diff options
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 9663 |
1 files changed, 4892 insertions, 4771 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 076db19f69f4..6aba88304407 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -24,13 +24,12 @@ | |||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
26 | 26 | ||
27 | *******************************************************************************/ | 27 | */ |
28 | 28 | ||
29 | /* e1000_hw.c | 29 | /* e1000_hw.c |
30 | * Shared functions for accessing and configuring the MAC | 30 | * Shared functions for accessing and configuring the MAC |
31 | */ | 31 | */ |
32 | 32 | ||
33 | |||
34 | #include "e1000_hw.h" | 33 | #include "e1000_hw.h" |
35 | 34 | ||
36 | static s32 e1000_check_downshift(struct e1000_hw *hw); | 35 | static s32 e1000_check_downshift(struct e1000_hw *hw); |
@@ -69,12 +68,11 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); | |||
69 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); | 68 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); |
70 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 69 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
71 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 70 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
72 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, | 71 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); |
73 | u16 count); | ||
74 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); | 72 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); |
75 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); | 73 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); |
76 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, | 74 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, |
77 | u16 words, u16 *data); | 75 | u16 words, u16 *data); |
78 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 76 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
79 | u16 words, u16 *data); | 77 | u16 words, u16 *data); |
80 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); | 78 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); |
@@ -83,7 +81,7 @@ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); | |||
83 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); | 81 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); |
84 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 82 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
85 | u16 phy_data); | 83 | u16 phy_data); |
86 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr, | 84 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
87 | u16 *phy_data); | 85 | u16 *phy_data); |
88 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); | 86 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); |
89 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw); | 87 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw); |
@@ -92,159 +90,164 @@ static void e1000_standby_eeprom(struct e1000_hw *hw); | |||
92 | static s32 e1000_set_vco_speed(struct e1000_hw *hw); | 90 | static s32 e1000_set_vco_speed(struct e1000_hw *hw); |
93 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 91 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
94 | static s32 e1000_set_phy_mode(struct e1000_hw *hw); | 92 | static s32 e1000_set_phy_mode(struct e1000_hw *hw); |
95 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | 93 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
96 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | 94 | u16 *data); |
95 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | ||
96 | u16 *data); | ||
97 | 97 | ||
98 | /* IGP cable length table */ | 98 | /* IGP cable length table */ |
99 | static const | 99 | static const |
100 | u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | 100 | u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { |
101 | { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 101 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
102 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | 102 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, |
103 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | 103 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, |
104 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | 104 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, |
105 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | 105 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, |
106 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | 106 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, |
107 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 107 | 100, |
108 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | 108 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
109 | 110, 110, | ||
110 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, | ||
111 | 120, 120 | ||
112 | }; | ||
109 | 113 | ||
110 | static DEFINE_SPINLOCK(e1000_eeprom_lock); | 114 | static DEFINE_SPINLOCK(e1000_eeprom_lock); |
111 | 115 | ||
112 | /****************************************************************************** | 116 | /** |
113 | * Set the phy type member in the hw struct. | 117 | * e1000_set_phy_type - Set the phy type member in the hw struct. |
114 | * | 118 | * @hw: Struct containing variables accessed by shared code |
115 | * hw - Struct containing variables accessed by shared code | 119 | */ |
116 | *****************************************************************************/ | ||
117 | static s32 e1000_set_phy_type(struct e1000_hw *hw) | 120 | static s32 e1000_set_phy_type(struct e1000_hw *hw) |
118 | { | 121 | { |
119 | DEBUGFUNC("e1000_set_phy_type"); | 122 | DEBUGFUNC("e1000_set_phy_type"); |
120 | |||
121 | if (hw->mac_type == e1000_undefined) | ||
122 | return -E1000_ERR_PHY_TYPE; | ||
123 | |||
124 | switch (hw->phy_id) { | ||
125 | case M88E1000_E_PHY_ID: | ||
126 | case M88E1000_I_PHY_ID: | ||
127 | case M88E1011_I_PHY_ID: | ||
128 | case M88E1111_I_PHY_ID: | ||
129 | hw->phy_type = e1000_phy_m88; | ||
130 | break; | ||
131 | case IGP01E1000_I_PHY_ID: | ||
132 | if (hw->mac_type == e1000_82541 || | ||
133 | hw->mac_type == e1000_82541_rev_2 || | ||
134 | hw->mac_type == e1000_82547 || | ||
135 | hw->mac_type == e1000_82547_rev_2) { | ||
136 | hw->phy_type = e1000_phy_igp; | ||
137 | break; | ||
138 | } | ||
139 | default: | ||
140 | /* Should never have loaded on this device */ | ||
141 | hw->phy_type = e1000_phy_undefined; | ||
142 | return -E1000_ERR_PHY_TYPE; | ||
143 | } | ||
144 | |||
145 | return E1000_SUCCESS; | ||
146 | } | ||
147 | |||
148 | /****************************************************************************** | ||
149 | * IGP phy init script - initializes the GbE PHY | ||
150 | * | ||
151 | * hw - Struct containing variables accessed by shared code | ||
152 | *****************************************************************************/ | ||
153 | static void e1000_phy_init_script(struct e1000_hw *hw) | ||
154 | { | ||
155 | u32 ret_val; | ||
156 | u16 phy_saved_data; | ||
157 | |||
158 | DEBUGFUNC("e1000_phy_init_script"); | ||
159 | |||
160 | if (hw->phy_init_script) { | ||
161 | msleep(20); | ||
162 | |||
163 | /* Save off the current value of register 0x2F5B to be restored at | ||
164 | * the end of this routine. */ | ||
165 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
166 | |||
167 | /* Disabled the PHY transmitter */ | ||
168 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
169 | |||
170 | msleep(20); | ||
171 | |||
172 | e1000_write_phy_reg(hw,0x0000,0x0140); | ||
173 | |||
174 | msleep(5); | ||
175 | |||
176 | switch (hw->mac_type) { | ||
177 | case e1000_82541: | ||
178 | case e1000_82547: | ||
179 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | ||
180 | |||
181 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | ||
182 | |||
183 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | ||
184 | 123 | ||
185 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | 124 | if (hw->mac_type == e1000_undefined) |
125 | return -E1000_ERR_PHY_TYPE; | ||
186 | 126 | ||
187 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | 127 | switch (hw->phy_id) { |
188 | 128 | case M88E1000_E_PHY_ID: | |
189 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | 129 | case M88E1000_I_PHY_ID: |
190 | 130 | case M88E1011_I_PHY_ID: | |
191 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | 131 | case M88E1111_I_PHY_ID: |
192 | 132 | hw->phy_type = e1000_phy_m88; | |
193 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | 133 | break; |
194 | 134 | case IGP01E1000_I_PHY_ID: | |
195 | e1000_write_phy_reg(hw, 0x2010, 0x0008); | 135 | if (hw->mac_type == e1000_82541 || |
196 | break; | 136 | hw->mac_type == e1000_82541_rev_2 || |
197 | 137 | hw->mac_type == e1000_82547 || | |
198 | case e1000_82541_rev_2: | 138 | hw->mac_type == e1000_82547_rev_2) { |
199 | case e1000_82547_rev_2: | 139 | hw->phy_type = e1000_phy_igp; |
200 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); | 140 | break; |
201 | break; | 141 | } |
202 | default: | 142 | default: |
203 | break; | 143 | /* Should never have loaded on this device */ |
204 | } | 144 | hw->phy_type = e1000_phy_undefined; |
205 | 145 | return -E1000_ERR_PHY_TYPE; | |
206 | e1000_write_phy_reg(hw, 0x0000, 0x3300); | 146 | } |
207 | |||
208 | msleep(20); | ||
209 | |||
210 | /* Now enable the transmitter */ | ||
211 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
212 | |||
213 | if (hw->mac_type == e1000_82547) { | ||
214 | u16 fused, fine, coarse; | ||
215 | |||
216 | /* Move to analog registers page */ | ||
217 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); | ||
218 | |||
219 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | ||
220 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); | ||
221 | 147 | ||
222 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | 148 | return E1000_SUCCESS; |
223 | coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | 149 | } |
224 | 150 | ||
225 | if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | 151 | /** |
226 | coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; | 152 | * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY |
227 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | 153 | * @hw: Struct containing variables accessed by shared code |
228 | } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | 154 | */ |
229 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | 155 | static void e1000_phy_init_script(struct e1000_hw *hw) |
156 | { | ||
157 | u32 ret_val; | ||
158 | u16 phy_saved_data; | ||
159 | |||
160 | DEBUGFUNC("e1000_phy_init_script"); | ||
161 | |||
162 | if (hw->phy_init_script) { | ||
163 | msleep(20); | ||
164 | |||
165 | /* Save off the current value of register 0x2F5B to be restored at | ||
166 | * the end of this routine. */ | ||
167 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
168 | |||
169 | /* Disabled the PHY transmitter */ | ||
170 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
171 | msleep(20); | ||
172 | |||
173 | e1000_write_phy_reg(hw, 0x0000, 0x0140); | ||
174 | msleep(5); | ||
175 | |||
176 | switch (hw->mac_type) { | ||
177 | case e1000_82541: | ||
178 | case e1000_82547: | ||
179 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | ||
180 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | ||
181 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | ||
182 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | ||
183 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | ||
184 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | ||
185 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | ||
186 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | ||
187 | e1000_write_phy_reg(hw, 0x2010, 0x0008); | ||
188 | break; | ||
230 | 189 | ||
231 | fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | 190 | case e1000_82541_rev_2: |
232 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | 191 | case e1000_82547_rev_2: |
233 | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); | 192 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
193 | break; | ||
194 | default: | ||
195 | break; | ||
196 | } | ||
234 | 197 | ||
235 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); | 198 | e1000_write_phy_reg(hw, 0x0000, 0x3300); |
236 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, | 199 | msleep(20); |
237 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | 200 | |
238 | } | 201 | /* Now enable the transmitter */ |
239 | } | 202 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
240 | } | 203 | |
204 | if (hw->mac_type == e1000_82547) { | ||
205 | u16 fused, fine, coarse; | ||
206 | |||
207 | /* Move to analog registers page */ | ||
208 | e1000_read_phy_reg(hw, | ||
209 | IGP01E1000_ANALOG_SPARE_FUSE_STATUS, | ||
210 | &fused); | ||
211 | |||
212 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | ||
213 | e1000_read_phy_reg(hw, | ||
214 | IGP01E1000_ANALOG_FUSE_STATUS, | ||
215 | &fused); | ||
216 | |||
217 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | ||
218 | coarse = | ||
219 | fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | ||
220 | |||
221 | if (coarse > | ||
222 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | ||
223 | coarse -= | ||
224 | IGP01E1000_ANALOG_FUSE_COARSE_10; | ||
225 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | ||
226 | } else if (coarse == | ||
227 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | ||
228 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | ||
229 | |||
230 | fused = | ||
231 | (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | ||
232 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | ||
233 | (coarse & | ||
234 | IGP01E1000_ANALOG_FUSE_COARSE_MASK); | ||
235 | |||
236 | e1000_write_phy_reg(hw, | ||
237 | IGP01E1000_ANALOG_FUSE_CONTROL, | ||
238 | fused); | ||
239 | e1000_write_phy_reg(hw, | ||
240 | IGP01E1000_ANALOG_FUSE_BYPASS, | ||
241 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | ||
242 | } | ||
243 | } | ||
244 | } | ||
241 | } | 245 | } |
242 | 246 | ||
243 | /****************************************************************************** | 247 | /** |
244 | * Set the mac type member in the hw struct. | 248 | * e1000_set_mac_type - Set the mac type member in the hw struct. |
245 | * | 249 | * @hw: Struct containing variables accessed by shared code |
246 | * hw - Struct containing variables accessed by shared code | 250 | */ |
247 | *****************************************************************************/ | ||
248 | s32 e1000_set_mac_type(struct e1000_hw *hw) | 251 | s32 e1000_set_mac_type(struct e1000_hw *hw) |
249 | { | 252 | { |
250 | DEBUGFUNC("e1000_set_mac_type"); | 253 | DEBUGFUNC("e1000_set_mac_type"); |
@@ -348,1801 +351,1850 @@ s32 e1000_set_mac_type(struct e1000_hw *hw) | |||
348 | return E1000_SUCCESS; | 351 | return E1000_SUCCESS; |
349 | } | 352 | } |
350 | 353 | ||
351 | /***************************************************************************** | 354 | /** |
352 | * Set media type and TBI compatibility. | 355 | * e1000_set_media_type - Set media type and TBI compatibility. |
353 | * | 356 | * @hw: Struct containing variables accessed by shared code |
354 | * hw - Struct containing variables accessed by shared code | 357 | */ |
355 | * **************************************************************************/ | ||
356 | void e1000_set_media_type(struct e1000_hw *hw) | 358 | void e1000_set_media_type(struct e1000_hw *hw) |
357 | { | 359 | { |
358 | u32 status; | 360 | u32 status; |
359 | 361 | ||
360 | DEBUGFUNC("e1000_set_media_type"); | 362 | DEBUGFUNC("e1000_set_media_type"); |
361 | 363 | ||
362 | if (hw->mac_type != e1000_82543) { | 364 | if (hw->mac_type != e1000_82543) { |
363 | /* tbi_compatibility is only valid on 82543 */ | 365 | /* tbi_compatibility is only valid on 82543 */ |
364 | hw->tbi_compatibility_en = false; | 366 | hw->tbi_compatibility_en = false; |
365 | } | 367 | } |
366 | 368 | ||
367 | switch (hw->device_id) { | 369 | switch (hw->device_id) { |
368 | case E1000_DEV_ID_82545GM_SERDES: | 370 | case E1000_DEV_ID_82545GM_SERDES: |
369 | case E1000_DEV_ID_82546GB_SERDES: | 371 | case E1000_DEV_ID_82546GB_SERDES: |
370 | hw->media_type = e1000_media_type_internal_serdes; | 372 | hw->media_type = e1000_media_type_internal_serdes; |
371 | break; | 373 | break; |
372 | default: | 374 | default: |
373 | switch (hw->mac_type) { | 375 | switch (hw->mac_type) { |
374 | case e1000_82542_rev2_0: | 376 | case e1000_82542_rev2_0: |
375 | case e1000_82542_rev2_1: | 377 | case e1000_82542_rev2_1: |
376 | hw->media_type = e1000_media_type_fiber; | 378 | hw->media_type = e1000_media_type_fiber; |
377 | break; | 379 | break; |
378 | default: | 380 | default: |
379 | status = er32(STATUS); | 381 | status = er32(STATUS); |
380 | if (status & E1000_STATUS_TBIMODE) { | 382 | if (status & E1000_STATUS_TBIMODE) { |
381 | hw->media_type = e1000_media_type_fiber; | 383 | hw->media_type = e1000_media_type_fiber; |
382 | /* tbi_compatibility not valid on fiber */ | 384 | /* tbi_compatibility not valid on fiber */ |
383 | hw->tbi_compatibility_en = false; | 385 | hw->tbi_compatibility_en = false; |
384 | } else { | 386 | } else { |
385 | hw->media_type = e1000_media_type_copper; | 387 | hw->media_type = e1000_media_type_copper; |
386 | } | 388 | } |
387 | break; | 389 | break; |
388 | } | 390 | } |
389 | } | 391 | } |
390 | } | 392 | } |
391 | 393 | ||
392 | /****************************************************************************** | 394 | /** |
393 | * Reset the transmit and receive units; mask and clear all interrupts. | 395 | * e1000_reset_hw: reset the hardware completely |
396 | * @hw: Struct containing variables accessed by shared code | ||
394 | * | 397 | * |
395 | * hw - Struct containing variables accessed by shared code | 398 | * Reset the transmit and receive units; mask and clear all interrupts. |
396 | *****************************************************************************/ | 399 | */ |
397 | s32 e1000_reset_hw(struct e1000_hw *hw) | 400 | s32 e1000_reset_hw(struct e1000_hw *hw) |
398 | { | 401 | { |
399 | u32 ctrl; | 402 | u32 ctrl; |
400 | u32 ctrl_ext; | 403 | u32 ctrl_ext; |
401 | u32 icr; | 404 | u32 icr; |
402 | u32 manc; | 405 | u32 manc; |
403 | u32 led_ctrl; | 406 | u32 led_ctrl; |
404 | s32 ret_val; | 407 | s32 ret_val; |
405 | 408 | ||
406 | DEBUGFUNC("e1000_reset_hw"); | 409 | DEBUGFUNC("e1000_reset_hw"); |
407 | 410 | ||
408 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | 411 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
409 | if (hw->mac_type == e1000_82542_rev2_0) { | 412 | if (hw->mac_type == e1000_82542_rev2_0) { |
410 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 413 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
411 | e1000_pci_clear_mwi(hw); | 414 | e1000_pci_clear_mwi(hw); |
412 | } | 415 | } |
413 | 416 | ||
414 | /* Clear interrupt mask to stop board from generating interrupts */ | 417 | /* Clear interrupt mask to stop board from generating interrupts */ |
415 | DEBUGOUT("Masking off all interrupts\n"); | 418 | DEBUGOUT("Masking off all interrupts\n"); |
416 | ew32(IMC, 0xffffffff); | 419 | ew32(IMC, 0xffffffff); |
417 | 420 | ||
418 | /* Disable the Transmit and Receive units. Then delay to allow | 421 | /* Disable the Transmit and Receive units. Then delay to allow |
419 | * any pending transactions to complete before we hit the MAC with | 422 | * any pending transactions to complete before we hit the MAC with |
420 | * the global reset. | 423 | * the global reset. |
421 | */ | 424 | */ |
422 | ew32(RCTL, 0); | 425 | ew32(RCTL, 0); |
423 | ew32(TCTL, E1000_TCTL_PSP); | 426 | ew32(TCTL, E1000_TCTL_PSP); |
424 | E1000_WRITE_FLUSH(); | 427 | E1000_WRITE_FLUSH(); |
425 | 428 | ||
426 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | 429 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
427 | hw->tbi_compatibility_on = false; | 430 | hw->tbi_compatibility_on = false; |
428 | 431 | ||
429 | /* Delay to allow any outstanding PCI transactions to complete before | 432 | /* Delay to allow any outstanding PCI transactions to complete before |
430 | * resetting the device | 433 | * resetting the device |
431 | */ | 434 | */ |
432 | msleep(10); | 435 | msleep(10); |
433 | 436 | ||
434 | ctrl = er32(CTRL); | 437 | ctrl = er32(CTRL); |
435 | 438 | ||
436 | /* Must reset the PHY before resetting the MAC */ | 439 | /* Must reset the PHY before resetting the MAC */ |
437 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 440 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
438 | ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); | 441 | ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
439 | msleep(5); | 442 | msleep(5); |
440 | } | 443 | } |
441 | 444 | ||
442 | /* Issue a global reset to the MAC. This will reset the chip's | 445 | /* Issue a global reset to the MAC. This will reset the chip's |
443 | * transmit, receive, DMA, and link units. It will not effect | 446 | * transmit, receive, DMA, and link units. It will not effect |
444 | * the current PCI configuration. The global reset bit is self- | 447 | * the current PCI configuration. The global reset bit is self- |
445 | * clearing, and should clear within a microsecond. | 448 | * clearing, and should clear within a microsecond. |
446 | */ | 449 | */ |
447 | DEBUGOUT("Issuing a global reset to MAC\n"); | 450 | DEBUGOUT("Issuing a global reset to MAC\n"); |
448 | 451 | ||
449 | switch (hw->mac_type) { | 452 | switch (hw->mac_type) { |
450 | case e1000_82544: | 453 | case e1000_82544: |
451 | case e1000_82540: | 454 | case e1000_82540: |
452 | case e1000_82545: | 455 | case e1000_82545: |
453 | case e1000_82546: | 456 | case e1000_82546: |
454 | case e1000_82541: | 457 | case e1000_82541: |
455 | case e1000_82541_rev_2: | 458 | case e1000_82541_rev_2: |
456 | /* These controllers can't ack the 64-bit write when issuing the | 459 | /* These controllers can't ack the 64-bit write when issuing the |
457 | * reset, so use IO-mapping as a workaround to issue the reset */ | 460 | * reset, so use IO-mapping as a workaround to issue the reset */ |
458 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 461 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
459 | break; | 462 | break; |
460 | case e1000_82545_rev_3: | 463 | case e1000_82545_rev_3: |
461 | case e1000_82546_rev_3: | 464 | case e1000_82546_rev_3: |
462 | /* Reset is performed on a shadow of the control register */ | 465 | /* Reset is performed on a shadow of the control register */ |
463 | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 466 | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
464 | break; | 467 | break; |
465 | default: | 468 | default: |
466 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | 469 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
467 | break; | 470 | break; |
468 | } | 471 | } |
469 | 472 | ||
470 | /* After MAC reset, force reload of EEPROM to restore power-on settings to | 473 | /* After MAC reset, force reload of EEPROM to restore power-on settings to |
471 | * device. Later controllers reload the EEPROM automatically, so just wait | 474 | * device. Later controllers reload the EEPROM automatically, so just wait |
472 | * for reload to complete. | 475 | * for reload to complete. |
473 | */ | 476 | */ |
474 | switch (hw->mac_type) { | 477 | switch (hw->mac_type) { |
475 | case e1000_82542_rev2_0: | 478 | case e1000_82542_rev2_0: |
476 | case e1000_82542_rev2_1: | 479 | case e1000_82542_rev2_1: |
477 | case e1000_82543: | 480 | case e1000_82543: |
478 | case e1000_82544: | 481 | case e1000_82544: |
479 | /* Wait for reset to complete */ | 482 | /* Wait for reset to complete */ |
480 | udelay(10); | 483 | udelay(10); |
481 | ctrl_ext = er32(CTRL_EXT); | 484 | ctrl_ext = er32(CTRL_EXT); |
482 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 485 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
483 | ew32(CTRL_EXT, ctrl_ext); | 486 | ew32(CTRL_EXT, ctrl_ext); |
484 | E1000_WRITE_FLUSH(); | 487 | E1000_WRITE_FLUSH(); |
485 | /* Wait for EEPROM reload */ | 488 | /* Wait for EEPROM reload */ |
486 | msleep(2); | 489 | msleep(2); |
487 | break; | 490 | break; |
488 | case e1000_82541: | 491 | case e1000_82541: |
489 | case e1000_82541_rev_2: | 492 | case e1000_82541_rev_2: |
490 | case e1000_82547: | 493 | case e1000_82547: |
491 | case e1000_82547_rev_2: | 494 | case e1000_82547_rev_2: |
492 | /* Wait for EEPROM reload */ | 495 | /* Wait for EEPROM reload */ |
493 | msleep(20); | 496 | msleep(20); |
494 | break; | 497 | break; |
495 | default: | 498 | default: |
496 | /* Auto read done will delay 5ms or poll based on mac type */ | 499 | /* Auto read done will delay 5ms or poll based on mac type */ |
497 | ret_val = e1000_get_auto_rd_done(hw); | 500 | ret_val = e1000_get_auto_rd_done(hw); |
498 | if (ret_val) | 501 | if (ret_val) |
499 | return ret_val; | 502 | return ret_val; |
500 | break; | 503 | break; |
501 | } | 504 | } |
502 | 505 | ||
503 | /* Disable HW ARPs on ASF enabled adapters */ | 506 | /* Disable HW ARPs on ASF enabled adapters */ |
504 | if (hw->mac_type >= e1000_82540) { | 507 | if (hw->mac_type >= e1000_82540) { |
505 | manc = er32(MANC); | 508 | manc = er32(MANC); |
506 | manc &= ~(E1000_MANC_ARP_EN); | 509 | manc &= ~(E1000_MANC_ARP_EN); |
507 | ew32(MANC, manc); | 510 | ew32(MANC, manc); |
508 | } | 511 | } |
509 | 512 | ||
510 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 513 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
511 | e1000_phy_init_script(hw); | 514 | e1000_phy_init_script(hw); |
512 | 515 | ||
513 | /* Configure activity LED after PHY reset */ | 516 | /* Configure activity LED after PHY reset */ |
514 | led_ctrl = er32(LEDCTL); | 517 | led_ctrl = er32(LEDCTL); |
515 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 518 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
516 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 519 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
517 | ew32(LEDCTL, led_ctrl); | 520 | ew32(LEDCTL, led_ctrl); |
518 | } | 521 | } |
519 | 522 | ||
520 | /* Clear interrupt mask to stop board from generating interrupts */ | 523 | /* Clear interrupt mask to stop board from generating interrupts */ |
521 | DEBUGOUT("Masking off all interrupts\n"); | 524 | DEBUGOUT("Masking off all interrupts\n"); |
522 | ew32(IMC, 0xffffffff); | 525 | ew32(IMC, 0xffffffff); |
523 | 526 | ||
524 | /* Clear any pending interrupt events. */ | 527 | /* Clear any pending interrupt events. */ |
525 | icr = er32(ICR); | 528 | icr = er32(ICR); |
526 | 529 | ||
527 | /* If MWI was previously enabled, reenable it. */ | 530 | /* If MWI was previously enabled, reenable it. */ |
528 | if (hw->mac_type == e1000_82542_rev2_0) { | 531 | if (hw->mac_type == e1000_82542_rev2_0) { |
529 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 532 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
530 | e1000_pci_set_mwi(hw); | 533 | e1000_pci_set_mwi(hw); |
531 | } | 534 | } |
532 | 535 | ||
533 | return E1000_SUCCESS; | 536 | return E1000_SUCCESS; |
534 | } | 537 | } |
535 | 538 | ||
536 | /****************************************************************************** | 539 | /** |
537 | * Performs basic configuration of the adapter. | 540 | * e1000_init_hw: Performs basic configuration of the adapter. |
538 | * | 541 | * @hw: Struct containing variables accessed by shared code |
539 | * hw - Struct containing variables accessed by shared code | ||
540 | * | 542 | * |
541 | * Assumes that the controller has previously been reset and is in a | 543 | * Assumes that the controller has previously been reset and is in a |
542 | * post-reset uninitialized state. Initializes the receive address registers, | 544 | * post-reset uninitialized state. Initializes the receive address registers, |
543 | * multicast table, and VLAN filter table. Calls routines to setup link | 545 | * multicast table, and VLAN filter table. Calls routines to setup link |
544 | * configuration and flow control settings. Clears all on-chip counters. Leaves | 546 | * configuration and flow control settings. Clears all on-chip counters. Leaves |
545 | * the transmit and receive units disabled and uninitialized. | 547 | * the transmit and receive units disabled and uninitialized. |
546 | *****************************************************************************/ | 548 | */ |
547 | s32 e1000_init_hw(struct e1000_hw *hw) | 549 | s32 e1000_init_hw(struct e1000_hw *hw) |
548 | { | 550 | { |
549 | u32 ctrl; | 551 | u32 ctrl; |
550 | u32 i; | 552 | u32 i; |
551 | s32 ret_val; | 553 | s32 ret_val; |
552 | u32 mta_size; | 554 | u32 mta_size; |
553 | u32 ctrl_ext; | 555 | u32 ctrl_ext; |
554 | 556 | ||
555 | DEBUGFUNC("e1000_init_hw"); | 557 | DEBUGFUNC("e1000_init_hw"); |
556 | 558 | ||
557 | /* Initialize Identification LED */ | 559 | /* Initialize Identification LED */ |
558 | ret_val = e1000_id_led_init(hw); | 560 | ret_val = e1000_id_led_init(hw); |
559 | if (ret_val) { | 561 | if (ret_val) { |
560 | DEBUGOUT("Error Initializing Identification LED\n"); | 562 | DEBUGOUT("Error Initializing Identification LED\n"); |
561 | return ret_val; | 563 | return ret_val; |
562 | } | 564 | } |
563 | 565 | ||
564 | /* Set the media type and TBI compatibility */ | 566 | /* Set the media type and TBI compatibility */ |
565 | e1000_set_media_type(hw); | 567 | e1000_set_media_type(hw); |
566 | 568 | ||
567 | /* Disabling VLAN filtering. */ | 569 | /* Disabling VLAN filtering. */ |
568 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 570 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
569 | if (hw->mac_type < e1000_82545_rev_3) | 571 | if (hw->mac_type < e1000_82545_rev_3) |
570 | ew32(VET, 0); | 572 | ew32(VET, 0); |
571 | e1000_clear_vfta(hw); | 573 | e1000_clear_vfta(hw); |
572 | 574 | ||
573 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 575 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
574 | if (hw->mac_type == e1000_82542_rev2_0) { | 576 | if (hw->mac_type == e1000_82542_rev2_0) { |
575 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 577 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
576 | e1000_pci_clear_mwi(hw); | 578 | e1000_pci_clear_mwi(hw); |
577 | ew32(RCTL, E1000_RCTL_RST); | 579 | ew32(RCTL, E1000_RCTL_RST); |
578 | E1000_WRITE_FLUSH(); | 580 | E1000_WRITE_FLUSH(); |
579 | msleep(5); | 581 | msleep(5); |
580 | } | 582 | } |
581 | 583 | ||
582 | /* Setup the receive address. This involves initializing all of the Receive | 584 | /* Setup the receive address. This involves initializing all of the Receive |
583 | * Address Registers (RARs 0 - 15). | 585 | * Address Registers (RARs 0 - 15). |
584 | */ | 586 | */ |
585 | e1000_init_rx_addrs(hw); | 587 | e1000_init_rx_addrs(hw); |
586 | 588 | ||
587 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | 589 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
588 | if (hw->mac_type == e1000_82542_rev2_0) { | 590 | if (hw->mac_type == e1000_82542_rev2_0) { |
589 | ew32(RCTL, 0); | 591 | ew32(RCTL, 0); |
590 | E1000_WRITE_FLUSH(); | 592 | E1000_WRITE_FLUSH(); |
591 | msleep(1); | 593 | msleep(1); |
592 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 594 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
593 | e1000_pci_set_mwi(hw); | 595 | e1000_pci_set_mwi(hw); |
594 | } | 596 | } |
595 | 597 | ||
596 | /* Zero out the Multicast HASH table */ | 598 | /* Zero out the Multicast HASH table */ |
597 | DEBUGOUT("Zeroing the MTA\n"); | 599 | DEBUGOUT("Zeroing the MTA\n"); |
598 | mta_size = E1000_MC_TBL_SIZE; | 600 | mta_size = E1000_MC_TBL_SIZE; |
599 | for (i = 0; i < mta_size; i++) { | 601 | for (i = 0; i < mta_size; i++) { |
600 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 602 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
601 | /* use write flush to prevent Memory Write Block (MWB) from | 603 | /* use write flush to prevent Memory Write Block (MWB) from |
602 | * occuring when accessing our register space */ | 604 | * occurring when accessing our register space */ |
603 | E1000_WRITE_FLUSH(); | 605 | E1000_WRITE_FLUSH(); |
604 | } | 606 | } |
605 | 607 | ||
606 | /* Set the PCI priority bit correctly in the CTRL register. This | 608 | /* Set the PCI priority bit correctly in the CTRL register. This |
607 | * determines if the adapter gives priority to receives, or if it | 609 | * determines if the adapter gives priority to receives, or if it |
608 | * gives equal priority to transmits and receives. Valid only on | 610 | * gives equal priority to transmits and receives. Valid only on |
609 | * 82542 and 82543 silicon. | 611 | * 82542 and 82543 silicon. |
610 | */ | 612 | */ |
611 | if (hw->dma_fairness && hw->mac_type <= e1000_82543) { | 613 | if (hw->dma_fairness && hw->mac_type <= e1000_82543) { |
612 | ctrl = er32(CTRL); | 614 | ctrl = er32(CTRL); |
613 | ew32(CTRL, ctrl | E1000_CTRL_PRIOR); | 615 | ew32(CTRL, ctrl | E1000_CTRL_PRIOR); |
614 | } | 616 | } |
615 | 617 | ||
616 | switch (hw->mac_type) { | 618 | switch (hw->mac_type) { |
617 | case e1000_82545_rev_3: | 619 | case e1000_82545_rev_3: |
618 | case e1000_82546_rev_3: | 620 | case e1000_82546_rev_3: |
619 | break; | 621 | break; |
620 | default: | 622 | default: |
621 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | 623 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
622 | if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048) | 624 | if (hw->bus_type == e1000_bus_type_pcix |
623 | e1000_pcix_set_mmrbc(hw, 2048); | 625 | && e1000_pcix_get_mmrbc(hw) > 2048) |
624 | break; | 626 | e1000_pcix_set_mmrbc(hw, 2048); |
625 | } | 627 | break; |
626 | 628 | } | |
627 | /* Call a subroutine to configure the link and setup flow control. */ | 629 | |
628 | ret_val = e1000_setup_link(hw); | 630 | /* Call a subroutine to configure the link and setup flow control. */ |
629 | 631 | ret_val = e1000_setup_link(hw); | |
630 | /* Set the transmit descriptor write-back policy */ | 632 | |
631 | if (hw->mac_type > e1000_82544) { | 633 | /* Set the transmit descriptor write-back policy */ |
632 | ctrl = er32(TXDCTL); | 634 | if (hw->mac_type > e1000_82544) { |
633 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 635 | ctrl = er32(TXDCTL); |
634 | ew32(TXDCTL, ctrl); | 636 | ctrl = |
635 | } | 637 | (ctrl & ~E1000_TXDCTL_WTHRESH) | |
636 | 638 | E1000_TXDCTL_FULL_TX_DESC_WB; | |
637 | /* Clear all of the statistics registers (clear on read). It is | 639 | ew32(TXDCTL, ctrl); |
638 | * important that we do this after we have tried to establish link | 640 | } |
639 | * because the symbol error count will increment wildly if there | 641 | |
640 | * is no link. | 642 | /* Clear all of the statistics registers (clear on read). It is |
641 | */ | 643 | * important that we do this after we have tried to establish link |
642 | e1000_clear_hw_cntrs(hw); | 644 | * because the symbol error count will increment wildly if there |
643 | 645 | * is no link. | |
644 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | 646 | */ |
645 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | 647 | e1000_clear_hw_cntrs(hw); |
646 | ctrl_ext = er32(CTRL_EXT); | 648 | |
647 | /* Relaxed ordering must be disabled to avoid a parity | 649 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
648 | * error crash in a PCI slot. */ | 650 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
649 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | 651 | ctrl_ext = er32(CTRL_EXT); |
650 | ew32(CTRL_EXT, ctrl_ext); | 652 | /* Relaxed ordering must be disabled to avoid a parity |
651 | } | 653 | * error crash in a PCI slot. */ |
652 | 654 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | |
653 | return ret_val; | 655 | ew32(CTRL_EXT, ctrl_ext); |
656 | } | ||
657 | |||
658 | return ret_val; | ||
654 | } | 659 | } |
655 | 660 | ||
656 | /****************************************************************************** | 661 | /** |
657 | * Adjust SERDES output amplitude based on EEPROM setting. | 662 | * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. |
658 | * | 663 | * @hw: Struct containing variables accessed by shared code. |
659 | * hw - Struct containing variables accessed by shared code. | 664 | */ |
660 | *****************************************************************************/ | ||
661 | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | 665 | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) |
662 | { | 666 | { |
663 | u16 eeprom_data; | 667 | u16 eeprom_data; |
664 | s32 ret_val; | 668 | s32 ret_val; |
665 | 669 | ||
666 | DEBUGFUNC("e1000_adjust_serdes_amplitude"); | 670 | DEBUGFUNC("e1000_adjust_serdes_amplitude"); |
667 | 671 | ||
668 | if (hw->media_type != e1000_media_type_internal_serdes) | 672 | if (hw->media_type != e1000_media_type_internal_serdes) |
669 | return E1000_SUCCESS; | 673 | return E1000_SUCCESS; |
670 | 674 | ||
671 | switch (hw->mac_type) { | 675 | switch (hw->mac_type) { |
672 | case e1000_82545_rev_3: | 676 | case e1000_82545_rev_3: |
673 | case e1000_82546_rev_3: | 677 | case e1000_82546_rev_3: |
674 | break; | 678 | break; |
675 | default: | 679 | default: |
676 | return E1000_SUCCESS; | 680 | return E1000_SUCCESS; |
677 | } | 681 | } |
678 | 682 | ||
679 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); | 683 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, |
680 | if (ret_val) { | 684 | &eeprom_data); |
681 | return ret_val; | 685 | if (ret_val) { |
682 | } | 686 | return ret_val; |
683 | 687 | } | |
684 | if (eeprom_data != EEPROM_RESERVED_WORD) { | 688 | |
685 | /* Adjust SERDES output amplitude only. */ | 689 | if (eeprom_data != EEPROM_RESERVED_WORD) { |
686 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; | 690 | /* Adjust SERDES output amplitude only. */ |
687 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); | 691 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; |
688 | if (ret_val) | 692 | ret_val = |
689 | return ret_val; | 693 | e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); |
690 | } | 694 | if (ret_val) |
691 | 695 | return ret_val; | |
692 | return E1000_SUCCESS; | 696 | } |
697 | |||
698 | return E1000_SUCCESS; | ||
693 | } | 699 | } |
694 | 700 | ||
695 | /****************************************************************************** | 701 | /** |
696 | * Configures flow control and link settings. | 702 | * e1000_setup_link - Configures flow control and link settings. |
697 | * | 703 | * @hw: Struct containing variables accessed by shared code |
698 | * hw - Struct containing variables accessed by shared code | ||
699 | * | 704 | * |
700 | * Determines which flow control settings to use. Calls the apropriate media- | 705 | * Determines which flow control settings to use. Calls the appropriate media- |
701 | * specific link configuration function. Configures the flow control settings. | 706 | * specific link configuration function. Configures the flow control settings. |
702 | * Assuming the adapter has a valid link partner, a valid link should be | 707 | * Assuming the adapter has a valid link partner, a valid link should be |
703 | * established. Assumes the hardware has previously been reset and the | 708 | * established. Assumes the hardware has previously been reset and the |
704 | * transmitter and receiver are not enabled. | 709 | * transmitter and receiver are not enabled. |
705 | *****************************************************************************/ | 710 | */ |
706 | s32 e1000_setup_link(struct e1000_hw *hw) | 711 | s32 e1000_setup_link(struct e1000_hw *hw) |
707 | { | 712 | { |
708 | u32 ctrl_ext; | 713 | u32 ctrl_ext; |
709 | s32 ret_val; | 714 | s32 ret_val; |
710 | u16 eeprom_data; | 715 | u16 eeprom_data; |
711 | 716 | ||
712 | DEBUGFUNC("e1000_setup_link"); | 717 | DEBUGFUNC("e1000_setup_link"); |
713 | 718 | ||
714 | /* Read and store word 0x0F of the EEPROM. This word contains bits | 719 | /* Read and store word 0x0F of the EEPROM. This word contains bits |
715 | * that determine the hardware's default PAUSE (flow control) mode, | 720 | * that determine the hardware's default PAUSE (flow control) mode, |
716 | * a bit that determines whether the HW defaults to enabling or | 721 | * a bit that determines whether the HW defaults to enabling or |
717 | * disabling auto-negotiation, and the direction of the | 722 | * disabling auto-negotiation, and the direction of the |
718 | * SW defined pins. If there is no SW over-ride of the flow | 723 | * SW defined pins. If there is no SW over-ride of the flow |
719 | * control setting, then the variable hw->fc will | 724 | * control setting, then the variable hw->fc will |
720 | * be initialized based on a value in the EEPROM. | 725 | * be initialized based on a value in the EEPROM. |
721 | */ | 726 | */ |
722 | if (hw->fc == E1000_FC_DEFAULT) { | 727 | if (hw->fc == E1000_FC_DEFAULT) { |
723 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 728 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
724 | 1, &eeprom_data); | 729 | 1, &eeprom_data); |
725 | if (ret_val) { | 730 | if (ret_val) { |
726 | DEBUGOUT("EEPROM Read Error\n"); | 731 | DEBUGOUT("EEPROM Read Error\n"); |
727 | return -E1000_ERR_EEPROM; | 732 | return -E1000_ERR_EEPROM; |
728 | } | 733 | } |
729 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | 734 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
730 | hw->fc = E1000_FC_NONE; | 735 | hw->fc = E1000_FC_NONE; |
731 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | 736 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
732 | EEPROM_WORD0F_ASM_DIR) | 737 | EEPROM_WORD0F_ASM_DIR) |
733 | hw->fc = E1000_FC_TX_PAUSE; | 738 | hw->fc = E1000_FC_TX_PAUSE; |
734 | else | 739 | else |
735 | hw->fc = E1000_FC_FULL; | 740 | hw->fc = E1000_FC_FULL; |
736 | } | 741 | } |
737 | 742 | ||
738 | /* We want to save off the original Flow Control configuration just | 743 | /* We want to save off the original Flow Control configuration just |
739 | * in case we get disconnected and then reconnected into a different | 744 | * in case we get disconnected and then reconnected into a different |
740 | * hub or switch with different Flow Control capabilities. | 745 | * hub or switch with different Flow Control capabilities. |
741 | */ | 746 | */ |
742 | if (hw->mac_type == e1000_82542_rev2_0) | 747 | if (hw->mac_type == e1000_82542_rev2_0) |
743 | hw->fc &= (~E1000_FC_TX_PAUSE); | 748 | hw->fc &= (~E1000_FC_TX_PAUSE); |
744 | 749 | ||
745 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | 750 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
746 | hw->fc &= (~E1000_FC_RX_PAUSE); | 751 | hw->fc &= (~E1000_FC_RX_PAUSE); |
747 | 752 | ||
748 | hw->original_fc = hw->fc; | 753 | hw->original_fc = hw->fc; |
749 | 754 | ||
750 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | 755 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); |
751 | 756 | ||
752 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | 757 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
753 | * polarity value for the SW controlled pins, and setup the | 758 | * polarity value for the SW controlled pins, and setup the |
754 | * Extended Device Control reg with that info. | 759 | * Extended Device Control reg with that info. |
755 | * This is needed because one of the SW controlled pins is used for | 760 | * This is needed because one of the SW controlled pins is used for |
756 | * signal detection. So this should be done before e1000_setup_pcs_link() | 761 | * signal detection. So this should be done before e1000_setup_pcs_link() |
757 | * or e1000_phy_setup() is called. | 762 | * or e1000_phy_setup() is called. |
758 | */ | 763 | */ |
759 | if (hw->mac_type == e1000_82543) { | 764 | if (hw->mac_type == e1000_82543) { |
760 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 765 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
761 | 1, &eeprom_data); | 766 | 1, &eeprom_data); |
762 | if (ret_val) { | 767 | if (ret_val) { |
763 | DEBUGOUT("EEPROM Read Error\n"); | 768 | DEBUGOUT("EEPROM Read Error\n"); |
764 | return -E1000_ERR_EEPROM; | 769 | return -E1000_ERR_EEPROM; |
765 | } | 770 | } |
766 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | 771 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
767 | SWDPIO__EXT_SHIFT); | 772 | SWDPIO__EXT_SHIFT); |
768 | ew32(CTRL_EXT, ctrl_ext); | 773 | ew32(CTRL_EXT, ctrl_ext); |
769 | } | 774 | } |
770 | 775 | ||
771 | /* Call the necessary subroutine to configure the link. */ | 776 | /* Call the necessary subroutine to configure the link. */ |
772 | ret_val = (hw->media_type == e1000_media_type_copper) ? | 777 | ret_val = (hw->media_type == e1000_media_type_copper) ? |
773 | e1000_setup_copper_link(hw) : | 778 | e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); |
774 | e1000_setup_fiber_serdes_link(hw); | 779 | |
775 | 780 | /* Initialize the flow control address, type, and PAUSE timer | |
776 | /* Initialize the flow control address, type, and PAUSE timer | 781 | * registers to their default values. This is done even if flow |
777 | * registers to their default values. This is done even if flow | 782 | * control is disabled, because it does not hurt anything to |
778 | * control is disabled, because it does not hurt anything to | 783 | * initialize these registers. |
779 | * initialize these registers. | 784 | */ |
780 | */ | 785 | DEBUGOUT |
781 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 786 | ("Initializing the Flow Control address, type and timer regs\n"); |
782 | 787 | ||
783 | ew32(FCT, FLOW_CONTROL_TYPE); | 788 | ew32(FCT, FLOW_CONTROL_TYPE); |
784 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 789 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
785 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | 790 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); |
786 | 791 | ||
787 | ew32(FCTTV, hw->fc_pause_time); | 792 | ew32(FCTTV, hw->fc_pause_time); |
788 | 793 | ||
789 | /* Set the flow control receive threshold registers. Normally, | 794 | /* Set the flow control receive threshold registers. Normally, |
790 | * these registers will be set to a default threshold that may be | 795 | * these registers will be set to a default threshold that may be |
791 | * adjusted later by the driver's runtime code. However, if the | 796 | * adjusted later by the driver's runtime code. However, if the |
792 | * ability to transmit pause frames in not enabled, then these | 797 | * ability to transmit pause frames in not enabled, then these |
793 | * registers will be set to 0. | 798 | * registers will be set to 0. |
794 | */ | 799 | */ |
795 | if (!(hw->fc & E1000_FC_TX_PAUSE)) { | 800 | if (!(hw->fc & E1000_FC_TX_PAUSE)) { |
796 | ew32(FCRTL, 0); | 801 | ew32(FCRTL, 0); |
797 | ew32(FCRTH, 0); | 802 | ew32(FCRTH, 0); |
798 | } else { | 803 | } else { |
799 | /* We need to set up the Receive Threshold high and low water marks | 804 | /* We need to set up the Receive Threshold high and low water marks |
800 | * as well as (optionally) enabling the transmission of XON frames. | 805 | * as well as (optionally) enabling the transmission of XON frames. |
801 | */ | 806 | */ |
802 | if (hw->fc_send_xon) { | 807 | if (hw->fc_send_xon) { |
803 | ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | 808 | ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); |
804 | ew32(FCRTH, hw->fc_high_water); | 809 | ew32(FCRTH, hw->fc_high_water); |
805 | } else { | 810 | } else { |
806 | ew32(FCRTL, hw->fc_low_water); | 811 | ew32(FCRTL, hw->fc_low_water); |
807 | ew32(FCRTH, hw->fc_high_water); | 812 | ew32(FCRTH, hw->fc_high_water); |
808 | } | 813 | } |
809 | } | 814 | } |
810 | return ret_val; | 815 | return ret_val; |
811 | } | 816 | } |
812 | 817 | ||
813 | /****************************************************************************** | 818 | /** |
814 | * Sets up link for a fiber based or serdes based adapter | 819 | * e1000_setup_fiber_serdes_link - prepare fiber or serdes link |
815 | * | 820 | * @hw: Struct containing variables accessed by shared code |
816 | * hw - Struct containing variables accessed by shared code | ||
817 | * | 821 | * |
818 | * Manipulates Physical Coding Sublayer functions in order to configure | 822 | * Manipulates Physical Coding Sublayer functions in order to configure |
819 | * link. Assumes the hardware has been previously reset and the transmitter | 823 | * link. Assumes the hardware has been previously reset and the transmitter |
820 | * and receiver are not enabled. | 824 | * and receiver are not enabled. |
821 | *****************************************************************************/ | 825 | */ |
822 | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | 826 | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) |
823 | { | 827 | { |
824 | u32 ctrl; | 828 | u32 ctrl; |
825 | u32 status; | 829 | u32 status; |
826 | u32 txcw = 0; | 830 | u32 txcw = 0; |
827 | u32 i; | 831 | u32 i; |
828 | u32 signal = 0; | 832 | u32 signal = 0; |
829 | s32 ret_val; | 833 | s32 ret_val; |
830 | 834 | ||
831 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); | 835 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); |
832 | 836 | ||
833 | /* On adapters with a MAC newer than 82544, SWDP 1 will be | 837 | /* On adapters with a MAC newer than 82544, SWDP 1 will be |
834 | * set when the optics detect a signal. On older adapters, it will be | 838 | * set when the optics detect a signal. On older adapters, it will be |
835 | * cleared when there is a signal. This applies to fiber media only. | 839 | * cleared when there is a signal. This applies to fiber media only. |
836 | * If we're on serdes media, adjust the output amplitude to value | 840 | * If we're on serdes media, adjust the output amplitude to value |
837 | * set in the EEPROM. | 841 | * set in the EEPROM. |
838 | */ | 842 | */ |
839 | ctrl = er32(CTRL); | 843 | ctrl = er32(CTRL); |
840 | if (hw->media_type == e1000_media_type_fiber) | 844 | if (hw->media_type == e1000_media_type_fiber) |
841 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 845 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
842 | 846 | ||
843 | ret_val = e1000_adjust_serdes_amplitude(hw); | 847 | ret_val = e1000_adjust_serdes_amplitude(hw); |
844 | if (ret_val) | 848 | if (ret_val) |
845 | return ret_val; | 849 | return ret_val; |
846 | 850 | ||
847 | /* Take the link out of reset */ | 851 | /* Take the link out of reset */ |
848 | ctrl &= ~(E1000_CTRL_LRST); | 852 | ctrl &= ~(E1000_CTRL_LRST); |
849 | 853 | ||
850 | /* Adjust VCO speed to improve BER performance */ | 854 | /* Adjust VCO speed to improve BER performance */ |
851 | ret_val = e1000_set_vco_speed(hw); | 855 | ret_val = e1000_set_vco_speed(hw); |
852 | if (ret_val) | 856 | if (ret_val) |
853 | return ret_val; | 857 | return ret_val; |
854 | 858 | ||
855 | e1000_config_collision_dist(hw); | 859 | e1000_config_collision_dist(hw); |
856 | 860 | ||
857 | /* Check for a software override of the flow control settings, and setup | 861 | /* Check for a software override of the flow control settings, and setup |
858 | * the device accordingly. If auto-negotiation is enabled, then software | 862 | * the device accordingly. If auto-negotiation is enabled, then software |
859 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | 863 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
860 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if | 864 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
861 | * auto-negotiation is disabled, then software will have to manually | 865 | * auto-negotiation is disabled, then software will have to manually |
862 | * configure the two flow control enable bits in the CTRL register. | 866 | * configure the two flow control enable bits in the CTRL register. |
863 | * | 867 | * |
864 | * The possible values of the "fc" parameter are: | 868 | * The possible values of the "fc" parameter are: |
865 | * 0: Flow control is completely disabled | 869 | * 0: Flow control is completely disabled |
866 | * 1: Rx flow control is enabled (we can receive pause frames, but | 870 | * 1: Rx flow control is enabled (we can receive pause frames, but |
867 | * not send pause frames). | 871 | * not send pause frames). |
868 | * 2: Tx flow control is enabled (we can send pause frames but we do | 872 | * 2: Tx flow control is enabled (we can send pause frames but we do |
869 | * not support receiving pause frames). | 873 | * not support receiving pause frames). |
870 | * 3: Both Rx and TX flow control (symmetric) are enabled. | 874 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
871 | */ | 875 | */ |
872 | switch (hw->fc) { | 876 | switch (hw->fc) { |
873 | case E1000_FC_NONE: | 877 | case E1000_FC_NONE: |
874 | /* Flow control is completely disabled by a software over-ride. */ | 878 | /* Flow control is completely disabled by a software over-ride. */ |
875 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 879 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
876 | break; | 880 | break; |
877 | case E1000_FC_RX_PAUSE: | 881 | case E1000_FC_RX_PAUSE: |
878 | /* RX Flow control is enabled and TX Flow control is disabled by a | 882 | /* RX Flow control is enabled and TX Flow control is disabled by a |
879 | * software over-ride. Since there really isn't a way to advertise | 883 | * software over-ride. Since there really isn't a way to advertise |
880 | * that we are capable of RX Pause ONLY, we will advertise that we | 884 | * that we are capable of RX Pause ONLY, we will advertise that we |
881 | * support both symmetric and asymmetric RX PAUSE. Later, we will | 885 | * support both symmetric and asymmetric RX PAUSE. Later, we will |
882 | * disable the adapter's ability to send PAUSE frames. | 886 | * disable the adapter's ability to send PAUSE frames. |
883 | */ | 887 | */ |
884 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 888 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
885 | break; | 889 | break; |
886 | case E1000_FC_TX_PAUSE: | 890 | case E1000_FC_TX_PAUSE: |
887 | /* TX Flow control is enabled, and RX Flow control is disabled, by a | 891 | /* TX Flow control is enabled, and RX Flow control is disabled, by a |
888 | * software over-ride. | 892 | * software over-ride. |
889 | */ | 893 | */ |
890 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 894 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
891 | break; | 895 | break; |
892 | case E1000_FC_FULL: | 896 | case E1000_FC_FULL: |
893 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | 897 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
894 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 898 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
895 | break; | 899 | break; |
896 | default: | 900 | default: |
897 | DEBUGOUT("Flow control param set incorrectly\n"); | 901 | DEBUGOUT("Flow control param set incorrectly\n"); |
898 | return -E1000_ERR_CONFIG; | 902 | return -E1000_ERR_CONFIG; |
899 | break; | 903 | break; |
900 | } | 904 | } |
901 | 905 | ||
902 | /* Since auto-negotiation is enabled, take the link out of reset (the link | 906 | /* Since auto-negotiation is enabled, take the link out of reset (the link |
903 | * will be in reset, because we previously reset the chip). This will | 907 | * will be in reset, because we previously reset the chip). This will |
904 | * restart auto-negotiation. If auto-neogtiation is successful then the | 908 | * restart auto-negotiation. If auto-negotiation is successful then the |
905 | * link-up status bit will be set and the flow control enable bits (RFCE | 909 | * link-up status bit will be set and the flow control enable bits (RFCE |
906 | * and TFCE) will be set according to their negotiated value. | 910 | * and TFCE) will be set according to their negotiated value. |
907 | */ | 911 | */ |
908 | DEBUGOUT("Auto-negotiation enabled\n"); | 912 | DEBUGOUT("Auto-negotiation enabled\n"); |
909 | 913 | ||
910 | ew32(TXCW, txcw); | 914 | ew32(TXCW, txcw); |
911 | ew32(CTRL, ctrl); | 915 | ew32(CTRL, ctrl); |
912 | E1000_WRITE_FLUSH(); | 916 | E1000_WRITE_FLUSH(); |
913 | 917 | ||
914 | hw->txcw = txcw; | 918 | hw->txcw = txcw; |
915 | msleep(1); | 919 | msleep(1); |
916 | 920 | ||
917 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | 921 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
918 | * indication in the Device Status Register. Time-out if a link isn't | 922 | * indication in the Device Status Register. Time-out if a link isn't |
919 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | 923 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
920 | * less than 500 milliseconds even if the other end is doing it in SW). | 924 | * less than 500 milliseconds even if the other end is doing it in SW). |
921 | * For internal serdes, we just assume a signal is present, then poll. | 925 | * For internal serdes, we just assume a signal is present, then poll. |
922 | */ | 926 | */ |
923 | if (hw->media_type == e1000_media_type_internal_serdes || | 927 | if (hw->media_type == e1000_media_type_internal_serdes || |
924 | (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { | 928 | (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
925 | DEBUGOUT("Looking for Link\n"); | 929 | DEBUGOUT("Looking for Link\n"); |
926 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | 930 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
927 | msleep(10); | 931 | msleep(10); |
928 | status = er32(STATUS); | 932 | status = er32(STATUS); |
929 | if (status & E1000_STATUS_LU) break; | 933 | if (status & E1000_STATUS_LU) |
930 | } | 934 | break; |
931 | if (i == (LINK_UP_TIMEOUT / 10)) { | 935 | } |
932 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | 936 | if (i == (LINK_UP_TIMEOUT / 10)) { |
933 | hw->autoneg_failed = 1; | 937 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
934 | /* AutoNeg failed to achieve a link, so we'll call | 938 | hw->autoneg_failed = 1; |
935 | * e1000_check_for_link. This routine will force the link up if | 939 | /* AutoNeg failed to achieve a link, so we'll call |
936 | * we detect a signal. This will allow us to communicate with | 940 | * e1000_check_for_link. This routine will force the link up if |
937 | * non-autonegotiating link partners. | 941 | * we detect a signal. This will allow us to communicate with |
938 | */ | 942 | * non-autonegotiating link partners. |
939 | ret_val = e1000_check_for_link(hw); | 943 | */ |
940 | if (ret_val) { | 944 | ret_val = e1000_check_for_link(hw); |
941 | DEBUGOUT("Error while checking for link\n"); | 945 | if (ret_val) { |
942 | return ret_val; | 946 | DEBUGOUT("Error while checking for link\n"); |
943 | } | 947 | return ret_val; |
944 | hw->autoneg_failed = 0; | 948 | } |
945 | } else { | 949 | hw->autoneg_failed = 0; |
946 | hw->autoneg_failed = 0; | 950 | } else { |
947 | DEBUGOUT("Valid Link Found\n"); | 951 | hw->autoneg_failed = 0; |
948 | } | 952 | DEBUGOUT("Valid Link Found\n"); |
949 | } else { | 953 | } |
950 | DEBUGOUT("No Signal Detected\n"); | 954 | } else { |
951 | } | 955 | DEBUGOUT("No Signal Detected\n"); |
952 | return E1000_SUCCESS; | 956 | } |
957 | return E1000_SUCCESS; | ||
953 | } | 958 | } |
954 | 959 | ||
955 | /****************************************************************************** | 960 | /** |
956 | * Make sure we have a valid PHY and change PHY mode before link setup. | 961 | * e1000_copper_link_preconfig - early configuration for copper |
957 | * | 962 | * @hw: Struct containing variables accessed by shared code |
958 | * hw - Struct containing variables accessed by shared code | 963 | * |
959 | ******************************************************************************/ | 964 | * Make sure we have a valid PHY and change PHY mode before link setup. |
965 | */ | ||
960 | static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) | 966 | static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) |
961 | { | 967 | { |
962 | u32 ctrl; | 968 | u32 ctrl; |
963 | s32 ret_val; | 969 | s32 ret_val; |
964 | u16 phy_data; | 970 | u16 phy_data; |
965 | 971 | ||
966 | DEBUGFUNC("e1000_copper_link_preconfig"); | 972 | DEBUGFUNC("e1000_copper_link_preconfig"); |
967 | 973 | ||
968 | ctrl = er32(CTRL); | 974 | ctrl = er32(CTRL); |
969 | /* With 82543, we need to force speed and duplex on the MAC equal to what | 975 | /* With 82543, we need to force speed and duplex on the MAC equal to what |
970 | * the PHY speed and duplex configuration is. In addition, we need to | 976 | * the PHY speed and duplex configuration is. In addition, we need to |
971 | * perform a hardware reset on the PHY to take it out of reset. | 977 | * perform a hardware reset on the PHY to take it out of reset. |
972 | */ | 978 | */ |
973 | if (hw->mac_type > e1000_82543) { | 979 | if (hw->mac_type > e1000_82543) { |
974 | ctrl |= E1000_CTRL_SLU; | 980 | ctrl |= E1000_CTRL_SLU; |
975 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 981 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
976 | ew32(CTRL, ctrl); | 982 | ew32(CTRL, ctrl); |
977 | } else { | 983 | } else { |
978 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 984 | ctrl |= |
979 | ew32(CTRL, ctrl); | 985 | (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
980 | ret_val = e1000_phy_hw_reset(hw); | 986 | ew32(CTRL, ctrl); |
981 | if (ret_val) | 987 | ret_val = e1000_phy_hw_reset(hw); |
982 | return ret_val; | 988 | if (ret_val) |
983 | } | 989 | return ret_val; |
984 | 990 | } | |
985 | /* Make sure we have a valid PHY */ | ||
986 | ret_val = e1000_detect_gig_phy(hw); | ||
987 | if (ret_val) { | ||
988 | DEBUGOUT("Error, did not detect valid phy.\n"); | ||
989 | return ret_val; | ||
990 | } | ||
991 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | ||
992 | |||
993 | /* Set PHY to class A mode (if necessary) */ | ||
994 | ret_val = e1000_set_phy_mode(hw); | ||
995 | if (ret_val) | ||
996 | return ret_val; | ||
997 | |||
998 | if ((hw->mac_type == e1000_82545_rev_3) || | ||
999 | (hw->mac_type == e1000_82546_rev_3)) { | ||
1000 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1001 | phy_data |= 0x00000008; | ||
1002 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1003 | } | ||
1004 | |||
1005 | if (hw->mac_type <= e1000_82543 || | ||
1006 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | ||
1007 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | ||
1008 | hw->phy_reset_disable = false; | ||
1009 | |||
1010 | return E1000_SUCCESS; | ||
1011 | } | ||
1012 | 991 | ||
992 | /* Make sure we have a valid PHY */ | ||
993 | ret_val = e1000_detect_gig_phy(hw); | ||
994 | if (ret_val) { | ||
995 | DEBUGOUT("Error, did not detect valid phy.\n"); | ||
996 | return ret_val; | ||
997 | } | ||
998 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | ||
999 | |||
1000 | /* Set PHY to class A mode (if necessary) */ | ||
1001 | ret_val = e1000_set_phy_mode(hw); | ||
1002 | if (ret_val) | ||
1003 | return ret_val; | ||
1004 | |||
1005 | if ((hw->mac_type == e1000_82545_rev_3) || | ||
1006 | (hw->mac_type == e1000_82546_rev_3)) { | ||
1007 | ret_val = | ||
1008 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1009 | phy_data |= 0x00000008; | ||
1010 | ret_val = | ||
1011 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1012 | } | ||
1013 | |||
1014 | if (hw->mac_type <= e1000_82543 || | ||
1015 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | ||
1016 | hw->mac_type == e1000_82541_rev_2 | ||
1017 | || hw->mac_type == e1000_82547_rev_2) | ||
1018 | hw->phy_reset_disable = false; | ||
1019 | |||
1020 | return E1000_SUCCESS; | ||
1021 | } | ||
1013 | 1022 | ||
1014 | /******************************************************************** | 1023 | /** |
1015 | * Copper link setup for e1000_phy_igp series. | 1024 | * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. |
1016 | * | 1025 | * @hw: Struct containing variables accessed by shared code |
1017 | * hw - Struct containing variables accessed by shared code | 1026 | */ |
1018 | *********************************************************************/ | ||
1019 | static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) | 1027 | static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) |
1020 | { | 1028 | { |
1021 | u32 led_ctrl; | 1029 | u32 led_ctrl; |
1022 | s32 ret_val; | 1030 | s32 ret_val; |
1023 | u16 phy_data; | 1031 | u16 phy_data; |
1024 | 1032 | ||
1025 | DEBUGFUNC("e1000_copper_link_igp_setup"); | 1033 | DEBUGFUNC("e1000_copper_link_igp_setup"); |
1026 | 1034 | ||
1027 | if (hw->phy_reset_disable) | 1035 | if (hw->phy_reset_disable) |
1028 | return E1000_SUCCESS; | 1036 | return E1000_SUCCESS; |
1029 | 1037 | ||
1030 | ret_val = e1000_phy_reset(hw); | 1038 | ret_val = e1000_phy_reset(hw); |
1031 | if (ret_val) { | 1039 | if (ret_val) { |
1032 | DEBUGOUT("Error Resetting the PHY\n"); | 1040 | DEBUGOUT("Error Resetting the PHY\n"); |
1033 | return ret_val; | 1041 | return ret_val; |
1034 | } | 1042 | } |
1035 | 1043 | ||
1036 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | 1044 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
1037 | msleep(15); | 1045 | msleep(15); |
1038 | /* Configure activity LED after PHY reset */ | 1046 | /* Configure activity LED after PHY reset */ |
1039 | led_ctrl = er32(LEDCTL); | 1047 | led_ctrl = er32(LEDCTL); |
1040 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 1048 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
1041 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 1049 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
1042 | ew32(LEDCTL, led_ctrl); | 1050 | ew32(LEDCTL, led_ctrl); |
1043 | 1051 | ||
1044 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | 1052 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
1045 | if (hw->phy_type == e1000_phy_igp) { | 1053 | if (hw->phy_type == e1000_phy_igp) { |
1046 | /* disable lplu d3 during driver init */ | 1054 | /* disable lplu d3 during driver init */ |
1047 | ret_val = e1000_set_d3_lplu_state(hw, false); | 1055 | ret_val = e1000_set_d3_lplu_state(hw, false); |
1048 | if (ret_val) { | 1056 | if (ret_val) { |
1049 | DEBUGOUT("Error Disabling LPLU D3\n"); | 1057 | DEBUGOUT("Error Disabling LPLU D3\n"); |
1050 | return ret_val; | 1058 | return ret_val; |
1051 | } | 1059 | } |
1052 | } | 1060 | } |
1053 | 1061 | ||
1054 | /* Configure mdi-mdix settings */ | 1062 | /* Configure mdi-mdix settings */ |
1055 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 1063 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
1056 | if (ret_val) | 1064 | if (ret_val) |
1057 | return ret_val; | 1065 | return ret_val; |
1058 | 1066 | ||
1059 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 1067 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
1060 | hw->dsp_config_state = e1000_dsp_config_disabled; | 1068 | hw->dsp_config_state = e1000_dsp_config_disabled; |
1061 | /* Force MDI for earlier revs of the IGP PHY */ | 1069 | /* Force MDI for earlier revs of the IGP PHY */ |
1062 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); | 1070 | phy_data &= |
1063 | hw->mdix = 1; | 1071 | ~(IGP01E1000_PSCR_AUTO_MDIX | |
1064 | 1072 | IGP01E1000_PSCR_FORCE_MDI_MDIX); | |
1065 | } else { | 1073 | hw->mdix = 1; |
1066 | hw->dsp_config_state = e1000_dsp_config_enabled; | 1074 | |
1067 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 1075 | } else { |
1068 | 1076 | hw->dsp_config_state = e1000_dsp_config_enabled; | |
1069 | switch (hw->mdix) { | 1077 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
1070 | case 1: | 1078 | |
1071 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 1079 | switch (hw->mdix) { |
1072 | break; | 1080 | case 1: |
1073 | case 2: | 1081 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1074 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | 1082 | break; |
1075 | break; | 1083 | case 2: |
1076 | case 0: | 1084 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1077 | default: | 1085 | break; |
1078 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | 1086 | case 0: |
1079 | break; | 1087 | default: |
1080 | } | 1088 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
1081 | } | 1089 | break; |
1082 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 1090 | } |
1083 | if (ret_val) | 1091 | } |
1084 | return ret_val; | 1092 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
1085 | 1093 | if (ret_val) | |
1086 | /* set auto-master slave resolution settings */ | 1094 | return ret_val; |
1087 | if (hw->autoneg) { | 1095 | |
1088 | e1000_ms_type phy_ms_setting = hw->master_slave; | 1096 | /* set auto-master slave resolution settings */ |
1089 | 1097 | if (hw->autoneg) { | |
1090 | if (hw->ffe_config_state == e1000_ffe_config_active) | 1098 | e1000_ms_type phy_ms_setting = hw->master_slave; |
1091 | hw->ffe_config_state = e1000_ffe_config_enabled; | 1099 | |
1092 | 1100 | if (hw->ffe_config_state == e1000_ffe_config_active) | |
1093 | if (hw->dsp_config_state == e1000_dsp_config_activated) | 1101 | hw->ffe_config_state = e1000_ffe_config_enabled; |
1094 | hw->dsp_config_state = e1000_dsp_config_enabled; | 1102 | |
1095 | 1103 | if (hw->dsp_config_state == e1000_dsp_config_activated) | |
1096 | /* when autonegotiation advertisment is only 1000Mbps then we | 1104 | hw->dsp_config_state = e1000_dsp_config_enabled; |
1097 | * should disable SmartSpeed and enable Auto MasterSlave | 1105 | |
1098 | * resolution as hardware default. */ | 1106 | /* when autonegotiation advertisement is only 1000Mbps then we |
1099 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 1107 | * should disable SmartSpeed and enable Auto MasterSlave |
1100 | /* Disable SmartSpeed */ | 1108 | * resolution as hardware default. */ |
1101 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 1109 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
1102 | &phy_data); | 1110 | /* Disable SmartSpeed */ |
1103 | if (ret_val) | 1111 | ret_val = |
1104 | return ret_val; | 1112 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
1105 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 1113 | &phy_data); |
1106 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 1114 | if (ret_val) |
1107 | phy_data); | 1115 | return ret_val; |
1108 | if (ret_val) | 1116 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
1109 | return ret_val; | 1117 | ret_val = |
1110 | /* Set auto Master/Slave resolution process */ | 1118 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
1111 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 1119 | phy_data); |
1112 | if (ret_val) | 1120 | if (ret_val) |
1113 | return ret_val; | 1121 | return ret_val; |
1114 | phy_data &= ~CR_1000T_MS_ENABLE; | 1122 | /* Set auto Master/Slave resolution process */ |
1115 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 1123 | ret_val = |
1116 | if (ret_val) | 1124 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
1117 | return ret_val; | 1125 | if (ret_val) |
1118 | } | 1126 | return ret_val; |
1119 | 1127 | phy_data &= ~CR_1000T_MS_ENABLE; | |
1120 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 1128 | ret_val = |
1121 | if (ret_val) | 1129 | e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
1122 | return ret_val; | 1130 | if (ret_val) |
1123 | 1131 | return ret_val; | |
1124 | /* load defaults for future use */ | 1132 | } |
1125 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | 1133 | |
1126 | ((phy_data & CR_1000T_MS_VALUE) ? | 1134 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
1127 | e1000_ms_force_master : | 1135 | if (ret_val) |
1128 | e1000_ms_force_slave) : | 1136 | return ret_val; |
1129 | e1000_ms_auto; | 1137 | |
1130 | 1138 | /* load defaults for future use */ | |
1131 | switch (phy_ms_setting) { | 1139 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
1132 | case e1000_ms_force_master: | 1140 | ((phy_data & CR_1000T_MS_VALUE) ? |
1133 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 1141 | e1000_ms_force_master : |
1134 | break; | 1142 | e1000_ms_force_slave) : e1000_ms_auto; |
1135 | case e1000_ms_force_slave: | 1143 | |
1136 | phy_data |= CR_1000T_MS_ENABLE; | 1144 | switch (phy_ms_setting) { |
1137 | phy_data &= ~(CR_1000T_MS_VALUE); | 1145 | case e1000_ms_force_master: |
1138 | break; | 1146 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
1139 | case e1000_ms_auto: | 1147 | break; |
1140 | phy_data &= ~CR_1000T_MS_ENABLE; | 1148 | case e1000_ms_force_slave: |
1141 | default: | 1149 | phy_data |= CR_1000T_MS_ENABLE; |
1142 | break; | 1150 | phy_data &= ~(CR_1000T_MS_VALUE); |
1143 | } | 1151 | break; |
1144 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 1152 | case e1000_ms_auto: |
1145 | if (ret_val) | 1153 | phy_data &= ~CR_1000T_MS_ENABLE; |
1146 | return ret_val; | 1154 | default: |
1147 | } | 1155 | break; |
1148 | 1156 | } | |
1149 | return E1000_SUCCESS; | 1157 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
1158 | if (ret_val) | ||
1159 | return ret_val; | ||
1160 | } | ||
1161 | |||
1162 | return E1000_SUCCESS; | ||
1150 | } | 1163 | } |
1151 | 1164 | ||
1152 | /******************************************************************** | 1165 | /** |
1153 | * Copper link setup for e1000_phy_m88 series. | 1166 | * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. |
1154 | * | 1167 | * @hw: Struct containing variables accessed by shared code |
1155 | * hw - Struct containing variables accessed by shared code | 1168 | */ |
1156 | *********************************************************************/ | ||
1157 | static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) | 1169 | static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
1158 | { | 1170 | { |
1159 | s32 ret_val; | 1171 | s32 ret_val; |
1160 | u16 phy_data; | 1172 | u16 phy_data; |
1161 | 1173 | ||
1162 | DEBUGFUNC("e1000_copper_link_mgp_setup"); | 1174 | DEBUGFUNC("e1000_copper_link_mgp_setup"); |
1163 | 1175 | ||
1164 | if (hw->phy_reset_disable) | 1176 | if (hw->phy_reset_disable) |
1165 | return E1000_SUCCESS; | 1177 | return E1000_SUCCESS; |
1166 | 1178 | ||
1167 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | 1179 | /* Enable CRS on TX. This must be set for half-duplex operation. */ |
1168 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 1180 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
1169 | if (ret_val) | 1181 | if (ret_val) |
1170 | return ret_val; | 1182 | return ret_val; |
1171 | 1183 | ||
1172 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 1184 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
1173 | 1185 | ||
1174 | /* Options: | 1186 | /* Options: |
1175 | * MDI/MDI-X = 0 (default) | 1187 | * MDI/MDI-X = 0 (default) |
1176 | * 0 - Auto for all speeds | 1188 | * 0 - Auto for all speeds |
1177 | * 1 - MDI mode | 1189 | * 1 - MDI mode |
1178 | * 2 - MDI-X mode | 1190 | * 2 - MDI-X mode |
1179 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 1191 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
1180 | */ | 1192 | */ |
1181 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 1193 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
1182 | 1194 | ||
1183 | switch (hw->mdix) { | 1195 | switch (hw->mdix) { |
1184 | case 1: | 1196 | case 1: |
1185 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 1197 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
1186 | break; | 1198 | break; |
1187 | case 2: | 1199 | case 2: |
1188 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 1200 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
1189 | break; | 1201 | break; |
1190 | case 3: | 1202 | case 3: |
1191 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 1203 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
1192 | break; | 1204 | break; |
1193 | case 0: | 1205 | case 0: |
1194 | default: | 1206 | default: |
1195 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 1207 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
1196 | break; | 1208 | break; |
1197 | } | 1209 | } |
1198 | 1210 | ||
1199 | /* Options: | 1211 | /* Options: |
1200 | * disable_polarity_correction = 0 (default) | 1212 | * disable_polarity_correction = 0 (default) |
1201 | * Automatic Correction for Reversed Cable Polarity | 1213 | * Automatic Correction for Reversed Cable Polarity |
1202 | * 0 - Disabled | 1214 | * 0 - Disabled |
1203 | * 1 - Enabled | 1215 | * 1 - Enabled |
1204 | */ | 1216 | */ |
1205 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 1217 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
1206 | if (hw->disable_polarity_correction == 1) | 1218 | if (hw->disable_polarity_correction == 1) |
1207 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 1219 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
1208 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 1220 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
1209 | if (ret_val) | 1221 | if (ret_val) |
1210 | return ret_val; | 1222 | return ret_val; |
1211 | 1223 | ||
1212 | if (hw->phy_revision < M88E1011_I_REV_4) { | 1224 | if (hw->phy_revision < M88E1011_I_REV_4) { |
1213 | /* Force TX_CLK in the Extended PHY Specific Control Register | 1225 | /* Force TX_CLK in the Extended PHY Specific Control Register |
1214 | * to 25MHz clock. | 1226 | * to 25MHz clock. |
1215 | */ | 1227 | */ |
1216 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 1228 | ret_val = |
1217 | if (ret_val) | 1229 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
1218 | return ret_val; | 1230 | &phy_data); |
1219 | 1231 | if (ret_val) | |
1220 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 1232 | return ret_val; |
1221 | 1233 | ||
1222 | if ((hw->phy_revision == E1000_REVISION_2) && | 1234 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
1223 | (hw->phy_id == M88E1111_I_PHY_ID)) { | 1235 | |
1224 | /* Vidalia Phy, set the downshift counter to 5x */ | 1236 | if ((hw->phy_revision == E1000_REVISION_2) && |
1225 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | 1237 | (hw->phy_id == M88E1111_I_PHY_ID)) { |
1226 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | 1238 | /* Vidalia Phy, set the downshift counter to 5x */ |
1227 | ret_val = e1000_write_phy_reg(hw, | 1239 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); |
1228 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 1240 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
1229 | if (ret_val) | 1241 | ret_val = e1000_write_phy_reg(hw, |
1230 | return ret_val; | 1242 | M88E1000_EXT_PHY_SPEC_CTRL, |
1231 | } else { | 1243 | phy_data); |
1232 | /* Configure Master and Slave downshift values */ | 1244 | if (ret_val) |
1233 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 1245 | return ret_val; |
1234 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 1246 | } else { |
1235 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 1247 | /* Configure Master and Slave downshift values */ |
1236 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 1248 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
1237 | ret_val = e1000_write_phy_reg(hw, | 1249 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
1238 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 1250 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
1239 | if (ret_val) | 1251 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
1240 | return ret_val; | 1252 | ret_val = e1000_write_phy_reg(hw, |
1241 | } | 1253 | M88E1000_EXT_PHY_SPEC_CTRL, |
1242 | } | 1254 | phy_data); |
1243 | 1255 | if (ret_val) | |
1244 | /* SW Reset the PHY so all changes take effect */ | 1256 | return ret_val; |
1245 | ret_val = e1000_phy_reset(hw); | 1257 | } |
1246 | if (ret_val) { | 1258 | } |
1247 | DEBUGOUT("Error Resetting the PHY\n"); | 1259 | |
1248 | return ret_val; | 1260 | /* SW Reset the PHY so all changes take effect */ |
1249 | } | 1261 | ret_val = e1000_phy_reset(hw); |
1250 | 1262 | if (ret_val) { | |
1251 | return E1000_SUCCESS; | 1263 | DEBUGOUT("Error Resetting the PHY\n"); |
1264 | return ret_val; | ||
1265 | } | ||
1266 | |||
1267 | return E1000_SUCCESS; | ||
1252 | } | 1268 | } |
1253 | 1269 | ||
1254 | /******************************************************************** | 1270 | /** |
1255 | * Setup auto-negotiation and flow control advertisements, | 1271 | * e1000_copper_link_autoneg - setup auto-neg |
1256 | * and then perform auto-negotiation. | 1272 | * @hw: Struct containing variables accessed by shared code |
1257 | * | 1273 | * |
1258 | * hw - Struct containing variables accessed by shared code | 1274 | * Setup auto-negotiation and flow control advertisements, |
1259 | *********************************************************************/ | 1275 | * and then perform auto-negotiation. |
1276 | */ | ||
1260 | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | 1277 | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) |
1261 | { | 1278 | { |
1262 | s32 ret_val; | 1279 | s32 ret_val; |
1263 | u16 phy_data; | 1280 | u16 phy_data; |
1264 | 1281 | ||
1265 | DEBUGFUNC("e1000_copper_link_autoneg"); | 1282 | DEBUGFUNC("e1000_copper_link_autoneg"); |
1266 | 1283 | ||
1267 | /* Perform some bounds checking on the hw->autoneg_advertised | 1284 | /* Perform some bounds checking on the hw->autoneg_advertised |
1268 | * parameter. If this variable is zero, then set it to the default. | 1285 | * parameter. If this variable is zero, then set it to the default. |
1269 | */ | 1286 | */ |
1270 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | 1287 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
1271 | 1288 | ||
1272 | /* If autoneg_advertised is zero, we assume it was not defaulted | 1289 | /* If autoneg_advertised is zero, we assume it was not defaulted |
1273 | * by the calling code so we set to advertise full capability. | 1290 | * by the calling code so we set to advertise full capability. |
1274 | */ | 1291 | */ |
1275 | if (hw->autoneg_advertised == 0) | 1292 | if (hw->autoneg_advertised == 0) |
1276 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 1293 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
1277 | 1294 | ||
1278 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 1295 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
1279 | ret_val = e1000_phy_setup_autoneg(hw); | 1296 | ret_val = e1000_phy_setup_autoneg(hw); |
1280 | if (ret_val) { | 1297 | if (ret_val) { |
1281 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 1298 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
1282 | return ret_val; | 1299 | return ret_val; |
1283 | } | 1300 | } |
1284 | DEBUGOUT("Restarting Auto-Neg\n"); | 1301 | DEBUGOUT("Restarting Auto-Neg\n"); |
1285 | 1302 | ||
1286 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 1303 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
1287 | * the Auto Neg Restart bit in the PHY control register. | 1304 | * the Auto Neg Restart bit in the PHY control register. |
1288 | */ | 1305 | */ |
1289 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 1306 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
1290 | if (ret_val) | 1307 | if (ret_val) |
1291 | return ret_val; | 1308 | return ret_val; |
1292 | 1309 | ||
1293 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 1310 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
1294 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 1311 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
1295 | if (ret_val) | 1312 | if (ret_val) |
1296 | return ret_val; | 1313 | return ret_val; |
1297 | 1314 | ||
1298 | /* Does the user want to wait for Auto-Neg to complete here, or | 1315 | /* Does the user want to wait for Auto-Neg to complete here, or |
1299 | * check at a later time (for example, callback routine). | 1316 | * check at a later time (for example, callback routine). |
1300 | */ | 1317 | */ |
1301 | if (hw->wait_autoneg_complete) { | 1318 | if (hw->wait_autoneg_complete) { |
1302 | ret_val = e1000_wait_autoneg(hw); | 1319 | ret_val = e1000_wait_autoneg(hw); |
1303 | if (ret_val) { | 1320 | if (ret_val) { |
1304 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | 1321 | DEBUGOUT |
1305 | return ret_val; | 1322 | ("Error while waiting for autoneg to complete\n"); |
1306 | } | 1323 | return ret_val; |
1307 | } | 1324 | } |
1308 | 1325 | } | |
1309 | hw->get_link_status = true; | 1326 | |
1310 | 1327 | hw->get_link_status = true; | |
1311 | return E1000_SUCCESS; | 1328 | |
1329 | return E1000_SUCCESS; | ||
1312 | } | 1330 | } |
1313 | 1331 | ||
1314 | /****************************************************************************** | 1332 | /** |
1315 | * Config the MAC and the PHY after link is up. | 1333 | * e1000_copper_link_postconfig - post link setup |
1316 | * 1) Set up the MAC to the current PHY speed/duplex | 1334 | * @hw: Struct containing variables accessed by shared code |
1317 | * if we are on 82543. If we | 1335 | * |
1318 | * are on newer silicon, we only need to configure | 1336 | * Config the MAC and the PHY after link is up. |
1319 | * collision distance in the Transmit Control Register. | 1337 | * 1) Set up the MAC to the current PHY speed/duplex |
1320 | * 2) Set up flow control on the MAC to that established with | 1338 | * if we are on 82543. If we |
1321 | * the link partner. | 1339 | * are on newer silicon, we only need to configure |
1322 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. | 1340 | * collision distance in the Transmit Control Register. |
1323 | * | 1341 | * 2) Set up flow control on the MAC to that established with |
1324 | * hw - Struct containing variables accessed by shared code | 1342 | * the link partner. |
1325 | ******************************************************************************/ | 1343 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
1344 | */ | ||
1326 | static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) | 1345 | static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) |
1327 | { | 1346 | { |
1328 | s32 ret_val; | 1347 | s32 ret_val; |
1329 | DEBUGFUNC("e1000_copper_link_postconfig"); | 1348 | DEBUGFUNC("e1000_copper_link_postconfig"); |
1330 | 1349 | ||
1331 | if (hw->mac_type >= e1000_82544) { | 1350 | if (hw->mac_type >= e1000_82544) { |
1332 | e1000_config_collision_dist(hw); | 1351 | e1000_config_collision_dist(hw); |
1333 | } else { | 1352 | } else { |
1334 | ret_val = e1000_config_mac_to_phy(hw); | 1353 | ret_val = e1000_config_mac_to_phy(hw); |
1335 | if (ret_val) { | 1354 | if (ret_val) { |
1336 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | 1355 | DEBUGOUT("Error configuring MAC to PHY settings\n"); |
1337 | return ret_val; | 1356 | return ret_val; |
1338 | } | 1357 | } |
1339 | } | 1358 | } |
1340 | ret_val = e1000_config_fc_after_link_up(hw); | 1359 | ret_val = e1000_config_fc_after_link_up(hw); |
1341 | if (ret_val) { | 1360 | if (ret_val) { |
1342 | DEBUGOUT("Error Configuring Flow Control\n"); | 1361 | DEBUGOUT("Error Configuring Flow Control\n"); |
1343 | return ret_val; | 1362 | return ret_val; |
1344 | } | 1363 | } |
1345 | 1364 | ||
1346 | /* Config DSP to improve Giga link quality */ | 1365 | /* Config DSP to improve Giga link quality */ |
1347 | if (hw->phy_type == e1000_phy_igp) { | 1366 | if (hw->phy_type == e1000_phy_igp) { |
1348 | ret_val = e1000_config_dsp_after_link_change(hw, true); | 1367 | ret_val = e1000_config_dsp_after_link_change(hw, true); |
1349 | if (ret_val) { | 1368 | if (ret_val) { |
1350 | DEBUGOUT("Error Configuring DSP after link up\n"); | 1369 | DEBUGOUT("Error Configuring DSP after link up\n"); |
1351 | return ret_val; | 1370 | return ret_val; |
1352 | } | 1371 | } |
1353 | } | 1372 | } |
1354 | 1373 | ||
1355 | return E1000_SUCCESS; | 1374 | return E1000_SUCCESS; |
1356 | } | 1375 | } |
1357 | 1376 | ||
1358 | /****************************************************************************** | 1377 | /** |
1359 | * Detects which PHY is present and setup the speed and duplex | 1378 | * e1000_setup_copper_link - phy/speed/duplex setting |
1360 | * | 1379 | * @hw: Struct containing variables accessed by shared code |
1361 | * hw - Struct containing variables accessed by shared code | 1380 | * |
1362 | ******************************************************************************/ | 1381 | * Detects which PHY is present and sets up the speed and duplex |
1382 | */ | ||
1363 | static s32 e1000_setup_copper_link(struct e1000_hw *hw) | 1383 | static s32 e1000_setup_copper_link(struct e1000_hw *hw) |
1364 | { | 1384 | { |
1365 | s32 ret_val; | 1385 | s32 ret_val; |
1366 | u16 i; | 1386 | u16 i; |
1367 | u16 phy_data; | 1387 | u16 phy_data; |
1368 | 1388 | ||
1369 | DEBUGFUNC("e1000_setup_copper_link"); | 1389 | DEBUGFUNC("e1000_setup_copper_link"); |
1370 | 1390 | ||
1371 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 1391 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
1372 | ret_val = e1000_copper_link_preconfig(hw); | 1392 | ret_val = e1000_copper_link_preconfig(hw); |
1373 | if (ret_val) | 1393 | if (ret_val) |
1374 | return ret_val; | 1394 | return ret_val; |
1375 | 1395 | ||
1376 | if (hw->phy_type == e1000_phy_igp) { | 1396 | if (hw->phy_type == e1000_phy_igp) { |
1377 | ret_val = e1000_copper_link_igp_setup(hw); | 1397 | ret_val = e1000_copper_link_igp_setup(hw); |
1378 | if (ret_val) | 1398 | if (ret_val) |
1379 | return ret_val; | 1399 | return ret_val; |
1380 | } else if (hw->phy_type == e1000_phy_m88) { | 1400 | } else if (hw->phy_type == e1000_phy_m88) { |
1381 | ret_val = e1000_copper_link_mgp_setup(hw); | 1401 | ret_val = e1000_copper_link_mgp_setup(hw); |
1382 | if (ret_val) | 1402 | if (ret_val) |
1383 | return ret_val; | 1403 | return ret_val; |
1384 | } | 1404 | } |
1385 | 1405 | ||
1386 | if (hw->autoneg) { | 1406 | if (hw->autoneg) { |
1387 | /* Setup autoneg and flow control advertisement | 1407 | /* Setup autoneg and flow control advertisement |
1388 | * and perform autonegotiation */ | 1408 | * and perform autonegotiation */ |
1389 | ret_val = e1000_copper_link_autoneg(hw); | 1409 | ret_val = e1000_copper_link_autoneg(hw); |
1390 | if (ret_val) | 1410 | if (ret_val) |
1391 | return ret_val; | 1411 | return ret_val; |
1392 | } else { | 1412 | } else { |
1393 | /* PHY will be set to 10H, 10F, 100H,or 100F | 1413 | /* PHY will be set to 10H, 10F, 100H,or 100F |
1394 | * depending on value from forced_speed_duplex. */ | 1414 | * depending on value from forced_speed_duplex. */ |
1395 | DEBUGOUT("Forcing speed and duplex\n"); | 1415 | DEBUGOUT("Forcing speed and duplex\n"); |
1396 | ret_val = e1000_phy_force_speed_duplex(hw); | 1416 | ret_val = e1000_phy_force_speed_duplex(hw); |
1397 | if (ret_val) { | 1417 | if (ret_val) { |
1398 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | 1418 | DEBUGOUT("Error Forcing Speed and Duplex\n"); |
1399 | return ret_val; | 1419 | return ret_val; |
1400 | } | 1420 | } |
1401 | } | 1421 | } |
1402 | 1422 | ||
1403 | /* Check link status. Wait up to 100 microseconds for link to become | 1423 | /* Check link status. Wait up to 100 microseconds for link to become |
1404 | * valid. | 1424 | * valid. |
1405 | */ | 1425 | */ |
1406 | for (i = 0; i < 10; i++) { | 1426 | for (i = 0; i < 10; i++) { |
1407 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 1427 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
1408 | if (ret_val) | 1428 | if (ret_val) |
1409 | return ret_val; | 1429 | return ret_val; |
1410 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 1430 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
1411 | if (ret_val) | 1431 | if (ret_val) |
1412 | return ret_val; | 1432 | return ret_val; |
1413 | 1433 | ||
1414 | if (phy_data & MII_SR_LINK_STATUS) { | 1434 | if (phy_data & MII_SR_LINK_STATUS) { |
1415 | /* Config the MAC and PHY after link is up */ | 1435 | /* Config the MAC and PHY after link is up */ |
1416 | ret_val = e1000_copper_link_postconfig(hw); | 1436 | ret_val = e1000_copper_link_postconfig(hw); |
1417 | if (ret_val) | 1437 | if (ret_val) |
1418 | return ret_val; | 1438 | return ret_val; |
1419 | 1439 | ||
1420 | DEBUGOUT("Valid link established!!!\n"); | 1440 | DEBUGOUT("Valid link established!!!\n"); |
1421 | return E1000_SUCCESS; | 1441 | return E1000_SUCCESS; |
1422 | } | 1442 | } |
1423 | udelay(10); | 1443 | udelay(10); |
1424 | } | 1444 | } |
1425 | 1445 | ||
1426 | DEBUGOUT("Unable to establish link!!!\n"); | 1446 | DEBUGOUT("Unable to establish link!!!\n"); |
1427 | return E1000_SUCCESS; | 1447 | return E1000_SUCCESS; |
1428 | } | 1448 | } |
1429 | 1449 | ||
1430 | /****************************************************************************** | 1450 | /** |
1431 | * Configures PHY autoneg and flow control advertisement settings | 1451 | * e1000_phy_setup_autoneg - phy settings |
1432 | * | 1452 | * @hw: Struct containing variables accessed by shared code |
1433 | * hw - Struct containing variables accessed by shared code | 1453 | * |
1434 | ******************************************************************************/ | 1454 | * Configures PHY autoneg and flow control advertisement settings |
1455 | */ | ||
1435 | s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | 1456 | s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) |
1436 | { | 1457 | { |
1437 | s32 ret_val; | 1458 | s32 ret_val; |
1438 | u16 mii_autoneg_adv_reg; | 1459 | u16 mii_autoneg_adv_reg; |
1439 | u16 mii_1000t_ctrl_reg; | 1460 | u16 mii_1000t_ctrl_reg; |
1440 | 1461 | ||
1441 | DEBUGFUNC("e1000_phy_setup_autoneg"); | 1462 | DEBUGFUNC("e1000_phy_setup_autoneg"); |
1442 | 1463 | ||
1443 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | 1464 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
1444 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | 1465 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
1445 | if (ret_val) | 1466 | if (ret_val) |
1446 | return ret_val; | 1467 | return ret_val; |
1447 | 1468 | ||
1448 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 1469 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
1449 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 1470 | ret_val = |
1450 | if (ret_val) | 1471 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
1451 | return ret_val; | 1472 | if (ret_val) |
1452 | 1473 | return ret_val; | |
1453 | /* Need to parse both autoneg_advertised and fc and set up | 1474 | |
1454 | * the appropriate PHY registers. First we will parse for | 1475 | /* Need to parse both autoneg_advertised and fc and set up |
1455 | * autoneg_advertised software override. Since we can advertise | 1476 | * the appropriate PHY registers. First we will parse for |
1456 | * a plethora of combinations, we need to check each bit | 1477 | * autoneg_advertised software override. Since we can advertise |
1457 | * individually. | 1478 | * a plethora of combinations, we need to check each bit |
1458 | */ | 1479 | * individually. |
1459 | 1480 | */ | |
1460 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | 1481 | |
1461 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | 1482 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
1462 | * the 1000Base-T Control Register (Address 9). | 1483 | * Advertisement Register (Address 4) and the 1000 mb speed bits in |
1463 | */ | 1484 | * the 1000Base-T Control Register (Address 9). |
1464 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | 1485 | */ |
1465 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | 1486 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
1466 | 1487 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | |
1467 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | 1488 | |
1468 | 1489 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | |
1469 | /* Do we want to advertise 10 Mb Half Duplex? */ | 1490 | |
1470 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { | 1491 | /* Do we want to advertise 10 Mb Half Duplex? */ |
1471 | DEBUGOUT("Advertise 10mb Half duplex\n"); | 1492 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
1472 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | 1493 | DEBUGOUT("Advertise 10mb Half duplex\n"); |
1473 | } | 1494 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
1474 | 1495 | } | |
1475 | /* Do we want to advertise 10 Mb Full Duplex? */ | 1496 | |
1476 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { | 1497 | /* Do we want to advertise 10 Mb Full Duplex? */ |
1477 | DEBUGOUT("Advertise 10mb Full duplex\n"); | 1498 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
1478 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | 1499 | DEBUGOUT("Advertise 10mb Full duplex\n"); |
1479 | } | 1500 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
1480 | 1501 | } | |
1481 | /* Do we want to advertise 100 Mb Half Duplex? */ | 1502 | |
1482 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { | 1503 | /* Do we want to advertise 100 Mb Half Duplex? */ |
1483 | DEBUGOUT("Advertise 100mb Half duplex\n"); | 1504 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
1484 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | 1505 | DEBUGOUT("Advertise 100mb Half duplex\n"); |
1485 | } | 1506 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
1486 | 1507 | } | |
1487 | /* Do we want to advertise 100 Mb Full Duplex? */ | 1508 | |
1488 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { | 1509 | /* Do we want to advertise 100 Mb Full Duplex? */ |
1489 | DEBUGOUT("Advertise 100mb Full duplex\n"); | 1510 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
1490 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | 1511 | DEBUGOUT("Advertise 100mb Full duplex\n"); |
1491 | } | 1512 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
1492 | 1513 | } | |
1493 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | 1514 | |
1494 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { | 1515 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
1495 | DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); | 1516 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
1496 | } | 1517 | DEBUGOUT |
1497 | 1518 | ("Advertise 1000mb Half duplex requested, request denied!\n"); | |
1498 | /* Do we want to advertise 1000 Mb Full Duplex? */ | 1519 | } |
1499 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 1520 | |
1500 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | 1521 | /* Do we want to advertise 1000 Mb Full Duplex? */ |
1501 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 1522 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
1502 | } | 1523 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
1503 | 1524 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | |
1504 | /* Check for a software override of the flow control settings, and | 1525 | } |
1505 | * setup the PHY advertisement registers accordingly. If | 1526 | |
1506 | * auto-negotiation is enabled, then software will have to set the | 1527 | /* Check for a software override of the flow control settings, and |
1507 | * "PAUSE" bits to the correct value in the Auto-Negotiation | 1528 | * setup the PHY advertisement registers accordingly. If |
1508 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | 1529 | * auto-negotiation is enabled, then software will have to set the |
1509 | * | 1530 | * "PAUSE" bits to the correct value in the Auto-Negotiation |
1510 | * The possible values of the "fc" parameter are: | 1531 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
1511 | * 0: Flow control is completely disabled | 1532 | * |
1512 | * 1: Rx flow control is enabled (we can receive pause frames | 1533 | * The possible values of the "fc" parameter are: |
1513 | * but not send pause frames). | 1534 | * 0: Flow control is completely disabled |
1514 | * 2: Tx flow control is enabled (we can send pause frames | 1535 | * 1: Rx flow control is enabled (we can receive pause frames |
1515 | * but we do not support receiving pause frames). | 1536 | * but not send pause frames). |
1516 | * 3: Both Rx and TX flow control (symmetric) are enabled. | 1537 | * 2: Tx flow control is enabled (we can send pause frames |
1517 | * other: No software override. The flow control configuration | 1538 | * but we do not support receiving pause frames). |
1518 | * in the EEPROM is used. | 1539 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
1519 | */ | 1540 | * other: No software override. The flow control configuration |
1520 | switch (hw->fc) { | 1541 | * in the EEPROM is used. |
1521 | case E1000_FC_NONE: /* 0 */ | 1542 | */ |
1522 | /* Flow control (RX & TX) is completely disabled by a | 1543 | switch (hw->fc) { |
1523 | * software over-ride. | 1544 | case E1000_FC_NONE: /* 0 */ |
1524 | */ | 1545 | /* Flow control (RX & TX) is completely disabled by a |
1525 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 1546 | * software over-ride. |
1526 | break; | 1547 | */ |
1527 | case E1000_FC_RX_PAUSE: /* 1 */ | 1548 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
1528 | /* RX Flow control is enabled, and TX Flow control is | 1549 | break; |
1529 | * disabled, by a software over-ride. | 1550 | case E1000_FC_RX_PAUSE: /* 1 */ |
1530 | */ | 1551 | /* RX Flow control is enabled, and TX Flow control is |
1531 | /* Since there really isn't a way to advertise that we are | 1552 | * disabled, by a software over-ride. |
1532 | * capable of RX Pause ONLY, we will advertise that we | 1553 | */ |
1533 | * support both symmetric and asymmetric RX PAUSE. Later | 1554 | /* Since there really isn't a way to advertise that we are |
1534 | * (in e1000_config_fc_after_link_up) we will disable the | 1555 | * capable of RX Pause ONLY, we will advertise that we |
1535 | *hw's ability to send PAUSE frames. | 1556 | * support both symmetric and asymmetric RX PAUSE. Later |
1536 | */ | 1557 | * (in e1000_config_fc_after_link_up) we will disable the |
1537 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 1558 | *hw's ability to send PAUSE frames. |
1538 | break; | 1559 | */ |
1539 | case E1000_FC_TX_PAUSE: /* 2 */ | 1560 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
1540 | /* TX Flow control is enabled, and RX Flow control is | 1561 | break; |
1541 | * disabled, by a software over-ride. | 1562 | case E1000_FC_TX_PAUSE: /* 2 */ |
1542 | */ | 1563 | /* TX Flow control is enabled, and RX Flow control is |
1543 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | 1564 | * disabled, by a software over-ride. |
1544 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | 1565 | */ |
1545 | break; | 1566 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
1546 | case E1000_FC_FULL: /* 3 */ | 1567 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
1547 | /* Flow control (both RX and TX) is enabled by a software | 1568 | break; |
1548 | * over-ride. | 1569 | case E1000_FC_FULL: /* 3 */ |
1549 | */ | 1570 | /* Flow control (both RX and TX) is enabled by a software |
1550 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 1571 | * over-ride. |
1551 | break; | 1572 | */ |
1552 | default: | 1573 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
1553 | DEBUGOUT("Flow control param set incorrectly\n"); | 1574 | break; |
1554 | return -E1000_ERR_CONFIG; | 1575 | default: |
1555 | } | 1576 | DEBUGOUT("Flow control param set incorrectly\n"); |
1556 | 1577 | return -E1000_ERR_CONFIG; | |
1557 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | 1578 | } |
1558 | if (ret_val) | 1579 | |
1559 | return ret_val; | 1580 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
1560 | 1581 | if (ret_val) | |
1561 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 1582 | return ret_val; |
1562 | 1583 | ||
1563 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 1584 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
1564 | if (ret_val) | 1585 | |
1565 | return ret_val; | 1586 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
1566 | 1587 | if (ret_val) | |
1567 | return E1000_SUCCESS; | 1588 | return ret_val; |
1589 | |||
1590 | return E1000_SUCCESS; | ||
1568 | } | 1591 | } |
1569 | 1592 | ||
1570 | /****************************************************************************** | 1593 | /** |
1571 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | 1594 | * e1000_phy_force_speed_duplex - force link settings |
1572 | * | 1595 | * @hw: Struct containing variables accessed by shared code |
1573 | * hw - Struct containing variables accessed by shared code | 1596 | * |
1574 | ******************************************************************************/ | 1597 | * Force PHY speed and duplex settings to hw->forced_speed_duplex |
1598 | */ | ||
1575 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | 1599 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
1576 | { | 1600 | { |
1577 | u32 ctrl; | 1601 | u32 ctrl; |
1578 | s32 ret_val; | 1602 | s32 ret_val; |
1579 | u16 mii_ctrl_reg; | 1603 | u16 mii_ctrl_reg; |
1580 | u16 mii_status_reg; | 1604 | u16 mii_status_reg; |
1581 | u16 phy_data; | 1605 | u16 phy_data; |
1582 | u16 i; | 1606 | u16 i; |
1583 | 1607 | ||
1584 | DEBUGFUNC("e1000_phy_force_speed_duplex"); | 1608 | DEBUGFUNC("e1000_phy_force_speed_duplex"); |
1585 | 1609 | ||
1586 | /* Turn off Flow control if we are forcing speed and duplex. */ | 1610 | /* Turn off Flow control if we are forcing speed and duplex. */ |
1587 | hw->fc = E1000_FC_NONE; | 1611 | hw->fc = E1000_FC_NONE; |
1588 | 1612 | ||
1589 | DEBUGOUT1("hw->fc = %d\n", hw->fc); | 1613 | DEBUGOUT1("hw->fc = %d\n", hw->fc); |
1590 | 1614 | ||
1591 | /* Read the Device Control Register. */ | 1615 | /* Read the Device Control Register. */ |
1592 | ctrl = er32(CTRL); | 1616 | ctrl = er32(CTRL); |
1593 | 1617 | ||
1594 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | 1618 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ |
1595 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 1619 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
1596 | ctrl &= ~(DEVICE_SPEED_MASK); | 1620 | ctrl &= ~(DEVICE_SPEED_MASK); |
1597 | 1621 | ||
1598 | /* Clear the Auto Speed Detect Enable bit. */ | 1622 | /* Clear the Auto Speed Detect Enable bit. */ |
1599 | ctrl &= ~E1000_CTRL_ASDE; | 1623 | ctrl &= ~E1000_CTRL_ASDE; |
1600 | 1624 | ||
1601 | /* Read the MII Control Register. */ | 1625 | /* Read the MII Control Register. */ |
1602 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); | 1626 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); |
1603 | if (ret_val) | 1627 | if (ret_val) |
1604 | return ret_val; | 1628 | return ret_val; |
1605 | 1629 | ||
1606 | /* We need to disable autoneg in order to force link and duplex. */ | 1630 | /* We need to disable autoneg in order to force link and duplex. */ |
1607 | 1631 | ||
1608 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | 1632 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; |
1609 | 1633 | ||
1610 | /* Are we forcing Full or Half Duplex? */ | 1634 | /* Are we forcing Full or Half Duplex? */ |
1611 | if (hw->forced_speed_duplex == e1000_100_full || | 1635 | if (hw->forced_speed_duplex == e1000_100_full || |
1612 | hw->forced_speed_duplex == e1000_10_full) { | 1636 | hw->forced_speed_duplex == e1000_10_full) { |
1613 | /* We want to force full duplex so we SET the full duplex bits in the | 1637 | /* We want to force full duplex so we SET the full duplex bits in the |
1614 | * Device and MII Control Registers. | 1638 | * Device and MII Control Registers. |
1615 | */ | 1639 | */ |
1616 | ctrl |= E1000_CTRL_FD; | 1640 | ctrl |= E1000_CTRL_FD; |
1617 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | 1641 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; |
1618 | DEBUGOUT("Full Duplex\n"); | 1642 | DEBUGOUT("Full Duplex\n"); |
1619 | } else { | 1643 | } else { |
1620 | /* We want to force half duplex so we CLEAR the full duplex bits in | 1644 | /* We want to force half duplex so we CLEAR the full duplex bits in |
1621 | * the Device and MII Control Registers. | 1645 | * the Device and MII Control Registers. |
1622 | */ | 1646 | */ |
1623 | ctrl &= ~E1000_CTRL_FD; | 1647 | ctrl &= ~E1000_CTRL_FD; |
1624 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | 1648 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; |
1625 | DEBUGOUT("Half Duplex\n"); | 1649 | DEBUGOUT("Half Duplex\n"); |
1626 | } | 1650 | } |
1627 | 1651 | ||
1628 | /* Are we forcing 100Mbps??? */ | 1652 | /* Are we forcing 100Mbps??? */ |
1629 | if (hw->forced_speed_duplex == e1000_100_full || | 1653 | if (hw->forced_speed_duplex == e1000_100_full || |
1630 | hw->forced_speed_duplex == e1000_100_half) { | 1654 | hw->forced_speed_duplex == e1000_100_half) { |
1631 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | 1655 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ |
1632 | ctrl |= E1000_CTRL_SPD_100; | 1656 | ctrl |= E1000_CTRL_SPD_100; |
1633 | mii_ctrl_reg |= MII_CR_SPEED_100; | 1657 | mii_ctrl_reg |= MII_CR_SPEED_100; |
1634 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | 1658 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
1635 | DEBUGOUT("Forcing 100mb "); | 1659 | DEBUGOUT("Forcing 100mb "); |
1636 | } else { | 1660 | } else { |
1637 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | 1661 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ |
1638 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 1662 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
1639 | mii_ctrl_reg |= MII_CR_SPEED_10; | 1663 | mii_ctrl_reg |= MII_CR_SPEED_10; |
1640 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | 1664 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
1641 | DEBUGOUT("Forcing 10mb "); | 1665 | DEBUGOUT("Forcing 10mb "); |
1642 | } | 1666 | } |
1643 | 1667 | ||
1644 | e1000_config_collision_dist(hw); | 1668 | e1000_config_collision_dist(hw); |
1645 | 1669 | ||
1646 | /* Write the configured values back to the Device Control Reg. */ | 1670 | /* Write the configured values back to the Device Control Reg. */ |
1647 | ew32(CTRL, ctrl); | 1671 | ew32(CTRL, ctrl); |
1648 | 1672 | ||
1649 | if (hw->phy_type == e1000_phy_m88) { | 1673 | if (hw->phy_type == e1000_phy_m88) { |
1650 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 1674 | ret_val = |
1651 | if (ret_val) | 1675 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
1652 | return ret_val; | 1676 | if (ret_val) |
1653 | 1677 | return ret_val; | |
1654 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | 1678 | |
1655 | * forced whenever speed are duplex are forced. | 1679 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
1656 | */ | 1680 | * forced whenever speed are duplex are forced. |
1657 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 1681 | */ |
1658 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 1682 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
1659 | if (ret_val) | 1683 | ret_val = |
1660 | return ret_val; | 1684 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
1661 | 1685 | if (ret_val) | |
1662 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | 1686 | return ret_val; |
1663 | 1687 | ||
1664 | /* Need to reset the PHY or these changes will be ignored */ | 1688 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); |
1665 | mii_ctrl_reg |= MII_CR_RESET; | 1689 | |
1666 | 1690 | /* Need to reset the PHY or these changes will be ignored */ | |
1667 | } else { | 1691 | mii_ctrl_reg |= MII_CR_RESET; |
1668 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | 1692 | |
1669 | * forced whenever speed or duplex are forced. | 1693 | /* Disable MDI-X support for 10/100 */ |
1670 | */ | 1694 | } else { |
1671 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 1695 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
1672 | if (ret_val) | 1696 | * forced whenever speed or duplex are forced. |
1673 | return ret_val; | 1697 | */ |
1674 | 1698 | ret_val = | |
1675 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 1699 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
1676 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 1700 | if (ret_val) |
1677 | 1701 | return ret_val; | |
1678 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 1702 | |
1679 | if (ret_val) | 1703 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
1680 | return ret_val; | 1704 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1681 | } | 1705 | |
1682 | 1706 | ret_val = | |
1683 | /* Write back the modified PHY MII control register. */ | 1707 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
1684 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | 1708 | if (ret_val) |
1685 | if (ret_val) | 1709 | return ret_val; |
1686 | return ret_val; | 1710 | } |
1687 | 1711 | ||
1688 | udelay(1); | 1712 | /* Write back the modified PHY MII control register. */ |
1689 | 1713 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | |
1690 | /* The wait_autoneg_complete flag may be a little misleading here. | 1714 | if (ret_val) |
1691 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | 1715 | return ret_val; |
1692 | * But we do want to delay for a period while forcing only so we | 1716 | |
1693 | * don't generate false No Link messages. So we will wait here | 1717 | udelay(1); |
1694 | * only if the user has set wait_autoneg_complete to 1, which is | 1718 | |
1695 | * the default. | 1719 | /* The wait_autoneg_complete flag may be a little misleading here. |
1696 | */ | 1720 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. |
1697 | if (hw->wait_autoneg_complete) { | 1721 | * But we do want to delay for a period while forcing only so we |
1698 | /* We will wait for autoneg to complete. */ | 1722 | * don't generate false No Link messages. So we will wait here |
1699 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); | 1723 | * only if the user has set wait_autoneg_complete to 1, which is |
1700 | mii_status_reg = 0; | 1724 | * the default. |
1701 | 1725 | */ | |
1702 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 1726 | if (hw->wait_autoneg_complete) { |
1703 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 1727 | /* We will wait for autoneg to complete. */ |
1704 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 1728 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); |
1705 | * to be set. | 1729 | mii_status_reg = 0; |
1706 | */ | 1730 | |
1707 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 1731 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
1708 | if (ret_val) | 1732 | for (i = PHY_FORCE_TIME; i > 0; i--) { |
1709 | return ret_val; | 1733 | /* Read the MII Status Register and wait for Auto-Neg Complete bit |
1710 | 1734 | * to be set. | |
1711 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 1735 | */ |
1712 | if (ret_val) | 1736 | ret_val = |
1713 | return ret_val; | 1737 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
1714 | 1738 | if (ret_val) | |
1715 | if (mii_status_reg & MII_SR_LINK_STATUS) break; | 1739 | return ret_val; |
1716 | msleep(100); | 1740 | |
1717 | } | 1741 | ret_val = |
1718 | if ((i == 0) && | 1742 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
1719 | (hw->phy_type == e1000_phy_m88)) { | 1743 | if (ret_val) |
1720 | /* We didn't get link. Reset the DSP and wait again for link. */ | 1744 | return ret_val; |
1721 | ret_val = e1000_phy_reset_dsp(hw); | 1745 | |
1722 | if (ret_val) { | 1746 | if (mii_status_reg & MII_SR_LINK_STATUS) |
1723 | DEBUGOUT("Error Resetting PHY DSP\n"); | 1747 | break; |
1724 | return ret_val; | 1748 | msleep(100); |
1725 | } | 1749 | } |
1726 | } | 1750 | if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { |
1727 | /* This loop will early-out if the link condition has been met. */ | 1751 | /* We didn't get link. Reset the DSP and wait again for link. */ |
1728 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 1752 | ret_val = e1000_phy_reset_dsp(hw); |
1729 | if (mii_status_reg & MII_SR_LINK_STATUS) break; | 1753 | if (ret_val) { |
1730 | msleep(100); | 1754 | DEBUGOUT("Error Resetting PHY DSP\n"); |
1731 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 1755 | return ret_val; |
1732 | * to be set. | 1756 | } |
1733 | */ | 1757 | } |
1734 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 1758 | /* This loop will early-out if the link condition has been met. */ |
1735 | if (ret_val) | 1759 | for (i = PHY_FORCE_TIME; i > 0; i--) { |
1736 | return ret_val; | 1760 | if (mii_status_reg & MII_SR_LINK_STATUS) |
1737 | 1761 | break; | |
1738 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 1762 | msleep(100); |
1739 | if (ret_val) | 1763 | /* Read the MII Status Register and wait for Auto-Neg Complete bit |
1740 | return ret_val; | 1764 | * to be set. |
1741 | } | 1765 | */ |
1742 | } | 1766 | ret_val = |
1743 | 1767 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | |
1744 | if (hw->phy_type == e1000_phy_m88) { | 1768 | if (ret_val) |
1745 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | 1769 | return ret_val; |
1746 | * Extended PHY Specific Control Register to 25MHz clock. This value | 1770 | |
1747 | * defaults back to a 2.5MHz clock when the PHY is reset. | 1771 | ret_val = |
1748 | */ | 1772 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
1749 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 1773 | if (ret_val) |
1750 | if (ret_val) | 1774 | return ret_val; |
1751 | return ret_val; | 1775 | } |
1752 | 1776 | } | |
1753 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 1777 | |
1754 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 1778 | if (hw->phy_type == e1000_phy_m88) { |
1755 | if (ret_val) | 1779 | /* Because we reset the PHY above, we need to re-force TX_CLK in the |
1756 | return ret_val; | 1780 | * Extended PHY Specific Control Register to 25MHz clock. This value |
1757 | 1781 | * defaults back to a 2.5MHz clock when the PHY is reset. | |
1758 | /* In addition, because of the s/w reset above, we need to enable CRS on | 1782 | */ |
1759 | * TX. This must be set for both full and half duplex operation. | 1783 | ret_val = |
1760 | */ | 1784 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
1761 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 1785 | &phy_data); |
1762 | if (ret_val) | 1786 | if (ret_val) |
1763 | return ret_val; | 1787 | return ret_val; |
1764 | 1788 | ||
1765 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 1789 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
1766 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 1790 | ret_val = |
1767 | if (ret_val) | 1791 | e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
1768 | return ret_val; | 1792 | phy_data); |
1769 | 1793 | if (ret_val) | |
1770 | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 1794 | return ret_val; |
1771 | (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || | 1795 | |
1772 | hw->forced_speed_duplex == e1000_10_half)) { | 1796 | /* In addition, because of the s/w reset above, we need to enable CRS on |
1773 | ret_val = e1000_polarity_reversal_workaround(hw); | 1797 | * TX. This must be set for both full and half duplex operation. |
1774 | if (ret_val) | 1798 | */ |
1775 | return ret_val; | 1799 | ret_val = |
1776 | } | 1800 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
1777 | } | 1801 | if (ret_val) |
1778 | return E1000_SUCCESS; | 1802 | return ret_val; |
1803 | |||
1804 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1805 | ret_val = | ||
1806 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1807 | if (ret_val) | ||
1808 | return ret_val; | ||
1809 | |||
1810 | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) | ||
1811 | && (!hw->autoneg) | ||
1812 | && (hw->forced_speed_duplex == e1000_10_full | ||
1813 | || hw->forced_speed_duplex == e1000_10_half)) { | ||
1814 | ret_val = e1000_polarity_reversal_workaround(hw); | ||
1815 | if (ret_val) | ||
1816 | return ret_val; | ||
1817 | } | ||
1818 | } | ||
1819 | return E1000_SUCCESS; | ||
1779 | } | 1820 | } |
1780 | 1821 | ||
1781 | /****************************************************************************** | 1822 | /** |
1782 | * Sets the collision distance in the Transmit Control register | 1823 | * e1000_config_collision_dist - set collision distance register |
1783 | * | 1824 | * @hw: Struct containing variables accessed by shared code |
1784 | * hw - Struct containing variables accessed by shared code | 1825 | * |
1785 | * | 1826 | * Sets the collision distance in the Transmit Control register. |
1786 | * Link should have been established previously. Reads the speed and duplex | 1827 | * Link should have been established previously. Reads the speed and duplex |
1787 | * information from the Device Status register. | 1828 | * information from the Device Status register. |
1788 | ******************************************************************************/ | 1829 | */ |
1789 | void e1000_config_collision_dist(struct e1000_hw *hw) | 1830 | void e1000_config_collision_dist(struct e1000_hw *hw) |
1790 | { | 1831 | { |
1791 | u32 tctl, coll_dist; | 1832 | u32 tctl, coll_dist; |
1792 | 1833 | ||
1793 | DEBUGFUNC("e1000_config_collision_dist"); | 1834 | DEBUGFUNC("e1000_config_collision_dist"); |
1794 | 1835 | ||
1795 | if (hw->mac_type < e1000_82543) | 1836 | if (hw->mac_type < e1000_82543) |
1796 | coll_dist = E1000_COLLISION_DISTANCE_82542; | 1837 | coll_dist = E1000_COLLISION_DISTANCE_82542; |
1797 | else | 1838 | else |
1798 | coll_dist = E1000_COLLISION_DISTANCE; | 1839 | coll_dist = E1000_COLLISION_DISTANCE; |
1799 | 1840 | ||
1800 | tctl = er32(TCTL); | 1841 | tctl = er32(TCTL); |
1801 | 1842 | ||
1802 | tctl &= ~E1000_TCTL_COLD; | 1843 | tctl &= ~E1000_TCTL_COLD; |
1803 | tctl |= coll_dist << E1000_COLD_SHIFT; | 1844 | tctl |= coll_dist << E1000_COLD_SHIFT; |
1804 | 1845 | ||
1805 | ew32(TCTL, tctl); | 1846 | ew32(TCTL, tctl); |
1806 | E1000_WRITE_FLUSH(); | 1847 | E1000_WRITE_FLUSH(); |
1807 | } | 1848 | } |
1808 | 1849 | ||
1809 | /****************************************************************************** | 1850 | /** |
1810 | * Sets MAC speed and duplex settings to reflect the those in the PHY | 1851 | * e1000_config_mac_to_phy - sync phy and mac settings |
1811 | * | 1852 | * @hw: Struct containing variables accessed by shared code |
1812 | * hw - Struct containing variables accessed by shared code | 1853 | * @mii_reg: data to write to the MII control register |
1813 | * mii_reg - data to write to the MII control register | 1854 | * |
1814 | * | 1855 | * Sets MAC speed and duplex settings to reflect the those in the PHY |
1815 | * The contents of the PHY register containing the needed information need to | 1856 | * The contents of the PHY register containing the needed information need to |
1816 | * be passed in. | 1857 | * be passed in. |
1817 | ******************************************************************************/ | 1858 | */ |
1818 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) | 1859 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) |
1819 | { | 1860 | { |
1820 | u32 ctrl; | 1861 | u32 ctrl; |
1821 | s32 ret_val; | 1862 | s32 ret_val; |
1822 | u16 phy_data; | 1863 | u16 phy_data; |
1823 | 1864 | ||
1824 | DEBUGFUNC("e1000_config_mac_to_phy"); | 1865 | DEBUGFUNC("e1000_config_mac_to_phy"); |
1825 | 1866 | ||
1826 | /* 82544 or newer MAC, Auto Speed Detection takes care of | 1867 | /* 82544 or newer MAC, Auto Speed Detection takes care of |
1827 | * MAC speed/duplex configuration.*/ | 1868 | * MAC speed/duplex configuration.*/ |
1828 | if (hw->mac_type >= e1000_82544) | 1869 | if (hw->mac_type >= e1000_82544) |
1829 | return E1000_SUCCESS; | 1870 | return E1000_SUCCESS; |
1830 | 1871 | ||
1831 | /* Read the Device Control Register and set the bits to Force Speed | 1872 | /* Read the Device Control Register and set the bits to Force Speed |
1832 | * and Duplex. | 1873 | * and Duplex. |
1833 | */ | 1874 | */ |
1834 | ctrl = er32(CTRL); | 1875 | ctrl = er32(CTRL); |
1835 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 1876 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
1836 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | 1877 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
1837 | 1878 | ||
1838 | /* Set up duplex in the Device Control and Transmit Control | 1879 | /* Set up duplex in the Device Control and Transmit Control |
1839 | * registers depending on negotiated values. | 1880 | * registers depending on negotiated values. |
1840 | */ | 1881 | */ |
1841 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 1882 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
1842 | if (ret_val) | 1883 | if (ret_val) |
1843 | return ret_val; | 1884 | return ret_val; |
1844 | 1885 | ||
1845 | if (phy_data & M88E1000_PSSR_DPLX) | 1886 | if (phy_data & M88E1000_PSSR_DPLX) |
1846 | ctrl |= E1000_CTRL_FD; | 1887 | ctrl |= E1000_CTRL_FD; |
1847 | else | 1888 | else |
1848 | ctrl &= ~E1000_CTRL_FD; | 1889 | ctrl &= ~E1000_CTRL_FD; |
1849 | 1890 | ||
1850 | e1000_config_collision_dist(hw); | 1891 | e1000_config_collision_dist(hw); |
1851 | 1892 | ||
1852 | /* Set up speed in the Device Control register depending on | 1893 | /* Set up speed in the Device Control register depending on |
1853 | * negotiated values. | 1894 | * negotiated values. |
1854 | */ | 1895 | */ |
1855 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | 1896 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
1856 | ctrl |= E1000_CTRL_SPD_1000; | 1897 | ctrl |= E1000_CTRL_SPD_1000; |
1857 | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | 1898 | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
1858 | ctrl |= E1000_CTRL_SPD_100; | 1899 | ctrl |= E1000_CTRL_SPD_100; |
1859 | 1900 | ||
1860 | /* Write the configured values back to the Device Control Reg. */ | 1901 | /* Write the configured values back to the Device Control Reg. */ |
1861 | ew32(CTRL, ctrl); | 1902 | ew32(CTRL, ctrl); |
1862 | return E1000_SUCCESS; | 1903 | return E1000_SUCCESS; |
1863 | } | 1904 | } |
1864 | 1905 | ||
1865 | /****************************************************************************** | 1906 | /** |
1866 | * Forces the MAC's flow control settings. | 1907 | * e1000_force_mac_fc - force flow control settings |
1867 | * | 1908 | * @hw: Struct containing variables accessed by shared code |
1868 | * hw - Struct containing variables accessed by shared code | ||
1869 | * | 1909 | * |
1910 | * Forces the MAC's flow control settings. | ||
1870 | * Sets the TFCE and RFCE bits in the device control register to reflect | 1911 | * Sets the TFCE and RFCE bits in the device control register to reflect |
1871 | * the adapter settings. TFCE and RFCE need to be explicitly set by | 1912 | * the adapter settings. TFCE and RFCE need to be explicitly set by |
1872 | * software when a Copper PHY is used because autonegotiation is managed | 1913 | * software when a Copper PHY is used because autonegotiation is managed |
1873 | * by the PHY rather than the MAC. Software must also configure these | 1914 | * by the PHY rather than the MAC. Software must also configure these |
1874 | * bits when link is forced on a fiber connection. | 1915 | * bits when link is forced on a fiber connection. |
1875 | *****************************************************************************/ | 1916 | */ |
1876 | s32 e1000_force_mac_fc(struct e1000_hw *hw) | 1917 | s32 e1000_force_mac_fc(struct e1000_hw *hw) |
1877 | { | 1918 | { |
1878 | u32 ctrl; | 1919 | u32 ctrl; |
1879 | 1920 | ||
1880 | DEBUGFUNC("e1000_force_mac_fc"); | 1921 | DEBUGFUNC("e1000_force_mac_fc"); |
1881 | 1922 | ||
1882 | /* Get the current configuration of the Device Control Register */ | 1923 | /* Get the current configuration of the Device Control Register */ |
1883 | ctrl = er32(CTRL); | 1924 | ctrl = er32(CTRL); |
1884 | 1925 | ||
1885 | /* Because we didn't get link via the internal auto-negotiation | 1926 | /* Because we didn't get link via the internal auto-negotiation |
1886 | * mechanism (we either forced link or we got link via PHY | 1927 | * mechanism (we either forced link or we got link via PHY |
1887 | * auto-neg), we have to manually enable/disable transmit an | 1928 | * auto-neg), we have to manually enable/disable transmit an |
1888 | * receive flow control. | 1929 | * receive flow control. |
1889 | * | 1930 | * |
1890 | * The "Case" statement below enables/disable flow control | 1931 | * The "Case" statement below enables/disable flow control |
1891 | * according to the "hw->fc" parameter. | 1932 | * according to the "hw->fc" parameter. |
1892 | * | 1933 | * |
1893 | * The possible values of the "fc" parameter are: | 1934 | * The possible values of the "fc" parameter are: |
1894 | * 0: Flow control is completely disabled | 1935 | * 0: Flow control is completely disabled |
1895 | * 1: Rx flow control is enabled (we can receive pause | 1936 | * 1: Rx flow control is enabled (we can receive pause |
1896 | * frames but not send pause frames). | 1937 | * frames but not send pause frames). |
1897 | * 2: Tx flow control is enabled (we can send pause frames | 1938 | * 2: Tx flow control is enabled (we can send pause frames |
1898 | * frames but we do not receive pause frames). | 1939 | * frames but we do not receive pause frames). |
1899 | * 3: Both Rx and TX flow control (symmetric) is enabled. | 1940 | * 3: Both Rx and TX flow control (symmetric) is enabled. |
1900 | * other: No other values should be possible at this point. | 1941 | * other: No other values should be possible at this point. |
1901 | */ | 1942 | */ |
1902 | 1943 | ||
1903 | switch (hw->fc) { | 1944 | switch (hw->fc) { |
1904 | case E1000_FC_NONE: | 1945 | case E1000_FC_NONE: |
1905 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 1946 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
1906 | break; | 1947 | break; |
1907 | case E1000_FC_RX_PAUSE: | 1948 | case E1000_FC_RX_PAUSE: |
1908 | ctrl &= (~E1000_CTRL_TFCE); | 1949 | ctrl &= (~E1000_CTRL_TFCE); |
1909 | ctrl |= E1000_CTRL_RFCE; | 1950 | ctrl |= E1000_CTRL_RFCE; |
1910 | break; | 1951 | break; |
1911 | case E1000_FC_TX_PAUSE: | 1952 | case E1000_FC_TX_PAUSE: |
1912 | ctrl &= (~E1000_CTRL_RFCE); | 1953 | ctrl &= (~E1000_CTRL_RFCE); |
1913 | ctrl |= E1000_CTRL_TFCE; | 1954 | ctrl |= E1000_CTRL_TFCE; |
1914 | break; | 1955 | break; |
1915 | case E1000_FC_FULL: | 1956 | case E1000_FC_FULL: |
1916 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 1957 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
1917 | break; | 1958 | break; |
1918 | default: | 1959 | default: |
1919 | DEBUGOUT("Flow control param set incorrectly\n"); | 1960 | DEBUGOUT("Flow control param set incorrectly\n"); |
1920 | return -E1000_ERR_CONFIG; | 1961 | return -E1000_ERR_CONFIG; |
1921 | } | 1962 | } |
1922 | 1963 | ||
1923 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | 1964 | /* Disable TX Flow Control for 82542 (rev 2.0) */ |
1924 | if (hw->mac_type == e1000_82542_rev2_0) | 1965 | if (hw->mac_type == e1000_82542_rev2_0) |
1925 | ctrl &= (~E1000_CTRL_TFCE); | 1966 | ctrl &= (~E1000_CTRL_TFCE); |
1926 | 1967 | ||
1927 | ew32(CTRL, ctrl); | 1968 | ew32(CTRL, ctrl); |
1928 | return E1000_SUCCESS; | 1969 | return E1000_SUCCESS; |
1929 | } | 1970 | } |
1930 | 1971 | ||
1931 | /****************************************************************************** | 1972 | /** |
1932 | * Configures flow control settings after link is established | 1973 | * e1000_config_fc_after_link_up - configure flow control after autoneg |
1933 | * | 1974 | * @hw: Struct containing variables accessed by shared code |
1934 | * hw - Struct containing variables accessed by shared code | ||
1935 | * | 1975 | * |
1976 | * Configures flow control settings after link is established | ||
1936 | * Should be called immediately after a valid link has been established. | 1977 | * Should be called immediately after a valid link has been established. |
1937 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | 1978 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
1938 | * and autonegotiation is enabled, the MAC flow control settings will be set | 1979 | * and autonegotiation is enabled, the MAC flow control settings will be set |
1939 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | 1980 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
1940 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. | 1981 | * and RFCE bits will be automatically set to the negotiated flow control mode. |
1941 | *****************************************************************************/ | 1982 | */ |
1942 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) | 1983 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) |
1943 | { | 1984 | { |
1944 | s32 ret_val; | 1985 | s32 ret_val; |
1945 | u16 mii_status_reg; | 1986 | u16 mii_status_reg; |
1946 | u16 mii_nway_adv_reg; | 1987 | u16 mii_nway_adv_reg; |
1947 | u16 mii_nway_lp_ability_reg; | 1988 | u16 mii_nway_lp_ability_reg; |
1948 | u16 speed; | 1989 | u16 speed; |
1949 | u16 duplex; | 1990 | u16 duplex; |
1950 | 1991 | ||
1951 | DEBUGFUNC("e1000_config_fc_after_link_up"); | 1992 | DEBUGFUNC("e1000_config_fc_after_link_up"); |
1952 | 1993 | ||
1953 | /* Check for the case where we have fiber media and auto-neg failed | 1994 | /* Check for the case where we have fiber media and auto-neg failed |
1954 | * so we had to force link. In this case, we need to force the | 1995 | * so we had to force link. In this case, we need to force the |
1955 | * configuration of the MAC to match the "fc" parameter. | 1996 | * configuration of the MAC to match the "fc" parameter. |
1956 | */ | 1997 | */ |
1957 | if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || | 1998 | if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) |
1958 | ((hw->media_type == e1000_media_type_internal_serdes) && | 1999 | || ((hw->media_type == e1000_media_type_internal_serdes) |
1959 | (hw->autoneg_failed)) || | 2000 | && (hw->autoneg_failed)) |
1960 | ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { | 2001 | || ((hw->media_type == e1000_media_type_copper) |
1961 | ret_val = e1000_force_mac_fc(hw); | 2002 | && (!hw->autoneg))) { |
1962 | if (ret_val) { | 2003 | ret_val = e1000_force_mac_fc(hw); |
1963 | DEBUGOUT("Error forcing flow control settings\n"); | 2004 | if (ret_val) { |
1964 | return ret_val; | 2005 | DEBUGOUT("Error forcing flow control settings\n"); |
1965 | } | 2006 | return ret_val; |
1966 | } | 2007 | } |
1967 | 2008 | } | |
1968 | /* Check for the case where we have copper media and auto-neg is | 2009 | |
1969 | * enabled. In this case, we need to check and see if Auto-Neg | 2010 | /* Check for the case where we have copper media and auto-neg is |
1970 | * has completed, and if so, how the PHY and link partner has | 2011 | * enabled. In this case, we need to check and see if Auto-Neg |
1971 | * flow control configured. | 2012 | * has completed, and if so, how the PHY and link partner has |
1972 | */ | 2013 | * flow control configured. |
1973 | if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | 2014 | */ |
1974 | /* Read the MII Status Register and check to see if AutoNeg | 2015 | if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { |
1975 | * has completed. We read this twice because this reg has | 2016 | /* Read the MII Status Register and check to see if AutoNeg |
1976 | * some "sticky" (latched) bits. | 2017 | * has completed. We read this twice because this reg has |
1977 | */ | 2018 | * some "sticky" (latched) bits. |
1978 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 2019 | */ |
1979 | if (ret_val) | 2020 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
1980 | return ret_val; | 2021 | if (ret_val) |
1981 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 2022 | return ret_val; |
1982 | if (ret_val) | 2023 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
1983 | return ret_val; | 2024 | if (ret_val) |
1984 | 2025 | return ret_val; | |
1985 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | 2026 | |
1986 | /* The AutoNeg process has completed, so we now need to | 2027 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
1987 | * read both the Auto Negotiation Advertisement Register | 2028 | /* The AutoNeg process has completed, so we now need to |
1988 | * (Address 4) and the Auto_Negotiation Base Page Ability | 2029 | * read both the Auto Negotiation Advertisement Register |
1989 | * Register (Address 5) to determine how flow control was | 2030 | * (Address 4) and the Auto_Negotiation Base Page Ability |
1990 | * negotiated. | 2031 | * Register (Address 5) to determine how flow control was |
1991 | */ | 2032 | * negotiated. |
1992 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | 2033 | */ |
1993 | &mii_nway_adv_reg); | 2034 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, |
1994 | if (ret_val) | 2035 | &mii_nway_adv_reg); |
1995 | return ret_val; | 2036 | if (ret_val) |
1996 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | 2037 | return ret_val; |
1997 | &mii_nway_lp_ability_reg); | 2038 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, |
1998 | if (ret_val) | 2039 | &mii_nway_lp_ability_reg); |
1999 | return ret_val; | 2040 | if (ret_val) |
2000 | 2041 | return ret_val; | |
2001 | /* Two bits in the Auto Negotiation Advertisement Register | 2042 | |
2002 | * (Address 4) and two bits in the Auto Negotiation Base | 2043 | /* Two bits in the Auto Negotiation Advertisement Register |
2003 | * Page Ability Register (Address 5) determine flow control | 2044 | * (Address 4) and two bits in the Auto Negotiation Base |
2004 | * for both the PHY and the link partner. The following | 2045 | * Page Ability Register (Address 5) determine flow control |
2005 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 2046 | * for both the PHY and the link partner. The following |
2006 | * 1999, describes these PAUSE resolution bits and how flow | 2047 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
2007 | * control is determined based upon these settings. | 2048 | * 1999, describes these PAUSE resolution bits and how flow |
2008 | * NOTE: DC = Don't Care | 2049 | * control is determined based upon these settings. |
2009 | * | 2050 | * NOTE: DC = Don't Care |
2010 | * LOCAL DEVICE | LINK PARTNER | 2051 | * |
2011 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 2052 | * LOCAL DEVICE | LINK PARTNER |
2012 | *-------|---------|-------|---------|-------------------- | 2053 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
2013 | * 0 | 0 | DC | DC | E1000_FC_NONE | 2054 | *-------|---------|-------|---------|-------------------- |
2014 | * 0 | 1 | 0 | DC | E1000_FC_NONE | 2055 | * 0 | 0 | DC | DC | E1000_FC_NONE |
2015 | * 0 | 1 | 1 | 0 | E1000_FC_NONE | 2056 | * 0 | 1 | 0 | DC | E1000_FC_NONE |
2016 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE | 2057 | * 0 | 1 | 1 | 0 | E1000_FC_NONE |
2017 | * 1 | 0 | 0 | DC | E1000_FC_NONE | 2058 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
2018 | * 1 | DC | 1 | DC | E1000_FC_FULL | 2059 | * 1 | 0 | 0 | DC | E1000_FC_NONE |
2019 | * 1 | 1 | 0 | 0 | E1000_FC_NONE | 2060 | * 1 | DC | 1 | DC | E1000_FC_FULL |
2020 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE | 2061 | * 1 | 1 | 0 | 0 | E1000_FC_NONE |
2021 | * | 2062 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
2022 | */ | 2063 | * |
2023 | /* Are both PAUSE bits set to 1? If so, this implies | 2064 | */ |
2024 | * Symmetric Flow Control is enabled at both ends. The | 2065 | /* Are both PAUSE bits set to 1? If so, this implies |
2025 | * ASM_DIR bits are irrelevant per the spec. | 2066 | * Symmetric Flow Control is enabled at both ends. The |
2026 | * | 2067 | * ASM_DIR bits are irrelevant per the spec. |
2027 | * For Symmetric Flow Control: | 2068 | * |
2028 | * | 2069 | * For Symmetric Flow Control: |
2029 | * LOCAL DEVICE | LINK PARTNER | 2070 | * |
2030 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 2071 | * LOCAL DEVICE | LINK PARTNER |
2031 | *-------|---------|-------|---------|-------------------- | 2072 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
2032 | * 1 | DC | 1 | DC | E1000_FC_FULL | 2073 | *-------|---------|-------|---------|-------------------- |
2033 | * | 2074 | * 1 | DC | 1 | DC | E1000_FC_FULL |
2034 | */ | 2075 | * |
2035 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 2076 | */ |
2036 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 2077 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
2037 | /* Now we need to check if the user selected RX ONLY | 2078 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
2038 | * of pause frames. In this case, we had to advertise | 2079 | /* Now we need to check if the user selected RX ONLY |
2039 | * FULL flow control because we could not advertise RX | 2080 | * of pause frames. In this case, we had to advertise |
2040 | * ONLY. Hence, we must now check to see if we need to | 2081 | * FULL flow control because we could not advertise RX |
2041 | * turn OFF the TRANSMISSION of PAUSE frames. | 2082 | * ONLY. Hence, we must now check to see if we need to |
2042 | */ | 2083 | * turn OFF the TRANSMISSION of PAUSE frames. |
2043 | if (hw->original_fc == E1000_FC_FULL) { | 2084 | */ |
2044 | hw->fc = E1000_FC_FULL; | 2085 | if (hw->original_fc == E1000_FC_FULL) { |
2045 | DEBUGOUT("Flow Control = FULL.\n"); | 2086 | hw->fc = E1000_FC_FULL; |
2046 | } else { | 2087 | DEBUGOUT("Flow Control = FULL.\n"); |
2047 | hw->fc = E1000_FC_RX_PAUSE; | 2088 | } else { |
2048 | DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); | 2089 | hw->fc = E1000_FC_RX_PAUSE; |
2049 | } | 2090 | DEBUGOUT |
2050 | } | 2091 | ("Flow Control = RX PAUSE frames only.\n"); |
2051 | /* For receiving PAUSE frames ONLY. | 2092 | } |
2052 | * | 2093 | } |
2053 | * LOCAL DEVICE | LINK PARTNER | 2094 | /* For receiving PAUSE frames ONLY. |
2054 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 2095 | * |
2055 | *-------|---------|-------|---------|-------------------- | 2096 | * LOCAL DEVICE | LINK PARTNER |
2056 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE | 2097 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
2057 | * | 2098 | *-------|---------|-------|---------|-------------------- |
2058 | */ | 2099 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
2059 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 2100 | * |
2060 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 2101 | */ |
2061 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 2102 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
2062 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 2103 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
2063 | hw->fc = E1000_FC_TX_PAUSE; | 2104 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
2064 | DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); | 2105 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
2065 | } | 2106 | { |
2066 | /* For transmitting PAUSE frames ONLY. | 2107 | hw->fc = E1000_FC_TX_PAUSE; |
2067 | * | 2108 | DEBUGOUT |
2068 | * LOCAL DEVICE | LINK PARTNER | 2109 | ("Flow Control = TX PAUSE frames only.\n"); |
2069 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 2110 | } |
2070 | *-------|---------|-------|---------|-------------------- | 2111 | /* For transmitting PAUSE frames ONLY. |
2071 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE | 2112 | * |
2072 | * | 2113 | * LOCAL DEVICE | LINK PARTNER |
2073 | */ | 2114 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
2074 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 2115 | *-------|---------|-------|---------|-------------------- |
2075 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 2116 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
2076 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 2117 | * |
2077 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 2118 | */ |
2078 | hw->fc = E1000_FC_RX_PAUSE; | 2119 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
2079 | DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); | 2120 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
2080 | } | 2121 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
2081 | /* Per the IEEE spec, at this point flow control should be | 2122 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
2082 | * disabled. However, we want to consider that we could | 2123 | { |
2083 | * be connected to a legacy switch that doesn't advertise | 2124 | hw->fc = E1000_FC_RX_PAUSE; |
2084 | * desired flow control, but can be forced on the link | 2125 | DEBUGOUT |
2085 | * partner. So if we advertised no flow control, that is | 2126 | ("Flow Control = RX PAUSE frames only.\n"); |
2086 | * what we will resolve to. If we advertised some kind of | 2127 | } |
2087 | * receive capability (Rx Pause Only or Full Flow Control) | 2128 | /* Per the IEEE spec, at this point flow control should be |
2088 | * and the link partner advertised none, we will configure | 2129 | * disabled. However, we want to consider that we could |
2089 | * ourselves to enable Rx Flow Control only. We can do | 2130 | * be connected to a legacy switch that doesn't advertise |
2090 | * this safely for two reasons: If the link partner really | 2131 | * desired flow control, but can be forced on the link |
2091 | * didn't want flow control enabled, and we enable Rx, no | 2132 | * partner. So if we advertised no flow control, that is |
2092 | * harm done since we won't be receiving any PAUSE frames | 2133 | * what we will resolve to. If we advertised some kind of |
2093 | * anyway. If the intent on the link partner was to have | 2134 | * receive capability (Rx Pause Only or Full Flow Control) |
2094 | * flow control enabled, then by us enabling RX only, we | 2135 | * and the link partner advertised none, we will configure |
2095 | * can at least receive pause frames and process them. | 2136 | * ourselves to enable Rx Flow Control only. We can do |
2096 | * This is a good idea because in most cases, since we are | 2137 | * this safely for two reasons: If the link partner really |
2097 | * predominantly a server NIC, more times than not we will | 2138 | * didn't want flow control enabled, and we enable Rx, no |
2098 | * be asked to delay transmission of packets than asking | 2139 | * harm done since we won't be receiving any PAUSE frames |
2099 | * our link partner to pause transmission of frames. | 2140 | * anyway. If the intent on the link partner was to have |
2100 | */ | 2141 | * flow control enabled, then by us enabling RX only, we |
2101 | else if ((hw->original_fc == E1000_FC_NONE || | 2142 | * can at least receive pause frames and process them. |
2102 | hw->original_fc == E1000_FC_TX_PAUSE) || | 2143 | * This is a good idea because in most cases, since we are |
2103 | hw->fc_strict_ieee) { | 2144 | * predominantly a server NIC, more times than not we will |
2104 | hw->fc = E1000_FC_NONE; | 2145 | * be asked to delay transmission of packets than asking |
2105 | DEBUGOUT("Flow Control = NONE.\n"); | 2146 | * our link partner to pause transmission of frames. |
2106 | } else { | 2147 | */ |
2107 | hw->fc = E1000_FC_RX_PAUSE; | 2148 | else if ((hw->original_fc == E1000_FC_NONE || |
2108 | DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); | 2149 | hw->original_fc == E1000_FC_TX_PAUSE) || |
2109 | } | 2150 | hw->fc_strict_ieee) { |
2110 | 2151 | hw->fc = E1000_FC_NONE; | |
2111 | /* Now we need to do one last check... If we auto- | 2152 | DEBUGOUT("Flow Control = NONE.\n"); |
2112 | * negotiated to HALF DUPLEX, flow control should not be | 2153 | } else { |
2113 | * enabled per IEEE 802.3 spec. | 2154 | hw->fc = E1000_FC_RX_PAUSE; |
2114 | */ | 2155 | DEBUGOUT |
2115 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 2156 | ("Flow Control = RX PAUSE frames only.\n"); |
2116 | if (ret_val) { | 2157 | } |
2117 | DEBUGOUT("Error getting link speed and duplex\n"); | 2158 | |
2118 | return ret_val; | 2159 | /* Now we need to do one last check... If we auto- |
2119 | } | 2160 | * negotiated to HALF DUPLEX, flow control should not be |
2120 | 2161 | * enabled per IEEE 802.3 spec. | |
2121 | if (duplex == HALF_DUPLEX) | 2162 | */ |
2122 | hw->fc = E1000_FC_NONE; | 2163 | ret_val = |
2123 | 2164 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | |
2124 | /* Now we call a subroutine to actually force the MAC | 2165 | if (ret_val) { |
2125 | * controller to use the correct flow control settings. | 2166 | DEBUGOUT |
2126 | */ | 2167 | ("Error getting link speed and duplex\n"); |
2127 | ret_val = e1000_force_mac_fc(hw); | 2168 | return ret_val; |
2128 | if (ret_val) { | 2169 | } |
2129 | DEBUGOUT("Error forcing flow control settings\n"); | 2170 | |
2130 | return ret_val; | 2171 | if (duplex == HALF_DUPLEX) |
2131 | } | 2172 | hw->fc = E1000_FC_NONE; |
2132 | } else { | 2173 | |
2133 | DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); | 2174 | /* Now we call a subroutine to actually force the MAC |
2134 | } | 2175 | * controller to use the correct flow control settings. |
2135 | } | 2176 | */ |
2136 | return E1000_SUCCESS; | 2177 | ret_val = e1000_force_mac_fc(hw); |
2178 | if (ret_val) { | ||
2179 | DEBUGOUT | ||
2180 | ("Error forcing flow control settings\n"); | ||
2181 | return ret_val; | ||
2182 | } | ||
2183 | } else { | ||
2184 | DEBUGOUT | ||
2185 | ("Copper PHY and Auto Neg has not completed.\n"); | ||
2186 | } | ||
2187 | } | ||
2188 | return E1000_SUCCESS; | ||
2137 | } | 2189 | } |
2138 | 2190 | ||
2139 | /** | 2191 | /** |
2140 | * e1000_check_for_serdes_link_generic - Check for link (Serdes) | 2192 | * e1000_check_for_serdes_link_generic - Check for link (Serdes) |
2141 | * @hw: pointer to the HW structure | 2193 | * @hw: pointer to the HW structure |
2142 | * | 2194 | * |
2143 | * Checks for link up on the hardware. If link is not up and we have | 2195 | * Checks for link up on the hardware. If link is not up and we have |
2144 | * a signal, then we need to force link up. | 2196 | * a signal, then we need to force link up. |
2145 | **/ | 2197 | */ |
2146 | s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) | 2198 | s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) |
2147 | { | 2199 | { |
2148 | u32 rxcw; | 2200 | u32 rxcw; |
@@ -2227,11 +2279,11 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) | |||
2227 | if (!(rxcw & E1000_RXCW_IV)) { | 2279 | if (!(rxcw & E1000_RXCW_IV)) { |
2228 | hw->serdes_has_link = true; | 2280 | hw->serdes_has_link = true; |
2229 | DEBUGOUT("SERDES: Link up - autoneg " | 2281 | DEBUGOUT("SERDES: Link up - autoneg " |
2230 | "completed sucessfully.\n"); | 2282 | "completed successfully.\n"); |
2231 | } else { | 2283 | } else { |
2232 | hw->serdes_has_link = false; | 2284 | hw->serdes_has_link = false; |
2233 | DEBUGOUT("SERDES: Link down - invalid" | 2285 | DEBUGOUT("SERDES: Link down - invalid" |
2234 | "codewords detected in autoneg.\n"); | 2286 | "codewords detected in autoneg.\n"); |
2235 | } | 2287 | } |
2236 | } else { | 2288 | } else { |
2237 | hw->serdes_has_link = false; | 2289 | hw->serdes_has_link = false; |
@@ -2243,2631 +2295,2660 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) | |||
2243 | } | 2295 | } |
2244 | } | 2296 | } |
2245 | 2297 | ||
2246 | out: | 2298 | out: |
2247 | return ret_val; | 2299 | return ret_val; |
2248 | } | 2300 | } |
2249 | /****************************************************************************** | 2301 | |
2250 | * Checks to see if the link status of the hardware has changed. | 2302 | /** |
2251 | * | 2303 | * e1000_check_for_link |
2252 | * hw - Struct containing variables accessed by shared code | 2304 | * @hw: Struct containing variables accessed by shared code |
2253 | * | 2305 | * |
2306 | * Checks to see if the link status of the hardware has changed. | ||
2254 | * Called by any function that needs to check the link status of the adapter. | 2307 | * Called by any function that needs to check the link status of the adapter. |
2255 | *****************************************************************************/ | 2308 | */ |
2256 | s32 e1000_check_for_link(struct e1000_hw *hw) | 2309 | s32 e1000_check_for_link(struct e1000_hw *hw) |
2257 | { | 2310 | { |
2258 | u32 rxcw = 0; | 2311 | u32 rxcw = 0; |
2259 | u32 ctrl; | 2312 | u32 ctrl; |
2260 | u32 status; | 2313 | u32 status; |
2261 | u32 rctl; | 2314 | u32 rctl; |
2262 | u32 icr; | 2315 | u32 icr; |
2263 | u32 signal = 0; | 2316 | u32 signal = 0; |
2264 | s32 ret_val; | 2317 | s32 ret_val; |
2265 | u16 phy_data; | 2318 | u16 phy_data; |
2266 | 2319 | ||
2267 | DEBUGFUNC("e1000_check_for_link"); | 2320 | DEBUGFUNC("e1000_check_for_link"); |
2268 | 2321 | ||
2269 | ctrl = er32(CTRL); | 2322 | ctrl = er32(CTRL); |
2270 | status = er32(STATUS); | 2323 | status = er32(STATUS); |
2271 | 2324 | ||
2272 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | 2325 | /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be |
2273 | * set when the optics detect a signal. On older adapters, it will be | 2326 | * set when the optics detect a signal. On older adapters, it will be |
2274 | * cleared when there is a signal. This applies to fiber media only. | 2327 | * cleared when there is a signal. This applies to fiber media only. |
2275 | */ | 2328 | */ |
2276 | if ((hw->media_type == e1000_media_type_fiber) || | 2329 | if ((hw->media_type == e1000_media_type_fiber) || |
2277 | (hw->media_type == e1000_media_type_internal_serdes)) { | 2330 | (hw->media_type == e1000_media_type_internal_serdes)) { |
2278 | rxcw = er32(RXCW); | 2331 | rxcw = er32(RXCW); |
2279 | 2332 | ||
2280 | if (hw->media_type == e1000_media_type_fiber) { | 2333 | if (hw->media_type == e1000_media_type_fiber) { |
2281 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 2334 | signal = |
2282 | if (status & E1000_STATUS_LU) | 2335 | (hw->mac_type > |
2283 | hw->get_link_status = false; | 2336 | e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
2284 | } | 2337 | if (status & E1000_STATUS_LU) |
2285 | } | 2338 | hw->get_link_status = false; |
2286 | 2339 | } | |
2287 | /* If we have a copper PHY then we only want to go out to the PHY | 2340 | } |
2288 | * registers to see if Auto-Neg has completed and/or if our link | 2341 | |
2289 | * status has changed. The get_link_status flag will be set if we | 2342 | /* If we have a copper PHY then we only want to go out to the PHY |
2290 | * receive a Link Status Change interrupt or we have Rx Sequence | 2343 | * registers to see if Auto-Neg has completed and/or if our link |
2291 | * Errors. | 2344 | * status has changed. The get_link_status flag will be set if we |
2292 | */ | 2345 | * receive a Link Status Change interrupt or we have Rx Sequence |
2293 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | 2346 | * Errors. |
2294 | /* First we want to see if the MII Status Register reports | 2347 | */ |
2295 | * link. If so, then we want to get the current speed/duplex | 2348 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
2296 | * of the PHY. | 2349 | /* First we want to see if the MII Status Register reports |
2297 | * Read the register twice since the link bit is sticky. | 2350 | * link. If so, then we want to get the current speed/duplex |
2298 | */ | 2351 | * of the PHY. |
2299 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 2352 | * Read the register twice since the link bit is sticky. |
2300 | if (ret_val) | 2353 | */ |
2301 | return ret_val; | 2354 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
2302 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 2355 | if (ret_val) |
2303 | if (ret_val) | 2356 | return ret_val; |
2304 | return ret_val; | 2357 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
2305 | 2358 | if (ret_val) | |
2306 | if (phy_data & MII_SR_LINK_STATUS) { | 2359 | return ret_val; |
2307 | hw->get_link_status = false; | 2360 | |
2308 | /* Check if there was DownShift, must be checked immediately after | 2361 | if (phy_data & MII_SR_LINK_STATUS) { |
2309 | * link-up */ | 2362 | hw->get_link_status = false; |
2310 | e1000_check_downshift(hw); | 2363 | /* Check if there was DownShift, must be checked immediately after |
2311 | 2364 | * link-up */ | |
2312 | /* If we are on 82544 or 82543 silicon and speed/duplex | 2365 | e1000_check_downshift(hw); |
2313 | * are forced to 10H or 10F, then we will implement the polarity | 2366 | |
2314 | * reversal workaround. We disable interrupts first, and upon | 2367 | /* If we are on 82544 or 82543 silicon and speed/duplex |
2315 | * returning, place the devices interrupt state to its previous | 2368 | * are forced to 10H or 10F, then we will implement the polarity |
2316 | * value except for the link status change interrupt which will | 2369 | * reversal workaround. We disable interrupts first, and upon |
2317 | * happen due to the execution of this workaround. | 2370 | * returning, place the devices interrupt state to its previous |
2318 | */ | 2371 | * value except for the link status change interrupt which will |
2319 | 2372 | * happen due to the execution of this workaround. | |
2320 | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 2373 | */ |
2321 | (!hw->autoneg) && | 2374 | |
2322 | (hw->forced_speed_duplex == e1000_10_full || | 2375 | if ((hw->mac_type == e1000_82544 |
2323 | hw->forced_speed_duplex == e1000_10_half)) { | 2376 | || hw->mac_type == e1000_82543) && (!hw->autoneg) |
2324 | ew32(IMC, 0xffffffff); | 2377 | && (hw->forced_speed_duplex == e1000_10_full |
2325 | ret_val = e1000_polarity_reversal_workaround(hw); | 2378 | || hw->forced_speed_duplex == e1000_10_half)) { |
2326 | icr = er32(ICR); | 2379 | ew32(IMC, 0xffffffff); |
2327 | ew32(ICS, (icr & ~E1000_ICS_LSC)); | 2380 | ret_val = |
2328 | ew32(IMS, IMS_ENABLE_MASK); | 2381 | e1000_polarity_reversal_workaround(hw); |
2329 | } | 2382 | icr = er32(ICR); |
2330 | 2383 | ew32(ICS, (icr & ~E1000_ICS_LSC)); | |
2331 | } else { | 2384 | ew32(IMS, IMS_ENABLE_MASK); |
2332 | /* No link detected */ | 2385 | } |
2333 | e1000_config_dsp_after_link_change(hw, false); | 2386 | |
2334 | return 0; | 2387 | } else { |
2335 | } | 2388 | /* No link detected */ |
2336 | 2389 | e1000_config_dsp_after_link_change(hw, false); | |
2337 | /* If we are forcing speed/duplex, then we simply return since | 2390 | return 0; |
2338 | * we have already determined whether we have link or not. | 2391 | } |
2339 | */ | 2392 | |
2340 | if (!hw->autoneg) return -E1000_ERR_CONFIG; | 2393 | /* If we are forcing speed/duplex, then we simply return since |
2341 | 2394 | * we have already determined whether we have link or not. | |
2342 | /* optimize the dsp settings for the igp phy */ | 2395 | */ |
2343 | e1000_config_dsp_after_link_change(hw, true); | 2396 | if (!hw->autoneg) |
2344 | 2397 | return -E1000_ERR_CONFIG; | |
2345 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we | 2398 | |
2346 | * have Si on board that is 82544 or newer, Auto | 2399 | /* optimize the dsp settings for the igp phy */ |
2347 | * Speed Detection takes care of MAC speed/duplex | 2400 | e1000_config_dsp_after_link_change(hw, true); |
2348 | * configuration. So we only need to configure Collision | 2401 | |
2349 | * Distance in the MAC. Otherwise, we need to force | 2402 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
2350 | * speed/duplex on the MAC to the current PHY speed/duplex | 2403 | * have Si on board that is 82544 or newer, Auto |
2351 | * settings. | 2404 | * Speed Detection takes care of MAC speed/duplex |
2352 | */ | 2405 | * configuration. So we only need to configure Collision |
2353 | if (hw->mac_type >= e1000_82544) | 2406 | * Distance in the MAC. Otherwise, we need to force |
2354 | e1000_config_collision_dist(hw); | 2407 | * speed/duplex on the MAC to the current PHY speed/duplex |
2355 | else { | 2408 | * settings. |
2356 | ret_val = e1000_config_mac_to_phy(hw); | 2409 | */ |
2357 | if (ret_val) { | 2410 | if (hw->mac_type >= e1000_82544) |
2358 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | 2411 | e1000_config_collision_dist(hw); |
2359 | return ret_val; | 2412 | else { |
2360 | } | 2413 | ret_val = e1000_config_mac_to_phy(hw); |
2361 | } | 2414 | if (ret_val) { |
2362 | 2415 | DEBUGOUT | |
2363 | /* Configure Flow Control now that Auto-Neg has completed. First, we | 2416 | ("Error configuring MAC to PHY settings\n"); |
2364 | * need to restore the desired flow control settings because we may | 2417 | return ret_val; |
2365 | * have had to re-autoneg with a different link partner. | 2418 | } |
2366 | */ | 2419 | } |
2367 | ret_val = e1000_config_fc_after_link_up(hw); | 2420 | |
2368 | if (ret_val) { | 2421 | /* Configure Flow Control now that Auto-Neg has completed. First, we |
2369 | DEBUGOUT("Error configuring flow control\n"); | 2422 | * need to restore the desired flow control settings because we may |
2370 | return ret_val; | 2423 | * have had to re-autoneg with a different link partner. |
2371 | } | 2424 | */ |
2372 | 2425 | ret_val = e1000_config_fc_after_link_up(hw); | |
2373 | /* At this point we know that we are on copper and we have | 2426 | if (ret_val) { |
2374 | * auto-negotiated link. These are conditions for checking the link | 2427 | DEBUGOUT("Error configuring flow control\n"); |
2375 | * partner capability register. We use the link speed to determine if | 2428 | return ret_val; |
2376 | * TBI compatibility needs to be turned on or off. If the link is not | 2429 | } |
2377 | * at gigabit speed, then TBI compatibility is not needed. If we are | 2430 | |
2378 | * at gigabit speed, we turn on TBI compatibility. | 2431 | /* At this point we know that we are on copper and we have |
2379 | */ | 2432 | * auto-negotiated link. These are conditions for checking the link |
2380 | if (hw->tbi_compatibility_en) { | 2433 | * partner capability register. We use the link speed to determine if |
2381 | u16 speed, duplex; | 2434 | * TBI compatibility needs to be turned on or off. If the link is not |
2382 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 2435 | * at gigabit speed, then TBI compatibility is not needed. If we are |
2383 | if (ret_val) { | 2436 | * at gigabit speed, we turn on TBI compatibility. |
2384 | DEBUGOUT("Error getting link speed and duplex\n"); | 2437 | */ |
2385 | return ret_val; | 2438 | if (hw->tbi_compatibility_en) { |
2386 | } | 2439 | u16 speed, duplex; |
2387 | if (speed != SPEED_1000) { | 2440 | ret_val = |
2388 | /* If link speed is not set to gigabit speed, we do not need | 2441 | e1000_get_speed_and_duplex(hw, &speed, &duplex); |
2389 | * to enable TBI compatibility. | 2442 | if (ret_val) { |
2390 | */ | 2443 | DEBUGOUT |
2391 | if (hw->tbi_compatibility_on) { | 2444 | ("Error getting link speed and duplex\n"); |
2392 | /* If we previously were in the mode, turn it off. */ | 2445 | return ret_val; |
2393 | rctl = er32(RCTL); | 2446 | } |
2394 | rctl &= ~E1000_RCTL_SBP; | 2447 | if (speed != SPEED_1000) { |
2395 | ew32(RCTL, rctl); | 2448 | /* If link speed is not set to gigabit speed, we do not need |
2396 | hw->tbi_compatibility_on = false; | 2449 | * to enable TBI compatibility. |
2397 | } | 2450 | */ |
2398 | } else { | 2451 | if (hw->tbi_compatibility_on) { |
2399 | /* If TBI compatibility is was previously off, turn it on. For | 2452 | /* If we previously were in the mode, turn it off. */ |
2400 | * compatibility with a TBI link partner, we will store bad | 2453 | rctl = er32(RCTL); |
2401 | * packets. Some frames have an additional byte on the end and | 2454 | rctl &= ~E1000_RCTL_SBP; |
2402 | * will look like CRC errors to the hardware. | 2455 | ew32(RCTL, rctl); |
2403 | */ | 2456 | hw->tbi_compatibility_on = false; |
2404 | if (!hw->tbi_compatibility_on) { | 2457 | } |
2405 | hw->tbi_compatibility_on = true; | 2458 | } else { |
2406 | rctl = er32(RCTL); | 2459 | /* If TBI compatibility is was previously off, turn it on. For |
2407 | rctl |= E1000_RCTL_SBP; | 2460 | * compatibility with a TBI link partner, we will store bad |
2408 | ew32(RCTL, rctl); | 2461 | * packets. Some frames have an additional byte on the end and |
2409 | } | 2462 | * will look like CRC errors to to the hardware. |
2410 | } | 2463 | */ |
2411 | } | 2464 | if (!hw->tbi_compatibility_on) { |
2412 | } | 2465 | hw->tbi_compatibility_on = true; |
2413 | 2466 | rctl = er32(RCTL); | |
2414 | if ((hw->media_type == e1000_media_type_fiber) || | 2467 | rctl |= E1000_RCTL_SBP; |
2415 | (hw->media_type == e1000_media_type_internal_serdes)) | 2468 | ew32(RCTL, rctl); |
2416 | e1000_check_for_serdes_link_generic(hw); | 2469 | } |
2417 | 2470 | } | |
2418 | return E1000_SUCCESS; | 2471 | } |
2472 | } | ||
2473 | |||
2474 | if ((hw->media_type == e1000_media_type_fiber) || | ||
2475 | (hw->media_type == e1000_media_type_internal_serdes)) | ||
2476 | e1000_check_for_serdes_link_generic(hw); | ||
2477 | |||
2478 | return E1000_SUCCESS; | ||
2419 | } | 2479 | } |
2420 | 2480 | ||
2421 | /****************************************************************************** | 2481 | /** |
2482 | * e1000_get_speed_and_duplex | ||
2483 | * @hw: Struct containing variables accessed by shared code | ||
2484 | * @speed: Speed of the connection | ||
2485 | * @duplex: Duplex setting of the connection | ||
2486 | |||
2422 | * Detects the current speed and duplex settings of the hardware. | 2487 | * Detects the current speed and duplex settings of the hardware. |
2423 | * | 2488 | */ |
2424 | * hw - Struct containing variables accessed by shared code | ||
2425 | * speed - Speed of the connection | ||
2426 | * duplex - Duplex setting of the connection | ||
2427 | *****************************************************************************/ | ||
2428 | s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) | 2489 | s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
2429 | { | 2490 | { |
2430 | u32 status; | 2491 | u32 status; |
2431 | s32 ret_val; | 2492 | s32 ret_val; |
2432 | u16 phy_data; | 2493 | u16 phy_data; |
2433 | 2494 | ||
2434 | DEBUGFUNC("e1000_get_speed_and_duplex"); | 2495 | DEBUGFUNC("e1000_get_speed_and_duplex"); |
2435 | 2496 | ||
2436 | if (hw->mac_type >= e1000_82543) { | 2497 | if (hw->mac_type >= e1000_82543) { |
2437 | status = er32(STATUS); | 2498 | status = er32(STATUS); |
2438 | if (status & E1000_STATUS_SPEED_1000) { | 2499 | if (status & E1000_STATUS_SPEED_1000) { |
2439 | *speed = SPEED_1000; | 2500 | *speed = SPEED_1000; |
2440 | DEBUGOUT("1000 Mbs, "); | 2501 | DEBUGOUT("1000 Mbs, "); |
2441 | } else if (status & E1000_STATUS_SPEED_100) { | 2502 | } else if (status & E1000_STATUS_SPEED_100) { |
2442 | *speed = SPEED_100; | 2503 | *speed = SPEED_100; |
2443 | DEBUGOUT("100 Mbs, "); | 2504 | DEBUGOUT("100 Mbs, "); |
2444 | } else { | 2505 | } else { |
2445 | *speed = SPEED_10; | 2506 | *speed = SPEED_10; |
2446 | DEBUGOUT("10 Mbs, "); | 2507 | DEBUGOUT("10 Mbs, "); |
2447 | } | 2508 | } |
2448 | 2509 | ||
2449 | if (status & E1000_STATUS_FD) { | 2510 | if (status & E1000_STATUS_FD) { |
2450 | *duplex = FULL_DUPLEX; | 2511 | *duplex = FULL_DUPLEX; |
2451 | DEBUGOUT("Full Duplex\n"); | 2512 | DEBUGOUT("Full Duplex\n"); |
2452 | } else { | 2513 | } else { |
2453 | *duplex = HALF_DUPLEX; | 2514 | *duplex = HALF_DUPLEX; |
2454 | DEBUGOUT(" Half Duplex\n"); | 2515 | DEBUGOUT(" Half Duplex\n"); |
2455 | } | 2516 | } |
2456 | } else { | 2517 | } else { |
2457 | DEBUGOUT("1000 Mbs, Full Duplex\n"); | 2518 | DEBUGOUT("1000 Mbs, Full Duplex\n"); |
2458 | *speed = SPEED_1000; | 2519 | *speed = SPEED_1000; |
2459 | *duplex = FULL_DUPLEX; | 2520 | *duplex = FULL_DUPLEX; |
2460 | } | 2521 | } |
2461 | 2522 | ||
2462 | /* IGP01 PHY may advertise full duplex operation after speed downgrade even | 2523 | /* IGP01 PHY may advertise full duplex operation after speed downgrade even |
2463 | * if it is operating at half duplex. Here we set the duplex settings to | 2524 | * if it is operating at half duplex. Here we set the duplex settings to |
2464 | * match the duplex in the link partner's capabilities. | 2525 | * match the duplex in the link partner's capabilities. |
2465 | */ | 2526 | */ |
2466 | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | 2527 | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
2467 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | 2528 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
2468 | if (ret_val) | 2529 | if (ret_val) |
2469 | return ret_val; | 2530 | return ret_val; |
2470 | 2531 | ||
2471 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | 2532 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
2472 | *duplex = HALF_DUPLEX; | 2533 | *duplex = HALF_DUPLEX; |
2473 | else { | 2534 | else { |
2474 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); | 2535 | ret_val = |
2475 | if (ret_val) | 2536 | e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); |
2476 | return ret_val; | 2537 | if (ret_val) |
2477 | if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || | 2538 | return ret_val; |
2478 | (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | 2539 | if ((*speed == SPEED_100 |
2479 | *duplex = HALF_DUPLEX; | 2540 | && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) |
2480 | } | 2541 | || (*speed == SPEED_10 |
2481 | } | 2542 | && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
2482 | 2543 | *duplex = HALF_DUPLEX; | |
2483 | return E1000_SUCCESS; | 2544 | } |
2545 | } | ||
2546 | |||
2547 | return E1000_SUCCESS; | ||
2484 | } | 2548 | } |
2485 | 2549 | ||
2486 | /****************************************************************************** | 2550 | /** |
2487 | * Blocks until autoneg completes or times out (~4.5 seconds) | 2551 | * e1000_wait_autoneg |
2488 | * | 2552 | * @hw: Struct containing variables accessed by shared code |
2489 | * hw - Struct containing variables accessed by shared code | 2553 | * |
2490 | ******************************************************************************/ | 2554 | * Blocks until autoneg completes or times out (~4.5 seconds) |
2555 | */ | ||
2491 | static s32 e1000_wait_autoneg(struct e1000_hw *hw) | 2556 | static s32 e1000_wait_autoneg(struct e1000_hw *hw) |
2492 | { | 2557 | { |
2493 | s32 ret_val; | 2558 | s32 ret_val; |
2494 | u16 i; | 2559 | u16 i; |
2495 | u16 phy_data; | 2560 | u16 phy_data; |
2496 | 2561 | ||
2497 | DEBUGFUNC("e1000_wait_autoneg"); | 2562 | DEBUGFUNC("e1000_wait_autoneg"); |
2498 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | 2563 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
2499 | 2564 | ||
2500 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 2565 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
2501 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { | 2566 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
2502 | /* Read the MII Status Register and wait for Auto-Neg | 2567 | /* Read the MII Status Register and wait for Auto-Neg |
2503 | * Complete bit to be set. | 2568 | * Complete bit to be set. |
2504 | */ | 2569 | */ |
2505 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 2570 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
2506 | if (ret_val) | 2571 | if (ret_val) |
2507 | return ret_val; | 2572 | return ret_val; |
2508 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 2573 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
2509 | if (ret_val) | 2574 | if (ret_val) |
2510 | return ret_val; | 2575 | return ret_val; |
2511 | if (phy_data & MII_SR_AUTONEG_COMPLETE) { | 2576 | if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
2512 | return E1000_SUCCESS; | 2577 | return E1000_SUCCESS; |
2513 | } | 2578 | } |
2514 | msleep(100); | 2579 | msleep(100); |
2515 | } | 2580 | } |
2516 | return E1000_SUCCESS; | 2581 | return E1000_SUCCESS; |
2517 | } | 2582 | } |
2518 | 2583 | ||
2519 | /****************************************************************************** | 2584 | /** |
2520 | * Raises the Management Data Clock | 2585 | * e1000_raise_mdi_clk - Raises the Management Data Clock |
2521 | * | 2586 | * @hw: Struct containing variables accessed by shared code |
2522 | * hw - Struct containing variables accessed by shared code | 2587 | * @ctrl: Device control register's current value |
2523 | * ctrl - Device control register's current value | 2588 | */ |
2524 | ******************************************************************************/ | ||
2525 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 2589 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
2526 | { | 2590 | { |
2527 | /* Raise the clock input to the Management Data Clock (by setting the MDC | 2591 | /* Raise the clock input to the Management Data Clock (by setting the MDC |
2528 | * bit), and then delay 10 microseconds. | 2592 | * bit), and then delay 10 microseconds. |
2529 | */ | 2593 | */ |
2530 | ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); | 2594 | ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); |
2531 | E1000_WRITE_FLUSH(); | 2595 | E1000_WRITE_FLUSH(); |
2532 | udelay(10); | 2596 | udelay(10); |
2533 | } | 2597 | } |
2534 | 2598 | ||
2535 | /****************************************************************************** | 2599 | /** |
2536 | * Lowers the Management Data Clock | 2600 | * e1000_lower_mdi_clk - Lowers the Management Data Clock |
2537 | * | 2601 | * @hw: Struct containing variables accessed by shared code |
2538 | * hw - Struct containing variables accessed by shared code | 2602 | * @ctrl: Device control register's current value |
2539 | * ctrl - Device control register's current value | 2603 | */ |
2540 | ******************************************************************************/ | ||
2541 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 2604 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
2542 | { | 2605 | { |
2543 | /* Lower the clock input to the Management Data Clock (by clearing the MDC | 2606 | /* Lower the clock input to the Management Data Clock (by clearing the MDC |
2544 | * bit), and then delay 10 microseconds. | 2607 | * bit), and then delay 10 microseconds. |
2545 | */ | 2608 | */ |
2546 | ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); | 2609 | ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
2547 | E1000_WRITE_FLUSH(); | 2610 | E1000_WRITE_FLUSH(); |
2548 | udelay(10); | 2611 | udelay(10); |
2549 | } | 2612 | } |
2550 | 2613 | ||
2551 | /****************************************************************************** | 2614 | /** |
2552 | * Shifts data bits out to the PHY | 2615 | * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY |
2553 | * | 2616 | * @hw: Struct containing variables accessed by shared code |
2554 | * hw - Struct containing variables accessed by shared code | 2617 | * @data: Data to send out to the PHY |
2555 | * data - Data to send out to the PHY | 2618 | * @count: Number of bits to shift out |
2556 | * count - Number of bits to shift out | 2619 | * |
2557 | * | 2620 | * Bits are shifted out in MSB to LSB order. |
2558 | * Bits are shifted out in MSB to LSB order. | 2621 | */ |
2559 | ******************************************************************************/ | ||
2560 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) | 2622 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) |
2561 | { | 2623 | { |
2562 | u32 ctrl; | 2624 | u32 ctrl; |
2563 | u32 mask; | 2625 | u32 mask; |
2564 | 2626 | ||
2565 | /* We need to shift "count" number of bits out to the PHY. So, the value | 2627 | /* We need to shift "count" number of bits out to the PHY. So, the value |
2566 | * in the "data" parameter will be shifted out to the PHY one bit at a | 2628 | * in the "data" parameter will be shifted out to the PHY one bit at a |
2567 | * time. In order to do this, "data" must be broken down into bits. | 2629 | * time. In order to do this, "data" must be broken down into bits. |
2568 | */ | 2630 | */ |
2569 | mask = 0x01; | 2631 | mask = 0x01; |
2570 | mask <<= (count - 1); | 2632 | mask <<= (count - 1); |
2571 | 2633 | ||
2572 | ctrl = er32(CTRL); | 2634 | ctrl = er32(CTRL); |
2573 | 2635 | ||
2574 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | 2636 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
2575 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | 2637 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
2576 | 2638 | ||
2577 | while (mask) { | 2639 | while (mask) { |
2578 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | 2640 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
2579 | * then raising and lowering the Management Data Clock. A "0" is | 2641 | * then raising and lowering the Management Data Clock. A "0" is |
2580 | * shifted out to the PHY by setting the MDIO bit to "0" and then | 2642 | * shifted out to the PHY by setting the MDIO bit to "0" and then |
2581 | * raising and lowering the clock. | 2643 | * raising and lowering the clock. |
2582 | */ | 2644 | */ |
2583 | if (data & mask) | 2645 | if (data & mask) |
2584 | ctrl |= E1000_CTRL_MDIO; | 2646 | ctrl |= E1000_CTRL_MDIO; |
2585 | else | 2647 | else |
2586 | ctrl &= ~E1000_CTRL_MDIO; | 2648 | ctrl &= ~E1000_CTRL_MDIO; |
2587 | 2649 | ||
2588 | ew32(CTRL, ctrl); | 2650 | ew32(CTRL, ctrl); |
2589 | E1000_WRITE_FLUSH(); | 2651 | E1000_WRITE_FLUSH(); |
2590 | 2652 | ||
2591 | udelay(10); | 2653 | udelay(10); |
2592 | 2654 | ||
2593 | e1000_raise_mdi_clk(hw, &ctrl); | 2655 | e1000_raise_mdi_clk(hw, &ctrl); |
2594 | e1000_lower_mdi_clk(hw, &ctrl); | 2656 | e1000_lower_mdi_clk(hw, &ctrl); |
2595 | 2657 | ||
2596 | mask = mask >> 1; | 2658 | mask = mask >> 1; |
2597 | } | 2659 | } |
2598 | } | 2660 | } |
2599 | 2661 | ||
2600 | /****************************************************************************** | 2662 | /** |
2601 | * Shifts data bits in from the PHY | 2663 | * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY |
2602 | * | 2664 | * @hw: Struct containing variables accessed by shared code |
2603 | * hw - Struct containing variables accessed by shared code | 2665 | * |
2604 | * | 2666 | * Bits are shifted in in MSB to LSB order. |
2605 | * Bits are shifted in in MSB to LSB order. | 2667 | */ |
2606 | ******************************************************************************/ | ||
2607 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) | 2668 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
2608 | { | 2669 | { |
2609 | u32 ctrl; | 2670 | u32 ctrl; |
2610 | u16 data = 0; | 2671 | u16 data = 0; |
2611 | u8 i; | 2672 | u8 i; |
2612 | 2673 | ||
2613 | /* In order to read a register from the PHY, we need to shift in a total | 2674 | /* In order to read a register from the PHY, we need to shift in a total |
2614 | * of 18 bits from the PHY. The first two bit (turnaround) times are used | 2675 | * of 18 bits from the PHY. The first two bit (turnaround) times are used |
2615 | * to avoid contention on the MDIO pin when a read operation is performed. | 2676 | * to avoid contention on the MDIO pin when a read operation is performed. |
2616 | * These two bits are ignored by us and thrown away. Bits are "shifted in" | 2677 | * These two bits are ignored by us and thrown away. Bits are "shifted in" |
2617 | * by raising the input to the Management Data Clock (setting the MDC bit), | 2678 | * by raising the input to the Management Data Clock (setting the MDC bit), |
2618 | * and then reading the value of the MDIO bit. | 2679 | * and then reading the value of the MDIO bit. |
2619 | */ | 2680 | */ |
2620 | ctrl = er32(CTRL); | 2681 | ctrl = er32(CTRL); |
2621 | 2682 | ||
2622 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | 2683 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
2623 | ctrl &= ~E1000_CTRL_MDIO_DIR; | 2684 | ctrl &= ~E1000_CTRL_MDIO_DIR; |
2624 | ctrl &= ~E1000_CTRL_MDIO; | 2685 | ctrl &= ~E1000_CTRL_MDIO; |
2625 | 2686 | ||
2626 | ew32(CTRL, ctrl); | 2687 | ew32(CTRL, ctrl); |
2627 | E1000_WRITE_FLUSH(); | 2688 | E1000_WRITE_FLUSH(); |
2628 | 2689 | ||
2629 | /* Raise and Lower the clock before reading in the data. This accounts for | 2690 | /* Raise and Lower the clock before reading in the data. This accounts for |
2630 | * the turnaround bits. The first clock occurred when we clocked out the | 2691 | * the turnaround bits. The first clock occurred when we clocked out the |
2631 | * last bit of the Register Address. | 2692 | * last bit of the Register Address. |
2632 | */ | 2693 | */ |
2633 | e1000_raise_mdi_clk(hw, &ctrl); | 2694 | e1000_raise_mdi_clk(hw, &ctrl); |
2634 | e1000_lower_mdi_clk(hw, &ctrl); | 2695 | e1000_lower_mdi_clk(hw, &ctrl); |
2635 | 2696 | ||
2636 | for (data = 0, i = 0; i < 16; i++) { | 2697 | for (data = 0, i = 0; i < 16; i++) { |
2637 | data = data << 1; | 2698 | data = data << 1; |
2638 | e1000_raise_mdi_clk(hw, &ctrl); | 2699 | e1000_raise_mdi_clk(hw, &ctrl); |
2639 | ctrl = er32(CTRL); | 2700 | ctrl = er32(CTRL); |
2640 | /* Check to see if we shifted in a "1". */ | 2701 | /* Check to see if we shifted in a "1". */ |
2641 | if (ctrl & E1000_CTRL_MDIO) | 2702 | if (ctrl & E1000_CTRL_MDIO) |
2642 | data |= 1; | 2703 | data |= 1; |
2643 | e1000_lower_mdi_clk(hw, &ctrl); | 2704 | e1000_lower_mdi_clk(hw, &ctrl); |
2644 | } | 2705 | } |
2645 | 2706 | ||
2646 | e1000_raise_mdi_clk(hw, &ctrl); | 2707 | e1000_raise_mdi_clk(hw, &ctrl); |
2647 | e1000_lower_mdi_clk(hw, &ctrl); | 2708 | e1000_lower_mdi_clk(hw, &ctrl); |
2648 | 2709 | ||
2649 | return data; | 2710 | return data; |
2650 | } | 2711 | } |
2651 | 2712 | ||
2652 | /***************************************************************************** | 2713 | |
2653 | * Reads the value from a PHY register, if the value is on a specific non zero | 2714 | /** |
2654 | * page, sets the page first. | 2715 | * e1000_read_phy_reg - read a phy register |
2655 | * hw - Struct containing variables accessed by shared code | 2716 | * @hw: Struct containing variables accessed by shared code |
2656 | * reg_addr - address of the PHY register to read | 2717 | * @reg_addr: address of the PHY register to read |
2657 | ******************************************************************************/ | 2718 | * |
2719 | * Reads the value from a PHY register, if the value is on a specific non zero | ||
2720 | * page, sets the page first. | ||
2721 | */ | ||
2658 | s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) | 2722 | s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) |
2659 | { | 2723 | { |
2660 | u32 ret_val; | 2724 | u32 ret_val; |
2661 | 2725 | ||
2662 | DEBUGFUNC("e1000_read_phy_reg"); | 2726 | DEBUGFUNC("e1000_read_phy_reg"); |
2663 | 2727 | ||
2664 | if ((hw->phy_type == e1000_phy_igp) && | 2728 | if ((hw->phy_type == e1000_phy_igp) && |
2665 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 2729 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
2666 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2730 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
2667 | (u16)reg_addr); | 2731 | (u16) reg_addr); |
2668 | if (ret_val) | 2732 | if (ret_val) |
2669 | return ret_val; | 2733 | return ret_val; |
2670 | } | 2734 | } |
2735 | |||
2736 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | ||
2737 | phy_data); | ||
2671 | 2738 | ||
2672 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 2739 | return ret_val; |
2673 | phy_data); | ||
2674 | return ret_val; | ||
2675 | } | 2740 | } |
2676 | 2741 | ||
2677 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 2742 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
2678 | u16 *phy_data) | 2743 | u16 *phy_data) |
2679 | { | 2744 | { |
2680 | u32 i; | 2745 | u32 i; |
2681 | u32 mdic = 0; | 2746 | u32 mdic = 0; |
2682 | const u32 phy_addr = 1; | 2747 | const u32 phy_addr = 1; |
2683 | 2748 | ||
2684 | DEBUGFUNC("e1000_read_phy_reg_ex"); | 2749 | DEBUGFUNC("e1000_read_phy_reg_ex"); |
2685 | 2750 | ||
2686 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 2751 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
2687 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 2752 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
2688 | return -E1000_ERR_PARAM; | 2753 | return -E1000_ERR_PARAM; |
2689 | } | 2754 | } |
2690 | 2755 | ||
2691 | if (hw->mac_type > e1000_82543) { | 2756 | if (hw->mac_type > e1000_82543) { |
2692 | /* Set up Op-code, Phy Address, and register address in the MDI | 2757 | /* Set up Op-code, Phy Address, and register address in the MDI |
2693 | * Control register. The MAC will take care of interfacing with the | 2758 | * Control register. The MAC will take care of interfacing with the |
2694 | * PHY to retrieve the desired data. | 2759 | * PHY to retrieve the desired data. |
2695 | */ | 2760 | */ |
2696 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | 2761 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
2697 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 2762 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
2698 | (E1000_MDIC_OP_READ)); | 2763 | (E1000_MDIC_OP_READ)); |
2699 | 2764 | ||
2700 | ew32(MDIC, mdic); | 2765 | ew32(MDIC, mdic); |
2701 | 2766 | ||
2702 | /* Poll the ready bit to see if the MDI read completed */ | 2767 | /* Poll the ready bit to see if the MDI read completed */ |
2703 | for (i = 0; i < 64; i++) { | 2768 | for (i = 0; i < 64; i++) { |
2704 | udelay(50); | 2769 | udelay(50); |
2705 | mdic = er32(MDIC); | 2770 | mdic = er32(MDIC); |
2706 | if (mdic & E1000_MDIC_READY) break; | 2771 | if (mdic & E1000_MDIC_READY) |
2707 | } | 2772 | break; |
2708 | if (!(mdic & E1000_MDIC_READY)) { | 2773 | } |
2709 | DEBUGOUT("MDI Read did not complete\n"); | 2774 | if (!(mdic & E1000_MDIC_READY)) { |
2710 | return -E1000_ERR_PHY; | 2775 | DEBUGOUT("MDI Read did not complete\n"); |
2711 | } | 2776 | return -E1000_ERR_PHY; |
2712 | if (mdic & E1000_MDIC_ERROR) { | 2777 | } |
2713 | DEBUGOUT("MDI Error\n"); | 2778 | if (mdic & E1000_MDIC_ERROR) { |
2714 | return -E1000_ERR_PHY; | 2779 | DEBUGOUT("MDI Error\n"); |
2715 | } | 2780 | return -E1000_ERR_PHY; |
2716 | *phy_data = (u16)mdic; | 2781 | } |
2717 | } else { | 2782 | *phy_data = (u16) mdic; |
2718 | /* We must first send a preamble through the MDIO pin to signal the | 2783 | } else { |
2719 | * beginning of an MII instruction. This is done by sending 32 | 2784 | /* We must first send a preamble through the MDIO pin to signal the |
2720 | * consecutive "1" bits. | 2785 | * beginning of an MII instruction. This is done by sending 32 |
2721 | */ | 2786 | * consecutive "1" bits. |
2722 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 2787 | */ |
2723 | 2788 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | |
2724 | /* Now combine the next few fields that are required for a read | 2789 | |
2725 | * operation. We use this method instead of calling the | 2790 | /* Now combine the next few fields that are required for a read |
2726 | * e1000_shift_out_mdi_bits routine five different times. The format of | 2791 | * operation. We use this method instead of calling the |
2727 | * a MII read instruction consists of a shift out of 14 bits and is | 2792 | * e1000_shift_out_mdi_bits routine five different times. The format of |
2728 | * defined as follows: | 2793 | * a MII read instruction consists of a shift out of 14 bits and is |
2729 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | 2794 | * defined as follows: |
2730 | * followed by a shift in of 18 bits. This first two bits shifted in | 2795 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
2731 | * are TurnAround bits used to avoid contention on the MDIO pin when a | 2796 | * followed by a shift in of 18 bits. This first two bits shifted in |
2732 | * READ operation is performed. These two bits are thrown away | 2797 | * are TurnAround bits used to avoid contention on the MDIO pin when a |
2733 | * followed by a shift in of 16 bits which contains the desired data. | 2798 | * READ operation is performed. These two bits are thrown away |
2734 | */ | 2799 | * followed by a shift in of 16 bits which contains the desired data. |
2735 | mdic = ((reg_addr) | (phy_addr << 5) | | 2800 | */ |
2736 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | 2801 | mdic = ((reg_addr) | (phy_addr << 5) | |
2737 | 2802 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | |
2738 | e1000_shift_out_mdi_bits(hw, mdic, 14); | 2803 | |
2739 | 2804 | e1000_shift_out_mdi_bits(hw, mdic, 14); | |
2740 | /* Now that we've shifted out the read command to the MII, we need to | 2805 | |
2741 | * "shift in" the 16-bit value (18 total bits) of the requested PHY | 2806 | /* Now that we've shifted out the read command to the MII, we need to |
2742 | * register address. | 2807 | * "shift in" the 16-bit value (18 total bits) of the requested PHY |
2743 | */ | 2808 | * register address. |
2744 | *phy_data = e1000_shift_in_mdi_bits(hw); | 2809 | */ |
2745 | } | 2810 | *phy_data = e1000_shift_in_mdi_bits(hw); |
2746 | return E1000_SUCCESS; | 2811 | } |
2812 | return E1000_SUCCESS; | ||
2747 | } | 2813 | } |
2748 | 2814 | ||
2749 | /****************************************************************************** | 2815 | /** |
2750 | * Writes a value to a PHY register | 2816 | * e1000_write_phy_reg - write a phy register |
2751 | * | 2817 | * |
2752 | * hw - Struct containing variables accessed by shared code | 2818 | * @hw: Struct containing variables accessed by shared code |
2753 | * reg_addr - address of the PHY register to write | 2819 | * @reg_addr: address of the PHY register to write |
2754 | * data - data to write to the PHY | 2820 | * @data: data to write to the PHY |
2755 | ******************************************************************************/ | 2821 | |
2822 | * Writes a value to a PHY register | ||
2823 | */ | ||
2756 | s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) | 2824 | s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) |
2757 | { | 2825 | { |
2758 | u32 ret_val; | 2826 | u32 ret_val; |
2759 | 2827 | ||
2760 | DEBUGFUNC("e1000_write_phy_reg"); | 2828 | DEBUGFUNC("e1000_write_phy_reg"); |
2761 | 2829 | ||
2762 | if ((hw->phy_type == e1000_phy_igp) && | 2830 | if ((hw->phy_type == e1000_phy_igp) && |
2763 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 2831 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
2764 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2832 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
2765 | (u16)reg_addr); | 2833 | (u16) reg_addr); |
2766 | if (ret_val) | 2834 | if (ret_val) |
2767 | return ret_val; | 2835 | return ret_val; |
2768 | } | 2836 | } |
2769 | 2837 | ||
2770 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 2838 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
2771 | phy_data); | 2839 | phy_data); |
2772 | 2840 | ||
2773 | return ret_val; | 2841 | return ret_val; |
2774 | } | 2842 | } |
2775 | 2843 | ||
2776 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 2844 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
2777 | u16 phy_data) | 2845 | u16 phy_data) |
2778 | { | 2846 | { |
2779 | u32 i; | 2847 | u32 i; |
2780 | u32 mdic = 0; | 2848 | u32 mdic = 0; |
2781 | const u32 phy_addr = 1; | 2849 | const u32 phy_addr = 1; |
2782 | 2850 | ||
2783 | DEBUGFUNC("e1000_write_phy_reg_ex"); | 2851 | DEBUGFUNC("e1000_write_phy_reg_ex"); |
2784 | 2852 | ||
2785 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 2853 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
2786 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 2854 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
2787 | return -E1000_ERR_PARAM; | 2855 | return -E1000_ERR_PARAM; |
2788 | } | 2856 | } |
2789 | 2857 | ||
2790 | if (hw->mac_type > e1000_82543) { | 2858 | if (hw->mac_type > e1000_82543) { |
2791 | /* Set up Op-code, Phy Address, register address, and data intended | 2859 | /* Set up Op-code, Phy Address, register address, and data intended |
2792 | * for the PHY register in the MDI Control register. The MAC will take | 2860 | * for the PHY register in the MDI Control register. The MAC will take |
2793 | * care of interfacing with the PHY to send the desired data. | 2861 | * care of interfacing with the PHY to send the desired data. |
2794 | */ | 2862 | */ |
2795 | mdic = (((u32)phy_data) | | 2863 | mdic = (((u32) phy_data) | |
2796 | (reg_addr << E1000_MDIC_REG_SHIFT) | | 2864 | (reg_addr << E1000_MDIC_REG_SHIFT) | |
2797 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 2865 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
2798 | (E1000_MDIC_OP_WRITE)); | 2866 | (E1000_MDIC_OP_WRITE)); |
2799 | 2867 | ||
2800 | ew32(MDIC, mdic); | 2868 | ew32(MDIC, mdic); |
2801 | 2869 | ||
2802 | /* Poll the ready bit to see if the MDI read completed */ | 2870 | /* Poll the ready bit to see if the MDI read completed */ |
2803 | for (i = 0; i < 641; i++) { | 2871 | for (i = 0; i < 641; i++) { |
2804 | udelay(5); | 2872 | udelay(5); |
2805 | mdic = er32(MDIC); | 2873 | mdic = er32(MDIC); |
2806 | if (mdic & E1000_MDIC_READY) break; | 2874 | if (mdic & E1000_MDIC_READY) |
2807 | } | 2875 | break; |
2808 | if (!(mdic & E1000_MDIC_READY)) { | 2876 | } |
2809 | DEBUGOUT("MDI Write did not complete\n"); | 2877 | if (!(mdic & E1000_MDIC_READY)) { |
2810 | return -E1000_ERR_PHY; | 2878 | DEBUGOUT("MDI Write did not complete\n"); |
2811 | } | 2879 | return -E1000_ERR_PHY; |
2812 | } else { | 2880 | } |
2813 | /* We'll need to use the SW defined pins to shift the write command | 2881 | } else { |
2814 | * out to the PHY. We first send a preamble to the PHY to signal the | 2882 | /* We'll need to use the SW defined pins to shift the write command |
2815 | * beginning of the MII instruction. This is done by sending 32 | 2883 | * out to the PHY. We first send a preamble to the PHY to signal the |
2816 | * consecutive "1" bits. | 2884 | * beginning of the MII instruction. This is done by sending 32 |
2817 | */ | 2885 | * consecutive "1" bits. |
2818 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 2886 | */ |
2819 | 2887 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | |
2820 | /* Now combine the remaining required fields that will indicate a | 2888 | |
2821 | * write operation. We use this method instead of calling the | 2889 | /* Now combine the remaining required fields that will indicate a |
2822 | * e1000_shift_out_mdi_bits routine for each field in the command. The | 2890 | * write operation. We use this method instead of calling the |
2823 | * format of a MII write instruction is as follows: | 2891 | * e1000_shift_out_mdi_bits routine for each field in the command. The |
2824 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | 2892 | * format of a MII write instruction is as follows: |
2825 | */ | 2893 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
2826 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | 2894 | */ |
2827 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | 2895 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
2828 | mdic <<= 16; | 2896 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
2829 | mdic |= (u32)phy_data; | 2897 | mdic <<= 16; |
2830 | 2898 | mdic |= (u32) phy_data; | |
2831 | e1000_shift_out_mdi_bits(hw, mdic, 32); | 2899 | |
2832 | } | 2900 | e1000_shift_out_mdi_bits(hw, mdic, 32); |
2833 | 2901 | } | |
2834 | return E1000_SUCCESS; | 2902 | |
2903 | return E1000_SUCCESS; | ||
2835 | } | 2904 | } |
2836 | 2905 | ||
2837 | /****************************************************************************** | 2906 | /** |
2838 | * Returns the PHY to the power-on reset state | 2907 | * e1000_phy_hw_reset - reset the phy, hardware style |
2839 | * | 2908 | * @hw: Struct containing variables accessed by shared code |
2840 | * hw - Struct containing variables accessed by shared code | 2909 | * |
2841 | ******************************************************************************/ | 2910 | * Returns the PHY to the power-on reset state |
2911 | */ | ||
2842 | s32 e1000_phy_hw_reset(struct e1000_hw *hw) | 2912 | s32 e1000_phy_hw_reset(struct e1000_hw *hw) |
2843 | { | 2913 | { |
2844 | u32 ctrl, ctrl_ext; | 2914 | u32 ctrl, ctrl_ext; |
2845 | u32 led_ctrl; | 2915 | u32 led_ctrl; |
2846 | s32 ret_val; | 2916 | s32 ret_val; |
2847 | 2917 | ||
2848 | DEBUGFUNC("e1000_phy_hw_reset"); | 2918 | DEBUGFUNC("e1000_phy_hw_reset"); |
2849 | 2919 | ||
2850 | DEBUGOUT("Resetting Phy...\n"); | 2920 | DEBUGOUT("Resetting Phy...\n"); |
2851 | 2921 | ||
2852 | if (hw->mac_type > e1000_82543) { | 2922 | if (hw->mac_type > e1000_82543) { |
2853 | /* Read the device control register and assert the E1000_CTRL_PHY_RST | 2923 | /* Read the device control register and assert the E1000_CTRL_PHY_RST |
2854 | * bit. Then, take it out of reset. | 2924 | * bit. Then, take it out of reset. |
2855 | * For e1000 hardware, we delay for 10ms between the assert | 2925 | * For e1000 hardware, we delay for 10ms between the assert |
2856 | * and deassert. | 2926 | * and deassert. |
2857 | */ | 2927 | */ |
2858 | ctrl = er32(CTRL); | 2928 | ctrl = er32(CTRL); |
2859 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | 2929 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); |
2860 | E1000_WRITE_FLUSH(); | 2930 | E1000_WRITE_FLUSH(); |
2861 | 2931 | ||
2862 | msleep(10); | 2932 | msleep(10); |
2863 | 2933 | ||
2864 | ew32(CTRL, ctrl); | 2934 | ew32(CTRL, ctrl); |
2865 | E1000_WRITE_FLUSH(); | 2935 | E1000_WRITE_FLUSH(); |
2866 | } else { | 2936 | |
2867 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 2937 | } else { |
2868 | * bit to put the PHY into reset. Then, take it out of reset. | 2938 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
2869 | */ | 2939 | * bit to put the PHY into reset. Then, take it out of reset. |
2870 | ctrl_ext = er32(CTRL_EXT); | 2940 | */ |
2871 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | 2941 | ctrl_ext = er32(CTRL_EXT); |
2872 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | 2942 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
2873 | ew32(CTRL_EXT, ctrl_ext); | 2943 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
2874 | E1000_WRITE_FLUSH(); | 2944 | ew32(CTRL_EXT, ctrl_ext); |
2875 | msleep(10); | 2945 | E1000_WRITE_FLUSH(); |
2876 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | 2946 | msleep(10); |
2877 | ew32(CTRL_EXT, ctrl_ext); | 2947 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
2878 | E1000_WRITE_FLUSH(); | 2948 | ew32(CTRL_EXT, ctrl_ext); |
2879 | } | 2949 | E1000_WRITE_FLUSH(); |
2880 | udelay(150); | 2950 | } |
2881 | 2951 | udelay(150); | |
2882 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 2952 | |
2883 | /* Configure activity LED after PHY reset */ | 2953 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
2884 | led_ctrl = er32(LEDCTL); | 2954 | /* Configure activity LED after PHY reset */ |
2885 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 2955 | led_ctrl = er32(LEDCTL); |
2886 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 2956 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
2887 | ew32(LEDCTL, led_ctrl); | 2957 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
2888 | } | 2958 | ew32(LEDCTL, led_ctrl); |
2889 | 2959 | } | |
2890 | /* Wait for FW to finish PHY configuration. */ | 2960 | |
2891 | ret_val = e1000_get_phy_cfg_done(hw); | 2961 | /* Wait for FW to finish PHY configuration. */ |
2892 | if (ret_val != E1000_SUCCESS) | 2962 | ret_val = e1000_get_phy_cfg_done(hw); |
2893 | return ret_val; | 2963 | if (ret_val != E1000_SUCCESS) |
2894 | 2964 | return ret_val; | |
2895 | return ret_val; | 2965 | |
2966 | return ret_val; | ||
2896 | } | 2967 | } |
2897 | 2968 | ||
2898 | /****************************************************************************** | 2969 | /** |
2899 | * Resets the PHY | 2970 | * e1000_phy_reset - reset the phy to commit settings |
2900 | * | 2971 | * @hw: Struct containing variables accessed by shared code |
2901 | * hw - Struct containing variables accessed by shared code | 2972 | * |
2902 | * | 2973 | * Resets the PHY |
2903 | * Sets bit 15 of the MII Control register | 2974 | * Sets bit 15 of the MII Control register |
2904 | ******************************************************************************/ | 2975 | */ |
2905 | s32 e1000_phy_reset(struct e1000_hw *hw) | 2976 | s32 e1000_phy_reset(struct e1000_hw *hw) |
2906 | { | 2977 | { |
2907 | s32 ret_val; | 2978 | s32 ret_val; |
2908 | u16 phy_data; | 2979 | u16 phy_data; |
2909 | 2980 | ||
2910 | DEBUGFUNC("e1000_phy_reset"); | 2981 | DEBUGFUNC("e1000_phy_reset"); |
2911 | 2982 | ||
2912 | switch (hw->phy_type) { | 2983 | switch (hw->phy_type) { |
2913 | case e1000_phy_igp: | 2984 | case e1000_phy_igp: |
2914 | ret_val = e1000_phy_hw_reset(hw); | 2985 | ret_val = e1000_phy_hw_reset(hw); |
2915 | if (ret_val) | 2986 | if (ret_val) |
2916 | return ret_val; | 2987 | return ret_val; |
2917 | break; | 2988 | break; |
2918 | default: | 2989 | default: |
2919 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 2990 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
2920 | if (ret_val) | 2991 | if (ret_val) |
2921 | return ret_val; | 2992 | return ret_val; |
2922 | 2993 | ||
2923 | phy_data |= MII_CR_RESET; | 2994 | phy_data |= MII_CR_RESET; |
2924 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 2995 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
2925 | if (ret_val) | 2996 | if (ret_val) |
2926 | return ret_val; | 2997 | return ret_val; |
2927 | 2998 | ||
2928 | udelay(1); | 2999 | udelay(1); |
2929 | break; | 3000 | break; |
2930 | } | 3001 | } |
2931 | 3002 | ||
2932 | if (hw->phy_type == e1000_phy_igp) | 3003 | if (hw->phy_type == e1000_phy_igp) |
2933 | e1000_phy_init_script(hw); | 3004 | e1000_phy_init_script(hw); |
2934 | 3005 | ||
2935 | return E1000_SUCCESS; | 3006 | return E1000_SUCCESS; |
2936 | } | 3007 | } |
2937 | 3008 | ||
2938 | /****************************************************************************** | 3009 | /** |
2939 | * Probes the expected PHY address for known PHY IDs | 3010 | * e1000_detect_gig_phy - check the phy type |
2940 | * | 3011 | * @hw: Struct containing variables accessed by shared code |
2941 | * hw - Struct containing variables accessed by shared code | 3012 | * |
2942 | ******************************************************************************/ | 3013 | * Probes the expected PHY address for known PHY IDs |
3014 | */ | ||
2943 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw) | 3015 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw) |
2944 | { | 3016 | { |
2945 | s32 phy_init_status, ret_val; | 3017 | s32 phy_init_status, ret_val; |
2946 | u16 phy_id_high, phy_id_low; | 3018 | u16 phy_id_high, phy_id_low; |
2947 | bool match = false; | 3019 | bool match = false; |
2948 | 3020 | ||
2949 | DEBUGFUNC("e1000_detect_gig_phy"); | 3021 | DEBUGFUNC("e1000_detect_gig_phy"); |
2950 | 3022 | ||
2951 | if (hw->phy_id != 0) | 3023 | if (hw->phy_id != 0) |
2952 | return E1000_SUCCESS; | 3024 | return E1000_SUCCESS; |
2953 | 3025 | ||
2954 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 3026 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
2955 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 3027 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
2956 | if (ret_val) | 3028 | if (ret_val) |
2957 | return ret_val; | 3029 | return ret_val; |
2958 | 3030 | ||
2959 | hw->phy_id = (u32)(phy_id_high << 16); | 3031 | hw->phy_id = (u32) (phy_id_high << 16); |
2960 | udelay(20); | 3032 | udelay(20); |
2961 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | 3033 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
2962 | if (ret_val) | 3034 | if (ret_val) |
2963 | return ret_val; | 3035 | return ret_val; |
2964 | 3036 | ||
2965 | hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK); | 3037 | hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); |
2966 | hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK; | 3038 | hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; |
2967 | 3039 | ||
2968 | switch (hw->mac_type) { | 3040 | switch (hw->mac_type) { |
2969 | case e1000_82543: | 3041 | case e1000_82543: |
2970 | if (hw->phy_id == M88E1000_E_PHY_ID) match = true; | 3042 | if (hw->phy_id == M88E1000_E_PHY_ID) |
2971 | break; | 3043 | match = true; |
2972 | case e1000_82544: | 3044 | break; |
2973 | if (hw->phy_id == M88E1000_I_PHY_ID) match = true; | 3045 | case e1000_82544: |
2974 | break; | 3046 | if (hw->phy_id == M88E1000_I_PHY_ID) |
2975 | case e1000_82540: | 3047 | match = true; |
2976 | case e1000_82545: | 3048 | break; |
2977 | case e1000_82545_rev_3: | 3049 | case e1000_82540: |
2978 | case e1000_82546: | 3050 | case e1000_82545: |
2979 | case e1000_82546_rev_3: | 3051 | case e1000_82545_rev_3: |
2980 | if (hw->phy_id == M88E1011_I_PHY_ID) match = true; | 3052 | case e1000_82546: |
2981 | break; | 3053 | case e1000_82546_rev_3: |
2982 | case e1000_82541: | 3054 | if (hw->phy_id == M88E1011_I_PHY_ID) |
2983 | case e1000_82541_rev_2: | 3055 | match = true; |
2984 | case e1000_82547: | 3056 | break; |
2985 | case e1000_82547_rev_2: | 3057 | case e1000_82541: |
2986 | if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true; | 3058 | case e1000_82541_rev_2: |
2987 | break; | 3059 | case e1000_82547: |
2988 | default: | 3060 | case e1000_82547_rev_2: |
2989 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 3061 | if (hw->phy_id == IGP01E1000_I_PHY_ID) |
2990 | return -E1000_ERR_CONFIG; | 3062 | match = true; |
2991 | } | 3063 | break; |
2992 | phy_init_status = e1000_set_phy_type(hw); | 3064 | default: |
2993 | 3065 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | |
2994 | if ((match) && (phy_init_status == E1000_SUCCESS)) { | 3066 | return -E1000_ERR_CONFIG; |
2995 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | 3067 | } |
2996 | return E1000_SUCCESS; | 3068 | phy_init_status = e1000_set_phy_type(hw); |
2997 | } | 3069 | |
2998 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | 3070 | if ((match) && (phy_init_status == E1000_SUCCESS)) { |
2999 | return -E1000_ERR_PHY; | 3071 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); |
3072 | return E1000_SUCCESS; | ||
3073 | } | ||
3074 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | ||
3075 | return -E1000_ERR_PHY; | ||
3000 | } | 3076 | } |
3001 | 3077 | ||
3002 | /****************************************************************************** | 3078 | /** |
3003 | * Resets the PHY's DSP | 3079 | * e1000_phy_reset_dsp - reset DSP |
3004 | * | 3080 | * @hw: Struct containing variables accessed by shared code |
3005 | * hw - Struct containing variables accessed by shared code | 3081 | * |
3006 | ******************************************************************************/ | 3082 | * Resets the PHY's DSP |
3083 | */ | ||
3007 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) | 3084 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) |
3008 | { | 3085 | { |
3009 | s32 ret_val; | 3086 | s32 ret_val; |
3010 | DEBUGFUNC("e1000_phy_reset_dsp"); | 3087 | DEBUGFUNC("e1000_phy_reset_dsp"); |
3011 | 3088 | ||
3012 | do { | 3089 | do { |
3013 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | 3090 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); |
3014 | if (ret_val) break; | 3091 | if (ret_val) |
3015 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | 3092 | break; |
3016 | if (ret_val) break; | 3093 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); |
3017 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | 3094 | if (ret_val) |
3018 | if (ret_val) break; | 3095 | break; |
3019 | ret_val = E1000_SUCCESS; | 3096 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); |
3020 | } while (0); | 3097 | if (ret_val) |
3021 | 3098 | break; | |
3022 | return ret_val; | 3099 | ret_val = E1000_SUCCESS; |
3100 | } while (0); | ||
3101 | |||
3102 | return ret_val; | ||
3023 | } | 3103 | } |
3024 | 3104 | ||
3025 | /****************************************************************************** | 3105 | /** |
3026 | * Get PHY information from various PHY registers for igp PHY only. | 3106 | * e1000_phy_igp_get_info - get igp specific registers |
3027 | * | 3107 | * @hw: Struct containing variables accessed by shared code |
3028 | * hw - Struct containing variables accessed by shared code | 3108 | * @phy_info: PHY information structure |
3029 | * phy_info - PHY information structure | 3109 | * |
3030 | ******************************************************************************/ | 3110 | * Get PHY information from various PHY registers for igp PHY only. |
3111 | */ | ||
3031 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 3112 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
3032 | struct e1000_phy_info *phy_info) | 3113 | struct e1000_phy_info *phy_info) |
3033 | { | 3114 | { |
3034 | s32 ret_val; | 3115 | s32 ret_val; |
3035 | u16 phy_data, min_length, max_length, average; | 3116 | u16 phy_data, min_length, max_length, average; |
3036 | e1000_rev_polarity polarity; | 3117 | e1000_rev_polarity polarity; |
3037 | 3118 | ||
3038 | DEBUGFUNC("e1000_phy_igp_get_info"); | 3119 | DEBUGFUNC("e1000_phy_igp_get_info"); |
3039 | 3120 | ||
3040 | /* The downshift status is checked only once, after link is established, | 3121 | /* The downshift status is checked only once, after link is established, |
3041 | * and it stored in the hw->speed_downgraded parameter. */ | 3122 | * and it stored in the hw->speed_downgraded parameter. */ |
3042 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 3123 | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
3043 | 3124 | ||
3044 | /* IGP01E1000 does not need to support it. */ | 3125 | /* IGP01E1000 does not need to support it. */ |
3045 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 3126 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
3046 | 3127 | ||
3047 | /* IGP01E1000 always correct polarity reversal */ | 3128 | /* IGP01E1000 always correct polarity reversal */ |
3048 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; | 3129 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; |
3049 | 3130 | ||
3050 | /* Check polarity status */ | 3131 | /* Check polarity status */ |
3051 | ret_val = e1000_check_polarity(hw, &polarity); | 3132 | ret_val = e1000_check_polarity(hw, &polarity); |
3052 | if (ret_val) | 3133 | if (ret_val) |
3053 | return ret_val; | 3134 | return ret_val; |
3054 | 3135 | ||
3055 | phy_info->cable_polarity = polarity; | 3136 | phy_info->cable_polarity = polarity; |
3056 | 3137 | ||
3057 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); | 3138 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); |
3058 | if (ret_val) | 3139 | if (ret_val) |
3059 | return ret_val; | 3140 | return ret_val; |
3060 | 3141 | ||
3061 | phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >> | 3142 | phy_info->mdix_mode = |
3062 | IGP01E1000_PSSR_MDIX_SHIFT); | 3143 | (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> |
3063 | 3144 | IGP01E1000_PSSR_MDIX_SHIFT); | |
3064 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 3145 | |
3065 | IGP01E1000_PSSR_SPEED_1000MBPS) { | 3146 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
3066 | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ | 3147 | IGP01E1000_PSSR_SPEED_1000MBPS) { |
3067 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 3148 | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ |
3068 | if (ret_val) | 3149 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
3069 | return ret_val; | 3150 | if (ret_val) |
3070 | 3151 | return ret_val; | |
3071 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 3152 | |
3072 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | 3153 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
3073 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 3154 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
3074 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 3155 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
3075 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | 3156 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
3076 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 3157 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
3077 | 3158 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | |
3078 | /* Get cable length */ | 3159 | |
3079 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | 3160 | /* Get cable length */ |
3080 | if (ret_val) | 3161 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
3081 | return ret_val; | 3162 | if (ret_val) |
3082 | 3163 | return ret_val; | |
3083 | /* Translate to old method */ | 3164 | |
3084 | average = (max_length + min_length) / 2; | 3165 | /* Translate to old method */ |
3085 | 3166 | average = (max_length + min_length) / 2; | |
3086 | if (average <= e1000_igp_cable_length_50) | 3167 | |
3087 | phy_info->cable_length = e1000_cable_length_50; | 3168 | if (average <= e1000_igp_cable_length_50) |
3088 | else if (average <= e1000_igp_cable_length_80) | 3169 | phy_info->cable_length = e1000_cable_length_50; |
3089 | phy_info->cable_length = e1000_cable_length_50_80; | 3170 | else if (average <= e1000_igp_cable_length_80) |
3090 | else if (average <= e1000_igp_cable_length_110) | 3171 | phy_info->cable_length = e1000_cable_length_50_80; |
3091 | phy_info->cable_length = e1000_cable_length_80_110; | 3172 | else if (average <= e1000_igp_cable_length_110) |
3092 | else if (average <= e1000_igp_cable_length_140) | 3173 | phy_info->cable_length = e1000_cable_length_80_110; |
3093 | phy_info->cable_length = e1000_cable_length_110_140; | 3174 | else if (average <= e1000_igp_cable_length_140) |
3094 | else | 3175 | phy_info->cable_length = e1000_cable_length_110_140; |
3095 | phy_info->cable_length = e1000_cable_length_140; | 3176 | else |
3096 | } | 3177 | phy_info->cable_length = e1000_cable_length_140; |
3097 | 3178 | } | |
3098 | return E1000_SUCCESS; | ||
3099 | } | ||
3100 | 3179 | ||
3180 | return E1000_SUCCESS; | ||
3181 | } | ||
3101 | 3182 | ||
3102 | /****************************************************************************** | 3183 | /** |
3103 | * Get PHY information from various PHY registers fot m88 PHY only. | 3184 | * e1000_phy_m88_get_info - get m88 specific registers |
3104 | * | 3185 | * @hw: Struct containing variables accessed by shared code |
3105 | * hw - Struct containing variables accessed by shared code | 3186 | * @phy_info: PHY information structure |
3106 | * phy_info - PHY information structure | 3187 | * |
3107 | ******************************************************************************/ | 3188 | * Get PHY information from various PHY registers for m88 PHY only. |
3189 | */ | ||
3108 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 3190 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
3109 | struct e1000_phy_info *phy_info) | 3191 | struct e1000_phy_info *phy_info) |
3110 | { | 3192 | { |
3111 | s32 ret_val; | 3193 | s32 ret_val; |
3112 | u16 phy_data; | 3194 | u16 phy_data; |
3113 | e1000_rev_polarity polarity; | 3195 | e1000_rev_polarity polarity; |
3114 | 3196 | ||
3115 | DEBUGFUNC("e1000_phy_m88_get_info"); | 3197 | DEBUGFUNC("e1000_phy_m88_get_info"); |
3116 | 3198 | ||
3117 | /* The downshift status is checked only once, after link is established, | 3199 | /* The downshift status is checked only once, after link is established, |
3118 | * and it stored in the hw->speed_downgraded parameter. */ | 3200 | * and it stored in the hw->speed_downgraded parameter. */ |
3119 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 3201 | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
3120 | 3202 | ||
3121 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 3203 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
3122 | if (ret_val) | 3204 | if (ret_val) |
3123 | return ret_val; | 3205 | return ret_val; |
3124 | 3206 | ||
3125 | phy_info->extended_10bt_distance = | 3207 | phy_info->extended_10bt_distance = |
3126 | ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> | 3208 | ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> |
3127 | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? | 3209 | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? |
3128 | e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal; | 3210 | e1000_10bt_ext_dist_enable_lower : |
3129 | 3211 | e1000_10bt_ext_dist_enable_normal; | |
3130 | phy_info->polarity_correction = | 3212 | |
3131 | ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> | 3213 | phy_info->polarity_correction = |
3132 | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? | 3214 | ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> |
3133 | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | 3215 | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? |
3134 | 3216 | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | |
3135 | /* Check polarity status */ | 3217 | |
3136 | ret_val = e1000_check_polarity(hw, &polarity); | 3218 | /* Check polarity status */ |
3137 | if (ret_val) | 3219 | ret_val = e1000_check_polarity(hw, &polarity); |
3138 | return ret_val; | 3220 | if (ret_val) |
3139 | phy_info->cable_polarity = polarity; | 3221 | return ret_val; |
3140 | 3222 | phy_info->cable_polarity = polarity; | |
3141 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 3223 | |
3142 | if (ret_val) | 3224 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
3143 | return ret_val; | 3225 | if (ret_val) |
3144 | 3226 | return ret_val; | |
3145 | phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >> | 3227 | |
3146 | M88E1000_PSSR_MDIX_SHIFT); | 3228 | phy_info->mdix_mode = |
3147 | 3229 | (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> | |
3148 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | 3230 | M88E1000_PSSR_MDIX_SHIFT); |
3149 | /* Cable Length Estimation and Local/Remote Receiver Information | 3231 | |
3150 | * are only valid at 1000 Mbps. | 3232 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
3151 | */ | 3233 | /* Cable Length Estimation and Local/Remote Receiver Information |
3152 | phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 3234 | * are only valid at 1000 Mbps. |
3153 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); | 3235 | */ |
3154 | 3236 | phy_info->cable_length = | |
3155 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 3237 | (e1000_cable_length) ((phy_data & |
3156 | if (ret_val) | 3238 | M88E1000_PSSR_CABLE_LENGTH) >> |
3157 | return ret_val; | 3239 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
3158 | 3240 | ||
3159 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 3241 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
3160 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | 3242 | if (ret_val) |
3161 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 3243 | return ret_val; |
3162 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 3244 | |
3163 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | 3245 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
3164 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 3246 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
3165 | 3247 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | |
3166 | } | 3248 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
3167 | 3249 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | |
3168 | return E1000_SUCCESS; | 3250 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
3251 | |||
3252 | } | ||
3253 | |||
3254 | return E1000_SUCCESS; | ||
3169 | } | 3255 | } |
3170 | 3256 | ||
3171 | /****************************************************************************** | 3257 | /** |
3172 | * Get PHY information from various PHY registers | 3258 | * e1000_phy_get_info - request phy info |
3173 | * | 3259 | * @hw: Struct containing variables accessed by shared code |
3174 | * hw - Struct containing variables accessed by shared code | 3260 | * @phy_info: PHY information structure |
3175 | * phy_info - PHY information structure | 3261 | * |
3176 | ******************************************************************************/ | 3262 | * Get PHY information from various PHY registers |
3263 | */ | ||
3177 | s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) | 3264 | s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) |
3178 | { | 3265 | { |
3179 | s32 ret_val; | 3266 | s32 ret_val; |
3180 | u16 phy_data; | 3267 | u16 phy_data; |
3181 | 3268 | ||
3182 | DEBUGFUNC("e1000_phy_get_info"); | 3269 | DEBUGFUNC("e1000_phy_get_info"); |
3183 | 3270 | ||
3184 | phy_info->cable_length = e1000_cable_length_undefined; | 3271 | phy_info->cable_length = e1000_cable_length_undefined; |
3185 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | 3272 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; |
3186 | phy_info->cable_polarity = e1000_rev_polarity_undefined; | 3273 | phy_info->cable_polarity = e1000_rev_polarity_undefined; |
3187 | phy_info->downshift = e1000_downshift_undefined; | 3274 | phy_info->downshift = e1000_downshift_undefined; |
3188 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; | 3275 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; |
3189 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; | 3276 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; |
3190 | phy_info->local_rx = e1000_1000t_rx_status_undefined; | 3277 | phy_info->local_rx = e1000_1000t_rx_status_undefined; |
3191 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; | 3278 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; |
3192 | 3279 | ||
3193 | if (hw->media_type != e1000_media_type_copper) { | 3280 | if (hw->media_type != e1000_media_type_copper) { |
3194 | DEBUGOUT("PHY info is only valid for copper media\n"); | 3281 | DEBUGOUT("PHY info is only valid for copper media\n"); |
3195 | return -E1000_ERR_CONFIG; | 3282 | return -E1000_ERR_CONFIG; |
3196 | } | 3283 | } |
3197 | 3284 | ||
3198 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 3285 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
3199 | if (ret_val) | 3286 | if (ret_val) |
3200 | return ret_val; | 3287 | return ret_val; |
3201 | 3288 | ||
3202 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 3289 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
3203 | if (ret_val) | 3290 | if (ret_val) |
3204 | return ret_val; | 3291 | return ret_val; |
3205 | 3292 | ||
3206 | if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | 3293 | if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { |
3207 | DEBUGOUT("PHY info is only valid if link is up\n"); | 3294 | DEBUGOUT("PHY info is only valid if link is up\n"); |
3208 | return -E1000_ERR_CONFIG; | 3295 | return -E1000_ERR_CONFIG; |
3209 | } | 3296 | } |
3210 | 3297 | ||
3211 | if (hw->phy_type == e1000_phy_igp) | 3298 | if (hw->phy_type == e1000_phy_igp) |
3212 | return e1000_phy_igp_get_info(hw, phy_info); | 3299 | return e1000_phy_igp_get_info(hw, phy_info); |
3213 | else | 3300 | else |
3214 | return e1000_phy_m88_get_info(hw, phy_info); | 3301 | return e1000_phy_m88_get_info(hw, phy_info); |
3215 | } | 3302 | } |
3216 | 3303 | ||
3217 | s32 e1000_validate_mdi_setting(struct e1000_hw *hw) | 3304 | s32 e1000_validate_mdi_setting(struct e1000_hw *hw) |
3218 | { | 3305 | { |
3219 | DEBUGFUNC("e1000_validate_mdi_settings"); | 3306 | DEBUGFUNC("e1000_validate_mdi_settings"); |
3220 | |||
3221 | if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | ||
3222 | DEBUGOUT("Invalid MDI setting detected\n"); | ||
3223 | hw->mdix = 1; | ||
3224 | return -E1000_ERR_CONFIG; | ||
3225 | } | ||
3226 | return E1000_SUCCESS; | ||
3227 | } | ||
3228 | 3307 | ||
3308 | if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | ||
3309 | DEBUGOUT("Invalid MDI setting detected\n"); | ||
3310 | hw->mdix = 1; | ||
3311 | return -E1000_ERR_CONFIG; | ||
3312 | } | ||
3313 | return E1000_SUCCESS; | ||
3314 | } | ||
3229 | 3315 | ||
3230 | /****************************************************************************** | 3316 | /** |
3317 | * e1000_init_eeprom_params - initialize sw eeprom vars | ||
3318 | * @hw: Struct containing variables accessed by shared code | ||
3319 | * | ||
3231 | * Sets up eeprom variables in the hw struct. Must be called after mac_type | 3320 | * Sets up eeprom variables in the hw struct. Must be called after mac_type |
3232 | * is configured. | 3321 | * is configured. |
3233 | * | 3322 | */ |
3234 | * hw - Struct containing variables accessed by shared code | ||
3235 | *****************************************************************************/ | ||
3236 | s32 e1000_init_eeprom_params(struct e1000_hw *hw) | 3323 | s32 e1000_init_eeprom_params(struct e1000_hw *hw) |
3237 | { | 3324 | { |
3238 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3325 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3239 | u32 eecd = er32(EECD); | 3326 | u32 eecd = er32(EECD); |
3240 | s32 ret_val = E1000_SUCCESS; | 3327 | s32 ret_val = E1000_SUCCESS; |
3241 | u16 eeprom_size; | 3328 | u16 eeprom_size; |
3242 | 3329 | ||
3243 | DEBUGFUNC("e1000_init_eeprom_params"); | 3330 | DEBUGFUNC("e1000_init_eeprom_params"); |
3244 | 3331 | ||
3245 | switch (hw->mac_type) { | 3332 | switch (hw->mac_type) { |
3246 | case e1000_82542_rev2_0: | 3333 | case e1000_82542_rev2_0: |
3247 | case e1000_82542_rev2_1: | 3334 | case e1000_82542_rev2_1: |
3248 | case e1000_82543: | 3335 | case e1000_82543: |
3249 | case e1000_82544: | 3336 | case e1000_82544: |
3250 | eeprom->type = e1000_eeprom_microwire; | 3337 | eeprom->type = e1000_eeprom_microwire; |
3251 | eeprom->word_size = 64; | 3338 | eeprom->word_size = 64; |
3252 | eeprom->opcode_bits = 3; | 3339 | eeprom->opcode_bits = 3; |
3253 | eeprom->address_bits = 6; | 3340 | eeprom->address_bits = 6; |
3254 | eeprom->delay_usec = 50; | 3341 | eeprom->delay_usec = 50; |
3255 | eeprom->use_eerd = false; | 3342 | eeprom->use_eerd = false; |
3256 | eeprom->use_eewr = false; | 3343 | eeprom->use_eewr = false; |
3257 | break; | 3344 | break; |
3258 | case e1000_82540: | 3345 | case e1000_82540: |
3259 | case e1000_82545: | 3346 | case e1000_82545: |
3260 | case e1000_82545_rev_3: | 3347 | case e1000_82545_rev_3: |
3261 | case e1000_82546: | 3348 | case e1000_82546: |
3262 | case e1000_82546_rev_3: | 3349 | case e1000_82546_rev_3: |
3263 | eeprom->type = e1000_eeprom_microwire; | 3350 | eeprom->type = e1000_eeprom_microwire; |
3264 | eeprom->opcode_bits = 3; | 3351 | eeprom->opcode_bits = 3; |
3265 | eeprom->delay_usec = 50; | 3352 | eeprom->delay_usec = 50; |
3266 | if (eecd & E1000_EECD_SIZE) { | 3353 | if (eecd & E1000_EECD_SIZE) { |
3267 | eeprom->word_size = 256; | 3354 | eeprom->word_size = 256; |
3268 | eeprom->address_bits = 8; | 3355 | eeprom->address_bits = 8; |
3269 | } else { | 3356 | } else { |
3270 | eeprom->word_size = 64; | 3357 | eeprom->word_size = 64; |
3271 | eeprom->address_bits = 6; | 3358 | eeprom->address_bits = 6; |
3272 | } | 3359 | } |
3273 | eeprom->use_eerd = false; | 3360 | eeprom->use_eerd = false; |
3274 | eeprom->use_eewr = false; | 3361 | eeprom->use_eewr = false; |
3275 | break; | 3362 | break; |
3276 | case e1000_82541: | 3363 | case e1000_82541: |
3277 | case e1000_82541_rev_2: | 3364 | case e1000_82541_rev_2: |
3278 | case e1000_82547: | 3365 | case e1000_82547: |
3279 | case e1000_82547_rev_2: | 3366 | case e1000_82547_rev_2: |
3280 | if (eecd & E1000_EECD_TYPE) { | 3367 | if (eecd & E1000_EECD_TYPE) { |
3281 | eeprom->type = e1000_eeprom_spi; | 3368 | eeprom->type = e1000_eeprom_spi; |
3282 | eeprom->opcode_bits = 8; | 3369 | eeprom->opcode_bits = 8; |
3283 | eeprom->delay_usec = 1; | 3370 | eeprom->delay_usec = 1; |
3284 | if (eecd & E1000_EECD_ADDR_BITS) { | 3371 | if (eecd & E1000_EECD_ADDR_BITS) { |
3285 | eeprom->page_size = 32; | 3372 | eeprom->page_size = 32; |
3286 | eeprom->address_bits = 16; | 3373 | eeprom->address_bits = 16; |
3287 | } else { | 3374 | } else { |
3288 | eeprom->page_size = 8; | 3375 | eeprom->page_size = 8; |
3289 | eeprom->address_bits = 8; | 3376 | eeprom->address_bits = 8; |
3290 | } | 3377 | } |
3291 | } else { | 3378 | } else { |
3292 | eeprom->type = e1000_eeprom_microwire; | 3379 | eeprom->type = e1000_eeprom_microwire; |
3293 | eeprom->opcode_bits = 3; | 3380 | eeprom->opcode_bits = 3; |
3294 | eeprom->delay_usec = 50; | 3381 | eeprom->delay_usec = 50; |
3295 | if (eecd & E1000_EECD_ADDR_BITS) { | 3382 | if (eecd & E1000_EECD_ADDR_BITS) { |
3296 | eeprom->word_size = 256; | 3383 | eeprom->word_size = 256; |
3297 | eeprom->address_bits = 8; | 3384 | eeprom->address_bits = 8; |
3298 | } else { | 3385 | } else { |
3299 | eeprom->word_size = 64; | 3386 | eeprom->word_size = 64; |
3300 | eeprom->address_bits = 6; | 3387 | eeprom->address_bits = 6; |
3301 | } | 3388 | } |
3302 | } | 3389 | } |
3303 | eeprom->use_eerd = false; | 3390 | eeprom->use_eerd = false; |
3304 | eeprom->use_eewr = false; | 3391 | eeprom->use_eewr = false; |
3305 | break; | 3392 | break; |
3306 | default: | 3393 | default: |
3307 | break; | 3394 | break; |
3308 | } | 3395 | } |
3309 | 3396 | ||
3310 | if (eeprom->type == e1000_eeprom_spi) { | 3397 | if (eeprom->type == e1000_eeprom_spi) { |
3311 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to | 3398 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
3312 | * 32KB (incremented by powers of 2). | 3399 | * 32KB (incremented by powers of 2). |
3313 | */ | 3400 | */ |
3314 | /* Set to default value for initial eeprom read. */ | 3401 | /* Set to default value for initial eeprom read. */ |
3315 | eeprom->word_size = 64; | 3402 | eeprom->word_size = 64; |
3316 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); | 3403 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
3317 | if (ret_val) | 3404 | if (ret_val) |
3318 | return ret_val; | 3405 | return ret_val; |
3319 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; | 3406 | eeprom_size = |
3320 | /* 256B eeprom size was not supported in earlier hardware, so we | 3407 | (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
3321 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) | 3408 | /* 256B eeprom size was not supported in earlier hardware, so we |
3322 | * is never the result used in the shifting logic below. */ | 3409 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
3323 | if (eeprom_size) | 3410 | * is never the result used in the shifting logic below. */ |
3324 | eeprom_size++; | 3411 | if (eeprom_size) |
3325 | 3412 | eeprom_size++; | |
3326 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | 3413 | |
3327 | } | 3414 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
3328 | return ret_val; | 3415 | } |
3416 | return ret_val; | ||
3329 | } | 3417 | } |
3330 | 3418 | ||
3331 | /****************************************************************************** | 3419 | /** |
3332 | * Raises the EEPROM's clock input. | 3420 | * e1000_raise_ee_clk - Raises the EEPROM's clock input. |
3333 | * | 3421 | * @hw: Struct containing variables accessed by shared code |
3334 | * hw - Struct containing variables accessed by shared code | 3422 | * @eecd: EECD's current value |
3335 | * eecd - EECD's current value | 3423 | */ |
3336 | *****************************************************************************/ | ||
3337 | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) | 3424 | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) |
3338 | { | 3425 | { |
3339 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | 3426 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
3340 | * wait <delay> microseconds. | 3427 | * wait <delay> microseconds. |
3341 | */ | 3428 | */ |
3342 | *eecd = *eecd | E1000_EECD_SK; | 3429 | *eecd = *eecd | E1000_EECD_SK; |
3343 | ew32(EECD, *eecd); | 3430 | ew32(EECD, *eecd); |
3344 | E1000_WRITE_FLUSH(); | 3431 | E1000_WRITE_FLUSH(); |
3345 | udelay(hw->eeprom.delay_usec); | 3432 | udelay(hw->eeprom.delay_usec); |
3346 | } | 3433 | } |
3347 | 3434 | ||
3348 | /****************************************************************************** | 3435 | /** |
3349 | * Lowers the EEPROM's clock input. | 3436 | * e1000_lower_ee_clk - Lowers the EEPROM's clock input. |
3350 | * | 3437 | * @hw: Struct containing variables accessed by shared code |
3351 | * hw - Struct containing variables accessed by shared code | 3438 | * @eecd: EECD's current value |
3352 | * eecd - EECD's current value | 3439 | */ |
3353 | *****************************************************************************/ | ||
3354 | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) | 3440 | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) |
3355 | { | 3441 | { |
3356 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | 3442 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
3357 | * wait 50 microseconds. | 3443 | * wait 50 microseconds. |
3358 | */ | 3444 | */ |
3359 | *eecd = *eecd & ~E1000_EECD_SK; | 3445 | *eecd = *eecd & ~E1000_EECD_SK; |
3360 | ew32(EECD, *eecd); | 3446 | ew32(EECD, *eecd); |
3361 | E1000_WRITE_FLUSH(); | 3447 | E1000_WRITE_FLUSH(); |
3362 | udelay(hw->eeprom.delay_usec); | 3448 | udelay(hw->eeprom.delay_usec); |
3363 | } | 3449 | } |
3364 | 3450 | ||
3365 | /****************************************************************************** | 3451 | /** |
3366 | * Shift data bits out to the EEPROM. | 3452 | * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. |
3367 | * | 3453 | * @hw: Struct containing variables accessed by shared code |
3368 | * hw - Struct containing variables accessed by shared code | 3454 | * @data: data to send to the EEPROM |
3369 | * data - data to send to the EEPROM | 3455 | * @count: number of bits to shift out |
3370 | * count - number of bits to shift out | 3456 | */ |
3371 | *****************************************************************************/ | ||
3372 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) | 3457 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) |
3373 | { | 3458 | { |
3374 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3459 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3375 | u32 eecd; | 3460 | u32 eecd; |
3376 | u32 mask; | 3461 | u32 mask; |
3377 | 3462 | ||
3378 | /* We need to shift "count" bits out to the EEPROM. So, value in the | 3463 | /* We need to shift "count" bits out to the EEPROM. So, value in the |
3379 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | 3464 | * "data" parameter will be shifted out to the EEPROM one bit at a time. |
3380 | * In order to do this, "data" must be broken down into bits. | 3465 | * In order to do this, "data" must be broken down into bits. |
3381 | */ | 3466 | */ |
3382 | mask = 0x01 << (count - 1); | 3467 | mask = 0x01 << (count - 1); |
3383 | eecd = er32(EECD); | 3468 | eecd = er32(EECD); |
3384 | if (eeprom->type == e1000_eeprom_microwire) { | 3469 | if (eeprom->type == e1000_eeprom_microwire) { |
3385 | eecd &= ~E1000_EECD_DO; | 3470 | eecd &= ~E1000_EECD_DO; |
3386 | } else if (eeprom->type == e1000_eeprom_spi) { | 3471 | } else if (eeprom->type == e1000_eeprom_spi) { |
3387 | eecd |= E1000_EECD_DO; | 3472 | eecd |= E1000_EECD_DO; |
3388 | } | 3473 | } |
3389 | do { | 3474 | do { |
3390 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | 3475 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
3391 | * and then raising and then lowering the clock (the SK bit controls | 3476 | * and then raising and then lowering the clock (the SK bit controls |
3392 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM | 3477 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
3393 | * by setting "DI" to "0" and then raising and then lowering the clock. | 3478 | * by setting "DI" to "0" and then raising and then lowering the clock. |
3394 | */ | 3479 | */ |
3395 | eecd &= ~E1000_EECD_DI; | 3480 | eecd &= ~E1000_EECD_DI; |
3396 | 3481 | ||
3397 | if (data & mask) | 3482 | if (data & mask) |
3398 | eecd |= E1000_EECD_DI; | 3483 | eecd |= E1000_EECD_DI; |
3399 | 3484 | ||
3400 | ew32(EECD, eecd); | 3485 | ew32(EECD, eecd); |
3401 | E1000_WRITE_FLUSH(); | 3486 | E1000_WRITE_FLUSH(); |
3402 | 3487 | ||
3403 | udelay(eeprom->delay_usec); | 3488 | udelay(eeprom->delay_usec); |
3404 | 3489 | ||
3405 | e1000_raise_ee_clk(hw, &eecd); | 3490 | e1000_raise_ee_clk(hw, &eecd); |
3406 | e1000_lower_ee_clk(hw, &eecd); | 3491 | e1000_lower_ee_clk(hw, &eecd); |
3407 | 3492 | ||
3408 | mask = mask >> 1; | 3493 | mask = mask >> 1; |
3409 | 3494 | ||
3410 | } while (mask); | 3495 | } while (mask); |
3411 | 3496 | ||
3412 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | 3497 | /* We leave the "DI" bit set to "0" when we leave this routine. */ |
3413 | eecd &= ~E1000_EECD_DI; | 3498 | eecd &= ~E1000_EECD_DI; |
3414 | ew32(EECD, eecd); | 3499 | ew32(EECD, eecd); |
3415 | } | 3500 | } |
3416 | 3501 | ||
3417 | /****************************************************************************** | 3502 | /** |
3418 | * Shift data bits in from the EEPROM | 3503 | * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM |
3419 | * | 3504 | * @hw: Struct containing variables accessed by shared code |
3420 | * hw - Struct containing variables accessed by shared code | 3505 | * @count: number of bits to shift in |
3421 | *****************************************************************************/ | 3506 | */ |
3422 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) | 3507 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) |
3423 | { | 3508 | { |
3424 | u32 eecd; | 3509 | u32 eecd; |
3425 | u32 i; | 3510 | u32 i; |
3426 | u16 data; | 3511 | u16 data; |
3427 | 3512 | ||
3428 | /* In order to read a register from the EEPROM, we need to shift 'count' | 3513 | /* In order to read a register from the EEPROM, we need to shift 'count' |
3429 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | 3514 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
3430 | * input to the EEPROM (setting the SK bit), and then reading the value of | 3515 | * input to the EEPROM (setting the SK bit), and then reading the value of |
3431 | * the "DO" bit. During this "shifting in" process the "DI" bit should | 3516 | * the "DO" bit. During this "shifting in" process the "DI" bit should |
3432 | * always be clear. | 3517 | * always be clear. |
3433 | */ | 3518 | */ |
3434 | 3519 | ||
3435 | eecd = er32(EECD); | 3520 | eecd = er32(EECD); |
3436 | 3521 | ||
3437 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 3522 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
3438 | data = 0; | 3523 | data = 0; |
3439 | 3524 | ||
3440 | for (i = 0; i < count; i++) { | 3525 | for (i = 0; i < count; i++) { |
3441 | data = data << 1; | 3526 | data = data << 1; |
3442 | e1000_raise_ee_clk(hw, &eecd); | 3527 | e1000_raise_ee_clk(hw, &eecd); |
3443 | 3528 | ||
3444 | eecd = er32(EECD); | 3529 | eecd = er32(EECD); |
3445 | 3530 | ||
3446 | eecd &= ~(E1000_EECD_DI); | 3531 | eecd &= ~(E1000_EECD_DI); |
3447 | if (eecd & E1000_EECD_DO) | 3532 | if (eecd & E1000_EECD_DO) |
3448 | data |= 1; | 3533 | data |= 1; |
3449 | 3534 | ||
3450 | e1000_lower_ee_clk(hw, &eecd); | 3535 | e1000_lower_ee_clk(hw, &eecd); |
3451 | } | 3536 | } |
3452 | 3537 | ||
3453 | return data; | 3538 | return data; |
3454 | } | 3539 | } |
3455 | 3540 | ||
3456 | /****************************************************************************** | 3541 | /** |
3457 | * Prepares EEPROM for access | 3542 | * e1000_acquire_eeprom - Prepares EEPROM for access |
3458 | * | 3543 | * @hw: Struct containing variables accessed by shared code |
3459 | * hw - Struct containing variables accessed by shared code | ||
3460 | * | 3544 | * |
3461 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | 3545 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
3462 | * function should be called before issuing a command to the EEPROM. | 3546 | * function should be called before issuing a command to the EEPROM. |
3463 | *****************************************************************************/ | 3547 | */ |
3464 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw) | 3548 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw) |
3465 | { | 3549 | { |
3466 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3550 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3467 | u32 eecd, i=0; | 3551 | u32 eecd, i = 0; |
3468 | 3552 | ||
3469 | DEBUGFUNC("e1000_acquire_eeprom"); | 3553 | DEBUGFUNC("e1000_acquire_eeprom"); |
3470 | 3554 | ||
3471 | eecd = er32(EECD); | 3555 | eecd = er32(EECD); |
3472 | 3556 | ||
3473 | /* Request EEPROM Access */ | 3557 | /* Request EEPROM Access */ |
3474 | if (hw->mac_type > e1000_82544) { | 3558 | if (hw->mac_type > e1000_82544) { |
3475 | eecd |= E1000_EECD_REQ; | 3559 | eecd |= E1000_EECD_REQ; |
3476 | ew32(EECD, eecd); | 3560 | ew32(EECD, eecd); |
3477 | eecd = er32(EECD); | 3561 | eecd = er32(EECD); |
3478 | while ((!(eecd & E1000_EECD_GNT)) && | 3562 | while ((!(eecd & E1000_EECD_GNT)) && |
3479 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | 3563 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
3480 | i++; | 3564 | i++; |
3481 | udelay(5); | 3565 | udelay(5); |
3482 | eecd = er32(EECD); | 3566 | eecd = er32(EECD); |
3483 | } | 3567 | } |
3484 | if (!(eecd & E1000_EECD_GNT)) { | 3568 | if (!(eecd & E1000_EECD_GNT)) { |
3485 | eecd &= ~E1000_EECD_REQ; | 3569 | eecd &= ~E1000_EECD_REQ; |
3486 | ew32(EECD, eecd); | 3570 | ew32(EECD, eecd); |
3487 | DEBUGOUT("Could not acquire EEPROM grant\n"); | 3571 | DEBUGOUT("Could not acquire EEPROM grant\n"); |
3488 | return -E1000_ERR_EEPROM; | 3572 | return -E1000_ERR_EEPROM; |
3489 | } | 3573 | } |
3490 | } | 3574 | } |
3491 | 3575 | ||
3492 | /* Setup EEPROM for Read/Write */ | 3576 | /* Setup EEPROM for Read/Write */ |
3493 | 3577 | ||
3494 | if (eeprom->type == e1000_eeprom_microwire) { | 3578 | if (eeprom->type == e1000_eeprom_microwire) { |
3495 | /* Clear SK and DI */ | 3579 | /* Clear SK and DI */ |
3496 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | 3580 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
3497 | ew32(EECD, eecd); | 3581 | ew32(EECD, eecd); |
3498 | 3582 | ||
3499 | /* Set CS */ | 3583 | /* Set CS */ |
3500 | eecd |= E1000_EECD_CS; | 3584 | eecd |= E1000_EECD_CS; |
3501 | ew32(EECD, eecd); | 3585 | ew32(EECD, eecd); |
3502 | } else if (eeprom->type == e1000_eeprom_spi) { | 3586 | } else if (eeprom->type == e1000_eeprom_spi) { |
3503 | /* Clear SK and CS */ | 3587 | /* Clear SK and CS */ |
3504 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 3588 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
3505 | ew32(EECD, eecd); | 3589 | ew32(EECD, eecd); |
3506 | udelay(1); | 3590 | udelay(1); |
3507 | } | 3591 | } |
3508 | 3592 | ||
3509 | return E1000_SUCCESS; | 3593 | return E1000_SUCCESS; |
3510 | } | 3594 | } |
3511 | 3595 | ||
3512 | /****************************************************************************** | 3596 | /** |
3513 | * Returns EEPROM to a "standby" state | 3597 | * e1000_standby_eeprom - Returns EEPROM to a "standby" state |
3514 | * | 3598 | * @hw: Struct containing variables accessed by shared code |
3515 | * hw - Struct containing variables accessed by shared code | 3599 | */ |
3516 | *****************************************************************************/ | ||
3517 | static void e1000_standby_eeprom(struct e1000_hw *hw) | 3600 | static void e1000_standby_eeprom(struct e1000_hw *hw) |
3518 | { | 3601 | { |
3519 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3602 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3520 | u32 eecd; | 3603 | u32 eecd; |
3521 | 3604 | ||
3522 | eecd = er32(EECD); | 3605 | eecd = er32(EECD); |
3523 | 3606 | ||
3524 | if (eeprom->type == e1000_eeprom_microwire) { | 3607 | if (eeprom->type == e1000_eeprom_microwire) { |
3525 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 3608 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
3526 | ew32(EECD, eecd); | 3609 | ew32(EECD, eecd); |
3527 | E1000_WRITE_FLUSH(); | 3610 | E1000_WRITE_FLUSH(); |
3528 | udelay(eeprom->delay_usec); | 3611 | udelay(eeprom->delay_usec); |
3529 | 3612 | ||
3530 | /* Clock high */ | 3613 | /* Clock high */ |
3531 | eecd |= E1000_EECD_SK; | 3614 | eecd |= E1000_EECD_SK; |
3532 | ew32(EECD, eecd); | 3615 | ew32(EECD, eecd); |
3533 | E1000_WRITE_FLUSH(); | 3616 | E1000_WRITE_FLUSH(); |
3534 | udelay(eeprom->delay_usec); | 3617 | udelay(eeprom->delay_usec); |
3535 | 3618 | ||
3536 | /* Select EEPROM */ | 3619 | /* Select EEPROM */ |
3537 | eecd |= E1000_EECD_CS; | 3620 | eecd |= E1000_EECD_CS; |
3538 | ew32(EECD, eecd); | 3621 | ew32(EECD, eecd); |
3539 | E1000_WRITE_FLUSH(); | 3622 | E1000_WRITE_FLUSH(); |
3540 | udelay(eeprom->delay_usec); | 3623 | udelay(eeprom->delay_usec); |
3541 | 3624 | ||
3542 | /* Clock low */ | 3625 | /* Clock low */ |
3543 | eecd &= ~E1000_EECD_SK; | 3626 | eecd &= ~E1000_EECD_SK; |
3544 | ew32(EECD, eecd); | 3627 | ew32(EECD, eecd); |
3545 | E1000_WRITE_FLUSH(); | 3628 | E1000_WRITE_FLUSH(); |
3546 | udelay(eeprom->delay_usec); | 3629 | udelay(eeprom->delay_usec); |
3547 | } else if (eeprom->type == e1000_eeprom_spi) { | 3630 | } else if (eeprom->type == e1000_eeprom_spi) { |
3548 | /* Toggle CS to flush commands */ | 3631 | /* Toggle CS to flush commands */ |
3549 | eecd |= E1000_EECD_CS; | 3632 | eecd |= E1000_EECD_CS; |
3550 | ew32(EECD, eecd); | 3633 | ew32(EECD, eecd); |
3551 | E1000_WRITE_FLUSH(); | 3634 | E1000_WRITE_FLUSH(); |
3552 | udelay(eeprom->delay_usec); | 3635 | udelay(eeprom->delay_usec); |
3553 | eecd &= ~E1000_EECD_CS; | 3636 | eecd &= ~E1000_EECD_CS; |
3554 | ew32(EECD, eecd); | 3637 | ew32(EECD, eecd); |
3555 | E1000_WRITE_FLUSH(); | 3638 | E1000_WRITE_FLUSH(); |
3556 | udelay(eeprom->delay_usec); | 3639 | udelay(eeprom->delay_usec); |
3557 | } | 3640 | } |
3558 | } | 3641 | } |
3559 | 3642 | ||
3560 | /****************************************************************************** | 3643 | /** |
3561 | * Terminates a command by inverting the EEPROM's chip select pin | 3644 | * e1000_release_eeprom - drop chip select |
3645 | * @hw: Struct containing variables accessed by shared code | ||
3562 | * | 3646 | * |
3563 | * hw - Struct containing variables accessed by shared code | 3647 | * Terminates a command by inverting the EEPROM's chip select pin |
3564 | *****************************************************************************/ | 3648 | */ |
3565 | static void e1000_release_eeprom(struct e1000_hw *hw) | 3649 | static void e1000_release_eeprom(struct e1000_hw *hw) |
3566 | { | 3650 | { |
3567 | u32 eecd; | 3651 | u32 eecd; |
3568 | 3652 | ||
3569 | DEBUGFUNC("e1000_release_eeprom"); | 3653 | DEBUGFUNC("e1000_release_eeprom"); |
3570 | 3654 | ||
3571 | eecd = er32(EECD); | 3655 | eecd = er32(EECD); |
3572 | 3656 | ||
3573 | if (hw->eeprom.type == e1000_eeprom_spi) { | 3657 | if (hw->eeprom.type == e1000_eeprom_spi) { |
3574 | eecd |= E1000_EECD_CS; /* Pull CS high */ | 3658 | eecd |= E1000_EECD_CS; /* Pull CS high */ |
3575 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ | 3659 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ |
3576 | 3660 | ||
3577 | ew32(EECD, eecd); | 3661 | ew32(EECD, eecd); |
3578 | 3662 | ||
3579 | udelay(hw->eeprom.delay_usec); | 3663 | udelay(hw->eeprom.delay_usec); |
3580 | } else if (hw->eeprom.type == e1000_eeprom_microwire) { | 3664 | } else if (hw->eeprom.type == e1000_eeprom_microwire) { |
3581 | /* cleanup eeprom */ | 3665 | /* cleanup eeprom */ |
3582 | 3666 | ||
3583 | /* CS on Microwire is active-high */ | 3667 | /* CS on Microwire is active-high */ |
3584 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | 3668 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
3585 | 3669 | ||
3586 | ew32(EECD, eecd); | 3670 | ew32(EECD, eecd); |
3587 | 3671 | ||
3588 | /* Rising edge of clock */ | 3672 | /* Rising edge of clock */ |
3589 | eecd |= E1000_EECD_SK; | 3673 | eecd |= E1000_EECD_SK; |
3590 | ew32(EECD, eecd); | 3674 | ew32(EECD, eecd); |
3591 | E1000_WRITE_FLUSH(); | 3675 | E1000_WRITE_FLUSH(); |
3592 | udelay(hw->eeprom.delay_usec); | 3676 | udelay(hw->eeprom.delay_usec); |
3593 | 3677 | ||
3594 | /* Falling edge of clock */ | 3678 | /* Falling edge of clock */ |
3595 | eecd &= ~E1000_EECD_SK; | 3679 | eecd &= ~E1000_EECD_SK; |
3596 | ew32(EECD, eecd); | 3680 | ew32(EECD, eecd); |
3597 | E1000_WRITE_FLUSH(); | 3681 | E1000_WRITE_FLUSH(); |
3598 | udelay(hw->eeprom.delay_usec); | 3682 | udelay(hw->eeprom.delay_usec); |
3599 | } | 3683 | } |
3600 | 3684 | ||
3601 | /* Stop requesting EEPROM access */ | 3685 | /* Stop requesting EEPROM access */ |
3602 | if (hw->mac_type > e1000_82544) { | 3686 | if (hw->mac_type > e1000_82544) { |
3603 | eecd &= ~E1000_EECD_REQ; | 3687 | eecd &= ~E1000_EECD_REQ; |
3604 | ew32(EECD, eecd); | 3688 | ew32(EECD, eecd); |
3605 | } | 3689 | } |
3606 | } | 3690 | } |
3607 | 3691 | ||
3608 | /****************************************************************************** | 3692 | /** |
3609 | * Reads a 16 bit word from the EEPROM. | 3693 | * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. |
3610 | * | 3694 | * @hw: Struct containing variables accessed by shared code |
3611 | * hw - Struct containing variables accessed by shared code | 3695 | */ |
3612 | *****************************************************************************/ | ||
3613 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) | 3696 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) |
3614 | { | 3697 | { |
3615 | u16 retry_count = 0; | 3698 | u16 retry_count = 0; |
3616 | u8 spi_stat_reg; | 3699 | u8 spi_stat_reg; |
3617 | 3700 | ||
3618 | DEBUGFUNC("e1000_spi_eeprom_ready"); | 3701 | DEBUGFUNC("e1000_spi_eeprom_ready"); |
3619 | 3702 | ||
3620 | /* Read "Status Register" repeatedly until the LSB is cleared. The | 3703 | /* Read "Status Register" repeatedly until the LSB is cleared. The |
3621 | * EEPROM will signal that the command has been completed by clearing | 3704 | * EEPROM will signal that the command has been completed by clearing |
3622 | * bit 0 of the internal status register. If it's not cleared within | 3705 | * bit 0 of the internal status register. If it's not cleared within |
3623 | * 5 milliseconds, then error out. | 3706 | * 5 milliseconds, then error out. |
3624 | */ | 3707 | */ |
3625 | retry_count = 0; | 3708 | retry_count = 0; |
3626 | do { | 3709 | do { |
3627 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | 3710 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, |
3628 | hw->eeprom.opcode_bits); | 3711 | hw->eeprom.opcode_bits); |
3629 | spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8); | 3712 | spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); |
3630 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | 3713 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) |
3631 | break; | 3714 | break; |
3632 | 3715 | ||
3633 | udelay(5); | 3716 | udelay(5); |
3634 | retry_count += 5; | 3717 | retry_count += 5; |
3635 | 3718 | ||
3636 | e1000_standby_eeprom(hw); | 3719 | e1000_standby_eeprom(hw); |
3637 | } while (retry_count < EEPROM_MAX_RETRY_SPI); | 3720 | } while (retry_count < EEPROM_MAX_RETRY_SPI); |
3638 | 3721 | ||
3639 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | 3722 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
3640 | * only 0-5mSec on 5V devices) | 3723 | * only 0-5mSec on 5V devices) |
3641 | */ | 3724 | */ |
3642 | if (retry_count >= EEPROM_MAX_RETRY_SPI) { | 3725 | if (retry_count >= EEPROM_MAX_RETRY_SPI) { |
3643 | DEBUGOUT("SPI EEPROM Status error\n"); | 3726 | DEBUGOUT("SPI EEPROM Status error\n"); |
3644 | return -E1000_ERR_EEPROM; | 3727 | return -E1000_ERR_EEPROM; |
3645 | } | 3728 | } |
3646 | 3729 | ||
3647 | return E1000_SUCCESS; | 3730 | return E1000_SUCCESS; |
3648 | } | 3731 | } |
3649 | 3732 | ||
3650 | /****************************************************************************** | 3733 | /** |
3651 | * Reads a 16 bit word from the EEPROM. | 3734 | * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. |
3652 | * | 3735 | * @hw: Struct containing variables accessed by shared code |
3653 | * hw - Struct containing variables accessed by shared code | 3736 | * @offset: offset of word in the EEPROM to read |
3654 | * offset - offset of word in the EEPROM to read | 3737 | * @data: word read from the EEPROM |
3655 | * data - word read from the EEPROM | 3738 | * @words: number of words to read |
3656 | * words - number of words to read | 3739 | */ |
3657 | *****************************************************************************/ | ||
3658 | s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 3740 | s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
3659 | { | 3741 | { |
3660 | s32 ret; | 3742 | s32 ret; |
3661 | spin_lock(&e1000_eeprom_lock); | 3743 | spin_lock(&e1000_eeprom_lock); |
3662 | ret = e1000_do_read_eeprom(hw, offset, words, data); | 3744 | ret = e1000_do_read_eeprom(hw, offset, words, data); |
3663 | spin_unlock(&e1000_eeprom_lock); | 3745 | spin_unlock(&e1000_eeprom_lock); |
3664 | return ret; | 3746 | return ret; |
3665 | } | 3747 | } |
3666 | 3748 | ||
3667 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 3749 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
3750 | u16 *data) | ||
3668 | { | 3751 | { |
3669 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3752 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3670 | u32 i = 0; | 3753 | u32 i = 0; |
3671 | 3754 | ||
3672 | DEBUGFUNC("e1000_read_eeprom"); | 3755 | DEBUGFUNC("e1000_read_eeprom"); |
3673 | 3756 | ||
3674 | /* If eeprom is not yet detected, do so now */ | 3757 | /* If eeprom is not yet detected, do so now */ |
3675 | if (eeprom->word_size == 0) | 3758 | if (eeprom->word_size == 0) |
3676 | e1000_init_eeprom_params(hw); | 3759 | e1000_init_eeprom_params(hw); |
3677 | 3760 | ||
3678 | /* A check for invalid values: offset too large, too many words, and not | 3761 | /* A check for invalid values: offset too large, too many words, and not |
3679 | * enough words. | 3762 | * enough words. |
3680 | */ | 3763 | */ |
3681 | if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | 3764 | if ((offset >= eeprom->word_size) |
3682 | (words == 0)) { | 3765 | || (words > eeprom->word_size - offset) || (words == 0)) { |
3683 | DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size); | 3766 | DEBUGOUT2 |
3684 | return -E1000_ERR_EEPROM; | 3767 | ("\"words\" parameter out of bounds. Words = %d, size = %d\n", |
3685 | } | 3768 | offset, eeprom->word_size); |
3686 | 3769 | return -E1000_ERR_EEPROM; | |
3687 | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI | 3770 | } |
3688 | * directly. In this case, we need to acquire the EEPROM so that | 3771 | |
3689 | * FW or other port software does not interrupt. | 3772 | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI |
3690 | */ | 3773 | * directly. In this case, we need to acquire the EEPROM so that |
3691 | if (!hw->eeprom.use_eerd) { | 3774 | * FW or other port software does not interrupt. |
3692 | /* Prepare the EEPROM for bit-bang reading */ | 3775 | */ |
3693 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 3776 | if (!hw->eeprom.use_eerd) { |
3694 | return -E1000_ERR_EEPROM; | 3777 | /* Prepare the EEPROM for bit-bang reading */ |
3695 | } | 3778 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
3696 | 3779 | return -E1000_ERR_EEPROM; | |
3697 | /* Eerd register EEPROM access requires no eeprom aquire/release */ | 3780 | } |
3698 | if (eeprom->use_eerd) | 3781 | |
3699 | return e1000_read_eeprom_eerd(hw, offset, words, data); | 3782 | /* Eerd register EEPROM access requires no eeprom aquire/release */ |
3700 | 3783 | if (eeprom->use_eerd) | |
3701 | /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have | 3784 | return e1000_read_eeprom_eerd(hw, offset, words, data); |
3702 | * acquired the EEPROM at this point, so any returns should relase it */ | 3785 | |
3703 | if (eeprom->type == e1000_eeprom_spi) { | 3786 | /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
3704 | u16 word_in; | 3787 | * acquired the EEPROM at this point, so any returns should release it */ |
3705 | u8 read_opcode = EEPROM_READ_OPCODE_SPI; | 3788 | if (eeprom->type == e1000_eeprom_spi) { |
3706 | 3789 | u16 word_in; | |
3707 | if (e1000_spi_eeprom_ready(hw)) { | 3790 | u8 read_opcode = EEPROM_READ_OPCODE_SPI; |
3708 | e1000_release_eeprom(hw); | 3791 | |
3709 | return -E1000_ERR_EEPROM; | 3792 | if (e1000_spi_eeprom_ready(hw)) { |
3710 | } | 3793 | e1000_release_eeprom(hw); |
3711 | 3794 | return -E1000_ERR_EEPROM; | |
3712 | e1000_standby_eeprom(hw); | 3795 | } |
3713 | 3796 | ||
3714 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 3797 | e1000_standby_eeprom(hw); |
3715 | if ((eeprom->address_bits == 8) && (offset >= 128)) | 3798 | |
3716 | read_opcode |= EEPROM_A8_OPCODE_SPI; | 3799 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
3717 | 3800 | if ((eeprom->address_bits == 8) && (offset >= 128)) | |
3718 | /* Send the READ command (opcode + addr) */ | 3801 | read_opcode |= EEPROM_A8_OPCODE_SPI; |
3719 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | 3802 | |
3720 | e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits); | 3803 | /* Send the READ command (opcode + addr) */ |
3721 | 3804 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | |
3722 | /* Read the data. The address of the eeprom internally increments with | 3805 | e1000_shift_out_ee_bits(hw, (u16) (offset * 2), |
3723 | * each byte (spi) being read, saving on the overhead of eeprom setup | 3806 | eeprom->address_bits); |
3724 | * and tear-down. The address counter will roll over if reading beyond | 3807 | |
3725 | * the size of the eeprom, thus allowing the entire memory to be read | 3808 | /* Read the data. The address of the eeprom internally increments with |
3726 | * starting from any offset. */ | 3809 | * each byte (spi) being read, saving on the overhead of eeprom setup |
3727 | for (i = 0; i < words; i++) { | 3810 | * and tear-down. The address counter will roll over if reading beyond |
3728 | word_in = e1000_shift_in_ee_bits(hw, 16); | 3811 | * the size of the eeprom, thus allowing the entire memory to be read |
3729 | data[i] = (word_in >> 8) | (word_in << 8); | 3812 | * starting from any offset. */ |
3730 | } | 3813 | for (i = 0; i < words; i++) { |
3731 | } else if (eeprom->type == e1000_eeprom_microwire) { | 3814 | word_in = e1000_shift_in_ee_bits(hw, 16); |
3732 | for (i = 0; i < words; i++) { | 3815 | data[i] = (word_in >> 8) | (word_in << 8); |
3733 | /* Send the READ command (opcode + addr) */ | 3816 | } |
3734 | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, | 3817 | } else if (eeprom->type == e1000_eeprom_microwire) { |
3735 | eeprom->opcode_bits); | 3818 | for (i = 0; i < words; i++) { |
3736 | e1000_shift_out_ee_bits(hw, (u16)(offset + i), | 3819 | /* Send the READ command (opcode + addr) */ |
3737 | eeprom->address_bits); | 3820 | e1000_shift_out_ee_bits(hw, |
3738 | 3821 | EEPROM_READ_OPCODE_MICROWIRE, | |
3739 | /* Read the data. For microwire, each word requires the overhead | 3822 | eeprom->opcode_bits); |
3740 | * of eeprom setup and tear-down. */ | 3823 | e1000_shift_out_ee_bits(hw, (u16) (offset + i), |
3741 | data[i] = e1000_shift_in_ee_bits(hw, 16); | 3824 | eeprom->address_bits); |
3742 | e1000_standby_eeprom(hw); | 3825 | |
3743 | } | 3826 | /* Read the data. For microwire, each word requires the overhead |
3744 | } | 3827 | * of eeprom setup and tear-down. */ |
3745 | 3828 | data[i] = e1000_shift_in_ee_bits(hw, 16); | |
3746 | /* End this read operation */ | 3829 | e1000_standby_eeprom(hw); |
3747 | e1000_release_eeprom(hw); | 3830 | } |
3748 | 3831 | } | |
3749 | return E1000_SUCCESS; | 3832 | |
3833 | /* End this read operation */ | ||
3834 | e1000_release_eeprom(hw); | ||
3835 | |||
3836 | return E1000_SUCCESS; | ||
3750 | } | 3837 | } |
3751 | 3838 | ||
3752 | /****************************************************************************** | 3839 | /** |
3753 | * Reads a 16 bit word from the EEPROM using the EERD register. | 3840 | * Reads a 16 bit word from the EEPROM using the EERD register. |
3754 | * | 3841 | * |
3755 | * hw - Struct containing variables accessed by shared code | 3842 | * @hw: Struct containing variables accessed by shared code |
3756 | * offset - offset of word in the EEPROM to read | 3843 | * offset - offset of word in the EEPROM to read |
3757 | * data - word read from the EEPROM | 3844 | * data - word read from the EEPROM |
3758 | * words - number of words to read | 3845 | * words - number of words to read |
3759 | *****************************************************************************/ | 3846 | */ |
3760 | static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, | 3847 | static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, |
3761 | u16 *data) | 3848 | u16 *data) |
3762 | { | 3849 | { |
3763 | u32 i, eerd = 0; | 3850 | u32 i, eerd = 0; |
3764 | s32 error = 0; | 3851 | s32 error = 0; |
3765 | 3852 | ||
3766 | for (i = 0; i < words; i++) { | 3853 | for (i = 0; i < words; i++) { |
3767 | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + | 3854 | eerd = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) + |
3768 | E1000_EEPROM_RW_REG_START; | 3855 | E1000_EEPROM_RW_REG_START; |
3769 | 3856 | ||
3770 | ew32(EERD, eerd); | 3857 | ew32(EERD, eerd); |
3771 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); | 3858 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); |
3772 | 3859 | ||
3773 | if (error) { | 3860 | if (error) { |
3774 | break; | 3861 | break; |
3775 | } | 3862 | } |
3776 | data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA); | 3863 | data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA); |
3777 | 3864 | ||
3778 | } | 3865 | } |
3779 | 3866 | ||
3780 | return error; | 3867 | return error; |
3781 | } | 3868 | } |
3782 | 3869 | ||
3783 | /****************************************************************************** | 3870 | /** |
3784 | * Writes a 16 bit word from the EEPROM using the EEWR register. | 3871 | * Writes a 16 bit word from the EEPROM using the EEWR register. |
3785 | * | 3872 | * |
3786 | * hw - Struct containing variables accessed by shared code | 3873 | * @hw: Struct containing variables accessed by shared code |
3787 | * offset - offset of word in the EEPROM to read | 3874 | * offset - offset of word in the EEPROM to read |
3788 | * data - word read from the EEPROM | 3875 | * data - word read from the EEPROM |
3789 | * words - number of words to read | 3876 | * words - number of words to read |
3790 | *****************************************************************************/ | 3877 | */ |
3791 | static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, | 3878 | static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, |
3792 | u16 *data) | 3879 | u16 *data) |
3793 | { | 3880 | { |
3794 | u32 register_value = 0; | 3881 | u32 register_value = 0; |
3795 | u32 i = 0; | 3882 | u32 i = 0; |
3796 | s32 error = 0; | 3883 | s32 error = 0; |
3797 | 3884 | ||
3885 | for (i = 0; i < words; i++) { | ||
3886 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | | ||
3887 | ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) | | ||
3888 | E1000_EEPROM_RW_REG_START; | ||
3798 | 3889 | ||
3799 | for (i = 0; i < words; i++) { | 3890 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); |
3800 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | | 3891 | if (error) { |
3801 | ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | | 3892 | break; |
3802 | E1000_EEPROM_RW_REG_START; | 3893 | } |
3803 | |||
3804 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | ||
3805 | if (error) { | ||
3806 | break; | ||
3807 | } | ||
3808 | 3894 | ||
3809 | ew32(EEWR, register_value); | 3895 | ew32(EEWR, register_value); |
3810 | 3896 | ||
3811 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | 3897 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); |
3812 | 3898 | ||
3813 | if (error) { | 3899 | if (error) { |
3814 | break; | 3900 | break; |
3815 | } | 3901 | } |
3816 | } | 3902 | } |
3817 | 3903 | ||
3818 | return error; | 3904 | return error; |
3819 | } | 3905 | } |
3820 | 3906 | ||
3821 | /****************************************************************************** | 3907 | /** |
3822 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | 3908 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. |
3823 | * | 3909 | * |
3824 | * hw - Struct containing variables accessed by shared code | 3910 | * @hw: Struct containing variables accessed by shared code |
3825 | *****************************************************************************/ | 3911 | */ |
3826 | static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | 3912 | static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) |
3827 | { | 3913 | { |
3828 | u32 attempts = 100000; | 3914 | u32 attempts = 100000; |
3829 | u32 i, reg = 0; | 3915 | u32 i, reg = 0; |
3830 | s32 done = E1000_ERR_EEPROM; | 3916 | s32 done = E1000_ERR_EEPROM; |
3831 | 3917 | ||
3832 | for (i = 0; i < attempts; i++) { | 3918 | for (i = 0; i < attempts; i++) { |
3833 | if (eerd == E1000_EEPROM_POLL_READ) | 3919 | if (eerd == E1000_EEPROM_POLL_READ) |
3834 | reg = er32(EERD); | 3920 | reg = er32(EERD); |
3835 | else | 3921 | else |
3836 | reg = er32(EEWR); | 3922 | reg = er32(EEWR); |
3837 | 3923 | ||
3838 | if (reg & E1000_EEPROM_RW_REG_DONE) { | 3924 | if (reg & E1000_EEPROM_RW_REG_DONE) { |
3839 | done = E1000_SUCCESS; | 3925 | done = E1000_SUCCESS; |
3840 | break; | 3926 | break; |
3841 | } | 3927 | } |
3842 | udelay(5); | 3928 | udelay(5); |
3843 | } | 3929 | } |
3844 | 3930 | ||
3845 | return done; | 3931 | return done; |
3846 | } | 3932 | } |
3847 | 3933 | ||
3848 | /****************************************************************************** | 3934 | /** |
3849 | * Verifies that the EEPROM has a valid checksum | 3935 | * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum |
3850 | * | 3936 | * @hw: Struct containing variables accessed by shared code |
3851 | * hw - Struct containing variables accessed by shared code | ||
3852 | * | 3937 | * |
3853 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | 3938 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
3854 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | 3939 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
3855 | * valid. | 3940 | * valid. |
3856 | *****************************************************************************/ | 3941 | */ |
3857 | s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) | 3942 | s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
3858 | { | 3943 | { |
3859 | u16 checksum = 0; | 3944 | u16 checksum = 0; |
3860 | u16 i, eeprom_data; | 3945 | u16 i, eeprom_data; |
3861 | 3946 | ||
3862 | DEBUGFUNC("e1000_validate_eeprom_checksum"); | 3947 | DEBUGFUNC("e1000_validate_eeprom_checksum"); |
3863 | 3948 | ||
3864 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 3949 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
3865 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 3950 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
3866 | DEBUGOUT("EEPROM Read Error\n"); | 3951 | DEBUGOUT("EEPROM Read Error\n"); |
3867 | return -E1000_ERR_EEPROM; | 3952 | return -E1000_ERR_EEPROM; |
3868 | } | 3953 | } |
3869 | checksum += eeprom_data; | 3954 | checksum += eeprom_data; |
3870 | } | 3955 | } |
3871 | 3956 | ||
3872 | if (checksum == (u16)EEPROM_SUM) | 3957 | if (checksum == (u16) EEPROM_SUM) |
3873 | return E1000_SUCCESS; | 3958 | return E1000_SUCCESS; |
3874 | else { | 3959 | else { |
3875 | DEBUGOUT("EEPROM Checksum Invalid\n"); | 3960 | DEBUGOUT("EEPROM Checksum Invalid\n"); |
3876 | return -E1000_ERR_EEPROM; | 3961 | return -E1000_ERR_EEPROM; |
3877 | } | 3962 | } |
3878 | } | 3963 | } |
3879 | 3964 | ||
3880 | /****************************************************************************** | 3965 | /** |
3881 | * Calculates the EEPROM checksum and writes it to the EEPROM | 3966 | * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum |
3882 | * | 3967 | * @hw: Struct containing variables accessed by shared code |
3883 | * hw - Struct containing variables accessed by shared code | ||
3884 | * | 3968 | * |
3885 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | 3969 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. |
3886 | * Writes the difference to word offset 63 of the EEPROM. | 3970 | * Writes the difference to word offset 63 of the EEPROM. |
3887 | *****************************************************************************/ | 3971 | */ |
3888 | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) | 3972 | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) |
3889 | { | 3973 | { |
3890 | u16 checksum = 0; | 3974 | u16 checksum = 0; |
3891 | u16 i, eeprom_data; | 3975 | u16 i, eeprom_data; |
3892 | 3976 | ||
3893 | DEBUGFUNC("e1000_update_eeprom_checksum"); | 3977 | DEBUGFUNC("e1000_update_eeprom_checksum"); |
3894 | 3978 | ||
3895 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { | 3979 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { |
3896 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 3980 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
3897 | DEBUGOUT("EEPROM Read Error\n"); | 3981 | DEBUGOUT("EEPROM Read Error\n"); |
3898 | return -E1000_ERR_EEPROM; | 3982 | return -E1000_ERR_EEPROM; |
3899 | } | 3983 | } |
3900 | checksum += eeprom_data; | 3984 | checksum += eeprom_data; |
3901 | } | 3985 | } |
3902 | checksum = (u16)EEPROM_SUM - checksum; | 3986 | checksum = (u16) EEPROM_SUM - checksum; |
3903 | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 3987 | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
3904 | DEBUGOUT("EEPROM Write Error\n"); | 3988 | DEBUGOUT("EEPROM Write Error\n"); |
3905 | return -E1000_ERR_EEPROM; | 3989 | return -E1000_ERR_EEPROM; |
3906 | } | 3990 | } |
3907 | return E1000_SUCCESS; | 3991 | return E1000_SUCCESS; |
3908 | } | 3992 | } |
3909 | 3993 | ||
3910 | /****************************************************************************** | 3994 | /** |
3911 | * Parent function for writing words to the different EEPROM types. | 3995 | * e1000_write_eeprom - write words to the different EEPROM types. |
3912 | * | 3996 | * @hw: Struct containing variables accessed by shared code |
3913 | * hw - Struct containing variables accessed by shared code | 3997 | * @offset: offset within the EEPROM to be written to |
3914 | * offset - offset within the EEPROM to be written to | 3998 | * @words: number of words to write |
3915 | * words - number of words to write | 3999 | * @data: 16 bit word to be written to the EEPROM |
3916 | * data - 16 bit word to be written to the EEPROM | ||
3917 | * | 4000 | * |
3918 | * If e1000_update_eeprom_checksum is not called after this function, the | 4001 | * If e1000_update_eeprom_checksum is not called after this function, the |
3919 | * EEPROM will most likely contain an invalid checksum. | 4002 | * EEPROM will most likely contain an invalid checksum. |
3920 | *****************************************************************************/ | 4003 | */ |
3921 | s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 4004 | s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
3922 | { | 4005 | { |
3923 | s32 ret; | 4006 | s32 ret; |
3924 | spin_lock(&e1000_eeprom_lock); | 4007 | spin_lock(&e1000_eeprom_lock); |
3925 | ret = e1000_do_write_eeprom(hw, offset, words, data); | 4008 | ret = e1000_do_write_eeprom(hw, offset, words, data); |
3926 | spin_unlock(&e1000_eeprom_lock); | 4009 | spin_unlock(&e1000_eeprom_lock); |
3927 | return ret; | 4010 | return ret; |
3928 | } | 4011 | } |
3929 | 4012 | ||
3930 | 4013 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | |
3931 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 4014 | u16 *data) |
3932 | { | 4015 | { |
3933 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 4016 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3934 | s32 status = 0; | 4017 | s32 status = 0; |
3935 | 4018 | ||
3936 | DEBUGFUNC("e1000_write_eeprom"); | 4019 | DEBUGFUNC("e1000_write_eeprom"); |
3937 | 4020 | ||
3938 | /* If eeprom is not yet detected, do so now */ | 4021 | /* If eeprom is not yet detected, do so now */ |
3939 | if (eeprom->word_size == 0) | 4022 | if (eeprom->word_size == 0) |
3940 | e1000_init_eeprom_params(hw); | 4023 | e1000_init_eeprom_params(hw); |
3941 | 4024 | ||
3942 | /* A check for invalid values: offset too large, too many words, and not | 4025 | /* A check for invalid values: offset too large, too many words, and not |
3943 | * enough words. | 4026 | * enough words. |
3944 | */ | 4027 | */ |
3945 | if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | 4028 | if ((offset >= eeprom->word_size) |
3946 | (words == 0)) { | 4029 | || (words > eeprom->word_size - offset) || (words == 0)) { |
3947 | DEBUGOUT("\"words\" parameter out of bounds\n"); | 4030 | DEBUGOUT("\"words\" parameter out of bounds\n"); |
3948 | return -E1000_ERR_EEPROM; | 4031 | return -E1000_ERR_EEPROM; |
3949 | } | 4032 | } |
3950 | 4033 | ||
3951 | if (eeprom->use_eewr) | 4034 | if (eeprom->use_eewr) |
3952 | return e1000_write_eeprom_eewr(hw, offset, words, data); | 4035 | return e1000_write_eeprom_eewr(hw, offset, words, data); |
3953 | 4036 | ||
3954 | /* Prepare the EEPROM for writing */ | 4037 | /* Prepare the EEPROM for writing */ |
3955 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 4038 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
3956 | return -E1000_ERR_EEPROM; | 4039 | return -E1000_ERR_EEPROM; |
3957 | 4040 | ||
3958 | if (eeprom->type == e1000_eeprom_microwire) { | 4041 | if (eeprom->type == e1000_eeprom_microwire) { |
3959 | status = e1000_write_eeprom_microwire(hw, offset, words, data); | 4042 | status = e1000_write_eeprom_microwire(hw, offset, words, data); |
3960 | } else { | 4043 | } else { |
3961 | status = e1000_write_eeprom_spi(hw, offset, words, data); | 4044 | status = e1000_write_eeprom_spi(hw, offset, words, data); |
3962 | msleep(10); | 4045 | msleep(10); |
3963 | } | 4046 | } |
3964 | 4047 | ||
3965 | /* Done with writing */ | 4048 | /* Done with writing */ |
3966 | e1000_release_eeprom(hw); | 4049 | e1000_release_eeprom(hw); |
3967 | 4050 | ||
3968 | return status; | 4051 | return status; |
3969 | } | 4052 | } |
3970 | 4053 | ||
3971 | /****************************************************************************** | 4054 | /** |
3972 | * Writes a 16 bit word to a given offset in an SPI EEPROM. | 4055 | * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. |
3973 | * | 4056 | * @hw: Struct containing variables accessed by shared code |
3974 | * hw - Struct containing variables accessed by shared code | 4057 | * @offset: offset within the EEPROM to be written to |
3975 | * offset - offset within the EEPROM to be written to | 4058 | * @words: number of words to write |
3976 | * words - number of words to write | 4059 | * @data: pointer to array of 8 bit words to be written to the EEPROM |
3977 | * data - pointer to array of 8 bit words to be written to the EEPROM | 4060 | */ |
3978 | * | ||
3979 | *****************************************************************************/ | ||
3980 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, | 4061 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, |
3981 | u16 *data) | 4062 | u16 *data) |
3982 | { | 4063 | { |
3983 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 4064 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3984 | u16 widx = 0; | 4065 | u16 widx = 0; |
3985 | 4066 | ||
3986 | DEBUGFUNC("e1000_write_eeprom_spi"); | 4067 | DEBUGFUNC("e1000_write_eeprom_spi"); |
3987 | 4068 | ||
3988 | while (widx < words) { | 4069 | while (widx < words) { |
3989 | u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; | 4070 | u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; |
3990 | 4071 | ||
3991 | if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; | 4072 | if (e1000_spi_eeprom_ready(hw)) |
4073 | return -E1000_ERR_EEPROM; | ||
3992 | 4074 | ||
3993 | e1000_standby_eeprom(hw); | 4075 | e1000_standby_eeprom(hw); |
3994 | 4076 | ||
3995 | /* Send the WRITE ENABLE command (8 bit opcode ) */ | 4077 | /* Send the WRITE ENABLE command (8 bit opcode ) */ |
3996 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | 4078 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, |
3997 | eeprom->opcode_bits); | 4079 | eeprom->opcode_bits); |
3998 | 4080 | ||
3999 | e1000_standby_eeprom(hw); | 4081 | e1000_standby_eeprom(hw); |
4000 | 4082 | ||
4001 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 4083 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
4002 | if ((eeprom->address_bits == 8) && (offset >= 128)) | 4084 | if ((eeprom->address_bits == 8) && (offset >= 128)) |
4003 | write_opcode |= EEPROM_A8_OPCODE_SPI; | 4085 | write_opcode |= EEPROM_A8_OPCODE_SPI; |
4004 | 4086 | ||
4005 | /* Send the Write command (8-bit opcode + addr) */ | 4087 | /* Send the Write command (8-bit opcode + addr) */ |
4006 | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | 4088 | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); |
4007 | 4089 | ||
4008 | e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2), | 4090 | e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), |
4009 | eeprom->address_bits); | 4091 | eeprom->address_bits); |
4010 | 4092 | ||
4011 | /* Send the data */ | 4093 | /* Send the data */ |
4012 | 4094 | ||
4013 | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ | 4095 | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ |
4014 | while (widx < words) { | 4096 | while (widx < words) { |
4015 | u16 word_out = data[widx]; | 4097 | u16 word_out = data[widx]; |
4016 | word_out = (word_out >> 8) | (word_out << 8); | 4098 | word_out = (word_out >> 8) | (word_out << 8); |
4017 | e1000_shift_out_ee_bits(hw, word_out, 16); | 4099 | e1000_shift_out_ee_bits(hw, word_out, 16); |
4018 | widx++; | 4100 | widx++; |
4019 | 4101 | ||
4020 | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE | 4102 | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE |
4021 | * operation, while the smaller eeproms are capable of an 8-byte | 4103 | * operation, while the smaller eeproms are capable of an 8-byte |
4022 | * PAGE WRITE operation. Break the inner loop to pass new address | 4104 | * PAGE WRITE operation. Break the inner loop to pass new address |
4023 | */ | 4105 | */ |
4024 | if ((((offset + widx)*2) % eeprom->page_size) == 0) { | 4106 | if ((((offset + widx) * 2) % eeprom->page_size) == 0) { |
4025 | e1000_standby_eeprom(hw); | 4107 | e1000_standby_eeprom(hw); |
4026 | break; | 4108 | break; |
4027 | } | 4109 | } |
4028 | } | 4110 | } |
4029 | } | 4111 | } |
4030 | 4112 | ||
4031 | return E1000_SUCCESS; | 4113 | return E1000_SUCCESS; |
4032 | } | 4114 | } |
4033 | 4115 | ||
4034 | /****************************************************************************** | 4116 | /** |
4035 | * Writes a 16 bit word to a given offset in a Microwire EEPROM. | 4117 | * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. |
4036 | * | 4118 | * @hw: Struct containing variables accessed by shared code |
4037 | * hw - Struct containing variables accessed by shared code | 4119 | * @offset: offset within the EEPROM to be written to |
4038 | * offset - offset within the EEPROM to be written to | 4120 | * @words: number of words to write |
4039 | * words - number of words to write | 4121 | * @data: pointer to array of 8 bit words to be written to the EEPROM |
4040 | * data - pointer to array of 16 bit words to be written to the EEPROM | 4122 | */ |
4041 | * | ||
4042 | *****************************************************************************/ | ||
4043 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 4123 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
4044 | u16 words, u16 *data) | 4124 | u16 words, u16 *data) |
4045 | { | 4125 | { |
4046 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 4126 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
4047 | u32 eecd; | 4127 | u32 eecd; |
4048 | u16 words_written = 0; | 4128 | u16 words_written = 0; |
4049 | u16 i = 0; | 4129 | u16 i = 0; |
4050 | 4130 | ||
4051 | DEBUGFUNC("e1000_write_eeprom_microwire"); | 4131 | DEBUGFUNC("e1000_write_eeprom_microwire"); |
4052 | 4132 | ||
4053 | /* Send the write enable command to the EEPROM (3-bit opcode plus | 4133 | /* Send the write enable command to the EEPROM (3-bit opcode plus |
4054 | * 6/8-bit dummy address beginning with 11). It's less work to include | 4134 | * 6/8-bit dummy address beginning with 11). It's less work to include |
4055 | * the 11 of the dummy address as part of the opcode than it is to shift | 4135 | * the 11 of the dummy address as part of the opcode than it is to shift |
4056 | * it over the correct number of bits for the address. This puts the | 4136 | * it over the correct number of bits for the address. This puts the |
4057 | * EEPROM into write/erase mode. | 4137 | * EEPROM into write/erase mode. |
4058 | */ | 4138 | */ |
4059 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | 4139 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, |
4060 | (u16)(eeprom->opcode_bits + 2)); | 4140 | (u16) (eeprom->opcode_bits + 2)); |
4061 | 4141 | ||
4062 | e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); | 4142 | e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); |
4063 | 4143 | ||
4064 | /* Prepare the EEPROM */ | 4144 | /* Prepare the EEPROM */ |
4065 | e1000_standby_eeprom(hw); | 4145 | e1000_standby_eeprom(hw); |
4066 | 4146 | ||
4067 | while (words_written < words) { | 4147 | while (words_written < words) { |
4068 | /* Send the Write command (3-bit opcode + addr) */ | 4148 | /* Send the Write command (3-bit opcode + addr) */ |
4069 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | 4149 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, |
4070 | eeprom->opcode_bits); | 4150 | eeprom->opcode_bits); |
4071 | 4151 | ||
4072 | e1000_shift_out_ee_bits(hw, (u16)(offset + words_written), | 4152 | e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), |
4073 | eeprom->address_bits); | 4153 | eeprom->address_bits); |
4074 | 4154 | ||
4075 | /* Send the data */ | 4155 | /* Send the data */ |
4076 | e1000_shift_out_ee_bits(hw, data[words_written], 16); | 4156 | e1000_shift_out_ee_bits(hw, data[words_written], 16); |
4077 | 4157 | ||
4078 | /* Toggle the CS line. This in effect tells the EEPROM to execute | 4158 | /* Toggle the CS line. This in effect tells the EEPROM to execute |
4079 | * the previous command. | 4159 | * the previous command. |
4080 | */ | 4160 | */ |
4081 | e1000_standby_eeprom(hw); | 4161 | e1000_standby_eeprom(hw); |
4082 | 4162 | ||
4083 | /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will | 4163 | /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will |
4084 | * signal that the command has been completed by raising the DO signal. | 4164 | * signal that the command has been completed by raising the DO signal. |
4085 | * If DO does not go high in 10 milliseconds, then error out. | 4165 | * If DO does not go high in 10 milliseconds, then error out. |
4086 | */ | 4166 | */ |
4087 | for (i = 0; i < 200; i++) { | 4167 | for (i = 0; i < 200; i++) { |
4088 | eecd = er32(EECD); | 4168 | eecd = er32(EECD); |
4089 | if (eecd & E1000_EECD_DO) break; | 4169 | if (eecd & E1000_EECD_DO) |
4090 | udelay(50); | 4170 | break; |
4091 | } | 4171 | udelay(50); |
4092 | if (i == 200) { | 4172 | } |
4093 | DEBUGOUT("EEPROM Write did not complete\n"); | 4173 | if (i == 200) { |
4094 | return -E1000_ERR_EEPROM; | 4174 | DEBUGOUT("EEPROM Write did not complete\n"); |
4095 | } | 4175 | return -E1000_ERR_EEPROM; |
4096 | 4176 | } | |
4097 | /* Recover from write */ | 4177 | |
4098 | e1000_standby_eeprom(hw); | 4178 | /* Recover from write */ |
4099 | 4179 | e1000_standby_eeprom(hw); | |
4100 | words_written++; | 4180 | |
4101 | } | 4181 | words_written++; |
4102 | 4182 | } | |
4103 | /* Send the write disable command to the EEPROM (3-bit opcode plus | 4183 | |
4104 | * 6/8-bit dummy address beginning with 10). It's less work to include | 4184 | /* Send the write disable command to the EEPROM (3-bit opcode plus |
4105 | * the 10 of the dummy address as part of the opcode than it is to shift | 4185 | * 6/8-bit dummy address beginning with 10). It's less work to include |
4106 | * it over the correct number of bits for the address. This takes the | 4186 | * the 10 of the dummy address as part of the opcode than it is to shift |
4107 | * EEPROM out of write/erase mode. | 4187 | * it over the correct number of bits for the address. This takes the |
4108 | */ | 4188 | * EEPROM out of write/erase mode. |
4109 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | 4189 | */ |
4110 | (u16)(eeprom->opcode_bits + 2)); | 4190 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, |
4111 | 4191 | (u16) (eeprom->opcode_bits + 2)); | |
4112 | e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); | 4192 | |
4113 | 4193 | e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); | |
4114 | return E1000_SUCCESS; | 4194 | |
4195 | return E1000_SUCCESS; | ||
4115 | } | 4196 | } |
4116 | 4197 | ||
4117 | /****************************************************************************** | 4198 | /** |
4199 | * e1000_read_mac_addr - read the adapters MAC from eeprom | ||
4200 | * @hw: Struct containing variables accessed by shared code | ||
4201 | * | ||
4118 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | 4202 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
4119 | * second function of dual function devices | 4203 | * second function of dual function devices |
4120 | * | 4204 | */ |
4121 | * hw - Struct containing variables accessed by shared code | ||
4122 | *****************************************************************************/ | ||
4123 | s32 e1000_read_mac_addr(struct e1000_hw *hw) | 4205 | s32 e1000_read_mac_addr(struct e1000_hw *hw) |
4124 | { | 4206 | { |
4125 | u16 offset; | 4207 | u16 offset; |
4126 | u16 eeprom_data, i; | 4208 | u16 eeprom_data, i; |
4127 | 4209 | ||
4128 | DEBUGFUNC("e1000_read_mac_addr"); | 4210 | DEBUGFUNC("e1000_read_mac_addr"); |
4129 | 4211 | ||
4130 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | 4212 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
4131 | offset = i >> 1; | 4213 | offset = i >> 1; |
4132 | if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | 4214 | if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
4133 | DEBUGOUT("EEPROM Read Error\n"); | 4215 | DEBUGOUT("EEPROM Read Error\n"); |
4134 | return -E1000_ERR_EEPROM; | 4216 | return -E1000_ERR_EEPROM; |
4135 | } | 4217 | } |
4136 | hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF); | 4218 | hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); |
4137 | hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8); | 4219 | hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); |
4138 | } | 4220 | } |
4139 | 4221 | ||
4140 | switch (hw->mac_type) { | 4222 | switch (hw->mac_type) { |
4141 | default: | 4223 | default: |
4142 | break; | 4224 | break; |
4143 | case e1000_82546: | 4225 | case e1000_82546: |
4144 | case e1000_82546_rev_3: | 4226 | case e1000_82546_rev_3: |
4145 | if (er32(STATUS) & E1000_STATUS_FUNC_1) | 4227 | if (er32(STATUS) & E1000_STATUS_FUNC_1) |
4146 | hw->perm_mac_addr[5] ^= 0x01; | 4228 | hw->perm_mac_addr[5] ^= 0x01; |
4147 | break; | 4229 | break; |
4148 | } | 4230 | } |
4149 | 4231 | ||
4150 | for (i = 0; i < NODE_ADDRESS_SIZE; i++) | 4232 | for (i = 0; i < NODE_ADDRESS_SIZE; i++) |
4151 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | 4233 | hw->mac_addr[i] = hw->perm_mac_addr[i]; |
4152 | return E1000_SUCCESS; | 4234 | return E1000_SUCCESS; |
4153 | } | 4235 | } |
4154 | 4236 | ||
4155 | /****************************************************************************** | 4237 | /** |
4156 | * Initializes receive address filters. | 4238 | * e1000_init_rx_addrs - Initializes receive address filters. |
4157 | * | 4239 | * @hw: Struct containing variables accessed by shared code |
4158 | * hw - Struct containing variables accessed by shared code | ||
4159 | * | 4240 | * |
4160 | * Places the MAC address in receive address register 0 and clears the rest | 4241 | * Places the MAC address in receive address register 0 and clears the rest |
4161 | * of the receive addresss registers. Clears the multicast table. Assumes | 4242 | * of the receive address registers. Clears the multicast table. Assumes |
4162 | * the receiver is in reset when the routine is called. | 4243 | * the receiver is in reset when the routine is called. |
4163 | *****************************************************************************/ | 4244 | */ |
4164 | static void e1000_init_rx_addrs(struct e1000_hw *hw) | 4245 | static void e1000_init_rx_addrs(struct e1000_hw *hw) |
4165 | { | 4246 | { |
4166 | u32 i; | 4247 | u32 i; |
4167 | u32 rar_num; | 4248 | u32 rar_num; |
4168 | 4249 | ||
4169 | DEBUGFUNC("e1000_init_rx_addrs"); | 4250 | DEBUGFUNC("e1000_init_rx_addrs"); |
4170 | 4251 | ||
4171 | /* Setup the receive address. */ | 4252 | /* Setup the receive address. */ |
4172 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | 4253 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
4173 | 4254 | ||
4174 | e1000_rar_set(hw, hw->mac_addr, 0); | 4255 | e1000_rar_set(hw, hw->mac_addr, 0); |
4175 | 4256 | ||
4176 | rar_num = E1000_RAR_ENTRIES; | 4257 | rar_num = E1000_RAR_ENTRIES; |
4177 | 4258 | ||
4178 | /* Zero out the other 15 receive addresses. */ | 4259 | /* Zero out the other 15 receive addresses. */ |
4179 | DEBUGOUT("Clearing RAR[1-15]\n"); | 4260 | DEBUGOUT("Clearing RAR[1-15]\n"); |
4180 | for (i = 1; i < rar_num; i++) { | 4261 | for (i = 1; i < rar_num; i++) { |
4181 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 4262 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
4182 | E1000_WRITE_FLUSH(); | 4263 | E1000_WRITE_FLUSH(); |
4183 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 4264 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
4184 | E1000_WRITE_FLUSH(); | 4265 | E1000_WRITE_FLUSH(); |
4185 | } | 4266 | } |
4186 | } | 4267 | } |
4187 | 4268 | ||
4188 | /****************************************************************************** | 4269 | /** |
4189 | * Hashes an address to determine its location in the multicast table | 4270 | * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table |
4190 | * | 4271 | * @hw: Struct containing variables accessed by shared code |
4191 | * hw - Struct containing variables accessed by shared code | 4272 | * @mc_addr: the multicast address to hash |
4192 | * mc_addr - the multicast address to hash | 4273 | */ |
4193 | *****************************************************************************/ | ||
4194 | u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | 4274 | u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) |
4195 | { | 4275 | { |
4196 | u32 hash_value = 0; | 4276 | u32 hash_value = 0; |
4197 | 4277 | ||
4198 | /* The portion of the address that is used for the hash table is | 4278 | /* The portion of the address that is used for the hash table is |
4199 | * determined by the mc_filter_type setting. | 4279 | * determined by the mc_filter_type setting. |
4200 | */ | 4280 | */ |
4201 | switch (hw->mc_filter_type) { | 4281 | switch (hw->mc_filter_type) { |
4202 | /* [0] [1] [2] [3] [4] [5] | 4282 | /* [0] [1] [2] [3] [4] [5] |
4203 | * 01 AA 00 12 34 56 | 4283 | * 01 AA 00 12 34 56 |
4204 | * LSB MSB | 4284 | * LSB MSB |
4205 | */ | 4285 | */ |
4206 | case 0: | 4286 | case 0: |
4207 | /* [47:36] i.e. 0x563 for above example address */ | 4287 | /* [47:36] i.e. 0x563 for above example address */ |
4208 | hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | 4288 | hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); |
4209 | break; | 4289 | break; |
4210 | case 1: | 4290 | case 1: |
4211 | /* [46:35] i.e. 0xAC6 for above example address */ | 4291 | /* [46:35] i.e. 0xAC6 for above example address */ |
4212 | hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); | 4292 | hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); |
4213 | break; | 4293 | break; |
4214 | case 2: | 4294 | case 2: |
4215 | /* [45:34] i.e. 0x5D8 for above example address */ | 4295 | /* [45:34] i.e. 0x5D8 for above example address */ |
4216 | hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | 4296 | hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); |
4217 | break; | 4297 | break; |
4218 | case 3: | 4298 | case 3: |
4219 | /* [43:32] i.e. 0x634 for above example address */ | 4299 | /* [43:32] i.e. 0x634 for above example address */ |
4220 | hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); | 4300 | hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); |
4221 | break; | 4301 | break; |
4222 | } | 4302 | } |
4223 | 4303 | ||
4224 | hash_value &= 0xFFF; | 4304 | hash_value &= 0xFFF; |
4225 | return hash_value; | 4305 | return hash_value; |
4226 | } | 4306 | } |
4227 | 4307 | ||
4228 | /****************************************************************************** | 4308 | /** |
4229 | * Puts an ethernet address into a receive address register. | 4309 | * e1000_rar_set - Puts an ethernet address into a receive address register. |
4230 | * | 4310 | * @hw: Struct containing variables accessed by shared code |
4231 | * hw - Struct containing variables accessed by shared code | 4311 | * @addr: Address to put into receive address register |
4232 | * addr - Address to put into receive address register | 4312 | * @index: Receive address register to write |
4233 | * index - Receive address register to write | 4313 | */ |
4234 | *****************************************************************************/ | ||
4235 | void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | 4314 | void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) |
4236 | { | 4315 | { |
4237 | u32 rar_low, rar_high; | 4316 | u32 rar_low, rar_high; |
4238 | 4317 | ||
4239 | /* HW expects these in little endian so we reverse the byte order | 4318 | /* HW expects these in little endian so we reverse the byte order |
4240 | * from network order (big endian) to little endian | 4319 | * from network order (big endian) to little endian |
4241 | */ | 4320 | */ |
4242 | rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | | 4321 | rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | |
4243 | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); | 4322 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
4244 | rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); | 4323 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
4245 | 4324 | ||
4246 | /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx | 4325 | /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx |
4247 | * unit hang. | 4326 | * unit hang. |
4248 | * | 4327 | * |
4249 | * Description: | 4328 | * Description: |
4250 | * If there are any Rx frames queued up or otherwise present in the HW | 4329 | * If there are any Rx frames queued up or otherwise present in the HW |
4251 | * before RSS is enabled, and then we enable RSS, the HW Rx unit will | 4330 | * before RSS is enabled, and then we enable RSS, the HW Rx unit will |
4252 | * hang. To work around this issue, we have to disable receives and | 4331 | * hang. To work around this issue, we have to disable receives and |
4253 | * flush out all Rx frames before we enable RSS. To do so, we modify we | 4332 | * flush out all Rx frames before we enable RSS. To do so, we modify we |
4254 | * redirect all Rx traffic to manageability and then reset the HW. | 4333 | * redirect all Rx traffic to manageability and then reset the HW. |
4255 | * This flushes away Rx frames, and (since the redirections to | 4334 | * This flushes away Rx frames, and (since the redirections to |
4256 | * manageability persists across resets) keeps new ones from coming in | 4335 | * manageability persists across resets) keeps new ones from coming in |
4257 | * while we work. Then, we clear the Address Valid AV bit for all MAC | 4336 | * while we work. Then, we clear the Address Valid AV bit for all MAC |
4258 | * addresses and undo the re-direction to manageability. | 4337 | * addresses and undo the re-direction to manageability. |
4259 | * Now, frames are coming in again, but the MAC won't accept them, so | 4338 | * Now, frames are coming in again, but the MAC won't accept them, so |
4260 | * far so good. We now proceed to initialize RSS (if necessary) and | 4339 | * far so good. We now proceed to initialize RSS (if necessary) and |
4261 | * configure the Rx unit. Last, we re-enable the AV bits and continue | 4340 | * configure the Rx unit. Last, we re-enable the AV bits and continue |
4262 | * on our merry way. | 4341 | * on our merry way. |
4263 | */ | 4342 | */ |
4264 | switch (hw->mac_type) { | 4343 | switch (hw->mac_type) { |
4265 | default: | 4344 | default: |
4266 | /* Indicate to hardware the Address is Valid. */ | 4345 | /* Indicate to hardware the Address is Valid. */ |
4267 | rar_high |= E1000_RAH_AV; | 4346 | rar_high |= E1000_RAH_AV; |
4268 | break; | 4347 | break; |
4269 | } | 4348 | } |
4270 | 4349 | ||
4271 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | 4350 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
4272 | E1000_WRITE_FLUSH(); | 4351 | E1000_WRITE_FLUSH(); |
4273 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | 4352 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
4274 | E1000_WRITE_FLUSH(); | 4353 | E1000_WRITE_FLUSH(); |
4275 | } | 4354 | } |
4276 | 4355 | ||
4277 | /****************************************************************************** | 4356 | /** |
4278 | * Writes a value to the specified offset in the VLAN filter table. | 4357 | * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. |
4279 | * | 4358 | * @hw: Struct containing variables accessed by shared code |
4280 | * hw - Struct containing variables accessed by shared code | 4359 | * @offset: Offset in VLAN filer table to write |
4281 | * offset - Offset in VLAN filer table to write | 4360 | * @value: Value to write into VLAN filter table |
4282 | * value - Value to write into VLAN filter table | 4361 | */ |
4283 | *****************************************************************************/ | ||
4284 | void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | 4362 | void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) |
4285 | { | 4363 | { |
4286 | u32 temp; | 4364 | u32 temp; |
4287 | 4365 | ||
4288 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 4366 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { |
4289 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 4367 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
4290 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 4368 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
4291 | E1000_WRITE_FLUSH(); | 4369 | E1000_WRITE_FLUSH(); |
4292 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 4370 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
4293 | E1000_WRITE_FLUSH(); | 4371 | E1000_WRITE_FLUSH(); |
4294 | } else { | 4372 | } else { |
4295 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 4373 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
4296 | E1000_WRITE_FLUSH(); | 4374 | E1000_WRITE_FLUSH(); |
4297 | } | 4375 | } |
4298 | } | 4376 | } |
4299 | 4377 | ||
4300 | /****************************************************************************** | 4378 | /** |
4301 | * Clears the VLAN filer table | 4379 | * e1000_clear_vfta - Clears the VLAN filer table |
4302 | * | 4380 | * @hw: Struct containing variables accessed by shared code |
4303 | * hw - Struct containing variables accessed by shared code | 4381 | */ |
4304 | *****************************************************************************/ | ||
4305 | static void e1000_clear_vfta(struct e1000_hw *hw) | 4382 | static void e1000_clear_vfta(struct e1000_hw *hw) |
4306 | { | 4383 | { |
4307 | u32 offset; | 4384 | u32 offset; |
4308 | u32 vfta_value = 0; | 4385 | u32 vfta_value = 0; |
4309 | u32 vfta_offset = 0; | 4386 | u32 vfta_offset = 0; |
4310 | u32 vfta_bit_in_reg = 0; | 4387 | u32 vfta_bit_in_reg = 0; |
4311 | 4388 | ||
4312 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 4389 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
4313 | /* If the offset we want to clear is the same offset of the | 4390 | /* If the offset we want to clear is the same offset of the |
4314 | * manageability VLAN ID, then clear all bits except that of the | 4391 | * manageability VLAN ID, then clear all bits except that of the |
4315 | * manageability unit */ | 4392 | * manageability unit */ |
4316 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 4393 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
4317 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | 4394 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
4318 | E1000_WRITE_FLUSH(); | 4395 | E1000_WRITE_FLUSH(); |
4319 | } | 4396 | } |
4320 | } | 4397 | } |
4321 | 4398 | ||
4322 | static s32 e1000_id_led_init(struct e1000_hw *hw) | 4399 | static s32 e1000_id_led_init(struct e1000_hw *hw) |
4323 | { | 4400 | { |
4324 | u32 ledctl; | 4401 | u32 ledctl; |
4325 | const u32 ledctl_mask = 0x000000FF; | 4402 | const u32 ledctl_mask = 0x000000FF; |
4326 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 4403 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
4327 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 4404 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
4328 | u16 eeprom_data, i, temp; | 4405 | u16 eeprom_data, i, temp; |
4329 | const u16 led_mask = 0x0F; | 4406 | const u16 led_mask = 0x0F; |
4330 | 4407 | ||
4331 | DEBUGFUNC("e1000_id_led_init"); | 4408 | DEBUGFUNC("e1000_id_led_init"); |
4332 | 4409 | ||
4333 | if (hw->mac_type < e1000_82540) { | 4410 | if (hw->mac_type < e1000_82540) { |
4334 | /* Nothing to do */ | 4411 | /* Nothing to do */ |
4335 | return E1000_SUCCESS; | 4412 | return E1000_SUCCESS; |
4336 | } | 4413 | } |
4337 | 4414 | ||
4338 | ledctl = er32(LEDCTL); | 4415 | ledctl = er32(LEDCTL); |
4339 | hw->ledctl_default = ledctl; | 4416 | hw->ledctl_default = ledctl; |
4340 | hw->ledctl_mode1 = hw->ledctl_default; | 4417 | hw->ledctl_mode1 = hw->ledctl_default; |
4341 | hw->ledctl_mode2 = hw->ledctl_default; | 4418 | hw->ledctl_mode2 = hw->ledctl_default; |
4342 | 4419 | ||
4343 | if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { | 4420 | if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { |
4344 | DEBUGOUT("EEPROM Read Error\n"); | 4421 | DEBUGOUT("EEPROM Read Error\n"); |
4345 | return -E1000_ERR_EEPROM; | 4422 | return -E1000_ERR_EEPROM; |
4346 | } | 4423 | } |
4347 | 4424 | ||
4348 | if ((eeprom_data == ID_LED_RESERVED_0000) || | 4425 | if ((eeprom_data == ID_LED_RESERVED_0000) || |
4349 | (eeprom_data == ID_LED_RESERVED_FFFF)) { | 4426 | (eeprom_data == ID_LED_RESERVED_FFFF)) { |
4350 | eeprom_data = ID_LED_DEFAULT; | 4427 | eeprom_data = ID_LED_DEFAULT; |
4351 | } | 4428 | } |
4352 | 4429 | ||
4353 | for (i = 0; i < 4; i++) { | 4430 | for (i = 0; i < 4; i++) { |
4354 | temp = (eeprom_data >> (i << 2)) & led_mask; | 4431 | temp = (eeprom_data >> (i << 2)) & led_mask; |
4355 | switch (temp) { | 4432 | switch (temp) { |
4356 | case ID_LED_ON1_DEF2: | 4433 | case ID_LED_ON1_DEF2: |
4357 | case ID_LED_ON1_ON2: | 4434 | case ID_LED_ON1_ON2: |
4358 | case ID_LED_ON1_OFF2: | 4435 | case ID_LED_ON1_OFF2: |
4359 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 4436 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
4360 | hw->ledctl_mode1 |= ledctl_on << (i << 3); | 4437 | hw->ledctl_mode1 |= ledctl_on << (i << 3); |
4361 | break; | 4438 | break; |
4362 | case ID_LED_OFF1_DEF2: | 4439 | case ID_LED_OFF1_DEF2: |
4363 | case ID_LED_OFF1_ON2: | 4440 | case ID_LED_OFF1_ON2: |
4364 | case ID_LED_OFF1_OFF2: | 4441 | case ID_LED_OFF1_OFF2: |
4365 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 4442 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
4366 | hw->ledctl_mode1 |= ledctl_off << (i << 3); | 4443 | hw->ledctl_mode1 |= ledctl_off << (i << 3); |
4367 | break; | 4444 | break; |
4368 | default: | 4445 | default: |
4369 | /* Do nothing */ | 4446 | /* Do nothing */ |
4370 | break; | 4447 | break; |
4371 | } | 4448 | } |
4372 | switch (temp) { | 4449 | switch (temp) { |
4373 | case ID_LED_DEF1_ON2: | 4450 | case ID_LED_DEF1_ON2: |
4374 | case ID_LED_ON1_ON2: | 4451 | case ID_LED_ON1_ON2: |
4375 | case ID_LED_OFF1_ON2: | 4452 | case ID_LED_OFF1_ON2: |
4376 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 4453 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
4377 | hw->ledctl_mode2 |= ledctl_on << (i << 3); | 4454 | hw->ledctl_mode2 |= ledctl_on << (i << 3); |
4378 | break; | 4455 | break; |
4379 | case ID_LED_DEF1_OFF2: | 4456 | case ID_LED_DEF1_OFF2: |
4380 | case ID_LED_ON1_OFF2: | 4457 | case ID_LED_ON1_OFF2: |
4381 | case ID_LED_OFF1_OFF2: | 4458 | case ID_LED_OFF1_OFF2: |
4382 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 4459 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
4383 | hw->ledctl_mode2 |= ledctl_off << (i << 3); | 4460 | hw->ledctl_mode2 |= ledctl_off << (i << 3); |
4384 | break; | 4461 | break; |
4385 | default: | 4462 | default: |
4386 | /* Do nothing */ | 4463 | /* Do nothing */ |
4387 | break; | 4464 | break; |
4388 | } | 4465 | } |
4389 | } | 4466 | } |
4390 | return E1000_SUCCESS; | 4467 | return E1000_SUCCESS; |
4391 | } | 4468 | } |
4392 | 4469 | ||
4393 | /****************************************************************************** | 4470 | /** |
4394 | * Prepares SW controlable LED for use and saves the current state of the LED. | 4471 | * e1000_setup_led |
4472 | * @hw: Struct containing variables accessed by shared code | ||
4395 | * | 4473 | * |
4396 | * hw - Struct containing variables accessed by shared code | 4474 | * Prepares SW controlable LED for use and saves the current state of the LED. |
4397 | *****************************************************************************/ | 4475 | */ |
4398 | s32 e1000_setup_led(struct e1000_hw *hw) | 4476 | s32 e1000_setup_led(struct e1000_hw *hw) |
4399 | { | 4477 | { |
4400 | u32 ledctl; | 4478 | u32 ledctl; |
4401 | s32 ret_val = E1000_SUCCESS; | 4479 | s32 ret_val = E1000_SUCCESS; |
4402 | 4480 | ||
4403 | DEBUGFUNC("e1000_setup_led"); | 4481 | DEBUGFUNC("e1000_setup_led"); |
4404 | 4482 | ||
4405 | switch (hw->mac_type) { | 4483 | switch (hw->mac_type) { |
4406 | case e1000_82542_rev2_0: | 4484 | case e1000_82542_rev2_0: |
4407 | case e1000_82542_rev2_1: | 4485 | case e1000_82542_rev2_1: |
4408 | case e1000_82543: | 4486 | case e1000_82543: |
4409 | case e1000_82544: | 4487 | case e1000_82544: |
4410 | /* No setup necessary */ | 4488 | /* No setup necessary */ |
4411 | break; | 4489 | break; |
4412 | case e1000_82541: | 4490 | case e1000_82541: |
4413 | case e1000_82547: | 4491 | case e1000_82547: |
4414 | case e1000_82541_rev_2: | 4492 | case e1000_82541_rev_2: |
4415 | case e1000_82547_rev_2: | 4493 | case e1000_82547_rev_2: |
4416 | /* Turn off PHY Smart Power Down (if enabled) */ | 4494 | /* Turn off PHY Smart Power Down (if enabled) */ |
4417 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | 4495 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, |
4418 | &hw->phy_spd_default); | 4496 | &hw->phy_spd_default); |
4419 | if (ret_val) | 4497 | if (ret_val) |
4420 | return ret_val; | 4498 | return ret_val; |
4421 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 4499 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
4422 | (u16)(hw->phy_spd_default & | 4500 | (u16) (hw->phy_spd_default & |
4423 | ~IGP01E1000_GMII_SPD)); | 4501 | ~IGP01E1000_GMII_SPD)); |
4424 | if (ret_val) | 4502 | if (ret_val) |
4425 | return ret_val; | 4503 | return ret_val; |
4426 | /* Fall Through */ | 4504 | /* Fall Through */ |
4427 | default: | 4505 | default: |
4428 | if (hw->media_type == e1000_media_type_fiber) { | 4506 | if (hw->media_type == e1000_media_type_fiber) { |
4429 | ledctl = er32(LEDCTL); | 4507 | ledctl = er32(LEDCTL); |
4430 | /* Save current LEDCTL settings */ | 4508 | /* Save current LEDCTL settings */ |
4431 | hw->ledctl_default = ledctl; | 4509 | hw->ledctl_default = ledctl; |
4432 | /* Turn off LED0 */ | 4510 | /* Turn off LED0 */ |
4433 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | 4511 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | |
4434 | E1000_LEDCTL_LED0_BLINK | | 4512 | E1000_LEDCTL_LED0_BLINK | |
4435 | E1000_LEDCTL_LED0_MODE_MASK); | 4513 | E1000_LEDCTL_LED0_MODE_MASK); |
4436 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | 4514 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << |
4437 | E1000_LEDCTL_LED0_MODE_SHIFT); | 4515 | E1000_LEDCTL_LED0_MODE_SHIFT); |
4438 | ew32(LEDCTL, ledctl); | 4516 | ew32(LEDCTL, ledctl); |
4439 | } else if (hw->media_type == e1000_media_type_copper) | 4517 | } else if (hw->media_type == e1000_media_type_copper) |
4440 | ew32(LEDCTL, hw->ledctl_mode1); | 4518 | ew32(LEDCTL, hw->ledctl_mode1); |
4441 | break; | 4519 | break; |
4442 | } | 4520 | } |
4443 | 4521 | ||
4444 | return E1000_SUCCESS; | 4522 | return E1000_SUCCESS; |
4445 | } | 4523 | } |
4446 | 4524 | ||
4447 | /****************************************************************************** | 4525 | /** |
4448 | * Restores the saved state of the SW controlable LED. | 4526 | * e1000_cleanup_led - Restores the saved state of the SW controlable LED. |
4449 | * | 4527 | * @hw: Struct containing variables accessed by shared code |
4450 | * hw - Struct containing variables accessed by shared code | 4528 | */ |
4451 | *****************************************************************************/ | ||
4452 | s32 e1000_cleanup_led(struct e1000_hw *hw) | 4529 | s32 e1000_cleanup_led(struct e1000_hw *hw) |
4453 | { | 4530 | { |
4454 | s32 ret_val = E1000_SUCCESS; | 4531 | s32 ret_val = E1000_SUCCESS; |
4455 | 4532 | ||
4456 | DEBUGFUNC("e1000_cleanup_led"); | 4533 | DEBUGFUNC("e1000_cleanup_led"); |
4457 | 4534 | ||
4458 | switch (hw->mac_type) { | 4535 | switch (hw->mac_type) { |
4459 | case e1000_82542_rev2_0: | 4536 | case e1000_82542_rev2_0: |
4460 | case e1000_82542_rev2_1: | 4537 | case e1000_82542_rev2_1: |
4461 | case e1000_82543: | 4538 | case e1000_82543: |
4462 | case e1000_82544: | 4539 | case e1000_82544: |
4463 | /* No cleanup necessary */ | 4540 | /* No cleanup necessary */ |
4464 | break; | 4541 | break; |
4465 | case e1000_82541: | 4542 | case e1000_82541: |
4466 | case e1000_82547: | 4543 | case e1000_82547: |
4467 | case e1000_82541_rev_2: | 4544 | case e1000_82541_rev_2: |
4468 | case e1000_82547_rev_2: | 4545 | case e1000_82547_rev_2: |
4469 | /* Turn on PHY Smart Power Down (if previously enabled) */ | 4546 | /* Turn on PHY Smart Power Down (if previously enabled) */ |
4470 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 4547 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
4471 | hw->phy_spd_default); | 4548 | hw->phy_spd_default); |
4472 | if (ret_val) | 4549 | if (ret_val) |
4473 | return ret_val; | 4550 | return ret_val; |
4474 | /* Fall Through */ | 4551 | /* Fall Through */ |
4475 | default: | 4552 | default: |
4476 | /* Restore LEDCTL settings */ | 4553 | /* Restore LEDCTL settings */ |
4477 | ew32(LEDCTL, hw->ledctl_default); | 4554 | ew32(LEDCTL, hw->ledctl_default); |
4478 | break; | 4555 | break; |
4479 | } | 4556 | } |
4480 | 4557 | ||
4481 | return E1000_SUCCESS; | 4558 | return E1000_SUCCESS; |
4482 | } | 4559 | } |
4483 | 4560 | ||
4484 | /****************************************************************************** | 4561 | /** |
4485 | * Turns on the software controllable LED | 4562 | * e1000_led_on - Turns on the software controllable LED |
4486 | * | 4563 | * @hw: Struct containing variables accessed by shared code |
4487 | * hw - Struct containing variables accessed by shared code | 4564 | */ |
4488 | *****************************************************************************/ | ||
4489 | s32 e1000_led_on(struct e1000_hw *hw) | 4565 | s32 e1000_led_on(struct e1000_hw *hw) |
4490 | { | 4566 | { |
4491 | u32 ctrl = er32(CTRL); | 4567 | u32 ctrl = er32(CTRL); |
4492 | 4568 | ||
4493 | DEBUGFUNC("e1000_led_on"); | 4569 | DEBUGFUNC("e1000_led_on"); |
4494 | 4570 | ||
4495 | switch (hw->mac_type) { | 4571 | switch (hw->mac_type) { |
4496 | case e1000_82542_rev2_0: | 4572 | case e1000_82542_rev2_0: |
4497 | case e1000_82542_rev2_1: | 4573 | case e1000_82542_rev2_1: |
4498 | case e1000_82543: | 4574 | case e1000_82543: |
4499 | /* Set SW Defineable Pin 0 to turn on the LED */ | 4575 | /* Set SW Defineable Pin 0 to turn on the LED */ |
4500 | ctrl |= E1000_CTRL_SWDPIN0; | 4576 | ctrl |= E1000_CTRL_SWDPIN0; |
4501 | ctrl |= E1000_CTRL_SWDPIO0; | 4577 | ctrl |= E1000_CTRL_SWDPIO0; |
4502 | break; | 4578 | break; |
4503 | case e1000_82544: | 4579 | case e1000_82544: |
4504 | if (hw->media_type == e1000_media_type_fiber) { | 4580 | if (hw->media_type == e1000_media_type_fiber) { |
4505 | /* Set SW Defineable Pin 0 to turn on the LED */ | 4581 | /* Set SW Defineable Pin 0 to turn on the LED */ |
4506 | ctrl |= E1000_CTRL_SWDPIN0; | 4582 | ctrl |= E1000_CTRL_SWDPIN0; |
4507 | ctrl |= E1000_CTRL_SWDPIO0; | 4583 | ctrl |= E1000_CTRL_SWDPIO0; |
4508 | } else { | 4584 | } else { |
4509 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 4585 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
4510 | ctrl &= ~E1000_CTRL_SWDPIN0; | 4586 | ctrl &= ~E1000_CTRL_SWDPIN0; |
4511 | ctrl |= E1000_CTRL_SWDPIO0; | 4587 | ctrl |= E1000_CTRL_SWDPIO0; |
4512 | } | 4588 | } |
4513 | break; | 4589 | break; |
4514 | default: | 4590 | default: |
4515 | if (hw->media_type == e1000_media_type_fiber) { | 4591 | if (hw->media_type == e1000_media_type_fiber) { |
4516 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 4592 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
4517 | ctrl &= ~E1000_CTRL_SWDPIN0; | 4593 | ctrl &= ~E1000_CTRL_SWDPIN0; |
4518 | ctrl |= E1000_CTRL_SWDPIO0; | 4594 | ctrl |= E1000_CTRL_SWDPIO0; |
4519 | } else if (hw->media_type == e1000_media_type_copper) { | 4595 | } else if (hw->media_type == e1000_media_type_copper) { |
4520 | ew32(LEDCTL, hw->ledctl_mode2); | 4596 | ew32(LEDCTL, hw->ledctl_mode2); |
4521 | return E1000_SUCCESS; | 4597 | return E1000_SUCCESS; |
4522 | } | 4598 | } |
4523 | break; | 4599 | break; |
4524 | } | 4600 | } |
4525 | 4601 | ||
4526 | ew32(CTRL, ctrl); | 4602 | ew32(CTRL, ctrl); |
4527 | 4603 | ||
4528 | return E1000_SUCCESS; | 4604 | return E1000_SUCCESS; |
4529 | } | 4605 | } |
4530 | 4606 | ||
4531 | /****************************************************************************** | 4607 | /** |
4532 | * Turns off the software controllable LED | 4608 | * e1000_led_off - Turns off the software controllable LED |
4533 | * | 4609 | * @hw: Struct containing variables accessed by shared code |
4534 | * hw - Struct containing variables accessed by shared code | 4610 | */ |
4535 | *****************************************************************************/ | ||
4536 | s32 e1000_led_off(struct e1000_hw *hw) | 4611 | s32 e1000_led_off(struct e1000_hw *hw) |
4537 | { | 4612 | { |
4538 | u32 ctrl = er32(CTRL); | 4613 | u32 ctrl = er32(CTRL); |
4539 | 4614 | ||
4540 | DEBUGFUNC("e1000_led_off"); | 4615 | DEBUGFUNC("e1000_led_off"); |
4541 | 4616 | ||
4542 | switch (hw->mac_type) { | 4617 | switch (hw->mac_type) { |
4543 | case e1000_82542_rev2_0: | 4618 | case e1000_82542_rev2_0: |
4544 | case e1000_82542_rev2_1: | 4619 | case e1000_82542_rev2_1: |
4545 | case e1000_82543: | 4620 | case e1000_82543: |
4546 | /* Clear SW Defineable Pin 0 to turn off the LED */ | 4621 | /* Clear SW Defineable Pin 0 to turn off the LED */ |
4547 | ctrl &= ~E1000_CTRL_SWDPIN0; | 4622 | ctrl &= ~E1000_CTRL_SWDPIN0; |
4548 | ctrl |= E1000_CTRL_SWDPIO0; | 4623 | ctrl |= E1000_CTRL_SWDPIO0; |
4549 | break; | 4624 | break; |
4550 | case e1000_82544: | 4625 | case e1000_82544: |
4551 | if (hw->media_type == e1000_media_type_fiber) { | 4626 | if (hw->media_type == e1000_media_type_fiber) { |
4552 | /* Clear SW Defineable Pin 0 to turn off the LED */ | 4627 | /* Clear SW Defineable Pin 0 to turn off the LED */ |
4553 | ctrl &= ~E1000_CTRL_SWDPIN0; | 4628 | ctrl &= ~E1000_CTRL_SWDPIN0; |
4554 | ctrl |= E1000_CTRL_SWDPIO0; | 4629 | ctrl |= E1000_CTRL_SWDPIO0; |
4555 | } else { | 4630 | } else { |
4556 | /* Set SW Defineable Pin 0 to turn off the LED */ | 4631 | /* Set SW Defineable Pin 0 to turn off the LED */ |
4557 | ctrl |= E1000_CTRL_SWDPIN0; | 4632 | ctrl |= E1000_CTRL_SWDPIN0; |
4558 | ctrl |= E1000_CTRL_SWDPIO0; | 4633 | ctrl |= E1000_CTRL_SWDPIO0; |
4559 | } | 4634 | } |
4560 | break; | 4635 | break; |
4561 | default: | 4636 | default: |
4562 | if (hw->media_type == e1000_media_type_fiber) { | 4637 | if (hw->media_type == e1000_media_type_fiber) { |
4563 | /* Set SW Defineable Pin 0 to turn off the LED */ | 4638 | /* Set SW Defineable Pin 0 to turn off the LED */ |
4564 | ctrl |= E1000_CTRL_SWDPIN0; | 4639 | ctrl |= E1000_CTRL_SWDPIN0; |
4565 | ctrl |= E1000_CTRL_SWDPIO0; | 4640 | ctrl |= E1000_CTRL_SWDPIO0; |
4566 | } else if (hw->media_type == e1000_media_type_copper) { | 4641 | } else if (hw->media_type == e1000_media_type_copper) { |
4567 | ew32(LEDCTL, hw->ledctl_mode1); | 4642 | ew32(LEDCTL, hw->ledctl_mode1); |
4568 | return E1000_SUCCESS; | 4643 | return E1000_SUCCESS; |
4569 | } | 4644 | } |
4570 | break; | 4645 | break; |
4571 | } | 4646 | } |
4572 | 4647 | ||
4573 | ew32(CTRL, ctrl); | 4648 | ew32(CTRL, ctrl); |
4574 | 4649 | ||
4575 | return E1000_SUCCESS; | 4650 | return E1000_SUCCESS; |
4576 | } | 4651 | } |
4577 | 4652 | ||
4578 | /****************************************************************************** | 4653 | /** |
4579 | * Clears all hardware statistics counters. | 4654 | * e1000_clear_hw_cntrs - Clears all hardware statistics counters. |
4580 | * | 4655 | * @hw: Struct containing variables accessed by shared code |
4581 | * hw - Struct containing variables accessed by shared code | 4656 | */ |
4582 | *****************************************************************************/ | ||
4583 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw) | 4657 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw) |
4584 | { | 4658 | { |
4585 | volatile u32 temp; | 4659 | volatile u32 temp; |
4586 | 4660 | ||
4587 | temp = er32(CRCERRS); | 4661 | temp = er32(CRCERRS); |
4588 | temp = er32(SYMERRS); | 4662 | temp = er32(SYMERRS); |
4589 | temp = er32(MPC); | 4663 | temp = er32(MPC); |
4590 | temp = er32(SCC); | 4664 | temp = er32(SCC); |
4591 | temp = er32(ECOL); | 4665 | temp = er32(ECOL); |
4592 | temp = er32(MCC); | 4666 | temp = er32(MCC); |
4593 | temp = er32(LATECOL); | 4667 | temp = er32(LATECOL); |
4594 | temp = er32(COLC); | 4668 | temp = er32(COLC); |
4595 | temp = er32(DC); | 4669 | temp = er32(DC); |
4596 | temp = er32(SEC); | 4670 | temp = er32(SEC); |
4597 | temp = er32(RLEC); | 4671 | temp = er32(RLEC); |
4598 | temp = er32(XONRXC); | 4672 | temp = er32(XONRXC); |
4599 | temp = er32(XONTXC); | 4673 | temp = er32(XONTXC); |
4600 | temp = er32(XOFFRXC); | 4674 | temp = er32(XOFFRXC); |
4601 | temp = er32(XOFFTXC); | 4675 | temp = er32(XOFFTXC); |
4602 | temp = er32(FCRUC); | 4676 | temp = er32(FCRUC); |
4603 | 4677 | ||
4604 | temp = er32(PRC64); | 4678 | temp = er32(PRC64); |
4605 | temp = er32(PRC127); | 4679 | temp = er32(PRC127); |
4606 | temp = er32(PRC255); | 4680 | temp = er32(PRC255); |
4607 | temp = er32(PRC511); | 4681 | temp = er32(PRC511); |
4608 | temp = er32(PRC1023); | 4682 | temp = er32(PRC1023); |
4609 | temp = er32(PRC1522); | 4683 | temp = er32(PRC1522); |
4610 | 4684 | ||
4611 | temp = er32(GPRC); | 4685 | temp = er32(GPRC); |
4612 | temp = er32(BPRC); | 4686 | temp = er32(BPRC); |
4613 | temp = er32(MPRC); | 4687 | temp = er32(MPRC); |
4614 | temp = er32(GPTC); | 4688 | temp = er32(GPTC); |
4615 | temp = er32(GORCL); | 4689 | temp = er32(GORCL); |
4616 | temp = er32(GORCH); | 4690 | temp = er32(GORCH); |
4617 | temp = er32(GOTCL); | 4691 | temp = er32(GOTCL); |
4618 | temp = er32(GOTCH); | 4692 | temp = er32(GOTCH); |
4619 | temp = er32(RNBC); | 4693 | temp = er32(RNBC); |
4620 | temp = er32(RUC); | 4694 | temp = er32(RUC); |
4621 | temp = er32(RFC); | 4695 | temp = er32(RFC); |
4622 | temp = er32(ROC); | 4696 | temp = er32(ROC); |
4623 | temp = er32(RJC); | 4697 | temp = er32(RJC); |
4624 | temp = er32(TORL); | 4698 | temp = er32(TORL); |
4625 | temp = er32(TORH); | 4699 | temp = er32(TORH); |
4626 | temp = er32(TOTL); | 4700 | temp = er32(TOTL); |
4627 | temp = er32(TOTH); | 4701 | temp = er32(TOTH); |
4628 | temp = er32(TPR); | 4702 | temp = er32(TPR); |
4629 | temp = er32(TPT); | 4703 | temp = er32(TPT); |
4630 | 4704 | ||
4631 | temp = er32(PTC64); | 4705 | temp = er32(PTC64); |
4632 | temp = er32(PTC127); | 4706 | temp = er32(PTC127); |
4633 | temp = er32(PTC255); | 4707 | temp = er32(PTC255); |
4634 | temp = er32(PTC511); | 4708 | temp = er32(PTC511); |
4635 | temp = er32(PTC1023); | 4709 | temp = er32(PTC1023); |
4636 | temp = er32(PTC1522); | 4710 | temp = er32(PTC1522); |
4637 | 4711 | ||
4638 | temp = er32(MPTC); | 4712 | temp = er32(MPTC); |
4639 | temp = er32(BPTC); | 4713 | temp = er32(BPTC); |
4640 | 4714 | ||
4641 | if (hw->mac_type < e1000_82543) return; | 4715 | if (hw->mac_type < e1000_82543) |
4642 | 4716 | return; | |
4643 | temp = er32(ALGNERRC); | 4717 | |
4644 | temp = er32(RXERRC); | 4718 | temp = er32(ALGNERRC); |
4645 | temp = er32(TNCRS); | 4719 | temp = er32(RXERRC); |
4646 | temp = er32(CEXTERR); | 4720 | temp = er32(TNCRS); |
4647 | temp = er32(TSCTC); | 4721 | temp = er32(CEXTERR); |
4648 | temp = er32(TSCTFC); | 4722 | temp = er32(TSCTC); |
4649 | 4723 | temp = er32(TSCTFC); | |
4650 | if (hw->mac_type <= e1000_82544) return; | 4724 | |
4651 | 4725 | if (hw->mac_type <= e1000_82544) | |
4652 | temp = er32(MGTPRC); | 4726 | return; |
4653 | temp = er32(MGTPDC); | 4727 | |
4654 | temp = er32(MGTPTC); | 4728 | temp = er32(MGTPRC); |
4729 | temp = er32(MGTPDC); | ||
4730 | temp = er32(MGTPTC); | ||
4655 | } | 4731 | } |
4656 | 4732 | ||
4657 | /****************************************************************************** | 4733 | /** |
4658 | * Resets Adaptive IFS to its default state. | 4734 | * e1000_reset_adaptive - Resets Adaptive IFS to its default state. |
4659 | * | 4735 | * @hw: Struct containing variables accessed by shared code |
4660 | * hw - Struct containing variables accessed by shared code | ||
4661 | * | 4736 | * |
4662 | * Call this after e1000_init_hw. You may override the IFS defaults by setting | 4737 | * Call this after e1000_init_hw. You may override the IFS defaults by setting |
4663 | * hw->ifs_params_forced to true. However, you must initialize hw-> | 4738 | * hw->ifs_params_forced to true. However, you must initialize hw-> |
4664 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | 4739 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio |
4665 | * before calling this function. | 4740 | * before calling this function. |
4666 | *****************************************************************************/ | 4741 | */ |
4667 | void e1000_reset_adaptive(struct e1000_hw *hw) | 4742 | void e1000_reset_adaptive(struct e1000_hw *hw) |
4668 | { | 4743 | { |
4669 | DEBUGFUNC("e1000_reset_adaptive"); | 4744 | DEBUGFUNC("e1000_reset_adaptive"); |
4670 | 4745 | ||
4671 | if (hw->adaptive_ifs) { | 4746 | if (hw->adaptive_ifs) { |
4672 | if (!hw->ifs_params_forced) { | 4747 | if (!hw->ifs_params_forced) { |
4673 | hw->current_ifs_val = 0; | 4748 | hw->current_ifs_val = 0; |
4674 | hw->ifs_min_val = IFS_MIN; | 4749 | hw->ifs_min_val = IFS_MIN; |
4675 | hw->ifs_max_val = IFS_MAX; | 4750 | hw->ifs_max_val = IFS_MAX; |
4676 | hw->ifs_step_size = IFS_STEP; | 4751 | hw->ifs_step_size = IFS_STEP; |
4677 | hw->ifs_ratio = IFS_RATIO; | 4752 | hw->ifs_ratio = IFS_RATIO; |
4678 | } | 4753 | } |
4679 | hw->in_ifs_mode = false; | 4754 | hw->in_ifs_mode = false; |
4680 | ew32(AIT, 0); | 4755 | ew32(AIT, 0); |
4681 | } else { | 4756 | } else { |
4682 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 4757 | DEBUGOUT("Not in Adaptive IFS mode!\n"); |
4683 | } | 4758 | } |
4684 | } | 4759 | } |
4685 | 4760 | ||
4686 | /****************************************************************************** | 4761 | /** |
4762 | * e1000_update_adaptive - update adaptive IFS | ||
4763 | * @hw: Struct containing variables accessed by shared code | ||
4764 | * @tx_packets: Number of transmits since last callback | ||
4765 | * @total_collisions: Number of collisions since last callback | ||
4766 | * | ||
4687 | * Called during the callback/watchdog routine to update IFS value based on | 4767 | * Called during the callback/watchdog routine to update IFS value based on |
4688 | * the ratio of transmits to collisions. | 4768 | * the ratio of transmits to collisions. |
4689 | * | 4769 | */ |
4690 | * hw - Struct containing variables accessed by shared code | ||
4691 | * tx_packets - Number of transmits since last callback | ||
4692 | * total_collisions - Number of collisions since last callback | ||
4693 | *****************************************************************************/ | ||
4694 | void e1000_update_adaptive(struct e1000_hw *hw) | 4770 | void e1000_update_adaptive(struct e1000_hw *hw) |
4695 | { | 4771 | { |
4696 | DEBUGFUNC("e1000_update_adaptive"); | 4772 | DEBUGFUNC("e1000_update_adaptive"); |
4697 | 4773 | ||
4698 | if (hw->adaptive_ifs) { | 4774 | if (hw->adaptive_ifs) { |
4699 | if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { | 4775 | if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { |
4700 | if (hw->tx_packet_delta > MIN_NUM_XMITS) { | 4776 | if (hw->tx_packet_delta > MIN_NUM_XMITS) { |
4701 | hw->in_ifs_mode = true; | 4777 | hw->in_ifs_mode = true; |
4702 | if (hw->current_ifs_val < hw->ifs_max_val) { | 4778 | if (hw->current_ifs_val < hw->ifs_max_val) { |
4703 | if (hw->current_ifs_val == 0) | 4779 | if (hw->current_ifs_val == 0) |
4704 | hw->current_ifs_val = hw->ifs_min_val; | 4780 | hw->current_ifs_val = |
4705 | else | 4781 | hw->ifs_min_val; |
4706 | hw->current_ifs_val += hw->ifs_step_size; | 4782 | else |
4707 | ew32(AIT, hw->current_ifs_val); | 4783 | hw->current_ifs_val += |
4708 | } | 4784 | hw->ifs_step_size; |
4709 | } | 4785 | ew32(AIT, hw->current_ifs_val); |
4710 | } else { | 4786 | } |
4711 | if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | 4787 | } |
4712 | hw->current_ifs_val = 0; | 4788 | } else { |
4713 | hw->in_ifs_mode = false; | 4789 | if (hw->in_ifs_mode |
4714 | ew32(AIT, 0); | 4790 | && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { |
4715 | } | 4791 | hw->current_ifs_val = 0; |
4716 | } | 4792 | hw->in_ifs_mode = false; |
4717 | } else { | 4793 | ew32(AIT, 0); |
4718 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 4794 | } |
4719 | } | 4795 | } |
4796 | } else { | ||
4797 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | ||
4798 | } | ||
4720 | } | 4799 | } |
4721 | 4800 | ||
4722 | /****************************************************************************** | 4801 | /** |
4723 | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | 4802 | * e1000_tbi_adjust_stats |
4803 | * @hw: Struct containing variables accessed by shared code | ||
4804 | * @frame_len: The length of the frame in question | ||
4805 | * @mac_addr: The Ethernet destination address of the frame in question | ||
4724 | * | 4806 | * |
4725 | * hw - Struct containing variables accessed by shared code | 4807 | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT |
4726 | * frame_len - The length of the frame in question | 4808 | */ |
4727 | * mac_addr - The Ethernet destination address of the frame in question | ||
4728 | *****************************************************************************/ | ||
4729 | void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, | 4809 | void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, |
4730 | u32 frame_len, u8 *mac_addr) | 4810 | u32 frame_len, u8 *mac_addr) |
4731 | { | 4811 | { |
4732 | u64 carry_bit; | 4812 | u64 carry_bit; |
4733 | 4813 | ||
4734 | /* First adjust the frame length. */ | 4814 | /* First adjust the frame length. */ |
4735 | frame_len--; | 4815 | frame_len--; |
4736 | /* We need to adjust the statistics counters, since the hardware | 4816 | /* We need to adjust the statistics counters, since the hardware |
4737 | * counters overcount this packet as a CRC error and undercount | 4817 | * counters overcount this packet as a CRC error and undercount |
4738 | * the packet as a good packet | 4818 | * the packet as a good packet |
4739 | */ | 4819 | */ |
4740 | /* This packet should not be counted as a CRC error. */ | 4820 | /* This packet should not be counted as a CRC error. */ |
4741 | stats->crcerrs--; | 4821 | stats->crcerrs--; |
4742 | /* This packet does count as a Good Packet Received. */ | 4822 | /* This packet does count as a Good Packet Received. */ |
4743 | stats->gprc++; | 4823 | stats->gprc++; |
4744 | 4824 | ||
4745 | /* Adjust the Good Octets received counters */ | 4825 | /* Adjust the Good Octets received counters */ |
4746 | carry_bit = 0x80000000 & stats->gorcl; | 4826 | carry_bit = 0x80000000 & stats->gorcl; |
4747 | stats->gorcl += frame_len; | 4827 | stats->gorcl += frame_len; |
4748 | /* If the high bit of Gorcl (the low 32 bits of the Good Octets | 4828 | /* If the high bit of Gorcl (the low 32 bits of the Good Octets |
4749 | * Received Count) was one before the addition, | 4829 | * Received Count) was one before the addition, |
4750 | * AND it is zero after, then we lost the carry out, | 4830 | * AND it is zero after, then we lost the carry out, |
4751 | * need to add one to Gorch (Good Octets Received Count High). | 4831 | * need to add one to Gorch (Good Octets Received Count High). |
4752 | * This could be simplified if all environments supported | 4832 | * This could be simplified if all environments supported |
4753 | * 64-bit integers. | 4833 | * 64-bit integers. |
4754 | */ | 4834 | */ |
4755 | if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) | 4835 | if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) |
4756 | stats->gorch++; | 4836 | stats->gorch++; |
4757 | /* Is this a broadcast or multicast? Check broadcast first, | 4837 | /* Is this a broadcast or multicast? Check broadcast first, |
4758 | * since the test for a multicast frame will test positive on | 4838 | * since the test for a multicast frame will test positive on |
4759 | * a broadcast frame. | 4839 | * a broadcast frame. |
4760 | */ | 4840 | */ |
4761 | if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff)) | 4841 | if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff)) |
4762 | /* Broadcast packet */ | 4842 | /* Broadcast packet */ |
4763 | stats->bprc++; | 4843 | stats->bprc++; |
4764 | else if (*mac_addr & 0x01) | 4844 | else if (*mac_addr & 0x01) |
4765 | /* Multicast packet */ | 4845 | /* Multicast packet */ |
4766 | stats->mprc++; | 4846 | stats->mprc++; |
4767 | 4847 | ||
4768 | if (frame_len == hw->max_frame_size) { | 4848 | if (frame_len == hw->max_frame_size) { |
4769 | /* In this case, the hardware has overcounted the number of | 4849 | /* In this case, the hardware has overcounted the number of |
4770 | * oversize frames. | 4850 | * oversize frames. |
4771 | */ | 4851 | */ |
4772 | if (stats->roc > 0) | 4852 | if (stats->roc > 0) |
4773 | stats->roc--; | 4853 | stats->roc--; |
4774 | } | 4854 | } |
4775 | 4855 | ||
4776 | /* Adjust the bin counters when the extra byte put the frame in the | 4856 | /* Adjust the bin counters when the extra byte put the frame in the |
4777 | * wrong bin. Remember that the frame_len was adjusted above. | 4857 | * wrong bin. Remember that the frame_len was adjusted above. |
4778 | */ | 4858 | */ |
4779 | if (frame_len == 64) { | 4859 | if (frame_len == 64) { |
4780 | stats->prc64++; | 4860 | stats->prc64++; |
4781 | stats->prc127--; | 4861 | stats->prc127--; |
4782 | } else if (frame_len == 127) { | 4862 | } else if (frame_len == 127) { |
4783 | stats->prc127++; | 4863 | stats->prc127++; |
4784 | stats->prc255--; | 4864 | stats->prc255--; |
4785 | } else if (frame_len == 255) { | 4865 | } else if (frame_len == 255) { |
4786 | stats->prc255++; | 4866 | stats->prc255++; |
4787 | stats->prc511--; | 4867 | stats->prc511--; |
4788 | } else if (frame_len == 511) { | 4868 | } else if (frame_len == 511) { |
4789 | stats->prc511++; | 4869 | stats->prc511++; |
4790 | stats->prc1023--; | 4870 | stats->prc1023--; |
4791 | } else if (frame_len == 1023) { | 4871 | } else if (frame_len == 1023) { |
4792 | stats->prc1023++; | 4872 | stats->prc1023++; |
4793 | stats->prc1522--; | 4873 | stats->prc1522--; |
4794 | } else if (frame_len == 1522) { | 4874 | } else if (frame_len == 1522) { |
4795 | stats->prc1522++; | 4875 | stats->prc1522++; |
4796 | } | 4876 | } |
4797 | } | 4877 | } |
4798 | 4878 | ||
4799 | /****************************************************************************** | 4879 | /** |
4800 | * Gets the current PCI bus type, speed, and width of the hardware | 4880 | * e1000_get_bus_info |
4881 | * @hw: Struct containing variables accessed by shared code | ||
4801 | * | 4882 | * |
4802 | * hw - Struct containing variables accessed by shared code | 4883 | * Gets the current PCI bus type, speed, and width of the hardware |
4803 | *****************************************************************************/ | 4884 | */ |
4804 | void e1000_get_bus_info(struct e1000_hw *hw) | 4885 | void e1000_get_bus_info(struct e1000_hw *hw) |
4805 | { | 4886 | { |
4806 | u32 status; | 4887 | u32 status; |
4807 | 4888 | ||
4808 | switch (hw->mac_type) { | 4889 | switch (hw->mac_type) { |
4809 | case e1000_82542_rev2_0: | 4890 | case e1000_82542_rev2_0: |
4810 | case e1000_82542_rev2_1: | 4891 | case e1000_82542_rev2_1: |
4811 | hw->bus_type = e1000_bus_type_pci; | 4892 | hw->bus_type = e1000_bus_type_pci; |
4812 | hw->bus_speed = e1000_bus_speed_unknown; | 4893 | hw->bus_speed = e1000_bus_speed_unknown; |
4813 | hw->bus_width = e1000_bus_width_unknown; | 4894 | hw->bus_width = e1000_bus_width_unknown; |
4814 | break; | 4895 | break; |
4815 | default: | 4896 | default: |
4816 | status = er32(STATUS); | 4897 | status = er32(STATUS); |
4817 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 4898 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
4818 | e1000_bus_type_pcix : e1000_bus_type_pci; | 4899 | e1000_bus_type_pcix : e1000_bus_type_pci; |
4819 | 4900 | ||
4820 | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | 4901 | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { |
4821 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | 4902 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? |
4822 | e1000_bus_speed_66 : e1000_bus_speed_120; | 4903 | e1000_bus_speed_66 : e1000_bus_speed_120; |
4823 | } else if (hw->bus_type == e1000_bus_type_pci) { | 4904 | } else if (hw->bus_type == e1000_bus_type_pci) { |
4824 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? | 4905 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? |
4825 | e1000_bus_speed_66 : e1000_bus_speed_33; | 4906 | e1000_bus_speed_66 : e1000_bus_speed_33; |
4826 | } else { | 4907 | } else { |
4827 | switch (status & E1000_STATUS_PCIX_SPEED) { | 4908 | switch (status & E1000_STATUS_PCIX_SPEED) { |
4828 | case E1000_STATUS_PCIX_SPEED_66: | 4909 | case E1000_STATUS_PCIX_SPEED_66: |
4829 | hw->bus_speed = e1000_bus_speed_66; | 4910 | hw->bus_speed = e1000_bus_speed_66; |
4830 | break; | 4911 | break; |
4831 | case E1000_STATUS_PCIX_SPEED_100: | 4912 | case E1000_STATUS_PCIX_SPEED_100: |
4832 | hw->bus_speed = e1000_bus_speed_100; | 4913 | hw->bus_speed = e1000_bus_speed_100; |
4833 | break; | 4914 | break; |
4834 | case E1000_STATUS_PCIX_SPEED_133: | 4915 | case E1000_STATUS_PCIX_SPEED_133: |
4835 | hw->bus_speed = e1000_bus_speed_133; | 4916 | hw->bus_speed = e1000_bus_speed_133; |
4836 | break; | 4917 | break; |
4837 | default: | 4918 | default: |
4838 | hw->bus_speed = e1000_bus_speed_reserved; | 4919 | hw->bus_speed = e1000_bus_speed_reserved; |
4839 | break; | 4920 | break; |
4840 | } | 4921 | } |
4841 | } | 4922 | } |
4842 | hw->bus_width = (status & E1000_STATUS_BUS64) ? | 4923 | hw->bus_width = (status & E1000_STATUS_BUS64) ? |
4843 | e1000_bus_width_64 : e1000_bus_width_32; | 4924 | e1000_bus_width_64 : e1000_bus_width_32; |
4844 | break; | 4925 | break; |
4845 | } | 4926 | } |
4846 | } | 4927 | } |
4847 | 4928 | ||
4848 | /****************************************************************************** | 4929 | /** |
4930 | * e1000_write_reg_io | ||
4931 | * @hw: Struct containing variables accessed by shared code | ||
4932 | * @offset: offset to write to | ||
4933 | * @value: value to write | ||
4934 | * | ||
4849 | * Writes a value to one of the devices registers using port I/O (as opposed to | 4935 | * Writes a value to one of the devices registers using port I/O (as opposed to |
4850 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 4936 | * memory mapped I/O). Only 82544 and newer devices support port I/O. |
4851 | * | 4937 | */ |
4852 | * hw - Struct containing variables accessed by shared code | ||
4853 | * offset - offset to write to | ||
4854 | * value - value to write | ||
4855 | *****************************************************************************/ | ||
4856 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) | 4938 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) |
4857 | { | 4939 | { |
4858 | unsigned long io_addr = hw->io_base; | 4940 | unsigned long io_addr = hw->io_base; |
4859 | unsigned long io_data = hw->io_base + 4; | 4941 | unsigned long io_data = hw->io_base + 4; |
4860 | 4942 | ||
4861 | e1000_io_write(hw, io_addr, offset); | 4943 | e1000_io_write(hw, io_addr, offset); |
4862 | e1000_io_write(hw, io_data, value); | 4944 | e1000_io_write(hw, io_data, value); |
4863 | } | 4945 | } |
4864 | 4946 | ||
4865 | /****************************************************************************** | 4947 | /** |
4866 | * Estimates the cable length. | 4948 | * e1000_get_cable_length - Estimates the cable length. |
4867 | * | 4949 | * @hw: Struct containing variables accessed by shared code |
4868 | * hw - Struct containing variables accessed by shared code | 4950 | * @min_length: The estimated minimum length |
4869 | * min_length - The estimated minimum length | 4951 | * @max_length: The estimated maximum length |
4870 | * max_length - The estimated maximum length | ||
4871 | * | 4952 | * |
4872 | * returns: - E1000_ERR_XXX | 4953 | * returns: - E1000_ERR_XXX |
4873 | * E1000_SUCCESS | 4954 | * E1000_SUCCESS |
@@ -4876,112 +4957,115 @@ static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) | |||
4876 | * So for M88 phy's, this function interprets the one value returned from the | 4957 | * So for M88 phy's, this function interprets the one value returned from the |
4877 | * register to the minimum and maximum range. | 4958 | * register to the minimum and maximum range. |
4878 | * For IGP phy's, the function calculates the range by the AGC registers. | 4959 | * For IGP phy's, the function calculates the range by the AGC registers. |
4879 | *****************************************************************************/ | 4960 | */ |
4880 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 4961 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
4881 | u16 *max_length) | 4962 | u16 *max_length) |
4882 | { | 4963 | { |
4883 | s32 ret_val; | 4964 | s32 ret_val; |
4884 | u16 agc_value = 0; | 4965 | u16 agc_value = 0; |
4885 | u16 i, phy_data; | 4966 | u16 i, phy_data; |
4886 | u16 cable_length; | 4967 | u16 cable_length; |
4887 | 4968 | ||
4888 | DEBUGFUNC("e1000_get_cable_length"); | 4969 | DEBUGFUNC("e1000_get_cable_length"); |
4889 | 4970 | ||
4890 | *min_length = *max_length = 0; | 4971 | *min_length = *max_length = 0; |
4891 | 4972 | ||
4892 | /* Use old method for Phy older than IGP */ | 4973 | /* Use old method for Phy older than IGP */ |
4893 | if (hw->phy_type == e1000_phy_m88) { | 4974 | if (hw->phy_type == e1000_phy_m88) { |
4894 | 4975 | ||
4895 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 4976 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
4896 | &phy_data); | 4977 | &phy_data); |
4897 | if (ret_val) | 4978 | if (ret_val) |
4898 | return ret_val; | 4979 | return ret_val; |
4899 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 4980 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
4900 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | 4981 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
4901 | 4982 | ||
4902 | /* Convert the enum value to ranged values */ | 4983 | /* Convert the enum value to ranged values */ |
4903 | switch (cable_length) { | 4984 | switch (cable_length) { |
4904 | case e1000_cable_length_50: | 4985 | case e1000_cable_length_50: |
4905 | *min_length = 0; | 4986 | *min_length = 0; |
4906 | *max_length = e1000_igp_cable_length_50; | 4987 | *max_length = e1000_igp_cable_length_50; |
4907 | break; | 4988 | break; |
4908 | case e1000_cable_length_50_80: | 4989 | case e1000_cable_length_50_80: |
4909 | *min_length = e1000_igp_cable_length_50; | 4990 | *min_length = e1000_igp_cable_length_50; |
4910 | *max_length = e1000_igp_cable_length_80; | 4991 | *max_length = e1000_igp_cable_length_80; |
4911 | break; | 4992 | break; |
4912 | case e1000_cable_length_80_110: | 4993 | case e1000_cable_length_80_110: |
4913 | *min_length = e1000_igp_cable_length_80; | 4994 | *min_length = e1000_igp_cable_length_80; |
4914 | *max_length = e1000_igp_cable_length_110; | 4995 | *max_length = e1000_igp_cable_length_110; |
4915 | break; | 4996 | break; |
4916 | case e1000_cable_length_110_140: | 4997 | case e1000_cable_length_110_140: |
4917 | *min_length = e1000_igp_cable_length_110; | 4998 | *min_length = e1000_igp_cable_length_110; |
4918 | *max_length = e1000_igp_cable_length_140; | 4999 | *max_length = e1000_igp_cable_length_140; |
4919 | break; | 5000 | break; |
4920 | case e1000_cable_length_140: | 5001 | case e1000_cable_length_140: |
4921 | *min_length = e1000_igp_cable_length_140; | 5002 | *min_length = e1000_igp_cable_length_140; |
4922 | *max_length = e1000_igp_cable_length_170; | 5003 | *max_length = e1000_igp_cable_length_170; |
4923 | break; | 5004 | break; |
4924 | default: | 5005 | default: |
4925 | return -E1000_ERR_PHY; | 5006 | return -E1000_ERR_PHY; |
4926 | break; | 5007 | break; |
4927 | } | 5008 | } |
4928 | } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | 5009 | } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
4929 | u16 cur_agc_value; | 5010 | u16 cur_agc_value; |
4930 | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | 5011 | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; |
4931 | u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 5012 | u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
4932 | {IGP01E1000_PHY_AGC_A, | 5013 | { IGP01E1000_PHY_AGC_A, |
4933 | IGP01E1000_PHY_AGC_B, | 5014 | IGP01E1000_PHY_AGC_B, |
4934 | IGP01E1000_PHY_AGC_C, | 5015 | IGP01E1000_PHY_AGC_C, |
4935 | IGP01E1000_PHY_AGC_D}; | 5016 | IGP01E1000_PHY_AGC_D |
4936 | /* Read the AGC registers for all channels */ | 5017 | }; |
4937 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 5018 | /* Read the AGC registers for all channels */ |
4938 | 5019 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | |
4939 | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | 5020 | |
4940 | if (ret_val) | 5021 | ret_val = |
4941 | return ret_val; | 5022 | e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
4942 | 5023 | if (ret_val) | |
4943 | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 5024 | return ret_val; |
4944 | 5025 | ||
4945 | /* Value bound check. */ | 5026 | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
4946 | if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | 5027 | |
4947 | (cur_agc_value == 0)) | 5028 | /* Value bound check. */ |
4948 | return -E1000_ERR_PHY; | 5029 | if ((cur_agc_value >= |
4949 | 5030 | IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) | |
4950 | agc_value += cur_agc_value; | 5031 | || (cur_agc_value == 0)) |
4951 | 5032 | return -E1000_ERR_PHY; | |
4952 | /* Update minimal AGC value. */ | 5033 | |
4953 | if (min_agc_value > cur_agc_value) | 5034 | agc_value += cur_agc_value; |
4954 | min_agc_value = cur_agc_value; | 5035 | |
4955 | } | 5036 | /* Update minimal AGC value. */ |
4956 | 5037 | if (min_agc_value > cur_agc_value) | |
4957 | /* Remove the minimal AGC result for length < 50m */ | 5038 | min_agc_value = cur_agc_value; |
4958 | if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | 5039 | } |
4959 | agc_value -= min_agc_value; | 5040 | |
4960 | 5041 | /* Remove the minimal AGC result for length < 50m */ | |
4961 | /* Get the average length of the remaining 3 channels */ | 5042 | if (agc_value < |
4962 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | 5043 | IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
4963 | } else { | 5044 | agc_value -= min_agc_value; |
4964 | /* Get the average length of all the 4 channels. */ | 5045 | |
4965 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | 5046 | /* Get the average length of the remaining 3 channels */ |
4966 | } | 5047 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
4967 | 5048 | } else { | |
4968 | /* Set the range of the calculated length. */ | 5049 | /* Get the average length of all the 4 channels. */ |
4969 | *min_length = ((e1000_igp_cable_length_table[agc_value] - | 5050 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; |
4970 | IGP01E1000_AGC_RANGE) > 0) ? | 5051 | } |
4971 | (e1000_igp_cable_length_table[agc_value] - | 5052 | |
4972 | IGP01E1000_AGC_RANGE) : 0; | 5053 | /* Set the range of the calculated length. */ |
4973 | *max_length = e1000_igp_cable_length_table[agc_value] + | 5054 | *min_length = ((e1000_igp_cable_length_table[agc_value] - |
4974 | IGP01E1000_AGC_RANGE; | 5055 | IGP01E1000_AGC_RANGE) > 0) ? |
4975 | } | 5056 | (e1000_igp_cable_length_table[agc_value] - |
4976 | 5057 | IGP01E1000_AGC_RANGE) : 0; | |
4977 | return E1000_SUCCESS; | 5058 | *max_length = e1000_igp_cable_length_table[agc_value] + |
5059 | IGP01E1000_AGC_RANGE; | ||
5060 | } | ||
5061 | |||
5062 | return E1000_SUCCESS; | ||
4978 | } | 5063 | } |
4979 | 5064 | ||
4980 | /****************************************************************************** | 5065 | /** |
4981 | * Check the cable polarity | 5066 | * e1000_check_polarity - Check the cable polarity |
4982 | * | 5067 | * @hw: Struct containing variables accessed by shared code |
4983 | * hw - Struct containing variables accessed by shared code | 5068 | * @polarity: output parameter : 0 - Polarity is not reversed |
4984 | * polarity - output parameter : 0 - Polarity is not reversed | ||
4985 | * 1 - Polarity is reversed. | 5069 | * 1 - Polarity is reversed. |
4986 | * | 5070 | * |
4987 | * returns: - E1000_ERR_XXX | 5071 | * returns: - E1000_ERR_XXX |
@@ -4992,62 +5076,65 @@ static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | |||
4992 | * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will | 5076 | * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will |
4993 | * return 0. If the link speed is 1000 Mbps the polarity status is in the | 5077 | * return 0. If the link speed is 1000 Mbps the polarity status is in the |
4994 | * IGP01E1000_PHY_PCS_INIT_REG. | 5078 | * IGP01E1000_PHY_PCS_INIT_REG. |
4995 | *****************************************************************************/ | 5079 | */ |
4996 | static s32 e1000_check_polarity(struct e1000_hw *hw, | 5080 | static s32 e1000_check_polarity(struct e1000_hw *hw, |
4997 | e1000_rev_polarity *polarity) | 5081 | e1000_rev_polarity *polarity) |
4998 | { | 5082 | { |
4999 | s32 ret_val; | 5083 | s32 ret_val; |
5000 | u16 phy_data; | 5084 | u16 phy_data; |
5001 | 5085 | ||
5002 | DEBUGFUNC("e1000_check_polarity"); | 5086 | DEBUGFUNC("e1000_check_polarity"); |
5003 | 5087 | ||
5004 | if (hw->phy_type == e1000_phy_m88) { | 5088 | if (hw->phy_type == e1000_phy_m88) { |
5005 | /* return the Polarity bit in the Status register. */ | 5089 | /* return the Polarity bit in the Status register. */ |
5006 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 5090 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
5007 | &phy_data); | 5091 | &phy_data); |
5008 | if (ret_val) | 5092 | if (ret_val) |
5009 | return ret_val; | 5093 | return ret_val; |
5010 | *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> | 5094 | *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> |
5011 | M88E1000_PSSR_REV_POLARITY_SHIFT) ? | 5095 | M88E1000_PSSR_REV_POLARITY_SHIFT) ? |
5012 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 5096 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
5013 | 5097 | ||
5014 | } else if (hw->phy_type == e1000_phy_igp) { | 5098 | } else if (hw->phy_type == e1000_phy_igp) { |
5015 | /* Read the Status register to check the speed */ | 5099 | /* Read the Status register to check the speed */ |
5016 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 5100 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
5017 | &phy_data); | 5101 | &phy_data); |
5018 | if (ret_val) | 5102 | if (ret_val) |
5019 | return ret_val; | 5103 | return ret_val; |
5020 | 5104 | ||
5021 | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to | 5105 | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to |
5022 | * find the polarity status */ | 5106 | * find the polarity status */ |
5023 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 5107 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
5024 | IGP01E1000_PSSR_SPEED_1000MBPS) { | 5108 | IGP01E1000_PSSR_SPEED_1000MBPS) { |
5025 | 5109 | ||
5026 | /* Read the GIG initialization PCS register (0x00B4) */ | 5110 | /* Read the GIG initialization PCS register (0x00B4) */ |
5027 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | 5111 | ret_val = |
5028 | &phy_data); | 5112 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, |
5029 | if (ret_val) | 5113 | &phy_data); |
5030 | return ret_val; | 5114 | if (ret_val) |
5031 | 5115 | return ret_val; | |
5032 | /* Check the polarity bits */ | 5116 | |
5033 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? | 5117 | /* Check the polarity bits */ |
5034 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 5118 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? |
5035 | } else { | 5119 | e1000_rev_polarity_reversed : |
5036 | /* For 10 Mbps, read the polarity bit in the status register. (for | 5120 | e1000_rev_polarity_normal; |
5037 | * 100 Mbps this bit is always 0) */ | 5121 | } else { |
5038 | *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? | 5122 | /* For 10 Mbps, read the polarity bit in the status register. (for |
5039 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 5123 | * 100 Mbps this bit is always 0) */ |
5040 | } | 5124 | *polarity = |
5041 | } | 5125 | (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? |
5042 | return E1000_SUCCESS; | 5126 | e1000_rev_polarity_reversed : |
5127 | e1000_rev_polarity_normal; | ||
5128 | } | ||
5129 | } | ||
5130 | return E1000_SUCCESS; | ||
5043 | } | 5131 | } |
5044 | 5132 | ||
5045 | /****************************************************************************** | 5133 | /** |
5046 | * Check if Downshift occured | 5134 | * e1000_check_downshift - Check if Downshift occurred |
5047 | * | 5135 | * @hw: Struct containing variables accessed by shared code |
5048 | * hw - Struct containing variables accessed by shared code | 5136 | * @downshift: output parameter : 0 - No Downshift occurred. |
5049 | * downshift - output parameter : 0 - No Downshift ocured. | 5137 | * 1 - Downshift occurred. |
5050 | * 1 - Downshift ocured. | ||
5051 | * | 5138 | * |
5052 | * returns: - E1000_ERR_XXX | 5139 | * returns: - E1000_ERR_XXX |
5053 | * E1000_SUCCESS | 5140 | * E1000_SUCCESS |
@@ -5056,573 +5143,607 @@ static s32 e1000_check_polarity(struct e1000_hw *hw, | |||
5056 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the | 5143 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the |
5057 | * Link Health register. In IGP this bit is latched high, so the driver must | 5144 | * Link Health register. In IGP this bit is latched high, so the driver must |
5058 | * read it immediately after link is established. | 5145 | * read it immediately after link is established. |
5059 | *****************************************************************************/ | 5146 | */ |
5060 | static s32 e1000_check_downshift(struct e1000_hw *hw) | 5147 | static s32 e1000_check_downshift(struct e1000_hw *hw) |
5061 | { | 5148 | { |
5062 | s32 ret_val; | 5149 | s32 ret_val; |
5063 | u16 phy_data; | 5150 | u16 phy_data; |
5064 | 5151 | ||
5065 | DEBUGFUNC("e1000_check_downshift"); | 5152 | DEBUGFUNC("e1000_check_downshift"); |
5066 | 5153 | ||
5067 | if (hw->phy_type == e1000_phy_igp) { | 5154 | if (hw->phy_type == e1000_phy_igp) { |
5068 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 5155 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
5069 | &phy_data); | 5156 | &phy_data); |
5070 | if (ret_val) | 5157 | if (ret_val) |
5071 | return ret_val; | 5158 | return ret_val; |
5072 | 5159 | ||
5073 | hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | 5160 | hw->speed_downgraded = |
5074 | } else if (hw->phy_type == e1000_phy_m88) { | 5161 | (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; |
5075 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 5162 | } else if (hw->phy_type == e1000_phy_m88) { |
5076 | &phy_data); | 5163 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
5077 | if (ret_val) | 5164 | &phy_data); |
5078 | return ret_val; | 5165 | if (ret_val) |
5079 | 5166 | return ret_val; | |
5080 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 5167 | |
5081 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 5168 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
5082 | } | 5169 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
5170 | } | ||
5083 | 5171 | ||
5084 | return E1000_SUCCESS; | 5172 | return E1000_SUCCESS; |
5085 | } | 5173 | } |
5086 | 5174 | ||
5087 | /***************************************************************************** | 5175 | /** |
5088 | * | 5176 | * e1000_config_dsp_after_link_change |
5089 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | 5177 | * @hw: Struct containing variables accessed by shared code |
5090 | * gigabit link is achieved to improve link quality. | 5178 | * @link_up: was link up at the time this was called |
5091 | * | ||
5092 | * hw: Struct containing variables accessed by shared code | ||
5093 | * | 5179 | * |
5094 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 5180 | * returns: - E1000_ERR_PHY if fail to read/write the PHY |
5095 | * E1000_SUCCESS at any other case. | 5181 | * E1000_SUCCESS at any other case. |
5096 | * | 5182 | * |
5097 | ****************************************************************************/ | 5183 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a |
5184 | * gigabit link is achieved to improve link quality. | ||
5185 | */ | ||
5098 | 5186 | ||
5099 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) | 5187 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) |
5100 | { | 5188 | { |
5101 | s32 ret_val; | 5189 | s32 ret_val; |
5102 | u16 phy_data, phy_saved_data, speed, duplex, i; | 5190 | u16 phy_data, phy_saved_data, speed, duplex, i; |
5103 | u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 5191 | u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
5104 | {IGP01E1000_PHY_AGC_PARAM_A, | 5192 | { IGP01E1000_PHY_AGC_PARAM_A, |
5105 | IGP01E1000_PHY_AGC_PARAM_B, | 5193 | IGP01E1000_PHY_AGC_PARAM_B, |
5106 | IGP01E1000_PHY_AGC_PARAM_C, | 5194 | IGP01E1000_PHY_AGC_PARAM_C, |
5107 | IGP01E1000_PHY_AGC_PARAM_D}; | 5195 | IGP01E1000_PHY_AGC_PARAM_D |
5108 | u16 min_length, max_length; | 5196 | }; |
5109 | 5197 | u16 min_length, max_length; | |
5110 | DEBUGFUNC("e1000_config_dsp_after_link_change"); | 5198 | |
5111 | 5199 | DEBUGFUNC("e1000_config_dsp_after_link_change"); | |
5112 | if (hw->phy_type != e1000_phy_igp) | 5200 | |
5113 | return E1000_SUCCESS; | 5201 | if (hw->phy_type != e1000_phy_igp) |
5114 | 5202 | return E1000_SUCCESS; | |
5115 | if (link_up) { | 5203 | |
5116 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 5204 | if (link_up) { |
5117 | if (ret_val) { | 5205 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
5118 | DEBUGOUT("Error getting link speed and duplex\n"); | 5206 | if (ret_val) { |
5119 | return ret_val; | 5207 | DEBUGOUT("Error getting link speed and duplex\n"); |
5120 | } | 5208 | return ret_val; |
5121 | 5209 | } | |
5122 | if (speed == SPEED_1000) { | 5210 | |
5123 | 5211 | if (speed == SPEED_1000) { | |
5124 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | 5212 | |
5125 | if (ret_val) | 5213 | ret_val = |
5126 | return ret_val; | 5214 | e1000_get_cable_length(hw, &min_length, |
5127 | 5215 | &max_length); | |
5128 | if ((hw->dsp_config_state == e1000_dsp_config_enabled) && | 5216 | if (ret_val) |
5129 | min_length >= e1000_igp_cable_length_50) { | 5217 | return ret_val; |
5130 | 5218 | ||
5131 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 5219 | if ((hw->dsp_config_state == e1000_dsp_config_enabled) |
5132 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], | 5220 | && min_length >= e1000_igp_cable_length_50) { |
5133 | &phy_data); | 5221 | |
5134 | if (ret_val) | 5222 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
5135 | return ret_val; | 5223 | ret_val = |
5136 | 5224 | e1000_read_phy_reg(hw, | |
5137 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 5225 | dsp_reg_array[i], |
5138 | 5226 | &phy_data); | |
5139 | ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], | 5227 | if (ret_val) |
5140 | phy_data); | 5228 | return ret_val; |
5141 | if (ret_val) | 5229 | |
5142 | return ret_val; | 5230 | phy_data &= |
5143 | } | 5231 | ~IGP01E1000_PHY_EDAC_MU_INDEX; |
5144 | hw->dsp_config_state = e1000_dsp_config_activated; | 5232 | |
5145 | } | 5233 | ret_val = |
5146 | 5234 | e1000_write_phy_reg(hw, | |
5147 | if ((hw->ffe_config_state == e1000_ffe_config_enabled) && | 5235 | dsp_reg_array |
5148 | (min_length < e1000_igp_cable_length_50)) { | 5236 | [i], phy_data); |
5149 | 5237 | if (ret_val) | |
5150 | u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; | 5238 | return ret_val; |
5151 | u32 idle_errs = 0; | 5239 | } |
5152 | 5240 | hw->dsp_config_state = | |
5153 | /* clear previous idle error counts */ | 5241 | e1000_dsp_config_activated; |
5154 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 5242 | } |
5155 | &phy_data); | 5243 | |
5156 | if (ret_val) | 5244 | if ((hw->ffe_config_state == e1000_ffe_config_enabled) |
5157 | return ret_val; | 5245 | && (min_length < e1000_igp_cable_length_50)) { |
5158 | 5246 | ||
5159 | for (i = 0; i < ffe_idle_err_timeout; i++) { | 5247 | u16 ffe_idle_err_timeout = |
5160 | udelay(1000); | 5248 | FFE_IDLE_ERR_COUNT_TIMEOUT_20; |
5161 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 5249 | u32 idle_errs = 0; |
5162 | &phy_data); | 5250 | |
5163 | if (ret_val) | 5251 | /* clear previous idle error counts */ |
5164 | return ret_val; | 5252 | ret_val = |
5165 | 5253 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, | |
5166 | idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); | 5254 | &phy_data); |
5167 | if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { | 5255 | if (ret_val) |
5168 | hw->ffe_config_state = e1000_ffe_config_active; | 5256 | return ret_val; |
5169 | 5257 | ||
5170 | ret_val = e1000_write_phy_reg(hw, | 5258 | for (i = 0; i < ffe_idle_err_timeout; i++) { |
5171 | IGP01E1000_PHY_DSP_FFE, | 5259 | udelay(1000); |
5172 | IGP01E1000_PHY_DSP_FFE_CM_CP); | 5260 | ret_val = |
5173 | if (ret_val) | 5261 | e1000_read_phy_reg(hw, |
5174 | return ret_val; | 5262 | PHY_1000T_STATUS, |
5175 | break; | 5263 | &phy_data); |
5176 | } | 5264 | if (ret_val) |
5177 | 5265 | return ret_val; | |
5178 | if (idle_errs) | 5266 | |
5179 | ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; | 5267 | idle_errs += |
5180 | } | 5268 | (phy_data & |
5181 | } | 5269 | SR_1000T_IDLE_ERROR_CNT); |
5182 | } | 5270 | if (idle_errs > |
5183 | } else { | 5271 | SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) |
5184 | if (hw->dsp_config_state == e1000_dsp_config_activated) { | 5272 | { |
5185 | /* Save off the current value of register 0x2F5B to be restored at | 5273 | hw->ffe_config_state = |
5186 | * the end of the routines. */ | 5274 | e1000_ffe_config_active; |
5187 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 5275 | |
5188 | 5276 | ret_val = | |
5189 | if (ret_val) | 5277 | e1000_write_phy_reg(hw, |
5190 | return ret_val; | 5278 | IGP01E1000_PHY_DSP_FFE, |
5191 | 5279 | IGP01E1000_PHY_DSP_FFE_CM_CP); | |
5192 | /* Disable the PHY transmitter */ | 5280 | if (ret_val) |
5193 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 5281 | return ret_val; |
5194 | 5282 | break; | |
5195 | if (ret_val) | 5283 | } |
5196 | return ret_val; | 5284 | |
5197 | 5285 | if (idle_errs) | |
5198 | mdelay(20); | 5286 | ffe_idle_err_timeout = |
5199 | 5287 | FFE_IDLE_ERR_COUNT_TIMEOUT_100; | |
5200 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5288 | } |
5201 | IGP01E1000_IEEE_FORCE_GIGA); | 5289 | } |
5202 | if (ret_val) | 5290 | } |
5203 | return ret_val; | 5291 | } else { |
5204 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 5292 | if (hw->dsp_config_state == e1000_dsp_config_activated) { |
5205 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); | 5293 | /* Save off the current value of register 0x2F5B to be restored at |
5206 | if (ret_val) | 5294 | * the end of the routines. */ |
5207 | return ret_val; | 5295 | ret_val = |
5208 | 5296 | e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | |
5209 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 5297 | |
5210 | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | 5298 | if (ret_val) |
5211 | 5299 | return ret_val; | |
5212 | ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); | 5300 | |
5213 | if (ret_val) | 5301 | /* Disable the PHY transmitter */ |
5214 | return ret_val; | 5302 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
5215 | } | 5303 | |
5216 | 5304 | if (ret_val) | |
5217 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5305 | return ret_val; |
5218 | IGP01E1000_IEEE_RESTART_AUTONEG); | 5306 | |
5219 | if (ret_val) | 5307 | mdelay(20); |
5220 | return ret_val; | 5308 | |
5221 | 5309 | ret_val = e1000_write_phy_reg(hw, 0x0000, | |
5222 | mdelay(20); | 5310 | IGP01E1000_IEEE_FORCE_GIGA); |
5223 | 5311 | if (ret_val) | |
5224 | /* Now enable the transmitter */ | 5312 | return ret_val; |
5225 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 5313 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
5226 | 5314 | ret_val = | |
5227 | if (ret_val) | 5315 | e1000_read_phy_reg(hw, dsp_reg_array[i], |
5228 | return ret_val; | 5316 | &phy_data); |
5229 | 5317 | if (ret_val) | |
5230 | hw->dsp_config_state = e1000_dsp_config_enabled; | 5318 | return ret_val; |
5231 | } | 5319 | |
5232 | 5320 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | |
5233 | if (hw->ffe_config_state == e1000_ffe_config_active) { | 5321 | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; |
5234 | /* Save off the current value of register 0x2F5B to be restored at | 5322 | |
5235 | * the end of the routines. */ | 5323 | ret_val = |
5236 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 5324 | e1000_write_phy_reg(hw, dsp_reg_array[i], |
5237 | 5325 | phy_data); | |
5238 | if (ret_val) | 5326 | if (ret_val) |
5239 | return ret_val; | 5327 | return ret_val; |
5240 | 5328 | } | |
5241 | /* Disable the PHY transmitter */ | 5329 | |
5242 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 5330 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
5243 | 5331 | IGP01E1000_IEEE_RESTART_AUTONEG); | |
5244 | if (ret_val) | 5332 | if (ret_val) |
5245 | return ret_val; | 5333 | return ret_val; |
5246 | 5334 | ||
5247 | mdelay(20); | 5335 | mdelay(20); |
5248 | 5336 | ||
5249 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5337 | /* Now enable the transmitter */ |
5250 | IGP01E1000_IEEE_FORCE_GIGA); | 5338 | ret_val = |
5251 | if (ret_val) | 5339 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
5252 | return ret_val; | 5340 | |
5253 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | 5341 | if (ret_val) |
5254 | IGP01E1000_PHY_DSP_FFE_DEFAULT); | 5342 | return ret_val; |
5255 | if (ret_val) | 5343 | |
5256 | return ret_val; | 5344 | hw->dsp_config_state = e1000_dsp_config_enabled; |
5257 | 5345 | } | |
5258 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5346 | |
5259 | IGP01E1000_IEEE_RESTART_AUTONEG); | 5347 | if (hw->ffe_config_state == e1000_ffe_config_active) { |
5260 | if (ret_val) | 5348 | /* Save off the current value of register 0x2F5B to be restored at |
5261 | return ret_val; | 5349 | * the end of the routines. */ |
5262 | 5350 | ret_val = | |
5263 | mdelay(20); | 5351 | e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
5264 | 5352 | ||
5265 | /* Now enable the transmitter */ | 5353 | if (ret_val) |
5266 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 5354 | return ret_val; |
5267 | 5355 | ||
5268 | if (ret_val) | 5356 | /* Disable the PHY transmitter */ |
5269 | return ret_val; | 5357 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
5270 | 5358 | ||
5271 | hw->ffe_config_state = e1000_ffe_config_enabled; | 5359 | if (ret_val) |
5272 | } | 5360 | return ret_val; |
5273 | } | 5361 | |
5274 | return E1000_SUCCESS; | 5362 | mdelay(20); |
5363 | |||
5364 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5365 | IGP01E1000_IEEE_FORCE_GIGA); | ||
5366 | if (ret_val) | ||
5367 | return ret_val; | ||
5368 | ret_val = | ||
5369 | e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | ||
5370 | IGP01E1000_PHY_DSP_FFE_DEFAULT); | ||
5371 | if (ret_val) | ||
5372 | return ret_val; | ||
5373 | |||
5374 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5375 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
5376 | if (ret_val) | ||
5377 | return ret_val; | ||
5378 | |||
5379 | mdelay(20); | ||
5380 | |||
5381 | /* Now enable the transmitter */ | ||
5382 | ret_val = | ||
5383 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
5384 | |||
5385 | if (ret_val) | ||
5386 | return ret_val; | ||
5387 | |||
5388 | hw->ffe_config_state = e1000_ffe_config_enabled; | ||
5389 | } | ||
5390 | } | ||
5391 | return E1000_SUCCESS; | ||
5275 | } | 5392 | } |
5276 | 5393 | ||
5277 | /***************************************************************************** | 5394 | /** |
5278 | * Set PHY to class A mode | 5395 | * e1000_set_phy_mode - Set PHY to class A mode |
5396 | * @hw: Struct containing variables accessed by shared code | ||
5397 | * | ||
5279 | * Assumes the following operations will follow to enable the new class mode. | 5398 | * Assumes the following operations will follow to enable the new class mode. |
5280 | * 1. Do a PHY soft reset | 5399 | * 1. Do a PHY soft reset |
5281 | * 2. Restart auto-negotiation or force link. | 5400 | * 2. Restart auto-negotiation or force link. |
5282 | * | 5401 | */ |
5283 | * hw - Struct containing variables accessed by shared code | ||
5284 | ****************************************************************************/ | ||
5285 | static s32 e1000_set_phy_mode(struct e1000_hw *hw) | 5402 | static s32 e1000_set_phy_mode(struct e1000_hw *hw) |
5286 | { | 5403 | { |
5287 | s32 ret_val; | 5404 | s32 ret_val; |
5288 | u16 eeprom_data; | 5405 | u16 eeprom_data; |
5289 | 5406 | ||
5290 | DEBUGFUNC("e1000_set_phy_mode"); | 5407 | DEBUGFUNC("e1000_set_phy_mode"); |
5291 | 5408 | ||
5292 | if ((hw->mac_type == e1000_82545_rev_3) && | 5409 | if ((hw->mac_type == e1000_82545_rev_3) && |
5293 | (hw->media_type == e1000_media_type_copper)) { | 5410 | (hw->media_type == e1000_media_type_copper)) { |
5294 | ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); | 5411 | ret_val = |
5295 | if (ret_val) { | 5412 | e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, |
5296 | return ret_val; | 5413 | &eeprom_data); |
5297 | } | 5414 | if (ret_val) { |
5298 | 5415 | return ret_val; | |
5299 | if ((eeprom_data != EEPROM_RESERVED_WORD) && | 5416 | } |
5300 | (eeprom_data & EEPROM_PHY_CLASS_A)) { | 5417 | |
5301 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); | 5418 | if ((eeprom_data != EEPROM_RESERVED_WORD) && |
5302 | if (ret_val) | 5419 | (eeprom_data & EEPROM_PHY_CLASS_A)) { |
5303 | return ret_val; | 5420 | ret_val = |
5304 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); | 5421 | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, |
5305 | if (ret_val) | 5422 | 0x000B); |
5306 | return ret_val; | 5423 | if (ret_val) |
5307 | 5424 | return ret_val; | |
5308 | hw->phy_reset_disable = false; | 5425 | ret_val = |
5309 | } | 5426 | e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, |
5310 | } | 5427 | 0x8104); |
5311 | 5428 | if (ret_val) | |
5312 | return E1000_SUCCESS; | 5429 | return ret_val; |
5430 | |||
5431 | hw->phy_reset_disable = false; | ||
5432 | } | ||
5433 | } | ||
5434 | |||
5435 | return E1000_SUCCESS; | ||
5313 | } | 5436 | } |
5314 | 5437 | ||
5315 | /***************************************************************************** | 5438 | /** |
5439 | * e1000_set_d3_lplu_state - set d3 link power state | ||
5440 | * @hw: Struct containing variables accessed by shared code | ||
5441 | * @active: true to enable lplu false to disable lplu. | ||
5316 | * | 5442 | * |
5317 | * This function sets the lplu state according to the active flag. When | 5443 | * This function sets the lplu state according to the active flag. When |
5318 | * activating lplu this function also disables smart speed and vise versa. | 5444 | * activating lplu this function also disables smart speed and vise versa. |
5319 | * lplu will not be activated unless the device autonegotiation advertisment | 5445 | * lplu will not be activated unless the device autonegotiation advertisement |
5320 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | 5446 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
5321 | * hw: Struct containing variables accessed by shared code | ||
5322 | * active - true to enable lplu false to disable lplu. | ||
5323 | * | 5447 | * |
5324 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 5448 | * returns: - E1000_ERR_PHY if fail to read/write the PHY |
5325 | * E1000_SUCCESS at any other case. | 5449 | * E1000_SUCCESS at any other case. |
5326 | * | 5450 | */ |
5327 | ****************************************************************************/ | ||
5328 | |||
5329 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | 5451 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
5330 | { | 5452 | { |
5331 | s32 ret_val; | 5453 | s32 ret_val; |
5332 | u16 phy_data; | 5454 | u16 phy_data; |
5333 | DEBUGFUNC("e1000_set_d3_lplu_state"); | 5455 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
5334 | 5456 | ||
5335 | if (hw->phy_type != e1000_phy_igp) | 5457 | if (hw->phy_type != e1000_phy_igp) |
5336 | return E1000_SUCCESS; | 5458 | return E1000_SUCCESS; |
5337 | 5459 | ||
5338 | /* During driver activity LPLU should not be used or it will attain link | 5460 | /* During driver activity LPLU should not be used or it will attain link |
5339 | * from the lowest speeds starting from 10Mbps. The capability is used for | 5461 | * from the lowest speeds starting from 10Mbps. The capability is used for |
5340 | * Dx transitions and states */ | 5462 | * Dx transitions and states */ |
5341 | if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { | 5463 | if (hw->mac_type == e1000_82541_rev_2 |
5342 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 5464 | || hw->mac_type == e1000_82547_rev_2) { |
5343 | if (ret_val) | 5465 | ret_val = |
5344 | return ret_val; | 5466 | e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
5345 | } else { | 5467 | if (ret_val) |
5346 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 5468 | return ret_val; |
5347 | if (ret_val) | 5469 | } |
5348 | return ret_val; | 5470 | |
5349 | } | 5471 | if (!active) { |
5350 | 5472 | if (hw->mac_type == e1000_82541_rev_2 || | |
5351 | if (!active) { | 5473 | hw->mac_type == e1000_82547_rev_2) { |
5352 | if (hw->mac_type == e1000_82541_rev_2 || | 5474 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; |
5353 | hw->mac_type == e1000_82547_rev_2) { | 5475 | ret_val = |
5354 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | 5476 | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
5355 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 5477 | phy_data); |
5356 | if (ret_val) | 5478 | if (ret_val) |
5357 | return ret_val; | 5479 | return ret_val; |
5358 | } else { | 5480 | } |
5359 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | 5481 | |
5360 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 5482 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
5361 | phy_data); | 5483 | * Dx states where the power conservation is most important. During |
5362 | if (ret_val) | 5484 | * driver activity we should enable SmartSpeed, so performance is |
5363 | return ret_val; | 5485 | * maintained. */ |
5364 | } | 5486 | if (hw->smart_speed == e1000_smart_speed_on) { |
5365 | 5487 | ret_val = | |
5366 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 5488 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
5367 | * Dx states where the power conservation is most important. During | 5489 | &phy_data); |
5368 | * driver activity we should enable SmartSpeed, so performance is | 5490 | if (ret_val) |
5369 | * maintained. */ | 5491 | return ret_val; |
5370 | if (hw->smart_speed == e1000_smart_speed_on) { | 5492 | |
5371 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 5493 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
5372 | &phy_data); | 5494 | ret_val = |
5373 | if (ret_val) | 5495 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
5374 | return ret_val; | 5496 | phy_data); |
5375 | 5497 | if (ret_val) | |
5376 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | 5498 | return ret_val; |
5377 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 5499 | } else if (hw->smart_speed == e1000_smart_speed_off) { |
5378 | phy_data); | 5500 | ret_val = |
5379 | if (ret_val) | 5501 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
5380 | return ret_val; | 5502 | &phy_data); |
5381 | } else if (hw->smart_speed == e1000_smart_speed_off) { | 5503 | if (ret_val) |
5382 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 5504 | return ret_val; |
5383 | &phy_data); | 5505 | |
5384 | if (ret_val) | 5506 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
5385 | return ret_val; | 5507 | ret_val = |
5386 | 5508 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | |
5387 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 5509 | phy_data); |
5388 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 5510 | if (ret_val) |
5389 | phy_data); | 5511 | return ret_val; |
5390 | if (ret_val) | 5512 | } |
5391 | return ret_val; | 5513 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) |
5392 | } | 5514 | || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) |
5393 | 5515 | || (hw->autoneg_advertised == | |
5394 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || | 5516 | AUTONEG_ADVERTISE_10_100_ALL)) { |
5395 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | 5517 | |
5396 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 5518 | if (hw->mac_type == e1000_82541_rev_2 || |
5397 | 5519 | hw->mac_type == e1000_82547_rev_2) { | |
5398 | if (hw->mac_type == e1000_82541_rev_2 || | 5520 | phy_data |= IGP01E1000_GMII_FLEX_SPD; |
5399 | hw->mac_type == e1000_82547_rev_2) { | 5521 | ret_val = |
5400 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 5522 | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
5401 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 5523 | phy_data); |
5402 | if (ret_val) | 5524 | if (ret_val) |
5403 | return ret_val; | 5525 | return ret_val; |
5404 | } else { | 5526 | } |
5405 | phy_data |= IGP02E1000_PM_D3_LPLU; | 5527 | |
5406 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 5528 | /* When LPLU is enabled we should disable SmartSpeed */ |
5407 | phy_data); | 5529 | ret_val = |
5408 | if (ret_val) | 5530 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
5409 | return ret_val; | 5531 | &phy_data); |
5410 | } | 5532 | if (ret_val) |
5411 | 5533 | return ret_val; | |
5412 | /* When LPLU is enabled we should disable SmartSpeed */ | 5534 | |
5413 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 5535 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
5414 | if (ret_val) | 5536 | ret_val = |
5415 | return ret_val; | 5537 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
5416 | 5538 | phy_data); | |
5417 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 5539 | if (ret_val) |
5418 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | 5540 | return ret_val; |
5419 | if (ret_val) | 5541 | |
5420 | return ret_val; | 5542 | } |
5421 | 5543 | return E1000_SUCCESS; | |
5422 | } | ||
5423 | return E1000_SUCCESS; | ||
5424 | } | 5544 | } |
5425 | 5545 | ||
5426 | /****************************************************************************** | 5546 | /** |
5427 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | 5547 | * e1000_set_vco_speed |
5548 | * @hw: Struct containing variables accessed by shared code | ||
5428 | * | 5549 | * |
5429 | * hw - Struct containing variables accessed by shared code | 5550 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. |
5430 | *****************************************************************************/ | 5551 | */ |
5431 | static s32 e1000_set_vco_speed(struct e1000_hw *hw) | 5552 | static s32 e1000_set_vco_speed(struct e1000_hw *hw) |
5432 | { | 5553 | { |
5433 | s32 ret_val; | 5554 | s32 ret_val; |
5434 | u16 default_page = 0; | 5555 | u16 default_page = 0; |
5435 | u16 phy_data; | 5556 | u16 phy_data; |
5436 | 5557 | ||
5437 | DEBUGFUNC("e1000_set_vco_speed"); | 5558 | DEBUGFUNC("e1000_set_vco_speed"); |
5438 | 5559 | ||
5439 | switch (hw->mac_type) { | 5560 | switch (hw->mac_type) { |
5440 | case e1000_82545_rev_3: | 5561 | case e1000_82545_rev_3: |
5441 | case e1000_82546_rev_3: | 5562 | case e1000_82546_rev_3: |
5442 | break; | 5563 | break; |
5443 | default: | 5564 | default: |
5444 | return E1000_SUCCESS; | 5565 | return E1000_SUCCESS; |
5445 | } | 5566 | } |
5446 | 5567 | ||
5447 | /* Set PHY register 30, page 5, bit 8 to 0 */ | 5568 | /* Set PHY register 30, page 5, bit 8 to 0 */ |
5448 | 5569 | ||
5449 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); | 5570 | ret_val = |
5450 | if (ret_val) | 5571 | e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); |
5451 | return ret_val; | 5572 | if (ret_val) |
5573 | return ret_val; | ||
5452 | 5574 | ||
5453 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); | 5575 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); |
5454 | if (ret_val) | 5576 | if (ret_val) |
5455 | return ret_val; | 5577 | return ret_val; |
5456 | 5578 | ||
5457 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 5579 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
5458 | if (ret_val) | 5580 | if (ret_val) |
5459 | return ret_val; | 5581 | return ret_val; |
5460 | 5582 | ||
5461 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | 5583 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; |
5462 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 5584 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
5463 | if (ret_val) | 5585 | if (ret_val) |
5464 | return ret_val; | 5586 | return ret_val; |
5465 | 5587 | ||
5466 | /* Set PHY register 30, page 4, bit 11 to 1 */ | 5588 | /* Set PHY register 30, page 4, bit 11 to 1 */ |
5467 | 5589 | ||
5468 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | 5590 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); |
5469 | if (ret_val) | 5591 | if (ret_val) |
5470 | return ret_val; | 5592 | return ret_val; |
5471 | 5593 | ||
5472 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 5594 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
5473 | if (ret_val) | 5595 | if (ret_val) |
5474 | return ret_val; | 5596 | return ret_val; |
5475 | 5597 | ||
5476 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; | 5598 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; |
5477 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 5599 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
5478 | if (ret_val) | 5600 | if (ret_val) |
5479 | return ret_val; | 5601 | return ret_val; |
5480 | 5602 | ||
5481 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); | 5603 | ret_val = |
5482 | if (ret_val) | 5604 | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); |
5483 | return ret_val; | 5605 | if (ret_val) |
5606 | return ret_val; | ||
5484 | 5607 | ||
5485 | return E1000_SUCCESS; | 5608 | return E1000_SUCCESS; |
5486 | } | 5609 | } |
5487 | 5610 | ||
5488 | 5611 | ||
5489 | /****************************************************************************** | 5612 | /** |
5490 | * Verifies the hardware needs to allow ARPs to be processed by the host | 5613 | * e1000_enable_mng_pass_thru - check for bmc pass through |
5491 | * | 5614 | * @hw: Struct containing variables accessed by shared code |
5492 | * hw - Struct containing variables accessed by shared code | ||
5493 | * | 5615 | * |
5616 | * Verifies the hardware needs to allow ARPs to be processed by the host | ||
5494 | * returns: - true/false | 5617 | * returns: - true/false |
5495 | * | 5618 | */ |
5496 | *****************************************************************************/ | ||
5497 | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) | 5619 | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) |
5498 | { | 5620 | { |
5499 | u32 manc; | 5621 | u32 manc; |
5500 | 5622 | ||
5501 | if (hw->asf_firmware_present) { | 5623 | if (hw->asf_firmware_present) { |
5502 | manc = er32(MANC); | 5624 | manc = er32(MANC); |
5503 | 5625 | ||
5504 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | 5626 | if (!(manc & E1000_MANC_RCV_TCO_EN) || |
5505 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 5627 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
5506 | return false; | 5628 | return false; |
5507 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | 5629 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) |
5508 | return true; | 5630 | return true; |
5509 | } | 5631 | } |
5510 | return false; | 5632 | return false; |
5511 | } | 5633 | } |
5512 | 5634 | ||
5513 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 5635 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
5514 | { | 5636 | { |
5515 | s32 ret_val; | 5637 | s32 ret_val; |
5516 | u16 mii_status_reg; | 5638 | u16 mii_status_reg; |
5517 | u16 i; | 5639 | u16 i; |
5518 | 5640 | ||
5519 | /* Polarity reversal workaround for forced 10F/10H links. */ | 5641 | /* Polarity reversal workaround for forced 10F/10H links. */ |
5520 | 5642 | ||
5521 | /* Disable the transmitter on the PHY */ | 5643 | /* Disable the transmitter on the PHY */ |
5522 | 5644 | ||
5523 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 5645 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
5524 | if (ret_val) | 5646 | if (ret_val) |
5525 | return ret_val; | 5647 | return ret_val; |
5526 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); | 5648 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); |
5527 | if (ret_val) | 5649 | if (ret_val) |
5528 | return ret_val; | 5650 | return ret_val; |
5529 | 5651 | ||
5530 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 5652 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
5531 | if (ret_val) | 5653 | if (ret_val) |
5532 | return ret_val; | 5654 | return ret_val; |
5533 | 5655 | ||
5534 | /* This loop will early-out if the NO link condition has been met. */ | 5656 | /* This loop will early-out if the NO link condition has been met. */ |
5535 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 5657 | for (i = PHY_FORCE_TIME; i > 0; i--) { |
5536 | /* Read the MII Status Register and wait for Link Status bit | 5658 | /* Read the MII Status Register and wait for Link Status bit |
5537 | * to be clear. | 5659 | * to be clear. |
5538 | */ | 5660 | */ |
5539 | 5661 | ||
5540 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 5662 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
5541 | if (ret_val) | 5663 | if (ret_val) |
5542 | return ret_val; | 5664 | return ret_val; |
5543 | 5665 | ||
5544 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 5666 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
5545 | if (ret_val) | 5667 | if (ret_val) |
5546 | return ret_val; | 5668 | return ret_val; |
5547 | 5669 | ||
5548 | if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; | 5670 | if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) |
5549 | mdelay(100); | 5671 | break; |
5550 | } | 5672 | mdelay(100); |
5551 | 5673 | } | |
5552 | /* Recommended delay time after link has been lost */ | 5674 | |
5553 | mdelay(1000); | 5675 | /* Recommended delay time after link has been lost */ |
5554 | 5676 | mdelay(1000); | |
5555 | /* Now we will re-enable th transmitter on the PHY */ | 5677 | |
5556 | 5678 | /* Now we will re-enable th transmitter on the PHY */ | |
5557 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 5679 | |
5558 | if (ret_val) | 5680 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
5559 | return ret_val; | 5681 | if (ret_val) |
5560 | mdelay(50); | 5682 | return ret_val; |
5561 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | 5683 | mdelay(50); |
5562 | if (ret_val) | 5684 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); |
5563 | return ret_val; | 5685 | if (ret_val) |
5564 | mdelay(50); | 5686 | return ret_val; |
5565 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | 5687 | mdelay(50); |
5566 | if (ret_val) | 5688 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); |
5567 | return ret_val; | 5689 | if (ret_val) |
5568 | mdelay(50); | 5690 | return ret_val; |
5569 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | 5691 | mdelay(50); |
5570 | if (ret_val) | 5692 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); |
5571 | return ret_val; | 5693 | if (ret_val) |
5572 | 5694 | return ret_val; | |
5573 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 5695 | |
5574 | if (ret_val) | 5696 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
5575 | return ret_val; | 5697 | if (ret_val) |
5576 | 5698 | return ret_val; | |
5577 | /* This loop will early-out if the link condition has been met. */ | 5699 | |
5578 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 5700 | /* This loop will early-out if the link condition has been met. */ |
5579 | /* Read the MII Status Register and wait for Link Status bit | 5701 | for (i = PHY_FORCE_TIME; i > 0; i--) { |
5580 | * to be set. | 5702 | /* Read the MII Status Register and wait for Link Status bit |
5581 | */ | 5703 | * to be set. |
5582 | 5704 | */ | |
5583 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 5705 | |
5584 | if (ret_val) | 5706 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
5585 | return ret_val; | 5707 | if (ret_val) |
5586 | 5708 | return ret_val; | |
5587 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 5709 | |
5588 | if (ret_val) | 5710 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
5589 | return ret_val; | 5711 | if (ret_val) |
5590 | 5712 | return ret_val; | |
5591 | if (mii_status_reg & MII_SR_LINK_STATUS) break; | 5713 | |
5592 | mdelay(100); | 5714 | if (mii_status_reg & MII_SR_LINK_STATUS) |
5593 | } | 5715 | break; |
5594 | return E1000_SUCCESS; | 5716 | mdelay(100); |
5717 | } | ||
5718 | return E1000_SUCCESS; | ||
5595 | } | 5719 | } |
5596 | 5720 | ||
5597 | /******************************************************************************* | 5721 | /** |
5722 | * e1000_get_auto_rd_done | ||
5723 | * @hw: Struct containing variables accessed by shared code | ||
5598 | * | 5724 | * |
5599 | * Check for EEPROM Auto Read bit done. | 5725 | * Check for EEPROM Auto Read bit done. |
5600 | * | ||
5601 | * hw: Struct containing variables accessed by shared code | ||
5602 | * | ||
5603 | * returns: - E1000_ERR_RESET if fail to reset MAC | 5726 | * returns: - E1000_ERR_RESET if fail to reset MAC |
5604 | * E1000_SUCCESS at any other case. | 5727 | * E1000_SUCCESS at any other case. |
5605 | * | 5728 | */ |
5606 | ******************************************************************************/ | ||
5607 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) | 5729 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) |
5608 | { | 5730 | { |
5609 | DEBUGFUNC("e1000_get_auto_rd_done"); | 5731 | DEBUGFUNC("e1000_get_auto_rd_done"); |
5610 | msleep(5); | 5732 | msleep(5); |
5611 | return E1000_SUCCESS; | 5733 | return E1000_SUCCESS; |
5612 | } | 5734 | } |
5613 | 5735 | ||
5614 | /*************************************************************************** | 5736 | /** |
5615 | * Checks if the PHY configuration is done | 5737 | * e1000_get_phy_cfg_done |
5616 | * | 5738 | * @hw: Struct containing variables accessed by shared code |
5617 | * hw: Struct containing variables accessed by shared code | ||
5618 | * | 5739 | * |
5740 | * Checks if the PHY configuration is done | ||
5619 | * returns: - E1000_ERR_RESET if fail to reset MAC | 5741 | * returns: - E1000_ERR_RESET if fail to reset MAC |
5620 | * E1000_SUCCESS at any other case. | 5742 | * E1000_SUCCESS at any other case. |
5621 | * | 5743 | */ |
5622 | ***************************************************************************/ | ||
5623 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | 5744 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) |
5624 | { | 5745 | { |
5625 | DEBUGFUNC("e1000_get_phy_cfg_done"); | 5746 | DEBUGFUNC("e1000_get_phy_cfg_done"); |
5626 | mdelay(10); | 5747 | mdelay(10); |
5627 | return E1000_SUCCESS; | 5748 | return E1000_SUCCESS; |
5628 | } | 5749 | } |