||
425 | struct e1000_option opt = { | ||
426 | .type = range_option, | ||
427 | .name = "Receive Interrupt Delay", | ||
428 | .err = "using default of " __MODULE_STRING(DEFAULT_RDTR), | ||
429 | .def = DEFAULT_RDTR, | ||
430 | .arg = { .r = { .min = MIN_RXDELAY, | ||
431 | .max = MAX_RXDELAY }} | ||
432 | }; | ||
433 | |||
434 | if (num_RxIntDelay > bd) { | ||
435 | adapter->rx_int_delay = RxIntDelay[bd]; | ||
436 | e1000_validate_option(&adapter->rx_int_delay, &opt, | ||
437 | adapter); | ||
438 | } else { | ||
439 | adapter->rx_int_delay = opt.def; | ||
440 | } | ||
441 | } | ||
442 | { /* Receive Absolute Interrupt Delay */ | ||
443 | struct e1000_option opt = { | ||
444 | .type = range_option, | ||
445 | .name = "Receive Absolute Interrupt Delay", | ||
446 | .err = "using default of " __MODULE_STRING(DEFAULT_RADV), | ||
447 | .def = DEFAULT_RADV, | ||
448 | .arg = { .r = { .min = MIN_RXABSDELAY, | ||
449 | .max = MAX_RXABSDELAY }} | ||
450 | }; | ||
451 | |||
452 | if (num_RxAbsIntDelay > bd) { | ||
453 | adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; | ||
454 | e1000_validate_option(&adapter->rx_abs_int_delay, &opt, | ||
455 | adapter); | ||
456 | } else { | ||
457 | adapter->rx_abs_int_delay = opt.def; | ||
458 | } | ||
459 | } | ||
460 | { /* Interrupt Throttling Rate */ | ||
461 | struct e1000_option opt = { | ||
462 | .type = range_option, | ||
463 | .name = "Interrupt Throttling Rate (ints/sec)", | ||
464 | .err = "using default of " __MODULE_STRING(DEFAULT_ITR), | ||
465 | .def = DEFAULT_ITR, | ||
466 | .arg = { .r = { .min = MIN_ITR, | ||
467 | .max = MAX_ITR }} | ||
468 | }; | ||
469 | |||
470 | if (num_InterruptThrottleRate > bd) { | ||
471 | adapter->itr = InterruptThrottleRate[bd]; | ||
472 | switch(adapter->itr) { | ||
473 | case 0: | ||
474 | DPRINTK(PROBE, INFO, "%s turned off\n", | ||
475 | opt.name); | ||
476 | break; | ||
477 | case 1: | ||
478 | DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", | ||
479 | opt.name); | ||
480 | break; | ||
481 | case -1: | ||
482 | default: | ||
483 | e1000_validate_option(&adapter->itr, &opt, | ||
484 | adapter); | ||
485 | break; | ||
486 | } | ||
487 | } else { | ||
488 | adapter->itr = opt.def; | ||
489 | } | ||
490 | } | ||
491 | |||
492 | switch(adapter->hw.media_type) { | ||
493 | case e1000_media_type_fiber: | ||
494 | case e1000_media_type_internal_serdes: | ||
495 | e1000_check_fiber_options(adapter); | ||
496 | break; | ||
497 | case e1000_media_type_copper: | ||
498 | e1000_check_copper_options(adapter); | ||
499 | break; | ||
500 | default: | ||
501 | BUG(); | ||
502 | } | ||
503 | } | ||
504 | |||
505 | /** | ||
506 | * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version | ||
507 | * @adapter: board private structure | ||
508 | * | ||
509 | * Handles speed and duplex options on fiber adapters | ||
510 | **/ | ||
511 | |||
512 | static void __devinit | ||
513 | e1000_check_fiber_options(struct e1000_adapter *adapter) | ||
514 | { | ||
515 | int bd = adapter->bd_number; | ||
516 | if(num_Speed > bd) { | ||
517 | DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, " | ||
518 | "parameter ignored\n"); | ||
519 | } | ||
520 | |||
521 | if(num_Duplex > bd) { | ||
522 | DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, " | ||
523 | "parameter ignored\n"); | ||
524 | } | ||
525 | |||
526 | if((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) { | ||
527 | DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is " | ||
528 | "not valid for fiber adapters, " | ||
529 | "parameter ignored\n"); | ||
530 | } | ||
531 | } | ||
532 | |||
533 | /** | ||
534 | * e1000_check_copper_options - Range Checking for Link Options, Copper Version | ||
535 | * @adapter: board private structure | ||
536 | * | ||
537 | * Handles speed and duplex options on copper adapters | ||
538 | **/ | ||
539 | |||
540 | static void __devinit | ||
541 | e1000_check_copper_options(struct e1000_adapter *adapter) | ||
542 | { | ||
543 | int speed, dplx; | ||
544 | int bd = adapter->bd_number; | ||
545 | |||
546 | { /* Speed */ | ||
547 | struct e1000_opt_list speed_list[] = {{ 0, "" }, | ||
548 | { SPEED_10, "" }, | ||
549 | { SPEED_100, "" }, | ||
550 | { SPEED_1000, "" }}; | ||
551 | |||
552 | struct e1000_option opt = { | ||
553 | .type = list_option, | ||
554 | .name = "Speed", | ||
555 | .err = "parameter ignored", | ||
556 | .def = 0, | ||
557 | .arg = { .l = { .nr = ARRAY_SIZE(speed_list), | ||
558 | .p = speed_list }} | ||
559 | }; | ||
560 | |||
561 | if (num_Speed > bd) { | ||
562 | speed = Speed[bd]; | ||
563 | e1000_validate_option(&speed, &opt, adapter); | ||
564 | } else { | ||
565 | speed = opt.def; | ||
566 | } | ||
567 | } | ||
568 | { /* Duplex */ | ||
569 | struct e1000_opt_list dplx_list[] = {{ 0, "" }, | ||
570 | { HALF_DUPLEX, "" }, | ||
571 | { FULL_DUPLEX, "" }}; | ||
572 | |||
573 | struct e1000_option opt = { | ||
574 | .type = list_option, | ||
575 | .name = "Duplex", | ||
576 | .err = "parameter ignored", | ||
577 | .def = 0, | ||
578 | .arg = { .l = { .nr = ARRAY_SIZE(dplx_list), | ||
579 | .p = dplx_list }} | ||
580 | }; | ||
581 | |||
582 | if (num_Duplex > bd) { | ||
583 | dplx = Duplex[bd]; | ||
584 | e1000_validate_option(&dplx, &opt, adapter); | ||
585 | } else { | ||
586 | dplx = opt.def; | ||
587 | } | ||
588 | } | ||
589 | |||
590 | if((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) { | ||
591 | DPRINTK(PROBE, INFO, | ||
592 | "AutoNeg specified along with Speed or Duplex, " | ||
593 | "parameter ignored\n"); | ||
594 | adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT; | ||
595 | } else { /* Autoneg */ | ||
596 | struct e1000_opt_list an_list[] = | ||
597 | #define AA "AutoNeg advertising " | ||
598 | {{ 0x01, AA "10/HD" }, | ||
599 | { 0x02, AA "10/FD" }, | ||
600 | { 0x03, AA "10/FD, 10/HD" }, | ||
601 | { 0x04, AA "100/HD" }, | ||
602 | { 0x05, AA "100/HD, 10/HD" }, | ||
603 | { 0x06, AA "100/HD, 10/FD" }, | ||
604 | { 0x07, AA "100/HD, 10/FD, 10/HD" }, | ||
605 | { 0x08, AA "100/FD" }, | ||
606 | { 0x09, AA "100/FD, 10/HD" }, | ||
607 | { 0x0a, AA "100/FD, 10/FD" }, | ||
608 | { 0x0b, AA "100/FD, 10/FD, 10/HD" }, | ||
609 | { 0x0c, AA "100/FD, 100/HD" }, | ||
610 | { 0x0d, AA "100/FD, 100/HD, 10/HD" }, | ||
611 | { 0x0e, AA "100/FD, 100/HD, 10/FD" }, | ||
612 | { 0x0f, AA "100/FD, 100/HD, 10/FD, 10/HD" }, | ||
613 | { 0x20, AA "1000/FD" }, | ||
614 | { 0x21, AA "1000/FD, 10/HD" }, | ||
615 | { 0x22, AA "1000/FD, 10/FD" }, | ||
616 | { 0x23, AA "1000/FD, 10/FD, 10/HD" }, | ||
617 | { 0x24, AA "1000/FD, 100/HD" }, | ||
618 | { 0x25, AA "1000/FD, 100/HD, 10/HD" }, | ||
619 | { 0x26, AA "1000/FD, 100/HD, 10/FD" }, | ||
620 | { 0x27, AA "1000/FD, 100/HD, 10/FD, 10/HD" }, | ||
621 | { 0x28, AA "1000/FD, 100/FD" }, | ||
622 | { 0x29, AA "1000/FD, 100/FD, 10/HD" }, | ||
623 | { 0x2a, AA "1000/FD, 100/FD, 10/FD" }, | ||
624 | { 0x2b, AA "1000/FD, 100/FD, 10/FD, 10/HD" }, | ||
625 | { 0x2c, AA "1000/FD, 100/FD, 100/HD" }, | ||
626 | { 0x2d, AA "1000/FD, 100/FD, 100/HD, 10/HD" }, | ||
627 | { 0x2e, AA "1000/FD, 100/FD, 100/HD, 10/FD" }, | ||
628 | { 0x2f, AA "1000/FD, 100/FD, 100/HD, 10/FD, 10/HD" }}; | ||
629 | |||
630 | struct e1000_option opt = { | ||
631 | .type = list_option, | ||
632 | .name = "AutoNeg", | ||
633 | .err = "parameter ignored", | ||
634 | .def = AUTONEG_ADV_DEFAULT, | ||
635 | .arg = { .l = { .nr = ARRAY_SIZE(an_list), | ||
636 | .p = an_list }} | ||
637 | }; | ||
638 | |||
639 | int an = AutoNeg[bd]; | ||
640 | e1000_validate_option(&an, &opt, adapter); | ||
641 | adapter->hw.autoneg_advertised = an; | ||
642 | } | ||
643 | |||
644 | switch (speed + dplx) { | ||
645 | case 0: | ||
646 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | ||
647 | if((num_Speed > bd) && (speed != 0 || dplx != 0)) | ||
648 | DPRINTK(PROBE, INFO, | ||
649 | "Speed and duplex autonegotiation enabled\n"); | ||
650 | break; | ||
651 | case HALF_DUPLEX: | ||
652 | DPRINTK(PROBE, INFO, "Half Duplex specified without Speed\n"); | ||
653 | DPRINTK(PROBE, INFO, "Using Autonegotiation at " | ||
654 | "Half Duplex only\n"); | ||
655 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | ||
656 | adapter->hw.autoneg_advertised = ADVERTISE_10_HALF | | ||
657 | ADVERTISE_100_HALF; | ||
658 | break; | ||
659 | case FULL_DUPLEX: | ||
660 | DPRINTK(PROBE, INFO, "Full Duplex specified without Speed\n"); | ||
661 | DPRINTK(PROBE, INFO, "Using Autonegotiation at " | ||
662 | "Full Duplex only\n"); | ||
663 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | ||
664 | adapter->hw.autoneg_advertised = ADVERTISE_10_FULL | | ||
665 | ADVERTISE_100_FULL | | ||
666 | ADVERTISE_1000_FULL; | ||
667 | break; | ||
668 | case SPEED_10: | ||
669 | DPRINTK(PROBE, INFO, "10 Mbps Speed specified " | ||
670 | "without Duplex\n"); | ||
671 | DPRINTK(PROBE, INFO, "Using Autonegotiation at 10 Mbps only\n"); | ||
672 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | ||
673 | adapter->hw.autoneg_advertised = ADVERTISE_10_HALF | | ||
674 | ADVERTISE_10_FULL; | ||
675 | break; | ||
676 | case SPEED_10 + HALF_DUPLEX: | ||
677 | DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Half Duplex\n"); | ||
678 | adapter->hw.autoneg = adapter->fc_autoneg = 0; | ||
679 | adapter->hw.forced_speed_duplex = e1000_10_half; | ||
680 | adapter->hw.autoneg_advertised = 0; | ||
681 | break; | ||
682 | case SPEED_10 + FULL_DUPLEX: | ||
683 | DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Full Duplex\n"); | ||
684 | adapter->hw.autoneg = adapter->fc_autoneg = 0; | ||
685 | adapter->hw.forced_speed_duplex = e1000_10_full; | ||
686 | adapter->hw.autoneg_advertised = 0; | ||
687 | break; | ||
688 | case SPEED_100: | ||
689 | DPRINTK(PROBE, INFO, "100 Mbps Speed specified " | ||
690 | "without Duplex\n"); | ||
691 | DPRINTK(PROBE, INFO, "Using Autonegotiation at " | ||
692 | "100 Mbps only\n"); | ||
693 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | ||
694 | adapter->hw.autoneg_advertised = ADVERTISE_100_HALF | | ||
695 | ADVERTISE_100_FULL; | ||
696 | break; | ||
697 | case SPEED_100 + HALF_DUPLEX: | ||
698 | DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Half Duplex\n"); | ||
699 | adapter->hw.autoneg = adapter->fc_autoneg = 0; | ||
700 | adapter->hw.forced_speed_duplex = e1000_100_half; | ||
701 | adapter->hw.autoneg_advertised = 0; | ||
702 | break; | ||
703 | case SPEED_100 + FULL_DUPLEX: | ||
704 | DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Full Duplex\n"); | ||
705 | adapter->hw.autoneg = adapter->fc_autoneg = 0; | ||
706 | adapter->hw.forced_speed_duplex = e1000_100_full; | ||
707 | adapter->hw.autoneg_advertised = 0; | ||
708 | break; | ||
709 | case SPEED_1000: | ||
710 | DPRINTK(PROBE, INFO, "1000 Mbps Speed specified without " | ||
711 | "Duplex\n"); | ||
712 | DPRINTK(PROBE, INFO, | ||
713 | "Using Autonegotiation at 1000 Mbps " | ||
714 | "Full Duplex only\n"); | ||
715 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | ||
716 | adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; | ||
717 | break; | ||
718 | case SPEED_1000 + HALF_DUPLEX: | ||
719 | DPRINTK(PROBE, INFO, | ||
720 | "Half Duplex is not supported at 1000 Mbps\n"); | ||
721 | DPRINTK(PROBE, INFO, | ||
722 | "Using Autonegotiation at 1000 Mbps " | ||
723 | "Full Duplex only\n"); | ||
724 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | ||
725 | adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; | ||
726 | break; | ||
727 | case SPEED_1000 + FULL_DUPLEX: | ||
728 | DPRINTK(PROBE, INFO, | ||
729 | "Using Autonegotiation at 1000 Mbps Full Duplex only\n"); | ||
730 | adapter->hw.autoneg = adapter->fc_autoneg = 1; | ||
731 | adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; | ||
732 | break; | ||
733 | default: | ||
734 | BUG(); | ||
735 | } | ||
736 | |||
737 | /* Speed, AutoNeg and MDI/MDI-X must all play nice */ | ||
738 | if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) { | ||
739 | DPRINTK(PROBE, INFO, | ||
740 | "Speed, AutoNeg and MDI-X specifications are " | ||
741 | "incompatible. Setting MDI-X to a compatible value.\n"); | ||
742 | } | ||
743 | } | ||
744 | |||