diff options
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 12914 |
1 files changed, 4858 insertions, 8056 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 45ac225a7aaa..8d7d87f12827 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -24,88 +24,34 @@ | |||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
26 | 26 | ||
27 | *******************************************************************************/ | 27 | */ |
28 | 28 | ||
29 | /* e1000_hw.c | 29 | /* e1000_hw.c |
30 | * Shared functions for accessing and configuring the MAC | 30 | * Shared functions for accessing and configuring the MAC |
31 | */ | 31 | */ |
32 | 32 | ||
33 | |||
34 | #include "e1000_hw.h" | 33 | #include "e1000_hw.h" |
35 | 34 | ||
36 | static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask); | ||
37 | static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask); | ||
38 | static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data); | ||
39 | static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data); | ||
40 | static s32 e1000_get_software_semaphore(struct e1000_hw *hw); | ||
41 | static void e1000_release_software_semaphore(struct e1000_hw *hw); | ||
42 | |||
43 | static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw); | ||
44 | static s32 e1000_check_downshift(struct e1000_hw *hw); | 35 | static s32 e1000_check_downshift(struct e1000_hw *hw); |
45 | static s32 e1000_check_polarity(struct e1000_hw *hw, | 36 | static s32 e1000_check_polarity(struct e1000_hw *hw, |
46 | e1000_rev_polarity *polarity); | 37 | e1000_rev_polarity *polarity); |
47 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); | 38 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
48 | static void e1000_clear_vfta(struct e1000_hw *hw); | 39 | static void e1000_clear_vfta(struct e1000_hw *hw); |
49 | static s32 e1000_commit_shadow_ram(struct e1000_hw *hw); | ||
50 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, | 40 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, |
51 | bool link_up); | 41 | bool link_up); |
52 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); | 42 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); |
53 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw); | 43 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw); |
54 | static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank); | ||
55 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); | 44 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); |
56 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 45 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
57 | u16 *max_length); | 46 | u16 *max_length); |
58 | static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); | ||
59 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); | 47 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); |
60 | static s32 e1000_get_software_flag(struct e1000_hw *hw); | ||
61 | static s32 e1000_ich8_cycle_init(struct e1000_hw *hw); | ||
62 | static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout); | ||
63 | static s32 e1000_id_led_init(struct e1000_hw *hw); | 48 | static s32 e1000_id_led_init(struct e1000_hw *hw); |
64 | static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, | ||
65 | u32 cnf_base_addr, | ||
66 | u32 cnf_size); | ||
67 | static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw); | ||
68 | static void e1000_init_rx_addrs(struct e1000_hw *hw); | 49 | static void e1000_init_rx_addrs(struct e1000_hw *hw); |
69 | static void e1000_initialize_hardware_bits(struct e1000_hw *hw); | ||
70 | static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); | ||
71 | static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); | ||
72 | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw); | ||
73 | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, | ||
74 | u16 offset, u8 *sum); | ||
75 | static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw, | ||
76 | struct e1000_host_mng_command_header | ||
77 | *hdr); | ||
78 | static s32 e1000_mng_write_commit(struct e1000_hw *hw); | ||
79 | static s32 e1000_phy_ife_get_info(struct e1000_hw *hw, | ||
80 | struct e1000_phy_info *phy_info); | ||
81 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 50 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
82 | struct e1000_phy_info *phy_info); | 51 | struct e1000_phy_info *phy_info); |
83 | static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, | ||
84 | u16 *data); | ||
85 | static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, | ||
86 | u16 *data); | ||
87 | static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); | ||
88 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 52 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
89 | struct e1000_phy_info *phy_info); | 53 | struct e1000_phy_info *phy_info); |
90 | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); | ||
91 | static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data); | ||
92 | static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, | ||
93 | u8 byte); | ||
94 | static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte); | ||
95 | static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data); | ||
96 | static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | ||
97 | u16 *data); | ||
98 | static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | ||
99 | u16 data); | ||
100 | static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | ||
101 | u16 *data); | ||
102 | static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | ||
103 | u16 *data); | ||
104 | static void e1000_release_software_flag(struct e1000_hw *hw); | ||
105 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); | 54 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); |
106 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); | ||
107 | static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop); | ||
108 | static void e1000_set_pci_express_master_disable(struct e1000_hw *hw); | ||
109 | static s32 e1000_wait_autoneg(struct e1000_hw *hw); | 55 | static s32 e1000_wait_autoneg(struct e1000_hw *hw); |
110 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); | 56 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); |
111 | static s32 e1000_set_phy_type(struct e1000_hw *hw); | 57 | static s32 e1000_set_phy_type(struct e1000_hw *hw); |
@@ -117,12 +63,11 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); | |||
117 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); | 63 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); |
118 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 64 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
119 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 65 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
120 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, | 66 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); |
121 | u16 count); | ||
122 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); | 67 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); |
123 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); | 68 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); |
124 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, | 69 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, |
125 | u16 words, u16 *data); | 70 | u16 words, u16 *data); |
126 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 71 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
127 | u16 words, u16 *data); | 72 | u16 words, u16 *data); |
128 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); | 73 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); |
@@ -131,7 +76,7 @@ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); | |||
131 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); | 76 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); |
132 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 77 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
133 | u16 phy_data); | 78 | u16 phy_data); |
134 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr, | 79 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
135 | u16 *phy_data); | 80 | u16 *phy_data); |
136 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); | 81 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); |
137 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw); | 82 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw); |
@@ -140,188 +85,164 @@ static void e1000_standby_eeprom(struct e1000_hw *hw); | |||
140 | static s32 e1000_set_vco_speed(struct e1000_hw *hw); | 85 | static s32 e1000_set_vco_speed(struct e1000_hw *hw); |
141 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 86 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
142 | static s32 e1000_set_phy_mode(struct e1000_hw *hw); | 87 | static s32 e1000_set_phy_mode(struct e1000_hw *hw); |
143 | static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer); | 88 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
144 | static u8 e1000_calculate_mng_checksum(char *buffer, u32 length); | 89 | u16 *data); |
145 | static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex); | 90 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
146 | static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw); | 91 | u16 *data); |
147 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
148 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
149 | 92 | ||
150 | /* IGP cable length table */ | 93 | /* IGP cable length table */ |
151 | static const | 94 | static const |
152 | u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | 95 | u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { |
153 | { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 96 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
154 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | 97 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, |
155 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | 98 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, |
156 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | 99 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, |
157 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | 100 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, |
158 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | 101 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, |
159 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 102 | 100, |
160 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | 103 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
161 | 104 | 110, 110, | |
162 | static const | 105 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, |
163 | u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = | 106 | 120, 120 |
164 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | 107 | }; |
165 | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | ||
166 | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | ||
167 | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | ||
168 | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | ||
169 | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | ||
170 | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, | ||
171 | 104, 109, 114, 118, 121, 124}; | ||
172 | 108 | ||
173 | static DEFINE_SPINLOCK(e1000_eeprom_lock); | 109 | static DEFINE_SPINLOCK(e1000_eeprom_lock); |
174 | 110 | ||
175 | /****************************************************************************** | 111 | /** |
176 | * Set the phy type member in the hw struct. | 112 | * e1000_set_phy_type - Set the phy type member in the hw struct. |
177 | * | 113 | * @hw: Struct containing variables accessed by shared code |
178 | * hw - Struct containing variables accessed by shared code | 114 | */ |
179 | *****************************************************************************/ | ||
180 | static s32 e1000_set_phy_type(struct e1000_hw *hw) | 115 | static s32 e1000_set_phy_type(struct e1000_hw *hw) |
181 | { | 116 | { |
182 | DEBUGFUNC("e1000_set_phy_type"); | 117 | DEBUGFUNC("e1000_set_phy_type"); |
183 | |||
184 | if (hw->mac_type == e1000_undefined) | ||
185 | return -E1000_ERR_PHY_TYPE; | ||
186 | |||
187 | switch (hw->phy_id) { | ||
188 | case M88E1000_E_PHY_ID: | ||
189 | case M88E1000_I_PHY_ID: | ||
190 | case M88E1011_I_PHY_ID: | ||
191 | case M88E1111_I_PHY_ID: | ||
192 | hw->phy_type = e1000_phy_m88; | ||
193 | break; | ||
194 | case IGP01E1000_I_PHY_ID: | ||
195 | if (hw->mac_type == e1000_82541 || | ||
196 | hw->mac_type == e1000_82541_rev_2 || | ||
197 | hw->mac_type == e1000_82547 || | ||
198 | hw->mac_type == e1000_82547_rev_2) { | ||
199 | hw->phy_type = e1000_phy_igp; | ||
200 | break; | ||
201 | } | ||
202 | case IGP03E1000_E_PHY_ID: | ||
203 | hw->phy_type = e1000_phy_igp_3; | ||
204 | break; | ||
205 | case IFE_E_PHY_ID: | ||
206 | case IFE_PLUS_E_PHY_ID: | ||
207 | case IFE_C_E_PHY_ID: | ||
208 | hw->phy_type = e1000_phy_ife; | ||
209 | break; | ||
210 | case GG82563_E_PHY_ID: | ||
211 | if (hw->mac_type == e1000_80003es2lan) { | ||
212 | hw->phy_type = e1000_phy_gg82563; | ||
213 | break; | ||
214 | } | ||
215 | /* Fall Through */ | ||
216 | default: | ||
217 | /* Should never have loaded on this device */ | ||
218 | hw->phy_type = e1000_phy_undefined; | ||
219 | return -E1000_ERR_PHY_TYPE; | ||
220 | } | ||
221 | |||
222 | return E1000_SUCCESS; | ||
223 | } | ||
224 | |||
225 | /****************************************************************************** | ||
226 | * IGP phy init script - initializes the GbE PHY | ||
227 | * | ||
228 | * hw - Struct containing variables accessed by shared code | ||
229 | *****************************************************************************/ | ||
230 | static void e1000_phy_init_script(struct e1000_hw *hw) | ||
231 | { | ||
232 | u32 ret_val; | ||
233 | u16 phy_saved_data; | ||
234 | |||
235 | DEBUGFUNC("e1000_phy_init_script"); | ||
236 | |||
237 | if (hw->phy_init_script) { | ||
238 | msleep(20); | ||
239 | |||
240 | /* Save off the current value of register 0x2F5B to be restored at | ||
241 | * the end of this routine. */ | ||
242 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
243 | |||
244 | /* Disabled the PHY transmitter */ | ||
245 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
246 | 118 | ||
247 | msleep(20); | 119 | if (hw->mac_type == e1000_undefined) |
120 | return -E1000_ERR_PHY_TYPE; | ||
248 | 121 | ||
249 | e1000_write_phy_reg(hw,0x0000,0x0140); | 122 | switch (hw->phy_id) { |
250 | 123 | case M88E1000_E_PHY_ID: | |
251 | msleep(5); | 124 | case M88E1000_I_PHY_ID: |
252 | 125 | case M88E1011_I_PHY_ID: | |
253 | switch (hw->mac_type) { | 126 | case M88E1111_I_PHY_ID: |
254 | case e1000_82541: | 127 | hw->phy_type = e1000_phy_m88; |
255 | case e1000_82547: | 128 | break; |
256 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | 129 | case IGP01E1000_I_PHY_ID: |
257 | 130 | if (hw->mac_type == e1000_82541 || | |
258 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | 131 | hw->mac_type == e1000_82541_rev_2 || |
259 | 132 | hw->mac_type == e1000_82547 || | |
260 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | 133 | hw->mac_type == e1000_82547_rev_2) { |
261 | 134 | hw->phy_type = e1000_phy_igp; | |
262 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | 135 | break; |
263 | 136 | } | |
264 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | 137 | default: |
265 | 138 | /* Should never have loaded on this device */ | |
266 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | 139 | hw->phy_type = e1000_phy_undefined; |
267 | 140 | return -E1000_ERR_PHY_TYPE; | |
268 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | 141 | } |
269 | |||
270 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | ||
271 | |||
272 | e1000_write_phy_reg(hw, 0x2010, 0x0008); | ||
273 | break; | ||
274 | |||
275 | case e1000_82541_rev_2: | ||
276 | case e1000_82547_rev_2: | ||
277 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); | ||
278 | break; | ||
279 | default: | ||
280 | break; | ||
281 | } | ||
282 | |||
283 | e1000_write_phy_reg(hw, 0x0000, 0x3300); | ||
284 | |||
285 | msleep(20); | ||
286 | |||
287 | /* Now enable the transmitter */ | ||
288 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
289 | |||
290 | if (hw->mac_type == e1000_82547) { | ||
291 | u16 fused, fine, coarse; | ||
292 | |||
293 | /* Move to analog registers page */ | ||
294 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); | ||
295 | |||
296 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | ||
297 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); | ||
298 | 142 | ||
299 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | 143 | return E1000_SUCCESS; |
300 | coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | 144 | } |
301 | 145 | ||
302 | if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | 146 | /** |
303 | coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; | 147 | * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY |
304 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | 148 | * @hw: Struct containing variables accessed by shared code |
305 | } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | 149 | */ |
306 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | 150 | static void e1000_phy_init_script(struct e1000_hw *hw) |
151 | { | ||
152 | u32 ret_val; | ||
153 | u16 phy_saved_data; | ||
154 | |||
155 | DEBUGFUNC("e1000_phy_init_script"); | ||
156 | |||
157 | if (hw->phy_init_script) { | ||
158 | msleep(20); | ||
159 | |||
160 | /* Save off the current value of register 0x2F5B to be restored at | ||
161 | * the end of this routine. */ | ||
162 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
163 | |||
164 | /* Disabled the PHY transmitter */ | ||
165 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
166 | msleep(20); | ||
167 | |||
168 | e1000_write_phy_reg(hw, 0x0000, 0x0140); | ||
169 | msleep(5); | ||
170 | |||
171 | switch (hw->mac_type) { | ||
172 | case e1000_82541: | ||
173 | case e1000_82547: | ||
174 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | ||
175 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | ||
176 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | ||
177 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | ||
178 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | ||
179 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | ||
180 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | ||
181 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | ||
182 | e1000_write_phy_reg(hw, 0x2010, 0x0008); | ||
183 | break; | ||
307 | 184 | ||
308 | fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | 185 | case e1000_82541_rev_2: |
309 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | 186 | case e1000_82547_rev_2: |
310 | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); | 187 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
188 | break; | ||
189 | default: | ||
190 | break; | ||
191 | } | ||
311 | 192 | ||
312 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); | 193 | e1000_write_phy_reg(hw, 0x0000, 0x3300); |
313 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, | 194 | msleep(20); |
314 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | 195 | |
315 | } | 196 | /* Now enable the transmitter */ |
316 | } | 197 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
317 | } | 198 | |
199 | if (hw->mac_type == e1000_82547) { | ||
200 | u16 fused, fine, coarse; | ||
201 | |||
202 | /* Move to analog registers page */ | ||
203 | e1000_read_phy_reg(hw, | ||
204 | IGP01E1000_ANALOG_SPARE_FUSE_STATUS, | ||
205 | &fused); | ||
206 | |||
207 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | ||
208 | e1000_read_phy_reg(hw, | ||
209 | IGP01E1000_ANALOG_FUSE_STATUS, | ||
210 | &fused); | ||
211 | |||
212 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | ||
213 | coarse = | ||
214 | fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | ||
215 | |||
216 | if (coarse > | ||
217 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | ||
218 | coarse -= | ||
219 | IGP01E1000_ANALOG_FUSE_COARSE_10; | ||
220 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | ||
221 | } else if (coarse == | ||
222 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | ||
223 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | ||
224 | |||
225 | fused = | ||
226 | (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | ||
227 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | ||
228 | (coarse & | ||
229 | IGP01E1000_ANALOG_FUSE_COARSE_MASK); | ||
230 | |||
231 | e1000_write_phy_reg(hw, | ||
232 | IGP01E1000_ANALOG_FUSE_CONTROL, | ||
233 | fused); | ||
234 | e1000_write_phy_reg(hw, | ||
235 | IGP01E1000_ANALOG_FUSE_BYPASS, | ||
236 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | ||
237 | } | ||
238 | } | ||
239 | } | ||
318 | } | 240 | } |
319 | 241 | ||
320 | /****************************************************************************** | 242 | /** |
321 | * Set the mac type member in the hw struct. | 243 | * e1000_set_mac_type - Set the mac type member in the hw struct. |
322 | * | 244 | * @hw: Struct containing variables accessed by shared code |
323 | * hw - Struct containing variables accessed by shared code | 245 | */ |
324 | *****************************************************************************/ | ||
325 | s32 e1000_set_mac_type(struct e1000_hw *hw) | 246 | s32 e1000_set_mac_type(struct e1000_hw *hw) |
326 | { | 247 | { |
327 | DEBUGFUNC("e1000_set_mac_type"); | 248 | DEBUGFUNC("e1000_set_mac_type"); |
@@ -397,61 +318,12 @@ s32 e1000_set_mac_type(struct e1000_hw *hw) | |||
397 | case E1000_DEV_ID_82547GI: | 318 | case E1000_DEV_ID_82547GI: |
398 | hw->mac_type = e1000_82547_rev_2; | 319 | hw->mac_type = e1000_82547_rev_2; |
399 | break; | 320 | break; |
400 | case E1000_DEV_ID_82571EB_COPPER: | ||
401 | case E1000_DEV_ID_82571EB_FIBER: | ||
402 | case E1000_DEV_ID_82571EB_SERDES: | ||
403 | case E1000_DEV_ID_82571EB_SERDES_DUAL: | ||
404 | case E1000_DEV_ID_82571EB_SERDES_QUAD: | ||
405 | case E1000_DEV_ID_82571EB_QUAD_COPPER: | ||
406 | case E1000_DEV_ID_82571PT_QUAD_COPPER: | ||
407 | case E1000_DEV_ID_82571EB_QUAD_FIBER: | ||
408 | case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: | ||
409 | hw->mac_type = e1000_82571; | ||
410 | break; | ||
411 | case E1000_DEV_ID_82572EI_COPPER: | ||
412 | case E1000_DEV_ID_82572EI_FIBER: | ||
413 | case E1000_DEV_ID_82572EI_SERDES: | ||
414 | case E1000_DEV_ID_82572EI: | ||
415 | hw->mac_type = e1000_82572; | ||
416 | break; | ||
417 | case E1000_DEV_ID_82573E: | ||
418 | case E1000_DEV_ID_82573E_IAMT: | ||
419 | case E1000_DEV_ID_82573L: | ||
420 | hw->mac_type = e1000_82573; | ||
421 | break; | ||
422 | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: | ||
423 | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: | ||
424 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: | ||
425 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | ||
426 | hw->mac_type = e1000_80003es2lan; | ||
427 | break; | ||
428 | case E1000_DEV_ID_ICH8_IGP_M_AMT: | ||
429 | case E1000_DEV_ID_ICH8_IGP_AMT: | ||
430 | case E1000_DEV_ID_ICH8_IGP_C: | ||
431 | case E1000_DEV_ID_ICH8_IFE: | ||
432 | case E1000_DEV_ID_ICH8_IFE_GT: | ||
433 | case E1000_DEV_ID_ICH8_IFE_G: | ||
434 | case E1000_DEV_ID_ICH8_IGP_M: | ||
435 | hw->mac_type = e1000_ich8lan; | ||
436 | break; | ||
437 | default: | 321 | default: |
438 | /* Should never have loaded on this device */ | 322 | /* Should never have loaded on this device */ |
439 | return -E1000_ERR_MAC_TYPE; | 323 | return -E1000_ERR_MAC_TYPE; |
440 | } | 324 | } |
441 | 325 | ||
442 | switch (hw->mac_type) { | 326 | switch (hw->mac_type) { |
443 | case e1000_ich8lan: | ||
444 | hw->swfwhw_semaphore_present = true; | ||
445 | hw->asf_firmware_present = true; | ||
446 | break; | ||
447 | case e1000_80003es2lan: | ||
448 | hw->swfw_sync_present = true; | ||
449 | /* fall through */ | ||
450 | case e1000_82571: | ||
451 | case e1000_82572: | ||
452 | case e1000_82573: | ||
453 | hw->eeprom_semaphore_present = true; | ||
454 | /* fall through */ | ||
455 | case e1000_82541: | 327 | case e1000_82541: |
456 | case e1000_82547: | 328 | case e1000_82547: |
457 | case e1000_82541_rev_2: | 329 | case e1000_82541_rev_2: |
@@ -468,6058 +340,4500 @@ s32 e1000_set_mac_type(struct e1000_hw *hw) | |||
468 | if (hw->mac_type == e1000_82543) | 340 | if (hw->mac_type == e1000_82543) |
469 | hw->bad_tx_carr_stats_fd = true; | 341 | hw->bad_tx_carr_stats_fd = true; |
470 | 342 | ||
471 | /* capable of receiving management packets to the host */ | ||
472 | if (hw->mac_type >= e1000_82571) | ||
473 | hw->has_manc2h = true; | ||
474 | |||
475 | /* In rare occasions, ESB2 systems would end up started without | ||
476 | * the RX unit being turned on. | ||
477 | */ | ||
478 | if (hw->mac_type == e1000_80003es2lan) | ||
479 | hw->rx_needs_kicking = true; | ||
480 | |||
481 | if (hw->mac_type > e1000_82544) | 343 | if (hw->mac_type > e1000_82544) |
482 | hw->has_smbus = true; | 344 | hw->has_smbus = true; |
483 | 345 | ||
484 | return E1000_SUCCESS; | 346 | return E1000_SUCCESS; |
485 | } | 347 | } |
486 | 348 | ||
487 | /***************************************************************************** | 349 | /** |
488 | * Set media type and TBI compatibility. | 350 | * e1000_set_media_type - Set media type and TBI compatibility. |
489 | * | 351 | * @hw: Struct containing variables accessed by shared code |
490 | * hw - Struct containing variables accessed by shared code | 352 | */ |
491 | * **************************************************************************/ | ||
492 | void e1000_set_media_type(struct e1000_hw *hw) | 353 | void e1000_set_media_type(struct e1000_hw *hw) |
493 | { | 354 | { |
494 | u32 status; | 355 | u32 status; |
495 | 356 | ||
496 | DEBUGFUNC("e1000_set_media_type"); | 357 | DEBUGFUNC("e1000_set_media_type"); |
497 | 358 | ||
498 | if (hw->mac_type != e1000_82543) { | 359 | if (hw->mac_type != e1000_82543) { |
499 | /* tbi_compatibility is only valid on 82543 */ | 360 | /* tbi_compatibility is only valid on 82543 */ |
500 | hw->tbi_compatibility_en = false; | 361 | hw->tbi_compatibility_en = false; |
501 | } | 362 | } |
502 | 363 | ||
503 | switch (hw->device_id) { | 364 | switch (hw->device_id) { |
504 | case E1000_DEV_ID_82545GM_SERDES: | 365 | case E1000_DEV_ID_82545GM_SERDES: |
505 | case E1000_DEV_ID_82546GB_SERDES: | 366 | case E1000_DEV_ID_82546GB_SERDES: |
506 | case E1000_DEV_ID_82571EB_SERDES: | 367 | hw->media_type = e1000_media_type_internal_serdes; |
507 | case E1000_DEV_ID_82571EB_SERDES_DUAL: | 368 | break; |
508 | case E1000_DEV_ID_82571EB_SERDES_QUAD: | 369 | default: |
509 | case E1000_DEV_ID_82572EI_SERDES: | 370 | switch (hw->mac_type) { |
510 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | 371 | case e1000_82542_rev2_0: |
511 | hw->media_type = e1000_media_type_internal_serdes; | 372 | case e1000_82542_rev2_1: |
512 | break; | 373 | hw->media_type = e1000_media_type_fiber; |
513 | default: | 374 | break; |
514 | switch (hw->mac_type) { | 375 | default: |
515 | case e1000_82542_rev2_0: | 376 | status = er32(STATUS); |
516 | case e1000_82542_rev2_1: | 377 | if (status & E1000_STATUS_TBIMODE) { |
517 | hw->media_type = e1000_media_type_fiber; | 378 | hw->media_type = e1000_media_type_fiber; |
518 | break; | 379 | /* tbi_compatibility not valid on fiber */ |
519 | case e1000_ich8lan: | 380 | hw->tbi_compatibility_en = false; |
520 | case e1000_82573: | 381 | } else { |
521 | /* The STATUS_TBIMODE bit is reserved or reused for the this | 382 | hw->media_type = e1000_media_type_copper; |
522 | * device. | 383 | } |
523 | */ | 384 | break; |
524 | hw->media_type = e1000_media_type_copper; | 385 | } |
525 | break; | 386 | } |
526 | default: | ||
527 | status = er32(STATUS); | ||
528 | if (status & E1000_STATUS_TBIMODE) { | ||
529 | hw->media_type = e1000_media_type_fiber; | ||
530 | /* tbi_compatibility not valid on fiber */ | ||
531 | hw->tbi_compatibility_en = false; | ||
532 | } else { | ||
533 | hw->media_type = e1000_media_type_copper; | ||
534 | } | ||
535 | break; | ||
536 | } | ||
537 | } | ||
538 | } | 387 | } |
539 | 388 | ||
540 | /****************************************************************************** | 389 | /** |
541 | * Reset the transmit and receive units; mask and clear all interrupts. | 390 | * e1000_reset_hw: reset the hardware completely |
391 | * @hw: Struct containing variables accessed by shared code | ||
542 | * | 392 | * |
543 | * hw - Struct containing variables accessed by shared code | 393 | * Reset the transmit and receive units; mask and clear all interrupts. |
544 | *****************************************************************************/ | 394 | */ |
545 | s32 e1000_reset_hw(struct e1000_hw *hw) | 395 | s32 e1000_reset_hw(struct e1000_hw *hw) |
546 | { | 396 | { |
547 | u32 ctrl; | 397 | u32 ctrl; |
548 | u32 ctrl_ext; | 398 | u32 ctrl_ext; |
549 | u32 icr; | 399 | u32 icr; |
550 | u32 manc; | 400 | u32 manc; |
551 | u32 led_ctrl; | 401 | u32 led_ctrl; |
552 | u32 timeout; | 402 | s32 ret_val; |
553 | u32 extcnf_ctrl; | ||
554 | s32 ret_val; | ||
555 | |||
556 | DEBUGFUNC("e1000_reset_hw"); | ||
557 | |||
558 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | ||
559 | if (hw->mac_type == e1000_82542_rev2_0) { | ||
560 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | ||
561 | e1000_pci_clear_mwi(hw); | ||
562 | } | ||
563 | |||
564 | if (hw->bus_type == e1000_bus_type_pci_express) { | ||
565 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | ||
566 | * on the last TLP read/write transaction when MAC is reset. | ||
567 | */ | ||
568 | if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) { | ||
569 | DEBUGOUT("PCI-E Master disable polling has failed.\n"); | ||
570 | } | ||
571 | } | ||
572 | |||
573 | /* Clear interrupt mask to stop board from generating interrupts */ | ||
574 | DEBUGOUT("Masking off all interrupts\n"); | ||
575 | ew32(IMC, 0xffffffff); | ||
576 | |||
577 | /* Disable the Transmit and Receive units. Then delay to allow | ||
578 | * any pending transactions to complete before we hit the MAC with | ||
579 | * the global reset. | ||
580 | */ | ||
581 | ew32(RCTL, 0); | ||
582 | ew32(TCTL, E1000_TCTL_PSP); | ||
583 | E1000_WRITE_FLUSH(); | ||
584 | |||
585 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | ||
586 | hw->tbi_compatibility_on = false; | ||
587 | |||
588 | /* Delay to allow any outstanding PCI transactions to complete before | ||
589 | * resetting the device | ||
590 | */ | ||
591 | msleep(10); | ||
592 | |||
593 | ctrl = er32(CTRL); | ||
594 | |||
595 | /* Must reset the PHY before resetting the MAC */ | ||
596 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
597 | ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); | ||
598 | msleep(5); | ||
599 | } | ||
600 | |||
601 | /* Must acquire the MDIO ownership before MAC reset. | ||
602 | * Ownership defaults to firmware after a reset. */ | ||
603 | if (hw->mac_type == e1000_82573) { | ||
604 | timeout = 10; | ||
605 | |||
606 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
607 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
608 | |||
609 | do { | ||
610 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
611 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
612 | |||
613 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | ||
614 | break; | ||
615 | else | ||
616 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
617 | |||
618 | msleep(2); | ||
619 | timeout--; | ||
620 | } while (timeout); | ||
621 | } | ||
622 | |||
623 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | ||
624 | if (hw->mac_type == e1000_ich8lan) { | ||
625 | /* Set Tx and Rx buffer allocation to 8k apiece. */ | ||
626 | ew32(PBA, E1000_PBA_8K); | ||
627 | /* Set Packet Buffer Size to 16k. */ | ||
628 | ew32(PBS, E1000_PBS_16K); | ||
629 | } | ||
630 | |||
631 | /* Issue a global reset to the MAC. This will reset the chip's | ||
632 | * transmit, receive, DMA, and link units. It will not effect | ||
633 | * the current PCI configuration. The global reset bit is self- | ||
634 | * clearing, and should clear within a microsecond. | ||
635 | */ | ||
636 | DEBUGOUT("Issuing a global reset to MAC\n"); | ||
637 | |||
638 | switch (hw->mac_type) { | ||
639 | case e1000_82544: | ||
640 | case e1000_82540: | ||
641 | case e1000_82545: | ||
642 | case e1000_82546: | ||
643 | case e1000_82541: | ||
644 | case e1000_82541_rev_2: | ||
645 | /* These controllers can't ack the 64-bit write when issuing the | ||
646 | * reset, so use IO-mapping as a workaround to issue the reset */ | ||
647 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | ||
648 | break; | ||
649 | case e1000_82545_rev_3: | ||
650 | case e1000_82546_rev_3: | ||
651 | /* Reset is performed on a shadow of the control register */ | ||
652 | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); | ||
653 | break; | ||
654 | case e1000_ich8lan: | ||
655 | if (!hw->phy_reset_disable && | ||
656 | e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { | ||
657 | /* e1000_ich8lan PHY HW reset requires MAC CORE reset | ||
658 | * at the same time to make sure the interface between | ||
659 | * MAC and the external PHY is reset. | ||
660 | */ | ||
661 | ctrl |= E1000_CTRL_PHY_RST; | ||
662 | } | ||
663 | |||
664 | e1000_get_software_flag(hw); | ||
665 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | ||
666 | msleep(5); | ||
667 | break; | ||
668 | default: | ||
669 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | ||
670 | break; | ||
671 | } | ||
672 | |||
673 | /* After MAC reset, force reload of EEPROM to restore power-on settings to | ||
674 | * device. Later controllers reload the EEPROM automatically, so just wait | ||
675 | * for reload to complete. | ||
676 | */ | ||
677 | switch (hw->mac_type) { | ||
678 | case e1000_82542_rev2_0: | ||
679 | case e1000_82542_rev2_1: | ||
680 | case e1000_82543: | ||
681 | case e1000_82544: | ||
682 | /* Wait for reset to complete */ | ||
683 | udelay(10); | ||
684 | ctrl_ext = er32(CTRL_EXT); | ||
685 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
686 | ew32(CTRL_EXT, ctrl_ext); | ||
687 | E1000_WRITE_FLUSH(); | ||
688 | /* Wait for EEPROM reload */ | ||
689 | msleep(2); | ||
690 | break; | ||
691 | case e1000_82541: | ||
692 | case e1000_82541_rev_2: | ||
693 | case e1000_82547: | ||
694 | case e1000_82547_rev_2: | ||
695 | /* Wait for EEPROM reload */ | ||
696 | msleep(20); | ||
697 | break; | ||
698 | case e1000_82573: | ||
699 | if (!e1000_is_onboard_nvm_eeprom(hw)) { | ||
700 | udelay(10); | ||
701 | ctrl_ext = er32(CTRL_EXT); | ||
702 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
703 | ew32(CTRL_EXT, ctrl_ext); | ||
704 | E1000_WRITE_FLUSH(); | ||
705 | } | ||
706 | /* fall through */ | ||
707 | default: | ||
708 | /* Auto read done will delay 5ms or poll based on mac type */ | ||
709 | ret_val = e1000_get_auto_rd_done(hw); | ||
710 | if (ret_val) | ||
711 | return ret_val; | ||
712 | break; | ||
713 | } | ||
714 | |||
715 | /* Disable HW ARPs on ASF enabled adapters */ | ||
716 | if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { | ||
717 | manc = er32(MANC); | ||
718 | manc &= ~(E1000_MANC_ARP_EN); | ||
719 | ew32(MANC, manc); | ||
720 | } | ||
721 | |||
722 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
723 | e1000_phy_init_script(hw); | ||
724 | |||
725 | /* Configure activity LED after PHY reset */ | ||
726 | led_ctrl = er32(LEDCTL); | ||
727 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
728 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
729 | ew32(LEDCTL, led_ctrl); | ||
730 | } | ||
731 | |||
732 | /* Clear interrupt mask to stop board from generating interrupts */ | ||
733 | DEBUGOUT("Masking off all interrupts\n"); | ||
734 | ew32(IMC, 0xffffffff); | ||
735 | |||
736 | /* Clear any pending interrupt events. */ | ||
737 | icr = er32(ICR); | ||
738 | |||
739 | /* If MWI was previously enabled, reenable it. */ | ||
740 | if (hw->mac_type == e1000_82542_rev2_0) { | ||
741 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | ||
742 | e1000_pci_set_mwi(hw); | ||
743 | } | ||
744 | |||
745 | if (hw->mac_type == e1000_ich8lan) { | ||
746 | u32 kab = er32(KABGTXD); | ||
747 | kab |= E1000_KABGTXD_BGSQLBIAS; | ||
748 | ew32(KABGTXD, kab); | ||
749 | } | ||
750 | |||
751 | return E1000_SUCCESS; | ||
752 | } | ||
753 | 403 | ||
754 | /****************************************************************************** | 404 | DEBUGFUNC("e1000_reset_hw"); |
755 | * | 405 | |
756 | * Initialize a number of hardware-dependent bits | 406 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
757 | * | 407 | if (hw->mac_type == e1000_82542_rev2_0) { |
758 | * hw: Struct containing variables accessed by shared code | 408 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
759 | * | 409 | e1000_pci_clear_mwi(hw); |
760 | * This function contains hardware limitation workarounds for PCI-E adapters | 410 | } |
761 | * | 411 | |
762 | *****************************************************************************/ | 412 | /* Clear interrupt mask to stop board from generating interrupts */ |
763 | static void e1000_initialize_hardware_bits(struct e1000_hw *hw) | 413 | DEBUGOUT("Masking off all interrupts\n"); |
764 | { | 414 | ew32(IMC, 0xffffffff); |
765 | if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) { | 415 | |
766 | /* Settings common to all PCI-express silicon */ | 416 | /* Disable the Transmit and Receive units. Then delay to allow |
767 | u32 reg_ctrl, reg_ctrl_ext; | 417 | * any pending transactions to complete before we hit the MAC with |
768 | u32 reg_tarc0, reg_tarc1; | 418 | * the global reset. |
769 | u32 reg_tctl; | 419 | */ |
770 | u32 reg_txdctl, reg_txdctl1; | 420 | ew32(RCTL, 0); |
771 | 421 | ew32(TCTL, E1000_TCTL_PSP); | |
772 | /* link autonegotiation/sync workarounds */ | 422 | E1000_WRITE_FLUSH(); |
773 | reg_tarc0 = er32(TARC0); | 423 | |
774 | reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); | 424 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
775 | 425 | hw->tbi_compatibility_on = false; | |
776 | /* Enable not-done TX descriptor counting */ | 426 | |
777 | reg_txdctl = er32(TXDCTL); | 427 | /* Delay to allow any outstanding PCI transactions to complete before |
778 | reg_txdctl |= E1000_TXDCTL_COUNT_DESC; | 428 | * resetting the device |
779 | ew32(TXDCTL, reg_txdctl); | 429 | */ |
780 | reg_txdctl1 = er32(TXDCTL1); | 430 | msleep(10); |
781 | reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; | 431 | |
782 | ew32(TXDCTL1, reg_txdctl1); | 432 | ctrl = er32(CTRL); |
783 | 433 | ||
784 | switch (hw->mac_type) { | 434 | /* Must reset the PHY before resetting the MAC */ |
785 | case e1000_82571: | 435 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
786 | case e1000_82572: | 436 | ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
787 | /* Clear PHY TX compatible mode bits */ | 437 | msleep(5); |
788 | reg_tarc1 = er32(TARC1); | 438 | } |
789 | reg_tarc1 &= ~((1 << 30)|(1 << 29)); | 439 | |
790 | 440 | /* Issue a global reset to the MAC. This will reset the chip's | |
791 | /* link autonegotiation/sync workarounds */ | 441 | * transmit, receive, DMA, and link units. It will not effect |
792 | reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); | 442 | * the current PCI configuration. The global reset bit is self- |
793 | 443 | * clearing, and should clear within a microsecond. | |
794 | /* TX ring control fixes */ | 444 | */ |
795 | reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); | 445 | DEBUGOUT("Issuing a global reset to MAC\n"); |
796 | 446 | ||
797 | /* Multiple read bit is reversed polarity */ | 447 | switch (hw->mac_type) { |
798 | reg_tctl = er32(TCTL); | 448 | case e1000_82544: |
799 | if (reg_tctl & E1000_TCTL_MULR) | 449 | case e1000_82540: |
800 | reg_tarc1 &= ~(1 << 28); | 450 | case e1000_82545: |
801 | else | 451 | case e1000_82546: |
802 | reg_tarc1 |= (1 << 28); | 452 | case e1000_82541: |
803 | 453 | case e1000_82541_rev_2: | |
804 | ew32(TARC1, reg_tarc1); | 454 | /* These controllers can't ack the 64-bit write when issuing the |
805 | break; | 455 | * reset, so use IO-mapping as a workaround to issue the reset */ |
806 | case e1000_82573: | 456 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
807 | reg_ctrl_ext = er32(CTRL_EXT); | 457 | break; |
808 | reg_ctrl_ext &= ~(1 << 23); | 458 | case e1000_82545_rev_3: |
809 | reg_ctrl_ext |= (1 << 22); | 459 | case e1000_82546_rev_3: |
810 | 460 | /* Reset is performed on a shadow of the control register */ | |
811 | /* TX byte count fix */ | 461 | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
812 | reg_ctrl = er32(CTRL); | 462 | break; |
813 | reg_ctrl &= ~(1 << 29); | 463 | default: |
814 | 464 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | |
815 | ew32(CTRL_EXT, reg_ctrl_ext); | 465 | break; |
816 | ew32(CTRL, reg_ctrl); | 466 | } |
817 | break; | 467 | |
818 | case e1000_80003es2lan: | 468 | /* After MAC reset, force reload of EEPROM to restore power-on settings to |
819 | /* improve small packet performace for fiber/serdes */ | 469 | * device. Later controllers reload the EEPROM automatically, so just wait |
820 | if ((hw->media_type == e1000_media_type_fiber) || | 470 | * for reload to complete. |
821 | (hw->media_type == e1000_media_type_internal_serdes)) { | 471 | */ |
822 | reg_tarc0 &= ~(1 << 20); | 472 | switch (hw->mac_type) { |
823 | } | 473 | case e1000_82542_rev2_0: |
824 | 474 | case e1000_82542_rev2_1: | |
825 | /* Multiple read bit is reversed polarity */ | 475 | case e1000_82543: |
826 | reg_tctl = er32(TCTL); | 476 | case e1000_82544: |
827 | reg_tarc1 = er32(TARC1); | 477 | /* Wait for reset to complete */ |
828 | if (reg_tctl & E1000_TCTL_MULR) | 478 | udelay(10); |
829 | reg_tarc1 &= ~(1 << 28); | 479 | ctrl_ext = er32(CTRL_EXT); |
830 | else | 480 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
831 | reg_tarc1 |= (1 << 28); | 481 | ew32(CTRL_EXT, ctrl_ext); |
832 | 482 | E1000_WRITE_FLUSH(); | |
833 | ew32(TARC1, reg_tarc1); | 483 | /* Wait for EEPROM reload */ |
834 | break; | 484 | msleep(2); |
835 | case e1000_ich8lan: | 485 | break; |
836 | /* Reduce concurrent DMA requests to 3 from 4 */ | 486 | case e1000_82541: |
837 | if ((hw->revision_id < 3) || | 487 | case e1000_82541_rev_2: |
838 | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && | 488 | case e1000_82547: |
839 | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) | 489 | case e1000_82547_rev_2: |
840 | reg_tarc0 |= ((1 << 29)|(1 << 28)); | 490 | /* Wait for EEPROM reload */ |
841 | 491 | msleep(20); | |
842 | reg_ctrl_ext = er32(CTRL_EXT); | 492 | break; |
843 | reg_ctrl_ext |= (1 << 22); | 493 | default: |
844 | ew32(CTRL_EXT, reg_ctrl_ext); | 494 | /* Auto read done will delay 5ms or poll based on mac type */ |
845 | 495 | ret_val = e1000_get_auto_rd_done(hw); | |
846 | /* workaround TX hang with TSO=on */ | 496 | if (ret_val) |
847 | reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); | 497 | return ret_val; |
848 | 498 | break; | |
849 | /* Multiple read bit is reversed polarity */ | 499 | } |
850 | reg_tctl = er32(TCTL); | 500 | |
851 | reg_tarc1 = er32(TARC1); | 501 | /* Disable HW ARPs on ASF enabled adapters */ |
852 | if (reg_tctl & E1000_TCTL_MULR) | 502 | if (hw->mac_type >= e1000_82540) { |
853 | reg_tarc1 &= ~(1 << 28); | 503 | manc = er32(MANC); |
854 | else | 504 | manc &= ~(E1000_MANC_ARP_EN); |
855 | reg_tarc1 |= (1 << 28); | 505 | ew32(MANC, manc); |
856 | 506 | } | |
857 | /* workaround TX hang with TSO=on */ | 507 | |
858 | reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); | 508 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
859 | 509 | e1000_phy_init_script(hw); | |
860 | ew32(TARC1, reg_tarc1); | 510 | |
861 | break; | 511 | /* Configure activity LED after PHY reset */ |
862 | default: | 512 | led_ctrl = er32(LEDCTL); |
863 | break; | 513 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
864 | } | 514 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
865 | 515 | ew32(LEDCTL, led_ctrl); | |
866 | ew32(TARC0, reg_tarc0); | 516 | } |
867 | } | 517 | |
518 | /* Clear interrupt mask to stop board from generating interrupts */ | ||
519 | DEBUGOUT("Masking off all interrupts\n"); | ||
520 | ew32(IMC, 0xffffffff); | ||
521 | |||
522 | /* Clear any pending interrupt events. */ | ||
523 | icr = er32(ICR); | ||
524 | |||
525 | /* If MWI was previously enabled, reenable it. */ | ||
526 | if (hw->mac_type == e1000_82542_rev2_0) { | ||
527 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | ||
528 | e1000_pci_set_mwi(hw); | ||
529 | } | ||
530 | |||
531 | return E1000_SUCCESS; | ||
868 | } | 532 | } |
869 | 533 | ||
870 | /****************************************************************************** | 534 | /** |
871 | * Performs basic configuration of the adapter. | 535 | * e1000_init_hw: Performs basic configuration of the adapter. |
872 | * | 536 | * @hw: Struct containing variables accessed by shared code |
873 | * hw - Struct containing variables accessed by shared code | ||
874 | * | 537 | * |
875 | * Assumes that the controller has previously been reset and is in a | 538 | * Assumes that the controller has previously been reset and is in a |
876 | * post-reset uninitialized state. Initializes the receive address registers, | 539 | * post-reset uninitialized state. Initializes the receive address registers, |
877 | * multicast table, and VLAN filter table. Calls routines to setup link | 540 | * multicast table, and VLAN filter table. Calls routines to setup link |
878 | * configuration and flow control settings. Clears all on-chip counters. Leaves | 541 | * configuration and flow control settings. Clears all on-chip counters. Leaves |
879 | * the transmit and receive units disabled and uninitialized. | 542 | * the transmit and receive units disabled and uninitialized. |
880 | *****************************************************************************/ | 543 | */ |
881 | s32 e1000_init_hw(struct e1000_hw *hw) | 544 | s32 e1000_init_hw(struct e1000_hw *hw) |
882 | { | 545 | { |
883 | u32 ctrl; | 546 | u32 ctrl; |
884 | u32 i; | 547 | u32 i; |
885 | s32 ret_val; | 548 | s32 ret_val; |
886 | u32 mta_size; | 549 | u32 mta_size; |
887 | u32 reg_data; | 550 | u32 ctrl_ext; |
888 | u32 ctrl_ext; | 551 | |
889 | 552 | DEBUGFUNC("e1000_init_hw"); | |
890 | DEBUGFUNC("e1000_init_hw"); | 553 | |
891 | 554 | /* Initialize Identification LED */ | |
892 | /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ | 555 | ret_val = e1000_id_led_init(hw); |
893 | if ((hw->mac_type == e1000_ich8lan) && | 556 | if (ret_val) { |
894 | ((hw->revision_id < 3) || | 557 | DEBUGOUT("Error Initializing Identification LED\n"); |
895 | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && | 558 | return ret_val; |
896 | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { | 559 | } |
897 | reg_data = er32(STATUS); | 560 | |
898 | reg_data &= ~0x80000000; | 561 | /* Set the media type and TBI compatibility */ |
899 | ew32(STATUS, reg_data); | 562 | e1000_set_media_type(hw); |
900 | } | 563 | |
901 | 564 | /* Disabling VLAN filtering. */ | |
902 | /* Initialize Identification LED */ | 565 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
903 | ret_val = e1000_id_led_init(hw); | 566 | if (hw->mac_type < e1000_82545_rev_3) |
904 | if (ret_val) { | 567 | ew32(VET, 0); |
905 | DEBUGOUT("Error Initializing Identification LED\n"); | 568 | e1000_clear_vfta(hw); |
906 | return ret_val; | 569 | |
907 | } | 570 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
908 | 571 | if (hw->mac_type == e1000_82542_rev2_0) { | |
909 | /* Set the media type and TBI compatibility */ | 572 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
910 | e1000_set_media_type(hw); | 573 | e1000_pci_clear_mwi(hw); |
911 | 574 | ew32(RCTL, E1000_RCTL_RST); | |
912 | /* Must be called after e1000_set_media_type because media_type is used */ | 575 | E1000_WRITE_FLUSH(); |
913 | e1000_initialize_hardware_bits(hw); | 576 | msleep(5); |
914 | 577 | } | |
915 | /* Disabling VLAN filtering. */ | 578 | |
916 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 579 | /* Setup the receive address. This involves initializing all of the Receive |
917 | /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ | 580 | * Address Registers (RARs 0 - 15). |
918 | if (hw->mac_type != e1000_ich8lan) { | 581 | */ |
919 | if (hw->mac_type < e1000_82545_rev_3) | 582 | e1000_init_rx_addrs(hw); |
920 | ew32(VET, 0); | 583 | |
921 | e1000_clear_vfta(hw); | 584 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
922 | } | 585 | if (hw->mac_type == e1000_82542_rev2_0) { |
923 | 586 | ew32(RCTL, 0); | |
924 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 587 | E1000_WRITE_FLUSH(); |
925 | if (hw->mac_type == e1000_82542_rev2_0) { | 588 | msleep(1); |
926 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 589 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
927 | e1000_pci_clear_mwi(hw); | 590 | e1000_pci_set_mwi(hw); |
928 | ew32(RCTL, E1000_RCTL_RST); | 591 | } |
929 | E1000_WRITE_FLUSH(); | 592 | |
930 | msleep(5); | 593 | /* Zero out the Multicast HASH table */ |
931 | } | 594 | DEBUGOUT("Zeroing the MTA\n"); |
932 | 595 | mta_size = E1000_MC_TBL_SIZE; | |
933 | /* Setup the receive address. This involves initializing all of the Receive | 596 | for (i = 0; i < mta_size; i++) { |
934 | * Address Registers (RARs 0 - 15). | 597 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
935 | */ | 598 | /* use write flush to prevent Memory Write Block (MWB) from |
936 | e1000_init_rx_addrs(hw); | 599 | * occurring when accessing our register space */ |
937 | 600 | E1000_WRITE_FLUSH(); | |
938 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | 601 | } |
939 | if (hw->mac_type == e1000_82542_rev2_0) { | 602 | |
940 | ew32(RCTL, 0); | 603 | /* Set the PCI priority bit correctly in the CTRL register. This |
941 | E1000_WRITE_FLUSH(); | 604 | * determines if the adapter gives priority to receives, or if it |
942 | msleep(1); | 605 | * gives equal priority to transmits and receives. Valid only on |
943 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 606 | * 82542 and 82543 silicon. |
944 | e1000_pci_set_mwi(hw); | 607 | */ |
945 | } | 608 | if (hw->dma_fairness && hw->mac_type <= e1000_82543) { |
946 | 609 | ctrl = er32(CTRL); | |
947 | /* Zero out the Multicast HASH table */ | 610 | ew32(CTRL, ctrl | E1000_CTRL_PRIOR); |
948 | DEBUGOUT("Zeroing the MTA\n"); | 611 | } |
949 | mta_size = E1000_MC_TBL_SIZE; | 612 | |
950 | if (hw->mac_type == e1000_ich8lan) | 613 | switch (hw->mac_type) { |
951 | mta_size = E1000_MC_TBL_SIZE_ICH8LAN; | 614 | case e1000_82545_rev_3: |
952 | for (i = 0; i < mta_size; i++) { | 615 | case e1000_82546_rev_3: |
953 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 616 | break; |
954 | /* use write flush to prevent Memory Write Block (MWB) from | 617 | default: |
955 | * occuring when accessing our register space */ | 618 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
956 | E1000_WRITE_FLUSH(); | 619 | if (hw->bus_type == e1000_bus_type_pcix |
957 | } | 620 | && e1000_pcix_get_mmrbc(hw) > 2048) |
958 | 621 | e1000_pcix_set_mmrbc(hw, 2048); | |
959 | /* Set the PCI priority bit correctly in the CTRL register. This | 622 | break; |
960 | * determines if the adapter gives priority to receives, or if it | 623 | } |
961 | * gives equal priority to transmits and receives. Valid only on | 624 | |
962 | * 82542 and 82543 silicon. | 625 | /* Call a subroutine to configure the link and setup flow control. */ |
963 | */ | 626 | ret_val = e1000_setup_link(hw); |
964 | if (hw->dma_fairness && hw->mac_type <= e1000_82543) { | 627 | |
965 | ctrl = er32(CTRL); | 628 | /* Set the transmit descriptor write-back policy */ |
966 | ew32(CTRL, ctrl | E1000_CTRL_PRIOR); | 629 | if (hw->mac_type > e1000_82544) { |
967 | } | 630 | ctrl = er32(TXDCTL); |
968 | 631 | ctrl = | |
969 | switch (hw->mac_type) { | 632 | (ctrl & ~E1000_TXDCTL_WTHRESH) | |
970 | case e1000_82545_rev_3: | 633 | E1000_TXDCTL_FULL_TX_DESC_WB; |
971 | case e1000_82546_rev_3: | 634 | ew32(TXDCTL, ctrl); |
972 | break; | 635 | } |
973 | default: | 636 | |
974 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | 637 | /* Clear all of the statistics registers (clear on read). It is |
975 | if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048) | 638 | * important that we do this after we have tried to establish link |
976 | e1000_pcix_set_mmrbc(hw, 2048); | 639 | * because the symbol error count will increment wildly if there |
977 | break; | 640 | * is no link. |
978 | } | 641 | */ |
979 | 642 | e1000_clear_hw_cntrs(hw); | |
980 | /* More time needed for PHY to initialize */ | 643 | |
981 | if (hw->mac_type == e1000_ich8lan) | 644 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
982 | msleep(15); | 645 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
983 | 646 | ctrl_ext = er32(CTRL_EXT); | |
984 | /* Call a subroutine to configure the link and setup flow control. */ | 647 | /* Relaxed ordering must be disabled to avoid a parity |
985 | ret_val = e1000_setup_link(hw); | 648 | * error crash in a PCI slot. */ |
986 | 649 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | |
987 | /* Set the transmit descriptor write-back policy */ | 650 | ew32(CTRL_EXT, ctrl_ext); |
988 | if (hw->mac_type > e1000_82544) { | 651 | } |
989 | ctrl = er32(TXDCTL); | 652 | |
990 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 653 | return ret_val; |
991 | ew32(TXDCTL, ctrl); | ||
992 | } | ||
993 | |||
994 | if (hw->mac_type == e1000_82573) { | ||
995 | e1000_enable_tx_pkt_filtering(hw); | ||
996 | } | ||
997 | |||
998 | switch (hw->mac_type) { | ||
999 | default: | ||
1000 | break; | ||
1001 | case e1000_80003es2lan: | ||
1002 | /* Enable retransmit on late collisions */ | ||
1003 | reg_data = er32(TCTL); | ||
1004 | reg_data |= E1000_TCTL_RTLC; | ||
1005 | ew32(TCTL, reg_data); | ||
1006 | |||
1007 | /* Configure Gigabit Carry Extend Padding */ | ||
1008 | reg_data = er32(TCTL_EXT); | ||
1009 | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; | ||
1010 | reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; | ||
1011 | ew32(TCTL_EXT, reg_data); | ||
1012 | |||
1013 | /* Configure Transmit Inter-Packet Gap */ | ||
1014 | reg_data = er32(TIPG); | ||
1015 | reg_data &= ~E1000_TIPG_IPGT_MASK; | ||
1016 | reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | ||
1017 | ew32(TIPG, reg_data); | ||
1018 | |||
1019 | reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); | ||
1020 | reg_data &= ~0x00100000; | ||
1021 | E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); | ||
1022 | /* Fall through */ | ||
1023 | case e1000_82571: | ||
1024 | case e1000_82572: | ||
1025 | case e1000_ich8lan: | ||
1026 | ctrl = er32(TXDCTL1); | ||
1027 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | ||
1028 | ew32(TXDCTL1, ctrl); | ||
1029 | break; | ||
1030 | } | ||
1031 | |||
1032 | |||
1033 | if (hw->mac_type == e1000_82573) { | ||
1034 | u32 gcr = er32(GCR); | ||
1035 | gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; | ||
1036 | ew32(GCR, gcr); | ||
1037 | } | ||
1038 | |||
1039 | /* Clear all of the statistics registers (clear on read). It is | ||
1040 | * important that we do this after we have tried to establish link | ||
1041 | * because the symbol error count will increment wildly if there | ||
1042 | * is no link. | ||
1043 | */ | ||
1044 | e1000_clear_hw_cntrs(hw); | ||
1045 | |||
1046 | /* ICH8 No-snoop bits are opposite polarity. | ||
1047 | * Set to snoop by default after reset. */ | ||
1048 | if (hw->mac_type == e1000_ich8lan) | ||
1049 | e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); | ||
1050 | |||
1051 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | ||
1052 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | ||
1053 | ctrl_ext = er32(CTRL_EXT); | ||
1054 | /* Relaxed ordering must be disabled to avoid a parity | ||
1055 | * error crash in a PCI slot. */ | ||
1056 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | ||
1057 | ew32(CTRL_EXT, ctrl_ext); | ||
1058 | } | ||
1059 | |||
1060 | return ret_val; | ||
1061 | } | 654 | } |
1062 | 655 | ||
1063 | /****************************************************************************** | 656 | /** |
1064 | * Adjust SERDES output amplitude based on EEPROM setting. | 657 | * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. |
1065 | * | 658 | * @hw: Struct containing variables accessed by shared code. |
1066 | * hw - Struct containing variables accessed by shared code. | 659 | */ |
1067 | *****************************************************************************/ | ||
1068 | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | 660 | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) |
1069 | { | 661 | { |
1070 | u16 eeprom_data; | 662 | u16 eeprom_data; |
1071 | s32 ret_val; | 663 | s32 ret_val; |
1072 | 664 | ||
1073 | DEBUGFUNC("e1000_adjust_serdes_amplitude"); | 665 | DEBUGFUNC("e1000_adjust_serdes_amplitude"); |
1074 | 666 | ||
1075 | if (hw->media_type != e1000_media_type_internal_serdes) | 667 | if (hw->media_type != e1000_media_type_internal_serdes) |
1076 | return E1000_SUCCESS; | 668 | return E1000_SUCCESS; |
1077 | 669 | ||
1078 | switch (hw->mac_type) { | 670 | switch (hw->mac_type) { |
1079 | case e1000_82545_rev_3: | 671 | case e1000_82545_rev_3: |
1080 | case e1000_82546_rev_3: | 672 | case e1000_82546_rev_3: |
1081 | break; | 673 | break; |
1082 | default: | 674 | default: |
1083 | return E1000_SUCCESS; | 675 | return E1000_SUCCESS; |
1084 | } | 676 | } |
1085 | 677 | ||
1086 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); | 678 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, |
1087 | if (ret_val) { | 679 | &eeprom_data); |
1088 | return ret_val; | 680 | if (ret_val) { |
1089 | } | 681 | return ret_val; |
1090 | 682 | } | |
1091 | if (eeprom_data != EEPROM_RESERVED_WORD) { | 683 | |
1092 | /* Adjust SERDES output amplitude only. */ | 684 | if (eeprom_data != EEPROM_RESERVED_WORD) { |
1093 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; | 685 | /* Adjust SERDES output amplitude only. */ |
1094 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); | 686 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; |
1095 | if (ret_val) | 687 | ret_val = |
1096 | return ret_val; | 688 | e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); |
1097 | } | 689 | if (ret_val) |
1098 | 690 | return ret_val; | |
1099 | return E1000_SUCCESS; | 691 | } |
692 | |||
693 | return E1000_SUCCESS; | ||
1100 | } | 694 | } |
1101 | 695 | ||
1102 | /****************************************************************************** | 696 | /** |
1103 | * Configures flow control and link settings. | 697 | * e1000_setup_link - Configures flow control and link settings. |
1104 | * | 698 | * @hw: Struct containing variables accessed by shared code |
1105 | * hw - Struct containing variables accessed by shared code | ||
1106 | * | 699 | * |
1107 | * Determines which flow control settings to use. Calls the apropriate media- | 700 | * Determines which flow control settings to use. Calls the appropriate media- |
1108 | * specific link configuration function. Configures the flow control settings. | 701 | * specific link configuration function. Configures the flow control settings. |
1109 | * Assuming the adapter has a valid link partner, a valid link should be | 702 | * Assuming the adapter has a valid link partner, a valid link should be |
1110 | * established. Assumes the hardware has previously been reset and the | 703 | * established. Assumes the hardware has previously been reset and the |
1111 | * transmitter and receiver are not enabled. | 704 | * transmitter and receiver are not enabled. |
1112 | *****************************************************************************/ | 705 | */ |
1113 | s32 e1000_setup_link(struct e1000_hw *hw) | 706 | s32 e1000_setup_link(struct e1000_hw *hw) |
1114 | { | 707 | { |
1115 | u32 ctrl_ext; | 708 | u32 ctrl_ext; |
1116 | s32 ret_val; | 709 | s32 ret_val; |
1117 | u16 eeprom_data; | 710 | u16 eeprom_data; |
1118 | 711 | ||
1119 | DEBUGFUNC("e1000_setup_link"); | 712 | DEBUGFUNC("e1000_setup_link"); |
1120 | 713 | ||
1121 | /* In the case of the phy reset being blocked, we already have a link. | 714 | /* Read and store word 0x0F of the EEPROM. This word contains bits |
1122 | * We do not have to set it up again. */ | 715 | * that determine the hardware's default PAUSE (flow control) mode, |
1123 | if (e1000_check_phy_reset_block(hw)) | 716 | * a bit that determines whether the HW defaults to enabling or |
1124 | return E1000_SUCCESS; | 717 | * disabling auto-negotiation, and the direction of the |
1125 | 718 | * SW defined pins. If there is no SW over-ride of the flow | |
1126 | /* Read and store word 0x0F of the EEPROM. This word contains bits | 719 | * control setting, then the variable hw->fc will |
1127 | * that determine the hardware's default PAUSE (flow control) mode, | 720 | * be initialized based on a value in the EEPROM. |
1128 | * a bit that determines whether the HW defaults to enabling or | 721 | */ |
1129 | * disabling auto-negotiation, and the direction of the | 722 | if (hw->fc == E1000_FC_DEFAULT) { |
1130 | * SW defined pins. If there is no SW over-ride of the flow | 723 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
1131 | * control setting, then the variable hw->fc will | 724 | 1, &eeprom_data); |
1132 | * be initialized based on a value in the EEPROM. | 725 | if (ret_val) { |
1133 | */ | 726 | DEBUGOUT("EEPROM Read Error\n"); |
1134 | if (hw->fc == E1000_FC_DEFAULT) { | 727 | return -E1000_ERR_EEPROM; |
1135 | switch (hw->mac_type) { | 728 | } |
1136 | case e1000_ich8lan: | 729 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
1137 | case e1000_82573: | 730 | hw->fc = E1000_FC_NONE; |
1138 | hw->fc = E1000_FC_FULL; | 731 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
1139 | break; | 732 | EEPROM_WORD0F_ASM_DIR) |
1140 | default: | 733 | hw->fc = E1000_FC_TX_PAUSE; |
1141 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 734 | else |
1142 | 1, &eeprom_data); | 735 | hw->fc = E1000_FC_FULL; |
1143 | if (ret_val) { | 736 | } |
1144 | DEBUGOUT("EEPROM Read Error\n"); | 737 | |
1145 | return -E1000_ERR_EEPROM; | 738 | /* We want to save off the original Flow Control configuration just |
1146 | } | 739 | * in case we get disconnected and then reconnected into a different |
1147 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | 740 | * hub or switch with different Flow Control capabilities. |
1148 | hw->fc = E1000_FC_NONE; | 741 | */ |
1149 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | 742 | if (hw->mac_type == e1000_82542_rev2_0) |
1150 | EEPROM_WORD0F_ASM_DIR) | 743 | hw->fc &= (~E1000_FC_TX_PAUSE); |
1151 | hw->fc = E1000_FC_TX_PAUSE; | 744 | |
1152 | else | 745 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
1153 | hw->fc = E1000_FC_FULL; | 746 | hw->fc &= (~E1000_FC_RX_PAUSE); |
1154 | break; | 747 | |
1155 | } | 748 | hw->original_fc = hw->fc; |
1156 | } | 749 | |
1157 | 750 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | |
1158 | /* We want to save off the original Flow Control configuration just | 751 | |
1159 | * in case we get disconnected and then reconnected into a different | 752 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
1160 | * hub or switch with different Flow Control capabilities. | 753 | * polarity value for the SW controlled pins, and setup the |
1161 | */ | 754 | * Extended Device Control reg with that info. |
1162 | if (hw->mac_type == e1000_82542_rev2_0) | 755 | * This is needed because one of the SW controlled pins is used for |
1163 | hw->fc &= (~E1000_FC_TX_PAUSE); | 756 | * signal detection. So this should be done before e1000_setup_pcs_link() |
1164 | 757 | * or e1000_phy_setup() is called. | |
1165 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | 758 | */ |
1166 | hw->fc &= (~E1000_FC_RX_PAUSE); | 759 | if (hw->mac_type == e1000_82543) { |
1167 | 760 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | |
1168 | hw->original_fc = hw->fc; | 761 | 1, &eeprom_data); |
1169 | 762 | if (ret_val) { | |
1170 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | 763 | DEBUGOUT("EEPROM Read Error\n"); |
1171 | 764 | return -E1000_ERR_EEPROM; | |
1172 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | 765 | } |
1173 | * polarity value for the SW controlled pins, and setup the | 766 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
1174 | * Extended Device Control reg with that info. | 767 | SWDPIO__EXT_SHIFT); |
1175 | * This is needed because one of the SW controlled pins is used for | 768 | ew32(CTRL_EXT, ctrl_ext); |
1176 | * signal detection. So this should be done before e1000_setup_pcs_link() | 769 | } |
1177 | * or e1000_phy_setup() is called. | 770 | |
1178 | */ | 771 | /* Call the necessary subroutine to configure the link. */ |
1179 | if (hw->mac_type == e1000_82543) { | 772 | ret_val = (hw->media_type == e1000_media_type_copper) ? |
1180 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 773 | e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); |
1181 | 1, &eeprom_data); | 774 | |
1182 | if (ret_val) { | 775 | /* Initialize the flow control address, type, and PAUSE timer |
1183 | DEBUGOUT("EEPROM Read Error\n"); | 776 | * registers to their default values. This is done even if flow |
1184 | return -E1000_ERR_EEPROM; | 777 | * control is disabled, because it does not hurt anything to |
1185 | } | 778 | * initialize these registers. |
1186 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | 779 | */ |
1187 | SWDPIO__EXT_SHIFT); | 780 | DEBUGOUT |
1188 | ew32(CTRL_EXT, ctrl_ext); | 781 | ("Initializing the Flow Control address, type and timer regs\n"); |
1189 | } | 782 | |
1190 | 783 | ew32(FCT, FLOW_CONTROL_TYPE); | |
1191 | /* Call the necessary subroutine to configure the link. */ | 784 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
1192 | ret_val = (hw->media_type == e1000_media_type_copper) ? | 785 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); |
1193 | e1000_setup_copper_link(hw) : | 786 | |
1194 | e1000_setup_fiber_serdes_link(hw); | 787 | ew32(FCTTV, hw->fc_pause_time); |
1195 | 788 | ||
1196 | /* Initialize the flow control address, type, and PAUSE timer | 789 | /* Set the flow control receive threshold registers. Normally, |
1197 | * registers to their default values. This is done even if flow | 790 | * these registers will be set to a default threshold that may be |
1198 | * control is disabled, because it does not hurt anything to | 791 | * adjusted later by the driver's runtime code. However, if the |
1199 | * initialize these registers. | 792 | * ability to transmit pause frames in not enabled, then these |
1200 | */ | 793 | * registers will be set to 0. |
1201 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 794 | */ |
1202 | 795 | if (!(hw->fc & E1000_FC_TX_PAUSE)) { | |
1203 | /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ | 796 | ew32(FCRTL, 0); |
1204 | if (hw->mac_type != e1000_ich8lan) { | 797 | ew32(FCRTH, 0); |
1205 | ew32(FCT, FLOW_CONTROL_TYPE); | 798 | } else { |
1206 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 799 | /* We need to set up the Receive Threshold high and low water marks |
1207 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | 800 | * as well as (optionally) enabling the transmission of XON frames. |
1208 | } | 801 | */ |
1209 | 802 | if (hw->fc_send_xon) { | |
1210 | ew32(FCTTV, hw->fc_pause_time); | 803 | ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); |
1211 | 804 | ew32(FCRTH, hw->fc_high_water); | |
1212 | /* Set the flow control receive threshold registers. Normally, | 805 | } else { |
1213 | * these registers will be set to a default threshold that may be | 806 | ew32(FCRTL, hw->fc_low_water); |
1214 | * adjusted later by the driver's runtime code. However, if the | 807 | ew32(FCRTH, hw->fc_high_water); |
1215 | * ability to transmit pause frames in not enabled, then these | 808 | } |
1216 | * registers will be set to 0. | 809 | } |
1217 | */ | 810 | return ret_val; |
1218 | if (!(hw->fc & E1000_FC_TX_PAUSE)) { | ||
1219 | ew32(FCRTL, 0); | ||
1220 | ew32(FCRTH, 0); | ||
1221 | } else { | ||
1222 | /* We need to set up the Receive Threshold high and low water marks | ||
1223 | * as well as (optionally) enabling the transmission of XON frames. | ||
1224 | */ | ||
1225 | if (hw->fc_send_xon) { | ||
1226 | ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | ||
1227 | ew32(FCRTH, hw->fc_high_water); | ||
1228 | } else { | ||
1229 | ew32(FCRTL, hw->fc_low_water); | ||
1230 | ew32(FCRTH, hw->fc_high_water); | ||
1231 | } | ||
1232 | } | ||
1233 | return ret_val; | ||
1234 | } | 811 | } |
1235 | 812 | ||
1236 | /****************************************************************************** | 813 | /** |
1237 | * Sets up link for a fiber based or serdes based adapter | 814 | * e1000_setup_fiber_serdes_link - prepare fiber or serdes link |
1238 | * | 815 | * @hw: Struct containing variables accessed by shared code |
1239 | * hw - Struct containing variables accessed by shared code | ||
1240 | * | 816 | * |
1241 | * Manipulates Physical Coding Sublayer functions in order to configure | 817 | * Manipulates Physical Coding Sublayer functions in order to configure |
1242 | * link. Assumes the hardware has been previously reset and the transmitter | 818 | * link. Assumes the hardware has been previously reset and the transmitter |
1243 | * and receiver are not enabled. | 819 | * and receiver are not enabled. |
1244 | *****************************************************************************/ | 820 | */ |
1245 | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | 821 | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) |
1246 | { | 822 | { |
1247 | u32 ctrl; | 823 | u32 ctrl; |
1248 | u32 status; | 824 | u32 status; |
1249 | u32 txcw = 0; | 825 | u32 txcw = 0; |
1250 | u32 i; | 826 | u32 i; |
1251 | u32 signal = 0; | 827 | u32 signal = 0; |
1252 | s32 ret_val; | 828 | s32 ret_val; |
1253 | 829 | ||
1254 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); | 830 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); |
1255 | 831 | ||
1256 | /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists | 832 | /* On adapters with a MAC newer than 82544, SWDP 1 will be |
1257 | * until explicitly turned off or a power cycle is performed. A read to | 833 | * set when the optics detect a signal. On older adapters, it will be |
1258 | * the register does not indicate its status. Therefore, we ensure | 834 | * cleared when there is a signal. This applies to fiber media only. |
1259 | * loopback mode is disabled during initialization. | 835 | * If we're on serdes media, adjust the output amplitude to value |
1260 | */ | 836 | * set in the EEPROM. |
1261 | if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) | 837 | */ |
1262 | ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK); | 838 | ctrl = er32(CTRL); |
1263 | 839 | if (hw->media_type == e1000_media_type_fiber) | |
1264 | /* On adapters with a MAC newer than 82544, SWDP 1 will be | 840 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
1265 | * set when the optics detect a signal. On older adapters, it will be | 841 | |
1266 | * cleared when there is a signal. This applies to fiber media only. | 842 | ret_val = e1000_adjust_serdes_amplitude(hw); |
1267 | * If we're on serdes media, adjust the output amplitude to value | 843 | if (ret_val) |
1268 | * set in the EEPROM. | 844 | return ret_val; |
1269 | */ | 845 | |
1270 | ctrl = er32(CTRL); | 846 | /* Take the link out of reset */ |
1271 | if (hw->media_type == e1000_media_type_fiber) | 847 | ctrl &= ~(E1000_CTRL_LRST); |
1272 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 848 | |
1273 | 849 | /* Adjust VCO speed to improve BER performance */ | |
1274 | ret_val = e1000_adjust_serdes_amplitude(hw); | 850 | ret_val = e1000_set_vco_speed(hw); |
1275 | if (ret_val) | 851 | if (ret_val) |
1276 | return ret_val; | 852 | return ret_val; |
1277 | 853 | ||
1278 | /* Take the link out of reset */ | 854 | e1000_config_collision_dist(hw); |
1279 | ctrl &= ~(E1000_CTRL_LRST); | 855 | |
1280 | 856 | /* Check for a software override of the flow control settings, and setup | |
1281 | /* Adjust VCO speed to improve BER performance */ | 857 | * the device accordingly. If auto-negotiation is enabled, then software |
1282 | ret_val = e1000_set_vco_speed(hw); | 858 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
1283 | if (ret_val) | 859 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
1284 | return ret_val; | 860 | * auto-negotiation is disabled, then software will have to manually |
1285 | 861 | * configure the two flow control enable bits in the CTRL register. | |
1286 | e1000_config_collision_dist(hw); | 862 | * |
1287 | 863 | * The possible values of the "fc" parameter are: | |
1288 | /* Check for a software override of the flow control settings, and setup | 864 | * 0: Flow control is completely disabled |
1289 | * the device accordingly. If auto-negotiation is enabled, then software | 865 | * 1: Rx flow control is enabled (we can receive pause frames, but |
1290 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | 866 | * not send pause frames). |
1291 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if | 867 | * 2: Tx flow control is enabled (we can send pause frames but we do |
1292 | * auto-negotiation is disabled, then software will have to manually | 868 | * not support receiving pause frames). |
1293 | * configure the two flow control enable bits in the CTRL register. | 869 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
1294 | * | 870 | */ |
1295 | * The possible values of the "fc" parameter are: | 871 | switch (hw->fc) { |
1296 | * 0: Flow control is completely disabled | 872 | case E1000_FC_NONE: |
1297 | * 1: Rx flow control is enabled (we can receive pause frames, but | 873 | /* Flow control is completely disabled by a software over-ride. */ |
1298 | * not send pause frames). | 874 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
1299 | * 2: Tx flow control is enabled (we can send pause frames but we do | 875 | break; |
1300 | * not support receiving pause frames). | 876 | case E1000_FC_RX_PAUSE: |
1301 | * 3: Both Rx and TX flow control (symmetric) are enabled. | 877 | /* RX Flow control is enabled and TX Flow control is disabled by a |
1302 | */ | 878 | * software over-ride. Since there really isn't a way to advertise |
1303 | switch (hw->fc) { | 879 | * that we are capable of RX Pause ONLY, we will advertise that we |
1304 | case E1000_FC_NONE: | 880 | * support both symmetric and asymmetric RX PAUSE. Later, we will |
1305 | /* Flow control is completely disabled by a software over-ride. */ | 881 | * disable the adapter's ability to send PAUSE frames. |
1306 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 882 | */ |
1307 | break; | 883 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
1308 | case E1000_FC_RX_PAUSE: | 884 | break; |
1309 | /* RX Flow control is enabled and TX Flow control is disabled by a | 885 | case E1000_FC_TX_PAUSE: |
1310 | * software over-ride. Since there really isn't a way to advertise | 886 | /* TX Flow control is enabled, and RX Flow control is disabled, by a |
1311 | * that we are capable of RX Pause ONLY, we will advertise that we | 887 | * software over-ride. |
1312 | * support both symmetric and asymmetric RX PAUSE. Later, we will | 888 | */ |
1313 | * disable the adapter's ability to send PAUSE frames. | 889 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
1314 | */ | 890 | break; |
1315 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 891 | case E1000_FC_FULL: |
1316 | break; | 892 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
1317 | case E1000_FC_TX_PAUSE: | 893 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
1318 | /* TX Flow control is enabled, and RX Flow control is disabled, by a | 894 | break; |
1319 | * software over-ride. | 895 | default: |
1320 | */ | 896 | DEBUGOUT("Flow control param set incorrectly\n"); |
1321 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 897 | return -E1000_ERR_CONFIG; |
1322 | break; | 898 | break; |
1323 | case E1000_FC_FULL: | 899 | } |
1324 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | 900 | |
1325 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 901 | /* Since auto-negotiation is enabled, take the link out of reset (the link |
1326 | break; | 902 | * will be in reset, because we previously reset the chip). This will |
1327 | default: | 903 | * restart auto-negotiation. If auto-negotiation is successful then the |
1328 | DEBUGOUT("Flow control param set incorrectly\n"); | 904 | * link-up status bit will be set and the flow control enable bits (RFCE |
1329 | return -E1000_ERR_CONFIG; | 905 | * and TFCE) will be set according to their negotiated value. |
1330 | break; | 906 | */ |
1331 | } | 907 | DEBUGOUT("Auto-negotiation enabled\n"); |
1332 | 908 | ||
1333 | /* Since auto-negotiation is enabled, take the link out of reset (the link | 909 | ew32(TXCW, txcw); |
1334 | * will be in reset, because we previously reset the chip). This will | 910 | ew32(CTRL, ctrl); |
1335 | * restart auto-negotiation. If auto-neogtiation is successful then the | 911 | E1000_WRITE_FLUSH(); |
1336 | * link-up status bit will be set and the flow control enable bits (RFCE | 912 | |
1337 | * and TFCE) will be set according to their negotiated value. | 913 | hw->txcw = txcw; |
1338 | */ | 914 | msleep(1); |
1339 | DEBUGOUT("Auto-negotiation enabled\n"); | 915 | |
1340 | 916 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | |
1341 | ew32(TXCW, txcw); | 917 | * indication in the Device Status Register. Time-out if a link isn't |
1342 | ew32(CTRL, ctrl); | 918 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
1343 | E1000_WRITE_FLUSH(); | 919 | * less than 500 milliseconds even if the other end is doing it in SW). |
1344 | 920 | * For internal serdes, we just assume a signal is present, then poll. | |
1345 | hw->txcw = txcw; | 921 | */ |
1346 | msleep(1); | 922 | if (hw->media_type == e1000_media_type_internal_serdes || |
1347 | 923 | (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { | |
1348 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | 924 | DEBUGOUT("Looking for Link\n"); |
1349 | * indication in the Device Status Register. Time-out if a link isn't | 925 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
1350 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | 926 | msleep(10); |
1351 | * less than 500 milliseconds even if the other end is doing it in SW). | 927 | status = er32(STATUS); |
1352 | * For internal serdes, we just assume a signal is present, then poll. | 928 | if (status & E1000_STATUS_LU) |
1353 | */ | 929 | break; |
1354 | if (hw->media_type == e1000_media_type_internal_serdes || | 930 | } |
1355 | (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { | 931 | if (i == (LINK_UP_TIMEOUT / 10)) { |
1356 | DEBUGOUT("Looking for Link\n"); | 932 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
1357 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | 933 | hw->autoneg_failed = 1; |
1358 | msleep(10); | 934 | /* AutoNeg failed to achieve a link, so we'll call |
1359 | status = er32(STATUS); | 935 | * e1000_check_for_link. This routine will force the link up if |
1360 | if (status & E1000_STATUS_LU) break; | 936 | * we detect a signal. This will allow us to communicate with |
1361 | } | 937 | * non-autonegotiating link partners. |
1362 | if (i == (LINK_UP_TIMEOUT / 10)) { | 938 | */ |
1363 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | 939 | ret_val = e1000_check_for_link(hw); |
1364 | hw->autoneg_failed = 1; | 940 | if (ret_val) { |
1365 | /* AutoNeg failed to achieve a link, so we'll call | 941 | DEBUGOUT("Error while checking for link\n"); |
1366 | * e1000_check_for_link. This routine will force the link up if | 942 | return ret_val; |
1367 | * we detect a signal. This will allow us to communicate with | 943 | } |
1368 | * non-autonegotiating link partners. | 944 | hw->autoneg_failed = 0; |
1369 | */ | 945 | } else { |
1370 | ret_val = e1000_check_for_link(hw); | 946 | hw->autoneg_failed = 0; |
1371 | if (ret_val) { | 947 | DEBUGOUT("Valid Link Found\n"); |
1372 | DEBUGOUT("Error while checking for link\n"); | 948 | } |
1373 | return ret_val; | 949 | } else { |
1374 | } | 950 | DEBUGOUT("No Signal Detected\n"); |
1375 | hw->autoneg_failed = 0; | 951 | } |
1376 | } else { | 952 | return E1000_SUCCESS; |
1377 | hw->autoneg_failed = 0; | ||
1378 | DEBUGOUT("Valid Link Found\n"); | ||
1379 | } | ||
1380 | } else { | ||
1381 | DEBUGOUT("No Signal Detected\n"); | ||
1382 | } | ||
1383 | return E1000_SUCCESS; | ||
1384 | } | 953 | } |
1385 | 954 | ||
1386 | /****************************************************************************** | 955 | /** |
1387 | * Make sure we have a valid PHY and change PHY mode before link setup. | 956 | * e1000_copper_link_preconfig - early configuration for copper |
1388 | * | 957 | * @hw: Struct containing variables accessed by shared code |
1389 | * hw - Struct containing variables accessed by shared code | 958 | * |
1390 | ******************************************************************************/ | 959 | * Make sure we have a valid PHY and change PHY mode before link setup. |
960 | */ | ||
1391 | static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) | 961 | static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) |
1392 | { | 962 | { |
1393 | u32 ctrl; | 963 | u32 ctrl; |
1394 | s32 ret_val; | 964 | s32 ret_val; |
1395 | u16 phy_data; | 965 | u16 phy_data; |
1396 | |||
1397 | DEBUGFUNC("e1000_copper_link_preconfig"); | ||
1398 | |||
1399 | ctrl = er32(CTRL); | ||
1400 | /* With 82543, we need to force speed and duplex on the MAC equal to what | ||
1401 | * the PHY speed and duplex configuration is. In addition, we need to | ||
1402 | * perform a hardware reset on the PHY to take it out of reset. | ||
1403 | */ | ||
1404 | if (hw->mac_type > e1000_82543) { | ||
1405 | ctrl |= E1000_CTRL_SLU; | ||
1406 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1407 | ew32(CTRL, ctrl); | ||
1408 | } else { | ||
1409 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | ||
1410 | ew32(CTRL, ctrl); | ||
1411 | ret_val = e1000_phy_hw_reset(hw); | ||
1412 | if (ret_val) | ||
1413 | return ret_val; | ||
1414 | } | ||
1415 | |||
1416 | /* Make sure we have a valid PHY */ | ||
1417 | ret_val = e1000_detect_gig_phy(hw); | ||
1418 | if (ret_val) { | ||
1419 | DEBUGOUT("Error, did not detect valid phy.\n"); | ||
1420 | return ret_val; | ||
1421 | } | ||
1422 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | ||
1423 | |||
1424 | /* Set PHY to class A mode (if necessary) */ | ||
1425 | ret_val = e1000_set_phy_mode(hw); | ||
1426 | if (ret_val) | ||
1427 | return ret_val; | ||
1428 | |||
1429 | if ((hw->mac_type == e1000_82545_rev_3) || | ||
1430 | (hw->mac_type == e1000_82546_rev_3)) { | ||
1431 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1432 | phy_data |= 0x00000008; | ||
1433 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1434 | } | ||
1435 | |||
1436 | if (hw->mac_type <= e1000_82543 || | ||
1437 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | ||
1438 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | ||
1439 | hw->phy_reset_disable = false; | ||
1440 | |||
1441 | return E1000_SUCCESS; | ||
1442 | } | ||
1443 | 966 | ||
967 | DEBUGFUNC("e1000_copper_link_preconfig"); | ||
1444 | 968 | ||
1445 | /******************************************************************** | 969 | ctrl = er32(CTRL); |
1446 | * Copper link setup for e1000_phy_igp series. | 970 | /* With 82543, we need to force speed and duplex on the MAC equal to what |
1447 | * | 971 | * the PHY speed and duplex configuration is. In addition, we need to |
1448 | * hw - Struct containing variables accessed by shared code | 972 | * perform a hardware reset on the PHY to take it out of reset. |
1449 | *********************************************************************/ | 973 | */ |
1450 | static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) | 974 | if (hw->mac_type > e1000_82543) { |
1451 | { | 975 | ctrl |= E1000_CTRL_SLU; |
1452 | u32 led_ctrl; | 976 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
1453 | s32 ret_val; | 977 | ew32(CTRL, ctrl); |
1454 | u16 phy_data; | 978 | } else { |
1455 | 979 | ctrl |= | |
1456 | DEBUGFUNC("e1000_copper_link_igp_setup"); | 980 | (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
1457 | 981 | ew32(CTRL, ctrl); | |
1458 | if (hw->phy_reset_disable) | 982 | ret_val = e1000_phy_hw_reset(hw); |
1459 | return E1000_SUCCESS; | 983 | if (ret_val) |
1460 | 984 | return ret_val; | |
1461 | ret_val = e1000_phy_reset(hw); | 985 | } |
1462 | if (ret_val) { | 986 | |
1463 | DEBUGOUT("Error Resetting the PHY\n"); | 987 | /* Make sure we have a valid PHY */ |
1464 | return ret_val; | 988 | ret_val = e1000_detect_gig_phy(hw); |
1465 | } | 989 | if (ret_val) { |
1466 | 990 | DEBUGOUT("Error, did not detect valid phy.\n"); | |
1467 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | 991 | return ret_val; |
1468 | msleep(15); | 992 | } |
1469 | if (hw->mac_type != e1000_ich8lan) { | 993 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); |
1470 | /* Configure activity LED after PHY reset */ | 994 | |
1471 | led_ctrl = er32(LEDCTL); | 995 | /* Set PHY to class A mode (if necessary) */ |
1472 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 996 | ret_val = e1000_set_phy_mode(hw); |
1473 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 997 | if (ret_val) |
1474 | ew32(LEDCTL, led_ctrl); | 998 | return ret_val; |
1475 | } | 999 | |
1476 | 1000 | if ((hw->mac_type == e1000_82545_rev_3) || | |
1477 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | 1001 | (hw->mac_type == e1000_82546_rev_3)) { |
1478 | if (hw->phy_type == e1000_phy_igp) { | 1002 | ret_val = |
1479 | /* disable lplu d3 during driver init */ | 1003 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
1480 | ret_val = e1000_set_d3_lplu_state(hw, false); | 1004 | phy_data |= 0x00000008; |
1481 | if (ret_val) { | 1005 | ret_val = |
1482 | DEBUGOUT("Error Disabling LPLU D3\n"); | 1006 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
1483 | return ret_val; | 1007 | } |
1484 | } | 1008 | |
1485 | } | 1009 | if (hw->mac_type <= e1000_82543 || |
1486 | 1010 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | |
1487 | /* disable lplu d0 during driver init */ | 1011 | hw->mac_type == e1000_82541_rev_2 |
1488 | ret_val = e1000_set_d0_lplu_state(hw, false); | 1012 | || hw->mac_type == e1000_82547_rev_2) |
1489 | if (ret_val) { | 1013 | hw->phy_reset_disable = false; |
1490 | DEBUGOUT("Error Disabling LPLU D0\n"); | 1014 | |
1491 | return ret_val; | 1015 | return E1000_SUCCESS; |
1492 | } | ||
1493 | /* Configure mdi-mdix settings */ | ||
1494 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1495 | if (ret_val) | ||
1496 | return ret_val; | ||
1497 | |||
1498 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
1499 | hw->dsp_config_state = e1000_dsp_config_disabled; | ||
1500 | /* Force MDI for earlier revs of the IGP PHY */ | ||
1501 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); | ||
1502 | hw->mdix = 1; | ||
1503 | |||
1504 | } else { | ||
1505 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
1506 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1507 | |||
1508 | switch (hw->mdix) { | ||
1509 | case 1: | ||
1510 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1511 | break; | ||
1512 | case 2: | ||
1513 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1514 | break; | ||
1515 | case 0: | ||
1516 | default: | ||
1517 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
1518 | break; | ||
1519 | } | ||
1520 | } | ||
1521 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | ||
1522 | if (ret_val) | ||
1523 | return ret_val; | ||
1524 | |||
1525 | /* set auto-master slave resolution settings */ | ||
1526 | if (hw->autoneg) { | ||
1527 | e1000_ms_type phy_ms_setting = hw->master_slave; | ||
1528 | |||
1529 | if (hw->ffe_config_state == e1000_ffe_config_active) | ||
1530 | hw->ffe_config_state = e1000_ffe_config_enabled; | ||
1531 | |||
1532 | if (hw->dsp_config_state == e1000_dsp_config_activated) | ||
1533 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
1534 | |||
1535 | /* when autonegotiation advertisment is only 1000Mbps then we | ||
1536 | * should disable SmartSpeed and enable Auto MasterSlave | ||
1537 | * resolution as hardware default. */ | ||
1538 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
1539 | /* Disable SmartSpeed */ | ||
1540 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1541 | &phy_data); | ||
1542 | if (ret_val) | ||
1543 | return ret_val; | ||
1544 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1545 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1546 | phy_data); | ||
1547 | if (ret_val) | ||
1548 | return ret_val; | ||
1549 | /* Set auto Master/Slave resolution process */ | ||
1550 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1551 | if (ret_val) | ||
1552 | return ret_val; | ||
1553 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1554 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1555 | if (ret_val) | ||
1556 | return ret_val; | ||
1557 | } | ||
1558 | |||
1559 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1560 | if (ret_val) | ||
1561 | return ret_val; | ||
1562 | |||
1563 | /* load defaults for future use */ | ||
1564 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | ||
1565 | ((phy_data & CR_1000T_MS_VALUE) ? | ||
1566 | e1000_ms_force_master : | ||
1567 | e1000_ms_force_slave) : | ||
1568 | e1000_ms_auto; | ||
1569 | |||
1570 | switch (phy_ms_setting) { | ||
1571 | case e1000_ms_force_master: | ||
1572 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
1573 | break; | ||
1574 | case e1000_ms_force_slave: | ||
1575 | phy_data |= CR_1000T_MS_ENABLE; | ||
1576 | phy_data &= ~(CR_1000T_MS_VALUE); | ||
1577 | break; | ||
1578 | case e1000_ms_auto: | ||
1579 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1580 | default: | ||
1581 | break; | ||
1582 | } | ||
1583 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1584 | if (ret_val) | ||
1585 | return ret_val; | ||
1586 | } | ||
1587 | |||
1588 | return E1000_SUCCESS; | ||
1589 | } | 1016 | } |
1590 | 1017 | ||
1591 | /******************************************************************** | 1018 | /** |
1592 | * Copper link setup for e1000_phy_gg82563 series. | 1019 | * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. |
1593 | * | 1020 | * @hw: Struct containing variables accessed by shared code |
1594 | * hw - Struct containing variables accessed by shared code | 1021 | */ |
1595 | *********************************************************************/ | 1022 | static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) |
1596 | static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw) | ||
1597 | { | 1023 | { |
1598 | s32 ret_val; | 1024 | u32 led_ctrl; |
1599 | u16 phy_data; | 1025 | s32 ret_val; |
1600 | u32 reg_data; | 1026 | u16 phy_data; |
1601 | 1027 | ||
1602 | DEBUGFUNC("e1000_copper_link_ggp_setup"); | 1028 | DEBUGFUNC("e1000_copper_link_igp_setup"); |
1603 | 1029 | ||
1604 | if (!hw->phy_reset_disable) { | 1030 | if (hw->phy_reset_disable) |
1605 | 1031 | return E1000_SUCCESS; | |
1606 | /* Enable CRS on TX for half-duplex operation. */ | 1032 | |
1607 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, | 1033 | ret_val = e1000_phy_reset(hw); |
1608 | &phy_data); | 1034 | if (ret_val) { |
1609 | if (ret_val) | 1035 | DEBUGOUT("Error Resetting the PHY\n"); |
1610 | return ret_val; | 1036 | return ret_val; |
1611 | 1037 | } | |
1612 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | 1038 | |
1613 | /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ | 1039 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
1614 | phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; | 1040 | msleep(15); |
1615 | 1041 | /* Configure activity LED after PHY reset */ | |
1616 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, | 1042 | led_ctrl = er32(LEDCTL); |
1617 | phy_data); | 1043 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
1618 | if (ret_val) | 1044 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
1619 | return ret_val; | 1045 | ew32(LEDCTL, led_ctrl); |
1620 | 1046 | ||
1621 | /* Options: | 1047 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
1622 | * MDI/MDI-X = 0 (default) | 1048 | if (hw->phy_type == e1000_phy_igp) { |
1623 | * 0 - Auto for all speeds | 1049 | /* disable lplu d3 during driver init */ |
1624 | * 1 - MDI mode | 1050 | ret_val = e1000_set_d3_lplu_state(hw, false); |
1625 | * 2 - MDI-X mode | 1051 | if (ret_val) { |
1626 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 1052 | DEBUGOUT("Error Disabling LPLU D3\n"); |
1627 | */ | 1053 | return ret_val; |
1628 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); | 1054 | } |
1629 | if (ret_val) | 1055 | } |
1630 | return ret_val; | 1056 | |
1631 | 1057 | /* Configure mdi-mdix settings */ | |
1632 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; | 1058 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
1633 | 1059 | if (ret_val) | |
1634 | switch (hw->mdix) { | 1060 | return ret_val; |
1635 | case 1: | 1061 | |
1636 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; | 1062 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
1637 | break; | 1063 | hw->dsp_config_state = e1000_dsp_config_disabled; |
1638 | case 2: | 1064 | /* Force MDI for earlier revs of the IGP PHY */ |
1639 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; | 1065 | phy_data &= |
1640 | break; | 1066 | ~(IGP01E1000_PSCR_AUTO_MDIX | |
1641 | case 0: | 1067 | IGP01E1000_PSCR_FORCE_MDI_MDIX); |
1642 | default: | 1068 | hw->mdix = 1; |
1643 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; | 1069 | |
1644 | break; | 1070 | } else { |
1645 | } | 1071 | hw->dsp_config_state = e1000_dsp_config_enabled; |
1646 | 1072 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | |
1647 | /* Options: | 1073 | |
1648 | * disable_polarity_correction = 0 (default) | 1074 | switch (hw->mdix) { |
1649 | * Automatic Correction for Reversed Cable Polarity | 1075 | case 1: |
1650 | * 0 - Disabled | 1076 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1651 | * 1 - Enabled | 1077 | break; |
1652 | */ | 1078 | case 2: |
1653 | phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | 1079 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1654 | if (hw->disable_polarity_correction == 1) | 1080 | break; |
1655 | phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | 1081 | case 0: |
1656 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); | 1082 | default: |
1657 | 1083 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | |
1658 | if (ret_val) | 1084 | break; |
1659 | return ret_val; | 1085 | } |
1660 | 1086 | } | |
1661 | /* SW Reset the PHY so all changes take effect */ | 1087 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
1662 | ret_val = e1000_phy_reset(hw); | 1088 | if (ret_val) |
1663 | if (ret_val) { | 1089 | return ret_val; |
1664 | DEBUGOUT("Error Resetting the PHY\n"); | 1090 | |
1665 | return ret_val; | 1091 | /* set auto-master slave resolution settings */ |
1666 | } | 1092 | if (hw->autoneg) { |
1667 | } /* phy_reset_disable */ | 1093 | e1000_ms_type phy_ms_setting = hw->master_slave; |
1668 | 1094 | ||
1669 | if (hw->mac_type == e1000_80003es2lan) { | 1095 | if (hw->ffe_config_state == e1000_ffe_config_active) |
1670 | /* Bypass RX and TX FIFO's */ | 1096 | hw->ffe_config_state = e1000_ffe_config_enabled; |
1671 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, | 1097 | |
1672 | E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | | 1098 | if (hw->dsp_config_state == e1000_dsp_config_activated) |
1673 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); | 1099 | hw->dsp_config_state = e1000_dsp_config_enabled; |
1674 | if (ret_val) | 1100 | |
1675 | return ret_val; | 1101 | /* when autonegotiation advertisement is only 1000Mbps then we |
1676 | 1102 | * should disable SmartSpeed and enable Auto MasterSlave | |
1677 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); | 1103 | * resolution as hardware default. */ |
1678 | if (ret_val) | 1104 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
1679 | return ret_val; | 1105 | /* Disable SmartSpeed */ |
1680 | 1106 | ret_val = | |
1681 | phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; | 1107 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
1682 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); | 1108 | &phy_data); |
1683 | 1109 | if (ret_val) | |
1684 | if (ret_val) | 1110 | return ret_val; |
1685 | return ret_val; | 1111 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
1686 | 1112 | ret_val = | |
1687 | reg_data = er32(CTRL_EXT); | 1113 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
1688 | reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); | 1114 | phy_data); |
1689 | ew32(CTRL_EXT, reg_data); | 1115 | if (ret_val) |
1690 | 1116 | return ret_val; | |
1691 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, | 1117 | /* Set auto Master/Slave resolution process */ |
1692 | &phy_data); | 1118 | ret_val = |
1693 | if (ret_val) | 1119 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
1694 | return ret_val; | 1120 | if (ret_val) |
1695 | 1121 | return ret_val; | |
1696 | /* Do not init these registers when the HW is in IAMT mode, since the | 1122 | phy_data &= ~CR_1000T_MS_ENABLE; |
1697 | * firmware will have already initialized them. We only initialize | 1123 | ret_val = |
1698 | * them if the HW is not in IAMT mode. | 1124 | e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
1699 | */ | 1125 | if (ret_val) |
1700 | if (!e1000_check_mng_mode(hw)) { | 1126 | return ret_val; |
1701 | /* Enable Electrical Idle on the PHY */ | 1127 | } |
1702 | phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; | 1128 | |
1703 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, | 1129 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
1704 | phy_data); | 1130 | if (ret_val) |
1705 | if (ret_val) | 1131 | return ret_val; |
1706 | return ret_val; | 1132 | |
1707 | 1133 | /* load defaults for future use */ | |
1708 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, | 1134 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
1709 | &phy_data); | 1135 | ((phy_data & CR_1000T_MS_VALUE) ? |
1710 | if (ret_val) | 1136 | e1000_ms_force_master : |
1711 | return ret_val; | 1137 | e1000_ms_force_slave) : e1000_ms_auto; |
1712 | 1138 | ||
1713 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | 1139 | switch (phy_ms_setting) { |
1714 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, | 1140 | case e1000_ms_force_master: |
1715 | phy_data); | 1141 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
1716 | 1142 | break; | |
1717 | if (ret_val) | 1143 | case e1000_ms_force_slave: |
1718 | return ret_val; | 1144 | phy_data |= CR_1000T_MS_ENABLE; |
1719 | } | 1145 | phy_data &= ~(CR_1000T_MS_VALUE); |
1720 | 1146 | break; | |
1721 | /* Workaround: Disable padding in Kumeran interface in the MAC | 1147 | case e1000_ms_auto: |
1722 | * and in the PHY to avoid CRC errors. | 1148 | phy_data &= ~CR_1000T_MS_ENABLE; |
1723 | */ | 1149 | default: |
1724 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, | 1150 | break; |
1725 | &phy_data); | 1151 | } |
1726 | if (ret_val) | 1152 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
1727 | return ret_val; | 1153 | if (ret_val) |
1728 | phy_data |= GG82563_ICR_DIS_PADDING; | 1154 | return ret_val; |
1729 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, | 1155 | } |
1730 | phy_data); | 1156 | |
1731 | if (ret_val) | 1157 | return E1000_SUCCESS; |
1732 | return ret_val; | ||
1733 | } | ||
1734 | |||
1735 | return E1000_SUCCESS; | ||
1736 | } | 1158 | } |
1737 | 1159 | ||
1738 | /******************************************************************** | 1160 | /** |
1739 | * Copper link setup for e1000_phy_m88 series. | 1161 | * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. |
1740 | * | 1162 | * @hw: Struct containing variables accessed by shared code |
1741 | * hw - Struct containing variables accessed by shared code | 1163 | */ |
1742 | *********************************************************************/ | ||
1743 | static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) | 1164 | static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
1744 | { | 1165 | { |
1745 | s32 ret_val; | 1166 | s32 ret_val; |
1746 | u16 phy_data; | 1167 | u16 phy_data; |
1747 | 1168 | ||
1748 | DEBUGFUNC("e1000_copper_link_mgp_setup"); | 1169 | DEBUGFUNC("e1000_copper_link_mgp_setup"); |
1749 | 1170 | ||
1750 | if (hw->phy_reset_disable) | 1171 | if (hw->phy_reset_disable) |
1751 | return E1000_SUCCESS; | 1172 | return E1000_SUCCESS; |
1752 | 1173 | ||
1753 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | 1174 | /* Enable CRS on TX. This must be set for half-duplex operation. */ |
1754 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 1175 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
1755 | if (ret_val) | 1176 | if (ret_val) |
1756 | return ret_val; | 1177 | return ret_val; |
1757 | 1178 | ||
1758 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 1179 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
1759 | 1180 | ||
1760 | /* Options: | 1181 | /* Options: |
1761 | * MDI/MDI-X = 0 (default) | 1182 | * MDI/MDI-X = 0 (default) |
1762 | * 0 - Auto for all speeds | 1183 | * 0 - Auto for all speeds |
1763 | * 1 - MDI mode | 1184 | * 1 - MDI mode |
1764 | * 2 - MDI-X mode | 1185 | * 2 - MDI-X mode |
1765 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 1186 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
1766 | */ | 1187 | */ |
1767 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 1188 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
1768 | 1189 | ||
1769 | switch (hw->mdix) { | 1190 | switch (hw->mdix) { |
1770 | case 1: | 1191 | case 1: |
1771 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 1192 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
1772 | break; | 1193 | break; |
1773 | case 2: | 1194 | case 2: |
1774 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 1195 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
1775 | break; | 1196 | break; |
1776 | case 3: | 1197 | case 3: |
1777 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 1198 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
1778 | break; | 1199 | break; |
1779 | case 0: | 1200 | case 0: |
1780 | default: | 1201 | default: |
1781 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 1202 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
1782 | break; | 1203 | break; |
1783 | } | 1204 | } |
1784 | 1205 | ||
1785 | /* Options: | 1206 | /* Options: |
1786 | * disable_polarity_correction = 0 (default) | 1207 | * disable_polarity_correction = 0 (default) |
1787 | * Automatic Correction for Reversed Cable Polarity | 1208 | * Automatic Correction for Reversed Cable Polarity |
1788 | * 0 - Disabled | 1209 | * 0 - Disabled |
1789 | * 1 - Enabled | 1210 | * 1 - Enabled |
1790 | */ | 1211 | */ |
1791 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 1212 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
1792 | if (hw->disable_polarity_correction == 1) | 1213 | if (hw->disable_polarity_correction == 1) |
1793 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 1214 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
1794 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 1215 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
1795 | if (ret_val) | 1216 | if (ret_val) |
1796 | return ret_val; | 1217 | return ret_val; |
1797 | 1218 | ||
1798 | if (hw->phy_revision < M88E1011_I_REV_4) { | 1219 | if (hw->phy_revision < M88E1011_I_REV_4) { |
1799 | /* Force TX_CLK in the Extended PHY Specific Control Register | 1220 | /* Force TX_CLK in the Extended PHY Specific Control Register |
1800 | * to 25MHz clock. | 1221 | * to 25MHz clock. |
1801 | */ | 1222 | */ |
1802 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 1223 | ret_val = |
1803 | if (ret_val) | 1224 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
1804 | return ret_val; | 1225 | &phy_data); |
1805 | 1226 | if (ret_val) | |
1806 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 1227 | return ret_val; |
1807 | 1228 | ||
1808 | if ((hw->phy_revision == E1000_REVISION_2) && | 1229 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
1809 | (hw->phy_id == M88E1111_I_PHY_ID)) { | 1230 | |
1810 | /* Vidalia Phy, set the downshift counter to 5x */ | 1231 | if ((hw->phy_revision == E1000_REVISION_2) && |
1811 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | 1232 | (hw->phy_id == M88E1111_I_PHY_ID)) { |
1812 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | 1233 | /* Vidalia Phy, set the downshift counter to 5x */ |
1813 | ret_val = e1000_write_phy_reg(hw, | 1234 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); |
1814 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 1235 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
1815 | if (ret_val) | 1236 | ret_val = e1000_write_phy_reg(hw, |
1816 | return ret_val; | 1237 | M88E1000_EXT_PHY_SPEC_CTRL, |
1817 | } else { | 1238 | phy_data); |
1818 | /* Configure Master and Slave downshift values */ | 1239 | if (ret_val) |
1819 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 1240 | return ret_val; |
1820 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 1241 | } else { |
1821 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 1242 | /* Configure Master and Slave downshift values */ |
1822 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 1243 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
1823 | ret_val = e1000_write_phy_reg(hw, | 1244 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
1824 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 1245 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
1825 | if (ret_val) | 1246 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
1826 | return ret_val; | 1247 | ret_val = e1000_write_phy_reg(hw, |
1827 | } | 1248 | M88E1000_EXT_PHY_SPEC_CTRL, |
1828 | } | 1249 | phy_data); |
1829 | 1250 | if (ret_val) | |
1830 | /* SW Reset the PHY so all changes take effect */ | 1251 | return ret_val; |
1831 | ret_val = e1000_phy_reset(hw); | 1252 | } |
1832 | if (ret_val) { | 1253 | } |
1833 | DEBUGOUT("Error Resetting the PHY\n"); | 1254 | |
1834 | return ret_val; | 1255 | /* SW Reset the PHY so all changes take effect */ |
1835 | } | 1256 | ret_val = e1000_phy_reset(hw); |
1836 | 1257 | if (ret_val) { | |
1837 | return E1000_SUCCESS; | 1258 | DEBUGOUT("Error Resetting the PHY\n"); |
1259 | return ret_val; | ||
1260 | } | ||
1261 | |||
1262 | return E1000_SUCCESS; | ||
1838 | } | 1263 | } |
1839 | 1264 | ||
1840 | /******************************************************************** | 1265 | /** |
1841 | * Setup auto-negotiation and flow control advertisements, | 1266 | * e1000_copper_link_autoneg - setup auto-neg |
1842 | * and then perform auto-negotiation. | 1267 | * @hw: Struct containing variables accessed by shared code |
1843 | * | 1268 | * |
1844 | * hw - Struct containing variables accessed by shared code | 1269 | * Setup auto-negotiation and flow control advertisements, |
1845 | *********************************************************************/ | 1270 | * and then perform auto-negotiation. |
1271 | */ | ||
1846 | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | 1272 | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) |
1847 | { | 1273 | { |
1848 | s32 ret_val; | 1274 | s32 ret_val; |
1849 | u16 phy_data; | 1275 | u16 phy_data; |
1850 | 1276 | ||
1851 | DEBUGFUNC("e1000_copper_link_autoneg"); | 1277 | DEBUGFUNC("e1000_copper_link_autoneg"); |
1852 | 1278 | ||
1853 | /* Perform some bounds checking on the hw->autoneg_advertised | 1279 | /* Perform some bounds checking on the hw->autoneg_advertised |
1854 | * parameter. If this variable is zero, then set it to the default. | 1280 | * parameter. If this variable is zero, then set it to the default. |
1855 | */ | 1281 | */ |
1856 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | 1282 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
1857 | 1283 | ||
1858 | /* If autoneg_advertised is zero, we assume it was not defaulted | 1284 | /* If autoneg_advertised is zero, we assume it was not defaulted |
1859 | * by the calling code so we set to advertise full capability. | 1285 | * by the calling code so we set to advertise full capability. |
1860 | */ | 1286 | */ |
1861 | if (hw->autoneg_advertised == 0) | 1287 | if (hw->autoneg_advertised == 0) |
1862 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 1288 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
1863 | 1289 | ||
1864 | /* IFE phy only supports 10/100 */ | 1290 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
1865 | if (hw->phy_type == e1000_phy_ife) | 1291 | ret_val = e1000_phy_setup_autoneg(hw); |
1866 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; | 1292 | if (ret_val) { |
1867 | 1293 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | |
1868 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 1294 | return ret_val; |
1869 | ret_val = e1000_phy_setup_autoneg(hw); | 1295 | } |
1870 | if (ret_val) { | 1296 | DEBUGOUT("Restarting Auto-Neg\n"); |
1871 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 1297 | |
1872 | return ret_val; | 1298 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
1873 | } | 1299 | * the Auto Neg Restart bit in the PHY control register. |
1874 | DEBUGOUT("Restarting Auto-Neg\n"); | 1300 | */ |
1875 | 1301 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | |
1876 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 1302 | if (ret_val) |
1877 | * the Auto Neg Restart bit in the PHY control register. | 1303 | return ret_val; |
1878 | */ | 1304 | |
1879 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 1305 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
1880 | if (ret_val) | 1306 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
1881 | return ret_val; | 1307 | if (ret_val) |
1882 | 1308 | return ret_val; | |
1883 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 1309 | |
1884 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 1310 | /* Does the user want to wait for Auto-Neg to complete here, or |
1885 | if (ret_val) | 1311 | * check at a later time (for example, callback routine). |
1886 | return ret_val; | 1312 | */ |
1887 | 1313 | if (hw->wait_autoneg_complete) { | |
1888 | /* Does the user want to wait for Auto-Neg to complete here, or | 1314 | ret_val = e1000_wait_autoneg(hw); |
1889 | * check at a later time (for example, callback routine). | 1315 | if (ret_val) { |
1890 | */ | 1316 | DEBUGOUT |
1891 | if (hw->wait_autoneg_complete) { | 1317 | ("Error while waiting for autoneg to complete\n"); |
1892 | ret_val = e1000_wait_autoneg(hw); | 1318 | return ret_val; |
1893 | if (ret_val) { | 1319 | } |
1894 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | 1320 | } |
1895 | return ret_val; | 1321 | |
1896 | } | 1322 | hw->get_link_status = true; |
1897 | } | 1323 | |
1898 | 1324 | return E1000_SUCCESS; | |
1899 | hw->get_link_status = true; | ||
1900 | |||
1901 | return E1000_SUCCESS; | ||
1902 | } | 1325 | } |
1903 | 1326 | ||
1904 | /****************************************************************************** | 1327 | /** |
1905 | * Config the MAC and the PHY after link is up. | 1328 | * e1000_copper_link_postconfig - post link setup |
1906 | * 1) Set up the MAC to the current PHY speed/duplex | 1329 | * @hw: Struct containing variables accessed by shared code |
1907 | * if we are on 82543. If we | 1330 | * |
1908 | * are on newer silicon, we only need to configure | 1331 | * Config the MAC and the PHY after link is up. |
1909 | * collision distance in the Transmit Control Register. | 1332 | * 1) Set up the MAC to the current PHY speed/duplex |
1910 | * 2) Set up flow control on the MAC to that established with | 1333 | * if we are on 82543. If we |
1911 | * the link partner. | 1334 | * are on newer silicon, we only need to configure |
1912 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. | 1335 | * collision distance in the Transmit Control Register. |
1913 | * | 1336 | * 2) Set up flow control on the MAC to that established with |
1914 | * hw - Struct containing variables accessed by shared code | 1337 | * the link partner. |
1915 | ******************************************************************************/ | 1338 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
1339 | */ | ||
1916 | static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) | 1340 | static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) |
1917 | { | 1341 | { |
1918 | s32 ret_val; | 1342 | s32 ret_val; |
1919 | DEBUGFUNC("e1000_copper_link_postconfig"); | 1343 | DEBUGFUNC("e1000_copper_link_postconfig"); |
1920 | 1344 | ||
1921 | if (hw->mac_type >= e1000_82544) { | 1345 | if (hw->mac_type >= e1000_82544) { |
1922 | e1000_config_collision_dist(hw); | 1346 | e1000_config_collision_dist(hw); |
1923 | } else { | 1347 | } else { |
1924 | ret_val = e1000_config_mac_to_phy(hw); | 1348 | ret_val = e1000_config_mac_to_phy(hw); |
1925 | if (ret_val) { | 1349 | if (ret_val) { |
1926 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | 1350 | DEBUGOUT("Error configuring MAC to PHY settings\n"); |
1927 | return ret_val; | 1351 | return ret_val; |
1928 | } | 1352 | } |
1929 | } | 1353 | } |
1930 | ret_val = e1000_config_fc_after_link_up(hw); | 1354 | ret_val = e1000_config_fc_after_link_up(hw); |
1931 | if (ret_val) { | 1355 | if (ret_val) { |
1932 | DEBUGOUT("Error Configuring Flow Control\n"); | 1356 | DEBUGOUT("Error Configuring Flow Control\n"); |
1933 | return ret_val; | 1357 | return ret_val; |
1934 | } | 1358 | } |
1935 | 1359 | ||
1936 | /* Config DSP to improve Giga link quality */ | 1360 | /* Config DSP to improve Giga link quality */ |
1937 | if (hw->phy_type == e1000_phy_igp) { | 1361 | if (hw->phy_type == e1000_phy_igp) { |
1938 | ret_val = e1000_config_dsp_after_link_change(hw, true); | 1362 | ret_val = e1000_config_dsp_after_link_change(hw, true); |
1939 | if (ret_val) { | 1363 | if (ret_val) { |
1940 | DEBUGOUT("Error Configuring DSP after link up\n"); | 1364 | DEBUGOUT("Error Configuring DSP after link up\n"); |
1941 | return ret_val; | 1365 | return ret_val; |
1942 | } | 1366 | } |
1943 | } | 1367 | } |
1944 | 1368 | ||
1945 | return E1000_SUCCESS; | 1369 | return E1000_SUCCESS; |
1946 | } | 1370 | } |
1947 | 1371 | ||
1948 | /****************************************************************************** | 1372 | /** |
1949 | * Detects which PHY is present and setup the speed and duplex | 1373 | * e1000_setup_copper_link - phy/speed/duplex setting |
1950 | * | 1374 | * @hw: Struct containing variables accessed by shared code |
1951 | * hw - Struct containing variables accessed by shared code | 1375 | * |
1952 | ******************************************************************************/ | 1376 | * Detects which PHY is present and sets up the speed and duplex |
1377 | */ | ||
1953 | static s32 e1000_setup_copper_link(struct e1000_hw *hw) | 1378 | static s32 e1000_setup_copper_link(struct e1000_hw *hw) |
1954 | { | 1379 | { |
1955 | s32 ret_val; | 1380 | s32 ret_val; |
1956 | u16 i; | 1381 | u16 i; |
1957 | u16 phy_data; | 1382 | u16 phy_data; |
1958 | u16 reg_data = 0; | 1383 | |
1959 | 1384 | DEBUGFUNC("e1000_setup_copper_link"); | |
1960 | DEBUGFUNC("e1000_setup_copper_link"); | 1385 | |
1961 | 1386 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | |
1962 | switch (hw->mac_type) { | 1387 | ret_val = e1000_copper_link_preconfig(hw); |
1963 | case e1000_80003es2lan: | 1388 | if (ret_val) |
1964 | case e1000_ich8lan: | 1389 | return ret_val; |
1965 | /* Set the mac to wait the maximum time between each | 1390 | |
1966 | * iteration and increase the max iterations when | 1391 | if (hw->phy_type == e1000_phy_igp) { |
1967 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ | 1392 | ret_val = e1000_copper_link_igp_setup(hw); |
1968 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); | 1393 | if (ret_val) |
1969 | if (ret_val) | 1394 | return ret_val; |
1970 | return ret_val; | 1395 | } else if (hw->phy_type == e1000_phy_m88) { |
1971 | ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); | 1396 | ret_val = e1000_copper_link_mgp_setup(hw); |
1972 | if (ret_val) | 1397 | if (ret_val) |
1973 | return ret_val; | 1398 | return ret_val; |
1974 | reg_data |= 0x3F; | 1399 | } |
1975 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); | 1400 | |
1976 | if (ret_val) | 1401 | if (hw->autoneg) { |
1977 | return ret_val; | 1402 | /* Setup autoneg and flow control advertisement |
1978 | default: | 1403 | * and perform autonegotiation */ |
1979 | break; | 1404 | ret_val = e1000_copper_link_autoneg(hw); |
1980 | } | 1405 | if (ret_val) |
1981 | 1406 | return ret_val; | |
1982 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 1407 | } else { |
1983 | ret_val = e1000_copper_link_preconfig(hw); | 1408 | /* PHY will be set to 10H, 10F, 100H,or 100F |
1984 | if (ret_val) | 1409 | * depending on value from forced_speed_duplex. */ |
1985 | return ret_val; | 1410 | DEBUGOUT("Forcing speed and duplex\n"); |
1986 | 1411 | ret_val = e1000_phy_force_speed_duplex(hw); | |
1987 | switch (hw->mac_type) { | 1412 | if (ret_val) { |
1988 | case e1000_80003es2lan: | 1413 | DEBUGOUT("Error Forcing Speed and Duplex\n"); |
1989 | /* Kumeran registers are written-only */ | 1414 | return ret_val; |
1990 | reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; | 1415 | } |
1991 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; | 1416 | } |
1992 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, | 1417 | |
1993 | reg_data); | 1418 | /* Check link status. Wait up to 100 microseconds for link to become |
1994 | if (ret_val) | 1419 | * valid. |
1995 | return ret_val; | 1420 | */ |
1996 | break; | 1421 | for (i = 0; i < 10; i++) { |
1997 | default: | 1422 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
1998 | break; | 1423 | if (ret_val) |
1999 | } | 1424 | return ret_val; |
2000 | 1425 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | |
2001 | if (hw->phy_type == e1000_phy_igp || | 1426 | if (ret_val) |
2002 | hw->phy_type == e1000_phy_igp_3 || | 1427 | return ret_val; |
2003 | hw->phy_type == e1000_phy_igp_2) { | 1428 | |
2004 | ret_val = e1000_copper_link_igp_setup(hw); | 1429 | if (phy_data & MII_SR_LINK_STATUS) { |
2005 | if (ret_val) | 1430 | /* Config the MAC and PHY after link is up */ |
2006 | return ret_val; | 1431 | ret_val = e1000_copper_link_postconfig(hw); |
2007 | } else if (hw->phy_type == e1000_phy_m88) { | 1432 | if (ret_val) |
2008 | ret_val = e1000_copper_link_mgp_setup(hw); | 1433 | return ret_val; |
2009 | if (ret_val) | 1434 | |
2010 | return ret_val; | 1435 | DEBUGOUT("Valid link established!!!\n"); |
2011 | } else if (hw->phy_type == e1000_phy_gg82563) { | 1436 | return E1000_SUCCESS; |
2012 | ret_val = e1000_copper_link_ggp_setup(hw); | 1437 | } |
2013 | if (ret_val) | 1438 | udelay(10); |
2014 | return ret_val; | 1439 | } |
2015 | } | 1440 | |
2016 | 1441 | DEBUGOUT("Unable to establish link!!!\n"); | |
2017 | if (hw->autoneg) { | 1442 | return E1000_SUCCESS; |
2018 | /* Setup autoneg and flow control advertisement | ||
2019 | * and perform autonegotiation */ | ||
2020 | ret_val = e1000_copper_link_autoneg(hw); | ||
2021 | if (ret_val) | ||
2022 | return ret_val; | ||
2023 | } else { | ||
2024 | /* PHY will be set to 10H, 10F, 100H,or 100F | ||
2025 | * depending on value from forced_speed_duplex. */ | ||
2026 | DEBUGOUT("Forcing speed and duplex\n"); | ||
2027 | ret_val = e1000_phy_force_speed_duplex(hw); | ||
2028 | if (ret_val) { | ||
2029 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | ||
2030 | return ret_val; | ||
2031 | } | ||
2032 | } | ||
2033 | |||
2034 | /* Check link status. Wait up to 100 microseconds for link to become | ||
2035 | * valid. | ||
2036 | */ | ||
2037 | for (i = 0; i < 10; i++) { | ||
2038 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2039 | if (ret_val) | ||
2040 | return ret_val; | ||
2041 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2042 | if (ret_val) | ||
2043 | return ret_val; | ||
2044 | |||
2045 | if (phy_data & MII_SR_LINK_STATUS) { | ||
2046 | /* Config the MAC and PHY after link is up */ | ||
2047 | ret_val = e1000_copper_link_postconfig(hw); | ||
2048 | if (ret_val) | ||
2049 | return ret_val; | ||
2050 | |||
2051 | DEBUGOUT("Valid link established!!!\n"); | ||
2052 | return E1000_SUCCESS; | ||
2053 | } | ||
2054 | udelay(10); | ||
2055 | } | ||
2056 | |||
2057 | DEBUGOUT("Unable to establish link!!!\n"); | ||
2058 | return E1000_SUCCESS; | ||
2059 | } | 1443 | } |
2060 | 1444 | ||
2061 | /****************************************************************************** | 1445 | /** |
2062 | * Configure the MAC-to-PHY interface for 10/100Mbps | 1446 | * e1000_phy_setup_autoneg - phy settings |
2063 | * | 1447 | * @hw: Struct containing variables accessed by shared code |
2064 | * hw - Struct containing variables accessed by shared code | 1448 | * |
2065 | ******************************************************************************/ | 1449 | * Configures PHY autoneg and flow control advertisement settings |
2066 | static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex) | 1450 | */ |
1451 | s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | ||
2067 | { | 1452 | { |
2068 | s32 ret_val = E1000_SUCCESS; | 1453 | s32 ret_val; |
2069 | u32 tipg; | 1454 | u16 mii_autoneg_adv_reg; |
2070 | u16 reg_data; | 1455 | u16 mii_1000t_ctrl_reg; |
2071 | 1456 | ||
2072 | DEBUGFUNC("e1000_configure_kmrn_for_10_100"); | 1457 | DEBUGFUNC("e1000_phy_setup_autoneg"); |
2073 | 1458 | ||
2074 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; | 1459 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
2075 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, | 1460 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
2076 | reg_data); | 1461 | if (ret_val) |
2077 | if (ret_val) | 1462 | return ret_val; |
2078 | return ret_val; | ||
2079 | 1463 | ||
2080 | /* Configure Transmit Inter-Packet Gap */ | 1464 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
2081 | tipg = er32(TIPG); | 1465 | ret_val = |
2082 | tipg &= ~E1000_TIPG_IPGT_MASK; | 1466 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
2083 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; | 1467 | if (ret_val) |
2084 | ew32(TIPG, tipg); | 1468 | return ret_val; |
2085 | 1469 | ||
2086 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | 1470 | /* Need to parse both autoneg_advertised and fc and set up |
1471 | * the appropriate PHY registers. First we will parse for | ||
1472 | * autoneg_advertised software override. Since we can advertise | ||
1473 | * a plethora of combinations, we need to check each bit | ||
1474 | * individually. | ||
1475 | */ | ||
2087 | 1476 | ||
2088 | if (ret_val) | 1477 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
2089 | return ret_val; | 1478 | * Advertisement Register (Address 4) and the 1000 mb speed bits in |
1479 | * the 1000Base-T Control Register (Address 9). | ||
1480 | */ | ||
1481 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | ||
1482 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | ||
2090 | 1483 | ||
2091 | if (duplex == HALF_DUPLEX) | 1484 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); |
2092 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | ||
2093 | else | ||
2094 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
2095 | 1485 | ||
2096 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | 1486 | /* Do we want to advertise 10 Mb Half Duplex? */ |
1487 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { | ||
1488 | DEBUGOUT("Advertise 10mb Half duplex\n"); | ||
1489 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
1490 | } | ||
2097 | 1491 | ||
2098 | return ret_val; | 1492 | /* Do we want to advertise 10 Mb Full Duplex? */ |
2099 | } | 1493 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
1494 | DEBUGOUT("Advertise 10mb Full duplex\n"); | ||
1495 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
1496 | } | ||
2100 | 1497 | ||
2101 | static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw) | 1498 | /* Do we want to advertise 100 Mb Half Duplex? */ |
2102 | { | 1499 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
2103 | s32 ret_val = E1000_SUCCESS; | 1500 | DEBUGOUT("Advertise 100mb Half duplex\n"); |
2104 | u16 reg_data; | 1501 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
2105 | u32 tipg; | 1502 | } |
2106 | 1503 | ||
2107 | DEBUGFUNC("e1000_configure_kmrn_for_1000"); | 1504 | /* Do we want to advertise 100 Mb Full Duplex? */ |
1505 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { | ||
1506 | DEBUGOUT("Advertise 100mb Full duplex\n"); | ||
1507 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
1508 | } | ||
2108 | 1509 | ||
2109 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; | 1510 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
2110 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, | 1511 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
2111 | reg_data); | 1512 | DEBUGOUT |
2112 | if (ret_val) | 1513 | ("Advertise 1000mb Half duplex requested, request denied!\n"); |
2113 | return ret_val; | 1514 | } |
2114 | 1515 | ||
2115 | /* Configure Transmit Inter-Packet Gap */ | 1516 | /* Do we want to advertise 1000 Mb Full Duplex? */ |
2116 | tipg = er32(TIPG); | 1517 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
2117 | tipg &= ~E1000_TIPG_IPGT_MASK; | 1518 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
2118 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | 1519 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
2119 | ew32(TIPG, tipg); | 1520 | } |
2120 | 1521 | ||
2121 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | 1522 | /* Check for a software override of the flow control settings, and |
1523 | * setup the PHY advertisement registers accordingly. If | ||
1524 | * auto-negotiation is enabled, then software will have to set the | ||
1525 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
1526 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | ||
1527 | * | ||
1528 | * The possible values of the "fc" parameter are: | ||
1529 | * 0: Flow control is completely disabled | ||
1530 | * 1: Rx flow control is enabled (we can receive pause frames | ||
1531 | * but not send pause frames). | ||
1532 | * 2: Tx flow control is enabled (we can send pause frames | ||
1533 | * but we do not support receiving pause frames). | ||
1534 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
1535 | * other: No software override. The flow control configuration | ||
1536 | * in the EEPROM is used. | ||
1537 | */ | ||
1538 | switch (hw->fc) { | ||
1539 | case E1000_FC_NONE: /* 0 */ | ||
1540 | /* Flow control (RX & TX) is completely disabled by a | ||
1541 | * software over-ride. | ||
1542 | */ | ||
1543 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1544 | break; | ||
1545 | case E1000_FC_RX_PAUSE: /* 1 */ | ||
1546 | /* RX Flow control is enabled, and TX Flow control is | ||
1547 | * disabled, by a software over-ride. | ||
1548 | */ | ||
1549 | /* Since there really isn't a way to advertise that we are | ||
1550 | * capable of RX Pause ONLY, we will advertise that we | ||
1551 | * support both symmetric and asymmetric RX PAUSE. Later | ||
1552 | * (in e1000_config_fc_after_link_up) we will disable the | ||
1553 | *hw's ability to send PAUSE frames. | ||
1554 | */ | ||
1555 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1556 | break; | ||
1557 | case E1000_FC_TX_PAUSE: /* 2 */ | ||
1558 | /* TX Flow control is enabled, and RX Flow control is | ||
1559 | * disabled, by a software over-ride. | ||
1560 | */ | ||
1561 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
1562 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
1563 | break; | ||
1564 | case E1000_FC_FULL: /* 3 */ | ||
1565 | /* Flow control (both RX and TX) is enabled by a software | ||
1566 | * over-ride. | ||
1567 | */ | ||
1568 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1569 | break; | ||
1570 | default: | ||
1571 | DEBUGOUT("Flow control param set incorrectly\n"); | ||
1572 | return -E1000_ERR_CONFIG; | ||
1573 | } | ||
2122 | 1574 | ||
2123 | if (ret_val) | 1575 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
2124 | return ret_val; | 1576 | if (ret_val) |
1577 | return ret_val; | ||
2125 | 1578 | ||
2126 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | 1579 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
2127 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
2128 | 1580 | ||
2129 | return ret_val; | 1581 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
2130 | } | 1582 | if (ret_val) |
1583 | return ret_val; | ||
2131 | 1584 | ||
2132 | /****************************************************************************** | 1585 | return E1000_SUCCESS; |
2133 | * Configures PHY autoneg and flow control advertisement settings | ||
2134 | * | ||
2135 | * hw - Struct containing variables accessed by shared code | ||
2136 | ******************************************************************************/ | ||
2137 | s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | ||
2138 | { | ||
2139 | s32 ret_val; | ||
2140 | u16 mii_autoneg_adv_reg; | ||
2141 | u16 mii_1000t_ctrl_reg; | ||
2142 | |||
2143 | DEBUGFUNC("e1000_phy_setup_autoneg"); | ||
2144 | |||
2145 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
2146 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | ||
2147 | if (ret_val) | ||
2148 | return ret_val; | ||
2149 | |||
2150 | if (hw->phy_type != e1000_phy_ife) { | ||
2151 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
2152 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | ||
2153 | if (ret_val) | ||
2154 | return ret_val; | ||
2155 | } else | ||
2156 | mii_1000t_ctrl_reg=0; | ||
2157 | |||
2158 | /* Need to parse both autoneg_advertised and fc and set up | ||
2159 | * the appropriate PHY registers. First we will parse for | ||
2160 | * autoneg_advertised software override. Since we can advertise | ||
2161 | * a plethora of combinations, we need to check each bit | ||
2162 | * individually. | ||
2163 | */ | ||
2164 | |||
2165 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
2166 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
2167 | * the 1000Base-T Control Register (Address 9). | ||
2168 | */ | ||
2169 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | ||
2170 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | ||
2171 | |||
2172 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | ||
2173 | |||
2174 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
2175 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { | ||
2176 | DEBUGOUT("Advertise 10mb Half duplex\n"); | ||
2177 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
2178 | } | ||
2179 | |||
2180 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
2181 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { | ||
2182 | DEBUGOUT("Advertise 10mb Full duplex\n"); | ||
2183 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
2184 | } | ||
2185 | |||
2186 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
2187 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { | ||
2188 | DEBUGOUT("Advertise 100mb Half duplex\n"); | ||
2189 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
2190 | } | ||
2191 | |||
2192 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
2193 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { | ||
2194 | DEBUGOUT("Advertise 100mb Full duplex\n"); | ||
2195 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
2196 | } | ||
2197 | |||
2198 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
2199 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { | ||
2200 | DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); | ||
2201 | } | ||
2202 | |||
2203 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
2204 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
2205 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | ||
2206 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
2207 | if (hw->phy_type == e1000_phy_ife) { | ||
2208 | DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); | ||
2209 | } | ||
2210 | } | ||
2211 | |||
2212 | /* Check for a software override of the flow control settings, and | ||
2213 | * setup the PHY advertisement registers accordingly. If | ||
2214 | * auto-negotiation is enabled, then software will have to set the | ||
2215 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
2216 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | ||
2217 | * | ||
2218 | * The possible values of the "fc" parameter are: | ||
2219 | * 0: Flow control is completely disabled | ||
2220 | * 1: Rx flow control is enabled (we can receive pause frames | ||
2221 | * but not send pause frames). | ||
2222 | * 2: Tx flow control is enabled (we can send pause frames | ||
2223 | * but we do not support receiving pause frames). | ||
2224 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
2225 | * other: No software override. The flow control configuration | ||
2226 | * in the EEPROM is used. | ||
2227 | */ | ||
2228 | switch (hw->fc) { | ||
2229 | case E1000_FC_NONE: /* 0 */ | ||
2230 | /* Flow control (RX & TX) is completely disabled by a | ||
2231 | * software over-ride. | ||
2232 | */ | ||
2233 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
2234 | break; | ||
2235 | case E1000_FC_RX_PAUSE: /* 1 */ | ||
2236 | /* RX Flow control is enabled, and TX Flow control is | ||
2237 | * disabled, by a software over-ride. | ||
2238 | */ | ||
2239 | /* Since there really isn't a way to advertise that we are | ||
2240 | * capable of RX Pause ONLY, we will advertise that we | ||
2241 | * support both symmetric and asymmetric RX PAUSE. Later | ||
2242 | * (in e1000_config_fc_after_link_up) we will disable the | ||
2243 | *hw's ability to send PAUSE frames. | ||
2244 | */ | ||
2245 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
2246 | break; | ||
2247 | case E1000_FC_TX_PAUSE: /* 2 */ | ||
2248 | /* TX Flow control is enabled, and RX Flow control is | ||
2249 | * disabled, by a software over-ride. | ||
2250 | */ | ||
2251 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
2252 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
2253 | break; | ||
2254 | case E1000_FC_FULL: /* 3 */ | ||
2255 | /* Flow control (both RX and TX) is enabled by a software | ||
2256 | * over-ride. | ||
2257 | */ | ||
2258 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
2259 | break; | ||
2260 | default: | ||
2261 | DEBUGOUT("Flow control param set incorrectly\n"); | ||
2262 | return -E1000_ERR_CONFIG; | ||
2263 | } | ||
2264 | |||
2265 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | ||
2266 | if (ret_val) | ||
2267 | return ret_val; | ||
2268 | |||
2269 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
2270 | |||
2271 | if (hw->phy_type != e1000_phy_ife) { | ||
2272 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | ||
2273 | if (ret_val) | ||
2274 | return ret_val; | ||
2275 | } | ||
2276 | |||
2277 | return E1000_SUCCESS; | ||
2278 | } | 1586 | } |
2279 | 1587 | ||
2280 | /****************************************************************************** | 1588 | /** |
2281 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | 1589 | * e1000_phy_force_speed_duplex - force link settings |
2282 | * | 1590 | * @hw: Struct containing variables accessed by shared code |
2283 | * hw - Struct containing variables accessed by shared code | 1591 | * |
2284 | ******************************************************************************/ | 1592 | * Force PHY speed and duplex settings to hw->forced_speed_duplex |
1593 | */ | ||
2285 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | 1594 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
2286 | { | 1595 | { |
2287 | u32 ctrl; | 1596 | u32 ctrl; |
2288 | s32 ret_val; | 1597 | s32 ret_val; |
2289 | u16 mii_ctrl_reg; | 1598 | u16 mii_ctrl_reg; |
2290 | u16 mii_status_reg; | 1599 | u16 mii_status_reg; |
2291 | u16 phy_data; | 1600 | u16 phy_data; |
2292 | u16 i; | 1601 | u16 i; |
2293 | 1602 | ||
2294 | DEBUGFUNC("e1000_phy_force_speed_duplex"); | 1603 | DEBUGFUNC("e1000_phy_force_speed_duplex"); |
2295 | 1604 | ||
2296 | /* Turn off Flow control if we are forcing speed and duplex. */ | 1605 | /* Turn off Flow control if we are forcing speed and duplex. */ |
2297 | hw->fc = E1000_FC_NONE; | 1606 | hw->fc = E1000_FC_NONE; |
2298 | 1607 | ||
2299 | DEBUGOUT1("hw->fc = %d\n", hw->fc); | 1608 | DEBUGOUT1("hw->fc = %d\n", hw->fc); |
2300 | 1609 | ||
2301 | /* Read the Device Control Register. */ | 1610 | /* Read the Device Control Register. */ |
2302 | ctrl = er32(CTRL); | 1611 | ctrl = er32(CTRL); |
2303 | 1612 | ||
2304 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | 1613 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ |
2305 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 1614 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
2306 | ctrl &= ~(DEVICE_SPEED_MASK); | 1615 | ctrl &= ~(DEVICE_SPEED_MASK); |
2307 | 1616 | ||
2308 | /* Clear the Auto Speed Detect Enable bit. */ | 1617 | /* Clear the Auto Speed Detect Enable bit. */ |
2309 | ctrl &= ~E1000_CTRL_ASDE; | 1618 | ctrl &= ~E1000_CTRL_ASDE; |
2310 | 1619 | ||
2311 | /* Read the MII Control Register. */ | 1620 | /* Read the MII Control Register. */ |
2312 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); | 1621 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); |
2313 | if (ret_val) | 1622 | if (ret_val) |
2314 | return ret_val; | 1623 | return ret_val; |
2315 | 1624 | ||
2316 | /* We need to disable autoneg in order to force link and duplex. */ | 1625 | /* We need to disable autoneg in order to force link and duplex. */ |
2317 | 1626 | ||
2318 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | 1627 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; |
2319 | 1628 | ||
2320 | /* Are we forcing Full or Half Duplex? */ | 1629 | /* Are we forcing Full or Half Duplex? */ |
2321 | if (hw->forced_speed_duplex == e1000_100_full || | 1630 | if (hw->forced_speed_duplex == e1000_100_full || |
2322 | hw->forced_speed_duplex == e1000_10_full) { | 1631 | hw->forced_speed_duplex == e1000_10_full) { |
2323 | /* We want to force full duplex so we SET the full duplex bits in the | 1632 | /* We want to force full duplex so we SET the full duplex bits in the |
2324 | * Device and MII Control Registers. | 1633 | * Device and MII Control Registers. |
2325 | */ | 1634 | */ |
2326 | ctrl |= E1000_CTRL_FD; | 1635 | ctrl |= E1000_CTRL_FD; |
2327 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | 1636 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; |
2328 | DEBUGOUT("Full Duplex\n"); | 1637 | DEBUGOUT("Full Duplex\n"); |
2329 | } else { | 1638 | } else { |
2330 | /* We want to force half duplex so we CLEAR the full duplex bits in | 1639 | /* We want to force half duplex so we CLEAR the full duplex bits in |
2331 | * the Device and MII Control Registers. | 1640 | * the Device and MII Control Registers. |
2332 | */ | 1641 | */ |
2333 | ctrl &= ~E1000_CTRL_FD; | 1642 | ctrl &= ~E1000_CTRL_FD; |
2334 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | 1643 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; |
2335 | DEBUGOUT("Half Duplex\n"); | 1644 | DEBUGOUT("Half Duplex\n"); |
2336 | } | 1645 | } |
2337 | 1646 | ||
2338 | /* Are we forcing 100Mbps??? */ | 1647 | /* Are we forcing 100Mbps??? */ |
2339 | if (hw->forced_speed_duplex == e1000_100_full || | 1648 | if (hw->forced_speed_duplex == e1000_100_full || |
2340 | hw->forced_speed_duplex == e1000_100_half) { | 1649 | hw->forced_speed_duplex == e1000_100_half) { |
2341 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | 1650 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ |
2342 | ctrl |= E1000_CTRL_SPD_100; | 1651 | ctrl |= E1000_CTRL_SPD_100; |
2343 | mii_ctrl_reg |= MII_CR_SPEED_100; | 1652 | mii_ctrl_reg |= MII_CR_SPEED_100; |
2344 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | 1653 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
2345 | DEBUGOUT("Forcing 100mb "); | 1654 | DEBUGOUT("Forcing 100mb "); |
2346 | } else { | 1655 | } else { |
2347 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | 1656 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ |
2348 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 1657 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
2349 | mii_ctrl_reg |= MII_CR_SPEED_10; | 1658 | mii_ctrl_reg |= MII_CR_SPEED_10; |
2350 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | 1659 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
2351 | DEBUGOUT("Forcing 10mb "); | 1660 | DEBUGOUT("Forcing 10mb "); |
2352 | } | 1661 | } |
2353 | 1662 | ||
2354 | e1000_config_collision_dist(hw); | 1663 | e1000_config_collision_dist(hw); |
2355 | 1664 | ||
2356 | /* Write the configured values back to the Device Control Reg. */ | 1665 | /* Write the configured values back to the Device Control Reg. */ |
2357 | ew32(CTRL, ctrl); | 1666 | ew32(CTRL, ctrl); |
2358 | 1667 | ||
2359 | if ((hw->phy_type == e1000_phy_m88) || | 1668 | if (hw->phy_type == e1000_phy_m88) { |
2360 | (hw->phy_type == e1000_phy_gg82563)) { | 1669 | ret_val = |
2361 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 1670 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
2362 | if (ret_val) | 1671 | if (ret_val) |
2363 | return ret_val; | 1672 | return ret_val; |
2364 | 1673 | ||
2365 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | 1674 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
2366 | * forced whenever speed are duplex are forced. | 1675 | * forced whenever speed are duplex are forced. |
2367 | */ | 1676 | */ |
2368 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 1677 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
2369 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 1678 | ret_val = |
2370 | if (ret_val) | 1679 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
2371 | return ret_val; | 1680 | if (ret_val) |
2372 | 1681 | return ret_val; | |
2373 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | 1682 | |
2374 | 1683 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | |
2375 | /* Need to reset the PHY or these changes will be ignored */ | 1684 | |
2376 | mii_ctrl_reg |= MII_CR_RESET; | 1685 | /* Need to reset the PHY or these changes will be ignored */ |
2377 | 1686 | mii_ctrl_reg |= MII_CR_RESET; | |
2378 | /* Disable MDI-X support for 10/100 */ | 1687 | |
2379 | } else if (hw->phy_type == e1000_phy_ife) { | 1688 | /* Disable MDI-X support for 10/100 */ |
2380 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | 1689 | } else { |
2381 | if (ret_val) | 1690 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
2382 | return ret_val; | 1691 | * forced whenever speed or duplex are forced. |
2383 | 1692 | */ | |
2384 | phy_data &= ~IFE_PMC_AUTO_MDIX; | 1693 | ret_val = |
2385 | phy_data &= ~IFE_PMC_FORCE_MDIX; | 1694 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
2386 | 1695 | if (ret_val) | |
2387 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); | 1696 | return ret_val; |
2388 | if (ret_val) | 1697 | |
2389 | return ret_val; | 1698 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
2390 | 1699 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | |
2391 | } else { | 1700 | |
2392 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | 1701 | ret_val = |
2393 | * forced whenever speed or duplex are forced. | 1702 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
2394 | */ | 1703 | if (ret_val) |
2395 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 1704 | return ret_val; |
2396 | if (ret_val) | 1705 | } |
2397 | return ret_val; | 1706 | |
2398 | 1707 | /* Write back the modified PHY MII control register. */ | |
2399 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 1708 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); |
2400 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 1709 | if (ret_val) |
2401 | 1710 | return ret_val; | |
2402 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 1711 | |
2403 | if (ret_val) | 1712 | udelay(1); |
2404 | return ret_val; | 1713 | |
2405 | } | 1714 | /* The wait_autoneg_complete flag may be a little misleading here. |
2406 | 1715 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | |
2407 | /* Write back the modified PHY MII control register. */ | 1716 | * But we do want to delay for a period while forcing only so we |
2408 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | 1717 | * don't generate false No Link messages. So we will wait here |
2409 | if (ret_val) | 1718 | * only if the user has set wait_autoneg_complete to 1, which is |
2410 | return ret_val; | 1719 | * the default. |
2411 | 1720 | */ | |
2412 | udelay(1); | 1721 | if (hw->wait_autoneg_complete) { |
2413 | 1722 | /* We will wait for autoneg to complete. */ | |
2414 | /* The wait_autoneg_complete flag may be a little misleading here. | 1723 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); |
2415 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | 1724 | mii_status_reg = 0; |
2416 | * But we do want to delay for a period while forcing only so we | 1725 | |
2417 | * don't generate false No Link messages. So we will wait here | 1726 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
2418 | * only if the user has set wait_autoneg_complete to 1, which is | 1727 | for (i = PHY_FORCE_TIME; i > 0; i--) { |
2419 | * the default. | 1728 | /* Read the MII Status Register and wait for Auto-Neg Complete bit |
2420 | */ | 1729 | * to be set. |
2421 | if (hw->wait_autoneg_complete) { | 1730 | */ |
2422 | /* We will wait for autoneg to complete. */ | 1731 | ret_val = |
2423 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); | 1732 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
2424 | mii_status_reg = 0; | 1733 | if (ret_val) |
2425 | 1734 | return ret_val; | |
2426 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 1735 | |
2427 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 1736 | ret_val = |
2428 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 1737 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
2429 | * to be set. | 1738 | if (ret_val) |
2430 | */ | 1739 | return ret_val; |
2431 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 1740 | |
2432 | if (ret_val) | 1741 | if (mii_status_reg & MII_SR_LINK_STATUS) |
2433 | return ret_val; | 1742 | break; |
2434 | 1743 | msleep(100); | |
2435 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 1744 | } |
2436 | if (ret_val) | 1745 | if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { |
2437 | return ret_val; | 1746 | /* We didn't get link. Reset the DSP and wait again for link. */ |
2438 | 1747 | ret_val = e1000_phy_reset_dsp(hw); | |
2439 | if (mii_status_reg & MII_SR_LINK_STATUS) break; | 1748 | if (ret_val) { |
2440 | msleep(100); | 1749 | DEBUGOUT("Error Resetting PHY DSP\n"); |
2441 | } | 1750 | return ret_val; |
2442 | if ((i == 0) && | 1751 | } |
2443 | ((hw->phy_type == e1000_phy_m88) || | 1752 | } |
2444 | (hw->phy_type == e1000_phy_gg82563))) { | 1753 | /* This loop will early-out if the link condition has been met. */ |
2445 | /* We didn't get link. Reset the DSP and wait again for link. */ | 1754 | for (i = PHY_FORCE_TIME; i > 0; i--) { |
2446 | ret_val = e1000_phy_reset_dsp(hw); | 1755 | if (mii_status_reg & MII_SR_LINK_STATUS) |
2447 | if (ret_val) { | 1756 | break; |
2448 | DEBUGOUT("Error Resetting PHY DSP\n"); | 1757 | msleep(100); |
2449 | return ret_val; | 1758 | /* Read the MII Status Register and wait for Auto-Neg Complete bit |
2450 | } | 1759 | * to be set. |
2451 | } | 1760 | */ |
2452 | /* This loop will early-out if the link condition has been met. */ | 1761 | ret_val = |
2453 | for (i = PHY_FORCE_TIME; i > 0; i--) { | 1762 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
2454 | if (mii_status_reg & MII_SR_LINK_STATUS) break; | 1763 | if (ret_val) |
2455 | msleep(100); | 1764 | return ret_val; |
2456 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 1765 | |
2457 | * to be set. | 1766 | ret_val = |
2458 | */ | 1767 | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
2459 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 1768 | if (ret_val) |
2460 | if (ret_val) | 1769 | return ret_val; |
2461 | return ret_val; | 1770 | } |
2462 | 1771 | } | |
2463 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 1772 | |
2464 | if (ret_val) | 1773 | if (hw->phy_type == e1000_phy_m88) { |
2465 | return ret_val; | 1774 | /* Because we reset the PHY above, we need to re-force TX_CLK in the |
2466 | } | 1775 | * Extended PHY Specific Control Register to 25MHz clock. This value |
2467 | } | 1776 | * defaults back to a 2.5MHz clock when the PHY is reset. |
2468 | 1777 | */ | |
2469 | if (hw->phy_type == e1000_phy_m88) { | 1778 | ret_val = |
2470 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | 1779 | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
2471 | * Extended PHY Specific Control Register to 25MHz clock. This value | 1780 | &phy_data); |
2472 | * defaults back to a 2.5MHz clock when the PHY is reset. | 1781 | if (ret_val) |
2473 | */ | 1782 | return ret_val; |
2474 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 1783 | |
2475 | if (ret_val) | 1784 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
2476 | return ret_val; | 1785 | ret_val = |
2477 | 1786 | e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | |
2478 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 1787 | phy_data); |
2479 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 1788 | if (ret_val) |
2480 | if (ret_val) | 1789 | return ret_val; |
2481 | return ret_val; | 1790 | |
2482 | 1791 | /* In addition, because of the s/w reset above, we need to enable CRS on | |
2483 | /* In addition, because of the s/w reset above, we need to enable CRS on | 1792 | * TX. This must be set for both full and half duplex operation. |
2484 | * TX. This must be set for both full and half duplex operation. | 1793 | */ |
2485 | */ | 1794 | ret_val = |
2486 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 1795 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
2487 | if (ret_val) | 1796 | if (ret_val) |
2488 | return ret_val; | 1797 | return ret_val; |
2489 | 1798 | ||
2490 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 1799 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
2491 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 1800 | ret_val = |
2492 | if (ret_val) | 1801 | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
2493 | return ret_val; | 1802 | if (ret_val) |
2494 | 1803 | return ret_val; | |
2495 | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 1804 | |
2496 | (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || | 1805 | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) |
2497 | hw->forced_speed_duplex == e1000_10_half)) { | 1806 | && (!hw->autoneg) |
2498 | ret_val = e1000_polarity_reversal_workaround(hw); | 1807 | && (hw->forced_speed_duplex == e1000_10_full |
2499 | if (ret_val) | 1808 | || hw->forced_speed_duplex == e1000_10_half)) { |
2500 | return ret_val; | 1809 | ret_val = e1000_polarity_reversal_workaround(hw); |
2501 | } | 1810 | if (ret_val) |
2502 | } else if (hw->phy_type == e1000_phy_gg82563) { | 1811 | return ret_val; |
2503 | /* The TX_CLK of the Extended PHY Specific Control Register defaults | 1812 | } |
2504 | * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if | 1813 | } |
2505 | * we're not in a forced 10/duplex configuration. */ | 1814 | return E1000_SUCCESS; |
2506 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); | ||
2507 | if (ret_val) | ||
2508 | return ret_val; | ||
2509 | |||
2510 | phy_data &= ~GG82563_MSCR_TX_CLK_MASK; | ||
2511 | if ((hw->forced_speed_duplex == e1000_10_full) || | ||
2512 | (hw->forced_speed_duplex == e1000_10_half)) | ||
2513 | phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ; | ||
2514 | else | ||
2515 | phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ; | ||
2516 | |||
2517 | /* Also due to the reset, we need to enable CRS on Tx. */ | ||
2518 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | ||
2519 | |||
2520 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); | ||
2521 | if (ret_val) | ||
2522 | return ret_val; | ||
2523 | } | ||
2524 | return E1000_SUCCESS; | ||
2525 | } | 1815 | } |
2526 | 1816 | ||
2527 | /****************************************************************************** | 1817 | /** |
2528 | * Sets the collision distance in the Transmit Control register | 1818 | * e1000_config_collision_dist - set collision distance register |
2529 | * | 1819 | * @hw: Struct containing variables accessed by shared code |
2530 | * hw - Struct containing variables accessed by shared code | 1820 | * |
2531 | * | 1821 | * Sets the collision distance in the Transmit Control register. |
2532 | * Link should have been established previously. Reads the speed and duplex | 1822 | * Link should have been established previously. Reads the speed and duplex |
2533 | * information from the Device Status register. | 1823 | * information from the Device Status register. |
2534 | ******************************************************************************/ | 1824 | */ |
2535 | void e1000_config_collision_dist(struct e1000_hw *hw) | 1825 | void e1000_config_collision_dist(struct e1000_hw *hw) |
2536 | { | 1826 | { |
2537 | u32 tctl, coll_dist; | 1827 | u32 tctl, coll_dist; |
2538 | 1828 | ||
2539 | DEBUGFUNC("e1000_config_collision_dist"); | 1829 | DEBUGFUNC("e1000_config_collision_dist"); |
2540 | 1830 | ||
2541 | if (hw->mac_type < e1000_82543) | 1831 | if (hw->mac_type < e1000_82543) |
2542 | coll_dist = E1000_COLLISION_DISTANCE_82542; | 1832 | coll_dist = E1000_COLLISION_DISTANCE_82542; |
2543 | else | 1833 | else |
2544 | coll_dist = E1000_COLLISION_DISTANCE; | 1834 | coll_dist = E1000_COLLISION_DISTANCE; |
2545 | 1835 | ||
2546 | tctl = er32(TCTL); | 1836 | tctl = er32(TCTL); |
2547 | 1837 | ||
2548 | tctl &= ~E1000_TCTL_COLD; | 1838 | tctl &= ~E1000_TCTL_COLD; |
2549 | tctl |= coll_dist << E1000_COLD_SHIFT; | 1839 | tctl |= coll_dist << E1000_COLD_SHIFT; |
2550 | 1840 | ||
2551 | ew32(TCTL, tctl); | 1841 | ew32(TCTL, tctl); |
2552 | E1000_WRITE_FLUSH(); | 1842 | E1000_WRITE_FLUSH(); |
2553 | } | 1843 | } |
2554 | 1844 | ||
2555 | /****************************************************************************** | 1845 | /** |
2556 | * Sets MAC speed and duplex settings to reflect the those in the PHY | 1846 | * e1000_config_mac_to_phy - sync phy and mac settings |
2557 | * | 1847 | * @hw: Struct containing variables accessed by shared code |
2558 | * hw - Struct containing variables accessed by shared code | 1848 | * @mii_reg: data to write to the MII control register |
2559 | * mii_reg - data to write to the MII control register | 1849 | * |
2560 | * | 1850 | * Sets MAC speed and duplex settings to reflect the those in the PHY |
2561 | * The contents of the PHY register containing the needed information need to | 1851 | * The contents of the PHY register containing the needed information need to |
2562 | * be passed in. | 1852 | * be passed in. |
2563 | ******************************************************************************/ | 1853 | */ |
2564 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) | 1854 | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) |
2565 | { | 1855 | { |
2566 | u32 ctrl; | 1856 | u32 ctrl; |
2567 | s32 ret_val; | 1857 | s32 ret_val; |
2568 | u16 phy_data; | 1858 | u16 phy_data; |
2569 | 1859 | ||
2570 | DEBUGFUNC("e1000_config_mac_to_phy"); | 1860 | DEBUGFUNC("e1000_config_mac_to_phy"); |
2571 | 1861 | ||
2572 | /* 82544 or newer MAC, Auto Speed Detection takes care of | 1862 | /* 82544 or newer MAC, Auto Speed Detection takes care of |
2573 | * MAC speed/duplex configuration.*/ | 1863 | * MAC speed/duplex configuration.*/ |
2574 | if (hw->mac_type >= e1000_82544) | 1864 | if (hw->mac_type >= e1000_82544) |
2575 | return E1000_SUCCESS; | 1865 | return E1000_SUCCESS; |
2576 | 1866 | ||
2577 | /* Read the Device Control Register and set the bits to Force Speed | 1867 | /* Read the Device Control Register and set the bits to Force Speed |
2578 | * and Duplex. | 1868 | * and Duplex. |
2579 | */ | 1869 | */ |
2580 | ctrl = er32(CTRL); | 1870 | ctrl = er32(CTRL); |
2581 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 1871 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
2582 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | 1872 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
2583 | 1873 | ||
2584 | /* Set up duplex in the Device Control and Transmit Control | 1874 | /* Set up duplex in the Device Control and Transmit Control |
2585 | * registers depending on negotiated values. | 1875 | * registers depending on negotiated values. |
2586 | */ | 1876 | */ |
2587 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 1877 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
2588 | if (ret_val) | 1878 | if (ret_val) |
2589 | return ret_val; | 1879 | return ret_val; |
2590 | 1880 | ||
2591 | if (phy_data & M88E1000_PSSR_DPLX) | 1881 | if (phy_data & M88E1000_PSSR_DPLX) |
2592 | ctrl |= E1000_CTRL_FD; | 1882 | ctrl |= E1000_CTRL_FD; |
2593 | else | 1883 | else |
2594 | ctrl &= ~E1000_CTRL_FD; | 1884 | ctrl &= ~E1000_CTRL_FD; |
2595 | 1885 | ||
2596 | e1000_config_collision_dist(hw); | 1886 | e1000_config_collision_dist(hw); |
2597 | 1887 | ||
2598 | /* Set up speed in the Device Control register depending on | 1888 | /* Set up speed in the Device Control register depending on |
2599 | * negotiated values. | 1889 | * negotiated values. |
2600 | */ | 1890 | */ |
2601 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | 1891 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
2602 | ctrl |= E1000_CTRL_SPD_1000; | 1892 | ctrl |= E1000_CTRL_SPD_1000; |
2603 | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | 1893 | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
2604 | ctrl |= E1000_CTRL_SPD_100; | 1894 | ctrl |= E1000_CTRL_SPD_100; |
2605 | 1895 | ||
2606 | /* Write the configured values back to the Device Control Reg. */ | 1896 | /* Write the configured values back to the Device Control Reg. */ |
2607 | ew32(CTRL, ctrl); | 1897 | ew32(CTRL, ctrl); |
2608 | return E1000_SUCCESS; | 1898 | return E1000_SUCCESS; |
2609 | } | 1899 | } |
2610 | 1900 | ||
2611 | /****************************************************************************** | 1901 | /** |
2612 | * Forces the MAC's flow control settings. | 1902 | * e1000_force_mac_fc - force flow control settings |
2613 | * | 1903 | * @hw: Struct containing variables accessed by shared code |
2614 | * hw - Struct containing variables accessed by shared code | ||
2615 | * | 1904 | * |
1905 | * Forces the MAC's flow control settings. | ||
2616 | * Sets the TFCE and RFCE bits in the device control register to reflect | 1906 | * Sets the TFCE and RFCE bits in the device control register to reflect |
2617 | * the adapter settings. TFCE and RFCE need to be explicitly set by | 1907 | * the adapter settings. TFCE and RFCE need to be explicitly set by |
2618 | * software when a Copper PHY is used because autonegotiation is managed | 1908 | * software when a Copper PHY is used because autonegotiation is managed |
2619 | * by the PHY rather than the MAC. Software must also configure these | 1909 | * by the PHY rather than the MAC. Software must also configure these |
2620 | * bits when link is forced on a fiber connection. | 1910 | * bits when link is forced on a fiber connection. |
2621 | *****************************************************************************/ | 1911 | */ |
2622 | s32 e1000_force_mac_fc(struct e1000_hw *hw) | 1912 | s32 e1000_force_mac_fc(struct e1000_hw *hw) |
2623 | { | 1913 | { |
2624 | u32 ctrl; | 1914 | u32 ctrl; |
2625 | 1915 | ||
2626 | DEBUGFUNC("e1000_force_mac_fc"); | 1916 | DEBUGFUNC("e1000_force_mac_fc"); |
2627 | 1917 | ||
2628 | /* Get the current configuration of the Device Control Register */ | 1918 | /* Get the current configuration of the Device Control Register */ |
2629 | ctrl = er32(CTRL); | 1919 | ctrl = er32(CTRL); |
2630 | 1920 | ||
2631 | /* Because we didn't get link via the internal auto-negotiation | 1921 | /* Because we didn't get link via the internal auto-negotiation |
2632 | * mechanism (we either forced link or we got link via PHY | 1922 | * mechanism (we either forced link or we got link via PHY |
2633 | * auto-neg), we have to manually enable/disable transmit an | 1923 | * auto-neg), we have to manually enable/disable transmit an |
2634 | * receive flow control. | 1924 | * receive flow control. |
2635 | * | 1925 | * |
2636 | * The "Case" statement below enables/disable flow control | 1926 | * The "Case" statement below enables/disable flow control |
2637 | * according to the "hw->fc" parameter. | 1927 | * according to the "hw->fc" parameter. |
2638 | * | 1928 | * |
2639 | * The possible values of the "fc" parameter are: | 1929 | * The possible values of the "fc" parameter are: |
2640 | * 0: Flow control is completely disabled | 1930 | * 0: Flow control is completely disabled |
2641 | * 1: Rx flow control is enabled (we can receive pause | 1931 | * 1: Rx flow control is enabled (we can receive pause |
2642 | * frames but not send pause frames). | 1932 | * frames but not send pause frames). |
2643 | * 2: Tx flow control is enabled (we can send pause frames | 1933 | * 2: Tx flow control is enabled (we can send pause frames |
2644 | * frames but we do not receive pause frames). | 1934 | * frames but we do not receive pause frames). |
2645 | * 3: Both Rx and TX flow control (symmetric) is enabled. | 1935 | * 3: Both Rx and TX flow control (symmetric) is enabled. |
2646 | * other: No other values should be possible at this point. | 1936 | * other: No other values should be possible at this point. |
2647 | */ | 1937 | */ |
2648 | 1938 | ||
2649 | switch (hw->fc) { | 1939 | switch (hw->fc) { |
2650 | case E1000_FC_NONE: | 1940 | case E1000_FC_NONE: |
2651 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 1941 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
2652 | break; | 1942 | break; |
2653 | case E1000_FC_RX_PAUSE: | 1943 | case E1000_FC_RX_PAUSE: |
2654 | ctrl &= (~E1000_CTRL_TFCE); | 1944 | ctrl &= (~E1000_CTRL_TFCE); |
2655 | ctrl |= E1000_CTRL_RFCE; | 1945 | ctrl |= E1000_CTRL_RFCE; |
2656 | break; | 1946 | break; |
2657 | case E1000_FC_TX_PAUSE: | 1947 | case E1000_FC_TX_PAUSE: |
2658 | ctrl &= (~E1000_CTRL_RFCE); | 1948 | ctrl &= (~E1000_CTRL_RFCE); |
2659 | ctrl |= E1000_CTRL_TFCE; | 1949 | ctrl |= E1000_CTRL_TFCE; |
2660 | break; | 1950 | break; |
2661 | case E1000_FC_FULL: | 1951 | case E1000_FC_FULL: |
2662 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 1952 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
2663 | break; | 1953 | break; |
2664 | default: | 1954 | default: |
2665 | DEBUGOUT("Flow control param set incorrectly\n"); | 1955 | DEBUGOUT("Flow control param set incorrectly\n"); |
2666 | return -E1000_ERR_CONFIG; | 1956 | return -E1000_ERR_CONFIG; |
2667 | } | 1957 | } |
2668 | 1958 | ||
2669 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | 1959 | /* Disable TX Flow Control for 82542 (rev 2.0) */ |
2670 | if (hw->mac_type == e1000_82542_rev2_0) | 1960 | if (hw->mac_type == e1000_82542_rev2_0) |
2671 | ctrl &= (~E1000_CTRL_TFCE); | 1961 | ctrl &= (~E1000_CTRL_TFCE); |
2672 | 1962 | ||
2673 | ew32(CTRL, ctrl); | 1963 | ew32(CTRL, ctrl); |
2674 | return E1000_SUCCESS; | 1964 | return E1000_SUCCESS; |
2675 | } | 1965 | } |
2676 | 1966 | ||
2677 | /****************************************************************************** | 1967 | /** |
2678 | * Configures flow control settings after link is established | 1968 | * e1000_config_fc_after_link_up - configure flow control after autoneg |
2679 | * | 1969 | * @hw: Struct containing variables accessed by shared code |
2680 | * hw - Struct containing variables accessed by shared code | ||
2681 | * | 1970 | * |
1971 | * Configures flow control settings after link is established | ||
2682 | * Should be called immediately after a valid link has been established. | 1972 | * Should be called immediately after a valid link has been established. |
2683 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | 1973 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
2684 | * and autonegotiation is enabled, the MAC flow control settings will be set | 1974 | * and autonegotiation is enabled, the MAC flow control settings will be set |
2685 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | 1975 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
2686 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. | 1976 | * and RFCE bits will be automatically set to the negotiated flow control mode. |
2687 | *****************************************************************************/ | 1977 | */ |
2688 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) | 1978 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) |
2689 | { | 1979 | { |
2690 | s32 ret_val; | 1980 | s32 ret_val; |
2691 | u16 mii_status_reg; | 1981 | u16 mii_status_reg; |
2692 | u16 mii_nway_adv_reg; | 1982 | u16 mii_nway_adv_reg; |
2693 | u16 mii_nway_lp_ability_reg; | 1983 | u16 mii_nway_lp_ability_reg; |
2694 | u16 speed; | 1984 | u16 speed; |
2695 | u16 duplex; | 1985 | u16 duplex; |
2696 | 1986 | ||
2697 | DEBUGFUNC("e1000_config_fc_after_link_up"); | 1987 | DEBUGFUNC("e1000_config_fc_after_link_up"); |
2698 | 1988 | ||
2699 | /* Check for the case where we have fiber media and auto-neg failed | 1989 | /* Check for the case where we have fiber media and auto-neg failed |
2700 | * so we had to force link. In this case, we need to force the | 1990 | * so we had to force link. In this case, we need to force the |
2701 | * configuration of the MAC to match the "fc" parameter. | 1991 | * configuration of the MAC to match the "fc" parameter. |
2702 | */ | 1992 | */ |
2703 | if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || | 1993 | if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) |
2704 | ((hw->media_type == e1000_media_type_internal_serdes) && | 1994 | || ((hw->media_type == e1000_media_type_internal_serdes) |
2705 | (hw->autoneg_failed)) || | 1995 | && (hw->autoneg_failed)) |
2706 | ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { | 1996 | || ((hw->media_type == e1000_media_type_copper) |
2707 | ret_val = e1000_force_mac_fc(hw); | 1997 | && (!hw->autoneg))) { |
2708 | if (ret_val) { | 1998 | ret_val = e1000_force_mac_fc(hw); |
2709 | DEBUGOUT("Error forcing flow control settings\n"); | 1999 | if (ret_val) { |
2710 | return ret_val; | 2000 | DEBUGOUT("Error forcing flow control settings\n"); |
2711 | } | 2001 | return ret_val; |
2712 | } | 2002 | } |
2713 | 2003 | } | |
2714 | /* Check for the case where we have copper media and auto-neg is | 2004 | |
2715 | * enabled. In this case, we need to check and see if Auto-Neg | 2005 | /* Check for the case where we have copper media and auto-neg is |
2716 | * has completed, and if so, how the PHY and link partner has | 2006 | * enabled. In this case, we need to check and see if Auto-Neg |
2717 | * flow control configured. | 2007 | * has completed, and if so, how the PHY and link partner has |
2718 | */ | 2008 | * flow control configured. |
2719 | if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | 2009 | */ |
2720 | /* Read the MII Status Register and check to see if AutoNeg | 2010 | if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { |
2721 | * has completed. We read this twice because this reg has | 2011 | /* Read the MII Status Register and check to see if AutoNeg |
2722 | * some "sticky" (latched) bits. | 2012 | * has completed. We read this twice because this reg has |
2723 | */ | 2013 | * some "sticky" (latched) bits. |
2724 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 2014 | */ |
2725 | if (ret_val) | 2015 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
2726 | return ret_val; | 2016 | if (ret_val) |
2727 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 2017 | return ret_val; |
2728 | if (ret_val) | 2018 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
2729 | return ret_val; | 2019 | if (ret_val) |
2730 | 2020 | return ret_val; | |
2731 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | 2021 | |
2732 | /* The AutoNeg process has completed, so we now need to | 2022 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
2733 | * read both the Auto Negotiation Advertisement Register | 2023 | /* The AutoNeg process has completed, so we now need to |
2734 | * (Address 4) and the Auto_Negotiation Base Page Ability | 2024 | * read both the Auto Negotiation Advertisement Register |
2735 | * Register (Address 5) to determine how flow control was | 2025 | * (Address 4) and the Auto_Negotiation Base Page Ability |
2736 | * negotiated. | 2026 | * Register (Address 5) to determine how flow control was |
2737 | */ | 2027 | * negotiated. |
2738 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | 2028 | */ |
2739 | &mii_nway_adv_reg); | 2029 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, |
2740 | if (ret_val) | 2030 | &mii_nway_adv_reg); |
2741 | return ret_val; | 2031 | if (ret_val) |
2742 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | 2032 | return ret_val; |
2743 | &mii_nway_lp_ability_reg); | 2033 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, |
2744 | if (ret_val) | 2034 | &mii_nway_lp_ability_reg); |
2745 | return ret_val; | 2035 | if (ret_val) |
2746 | 2036 | return ret_val; | |
2747 | /* Two bits in the Auto Negotiation Advertisement Register | 2037 | |
2748 | * (Address 4) and two bits in the Auto Negotiation Base | 2038 | /* Two bits in the Auto Negotiation Advertisement Register |
2749 | * Page Ability Register (Address 5) determine flow control | 2039 | * (Address 4) and two bits in the Auto Negotiation Base |
2750 | * for both the PHY and the link partner. The following | 2040 | * Page Ability Register (Address 5) determine flow control |
2751 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 2041 | * for both the PHY and the link partner. The following |
2752 | * 1999, describes these PAUSE resolution bits and how flow | 2042 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
2753 | * control is determined based upon these settings. | 2043 | * 1999, describes these PAUSE resolution bits and how flow |
2754 | * NOTE: DC = Don't Care | 2044 | * control is determined based upon these settings. |
2755 | * | 2045 | * NOTE: DC = Don't Care |
2756 | * LOCAL DEVICE | LINK PARTNER | 2046 | * |
2757 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 2047 | * LOCAL DEVICE | LINK PARTNER |
2758 | *-------|---------|-------|---------|-------------------- | 2048 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
2759 | * 0 | 0 | DC | DC | E1000_FC_NONE | 2049 | *-------|---------|-------|---------|-------------------- |
2760 | * 0 | 1 | 0 | DC | E1000_FC_NONE | 2050 | * 0 | 0 | DC | DC | E1000_FC_NONE |
2761 | * 0 | 1 | 1 | 0 | E1000_FC_NONE | 2051 | * 0 | 1 | 0 | DC | E1000_FC_NONE |
2762 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE | 2052 | * 0 | 1 | 1 | 0 | E1000_FC_NONE |
2763 | * 1 | 0 | 0 | DC | E1000_FC_NONE | 2053 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
2764 | * 1 | DC | 1 | DC | E1000_FC_FULL | 2054 | * 1 | 0 | 0 | DC | E1000_FC_NONE |
2765 | * 1 | 1 | 0 | 0 | E1000_FC_NONE | 2055 | * 1 | DC | 1 | DC | E1000_FC_FULL |
2766 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE | 2056 | * 1 | 1 | 0 | 0 | E1000_FC_NONE |
2767 | * | 2057 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
2768 | */ | 2058 | * |
2769 | /* Are both PAUSE bits set to 1? If so, this implies | 2059 | */ |
2770 | * Symmetric Flow Control is enabled at both ends. The | 2060 | /* Are both PAUSE bits set to 1? If so, this implies |
2771 | * ASM_DIR bits are irrelevant per the spec. | 2061 | * Symmetric Flow Control is enabled at both ends. The |
2772 | * | 2062 | * ASM_DIR bits are irrelevant per the spec. |
2773 | * For Symmetric Flow Control: | 2063 | * |
2774 | * | 2064 | * For Symmetric Flow Control: |
2775 | * LOCAL DEVICE | LINK PARTNER | 2065 | * |
2776 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 2066 | * LOCAL DEVICE | LINK PARTNER |
2777 | *-------|---------|-------|---------|-------------------- | 2067 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
2778 | * 1 | DC | 1 | DC | E1000_FC_FULL | 2068 | *-------|---------|-------|---------|-------------------- |
2779 | * | 2069 | * 1 | DC | 1 | DC | E1000_FC_FULL |
2780 | */ | 2070 | * |
2781 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 2071 | */ |
2782 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 2072 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
2783 | /* Now we need to check if the user selected RX ONLY | 2073 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
2784 | * of pause frames. In this case, we had to advertise | 2074 | /* Now we need to check if the user selected RX ONLY |
2785 | * FULL flow control because we could not advertise RX | 2075 | * of pause frames. In this case, we had to advertise |
2786 | * ONLY. Hence, we must now check to see if we need to | 2076 | * FULL flow control because we could not advertise RX |
2787 | * turn OFF the TRANSMISSION of PAUSE frames. | 2077 | * ONLY. Hence, we must now check to see if we need to |
2788 | */ | 2078 | * turn OFF the TRANSMISSION of PAUSE frames. |
2789 | if (hw->original_fc == E1000_FC_FULL) { | 2079 | */ |
2790 | hw->fc = E1000_FC_FULL; | 2080 | if (hw->original_fc == E1000_FC_FULL) { |
2791 | DEBUGOUT("Flow Control = FULL.\n"); | 2081 | hw->fc = E1000_FC_FULL; |
2792 | } else { | 2082 | DEBUGOUT("Flow Control = FULL.\n"); |
2793 | hw->fc = E1000_FC_RX_PAUSE; | 2083 | } else { |
2794 | DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); | 2084 | hw->fc = E1000_FC_RX_PAUSE; |
2795 | } | 2085 | DEBUGOUT |
2796 | } | 2086 | ("Flow Control = RX PAUSE frames only.\n"); |
2797 | /* For receiving PAUSE frames ONLY. | 2087 | } |
2798 | * | 2088 | } |
2799 | * LOCAL DEVICE | LINK PARTNER | 2089 | /* For receiving PAUSE frames ONLY. |
2800 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 2090 | * |
2801 | *-------|---------|-------|---------|-------------------- | 2091 | * LOCAL DEVICE | LINK PARTNER |
2802 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE | 2092 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
2803 | * | 2093 | *-------|---------|-------|---------|-------------------- |
2804 | */ | 2094 | * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
2805 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 2095 | * |
2806 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 2096 | */ |
2807 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 2097 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
2808 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 2098 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
2809 | hw->fc = E1000_FC_TX_PAUSE; | 2099 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
2810 | DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); | 2100 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
2811 | } | 2101 | { |
2812 | /* For transmitting PAUSE frames ONLY. | 2102 | hw->fc = E1000_FC_TX_PAUSE; |
2813 | * | 2103 | DEBUGOUT |
2814 | * LOCAL DEVICE | LINK PARTNER | 2104 | ("Flow Control = TX PAUSE frames only.\n"); |
2815 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 2105 | } |
2816 | *-------|---------|-------|---------|-------------------- | 2106 | /* For transmitting PAUSE frames ONLY. |
2817 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE | 2107 | * |
2818 | * | 2108 | * LOCAL DEVICE | LINK PARTNER |
2819 | */ | 2109 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
2820 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 2110 | *-------|---------|-------|---------|-------------------- |
2821 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 2111 | * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
2822 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 2112 | * |
2823 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 2113 | */ |
2824 | hw->fc = E1000_FC_RX_PAUSE; | 2114 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
2825 | DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); | 2115 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
2826 | } | 2116 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
2827 | /* Per the IEEE spec, at this point flow control should be | 2117 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
2828 | * disabled. However, we want to consider that we could | 2118 | { |
2829 | * be connected to a legacy switch that doesn't advertise | 2119 | hw->fc = E1000_FC_RX_PAUSE; |
2830 | * desired flow control, but can be forced on the link | 2120 | DEBUGOUT |
2831 | * partner. So if we advertised no flow control, that is | 2121 | ("Flow Control = RX PAUSE frames only.\n"); |
2832 | * what we will resolve to. If we advertised some kind of | 2122 | } |
2833 | * receive capability (Rx Pause Only or Full Flow Control) | 2123 | /* Per the IEEE spec, at this point flow control should be |
2834 | * and the link partner advertised none, we will configure | 2124 | * disabled. However, we want to consider that we could |
2835 | * ourselves to enable Rx Flow Control only. We can do | 2125 | * be connected to a legacy switch that doesn't advertise |
2836 | * this safely for two reasons: If the link partner really | 2126 | * desired flow control, but can be forced on the link |
2837 | * didn't want flow control enabled, and we enable Rx, no | 2127 | * partner. So if we advertised no flow control, that is |
2838 | * harm done since we won't be receiving any PAUSE frames | 2128 | * what we will resolve to. If we advertised some kind of |
2839 | * anyway. If the intent on the link partner was to have | 2129 | * receive capability (Rx Pause Only or Full Flow Control) |
2840 | * flow control enabled, then by us enabling RX only, we | 2130 | * and the link partner advertised none, we will configure |
2841 | * can at least receive pause frames and process them. | 2131 | * ourselves to enable Rx Flow Control only. We can do |
2842 | * This is a good idea because in most cases, since we are | 2132 | * this safely for two reasons: If the link partner really |
2843 | * predominantly a server NIC, more times than not we will | 2133 | * didn't want flow control enabled, and we enable Rx, no |
2844 | * be asked to delay transmission of packets than asking | 2134 | * harm done since we won't be receiving any PAUSE frames |
2845 | * our link partner to pause transmission of frames. | 2135 | * anyway. If the intent on the link partner was to have |
2846 | */ | 2136 | * flow control enabled, then by us enabling RX only, we |
2847 | else if ((hw->original_fc == E1000_FC_NONE || | 2137 | * can at least receive pause frames and process them. |
2848 | hw->original_fc == E1000_FC_TX_PAUSE) || | 2138 | * This is a good idea because in most cases, since we are |
2849 | hw->fc_strict_ieee) { | 2139 | * predominantly a server NIC, more times than not we will |
2850 | hw->fc = E1000_FC_NONE; | 2140 | * be asked to delay transmission of packets than asking |
2851 | DEBUGOUT("Flow Control = NONE.\n"); | 2141 | * our link partner to pause transmission of frames. |
2852 | } else { | 2142 | */ |
2853 | hw->fc = E1000_FC_RX_PAUSE; | 2143 | else if ((hw->original_fc == E1000_FC_NONE || |
2854 | DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); | 2144 | hw->original_fc == E1000_FC_TX_PAUSE) || |
2855 | } | 2145 | hw->fc_strict_ieee) { |
2856 | 2146 | hw->fc = E1000_FC_NONE; | |
2857 | /* Now we need to do one last check... If we auto- | 2147 | DEBUGOUT("Flow Control = NONE.\n"); |
2858 | * negotiated to HALF DUPLEX, flow control should not be | 2148 | } else { |
2859 | * enabled per IEEE 802.3 spec. | 2149 | hw->fc = E1000_FC_RX_PAUSE; |
2860 | */ | 2150 | DEBUGOUT |
2861 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 2151 | ("Flow Control = RX PAUSE frames only.\n"); |
2862 | if (ret_val) { | 2152 | } |
2863 | DEBUGOUT("Error getting link speed and duplex\n"); | 2153 | |
2864 | return ret_val; | 2154 | /* Now we need to do one last check... If we auto- |
2865 | } | 2155 | * negotiated to HALF DUPLEX, flow control should not be |
2866 | 2156 | * enabled per IEEE 802.3 spec. | |
2867 | if (duplex == HALF_DUPLEX) | 2157 | */ |
2868 | hw->fc = E1000_FC_NONE; | 2158 | ret_val = |
2869 | 2159 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | |
2870 | /* Now we call a subroutine to actually force the MAC | 2160 | if (ret_val) { |
2871 | * controller to use the correct flow control settings. | 2161 | DEBUGOUT |
2872 | */ | 2162 | ("Error getting link speed and duplex\n"); |
2873 | ret_val = e1000_force_mac_fc(hw); | 2163 | return ret_val; |
2874 | if (ret_val) { | 2164 | } |
2875 | DEBUGOUT("Error forcing flow control settings\n"); | 2165 | |
2876 | return ret_val; | 2166 | if (duplex == HALF_DUPLEX) |
2877 | } | 2167 | hw->fc = E1000_FC_NONE; |
2878 | } else { | 2168 | |
2879 | DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); | 2169 | /* Now we call a subroutine to actually force the MAC |
2880 | } | 2170 | * controller to use the correct flow control settings. |
2881 | } | 2171 | */ |
2882 | return E1000_SUCCESS; | 2172 | ret_val = e1000_force_mac_fc(hw); |
2173 | if (ret_val) { | ||
2174 | DEBUGOUT | ||
2175 | ("Error forcing flow control settings\n"); | ||
2176 | return ret_val; | ||
2177 | } | ||
2178 | } else { | ||
2179 | DEBUGOUT | ||
2180 | ("Copper PHY and Auto Neg has not completed.\n"); | ||
2181 | } | ||
2182 | } | ||
2183 | return E1000_SUCCESS; | ||
2883 | } | 2184 | } |
2884 | 2185 | ||
2885 | /****************************************************************************** | 2186 | /** |
2886 | * Checks to see if the link status of the hardware has changed. | 2187 | * e1000_check_for_serdes_link_generic - Check for link (Serdes) |
2188 | * @hw: pointer to the HW structure | ||
2887 | * | 2189 | * |
2888 | * hw - Struct containing variables accessed by shared code | 2190 | * Checks for link up on the hardware. If link is not up and we have |
2191 | * a signal, then we need to force link up. | ||
2192 | */ | ||
2193 | static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) | ||
2194 | { | ||
2195 | u32 rxcw; | ||
2196 | u32 ctrl; | ||
2197 | u32 status; | ||
2198 | s32 ret_val = E1000_SUCCESS; | ||
2199 | |||
2200 | DEBUGFUNC("e1000_check_for_serdes_link_generic"); | ||
2201 | |||
2202 | ctrl = er32(CTRL); | ||
2203 | status = er32(STATUS); | ||
2204 | rxcw = er32(RXCW); | ||
2205 | |||
2206 | /* | ||
2207 | * If we don't have link (auto-negotiation failed or link partner | ||
2208 | * cannot auto-negotiate), and our link partner is not trying to | ||
2209 | * auto-negotiate with us (we are receiving idles or data), | ||
2210 | * we need to force link up. We also need to give auto-negotiation | ||
2211 | * time to complete. | ||
2212 | */ | ||
2213 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
2214 | if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | ||
2215 | if (hw->autoneg_failed == 0) { | ||
2216 | hw->autoneg_failed = 1; | ||
2217 | goto out; | ||
2218 | } | ||
2219 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); | ||
2220 | |||
2221 | /* Disable auto-negotiation in the TXCW register */ | ||
2222 | ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | ||
2223 | |||
2224 | /* Force link-up and also force full-duplex. */ | ||
2225 | ctrl = er32(CTRL); | ||
2226 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
2227 | ew32(CTRL, ctrl); | ||
2228 | |||
2229 | /* Configure Flow Control after forcing link up. */ | ||
2230 | ret_val = e1000_config_fc_after_link_up(hw); | ||
2231 | if (ret_val) { | ||
2232 | DEBUGOUT("Error configuring flow control\n"); | ||
2233 | goto out; | ||
2234 | } | ||
2235 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
2236 | /* | ||
2237 | * If we are forcing link and we are receiving /C/ ordered | ||
2238 | * sets, re-enable auto-negotiation in the TXCW register | ||
2239 | * and disable forced link in the Device Control register | ||
2240 | * in an attempt to auto-negotiate with our link partner. | ||
2241 | */ | ||
2242 | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); | ||
2243 | ew32(TXCW, hw->txcw); | ||
2244 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
2245 | |||
2246 | hw->serdes_has_link = true; | ||
2247 | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | ||
2248 | /* | ||
2249 | * If we force link for non-auto-negotiation switch, check | ||
2250 | * link status based on MAC synchronization for internal | ||
2251 | * serdes media type. | ||
2252 | */ | ||
2253 | /* SYNCH bit and IV bit are sticky. */ | ||
2254 | udelay(10); | ||
2255 | rxcw = er32(RXCW); | ||
2256 | if (rxcw & E1000_RXCW_SYNCH) { | ||
2257 | if (!(rxcw & E1000_RXCW_IV)) { | ||
2258 | hw->serdes_has_link = true; | ||
2259 | DEBUGOUT("SERDES: Link up - forced.\n"); | ||
2260 | } | ||
2261 | } else { | ||
2262 | hw->serdes_has_link = false; | ||
2263 | DEBUGOUT("SERDES: Link down - force failed.\n"); | ||
2264 | } | ||
2265 | } | ||
2266 | |||
2267 | if (E1000_TXCW_ANE & er32(TXCW)) { | ||
2268 | status = er32(STATUS); | ||
2269 | if (status & E1000_STATUS_LU) { | ||
2270 | /* SYNCH bit and IV bit are sticky, so reread rxcw. */ | ||
2271 | udelay(10); | ||
2272 | rxcw = er32(RXCW); | ||
2273 | if (rxcw & E1000_RXCW_SYNCH) { | ||
2274 | if (!(rxcw & E1000_RXCW_IV)) { | ||
2275 | hw->serdes_has_link = true; | ||
2276 | DEBUGOUT("SERDES: Link up - autoneg " | ||
2277 | "completed successfully.\n"); | ||
2278 | } else { | ||
2279 | hw->serdes_has_link = false; | ||
2280 | DEBUGOUT("SERDES: Link down - invalid" | ||
2281 | "codewords detected in autoneg.\n"); | ||
2282 | } | ||
2283 | } else { | ||
2284 | hw->serdes_has_link = false; | ||
2285 | DEBUGOUT("SERDES: Link down - no sync.\n"); | ||
2286 | } | ||
2287 | } else { | ||
2288 | hw->serdes_has_link = false; | ||
2289 | DEBUGOUT("SERDES: Link down - autoneg failed\n"); | ||
2290 | } | ||
2291 | } | ||
2292 | |||
2293 | out: | ||
2294 | return ret_val; | ||
2295 | } | ||
2296 | |||
2297 | /** | ||
2298 | * e1000_check_for_link | ||
2299 | * @hw: Struct containing variables accessed by shared code | ||
2889 | * | 2300 | * |
2301 | * Checks to see if the link status of the hardware has changed. | ||
2890 | * Called by any function that needs to check the link status of the adapter. | 2302 | * Called by any function that needs to check the link status of the adapter. |
2891 | *****************************************************************************/ | 2303 | */ |
2892 | s32 e1000_check_for_link(struct e1000_hw *hw) | 2304 | s32 e1000_check_for_link(struct e1000_hw *hw) |
2893 | { | 2305 | { |
2894 | u32 rxcw = 0; | 2306 | u32 rxcw = 0; |
2895 | u32 ctrl; | 2307 | u32 ctrl; |
2896 | u32 status; | 2308 | u32 status; |
2897 | u32 rctl; | 2309 | u32 rctl; |
2898 | u32 icr; | 2310 | u32 icr; |
2899 | u32 signal = 0; | 2311 | u32 signal = 0; |
2900 | s32 ret_val; | 2312 | s32 ret_val; |
2901 | u16 phy_data; | 2313 | u16 phy_data; |
2902 | 2314 | ||
2903 | DEBUGFUNC("e1000_check_for_link"); | 2315 | DEBUGFUNC("e1000_check_for_link"); |
2904 | 2316 | ||
2905 | ctrl = er32(CTRL); | 2317 | ctrl = er32(CTRL); |
2906 | status = er32(STATUS); | 2318 | status = er32(STATUS); |
2907 | 2319 | ||
2908 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | 2320 | /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be |
2909 | * set when the optics detect a signal. On older adapters, it will be | 2321 | * set when the optics detect a signal. On older adapters, it will be |
2910 | * cleared when there is a signal. This applies to fiber media only. | 2322 | * cleared when there is a signal. This applies to fiber media only. |
2911 | */ | 2323 | */ |
2912 | if ((hw->media_type == e1000_media_type_fiber) || | 2324 | if ((hw->media_type == e1000_media_type_fiber) || |
2913 | (hw->media_type == e1000_media_type_internal_serdes)) { | 2325 | (hw->media_type == e1000_media_type_internal_serdes)) { |
2914 | rxcw = er32(RXCW); | 2326 | rxcw = er32(RXCW); |
2915 | 2327 | ||
2916 | if (hw->media_type == e1000_media_type_fiber) { | 2328 | if (hw->media_type == e1000_media_type_fiber) { |
2917 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 2329 | signal = |
2918 | if (status & E1000_STATUS_LU) | 2330 | (hw->mac_type > |
2919 | hw->get_link_status = false; | 2331 | e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
2920 | } | 2332 | if (status & E1000_STATUS_LU) |
2921 | } | 2333 | hw->get_link_status = false; |
2922 | 2334 | } | |
2923 | /* If we have a copper PHY then we only want to go out to the PHY | 2335 | } |
2924 | * registers to see if Auto-Neg has completed and/or if our link | 2336 | |
2925 | * status has changed. The get_link_status flag will be set if we | 2337 | /* If we have a copper PHY then we only want to go out to the PHY |
2926 | * receive a Link Status Change interrupt or we have Rx Sequence | 2338 | * registers to see if Auto-Neg has completed and/or if our link |
2927 | * Errors. | 2339 | * status has changed. The get_link_status flag will be set if we |
2928 | */ | 2340 | * receive a Link Status Change interrupt or we have Rx Sequence |
2929 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | 2341 | * Errors. |
2930 | /* First we want to see if the MII Status Register reports | 2342 | */ |
2931 | * link. If so, then we want to get the current speed/duplex | 2343 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
2932 | * of the PHY. | 2344 | /* First we want to see if the MII Status Register reports |
2933 | * Read the register twice since the link bit is sticky. | 2345 | * link. If so, then we want to get the current speed/duplex |
2934 | */ | 2346 | * of the PHY. |
2935 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 2347 | * Read the register twice since the link bit is sticky. |
2936 | if (ret_val) | 2348 | */ |
2937 | return ret_val; | 2349 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
2938 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 2350 | if (ret_val) |
2939 | if (ret_val) | 2351 | return ret_val; |
2940 | return ret_val; | 2352 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
2941 | 2353 | if (ret_val) | |
2942 | if (phy_data & MII_SR_LINK_STATUS) { | 2354 | return ret_val; |
2943 | hw->get_link_status = false; | 2355 | |
2944 | /* Check if there was DownShift, must be checked immediately after | 2356 | if (phy_data & MII_SR_LINK_STATUS) { |
2945 | * link-up */ | 2357 | hw->get_link_status = false; |
2946 | e1000_check_downshift(hw); | 2358 | /* Check if there was DownShift, must be checked immediately after |
2947 | 2359 | * link-up */ | |
2948 | /* If we are on 82544 or 82543 silicon and speed/duplex | 2360 | e1000_check_downshift(hw); |
2949 | * are forced to 10H or 10F, then we will implement the polarity | 2361 | |
2950 | * reversal workaround. We disable interrupts first, and upon | 2362 | /* If we are on 82544 or 82543 silicon and speed/duplex |
2951 | * returning, place the devices interrupt state to its previous | 2363 | * are forced to 10H or 10F, then we will implement the polarity |
2952 | * value except for the link status change interrupt which will | 2364 | * reversal workaround. We disable interrupts first, and upon |
2953 | * happen due to the execution of this workaround. | 2365 | * returning, place the devices interrupt state to its previous |
2954 | */ | 2366 | * value except for the link status change interrupt which will |
2955 | 2367 | * happen due to the execution of this workaround. | |
2956 | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 2368 | */ |
2957 | (!hw->autoneg) && | 2369 | |
2958 | (hw->forced_speed_duplex == e1000_10_full || | 2370 | if ((hw->mac_type == e1000_82544 |
2959 | hw->forced_speed_duplex == e1000_10_half)) { | 2371 | || hw->mac_type == e1000_82543) && (!hw->autoneg) |
2960 | ew32(IMC, 0xffffffff); | 2372 | && (hw->forced_speed_duplex == e1000_10_full |
2961 | ret_val = e1000_polarity_reversal_workaround(hw); | 2373 | || hw->forced_speed_duplex == e1000_10_half)) { |
2962 | icr = er32(ICR); | 2374 | ew32(IMC, 0xffffffff); |
2963 | ew32(ICS, (icr & ~E1000_ICS_LSC)); | 2375 | ret_val = |
2964 | ew32(IMS, IMS_ENABLE_MASK); | 2376 | e1000_polarity_reversal_workaround(hw); |
2965 | } | 2377 | icr = er32(ICR); |
2966 | 2378 | ew32(ICS, (icr & ~E1000_ICS_LSC)); | |
2967 | } else { | 2379 | ew32(IMS, IMS_ENABLE_MASK); |
2968 | /* No link detected */ | 2380 | } |
2969 | e1000_config_dsp_after_link_change(hw, false); | 2381 | |
2970 | return 0; | 2382 | } else { |
2971 | } | 2383 | /* No link detected */ |
2972 | 2384 | e1000_config_dsp_after_link_change(hw, false); | |
2973 | /* If we are forcing speed/duplex, then we simply return since | 2385 | return 0; |
2974 | * we have already determined whether we have link or not. | 2386 | } |
2975 | */ | 2387 | |
2976 | if (!hw->autoneg) return -E1000_ERR_CONFIG; | 2388 | /* If we are forcing speed/duplex, then we simply return since |
2977 | 2389 | * we have already determined whether we have link or not. | |
2978 | /* optimize the dsp settings for the igp phy */ | 2390 | */ |
2979 | e1000_config_dsp_after_link_change(hw, true); | 2391 | if (!hw->autoneg) |
2980 | 2392 | return -E1000_ERR_CONFIG; | |
2981 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we | 2393 | |
2982 | * have Si on board that is 82544 or newer, Auto | 2394 | /* optimize the dsp settings for the igp phy */ |
2983 | * Speed Detection takes care of MAC speed/duplex | 2395 | e1000_config_dsp_after_link_change(hw, true); |
2984 | * configuration. So we only need to configure Collision | 2396 | |
2985 | * Distance in the MAC. Otherwise, we need to force | 2397 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
2986 | * speed/duplex on the MAC to the current PHY speed/duplex | 2398 | * have Si on board that is 82544 or newer, Auto |
2987 | * settings. | 2399 | * Speed Detection takes care of MAC speed/duplex |
2988 | */ | 2400 | * configuration. So we only need to configure Collision |
2989 | if (hw->mac_type >= e1000_82544) | 2401 | * Distance in the MAC. Otherwise, we need to force |
2990 | e1000_config_collision_dist(hw); | 2402 | * speed/duplex on the MAC to the current PHY speed/duplex |
2991 | else { | 2403 | * settings. |
2992 | ret_val = e1000_config_mac_to_phy(hw); | 2404 | */ |
2993 | if (ret_val) { | 2405 | if (hw->mac_type >= e1000_82544) |
2994 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | 2406 | e1000_config_collision_dist(hw); |
2995 | return ret_val; | 2407 | else { |
2996 | } | 2408 | ret_val = e1000_config_mac_to_phy(hw); |
2997 | } | 2409 | if (ret_val) { |
2998 | 2410 | DEBUGOUT | |
2999 | /* Configure Flow Control now that Auto-Neg has completed. First, we | 2411 | ("Error configuring MAC to PHY settings\n"); |
3000 | * need to restore the desired flow control settings because we may | 2412 | return ret_val; |
3001 | * have had to re-autoneg with a different link partner. | 2413 | } |
3002 | */ | 2414 | } |
3003 | ret_val = e1000_config_fc_after_link_up(hw); | 2415 | |
3004 | if (ret_val) { | 2416 | /* Configure Flow Control now that Auto-Neg has completed. First, we |
3005 | DEBUGOUT("Error configuring flow control\n"); | 2417 | * need to restore the desired flow control settings because we may |
3006 | return ret_val; | 2418 | * have had to re-autoneg with a different link partner. |
3007 | } | 2419 | */ |
3008 | 2420 | ret_val = e1000_config_fc_after_link_up(hw); | |
3009 | /* At this point we know that we are on copper and we have | 2421 | if (ret_val) { |
3010 | * auto-negotiated link. These are conditions for checking the link | 2422 | DEBUGOUT("Error configuring flow control\n"); |
3011 | * partner capability register. We use the link speed to determine if | 2423 | return ret_val; |
3012 | * TBI compatibility needs to be turned on or off. If the link is not | 2424 | } |
3013 | * at gigabit speed, then TBI compatibility is not needed. If we are | 2425 | |
3014 | * at gigabit speed, we turn on TBI compatibility. | 2426 | /* At this point we know that we are on copper and we have |
3015 | */ | 2427 | * auto-negotiated link. These are conditions for checking the link |
3016 | if (hw->tbi_compatibility_en) { | 2428 | * partner capability register. We use the link speed to determine if |
3017 | u16 speed, duplex; | 2429 | * TBI compatibility needs to be turned on or off. If the link is not |
3018 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 2430 | * at gigabit speed, then TBI compatibility is not needed. If we are |
3019 | if (ret_val) { | 2431 | * at gigabit speed, we turn on TBI compatibility. |
3020 | DEBUGOUT("Error getting link speed and duplex\n"); | 2432 | */ |
3021 | return ret_val; | 2433 | if (hw->tbi_compatibility_en) { |
3022 | } | 2434 | u16 speed, duplex; |
3023 | if (speed != SPEED_1000) { | 2435 | ret_val = |
3024 | /* If link speed is not set to gigabit speed, we do not need | 2436 | e1000_get_speed_and_duplex(hw, &speed, &duplex); |
3025 | * to enable TBI compatibility. | 2437 | if (ret_val) { |
3026 | */ | 2438 | DEBUGOUT |
3027 | if (hw->tbi_compatibility_on) { | 2439 | ("Error getting link speed and duplex\n"); |
3028 | /* If we previously were in the mode, turn it off. */ | 2440 | return ret_val; |
3029 | rctl = er32(RCTL); | 2441 | } |
3030 | rctl &= ~E1000_RCTL_SBP; | 2442 | if (speed != SPEED_1000) { |
3031 | ew32(RCTL, rctl); | 2443 | /* If link speed is not set to gigabit speed, we do not need |
3032 | hw->tbi_compatibility_on = false; | 2444 | * to enable TBI compatibility. |
3033 | } | 2445 | */ |
3034 | } else { | 2446 | if (hw->tbi_compatibility_on) { |
3035 | /* If TBI compatibility is was previously off, turn it on. For | 2447 | /* If we previously were in the mode, turn it off. */ |
3036 | * compatibility with a TBI link partner, we will store bad | 2448 | rctl = er32(RCTL); |
3037 | * packets. Some frames have an additional byte on the end and | 2449 | rctl &= ~E1000_RCTL_SBP; |
3038 | * will look like CRC errors to the hardware. | 2450 | ew32(RCTL, rctl); |
3039 | */ | 2451 | hw->tbi_compatibility_on = false; |
3040 | if (!hw->tbi_compatibility_on) { | 2452 | } |
3041 | hw->tbi_compatibility_on = true; | 2453 | } else { |
3042 | rctl = er32(RCTL); | 2454 | /* If TBI compatibility is was previously off, turn it on. For |
3043 | rctl |= E1000_RCTL_SBP; | 2455 | * compatibility with a TBI link partner, we will store bad |
3044 | ew32(RCTL, rctl); | 2456 | * packets. Some frames have an additional byte on the end and |
3045 | } | 2457 | * will look like CRC errors to to the hardware. |
3046 | } | 2458 | */ |
3047 | } | 2459 | if (!hw->tbi_compatibility_on) { |
3048 | } | 2460 | hw->tbi_compatibility_on = true; |
3049 | /* If we don't have link (auto-negotiation failed or link partner cannot | 2461 | rctl = er32(RCTL); |
3050 | * auto-negotiate), the cable is plugged in (we have signal), and our | 2462 | rctl |= E1000_RCTL_SBP; |
3051 | * link partner is not trying to auto-negotiate with us (we are receiving | 2463 | ew32(RCTL, rctl); |
3052 | * idles or data), we need to force link up. We also need to give | 2464 | } |
3053 | * auto-negotiation time to complete, in case the cable was just plugged | 2465 | } |
3054 | * in. The autoneg_failed flag does this. | 2466 | } |
3055 | */ | 2467 | } |
3056 | else if ((((hw->media_type == e1000_media_type_fiber) && | 2468 | |
3057 | ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || | 2469 | if ((hw->media_type == e1000_media_type_fiber) || |
3058 | (hw->media_type == e1000_media_type_internal_serdes)) && | 2470 | (hw->media_type == e1000_media_type_internal_serdes)) |
3059 | (!(status & E1000_STATUS_LU)) && | 2471 | e1000_check_for_serdes_link_generic(hw); |
3060 | (!(rxcw & E1000_RXCW_C))) { | 2472 | |
3061 | if (hw->autoneg_failed == 0) { | 2473 | return E1000_SUCCESS; |
3062 | hw->autoneg_failed = 1; | ||
3063 | return 0; | ||
3064 | } | ||
3065 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); | ||
3066 | |||
3067 | /* Disable auto-negotiation in the TXCW register */ | ||
3068 | ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | ||
3069 | |||
3070 | /* Force link-up and also force full-duplex. */ | ||
3071 | ctrl = er32(CTRL); | ||
3072 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
3073 | ew32(CTRL, ctrl); | ||
3074 | |||
3075 | /* Configure Flow Control after forcing link up. */ | ||
3076 | ret_val = e1000_config_fc_after_link_up(hw); | ||
3077 | if (ret_val) { | ||
3078 | DEBUGOUT("Error configuring flow control\n"); | ||
3079 | return ret_val; | ||
3080 | } | ||
3081 | } | ||
3082 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable | ||
3083 | * auto-negotiation in the TXCW register and disable forced link in the | ||
3084 | * Device Control register in an attempt to auto-negotiate with our link | ||
3085 | * partner. | ||
3086 | */ | ||
3087 | else if (((hw->media_type == e1000_media_type_fiber) || | ||
3088 | (hw->media_type == e1000_media_type_internal_serdes)) && | ||
3089 | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
3090 | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); | ||
3091 | ew32(TXCW, hw->txcw); | ||
3092 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
3093 | |||
3094 | hw->serdes_link_down = false; | ||
3095 | } | ||
3096 | /* If we force link for non-auto-negotiation switch, check link status | ||
3097 | * based on MAC synchronization for internal serdes media type. | ||
3098 | */ | ||
3099 | else if ((hw->media_type == e1000_media_type_internal_serdes) && | ||
3100 | !(E1000_TXCW_ANE & er32(TXCW))) { | ||
3101 | /* SYNCH bit and IV bit are sticky. */ | ||
3102 | udelay(10); | ||
3103 | if (E1000_RXCW_SYNCH & er32(RXCW)) { | ||
3104 | if (!(rxcw & E1000_RXCW_IV)) { | ||
3105 | hw->serdes_link_down = false; | ||
3106 | DEBUGOUT("SERDES: Link is up.\n"); | ||
3107 | } | ||
3108 | } else { | ||
3109 | hw->serdes_link_down = true; | ||
3110 | DEBUGOUT("SERDES: Link is down.\n"); | ||
3111 | } | ||
3112 | } | ||
3113 | if ((hw->media_type == e1000_media_type_internal_serdes) && | ||
3114 | (E1000_TXCW_ANE & er32(TXCW))) { | ||
3115 | hw->serdes_link_down = !(E1000_STATUS_LU & er32(STATUS)); | ||
3116 | } | ||
3117 | return E1000_SUCCESS; | ||
3118 | } | 2474 | } |
3119 | 2475 | ||
3120 | /****************************************************************************** | 2476 | /** |
2477 | * e1000_get_speed_and_duplex | ||
2478 | * @hw: Struct containing variables accessed by shared code | ||
2479 | * @speed: Speed of the connection | ||
2480 | * @duplex: Duplex setting of the connection | ||
2481 | |||
3121 | * Detects the current speed and duplex settings of the hardware. | 2482 | * Detects the current speed and duplex settings of the hardware. |
3122 | * | 2483 | */ |
3123 | * hw - Struct containing variables accessed by shared code | ||
3124 | * speed - Speed of the connection | ||
3125 | * duplex - Duplex setting of the connection | ||
3126 | *****************************************************************************/ | ||
3127 | s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) | 2484 | s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
3128 | { | 2485 | { |
3129 | u32 status; | 2486 | u32 status; |
3130 | s32 ret_val; | 2487 | s32 ret_val; |
3131 | u16 phy_data; | 2488 | u16 phy_data; |
3132 | 2489 | ||
3133 | DEBUGFUNC("e1000_get_speed_and_duplex"); | 2490 | DEBUGFUNC("e1000_get_speed_and_duplex"); |
3134 | 2491 | ||
3135 | if (hw->mac_type >= e1000_82543) { | 2492 | if (hw->mac_type >= e1000_82543) { |
3136 | status = er32(STATUS); | 2493 | status = er32(STATUS); |
3137 | if (status & E1000_STATUS_SPEED_1000) { | 2494 | if (status & E1000_STATUS_SPEED_1000) { |
3138 | *speed = SPEED_1000; | 2495 | *speed = SPEED_1000; |
3139 | DEBUGOUT("1000 Mbs, "); | 2496 | DEBUGOUT("1000 Mbs, "); |
3140 | } else if (status & E1000_STATUS_SPEED_100) { | 2497 | } else if (status & E1000_STATUS_SPEED_100) { |
3141 | *speed = SPEED_100; | 2498 | *speed = SPEED_100; |
3142 | DEBUGOUT("100 Mbs, "); | 2499 | DEBUGOUT("100 Mbs, "); |
3143 | } else { | 2500 | } else { |
3144 | *speed = SPEED_10; | 2501 | *speed = SPEED_10; |
3145 | DEBUGOUT("10 Mbs, "); | 2502 | DEBUGOUT("10 Mbs, "); |
3146 | } | 2503 | } |
3147 | 2504 | ||
3148 | if (status & E1000_STATUS_FD) { | 2505 | if (status & E1000_STATUS_FD) { |
3149 | *duplex = FULL_DUPLEX; | 2506 | *duplex = FULL_DUPLEX; |
3150 | DEBUGOUT("Full Duplex\n"); | 2507 | DEBUGOUT("Full Duplex\n"); |
3151 | } else { | 2508 | } else { |
3152 | *duplex = HALF_DUPLEX; | 2509 | *duplex = HALF_DUPLEX; |
3153 | DEBUGOUT(" Half Duplex\n"); | 2510 | DEBUGOUT(" Half Duplex\n"); |
3154 | } | 2511 | } |
3155 | } else { | 2512 | } else { |
3156 | DEBUGOUT("1000 Mbs, Full Duplex\n"); | 2513 | DEBUGOUT("1000 Mbs, Full Duplex\n"); |
3157 | *speed = SPEED_1000; | 2514 | *speed = SPEED_1000; |
3158 | *duplex = FULL_DUPLEX; | 2515 | *duplex = FULL_DUPLEX; |
3159 | } | 2516 | } |
3160 | 2517 | ||
3161 | /* IGP01 PHY may advertise full duplex operation after speed downgrade even | 2518 | /* IGP01 PHY may advertise full duplex operation after speed downgrade even |
3162 | * if it is operating at half duplex. Here we set the duplex settings to | 2519 | * if it is operating at half duplex. Here we set the duplex settings to |
3163 | * match the duplex in the link partner's capabilities. | 2520 | * match the duplex in the link partner's capabilities. |
3164 | */ | 2521 | */ |
3165 | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | 2522 | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
3166 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | 2523 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
3167 | if (ret_val) | 2524 | if (ret_val) |
3168 | return ret_val; | 2525 | return ret_val; |
3169 | 2526 | ||
3170 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | 2527 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
3171 | *duplex = HALF_DUPLEX; | 2528 | *duplex = HALF_DUPLEX; |
3172 | else { | 2529 | else { |
3173 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); | 2530 | ret_val = |
3174 | if (ret_val) | 2531 | e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); |
3175 | return ret_val; | 2532 | if (ret_val) |
3176 | if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || | 2533 | return ret_val; |
3177 | (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | 2534 | if ((*speed == SPEED_100 |
3178 | *duplex = HALF_DUPLEX; | 2535 | && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) |
3179 | } | 2536 | || (*speed == SPEED_10 |
3180 | } | 2537 | && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
3181 | 2538 | *duplex = HALF_DUPLEX; | |
3182 | if ((hw->mac_type == e1000_80003es2lan) && | 2539 | } |
3183 | (hw->media_type == e1000_media_type_copper)) { | 2540 | } |
3184 | if (*speed == SPEED_1000) | 2541 | |
3185 | ret_val = e1000_configure_kmrn_for_1000(hw); | 2542 | return E1000_SUCCESS; |
3186 | else | ||
3187 | ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); | ||
3188 | if (ret_val) | ||
3189 | return ret_val; | ||
3190 | } | ||
3191 | |||
3192 | if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { | ||
3193 | ret_val = e1000_kumeran_lock_loss_workaround(hw); | ||
3194 | if (ret_val) | ||
3195 | return ret_val; | ||
3196 | } | ||
3197 | |||
3198 | return E1000_SUCCESS; | ||
3199 | } | 2543 | } |
3200 | 2544 | ||
3201 | /****************************************************************************** | 2545 | /** |
3202 | * Blocks until autoneg completes or times out (~4.5 seconds) | 2546 | * e1000_wait_autoneg |
3203 | * | 2547 | * @hw: Struct containing variables accessed by shared code |
3204 | * hw - Struct containing variables accessed by shared code | 2548 | * |
3205 | ******************************************************************************/ | 2549 | * Blocks until autoneg completes or times out (~4.5 seconds) |
2550 | */ | ||
3206 | static s32 e1000_wait_autoneg(struct e1000_hw *hw) | 2551 | static s32 e1000_wait_autoneg(struct e1000_hw *hw) |
3207 | { | 2552 | { |
3208 | s32 ret_val; | 2553 | s32 ret_val; |
3209 | u16 i; | 2554 | u16 i; |
3210 | u16 phy_data; | 2555 | u16 phy_data; |
3211 | 2556 | ||
3212 | DEBUGFUNC("e1000_wait_autoneg"); | 2557 | DEBUGFUNC("e1000_wait_autoneg"); |
3213 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | 2558 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
3214 | 2559 | ||
3215 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 2560 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
3216 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { | 2561 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
3217 | /* Read the MII Status Register and wait for Auto-Neg | 2562 | /* Read the MII Status Register and wait for Auto-Neg |
3218 | * Complete bit to be set. | 2563 | * Complete bit to be set. |
3219 | */ | 2564 | */ |
3220 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 2565 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
3221 | if (ret_val) | 2566 | if (ret_val) |
3222 | return ret_val; | 2567 | return ret_val; |
3223 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 2568 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
3224 | if (ret_val) | 2569 | if (ret_val) |
3225 | return ret_val; | 2570 | return ret_val; |
3226 | if (phy_data & MII_SR_AUTONEG_COMPLETE) { | 2571 | if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
3227 | return E1000_SUCCESS; | 2572 | return E1000_SUCCESS; |
3228 | } | 2573 | } |
3229 | msleep(100); | 2574 | msleep(100); |
3230 | } | 2575 | } |
3231 | return E1000_SUCCESS; | 2576 | return E1000_SUCCESS; |
3232 | } | 2577 | } |
3233 | 2578 | ||
3234 | /****************************************************************************** | 2579 | /** |
3235 | * Raises the Management Data Clock | 2580 | * e1000_raise_mdi_clk - Raises the Management Data Clock |
3236 | * | 2581 | * @hw: Struct containing variables accessed by shared code |
3237 | * hw - Struct containing variables accessed by shared code | 2582 | * @ctrl: Device control register's current value |
3238 | * ctrl - Device control register's current value | 2583 | */ |
3239 | ******************************************************************************/ | ||
3240 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 2584 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
3241 | { | 2585 | { |
3242 | /* Raise the clock input to the Management Data Clock (by setting the MDC | 2586 | /* Raise the clock input to the Management Data Clock (by setting the MDC |
3243 | * bit), and then delay 10 microseconds. | 2587 | * bit), and then delay 10 microseconds. |
3244 | */ | 2588 | */ |
3245 | ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); | 2589 | ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); |
3246 | E1000_WRITE_FLUSH(); | 2590 | E1000_WRITE_FLUSH(); |
3247 | udelay(10); | 2591 | udelay(10); |
3248 | } | 2592 | } |
3249 | 2593 | ||
3250 | /****************************************************************************** | 2594 | /** |
3251 | * Lowers the Management Data Clock | 2595 | * e1000_lower_mdi_clk - Lowers the Management Data Clock |
3252 | * | 2596 | * @hw: Struct containing variables accessed by shared code |
3253 | * hw - Struct containing variables accessed by shared code | 2597 | * @ctrl: Device control register's current value |
3254 | * ctrl - Device control register's current value | 2598 | */ |
3255 | ******************************************************************************/ | ||
3256 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 2599 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
3257 | { | 2600 | { |
3258 | /* Lower the clock input to the Management Data Clock (by clearing the MDC | 2601 | /* Lower the clock input to the Management Data Clock (by clearing the MDC |
3259 | * bit), and then delay 10 microseconds. | 2602 | * bit), and then delay 10 microseconds. |
3260 | */ | 2603 | */ |
3261 | ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); | 2604 | ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
3262 | E1000_WRITE_FLUSH(); | 2605 | E1000_WRITE_FLUSH(); |
3263 | udelay(10); | 2606 | udelay(10); |
3264 | } | 2607 | } |
3265 | 2608 | ||
3266 | /****************************************************************************** | 2609 | /** |
3267 | * Shifts data bits out to the PHY | 2610 | * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY |
3268 | * | 2611 | * @hw: Struct containing variables accessed by shared code |
3269 | * hw - Struct containing variables accessed by shared code | 2612 | * @data: Data to send out to the PHY |
3270 | * data - Data to send out to the PHY | 2613 | * @count: Number of bits to shift out |
3271 | * count - Number of bits to shift out | 2614 | * |
3272 | * | 2615 | * Bits are shifted out in MSB to LSB order. |
3273 | * Bits are shifted out in MSB to LSB order. | 2616 | */ |
3274 | ******************************************************************************/ | ||
3275 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) | 2617 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) |
3276 | { | 2618 | { |
3277 | u32 ctrl; | 2619 | u32 ctrl; |
3278 | u32 mask; | 2620 | u32 mask; |
3279 | |||
3280 | /* We need to shift "count" number of bits out to the PHY. So, the value | ||
3281 | * in the "data" parameter will be shifted out to the PHY one bit at a | ||
3282 | * time. In order to do this, "data" must be broken down into bits. | ||
3283 | */ | ||
3284 | mask = 0x01; | ||
3285 | mask <<= (count - 1); | ||
3286 | |||
3287 | ctrl = er32(CTRL); | ||
3288 | |||
3289 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | ||
3290 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | ||
3291 | |||
3292 | while (mask) { | ||
3293 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | ||
3294 | * then raising and lowering the Management Data Clock. A "0" is | ||
3295 | * shifted out to the PHY by setting the MDIO bit to "0" and then | ||
3296 | * raising and lowering the clock. | ||
3297 | */ | ||
3298 | if (data & mask) | ||
3299 | ctrl |= E1000_CTRL_MDIO; | ||
3300 | else | ||
3301 | ctrl &= ~E1000_CTRL_MDIO; | ||
3302 | |||
3303 | ew32(CTRL, ctrl); | ||
3304 | E1000_WRITE_FLUSH(); | ||
3305 | |||
3306 | udelay(10); | ||
3307 | |||
3308 | e1000_raise_mdi_clk(hw, &ctrl); | ||
3309 | e1000_lower_mdi_clk(hw, &ctrl); | ||
3310 | |||
3311 | mask = mask >> 1; | ||
3312 | } | ||
3313 | } | ||
3314 | |||
3315 | /****************************************************************************** | ||
3316 | * Shifts data bits in from the PHY | ||
3317 | * | ||
3318 | * hw - Struct containing variables accessed by shared code | ||
3319 | * | ||
3320 | * Bits are shifted in in MSB to LSB order. | ||
3321 | ******************************************************************************/ | ||
3322 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) | ||
3323 | { | ||
3324 | u32 ctrl; | ||
3325 | u16 data = 0; | ||
3326 | u8 i; | ||
3327 | |||
3328 | /* In order to read a register from the PHY, we need to shift in a total | ||
3329 | * of 18 bits from the PHY. The first two bit (turnaround) times are used | ||
3330 | * to avoid contention on the MDIO pin when a read operation is performed. | ||
3331 | * These two bits are ignored by us and thrown away. Bits are "shifted in" | ||
3332 | * by raising the input to the Management Data Clock (setting the MDC bit), | ||
3333 | * and then reading the value of the MDIO bit. | ||
3334 | */ | ||
3335 | ctrl = er32(CTRL); | ||
3336 | |||
3337 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | ||
3338 | ctrl &= ~E1000_CTRL_MDIO_DIR; | ||
3339 | ctrl &= ~E1000_CTRL_MDIO; | ||
3340 | |||
3341 | ew32(CTRL, ctrl); | ||
3342 | E1000_WRITE_FLUSH(); | ||
3343 | |||
3344 | /* Raise and Lower the clock before reading in the data. This accounts for | ||
3345 | * the turnaround bits. The first clock occurred when we clocked out the | ||
3346 | * last bit of the Register Address. | ||
3347 | */ | ||
3348 | e1000_raise_mdi_clk(hw, &ctrl); | ||
3349 | e1000_lower_mdi_clk(hw, &ctrl); | ||
3350 | |||
3351 | for (data = 0, i = 0; i < 16; i++) { | ||
3352 | data = data << 1; | ||
3353 | e1000_raise_mdi_clk(hw, &ctrl); | ||
3354 | ctrl = er32(CTRL); | ||
3355 | /* Check to see if we shifted in a "1". */ | ||
3356 | if (ctrl & E1000_CTRL_MDIO) | ||
3357 | data |= 1; | ||
3358 | e1000_lower_mdi_clk(hw, &ctrl); | ||
3359 | } | ||
3360 | |||
3361 | e1000_raise_mdi_clk(hw, &ctrl); | ||
3362 | e1000_lower_mdi_clk(hw, &ctrl); | ||
3363 | |||
3364 | return data; | ||
3365 | } | ||
3366 | |||
3367 | static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask) | ||
3368 | { | ||
3369 | u32 swfw_sync = 0; | ||
3370 | u32 swmask = mask; | ||
3371 | u32 fwmask = mask << 16; | ||
3372 | s32 timeout = 200; | ||
3373 | 2621 | ||
3374 | DEBUGFUNC("e1000_swfw_sync_acquire"); | 2622 | /* We need to shift "count" number of bits out to the PHY. So, the value |
3375 | 2623 | * in the "data" parameter will be shifted out to the PHY one bit at a | |
3376 | if (hw->swfwhw_semaphore_present) | 2624 | * time. In order to do this, "data" must be broken down into bits. |
3377 | return e1000_get_software_flag(hw); | 2625 | */ |
2626 | mask = 0x01; | ||
2627 | mask <<= (count - 1); | ||
3378 | 2628 | ||
3379 | if (!hw->swfw_sync_present) | 2629 | ctrl = er32(CTRL); |
3380 | return e1000_get_hw_eeprom_semaphore(hw); | ||
3381 | 2630 | ||
3382 | while (timeout) { | 2631 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
3383 | if (e1000_get_hw_eeprom_semaphore(hw)) | 2632 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
3384 | return -E1000_ERR_SWFW_SYNC; | ||
3385 | 2633 | ||
3386 | swfw_sync = er32(SW_FW_SYNC); | 2634 | while (mask) { |
3387 | if (!(swfw_sync & (fwmask | swmask))) { | 2635 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
3388 | break; | 2636 | * then raising and lowering the Management Data Clock. A "0" is |
3389 | } | 2637 | * shifted out to the PHY by setting the MDIO bit to "0" and then |
2638 | * raising and lowering the clock. | ||
2639 | */ | ||
2640 | if (data & mask) | ||
2641 | ctrl |= E1000_CTRL_MDIO; | ||
2642 | else | ||
2643 | ctrl &= ~E1000_CTRL_MDIO; | ||
3390 | 2644 | ||
3391 | /* firmware currently using resource (fwmask) */ | 2645 | ew32(CTRL, ctrl); |
3392 | /* or other software thread currently using resource (swmask) */ | 2646 | E1000_WRITE_FLUSH(); |
3393 | e1000_put_hw_eeprom_semaphore(hw); | ||
3394 | mdelay(5); | ||
3395 | timeout--; | ||
3396 | } | ||
3397 | 2647 | ||
3398 | if (!timeout) { | 2648 | udelay(10); |
3399 | DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); | ||
3400 | return -E1000_ERR_SWFW_SYNC; | ||
3401 | } | ||
3402 | 2649 | ||
3403 | swfw_sync |= swmask; | 2650 | e1000_raise_mdi_clk(hw, &ctrl); |
3404 | ew32(SW_FW_SYNC, swfw_sync); | 2651 | e1000_lower_mdi_clk(hw, &ctrl); |
3405 | 2652 | ||
3406 | e1000_put_hw_eeprom_semaphore(hw); | 2653 | mask = mask >> 1; |
3407 | return E1000_SUCCESS; | 2654 | } |
3408 | } | 2655 | } |
3409 | 2656 | ||
3410 | static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask) | 2657 | /** |
2658 | * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY | ||
2659 | * @hw: Struct containing variables accessed by shared code | ||
2660 | * | ||
2661 | * Bits are shifted in in MSB to LSB order. | ||
2662 | */ | ||
2663 | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) | ||
3411 | { | 2664 | { |
3412 | u32 swfw_sync; | 2665 | u32 ctrl; |
3413 | u32 swmask = mask; | 2666 | u16 data = 0; |
2667 | u8 i; | ||
3414 | 2668 | ||
3415 | DEBUGFUNC("e1000_swfw_sync_release"); | 2669 | /* In order to read a register from the PHY, we need to shift in a total |
2670 | * of 18 bits from the PHY. The first two bit (turnaround) times are used | ||
2671 | * to avoid contention on the MDIO pin when a read operation is performed. | ||
2672 | * These two bits are ignored by us and thrown away. Bits are "shifted in" | ||
2673 | * by raising the input to the Management Data Clock (setting the MDC bit), | ||
2674 | * and then reading the value of the MDIO bit. | ||
2675 | */ | ||
2676 | ctrl = er32(CTRL); | ||
3416 | 2677 | ||
3417 | if (hw->swfwhw_semaphore_present) { | 2678 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
3418 | e1000_release_software_flag(hw); | 2679 | ctrl &= ~E1000_CTRL_MDIO_DIR; |
3419 | return; | 2680 | ctrl &= ~E1000_CTRL_MDIO; |
3420 | } | ||
3421 | 2681 | ||
3422 | if (!hw->swfw_sync_present) { | 2682 | ew32(CTRL, ctrl); |
3423 | e1000_put_hw_eeprom_semaphore(hw); | 2683 | E1000_WRITE_FLUSH(); |
3424 | return; | ||
3425 | } | ||
3426 | 2684 | ||
3427 | /* if (e1000_get_hw_eeprom_semaphore(hw)) | 2685 | /* Raise and Lower the clock before reading in the data. This accounts for |
3428 | * return -E1000_ERR_SWFW_SYNC; */ | 2686 | * the turnaround bits. The first clock occurred when we clocked out the |
3429 | while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS); | 2687 | * last bit of the Register Address. |
3430 | /* empty */ | 2688 | */ |
2689 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2690 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2691 | |||
2692 | for (data = 0, i = 0; i < 16; i++) { | ||
2693 | data = data << 1; | ||
2694 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2695 | ctrl = er32(CTRL); | ||
2696 | /* Check to see if we shifted in a "1". */ | ||
2697 | if (ctrl & E1000_CTRL_MDIO) | ||
2698 | data |= 1; | ||
2699 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2700 | } | ||
3431 | 2701 | ||
3432 | swfw_sync = er32(SW_FW_SYNC); | 2702 | e1000_raise_mdi_clk(hw, &ctrl); |
3433 | swfw_sync &= ~swmask; | 2703 | e1000_lower_mdi_clk(hw, &ctrl); |
3434 | ew32(SW_FW_SYNC, swfw_sync); | ||
3435 | 2704 | ||
3436 | e1000_put_hw_eeprom_semaphore(hw); | 2705 | return data; |
3437 | } | 2706 | } |
3438 | 2707 | ||
3439 | /***************************************************************************** | 2708 | |
3440 | * Reads the value from a PHY register, if the value is on a specific non zero | 2709 | /** |
3441 | * page, sets the page first. | 2710 | * e1000_read_phy_reg - read a phy register |
3442 | * hw - Struct containing variables accessed by shared code | 2711 | * @hw: Struct containing variables accessed by shared code |
3443 | * reg_addr - address of the PHY register to read | 2712 | * @reg_addr: address of the PHY register to read |
3444 | ******************************************************************************/ | 2713 | * |
2714 | * Reads the value from a PHY register, if the value is on a specific non zero | ||
2715 | * page, sets the page first. | ||
2716 | */ | ||
3445 | s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) | 2717 | s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) |
3446 | { | 2718 | { |
3447 | u32 ret_val; | 2719 | u32 ret_val; |
3448 | u16 swfw; | 2720 | |
3449 | 2721 | DEBUGFUNC("e1000_read_phy_reg"); | |
3450 | DEBUGFUNC("e1000_read_phy_reg"); | 2722 | |
3451 | 2723 | if ((hw->phy_type == e1000_phy_igp) && | |
3452 | if ((hw->mac_type == e1000_80003es2lan) && | 2724 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
3453 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | 2725 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
3454 | swfw = E1000_SWFW_PHY1_SM; | 2726 | (u16) reg_addr); |
3455 | } else { | 2727 | if (ret_val) |
3456 | swfw = E1000_SWFW_PHY0_SM; | 2728 | return ret_val; |
3457 | } | 2729 | } |
3458 | if (e1000_swfw_sync_acquire(hw, swfw)) | 2730 | |
3459 | return -E1000_ERR_SWFW_SYNC; | 2731 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
3460 | 2732 | phy_data); | |
3461 | if ((hw->phy_type == e1000_phy_igp || | 2733 | |
3462 | hw->phy_type == e1000_phy_igp_3 || | 2734 | return ret_val; |
3463 | hw->phy_type == e1000_phy_igp_2) && | ||
3464 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
3465 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
3466 | (u16)reg_addr); | ||
3467 | if (ret_val) { | ||
3468 | e1000_swfw_sync_release(hw, swfw); | ||
3469 | return ret_val; | ||
3470 | } | ||
3471 | } else if (hw->phy_type == e1000_phy_gg82563) { | ||
3472 | if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || | ||
3473 | (hw->mac_type == e1000_80003es2lan)) { | ||
3474 | /* Select Configuration Page */ | ||
3475 | if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { | ||
3476 | ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, | ||
3477 | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | ||
3478 | } else { | ||
3479 | /* Use Alternative Page Select register to access | ||
3480 | * registers 30 and 31 | ||
3481 | */ | ||
3482 | ret_val = e1000_write_phy_reg_ex(hw, | ||
3483 | GG82563_PHY_PAGE_SELECT_ALT, | ||
3484 | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | ||
3485 | } | ||
3486 | |||
3487 | if (ret_val) { | ||
3488 | e1000_swfw_sync_release(hw, swfw); | ||
3489 | return ret_val; | ||
3490 | } | ||
3491 | } | ||
3492 | } | ||
3493 | |||
3494 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | ||
3495 | phy_data); | ||
3496 | |||
3497 | e1000_swfw_sync_release(hw, swfw); | ||
3498 | return ret_val; | ||
3499 | } | 2735 | } |
3500 | 2736 | ||
3501 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 2737 | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
3502 | u16 *phy_data) | 2738 | u16 *phy_data) |
3503 | { | 2739 | { |
3504 | u32 i; | 2740 | u32 i; |
3505 | u32 mdic = 0; | 2741 | u32 mdic = 0; |
3506 | const u32 phy_addr = 1; | 2742 | const u32 phy_addr = 1; |
3507 | 2743 | ||
3508 | DEBUGFUNC("e1000_read_phy_reg_ex"); | 2744 | DEBUGFUNC("e1000_read_phy_reg_ex"); |
3509 | 2745 | ||
3510 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 2746 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
3511 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 2747 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
3512 | return -E1000_ERR_PARAM; | 2748 | return -E1000_ERR_PARAM; |
3513 | } | 2749 | } |
3514 | 2750 | ||
3515 | if (hw->mac_type > e1000_82543) { | 2751 | if (hw->mac_type > e1000_82543) { |
3516 | /* Set up Op-code, Phy Address, and register address in the MDI | 2752 | /* Set up Op-code, Phy Address, and register address in the MDI |
3517 | * Control register. The MAC will take care of interfacing with the | 2753 | * Control register. The MAC will take care of interfacing with the |
3518 | * PHY to retrieve the desired data. | 2754 | * PHY to retrieve the desired data. |
3519 | */ | 2755 | */ |
3520 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | 2756 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
3521 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 2757 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
3522 | (E1000_MDIC_OP_READ)); | 2758 | (E1000_MDIC_OP_READ)); |
3523 | 2759 | ||
3524 | ew32(MDIC, mdic); | 2760 | ew32(MDIC, mdic); |
3525 | 2761 | ||
3526 | /* Poll the ready bit to see if the MDI read completed */ | 2762 | /* Poll the ready bit to see if the MDI read completed */ |
3527 | for (i = 0; i < 64; i++) { | 2763 | for (i = 0; i < 64; i++) { |
3528 | udelay(50); | 2764 | udelay(50); |
3529 | mdic = er32(MDIC); | 2765 | mdic = er32(MDIC); |
3530 | if (mdic & E1000_MDIC_READY) break; | 2766 | if (mdic & E1000_MDIC_READY) |
3531 | } | 2767 | break; |
3532 | if (!(mdic & E1000_MDIC_READY)) { | 2768 | } |
3533 | DEBUGOUT("MDI Read did not complete\n"); | 2769 | if (!(mdic & E1000_MDIC_READY)) { |
3534 | return -E1000_ERR_PHY; | 2770 | DEBUGOUT("MDI Read did not complete\n"); |
3535 | } | 2771 | return -E1000_ERR_PHY; |
3536 | if (mdic & E1000_MDIC_ERROR) { | 2772 | } |
3537 | DEBUGOUT("MDI Error\n"); | 2773 | if (mdic & E1000_MDIC_ERROR) { |
3538 | return -E1000_ERR_PHY; | 2774 | DEBUGOUT("MDI Error\n"); |
3539 | } | 2775 | return -E1000_ERR_PHY; |
3540 | *phy_data = (u16)mdic; | 2776 | } |
3541 | } else { | 2777 | *phy_data = (u16) mdic; |
3542 | /* We must first send a preamble through the MDIO pin to signal the | 2778 | } else { |
3543 | * beginning of an MII instruction. This is done by sending 32 | 2779 | /* We must first send a preamble through the MDIO pin to signal the |
3544 | * consecutive "1" bits. | 2780 | * beginning of an MII instruction. This is done by sending 32 |
3545 | */ | 2781 | * consecutive "1" bits. |
3546 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 2782 | */ |
3547 | 2783 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | |
3548 | /* Now combine the next few fields that are required for a read | 2784 | |
3549 | * operation. We use this method instead of calling the | 2785 | /* Now combine the next few fields that are required for a read |
3550 | * e1000_shift_out_mdi_bits routine five different times. The format of | 2786 | * operation. We use this method instead of calling the |
3551 | * a MII read instruction consists of a shift out of 14 bits and is | 2787 | * e1000_shift_out_mdi_bits routine five different times. The format of |
3552 | * defined as follows: | 2788 | * a MII read instruction consists of a shift out of 14 bits and is |
3553 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | 2789 | * defined as follows: |
3554 | * followed by a shift in of 18 bits. This first two bits shifted in | 2790 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
3555 | * are TurnAround bits used to avoid contention on the MDIO pin when a | 2791 | * followed by a shift in of 18 bits. This first two bits shifted in |
3556 | * READ operation is performed. These two bits are thrown away | 2792 | * are TurnAround bits used to avoid contention on the MDIO pin when a |
3557 | * followed by a shift in of 16 bits which contains the desired data. | 2793 | * READ operation is performed. These two bits are thrown away |
3558 | */ | 2794 | * followed by a shift in of 16 bits which contains the desired data. |
3559 | mdic = ((reg_addr) | (phy_addr << 5) | | 2795 | */ |
3560 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | 2796 | mdic = ((reg_addr) | (phy_addr << 5) | |
3561 | 2797 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | |
3562 | e1000_shift_out_mdi_bits(hw, mdic, 14); | 2798 | |
3563 | 2799 | e1000_shift_out_mdi_bits(hw, mdic, 14); | |
3564 | /* Now that we've shifted out the read command to the MII, we need to | 2800 | |
3565 | * "shift in" the 16-bit value (18 total bits) of the requested PHY | 2801 | /* Now that we've shifted out the read command to the MII, we need to |
3566 | * register address. | 2802 | * "shift in" the 16-bit value (18 total bits) of the requested PHY |
3567 | */ | 2803 | * register address. |
3568 | *phy_data = e1000_shift_in_mdi_bits(hw); | 2804 | */ |
3569 | } | 2805 | *phy_data = e1000_shift_in_mdi_bits(hw); |
3570 | return E1000_SUCCESS; | 2806 | } |
2807 | return E1000_SUCCESS; | ||
3571 | } | 2808 | } |
3572 | 2809 | ||
3573 | /****************************************************************************** | 2810 | /** |
3574 | * Writes a value to a PHY register | 2811 | * e1000_write_phy_reg - write a phy register |
3575 | * | 2812 | * |
3576 | * hw - Struct containing variables accessed by shared code | 2813 | * @hw: Struct containing variables accessed by shared code |
3577 | * reg_addr - address of the PHY register to write | 2814 | * @reg_addr: address of the PHY register to write |
3578 | * data - data to write to the PHY | 2815 | * @data: data to write to the PHY |
3579 | ******************************************************************************/ | 2816 | |
2817 | * Writes a value to a PHY register | ||
2818 | */ | ||
3580 | s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) | 2819 | s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) |
3581 | { | 2820 | { |
3582 | u32 ret_val; | 2821 | u32 ret_val; |
3583 | u16 swfw; | 2822 | |
3584 | 2823 | DEBUGFUNC("e1000_write_phy_reg"); | |
3585 | DEBUGFUNC("e1000_write_phy_reg"); | 2824 | |
3586 | 2825 | if ((hw->phy_type == e1000_phy_igp) && | |
3587 | if ((hw->mac_type == e1000_80003es2lan) && | 2826 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
3588 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | 2827 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
3589 | swfw = E1000_SWFW_PHY1_SM; | 2828 | (u16) reg_addr); |
3590 | } else { | 2829 | if (ret_val) |
3591 | swfw = E1000_SWFW_PHY0_SM; | 2830 | return ret_val; |
3592 | } | 2831 | } |
3593 | if (e1000_swfw_sync_acquire(hw, swfw)) | 2832 | |
3594 | return -E1000_ERR_SWFW_SYNC; | 2833 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
3595 | 2834 | phy_data); | |
3596 | if ((hw->phy_type == e1000_phy_igp || | 2835 | |
3597 | hw->phy_type == e1000_phy_igp_3 || | 2836 | return ret_val; |
3598 | hw->phy_type == e1000_phy_igp_2) && | ||
3599 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
3600 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
3601 | (u16)reg_addr); | ||
3602 | if (ret_val) { | ||
3603 | e1000_swfw_sync_release(hw, swfw); | ||
3604 | return ret_val; | ||
3605 | } | ||
3606 | } else if (hw->phy_type == e1000_phy_gg82563) { | ||
3607 | if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || | ||
3608 | (hw->mac_type == e1000_80003es2lan)) { | ||
3609 | /* Select Configuration Page */ | ||
3610 | if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { | ||
3611 | ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, | ||
3612 | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | ||
3613 | } else { | ||
3614 | /* Use Alternative Page Select register to access | ||
3615 | * registers 30 and 31 | ||
3616 | */ | ||
3617 | ret_val = e1000_write_phy_reg_ex(hw, | ||
3618 | GG82563_PHY_PAGE_SELECT_ALT, | ||
3619 | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | ||
3620 | } | ||
3621 | |||
3622 | if (ret_val) { | ||
3623 | e1000_swfw_sync_release(hw, swfw); | ||
3624 | return ret_val; | ||
3625 | } | ||
3626 | } | ||
3627 | } | ||
3628 | |||
3629 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | ||
3630 | phy_data); | ||
3631 | |||
3632 | e1000_swfw_sync_release(hw, swfw); | ||
3633 | return ret_val; | ||
3634 | } | 2837 | } |
3635 | 2838 | ||
3636 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 2839 | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
3637 | u16 phy_data) | 2840 | u16 phy_data) |
3638 | { | 2841 | { |
3639 | u32 i; | 2842 | u32 i; |
3640 | u32 mdic = 0; | 2843 | u32 mdic = 0; |
3641 | const u32 phy_addr = 1; | 2844 | const u32 phy_addr = 1; |
3642 | |||
3643 | DEBUGFUNC("e1000_write_phy_reg_ex"); | ||
3644 | |||
3645 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | ||
3646 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | ||
3647 | return -E1000_ERR_PARAM; | ||
3648 | } | ||
3649 | |||
3650 | if (hw->mac_type > e1000_82543) { | ||
3651 | /* Set up Op-code, Phy Address, register address, and data intended | ||
3652 | * for the PHY register in the MDI Control register. The MAC will take | ||
3653 | * care of interfacing with the PHY to send the desired data. | ||
3654 | */ | ||
3655 | mdic = (((u32)phy_data) | | ||
3656 | (reg_addr << E1000_MDIC_REG_SHIFT) | | ||
3657 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | ||
3658 | (E1000_MDIC_OP_WRITE)); | ||
3659 | |||
3660 | ew32(MDIC, mdic); | ||
3661 | |||
3662 | /* Poll the ready bit to see if the MDI read completed */ | ||
3663 | for (i = 0; i < 641; i++) { | ||
3664 | udelay(5); | ||
3665 | mdic = er32(MDIC); | ||
3666 | if (mdic & E1000_MDIC_READY) break; | ||
3667 | } | ||
3668 | if (!(mdic & E1000_MDIC_READY)) { | ||
3669 | DEBUGOUT("MDI Write did not complete\n"); | ||
3670 | return -E1000_ERR_PHY; | ||
3671 | } | ||
3672 | } else { | ||
3673 | /* We'll need to use the SW defined pins to shift the write command | ||
3674 | * out to the PHY. We first send a preamble to the PHY to signal the | ||
3675 | * beginning of the MII instruction. This is done by sending 32 | ||
3676 | * consecutive "1" bits. | ||
3677 | */ | ||
3678 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | ||
3679 | |||
3680 | /* Now combine the remaining required fields that will indicate a | ||
3681 | * write operation. We use this method instead of calling the | ||
3682 | * e1000_shift_out_mdi_bits routine for each field in the command. The | ||
3683 | * format of a MII write instruction is as follows: | ||
3684 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | ||
3685 | */ | ||
3686 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | ||
3687 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | ||
3688 | mdic <<= 16; | ||
3689 | mdic |= (u32)phy_data; | ||
3690 | |||
3691 | e1000_shift_out_mdi_bits(hw, mdic, 32); | ||
3692 | } | ||
3693 | |||
3694 | return E1000_SUCCESS; | ||
3695 | } | ||
3696 | 2845 | ||
3697 | static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data) | 2846 | DEBUGFUNC("e1000_write_phy_reg_ex"); |
3698 | { | ||
3699 | u32 reg_val; | ||
3700 | u16 swfw; | ||
3701 | DEBUGFUNC("e1000_read_kmrn_reg"); | ||
3702 | |||
3703 | if ((hw->mac_type == e1000_80003es2lan) && | ||
3704 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | ||
3705 | swfw = E1000_SWFW_PHY1_SM; | ||
3706 | } else { | ||
3707 | swfw = E1000_SWFW_PHY0_SM; | ||
3708 | } | ||
3709 | if (e1000_swfw_sync_acquire(hw, swfw)) | ||
3710 | return -E1000_ERR_SWFW_SYNC; | ||
3711 | |||
3712 | /* Write register address */ | ||
3713 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & | ||
3714 | E1000_KUMCTRLSTA_OFFSET) | | ||
3715 | E1000_KUMCTRLSTA_REN; | ||
3716 | ew32(KUMCTRLSTA, reg_val); | ||
3717 | udelay(2); | ||
3718 | |||
3719 | /* Read the data returned */ | ||
3720 | reg_val = er32(KUMCTRLSTA); | ||
3721 | *data = (u16)reg_val; | ||
3722 | |||
3723 | e1000_swfw_sync_release(hw, swfw); | ||
3724 | return E1000_SUCCESS; | ||
3725 | } | ||
3726 | 2847 | ||
3727 | static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data) | 2848 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
3728 | { | 2849 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
3729 | u32 reg_val; | 2850 | return -E1000_ERR_PARAM; |
3730 | u16 swfw; | 2851 | } |
3731 | DEBUGFUNC("e1000_write_kmrn_reg"); | 2852 | |
3732 | 2853 | if (hw->mac_type > e1000_82543) { | |
3733 | if ((hw->mac_type == e1000_80003es2lan) && | 2854 | /* Set up Op-code, Phy Address, register address, and data intended |
3734 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | 2855 | * for the PHY register in the MDI Control register. The MAC will take |
3735 | swfw = E1000_SWFW_PHY1_SM; | 2856 | * care of interfacing with the PHY to send the desired data. |
3736 | } else { | 2857 | */ |
3737 | swfw = E1000_SWFW_PHY0_SM; | 2858 | mdic = (((u32) phy_data) | |
3738 | } | 2859 | (reg_addr << E1000_MDIC_REG_SHIFT) | |
3739 | if (e1000_swfw_sync_acquire(hw, swfw)) | 2860 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
3740 | return -E1000_ERR_SWFW_SYNC; | 2861 | (E1000_MDIC_OP_WRITE)); |
3741 | 2862 | ||
3742 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & | 2863 | ew32(MDIC, mdic); |
3743 | E1000_KUMCTRLSTA_OFFSET) | data; | 2864 | |
3744 | ew32(KUMCTRLSTA, reg_val); | 2865 | /* Poll the ready bit to see if the MDI read completed */ |
3745 | udelay(2); | 2866 | for (i = 0; i < 641; i++) { |
3746 | 2867 | udelay(5); | |
3747 | e1000_swfw_sync_release(hw, swfw); | 2868 | mdic = er32(MDIC); |
3748 | return E1000_SUCCESS; | 2869 | if (mdic & E1000_MDIC_READY) |
2870 | break; | ||
2871 | } | ||
2872 | if (!(mdic & E1000_MDIC_READY)) { | ||
2873 | DEBUGOUT("MDI Write did not complete\n"); | ||
2874 | return -E1000_ERR_PHY; | ||
2875 | } | ||
2876 | } else { | ||
2877 | /* We'll need to use the SW defined pins to shift the write command | ||
2878 | * out to the PHY. We first send a preamble to the PHY to signal the | ||
2879 | * beginning of the MII instruction. This is done by sending 32 | ||
2880 | * consecutive "1" bits. | ||
2881 | */ | ||
2882 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | ||
2883 | |||
2884 | /* Now combine the remaining required fields that will indicate a | ||
2885 | * write operation. We use this method instead of calling the | ||
2886 | * e1000_shift_out_mdi_bits routine for each field in the command. The | ||
2887 | * format of a MII write instruction is as follows: | ||
2888 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | ||
2889 | */ | ||
2890 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | ||
2891 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | ||
2892 | mdic <<= 16; | ||
2893 | mdic |= (u32) phy_data; | ||
2894 | |||
2895 | e1000_shift_out_mdi_bits(hw, mdic, 32); | ||
2896 | } | ||
2897 | |||
2898 | return E1000_SUCCESS; | ||
3749 | } | 2899 | } |
3750 | 2900 | ||
3751 | /****************************************************************************** | 2901 | /** |
3752 | * Returns the PHY to the power-on reset state | 2902 | * e1000_phy_hw_reset - reset the phy, hardware style |
3753 | * | 2903 | * @hw: Struct containing variables accessed by shared code |
3754 | * hw - Struct containing variables accessed by shared code | 2904 | * |
3755 | ******************************************************************************/ | 2905 | * Returns the PHY to the power-on reset state |
2906 | */ | ||
3756 | s32 e1000_phy_hw_reset(struct e1000_hw *hw) | 2907 | s32 e1000_phy_hw_reset(struct e1000_hw *hw) |
3757 | { | 2908 | { |
3758 | u32 ctrl, ctrl_ext; | 2909 | u32 ctrl, ctrl_ext; |
3759 | u32 led_ctrl; | 2910 | u32 led_ctrl; |
3760 | s32 ret_val; | 2911 | s32 ret_val; |
3761 | u16 swfw; | 2912 | |
3762 | 2913 | DEBUGFUNC("e1000_phy_hw_reset"); | |
3763 | DEBUGFUNC("e1000_phy_hw_reset"); | 2914 | |
3764 | 2915 | DEBUGOUT("Resetting Phy...\n"); | |
3765 | /* In the case of the phy reset being blocked, it's not an error, we | 2916 | |
3766 | * simply return success without performing the reset. */ | 2917 | if (hw->mac_type > e1000_82543) { |
3767 | ret_val = e1000_check_phy_reset_block(hw); | 2918 | /* Read the device control register and assert the E1000_CTRL_PHY_RST |
3768 | if (ret_val) | 2919 | * bit. Then, take it out of reset. |
3769 | return E1000_SUCCESS; | 2920 | * For e1000 hardware, we delay for 10ms between the assert |
3770 | 2921 | * and deassert. | |
3771 | DEBUGOUT("Resetting Phy...\n"); | 2922 | */ |
3772 | 2923 | ctrl = er32(CTRL); | |
3773 | if (hw->mac_type > e1000_82543) { | 2924 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); |
3774 | if ((hw->mac_type == e1000_80003es2lan) && | 2925 | E1000_WRITE_FLUSH(); |
3775 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | 2926 | |
3776 | swfw = E1000_SWFW_PHY1_SM; | 2927 | msleep(10); |
3777 | } else { | 2928 | |
3778 | swfw = E1000_SWFW_PHY0_SM; | 2929 | ew32(CTRL, ctrl); |
3779 | } | 2930 | E1000_WRITE_FLUSH(); |
3780 | if (e1000_swfw_sync_acquire(hw, swfw)) { | 2931 | |
3781 | DEBUGOUT("Unable to acquire swfw sync\n"); | 2932 | } else { |
3782 | return -E1000_ERR_SWFW_SYNC; | 2933 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
3783 | } | 2934 | * bit to put the PHY into reset. Then, take it out of reset. |
3784 | /* Read the device control register and assert the E1000_CTRL_PHY_RST | 2935 | */ |
3785 | * bit. Then, take it out of reset. | 2936 | ctrl_ext = er32(CTRL_EXT); |
3786 | * For pre-e1000_82571 hardware, we delay for 10ms between the assert | 2937 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
3787 | * and deassert. For e1000_82571 hardware and later, we instead delay | 2938 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
3788 | * for 50us between and 10ms after the deassertion. | 2939 | ew32(CTRL_EXT, ctrl_ext); |
3789 | */ | 2940 | E1000_WRITE_FLUSH(); |
3790 | ctrl = er32(CTRL); | 2941 | msleep(10); |
3791 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | 2942 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
3792 | E1000_WRITE_FLUSH(); | 2943 | ew32(CTRL_EXT, ctrl_ext); |
3793 | 2944 | E1000_WRITE_FLUSH(); | |
3794 | if (hw->mac_type < e1000_82571) | 2945 | } |
3795 | msleep(10); | 2946 | udelay(150); |
3796 | else | 2947 | |
3797 | udelay(100); | 2948 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
3798 | 2949 | /* Configure activity LED after PHY reset */ | |
3799 | ew32(CTRL, ctrl); | 2950 | led_ctrl = er32(LEDCTL); |
3800 | E1000_WRITE_FLUSH(); | 2951 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
3801 | 2952 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | |
3802 | if (hw->mac_type >= e1000_82571) | 2953 | ew32(LEDCTL, led_ctrl); |
3803 | mdelay(10); | 2954 | } |
3804 | 2955 | ||
3805 | e1000_swfw_sync_release(hw, swfw); | 2956 | /* Wait for FW to finish PHY configuration. */ |
3806 | } else { | 2957 | ret_val = e1000_get_phy_cfg_done(hw); |
3807 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 2958 | if (ret_val != E1000_SUCCESS) |
3808 | * bit to put the PHY into reset. Then, take it out of reset. | 2959 | return ret_val; |
3809 | */ | 2960 | |
3810 | ctrl_ext = er32(CTRL_EXT); | 2961 | return ret_val; |
3811 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | ||
3812 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | ||
3813 | ew32(CTRL_EXT, ctrl_ext); | ||
3814 | E1000_WRITE_FLUSH(); | ||
3815 | msleep(10); | ||
3816 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | ||
3817 | ew32(CTRL_EXT, ctrl_ext); | ||
3818 | E1000_WRITE_FLUSH(); | ||
3819 | } | ||
3820 | udelay(150); | ||
3821 | |||
3822 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
3823 | /* Configure activity LED after PHY reset */ | ||
3824 | led_ctrl = er32(LEDCTL); | ||
3825 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
3826 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
3827 | ew32(LEDCTL, led_ctrl); | ||
3828 | } | ||
3829 | |||
3830 | /* Wait for FW to finish PHY configuration. */ | ||
3831 | ret_val = e1000_get_phy_cfg_done(hw); | ||
3832 | if (ret_val != E1000_SUCCESS) | ||
3833 | return ret_val; | ||
3834 | e1000_release_software_semaphore(hw); | ||
3835 | |||
3836 | if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3)) | ||
3837 | ret_val = e1000_init_lcd_from_nvm(hw); | ||
3838 | |||
3839 | return ret_val; | ||
3840 | } | 2962 | } |
3841 | 2963 | ||
3842 | /****************************************************************************** | 2964 | /** |
3843 | * Resets the PHY | 2965 | * e1000_phy_reset - reset the phy to commit settings |
3844 | * | 2966 | * @hw: Struct containing variables accessed by shared code |
3845 | * hw - Struct containing variables accessed by shared code | 2967 | * |
3846 | * | 2968 | * Resets the PHY |
3847 | * Sets bit 15 of the MII Control register | 2969 | * Sets bit 15 of the MII Control register |
3848 | ******************************************************************************/ | 2970 | */ |
3849 | s32 e1000_phy_reset(struct e1000_hw *hw) | 2971 | s32 e1000_phy_reset(struct e1000_hw *hw) |
3850 | { | 2972 | { |
3851 | s32 ret_val; | 2973 | s32 ret_val; |
3852 | u16 phy_data; | 2974 | u16 phy_data; |
3853 | |||
3854 | DEBUGFUNC("e1000_phy_reset"); | ||
3855 | |||
3856 | /* In the case of the phy reset being blocked, it's not an error, we | ||
3857 | * simply return success without performing the reset. */ | ||
3858 | ret_val = e1000_check_phy_reset_block(hw); | ||
3859 | if (ret_val) | ||
3860 | return E1000_SUCCESS; | ||
3861 | |||
3862 | switch (hw->phy_type) { | ||
3863 | case e1000_phy_igp: | ||
3864 | case e1000_phy_igp_2: | ||
3865 | case e1000_phy_igp_3: | ||
3866 | case e1000_phy_ife: | ||
3867 | ret_val = e1000_phy_hw_reset(hw); | ||
3868 | if (ret_val) | ||
3869 | return ret_val; | ||
3870 | break; | ||
3871 | default: | ||
3872 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
3873 | if (ret_val) | ||
3874 | return ret_val; | ||
3875 | |||
3876 | phy_data |= MII_CR_RESET; | ||
3877 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
3878 | if (ret_val) | ||
3879 | return ret_val; | ||
3880 | |||
3881 | udelay(1); | ||
3882 | break; | ||
3883 | } | ||
3884 | |||
3885 | if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) | ||
3886 | e1000_phy_init_script(hw); | ||
3887 | |||
3888 | return E1000_SUCCESS; | ||
3889 | } | ||
3890 | 2975 | ||
3891 | /****************************************************************************** | 2976 | DEBUGFUNC("e1000_phy_reset"); |
3892 | * Work-around for 82566 power-down: on D3 entry- | ||
3893 | * 1) disable gigabit link | ||
3894 | * 2) write VR power-down enable | ||
3895 | * 3) read it back | ||
3896 | * if successful continue, else issue LCD reset and repeat | ||
3897 | * | ||
3898 | * hw - struct containing variables accessed by shared code | ||
3899 | ******************************************************************************/ | ||
3900 | void e1000_phy_powerdown_workaround(struct e1000_hw *hw) | ||
3901 | { | ||
3902 | s32 reg; | ||
3903 | u16 phy_data; | ||
3904 | s32 retry = 0; | ||
3905 | 2977 | ||
3906 | DEBUGFUNC("e1000_phy_powerdown_workaround"); | 2978 | switch (hw->phy_type) { |
2979 | case e1000_phy_igp: | ||
2980 | ret_val = e1000_phy_hw_reset(hw); | ||
2981 | if (ret_val) | ||
2982 | return ret_val; | ||
2983 | break; | ||
2984 | default: | ||
2985 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
2986 | if (ret_val) | ||
2987 | return ret_val; | ||
3907 | 2988 | ||
3908 | if (hw->phy_type != e1000_phy_igp_3) | 2989 | phy_data |= MII_CR_RESET; |
3909 | return; | 2990 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
2991 | if (ret_val) | ||
2992 | return ret_val; | ||
3910 | 2993 | ||
3911 | do { | 2994 | udelay(1); |
3912 | /* Disable link */ | 2995 | break; |
3913 | reg = er32(PHY_CTRL); | 2996 | } |
3914 | ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
3915 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3916 | 2997 | ||
3917 | /* Write VR power-down enable - bits 9:8 should be 10b */ | 2998 | if (hw->phy_type == e1000_phy_igp) |
3918 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | 2999 | e1000_phy_init_script(hw); |
3919 | phy_data |= (1 << 9); | ||
3920 | phy_data &= ~(1 << 8); | ||
3921 | e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data); | ||
3922 | 3000 | ||
3923 | /* Read it back and test */ | 3001 | return E1000_SUCCESS; |
3924 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | 3002 | } |
3925 | if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry) | ||
3926 | break; | ||
3927 | 3003 | ||
3928 | /* Issue PHY reset and repeat at most one more time */ | 3004 | /** |
3929 | reg = er32(CTRL); | 3005 | * e1000_detect_gig_phy - check the phy type |
3930 | ew32(CTRL, reg | E1000_CTRL_PHY_RST); | 3006 | * @hw: Struct containing variables accessed by shared code |
3931 | retry++; | 3007 | * |
3932 | } while (retry); | 3008 | * Probes the expected PHY address for known PHY IDs |
3009 | */ | ||
3010 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw) | ||
3011 | { | ||
3012 | s32 phy_init_status, ret_val; | ||
3013 | u16 phy_id_high, phy_id_low; | ||
3014 | bool match = false; | ||
3933 | 3015 | ||
3934 | return; | 3016 | DEBUGFUNC("e1000_detect_gig_phy"); |
3935 | 3017 | ||
3936 | } | 3018 | if (hw->phy_id != 0) |
3019 | return E1000_SUCCESS; | ||
3937 | 3020 | ||
3938 | /****************************************************************************** | 3021 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
3939 | * Work-around for 82566 Kumeran PCS lock loss: | 3022 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
3940 | * On link status change (i.e. PCI reset, speed change) and link is up and | 3023 | if (ret_val) |
3941 | * speed is gigabit- | 3024 | return ret_val; |
3942 | * 0) if workaround is optionally disabled do nothing | ||
3943 | * 1) wait 1ms for Kumeran link to come up | ||
3944 | * 2) check Kumeran Diagnostic register PCS lock loss bit | ||
3945 | * 3) if not set the link is locked (all is good), otherwise... | ||
3946 | * 4) reset the PHY | ||
3947 | * 5) repeat up to 10 times | ||
3948 | * Note: this is only called for IGP3 copper when speed is 1gb. | ||
3949 | * | ||
3950 | * hw - struct containing variables accessed by shared code | ||
3951 | ******************************************************************************/ | ||
3952 | static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) | ||
3953 | { | ||
3954 | s32 ret_val; | ||
3955 | s32 reg; | ||
3956 | s32 cnt; | ||
3957 | u16 phy_data; | ||
3958 | |||
3959 | if (hw->kmrn_lock_loss_workaround_disabled) | ||
3960 | return E1000_SUCCESS; | ||
3961 | |||
3962 | /* Make sure link is up before proceeding. If not just return. | ||
3963 | * Attempting this while link is negotiating fouled up link | ||
3964 | * stability */ | ||
3965 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3966 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3967 | |||
3968 | if (phy_data & MII_SR_LINK_STATUS) { | ||
3969 | for (cnt = 0; cnt < 10; cnt++) { | ||
3970 | /* read once to clear */ | ||
3971 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
3972 | if (ret_val) | ||
3973 | return ret_val; | ||
3974 | /* and again to get new status */ | ||
3975 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
3976 | if (ret_val) | ||
3977 | return ret_val; | ||
3978 | |||
3979 | /* check for PCS lock */ | ||
3980 | if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | ||
3981 | return E1000_SUCCESS; | ||
3982 | |||
3983 | /* Issue PHY reset */ | ||
3984 | e1000_phy_hw_reset(hw); | ||
3985 | mdelay(5); | ||
3986 | } | ||
3987 | /* Disable GigE link negotiation */ | ||
3988 | reg = er32(PHY_CTRL); | ||
3989 | ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
3990 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3991 | |||
3992 | /* unable to acquire PCS lock */ | ||
3993 | return E1000_ERR_PHY; | ||
3994 | } | ||
3995 | |||
3996 | return E1000_SUCCESS; | ||
3997 | } | ||
3998 | 3025 | ||
3999 | /****************************************************************************** | 3026 | hw->phy_id = (u32) (phy_id_high << 16); |
4000 | * Probes the expected PHY address for known PHY IDs | 3027 | udelay(20); |
4001 | * | 3028 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
4002 | * hw - Struct containing variables accessed by shared code | 3029 | if (ret_val) |
4003 | ******************************************************************************/ | 3030 | return ret_val; |
4004 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw) | 3031 | |
4005 | { | 3032 | hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); |
4006 | s32 phy_init_status, ret_val; | 3033 | hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; |
4007 | u16 phy_id_high, phy_id_low; | 3034 | |
4008 | bool match = false; | 3035 | switch (hw->mac_type) { |
4009 | 3036 | case e1000_82543: | |
4010 | DEBUGFUNC("e1000_detect_gig_phy"); | 3037 | if (hw->phy_id == M88E1000_E_PHY_ID) |
4011 | 3038 | match = true; | |
4012 | if (hw->phy_id != 0) | 3039 | break; |
4013 | return E1000_SUCCESS; | 3040 | case e1000_82544: |
4014 | 3041 | if (hw->phy_id == M88E1000_I_PHY_ID) | |
4015 | /* The 82571 firmware may still be configuring the PHY. In this | 3042 | match = true; |
4016 | * case, we cannot access the PHY until the configuration is done. So | 3043 | break; |
4017 | * we explicitly set the PHY values. */ | 3044 | case e1000_82540: |
4018 | if (hw->mac_type == e1000_82571 || | 3045 | case e1000_82545: |
4019 | hw->mac_type == e1000_82572) { | 3046 | case e1000_82545_rev_3: |
4020 | hw->phy_id = IGP01E1000_I_PHY_ID; | 3047 | case e1000_82546: |
4021 | hw->phy_type = e1000_phy_igp_2; | 3048 | case e1000_82546_rev_3: |
4022 | return E1000_SUCCESS; | 3049 | if (hw->phy_id == M88E1011_I_PHY_ID) |
4023 | } | 3050 | match = true; |
4024 | 3051 | break; | |
4025 | /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work- | 3052 | case e1000_82541: |
4026 | * around that forces PHY page 0 to be set or the reads fail. The rest of | 3053 | case e1000_82541_rev_2: |
4027 | * the code in this routine uses e1000_read_phy_reg to read the PHY ID. | 3054 | case e1000_82547: |
4028 | * So for ESB-2 we need to have this set so our reads won't fail. If the | 3055 | case e1000_82547_rev_2: |
4029 | * attached PHY is not a e1000_phy_gg82563, the routines below will figure | 3056 | if (hw->phy_id == IGP01E1000_I_PHY_ID) |
4030 | * this out as well. */ | 3057 | match = true; |
4031 | if (hw->mac_type == e1000_80003es2lan) | 3058 | break; |
4032 | hw->phy_type = e1000_phy_gg82563; | 3059 | default: |
4033 | 3060 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | |
4034 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 3061 | return -E1000_ERR_CONFIG; |
4035 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 3062 | } |
4036 | if (ret_val) | 3063 | phy_init_status = e1000_set_phy_type(hw); |
4037 | return ret_val; | 3064 | |
4038 | 3065 | if ((match) && (phy_init_status == E1000_SUCCESS)) { | |
4039 | hw->phy_id = (u32)(phy_id_high << 16); | 3066 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); |
4040 | udelay(20); | 3067 | return E1000_SUCCESS; |
4041 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | 3068 | } |
4042 | if (ret_val) | 3069 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); |
4043 | return ret_val; | 3070 | return -E1000_ERR_PHY; |
4044 | |||
4045 | hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK); | ||
4046 | hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK; | ||
4047 | |||
4048 | switch (hw->mac_type) { | ||
4049 | case e1000_82543: | ||
4050 | if (hw->phy_id == M88E1000_E_PHY_ID) match = true; | ||
4051 | break; | ||
4052 | case e1000_82544: | ||
4053 | if (hw->phy_id == M88E1000_I_PHY_ID) match = true; | ||
4054 | break; | ||
4055 | case e1000_82540: | ||
4056 | case e1000_82545: | ||
4057 | case e1000_82545_rev_3: | ||
4058 | case e1000_82546: | ||
4059 | case e1000_82546_rev_3: | ||
4060 | if (hw->phy_id == M88E1011_I_PHY_ID) match = true; | ||
4061 | break; | ||
4062 | case e1000_82541: | ||
4063 | case e1000_82541_rev_2: | ||
4064 | case e1000_82547: | ||
4065 | case e1000_82547_rev_2: | ||
4066 | if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true; | ||
4067 | break; | ||
4068 | case e1000_82573: | ||
4069 | if (hw->phy_id == M88E1111_I_PHY_ID) match = true; | ||
4070 | break; | ||
4071 | case e1000_80003es2lan: | ||
4072 | if (hw->phy_id == GG82563_E_PHY_ID) match = true; | ||
4073 | break; | ||
4074 | case e1000_ich8lan: | ||
4075 | if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true; | ||
4076 | if (hw->phy_id == IFE_E_PHY_ID) match = true; | ||
4077 | if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true; | ||
4078 | if (hw->phy_id == IFE_C_E_PHY_ID) match = true; | ||
4079 | break; | ||
4080 | default: | ||
4081 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | ||
4082 | return -E1000_ERR_CONFIG; | ||
4083 | } | ||
4084 | phy_init_status = e1000_set_phy_type(hw); | ||
4085 | |||
4086 | if ((match) && (phy_init_status == E1000_SUCCESS)) { | ||
4087 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | ||
4088 | return E1000_SUCCESS; | ||
4089 | } | ||
4090 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | ||
4091 | return -E1000_ERR_PHY; | ||
4092 | } | 3071 | } |
4093 | 3072 | ||
4094 | /****************************************************************************** | 3073 | /** |
4095 | * Resets the PHY's DSP | 3074 | * e1000_phy_reset_dsp - reset DSP |
4096 | * | 3075 | * @hw: Struct containing variables accessed by shared code |
4097 | * hw - Struct containing variables accessed by shared code | 3076 | * |
4098 | ******************************************************************************/ | 3077 | * Resets the PHY's DSP |
3078 | */ | ||
4099 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) | 3079 | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) |
4100 | { | 3080 | { |
4101 | s32 ret_val; | 3081 | s32 ret_val; |
4102 | DEBUGFUNC("e1000_phy_reset_dsp"); | 3082 | DEBUGFUNC("e1000_phy_reset_dsp"); |
4103 | 3083 | ||
4104 | do { | 3084 | do { |
4105 | if (hw->phy_type != e1000_phy_gg82563) { | 3085 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); |
4106 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | 3086 | if (ret_val) |
4107 | if (ret_val) break; | 3087 | break; |
4108 | } | 3088 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); |
4109 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | 3089 | if (ret_val) |
4110 | if (ret_val) break; | 3090 | break; |
4111 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | 3091 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); |
4112 | if (ret_val) break; | 3092 | if (ret_val) |
4113 | ret_val = E1000_SUCCESS; | 3093 | break; |
4114 | } while (0); | 3094 | ret_val = E1000_SUCCESS; |
4115 | 3095 | } while (0); | |
4116 | return ret_val; | 3096 | |
3097 | return ret_val; | ||
4117 | } | 3098 | } |
4118 | 3099 | ||
4119 | /****************************************************************************** | 3100 | /** |
4120 | * Get PHY information from various PHY registers for igp PHY only. | 3101 | * e1000_phy_igp_get_info - get igp specific registers |
4121 | * | 3102 | * @hw: Struct containing variables accessed by shared code |
4122 | * hw - Struct containing variables accessed by shared code | 3103 | * @phy_info: PHY information structure |
4123 | * phy_info - PHY information structure | 3104 | * |
4124 | ******************************************************************************/ | 3105 | * Get PHY information from various PHY registers for igp PHY only. |
3106 | */ | ||
4125 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 3107 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
4126 | struct e1000_phy_info *phy_info) | 3108 | struct e1000_phy_info *phy_info) |
4127 | { | 3109 | { |
4128 | s32 ret_val; | 3110 | s32 ret_val; |
4129 | u16 phy_data, min_length, max_length, average; | 3111 | u16 phy_data, min_length, max_length, average; |
4130 | e1000_rev_polarity polarity; | 3112 | e1000_rev_polarity polarity; |
4131 | 3113 | ||
4132 | DEBUGFUNC("e1000_phy_igp_get_info"); | 3114 | DEBUGFUNC("e1000_phy_igp_get_info"); |
4133 | 3115 | ||
4134 | /* The downshift status is checked only once, after link is established, | 3116 | /* The downshift status is checked only once, after link is established, |
4135 | * and it stored in the hw->speed_downgraded parameter. */ | 3117 | * and it stored in the hw->speed_downgraded parameter. */ |
4136 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 3118 | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
4137 | 3119 | ||
4138 | /* IGP01E1000 does not need to support it. */ | 3120 | /* IGP01E1000 does not need to support it. */ |
4139 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 3121 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
4140 | 3122 | ||
4141 | /* IGP01E1000 always correct polarity reversal */ | 3123 | /* IGP01E1000 always correct polarity reversal */ |
4142 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; | 3124 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; |
4143 | 3125 | ||
4144 | /* Check polarity status */ | 3126 | /* Check polarity status */ |
4145 | ret_val = e1000_check_polarity(hw, &polarity); | 3127 | ret_val = e1000_check_polarity(hw, &polarity); |
4146 | if (ret_val) | 3128 | if (ret_val) |
4147 | return ret_val; | 3129 | return ret_val; |
4148 | 3130 | ||
4149 | phy_info->cable_polarity = polarity; | 3131 | phy_info->cable_polarity = polarity; |
4150 | 3132 | ||
4151 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); | 3133 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); |
4152 | if (ret_val) | 3134 | if (ret_val) |
4153 | return ret_val; | 3135 | return ret_val; |
4154 | 3136 | ||
4155 | phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >> | 3137 | phy_info->mdix_mode = |
4156 | IGP01E1000_PSSR_MDIX_SHIFT); | 3138 | (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> |
4157 | 3139 | IGP01E1000_PSSR_MDIX_SHIFT); | |
4158 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 3140 | |
4159 | IGP01E1000_PSSR_SPEED_1000MBPS) { | 3141 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
4160 | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ | 3142 | IGP01E1000_PSSR_SPEED_1000MBPS) { |
4161 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 3143 | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ |
4162 | if (ret_val) | 3144 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
4163 | return ret_val; | 3145 | if (ret_val) |
4164 | 3146 | return ret_val; | |
4165 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 3147 | |
4166 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | 3148 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
4167 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 3149 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
4168 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 3150 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
4169 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | 3151 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
4170 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 3152 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
4171 | 3153 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | |
4172 | /* Get cable length */ | 3154 | |
4173 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | 3155 | /* Get cable length */ |
4174 | if (ret_val) | 3156 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
4175 | return ret_val; | 3157 | if (ret_val) |
4176 | 3158 | return ret_val; | |
4177 | /* Translate to old method */ | 3159 | |
4178 | average = (max_length + min_length) / 2; | 3160 | /* Translate to old method */ |
4179 | 3161 | average = (max_length + min_length) / 2; | |
4180 | if (average <= e1000_igp_cable_length_50) | 3162 | |
4181 | phy_info->cable_length = e1000_cable_length_50; | 3163 | if (average <= e1000_igp_cable_length_50) |
4182 | else if (average <= e1000_igp_cable_length_80) | 3164 | phy_info->cable_length = e1000_cable_length_50; |
4183 | phy_info->cable_length = e1000_cable_length_50_80; | 3165 | else if (average <= e1000_igp_cable_length_80) |
4184 | else if (average <= e1000_igp_cable_length_110) | 3166 | phy_info->cable_length = e1000_cable_length_50_80; |
4185 | phy_info->cable_length = e1000_cable_length_80_110; | 3167 | else if (average <= e1000_igp_cable_length_110) |
4186 | else if (average <= e1000_igp_cable_length_140) | 3168 | phy_info->cable_length = e1000_cable_length_80_110; |
4187 | phy_info->cable_length = e1000_cable_length_110_140; | 3169 | else if (average <= e1000_igp_cable_length_140) |
4188 | else | 3170 | phy_info->cable_length = e1000_cable_length_110_140; |
4189 | phy_info->cable_length = e1000_cable_length_140; | 3171 | else |
4190 | } | 3172 | phy_info->cable_length = e1000_cable_length_140; |
4191 | 3173 | } | |
4192 | return E1000_SUCCESS; | ||
4193 | } | ||
4194 | 3174 | ||
4195 | /****************************************************************************** | 3175 | return E1000_SUCCESS; |
4196 | * Get PHY information from various PHY registers for ife PHY only. | ||
4197 | * | ||
4198 | * hw - Struct containing variables accessed by shared code | ||
4199 | * phy_info - PHY information structure | ||
4200 | ******************************************************************************/ | ||
4201 | static s32 e1000_phy_ife_get_info(struct e1000_hw *hw, | ||
4202 | struct e1000_phy_info *phy_info) | ||
4203 | { | ||
4204 | s32 ret_val; | ||
4205 | u16 phy_data; | ||
4206 | e1000_rev_polarity polarity; | ||
4207 | |||
4208 | DEBUGFUNC("e1000_phy_ife_get_info"); | ||
4209 | |||
4210 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | ||
4211 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | ||
4212 | |||
4213 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
4214 | if (ret_val) | ||
4215 | return ret_val; | ||
4216 | phy_info->polarity_correction = | ||
4217 | ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> | ||
4218 | IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ? | ||
4219 | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | ||
4220 | |||
4221 | if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { | ||
4222 | ret_val = e1000_check_polarity(hw, &polarity); | ||
4223 | if (ret_val) | ||
4224 | return ret_val; | ||
4225 | } else { | ||
4226 | /* Polarity is forced. */ | ||
4227 | polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >> | ||
4228 | IFE_PSC_FORCE_POLARITY_SHIFT) ? | ||
4229 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | ||
4230 | } | ||
4231 | phy_info->cable_polarity = polarity; | ||
4232 | |||
4233 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | ||
4234 | if (ret_val) | ||
4235 | return ret_val; | ||
4236 | |||
4237 | phy_info->mdix_mode = (e1000_auto_x_mode) | ||
4238 | ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> | ||
4239 | IFE_PMC_MDIX_MODE_SHIFT); | ||
4240 | |||
4241 | return E1000_SUCCESS; | ||
4242 | } | 3176 | } |
4243 | 3177 | ||
4244 | /****************************************************************************** | 3178 | /** |
4245 | * Get PHY information from various PHY registers fot m88 PHY only. | 3179 | * e1000_phy_m88_get_info - get m88 specific registers |
4246 | * | 3180 | * @hw: Struct containing variables accessed by shared code |
4247 | * hw - Struct containing variables accessed by shared code | 3181 | * @phy_info: PHY information structure |
4248 | * phy_info - PHY information structure | 3182 | * |
4249 | ******************************************************************************/ | 3183 | * Get PHY information from various PHY registers for m88 PHY only. |
3184 | */ | ||
4250 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 3185 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
4251 | struct e1000_phy_info *phy_info) | 3186 | struct e1000_phy_info *phy_info) |
4252 | { | 3187 | { |
4253 | s32 ret_val; | 3188 | s32 ret_val; |
4254 | u16 phy_data; | 3189 | u16 phy_data; |
4255 | e1000_rev_polarity polarity; | 3190 | e1000_rev_polarity polarity; |
4256 | 3191 | ||
4257 | DEBUGFUNC("e1000_phy_m88_get_info"); | 3192 | DEBUGFUNC("e1000_phy_m88_get_info"); |
4258 | 3193 | ||
4259 | /* The downshift status is checked only once, after link is established, | 3194 | /* The downshift status is checked only once, after link is established, |
4260 | * and it stored in the hw->speed_downgraded parameter. */ | 3195 | * and it stored in the hw->speed_downgraded parameter. */ |
4261 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 3196 | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
4262 | 3197 | ||
4263 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 3198 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
4264 | if (ret_val) | 3199 | if (ret_val) |
4265 | return ret_val; | 3200 | return ret_val; |
4266 | 3201 | ||
4267 | phy_info->extended_10bt_distance = | 3202 | phy_info->extended_10bt_distance = |
4268 | ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> | 3203 | ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> |
4269 | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? | 3204 | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? |
4270 | e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal; | 3205 | e1000_10bt_ext_dist_enable_lower : |
4271 | 3206 | e1000_10bt_ext_dist_enable_normal; | |
4272 | phy_info->polarity_correction = | 3207 | |
4273 | ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> | 3208 | phy_info->polarity_correction = |
4274 | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? | 3209 | ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> |
4275 | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | 3210 | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? |
4276 | 3211 | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | |
4277 | /* Check polarity status */ | 3212 | |
4278 | ret_val = e1000_check_polarity(hw, &polarity); | 3213 | /* Check polarity status */ |
4279 | if (ret_val) | 3214 | ret_val = e1000_check_polarity(hw, &polarity); |
4280 | return ret_val; | 3215 | if (ret_val) |
4281 | phy_info->cable_polarity = polarity; | 3216 | return ret_val; |
4282 | 3217 | phy_info->cable_polarity = polarity; | |
4283 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 3218 | |
4284 | if (ret_val) | 3219 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
4285 | return ret_val; | 3220 | if (ret_val) |
4286 | 3221 | return ret_val; | |
4287 | phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >> | 3222 | |
4288 | M88E1000_PSSR_MDIX_SHIFT); | 3223 | phy_info->mdix_mode = |
4289 | 3224 | (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> | |
4290 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | 3225 | M88E1000_PSSR_MDIX_SHIFT); |
4291 | /* Cable Length Estimation and Local/Remote Receiver Information | 3226 | |
4292 | * are only valid at 1000 Mbps. | 3227 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
4293 | */ | 3228 | /* Cable Length Estimation and Local/Remote Receiver Information |
4294 | if (hw->phy_type != e1000_phy_gg82563) { | 3229 | * are only valid at 1000 Mbps. |
4295 | phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 3230 | */ |
4296 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); | 3231 | phy_info->cable_length = |
4297 | } else { | 3232 | (e1000_cable_length) ((phy_data & |
4298 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, | 3233 | M88E1000_PSSR_CABLE_LENGTH) >> |
4299 | &phy_data); | 3234 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
4300 | if (ret_val) | 3235 | |
4301 | return ret_val; | 3236 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
4302 | 3237 | if (ret_val) | |
4303 | phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH); | 3238 | return ret_val; |
4304 | } | 3239 | |
4305 | 3240 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | |
4306 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 3241 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
4307 | if (ret_val) | 3242 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
4308 | return ret_val; | 3243 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
4309 | 3244 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | |
4310 | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 3245 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
4311 | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | 3246 | |
4312 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 3247 | } |
4313 | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 3248 | |
4314 | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | 3249 | return E1000_SUCCESS; |
4315 | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | ||
4316 | |||
4317 | } | ||
4318 | |||
4319 | return E1000_SUCCESS; | ||
4320 | } | 3250 | } |
4321 | 3251 | ||
4322 | /****************************************************************************** | 3252 | /** |
4323 | * Get PHY information from various PHY registers | 3253 | * e1000_phy_get_info - request phy info |
4324 | * | 3254 | * @hw: Struct containing variables accessed by shared code |
4325 | * hw - Struct containing variables accessed by shared code | 3255 | * @phy_info: PHY information structure |
4326 | * phy_info - PHY information structure | 3256 | * |
4327 | ******************************************************************************/ | 3257 | * Get PHY information from various PHY registers |
3258 | */ | ||
4328 | s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) | 3259 | s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) |
4329 | { | 3260 | { |
4330 | s32 ret_val; | 3261 | s32 ret_val; |
4331 | u16 phy_data; | 3262 | u16 phy_data; |
4332 | 3263 | ||
4333 | DEBUGFUNC("e1000_phy_get_info"); | 3264 | DEBUGFUNC("e1000_phy_get_info"); |
4334 | 3265 | ||
4335 | phy_info->cable_length = e1000_cable_length_undefined; | 3266 | phy_info->cable_length = e1000_cable_length_undefined; |
4336 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | 3267 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; |
4337 | phy_info->cable_polarity = e1000_rev_polarity_undefined; | 3268 | phy_info->cable_polarity = e1000_rev_polarity_undefined; |
4338 | phy_info->downshift = e1000_downshift_undefined; | 3269 | phy_info->downshift = e1000_downshift_undefined; |
4339 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; | 3270 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; |
4340 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; | 3271 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; |
4341 | phy_info->local_rx = e1000_1000t_rx_status_undefined; | 3272 | phy_info->local_rx = e1000_1000t_rx_status_undefined; |
4342 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; | 3273 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; |
4343 | 3274 | ||
4344 | if (hw->media_type != e1000_media_type_copper) { | 3275 | if (hw->media_type != e1000_media_type_copper) { |
4345 | DEBUGOUT("PHY info is only valid for copper media\n"); | 3276 | DEBUGOUT("PHY info is only valid for copper media\n"); |
4346 | return -E1000_ERR_CONFIG; | 3277 | return -E1000_ERR_CONFIG; |
4347 | } | 3278 | } |
4348 | 3279 | ||
4349 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 3280 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
4350 | if (ret_val) | 3281 | if (ret_val) |
4351 | return ret_val; | 3282 | return ret_val; |
4352 | 3283 | ||
4353 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 3284 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
4354 | if (ret_val) | 3285 | if (ret_val) |
4355 | return ret_val; | 3286 | return ret_val; |
4356 | 3287 | ||
4357 | if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | 3288 | if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { |
4358 | DEBUGOUT("PHY info is only valid if link is up\n"); | 3289 | DEBUGOUT("PHY info is only valid if link is up\n"); |
4359 | return -E1000_ERR_CONFIG; | 3290 | return -E1000_ERR_CONFIG; |
4360 | } | 3291 | } |
4361 | 3292 | ||
4362 | if (hw->phy_type == e1000_phy_igp || | 3293 | if (hw->phy_type == e1000_phy_igp) |
4363 | hw->phy_type == e1000_phy_igp_3 || | 3294 | return e1000_phy_igp_get_info(hw, phy_info); |
4364 | hw->phy_type == e1000_phy_igp_2) | 3295 | else |
4365 | return e1000_phy_igp_get_info(hw, phy_info); | 3296 | return e1000_phy_m88_get_info(hw, phy_info); |
4366 | else if (hw->phy_type == e1000_phy_ife) | ||
4367 | return e1000_phy_ife_get_info(hw, phy_info); | ||
4368 | else | ||
4369 | return e1000_phy_m88_get_info(hw, phy_info); | ||
4370 | } | 3297 | } |
4371 | 3298 | ||
4372 | s32 e1000_validate_mdi_setting(struct e1000_hw *hw) | 3299 | s32 e1000_validate_mdi_setting(struct e1000_hw *hw) |
4373 | { | 3300 | { |
4374 | DEBUGFUNC("e1000_validate_mdi_settings"); | 3301 | DEBUGFUNC("e1000_validate_mdi_settings"); |
4375 | |||
4376 | if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | ||
4377 | DEBUGOUT("Invalid MDI setting detected\n"); | ||
4378 | hw->mdix = 1; | ||
4379 | return -E1000_ERR_CONFIG; | ||
4380 | } | ||
4381 | return E1000_SUCCESS; | ||
4382 | } | ||
4383 | 3302 | ||
3303 | if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | ||
3304 | DEBUGOUT("Invalid MDI setting detected\n"); | ||
3305 | hw->mdix = 1; | ||
3306 | return -E1000_ERR_CONFIG; | ||
3307 | } | ||
3308 | return E1000_SUCCESS; | ||
3309 | } | ||
4384 | 3310 | ||
4385 | /****************************************************************************** | 3311 | /** |
4386 | * Sets up eeprom variables in the hw struct. Must be called after mac_type | 3312 | * e1000_init_eeprom_params - initialize sw eeprom vars |
4387 | * is configured. Additionally, if this is ICH8, the flash controller GbE | 3313 | * @hw: Struct containing variables accessed by shared code |
4388 | * registers must be mapped, or this will crash. | ||
4389 | * | 3314 | * |
4390 | * hw - Struct containing variables accessed by shared code | 3315 | * Sets up eeprom variables in the hw struct. Must be called after mac_type |
4391 | *****************************************************************************/ | 3316 | * is configured. |
3317 | */ | ||
4392 | s32 e1000_init_eeprom_params(struct e1000_hw *hw) | 3318 | s32 e1000_init_eeprom_params(struct e1000_hw *hw) |
4393 | { | 3319 | { |
4394 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3320 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
4395 | u32 eecd = er32(EECD); | 3321 | u32 eecd = er32(EECD); |
4396 | s32 ret_val = E1000_SUCCESS; | 3322 | s32 ret_val = E1000_SUCCESS; |
4397 | u16 eeprom_size; | 3323 | u16 eeprom_size; |
4398 | 3324 | ||
4399 | DEBUGFUNC("e1000_init_eeprom_params"); | 3325 | DEBUGFUNC("e1000_init_eeprom_params"); |
4400 | 3326 | ||
4401 | switch (hw->mac_type) { | 3327 | switch (hw->mac_type) { |
4402 | case e1000_82542_rev2_0: | 3328 | case e1000_82542_rev2_0: |
4403 | case e1000_82542_rev2_1: | 3329 | case e1000_82542_rev2_1: |
4404 | case e1000_82543: | 3330 | case e1000_82543: |
4405 | case e1000_82544: | 3331 | case e1000_82544: |
4406 | eeprom->type = e1000_eeprom_microwire; | 3332 | eeprom->type = e1000_eeprom_microwire; |
4407 | eeprom->word_size = 64; | 3333 | eeprom->word_size = 64; |
4408 | eeprom->opcode_bits = 3; | 3334 | eeprom->opcode_bits = 3; |
4409 | eeprom->address_bits = 6; | 3335 | eeprom->address_bits = 6; |
4410 | eeprom->delay_usec = 50; | 3336 | eeprom->delay_usec = 50; |
4411 | eeprom->use_eerd = false; | 3337 | break; |
4412 | eeprom->use_eewr = false; | 3338 | case e1000_82540: |
4413 | break; | 3339 | case e1000_82545: |
4414 | case e1000_82540: | 3340 | case e1000_82545_rev_3: |
4415 | case e1000_82545: | 3341 | case e1000_82546: |
4416 | case e1000_82545_rev_3: | 3342 | case e1000_82546_rev_3: |
4417 | case e1000_82546: | 3343 | eeprom->type = e1000_eeprom_microwire; |
4418 | case e1000_82546_rev_3: | 3344 | eeprom->opcode_bits = 3; |
4419 | eeprom->type = e1000_eeprom_microwire; | 3345 | eeprom->delay_usec = 50; |
4420 | eeprom->opcode_bits = 3; | 3346 | if (eecd & E1000_EECD_SIZE) { |
4421 | eeprom->delay_usec = 50; | 3347 | eeprom->word_size = 256; |
4422 | if (eecd & E1000_EECD_SIZE) { | 3348 | eeprom->address_bits = 8; |
4423 | eeprom->word_size = 256; | 3349 | } else { |
4424 | eeprom->address_bits = 8; | 3350 | eeprom->word_size = 64; |
4425 | } else { | 3351 | eeprom->address_bits = 6; |
4426 | eeprom->word_size = 64; | 3352 | } |
4427 | eeprom->address_bits = 6; | 3353 | break; |
4428 | } | 3354 | case e1000_82541: |
4429 | eeprom->use_eerd = false; | 3355 | case e1000_82541_rev_2: |
4430 | eeprom->use_eewr = false; | 3356 | case e1000_82547: |
4431 | break; | 3357 | case e1000_82547_rev_2: |
4432 | case e1000_82541: | 3358 | if (eecd & E1000_EECD_TYPE) { |
4433 | case e1000_82541_rev_2: | 3359 | eeprom->type = e1000_eeprom_spi; |
4434 | case e1000_82547: | 3360 | eeprom->opcode_bits = 8; |
4435 | case e1000_82547_rev_2: | 3361 | eeprom->delay_usec = 1; |
4436 | if (eecd & E1000_EECD_TYPE) { | 3362 | if (eecd & E1000_EECD_ADDR_BITS) { |
4437 | eeprom->type = e1000_eeprom_spi; | 3363 | eeprom->page_size = 32; |
4438 | eeprom->opcode_bits = 8; | 3364 | eeprom->address_bits = 16; |
4439 | eeprom->delay_usec = 1; | 3365 | } else { |
4440 | if (eecd & E1000_EECD_ADDR_BITS) { | 3366 | eeprom->page_size = 8; |
4441 | eeprom->page_size = 32; | 3367 | eeprom->address_bits = 8; |
4442 | eeprom->address_bits = 16; | 3368 | } |
4443 | } else { | 3369 | } else { |
4444 | eeprom->page_size = 8; | 3370 | eeprom->type = e1000_eeprom_microwire; |
4445 | eeprom->address_bits = 8; | 3371 | eeprom->opcode_bits = 3; |
4446 | } | 3372 | eeprom->delay_usec = 50; |
4447 | } else { | 3373 | if (eecd & E1000_EECD_ADDR_BITS) { |
4448 | eeprom->type = e1000_eeprom_microwire; | 3374 | eeprom->word_size = 256; |
4449 | eeprom->opcode_bits = 3; | 3375 | eeprom->address_bits = 8; |
4450 | eeprom->delay_usec = 50; | 3376 | } else { |
4451 | if (eecd & E1000_EECD_ADDR_BITS) { | 3377 | eeprom->word_size = 64; |
4452 | eeprom->word_size = 256; | 3378 | eeprom->address_bits = 6; |
4453 | eeprom->address_bits = 8; | 3379 | } |
4454 | } else { | 3380 | } |
4455 | eeprom->word_size = 64; | 3381 | break; |
4456 | eeprom->address_bits = 6; | 3382 | default: |
4457 | } | 3383 | break; |
4458 | } | 3384 | } |
4459 | eeprom->use_eerd = false; | 3385 | |
4460 | eeprom->use_eewr = false; | 3386 | if (eeprom->type == e1000_eeprom_spi) { |
4461 | break; | 3387 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
4462 | case e1000_82571: | 3388 | * 32KB (incremented by powers of 2). |
4463 | case e1000_82572: | 3389 | */ |
4464 | eeprom->type = e1000_eeprom_spi; | 3390 | /* Set to default value for initial eeprom read. */ |
4465 | eeprom->opcode_bits = 8; | 3391 | eeprom->word_size = 64; |
4466 | eeprom->delay_usec = 1; | 3392 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
4467 | if (eecd & E1000_EECD_ADDR_BITS) { | 3393 | if (ret_val) |
4468 | eeprom->page_size = 32; | 3394 | return ret_val; |
4469 | eeprom->address_bits = 16; | 3395 | eeprom_size = |
4470 | } else { | 3396 | (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
4471 | eeprom->page_size = 8; | 3397 | /* 256B eeprom size was not supported in earlier hardware, so we |
4472 | eeprom->address_bits = 8; | 3398 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
4473 | } | 3399 | * is never the result used in the shifting logic below. */ |
4474 | eeprom->use_eerd = false; | 3400 | if (eeprom_size) |
4475 | eeprom->use_eewr = false; | 3401 | eeprom_size++; |
4476 | break; | 3402 | |
4477 | case e1000_82573: | 3403 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
4478 | eeprom->type = e1000_eeprom_spi; | 3404 | } |
4479 | eeprom->opcode_bits = 8; | 3405 | return ret_val; |
4480 | eeprom->delay_usec = 1; | ||
4481 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
4482 | eeprom->page_size = 32; | ||
4483 | eeprom->address_bits = 16; | ||
4484 | } else { | ||
4485 | eeprom->page_size = 8; | ||
4486 | eeprom->address_bits = 8; | ||
4487 | } | ||
4488 | eeprom->use_eerd = true; | ||
4489 | eeprom->use_eewr = true; | ||
4490 | if (!e1000_is_onboard_nvm_eeprom(hw)) { | ||
4491 | eeprom->type = e1000_eeprom_flash; | ||
4492 | eeprom->word_size = 2048; | ||
4493 | |||
4494 | /* Ensure that the Autonomous FLASH update bit is cleared due to | ||
4495 | * Flash update issue on parts which use a FLASH for NVM. */ | ||
4496 | eecd &= ~E1000_EECD_AUPDEN; | ||
4497 | ew32(EECD, eecd); | ||
4498 | } | ||
4499 | break; | ||
4500 | case e1000_80003es2lan: | ||
4501 | eeprom->type = e1000_eeprom_spi; | ||
4502 | eeprom->opcode_bits = 8; | ||
4503 | eeprom->delay_usec = 1; | ||
4504 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
4505 | eeprom->page_size = 32; | ||
4506 | eeprom->address_bits = 16; | ||
4507 | } else { | ||
4508 | eeprom->page_size = 8; | ||
4509 | eeprom->address_bits = 8; | ||
4510 | } | ||
4511 | eeprom->use_eerd = true; | ||
4512 | eeprom->use_eewr = false; | ||
4513 | break; | ||
4514 | case e1000_ich8lan: | ||
4515 | { | ||
4516 | s32 i = 0; | ||
4517 | u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); | ||
4518 | |||
4519 | eeprom->type = e1000_eeprom_ich8; | ||
4520 | eeprom->use_eerd = false; | ||
4521 | eeprom->use_eewr = false; | ||
4522 | eeprom->word_size = E1000_SHADOW_RAM_WORDS; | ||
4523 | |||
4524 | /* Zero the shadow RAM structure. But don't load it from NVM | ||
4525 | * so as to save time for driver init */ | ||
4526 | if (hw->eeprom_shadow_ram != NULL) { | ||
4527 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
4528 | hw->eeprom_shadow_ram[i].modified = false; | ||
4529 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
4530 | } | ||
4531 | } | ||
4532 | |||
4533 | hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * | ||
4534 | ICH_FLASH_SECTOR_SIZE; | ||
4535 | |||
4536 | hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1; | ||
4537 | hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); | ||
4538 | |||
4539 | hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; | ||
4540 | |||
4541 | hw->flash_bank_size /= 2 * sizeof(u16); | ||
4542 | |||
4543 | break; | ||
4544 | } | ||
4545 | default: | ||
4546 | break; | ||
4547 | } | ||
4548 | |||
4549 | if (eeprom->type == e1000_eeprom_spi) { | ||
4550 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to | ||
4551 | * 32KB (incremented by powers of 2). | ||
4552 | */ | ||
4553 | if (hw->mac_type <= e1000_82547_rev_2) { | ||
4554 | /* Set to default value for initial eeprom read. */ | ||
4555 | eeprom->word_size = 64; | ||
4556 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); | ||
4557 | if (ret_val) | ||
4558 | return ret_val; | ||
4559 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; | ||
4560 | /* 256B eeprom size was not supported in earlier hardware, so we | ||
4561 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) | ||
4562 | * is never the result used in the shifting logic below. */ | ||
4563 | if (eeprom_size) | ||
4564 | eeprom_size++; | ||
4565 | } else { | ||
4566 | eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | ||
4567 | E1000_EECD_SIZE_EX_SHIFT); | ||
4568 | } | ||
4569 | |||
4570 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | ||
4571 | } | ||
4572 | return ret_val; | ||
4573 | } | 3406 | } |
4574 | 3407 | ||
4575 | /****************************************************************************** | 3408 | /** |
4576 | * Raises the EEPROM's clock input. | 3409 | * e1000_raise_ee_clk - Raises the EEPROM's clock input. |
4577 | * | 3410 | * @hw: Struct containing variables accessed by shared code |
4578 | * hw - Struct containing variables accessed by shared code | 3411 | * @eecd: EECD's current value |
4579 | * eecd - EECD's current value | 3412 | */ |
4580 | *****************************************************************************/ | ||
4581 | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) | 3413 | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) |
4582 | { | 3414 | { |
4583 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | 3415 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
4584 | * wait <delay> microseconds. | 3416 | * wait <delay> microseconds. |
4585 | */ | 3417 | */ |
4586 | *eecd = *eecd | E1000_EECD_SK; | 3418 | *eecd = *eecd | E1000_EECD_SK; |
4587 | ew32(EECD, *eecd); | 3419 | ew32(EECD, *eecd); |
4588 | E1000_WRITE_FLUSH(); | 3420 | E1000_WRITE_FLUSH(); |
4589 | udelay(hw->eeprom.delay_usec); | 3421 | udelay(hw->eeprom.delay_usec); |
4590 | } | 3422 | } |
4591 | 3423 | ||
4592 | /****************************************************************************** | 3424 | /** |
4593 | * Lowers the EEPROM's clock input. | 3425 | * e1000_lower_ee_clk - Lowers the EEPROM's clock input. |
4594 | * | 3426 | * @hw: Struct containing variables accessed by shared code |
4595 | * hw - Struct containing variables accessed by shared code | 3427 | * @eecd: EECD's current value |
4596 | * eecd - EECD's current value | 3428 | */ |
4597 | *****************************************************************************/ | ||
4598 | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) | 3429 | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) |
4599 | { | 3430 | { |
4600 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | 3431 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
4601 | * wait 50 microseconds. | 3432 | * wait 50 microseconds. |
4602 | */ | 3433 | */ |
4603 | *eecd = *eecd & ~E1000_EECD_SK; | 3434 | *eecd = *eecd & ~E1000_EECD_SK; |
4604 | ew32(EECD, *eecd); | 3435 | ew32(EECD, *eecd); |
4605 | E1000_WRITE_FLUSH(); | 3436 | E1000_WRITE_FLUSH(); |
4606 | udelay(hw->eeprom.delay_usec); | 3437 | udelay(hw->eeprom.delay_usec); |
4607 | } | 3438 | } |
4608 | 3439 | ||
4609 | /****************************************************************************** | 3440 | /** |
4610 | * Shift data bits out to the EEPROM. | 3441 | * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. |
4611 | * | 3442 | * @hw: Struct containing variables accessed by shared code |
4612 | * hw - Struct containing variables accessed by shared code | 3443 | * @data: data to send to the EEPROM |
4613 | * data - data to send to the EEPROM | 3444 | * @count: number of bits to shift out |
4614 | * count - number of bits to shift out | 3445 | */ |
4615 | *****************************************************************************/ | ||
4616 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) | 3446 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) |
4617 | { | 3447 | { |
4618 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3448 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
4619 | u32 eecd; | 3449 | u32 eecd; |
4620 | u32 mask; | 3450 | u32 mask; |
4621 | 3451 | ||
4622 | /* We need to shift "count" bits out to the EEPROM. So, value in the | 3452 | /* We need to shift "count" bits out to the EEPROM. So, value in the |
4623 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | 3453 | * "data" parameter will be shifted out to the EEPROM one bit at a time. |
4624 | * In order to do this, "data" must be broken down into bits. | 3454 | * In order to do this, "data" must be broken down into bits. |
4625 | */ | 3455 | */ |
4626 | mask = 0x01 << (count - 1); | 3456 | mask = 0x01 << (count - 1); |
4627 | eecd = er32(EECD); | 3457 | eecd = er32(EECD); |
4628 | if (eeprom->type == e1000_eeprom_microwire) { | 3458 | if (eeprom->type == e1000_eeprom_microwire) { |
4629 | eecd &= ~E1000_EECD_DO; | 3459 | eecd &= ~E1000_EECD_DO; |
4630 | } else if (eeprom->type == e1000_eeprom_spi) { | 3460 | } else if (eeprom->type == e1000_eeprom_spi) { |
4631 | eecd |= E1000_EECD_DO; | 3461 | eecd |= E1000_EECD_DO; |
4632 | } | 3462 | } |
4633 | do { | 3463 | do { |
4634 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | 3464 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
4635 | * and then raising and then lowering the clock (the SK bit controls | 3465 | * and then raising and then lowering the clock (the SK bit controls |
4636 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM | 3466 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
4637 | * by setting "DI" to "0" and then raising and then lowering the clock. | 3467 | * by setting "DI" to "0" and then raising and then lowering the clock. |
4638 | */ | 3468 | */ |
4639 | eecd &= ~E1000_EECD_DI; | 3469 | eecd &= ~E1000_EECD_DI; |
4640 | 3470 | ||
4641 | if (data & mask) | 3471 | if (data & mask) |
4642 | eecd |= E1000_EECD_DI; | 3472 | eecd |= E1000_EECD_DI; |
4643 | 3473 | ||
4644 | ew32(EECD, eecd); | 3474 | ew32(EECD, eecd); |
4645 | E1000_WRITE_FLUSH(); | 3475 | E1000_WRITE_FLUSH(); |
4646 | 3476 | ||
4647 | udelay(eeprom->delay_usec); | 3477 | udelay(eeprom->delay_usec); |
4648 | 3478 | ||
4649 | e1000_raise_ee_clk(hw, &eecd); | 3479 | e1000_raise_ee_clk(hw, &eecd); |
4650 | e1000_lower_ee_clk(hw, &eecd); | 3480 | e1000_lower_ee_clk(hw, &eecd); |
4651 | 3481 | ||
4652 | mask = mask >> 1; | 3482 | mask = mask >> 1; |
4653 | 3483 | ||
4654 | } while (mask); | 3484 | } while (mask); |
4655 | 3485 | ||
4656 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | 3486 | /* We leave the "DI" bit set to "0" when we leave this routine. */ |
4657 | eecd &= ~E1000_EECD_DI; | 3487 | eecd &= ~E1000_EECD_DI; |
4658 | ew32(EECD, eecd); | 3488 | ew32(EECD, eecd); |
4659 | } | 3489 | } |
4660 | 3490 | ||
4661 | /****************************************************************************** | 3491 | /** |
4662 | * Shift data bits in from the EEPROM | 3492 | * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM |
4663 | * | 3493 | * @hw: Struct containing variables accessed by shared code |
4664 | * hw - Struct containing variables accessed by shared code | 3494 | * @count: number of bits to shift in |
4665 | *****************************************************************************/ | 3495 | */ |
4666 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) | 3496 | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) |
4667 | { | 3497 | { |
4668 | u32 eecd; | 3498 | u32 eecd; |
4669 | u32 i; | 3499 | u32 i; |
4670 | u16 data; | 3500 | u16 data; |
4671 | 3501 | ||
4672 | /* In order to read a register from the EEPROM, we need to shift 'count' | 3502 | /* In order to read a register from the EEPROM, we need to shift 'count' |
4673 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | 3503 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
4674 | * input to the EEPROM (setting the SK bit), and then reading the value of | 3504 | * input to the EEPROM (setting the SK bit), and then reading the value of |
4675 | * the "DO" bit. During this "shifting in" process the "DI" bit should | 3505 | * the "DO" bit. During this "shifting in" process the "DI" bit should |
4676 | * always be clear. | 3506 | * always be clear. |
4677 | */ | 3507 | */ |
4678 | 3508 | ||
4679 | eecd = er32(EECD); | 3509 | eecd = er32(EECD); |
4680 | 3510 | ||
4681 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 3511 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
4682 | data = 0; | 3512 | data = 0; |
4683 | 3513 | ||
4684 | for (i = 0; i < count; i++) { | 3514 | for (i = 0; i < count; i++) { |
4685 | data = data << 1; | 3515 | data = data << 1; |
4686 | e1000_raise_ee_clk(hw, &eecd); | 3516 | e1000_raise_ee_clk(hw, &eecd); |
4687 | 3517 | ||
4688 | eecd = er32(EECD); | 3518 | eecd = er32(EECD); |
4689 | 3519 | ||
4690 | eecd &= ~(E1000_EECD_DI); | 3520 | eecd &= ~(E1000_EECD_DI); |
4691 | if (eecd & E1000_EECD_DO) | 3521 | if (eecd & E1000_EECD_DO) |
4692 | data |= 1; | 3522 | data |= 1; |
4693 | 3523 | ||
4694 | e1000_lower_ee_clk(hw, &eecd); | 3524 | e1000_lower_ee_clk(hw, &eecd); |
4695 | } | 3525 | } |
4696 | 3526 | ||
4697 | return data; | 3527 | return data; |
4698 | } | 3528 | } |
4699 | 3529 | ||
4700 | /****************************************************************************** | 3530 | /** |
4701 | * Prepares EEPROM for access | 3531 | * e1000_acquire_eeprom - Prepares EEPROM for access |
4702 | * | 3532 | * @hw: Struct containing variables accessed by shared code |
4703 | * hw - Struct containing variables accessed by shared code | ||
4704 | * | 3533 | * |
4705 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | 3534 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
4706 | * function should be called before issuing a command to the EEPROM. | 3535 | * function should be called before issuing a command to the EEPROM. |
4707 | *****************************************************************************/ | 3536 | */ |
4708 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw) | 3537 | static s32 e1000_acquire_eeprom(struct e1000_hw *hw) |
4709 | { | 3538 | { |
4710 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3539 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
4711 | u32 eecd, i=0; | 3540 | u32 eecd, i = 0; |
4712 | 3541 | ||
4713 | DEBUGFUNC("e1000_acquire_eeprom"); | 3542 | DEBUGFUNC("e1000_acquire_eeprom"); |
4714 | 3543 | ||
4715 | if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) | 3544 | eecd = er32(EECD); |
4716 | return -E1000_ERR_SWFW_SYNC; | 3545 | |
4717 | eecd = er32(EECD); | 3546 | /* Request EEPROM Access */ |
4718 | 3547 | if (hw->mac_type > e1000_82544) { | |
4719 | if (hw->mac_type != e1000_82573) { | 3548 | eecd |= E1000_EECD_REQ; |
4720 | /* Request EEPROM Access */ | 3549 | ew32(EECD, eecd); |
4721 | if (hw->mac_type > e1000_82544) { | 3550 | eecd = er32(EECD); |
4722 | eecd |= E1000_EECD_REQ; | 3551 | while ((!(eecd & E1000_EECD_GNT)) && |
4723 | ew32(EECD, eecd); | 3552 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
4724 | eecd = er32(EECD); | 3553 | i++; |
4725 | while ((!(eecd & E1000_EECD_GNT)) && | 3554 | udelay(5); |
4726 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | 3555 | eecd = er32(EECD); |
4727 | i++; | 3556 | } |
4728 | udelay(5); | 3557 | if (!(eecd & E1000_EECD_GNT)) { |
4729 | eecd = er32(EECD); | 3558 | eecd &= ~E1000_EECD_REQ; |
4730 | } | 3559 | ew32(EECD, eecd); |
4731 | if (!(eecd & E1000_EECD_GNT)) { | 3560 | DEBUGOUT("Could not acquire EEPROM grant\n"); |
4732 | eecd &= ~E1000_EECD_REQ; | 3561 | return -E1000_ERR_EEPROM; |
4733 | ew32(EECD, eecd); | 3562 | } |
4734 | DEBUGOUT("Could not acquire EEPROM grant\n"); | 3563 | } |
4735 | e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); | 3564 | |
4736 | return -E1000_ERR_EEPROM; | 3565 | /* Setup EEPROM for Read/Write */ |
4737 | } | 3566 | |
4738 | } | 3567 | if (eeprom->type == e1000_eeprom_microwire) { |
4739 | } | 3568 | /* Clear SK and DI */ |
4740 | 3569 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | |
4741 | /* Setup EEPROM for Read/Write */ | 3570 | ew32(EECD, eecd); |
4742 | 3571 | ||
4743 | if (eeprom->type == e1000_eeprom_microwire) { | 3572 | /* Set CS */ |
4744 | /* Clear SK and DI */ | 3573 | eecd |= E1000_EECD_CS; |
4745 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | 3574 | ew32(EECD, eecd); |
4746 | ew32(EECD, eecd); | 3575 | } else if (eeprom->type == e1000_eeprom_spi) { |
4747 | 3576 | /* Clear SK and CS */ | |
4748 | /* Set CS */ | 3577 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
4749 | eecd |= E1000_EECD_CS; | 3578 | ew32(EECD, eecd); |
4750 | ew32(EECD, eecd); | 3579 | udelay(1); |
4751 | } else if (eeprom->type == e1000_eeprom_spi) { | 3580 | } |
4752 | /* Clear SK and CS */ | 3581 | |
4753 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 3582 | return E1000_SUCCESS; |
4754 | ew32(EECD, eecd); | ||
4755 | udelay(1); | ||
4756 | } | ||
4757 | |||
4758 | return E1000_SUCCESS; | ||
4759 | } | 3583 | } |
4760 | 3584 | ||
4761 | /****************************************************************************** | 3585 | /** |
4762 | * Returns EEPROM to a "standby" state | 3586 | * e1000_standby_eeprom - Returns EEPROM to a "standby" state |
4763 | * | 3587 | * @hw: Struct containing variables accessed by shared code |
4764 | * hw - Struct containing variables accessed by shared code | 3588 | */ |
4765 | *****************************************************************************/ | ||
4766 | static void e1000_standby_eeprom(struct e1000_hw *hw) | 3589 | static void e1000_standby_eeprom(struct e1000_hw *hw) |
4767 | { | 3590 | { |
4768 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3591 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
4769 | u32 eecd; | 3592 | u32 eecd; |
4770 | 3593 | ||
4771 | eecd = er32(EECD); | 3594 | eecd = er32(EECD); |
4772 | 3595 | ||
4773 | if (eeprom->type == e1000_eeprom_microwire) { | 3596 | if (eeprom->type == e1000_eeprom_microwire) { |
4774 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 3597 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
4775 | ew32(EECD, eecd); | 3598 | ew32(EECD, eecd); |
4776 | E1000_WRITE_FLUSH(); | 3599 | E1000_WRITE_FLUSH(); |
4777 | udelay(eeprom->delay_usec); | 3600 | udelay(eeprom->delay_usec); |
4778 | 3601 | ||
4779 | /* Clock high */ | 3602 | /* Clock high */ |
4780 | eecd |= E1000_EECD_SK; | 3603 | eecd |= E1000_EECD_SK; |
4781 | ew32(EECD, eecd); | 3604 | ew32(EECD, eecd); |
4782 | E1000_WRITE_FLUSH(); | 3605 | E1000_WRITE_FLUSH(); |
4783 | udelay(eeprom->delay_usec); | 3606 | udelay(eeprom->delay_usec); |
4784 | 3607 | ||
4785 | /* Select EEPROM */ | 3608 | /* Select EEPROM */ |
4786 | eecd |= E1000_EECD_CS; | 3609 | eecd |= E1000_EECD_CS; |
4787 | ew32(EECD, eecd); | 3610 | ew32(EECD, eecd); |
4788 | E1000_WRITE_FLUSH(); | 3611 | E1000_WRITE_FLUSH(); |
4789 | udelay(eeprom->delay_usec); | 3612 | udelay(eeprom->delay_usec); |
4790 | 3613 | ||
4791 | /* Clock low */ | 3614 | /* Clock low */ |
4792 | eecd &= ~E1000_EECD_SK; | 3615 | eecd &= ~E1000_EECD_SK; |
4793 | ew32(EECD, eecd); | 3616 | ew32(EECD, eecd); |
4794 | E1000_WRITE_FLUSH(); | 3617 | E1000_WRITE_FLUSH(); |
4795 | udelay(eeprom->delay_usec); | 3618 | udelay(eeprom->delay_usec); |
4796 | } else if (eeprom->type == e1000_eeprom_spi) { | 3619 | } else if (eeprom->type == e1000_eeprom_spi) { |
4797 | /* Toggle CS to flush commands */ | 3620 | /* Toggle CS to flush commands */ |
4798 | eecd |= E1000_EECD_CS; | 3621 | eecd |= E1000_EECD_CS; |
4799 | ew32(EECD, eecd); | 3622 | ew32(EECD, eecd); |
4800 | E1000_WRITE_FLUSH(); | 3623 | E1000_WRITE_FLUSH(); |
4801 | udelay(eeprom->delay_usec); | 3624 | udelay(eeprom->delay_usec); |
4802 | eecd &= ~E1000_EECD_CS; | 3625 | eecd &= ~E1000_EECD_CS; |
4803 | ew32(EECD, eecd); | 3626 | ew32(EECD, eecd); |
4804 | E1000_WRITE_FLUSH(); | 3627 | E1000_WRITE_FLUSH(); |
4805 | udelay(eeprom->delay_usec); | 3628 | udelay(eeprom->delay_usec); |
4806 | } | 3629 | } |
4807 | } | 3630 | } |
4808 | 3631 | ||
4809 | /****************************************************************************** | 3632 | /** |
4810 | * Terminates a command by inverting the EEPROM's chip select pin | 3633 | * e1000_release_eeprom - drop chip select |
3634 | * @hw: Struct containing variables accessed by shared code | ||
4811 | * | 3635 | * |
4812 | * hw - Struct containing variables accessed by shared code | 3636 | * Terminates a command by inverting the EEPROM's chip select pin |
4813 | *****************************************************************************/ | 3637 | */ |
4814 | static void e1000_release_eeprom(struct e1000_hw *hw) | 3638 | static void e1000_release_eeprom(struct e1000_hw *hw) |
4815 | { | 3639 | { |
4816 | u32 eecd; | 3640 | u32 eecd; |
4817 | |||
4818 | DEBUGFUNC("e1000_release_eeprom"); | ||
4819 | 3641 | ||
4820 | eecd = er32(EECD); | 3642 | DEBUGFUNC("e1000_release_eeprom"); |
4821 | 3643 | ||
4822 | if (hw->eeprom.type == e1000_eeprom_spi) { | 3644 | eecd = er32(EECD); |
4823 | eecd |= E1000_EECD_CS; /* Pull CS high */ | ||
4824 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ | ||
4825 | 3645 | ||
4826 | ew32(EECD, eecd); | 3646 | if (hw->eeprom.type == e1000_eeprom_spi) { |
3647 | eecd |= E1000_EECD_CS; /* Pull CS high */ | ||
3648 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ | ||
4827 | 3649 | ||
4828 | udelay(hw->eeprom.delay_usec); | 3650 | ew32(EECD, eecd); |
4829 | } else if (hw->eeprom.type == e1000_eeprom_microwire) { | ||
4830 | /* cleanup eeprom */ | ||
4831 | 3651 | ||
4832 | /* CS on Microwire is active-high */ | 3652 | udelay(hw->eeprom.delay_usec); |
4833 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | 3653 | } else if (hw->eeprom.type == e1000_eeprom_microwire) { |
3654 | /* cleanup eeprom */ | ||
4834 | 3655 | ||
4835 | ew32(EECD, eecd); | 3656 | /* CS on Microwire is active-high */ |
3657 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | ||
4836 | 3658 | ||
4837 | /* Rising edge of clock */ | 3659 | ew32(EECD, eecd); |
4838 | eecd |= E1000_EECD_SK; | ||
4839 | ew32(EECD, eecd); | ||
4840 | E1000_WRITE_FLUSH(); | ||
4841 | udelay(hw->eeprom.delay_usec); | ||
4842 | 3660 | ||
4843 | /* Falling edge of clock */ | 3661 | /* Rising edge of clock */ |
4844 | eecd &= ~E1000_EECD_SK; | 3662 | eecd |= E1000_EECD_SK; |
4845 | ew32(EECD, eecd); | 3663 | ew32(EECD, eecd); |
4846 | E1000_WRITE_FLUSH(); | 3664 | E1000_WRITE_FLUSH(); |
4847 | udelay(hw->eeprom.delay_usec); | 3665 | udelay(hw->eeprom.delay_usec); |
4848 | } | ||
4849 | 3666 | ||
4850 | /* Stop requesting EEPROM access */ | 3667 | /* Falling edge of clock */ |
4851 | if (hw->mac_type > e1000_82544) { | 3668 | eecd &= ~E1000_EECD_SK; |
4852 | eecd &= ~E1000_EECD_REQ; | 3669 | ew32(EECD, eecd); |
4853 | ew32(EECD, eecd); | 3670 | E1000_WRITE_FLUSH(); |
4854 | } | 3671 | udelay(hw->eeprom.delay_usec); |
3672 | } | ||
4855 | 3673 | ||
4856 | e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); | 3674 | /* Stop requesting EEPROM access */ |
3675 | if (hw->mac_type > e1000_82544) { | ||
3676 | eecd &= ~E1000_EECD_REQ; | ||
3677 | ew32(EECD, eecd); | ||
3678 | } | ||
4857 | } | 3679 | } |
4858 | 3680 | ||
4859 | /****************************************************************************** | 3681 | /** |
4860 | * Reads a 16 bit word from the EEPROM. | 3682 | * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. |
4861 | * | 3683 | * @hw: Struct containing variables accessed by shared code |
4862 | * hw - Struct containing variables accessed by shared code | 3684 | */ |
4863 | *****************************************************************************/ | ||
4864 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) | 3685 | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) |
4865 | { | 3686 | { |
4866 | u16 retry_count = 0; | 3687 | u16 retry_count = 0; |
4867 | u8 spi_stat_reg; | 3688 | u8 spi_stat_reg; |
4868 | |||
4869 | DEBUGFUNC("e1000_spi_eeprom_ready"); | ||
4870 | |||
4871 | /* Read "Status Register" repeatedly until the LSB is cleared. The | ||
4872 | * EEPROM will signal that the command has been completed by clearing | ||
4873 | * bit 0 of the internal status register. If it's not cleared within | ||
4874 | * 5 milliseconds, then error out. | ||
4875 | */ | ||
4876 | retry_count = 0; | ||
4877 | do { | ||
4878 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | ||
4879 | hw->eeprom.opcode_bits); | ||
4880 | spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8); | ||
4881 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | ||
4882 | break; | ||
4883 | |||
4884 | udelay(5); | ||
4885 | retry_count += 5; | ||
4886 | |||
4887 | e1000_standby_eeprom(hw); | ||
4888 | } while (retry_count < EEPROM_MAX_RETRY_SPI); | ||
4889 | |||
4890 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | ||
4891 | * only 0-5mSec on 5V devices) | ||
4892 | */ | ||
4893 | if (retry_count >= EEPROM_MAX_RETRY_SPI) { | ||
4894 | DEBUGOUT("SPI EEPROM Status error\n"); | ||
4895 | return -E1000_ERR_EEPROM; | ||
4896 | } | ||
4897 | |||
4898 | return E1000_SUCCESS; | ||
4899 | } | ||
4900 | |||
4901 | /****************************************************************************** | ||
4902 | * Reads a 16 bit word from the EEPROM. | ||
4903 | * | ||
4904 | * hw - Struct containing variables accessed by shared code | ||
4905 | * offset - offset of word in the EEPROM to read | ||
4906 | * data - word read from the EEPROM | ||
4907 | * words - number of words to read | ||
4908 | *****************************************************************************/ | ||
4909 | s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
4910 | { | ||
4911 | s32 ret; | ||
4912 | spin_lock(&e1000_eeprom_lock); | ||
4913 | ret = e1000_do_read_eeprom(hw, offset, words, data); | ||
4914 | spin_unlock(&e1000_eeprom_lock); | ||
4915 | return ret; | ||
4916 | } | ||
4917 | |||
4918 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
4919 | { | ||
4920 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
4921 | u32 i = 0; | ||
4922 | |||
4923 | DEBUGFUNC("e1000_read_eeprom"); | ||
4924 | |||
4925 | /* If eeprom is not yet detected, do so now */ | ||
4926 | if (eeprom->word_size == 0) | ||
4927 | e1000_init_eeprom_params(hw); | ||
4928 | |||
4929 | /* A check for invalid values: offset too large, too many words, and not | ||
4930 | * enough words. | ||
4931 | */ | ||
4932 | if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | ||
4933 | (words == 0)) { | ||
4934 | DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size); | ||
4935 | return -E1000_ERR_EEPROM; | ||
4936 | } | ||
4937 | |||
4938 | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI | ||
4939 | * directly. In this case, we need to acquire the EEPROM so that | ||
4940 | * FW or other port software does not interrupt. | ||
4941 | */ | ||
4942 | if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) { | ||
4943 | /* Prepare the EEPROM for bit-bang reading */ | ||
4944 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
4945 | return -E1000_ERR_EEPROM; | ||
4946 | } | ||
4947 | |||
4948 | /* Eerd register EEPROM access requires no eeprom aquire/release */ | ||
4949 | if (eeprom->use_eerd) | ||
4950 | return e1000_read_eeprom_eerd(hw, offset, words, data); | ||
4951 | |||
4952 | /* ICH EEPROM access is done via the ICH flash controller */ | ||
4953 | if (eeprom->type == e1000_eeprom_ich8) | ||
4954 | return e1000_read_eeprom_ich8(hw, offset, words, data); | ||
4955 | |||
4956 | /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have | ||
4957 | * acquired the EEPROM at this point, so any returns should relase it */ | ||
4958 | if (eeprom->type == e1000_eeprom_spi) { | ||
4959 | u16 word_in; | ||
4960 | u8 read_opcode = EEPROM_READ_OPCODE_SPI; | ||
4961 | |||
4962 | if (e1000_spi_eeprom_ready(hw)) { | ||
4963 | e1000_release_eeprom(hw); | ||
4964 | return -E1000_ERR_EEPROM; | ||
4965 | } | ||
4966 | |||
4967 | e1000_standby_eeprom(hw); | ||
4968 | |||
4969 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | ||
4970 | if ((eeprom->address_bits == 8) && (offset >= 128)) | ||
4971 | read_opcode |= EEPROM_A8_OPCODE_SPI; | ||
4972 | |||
4973 | /* Send the READ command (opcode + addr) */ | ||
4974 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | ||
4975 | e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits); | ||
4976 | |||
4977 | /* Read the data. The address of the eeprom internally increments with | ||
4978 | * each byte (spi) being read, saving on the overhead of eeprom setup | ||
4979 | * and tear-down. The address counter will roll over if reading beyond | ||
4980 | * the size of the eeprom, thus allowing the entire memory to be read | ||
4981 | * starting from any offset. */ | ||
4982 | for (i = 0; i < words; i++) { | ||
4983 | word_in = e1000_shift_in_ee_bits(hw, 16); | ||
4984 | data[i] = (word_in >> 8) | (word_in << 8); | ||
4985 | } | ||
4986 | } else if (eeprom->type == e1000_eeprom_microwire) { | ||
4987 | for (i = 0; i < words; i++) { | ||
4988 | /* Send the READ command (opcode + addr) */ | ||
4989 | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, | ||
4990 | eeprom->opcode_bits); | ||
4991 | e1000_shift_out_ee_bits(hw, (u16)(offset + i), | ||
4992 | eeprom->address_bits); | ||
4993 | |||
4994 | /* Read the data. For microwire, each word requires the overhead | ||
4995 | * of eeprom setup and tear-down. */ | ||
4996 | data[i] = e1000_shift_in_ee_bits(hw, 16); | ||
4997 | e1000_standby_eeprom(hw); | ||
4998 | } | ||
4999 | } | ||
5000 | |||
5001 | /* End this read operation */ | ||
5002 | e1000_release_eeprom(hw); | ||
5003 | |||
5004 | return E1000_SUCCESS; | ||
5005 | } | ||
5006 | 3689 | ||
5007 | /****************************************************************************** | 3690 | DEBUGFUNC("e1000_spi_eeprom_ready"); |
5008 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
5009 | * | ||
5010 | * hw - Struct containing variables accessed by shared code | ||
5011 | * offset - offset of word in the EEPROM to read | ||
5012 | * data - word read from the EEPROM | ||
5013 | * words - number of words to read | ||
5014 | *****************************************************************************/ | ||
5015 | static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, | ||
5016 | u16 *data) | ||
5017 | { | ||
5018 | u32 i, eerd = 0; | ||
5019 | s32 error = 0; | ||
5020 | 3691 | ||
5021 | for (i = 0; i < words; i++) { | 3692 | /* Read "Status Register" repeatedly until the LSB is cleared. The |
5022 | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + | 3693 | * EEPROM will signal that the command has been completed by clearing |
5023 | E1000_EEPROM_RW_REG_START; | 3694 | * bit 0 of the internal status register. If it's not cleared within |
3695 | * 5 milliseconds, then error out. | ||
3696 | */ | ||
3697 | retry_count = 0; | ||
3698 | do { | ||
3699 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | ||
3700 | hw->eeprom.opcode_bits); | ||
3701 | spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); | ||
3702 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | ||
3703 | break; | ||
5024 | 3704 | ||
5025 | ew32(EERD, eerd); | 3705 | udelay(5); |
5026 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); | 3706 | retry_count += 5; |
5027 | 3707 | ||
5028 | if (error) { | 3708 | e1000_standby_eeprom(hw); |
5029 | break; | 3709 | } while (retry_count < EEPROM_MAX_RETRY_SPI); |
5030 | } | ||
5031 | data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA); | ||
5032 | 3710 | ||
5033 | } | 3711 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
3712 | * only 0-5mSec on 5V devices) | ||
3713 | */ | ||
3714 | if (retry_count >= EEPROM_MAX_RETRY_SPI) { | ||
3715 | DEBUGOUT("SPI EEPROM Status error\n"); | ||
3716 | return -E1000_ERR_EEPROM; | ||
3717 | } | ||
5034 | 3718 | ||
5035 | return error; | 3719 | return E1000_SUCCESS; |
5036 | } | 3720 | } |
5037 | 3721 | ||
5038 | /****************************************************************************** | 3722 | /** |
5039 | * Writes a 16 bit word from the EEPROM using the EEWR register. | 3723 | * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. |
5040 | * | 3724 | * @hw: Struct containing variables accessed by shared code |
5041 | * hw - Struct containing variables accessed by shared code | 3725 | * @offset: offset of word in the EEPROM to read |
5042 | * offset - offset of word in the EEPROM to read | 3726 | * @data: word read from the EEPROM |
5043 | * data - word read from the EEPROM | 3727 | * @words: number of words to read |
5044 | * words - number of words to read | 3728 | */ |
5045 | *****************************************************************************/ | 3729 | s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
5046 | static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, | ||
5047 | u16 *data) | ||
5048 | { | 3730 | { |
5049 | u32 register_value = 0; | 3731 | s32 ret; |
5050 | u32 i = 0; | 3732 | spin_lock(&e1000_eeprom_lock); |
5051 | s32 error = 0; | 3733 | ret = e1000_do_read_eeprom(hw, offset, words, data); |
5052 | 3734 | spin_unlock(&e1000_eeprom_lock); | |
5053 | if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) | 3735 | return ret; |
5054 | return -E1000_ERR_SWFW_SYNC; | ||
5055 | |||
5056 | for (i = 0; i < words; i++) { | ||
5057 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | | ||
5058 | ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | | ||
5059 | E1000_EEPROM_RW_REG_START; | ||
5060 | |||
5061 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | ||
5062 | if (error) { | ||
5063 | break; | ||
5064 | } | ||
5065 | |||
5066 | ew32(EEWR, register_value); | ||
5067 | |||
5068 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | ||
5069 | |||
5070 | if (error) { | ||
5071 | break; | ||
5072 | } | ||
5073 | } | ||
5074 | |||
5075 | e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); | ||
5076 | return error; | ||
5077 | } | 3736 | } |
5078 | 3737 | ||
5079 | /****************************************************************************** | 3738 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
5080 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | 3739 | u16 *data) |
5081 | * | ||
5082 | * hw - Struct containing variables accessed by shared code | ||
5083 | *****************************************************************************/ | ||
5084 | static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | ||
5085 | { | 3740 | { |
5086 | u32 attempts = 100000; | 3741 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
5087 | u32 i, reg = 0; | 3742 | u32 i = 0; |
5088 | s32 done = E1000_ERR_EEPROM; | ||
5089 | |||
5090 | for (i = 0; i < attempts; i++) { | ||
5091 | if (eerd == E1000_EEPROM_POLL_READ) | ||
5092 | reg = er32(EERD); | ||
5093 | else | ||
5094 | reg = er32(EEWR); | ||
5095 | |||
5096 | if (reg & E1000_EEPROM_RW_REG_DONE) { | ||
5097 | done = E1000_SUCCESS; | ||
5098 | break; | ||
5099 | } | ||
5100 | udelay(5); | ||
5101 | } | ||
5102 | |||
5103 | return done; | ||
5104 | } | ||
5105 | 3743 | ||
5106 | /*************************************************************************** | 3744 | DEBUGFUNC("e1000_read_eeprom"); |
5107 | * Description: Determines if the onboard NVM is FLASH or EEPROM. | ||
5108 | * | ||
5109 | * hw - Struct containing variables accessed by shared code | ||
5110 | ****************************************************************************/ | ||
5111 | static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | ||
5112 | { | ||
5113 | u32 eecd = 0; | ||
5114 | 3745 | ||
5115 | DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); | 3746 | /* If eeprom is not yet detected, do so now */ |
3747 | if (eeprom->word_size == 0) | ||
3748 | e1000_init_eeprom_params(hw); | ||
3749 | |||
3750 | /* A check for invalid values: offset too large, too many words, and not | ||
3751 | * enough words. | ||
3752 | */ | ||
3753 | if ((offset >= eeprom->word_size) | ||
3754 | || (words > eeprom->word_size - offset) || (words == 0)) { | ||
3755 | DEBUGOUT2 | ||
3756 | ("\"words\" parameter out of bounds. Words = %d, size = %d\n", | ||
3757 | offset, eeprom->word_size); | ||
3758 | return -E1000_ERR_EEPROM; | ||
3759 | } | ||
5116 | 3760 | ||
5117 | if (hw->mac_type == e1000_ich8lan) | 3761 | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI |
5118 | return false; | 3762 | * directly. In this case, we need to acquire the EEPROM so that |
3763 | * FW or other port software does not interrupt. | ||
3764 | */ | ||
3765 | /* Prepare the EEPROM for bit-bang reading */ | ||
3766 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
3767 | return -E1000_ERR_EEPROM; | ||
3768 | |||
3769 | /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have | ||
3770 | * acquired the EEPROM at this point, so any returns should release it */ | ||
3771 | if (eeprom->type == e1000_eeprom_spi) { | ||
3772 | u16 word_in; | ||
3773 | u8 read_opcode = EEPROM_READ_OPCODE_SPI; | ||
3774 | |||
3775 | if (e1000_spi_eeprom_ready(hw)) { | ||
3776 | e1000_release_eeprom(hw); | ||
3777 | return -E1000_ERR_EEPROM; | ||
3778 | } | ||
5119 | 3779 | ||
5120 | if (hw->mac_type == e1000_82573) { | 3780 | e1000_standby_eeprom(hw); |
5121 | eecd = er32(EECD); | 3781 | |
3782 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | ||
3783 | if ((eeprom->address_bits == 8) && (offset >= 128)) | ||
3784 | read_opcode |= EEPROM_A8_OPCODE_SPI; | ||
3785 | |||
3786 | /* Send the READ command (opcode + addr) */ | ||
3787 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | ||
3788 | e1000_shift_out_ee_bits(hw, (u16) (offset * 2), | ||
3789 | eeprom->address_bits); | ||
3790 | |||
3791 | /* Read the data. The address of the eeprom internally increments with | ||
3792 | * each byte (spi) being read, saving on the overhead of eeprom setup | ||
3793 | * and tear-down. The address counter will roll over if reading beyond | ||
3794 | * the size of the eeprom, thus allowing the entire memory to be read | ||
3795 | * starting from any offset. */ | ||
3796 | for (i = 0; i < words; i++) { | ||
3797 | word_in = e1000_shift_in_ee_bits(hw, 16); | ||
3798 | data[i] = (word_in >> 8) | (word_in << 8); | ||
3799 | } | ||
3800 | } else if (eeprom->type == e1000_eeprom_microwire) { | ||
3801 | for (i = 0; i < words; i++) { | ||
3802 | /* Send the READ command (opcode + addr) */ | ||
3803 | e1000_shift_out_ee_bits(hw, | ||
3804 | EEPROM_READ_OPCODE_MICROWIRE, | ||
3805 | eeprom->opcode_bits); | ||
3806 | e1000_shift_out_ee_bits(hw, (u16) (offset + i), | ||
3807 | eeprom->address_bits); | ||
3808 | |||
3809 | /* Read the data. For microwire, each word requires the overhead | ||
3810 | * of eeprom setup and tear-down. */ | ||
3811 | data[i] = e1000_shift_in_ee_bits(hw, 16); | ||
3812 | e1000_standby_eeprom(hw); | ||
3813 | } | ||
3814 | } | ||
5122 | 3815 | ||
5123 | /* Isolate bits 15 & 16 */ | 3816 | /* End this read operation */ |
5124 | eecd = ((eecd >> 15) & 0x03); | 3817 | e1000_release_eeprom(hw); |
5125 | 3818 | ||
5126 | /* If both bits are set, device is Flash type */ | 3819 | return E1000_SUCCESS; |
5127 | if (eecd == 0x03) { | ||
5128 | return false; | ||
5129 | } | ||
5130 | } | ||
5131 | return true; | ||
5132 | } | 3820 | } |
5133 | 3821 | ||
5134 | /****************************************************************************** | 3822 | /** |
5135 | * Verifies that the EEPROM has a valid checksum | 3823 | * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum |
5136 | * | 3824 | * @hw: Struct containing variables accessed by shared code |
5137 | * hw - Struct containing variables accessed by shared code | ||
5138 | * | 3825 | * |
5139 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | 3826 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
5140 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | 3827 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
5141 | * valid. | 3828 | * valid. |
5142 | *****************************************************************************/ | 3829 | */ |
5143 | s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) | 3830 | s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
5144 | { | 3831 | { |
5145 | u16 checksum = 0; | 3832 | u16 checksum = 0; |
5146 | u16 i, eeprom_data; | 3833 | u16 i, eeprom_data; |
5147 | 3834 | ||
5148 | DEBUGFUNC("e1000_validate_eeprom_checksum"); | 3835 | DEBUGFUNC("e1000_validate_eeprom_checksum"); |
5149 | 3836 | ||
5150 | if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) { | 3837 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
5151 | /* Check bit 4 of word 10h. If it is 0, firmware is done updating | 3838 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
5152 | * 10h-12h. Checksum may need to be fixed. */ | 3839 | DEBUGOUT("EEPROM Read Error\n"); |
5153 | e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); | 3840 | return -E1000_ERR_EEPROM; |
5154 | if ((eeprom_data & 0x10) == 0) { | 3841 | } |
5155 | /* Read 0x23 and check bit 15. This bit is a 1 when the checksum | 3842 | checksum += eeprom_data; |
5156 | * has already been fixed. If the checksum is still wrong and this | 3843 | } |
5157 | * bit is a 1, we need to return bad checksum. Otherwise, we need | 3844 | |
5158 | * to set this bit to a 1 and update the checksum. */ | 3845 | if (checksum == (u16) EEPROM_SUM) |
5159 | e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); | 3846 | return E1000_SUCCESS; |
5160 | if ((eeprom_data & 0x8000) == 0) { | 3847 | else { |
5161 | eeprom_data |= 0x8000; | 3848 | DEBUGOUT("EEPROM Checksum Invalid\n"); |
5162 | e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); | 3849 | return -E1000_ERR_EEPROM; |
5163 | e1000_update_eeprom_checksum(hw); | 3850 | } |
5164 | } | ||
5165 | } | ||
5166 | } | ||
5167 | |||
5168 | if (hw->mac_type == e1000_ich8lan) { | ||
5169 | /* Drivers must allocate the shadow ram structure for the | ||
5170 | * EEPROM checksum to be updated. Otherwise, this bit as well | ||
5171 | * as the checksum must both be set correctly for this | ||
5172 | * validation to pass. | ||
5173 | */ | ||
5174 | e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); | ||
5175 | if ((eeprom_data & 0x40) == 0) { | ||
5176 | eeprom_data |= 0x40; | ||
5177 | e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); | ||
5178 | e1000_update_eeprom_checksum(hw); | ||
5179 | } | ||
5180 | } | ||
5181 | |||
5182 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
5183 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
5184 | DEBUGOUT("EEPROM Read Error\n"); | ||
5185 | return -E1000_ERR_EEPROM; | ||
5186 | } | ||
5187 | checksum += eeprom_data; | ||
5188 | } | ||
5189 | |||
5190 | if (checksum == (u16)EEPROM_SUM) | ||
5191 | return E1000_SUCCESS; | ||
5192 | else { | ||
5193 | DEBUGOUT("EEPROM Checksum Invalid\n"); | ||
5194 | return -E1000_ERR_EEPROM; | ||
5195 | } | ||
5196 | } | 3851 | } |
5197 | 3852 | ||
5198 | /****************************************************************************** | 3853 | /** |
5199 | * Calculates the EEPROM checksum and writes it to the EEPROM | 3854 | * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum |
5200 | * | 3855 | * @hw: Struct containing variables accessed by shared code |
5201 | * hw - Struct containing variables accessed by shared code | ||
5202 | * | 3856 | * |
5203 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | 3857 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. |
5204 | * Writes the difference to word offset 63 of the EEPROM. | 3858 | * Writes the difference to word offset 63 of the EEPROM. |
5205 | *****************************************************************************/ | 3859 | */ |
5206 | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) | 3860 | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) |
5207 | { | 3861 | { |
5208 | u32 ctrl_ext; | 3862 | u16 checksum = 0; |
5209 | u16 checksum = 0; | 3863 | u16 i, eeprom_data; |
5210 | u16 i, eeprom_data; | 3864 | |
5211 | 3865 | DEBUGFUNC("e1000_update_eeprom_checksum"); | |
5212 | DEBUGFUNC("e1000_update_eeprom_checksum"); | 3866 | |
5213 | 3867 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { | |
5214 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { | 3868 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
5215 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 3869 | DEBUGOUT("EEPROM Read Error\n"); |
5216 | DEBUGOUT("EEPROM Read Error\n"); | 3870 | return -E1000_ERR_EEPROM; |
5217 | return -E1000_ERR_EEPROM; | 3871 | } |
5218 | } | 3872 | checksum += eeprom_data; |
5219 | checksum += eeprom_data; | 3873 | } |
5220 | } | 3874 | checksum = (u16) EEPROM_SUM - checksum; |
5221 | checksum = (u16)EEPROM_SUM - checksum; | 3875 | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
5222 | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 3876 | DEBUGOUT("EEPROM Write Error\n"); |
5223 | DEBUGOUT("EEPROM Write Error\n"); | 3877 | return -E1000_ERR_EEPROM; |
5224 | return -E1000_ERR_EEPROM; | 3878 | } |
5225 | } else if (hw->eeprom.type == e1000_eeprom_flash) { | 3879 | return E1000_SUCCESS; |
5226 | e1000_commit_shadow_ram(hw); | ||
5227 | } else if (hw->eeprom.type == e1000_eeprom_ich8) { | ||
5228 | e1000_commit_shadow_ram(hw); | ||
5229 | /* Reload the EEPROM, or else modifications will not appear | ||
5230 | * until after next adapter reset. */ | ||
5231 | ctrl_ext = er32(CTRL_EXT); | ||
5232 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
5233 | ew32(CTRL_EXT, ctrl_ext); | ||
5234 | msleep(10); | ||
5235 | } | ||
5236 | return E1000_SUCCESS; | ||
5237 | } | 3880 | } |
5238 | 3881 | ||
5239 | /****************************************************************************** | 3882 | /** |
5240 | * Parent function for writing words to the different EEPROM types. | 3883 | * e1000_write_eeprom - write words to the different EEPROM types. |
5241 | * | 3884 | * @hw: Struct containing variables accessed by shared code |
5242 | * hw - Struct containing variables accessed by shared code | 3885 | * @offset: offset within the EEPROM to be written to |
5243 | * offset - offset within the EEPROM to be written to | 3886 | * @words: number of words to write |
5244 | * words - number of words to write | 3887 | * @data: 16 bit word to be written to the EEPROM |
5245 | * data - 16 bit word to be written to the EEPROM | ||
5246 | * | 3888 | * |
5247 | * If e1000_update_eeprom_checksum is not called after this function, the | 3889 | * If e1000_update_eeprom_checksum is not called after this function, the |
5248 | * EEPROM will most likely contain an invalid checksum. | 3890 | * EEPROM will most likely contain an invalid checksum. |
5249 | *****************************************************************************/ | 3891 | */ |
5250 | s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 3892 | s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
5251 | { | 3893 | { |
5252 | s32 ret; | 3894 | s32 ret; |
5253 | spin_lock(&e1000_eeprom_lock); | 3895 | spin_lock(&e1000_eeprom_lock); |
5254 | ret = e1000_do_write_eeprom(hw, offset, words, data); | 3896 | ret = e1000_do_write_eeprom(hw, offset, words, data); |
5255 | spin_unlock(&e1000_eeprom_lock); | 3897 | spin_unlock(&e1000_eeprom_lock); |
5256 | return ret; | 3898 | return ret; |
5257 | } | 3899 | } |
5258 | 3900 | ||
5259 | 3901 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | |
5260 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 3902 | u16 *data) |
5261 | { | 3903 | { |
5262 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3904 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
5263 | s32 status = 0; | 3905 | s32 status = 0; |
5264 | 3906 | ||
5265 | DEBUGFUNC("e1000_write_eeprom"); | 3907 | DEBUGFUNC("e1000_write_eeprom"); |
5266 | 3908 | ||
5267 | /* If eeprom is not yet detected, do so now */ | 3909 | /* If eeprom is not yet detected, do so now */ |
5268 | if (eeprom->word_size == 0) | 3910 | if (eeprom->word_size == 0) |
5269 | e1000_init_eeprom_params(hw); | 3911 | e1000_init_eeprom_params(hw); |
5270 | 3912 | ||
5271 | /* A check for invalid values: offset too large, too many words, and not | 3913 | /* A check for invalid values: offset too large, too many words, and not |
5272 | * enough words. | 3914 | * enough words. |
5273 | */ | 3915 | */ |
5274 | if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | 3916 | if ((offset >= eeprom->word_size) |
5275 | (words == 0)) { | 3917 | || (words > eeprom->word_size - offset) || (words == 0)) { |
5276 | DEBUGOUT("\"words\" parameter out of bounds\n"); | 3918 | DEBUGOUT("\"words\" parameter out of bounds\n"); |
5277 | return -E1000_ERR_EEPROM; | 3919 | return -E1000_ERR_EEPROM; |
5278 | } | 3920 | } |
5279 | 3921 | ||
5280 | /* 82573 writes only through eewr */ | 3922 | /* Prepare the EEPROM for writing */ |
5281 | if (eeprom->use_eewr) | 3923 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
5282 | return e1000_write_eeprom_eewr(hw, offset, words, data); | 3924 | return -E1000_ERR_EEPROM; |
5283 | 3925 | ||
5284 | if (eeprom->type == e1000_eeprom_ich8) | 3926 | if (eeprom->type == e1000_eeprom_microwire) { |
5285 | return e1000_write_eeprom_ich8(hw, offset, words, data); | 3927 | status = e1000_write_eeprom_microwire(hw, offset, words, data); |
5286 | 3928 | } else { | |
5287 | /* Prepare the EEPROM for writing */ | 3929 | status = e1000_write_eeprom_spi(hw, offset, words, data); |
5288 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 3930 | msleep(10); |
5289 | return -E1000_ERR_EEPROM; | 3931 | } |
5290 | 3932 | ||
5291 | if (eeprom->type == e1000_eeprom_microwire) { | 3933 | /* Done with writing */ |
5292 | status = e1000_write_eeprom_microwire(hw, offset, words, data); | 3934 | e1000_release_eeprom(hw); |
5293 | } else { | 3935 | |
5294 | status = e1000_write_eeprom_spi(hw, offset, words, data); | 3936 | return status; |
5295 | msleep(10); | ||
5296 | } | ||
5297 | |||
5298 | /* Done with writing */ | ||
5299 | e1000_release_eeprom(hw); | ||
5300 | |||
5301 | return status; | ||
5302 | } | 3937 | } |
5303 | 3938 | ||
5304 | /****************************************************************************** | 3939 | /** |
5305 | * Writes a 16 bit word to a given offset in an SPI EEPROM. | 3940 | * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. |
5306 | * | 3941 | * @hw: Struct containing variables accessed by shared code |
5307 | * hw - Struct containing variables accessed by shared code | 3942 | * @offset: offset within the EEPROM to be written to |
5308 | * offset - offset within the EEPROM to be written to | 3943 | * @words: number of words to write |
5309 | * words - number of words to write | 3944 | * @data: pointer to array of 8 bit words to be written to the EEPROM |
5310 | * data - pointer to array of 8 bit words to be written to the EEPROM | 3945 | */ |
5311 | * | ||
5312 | *****************************************************************************/ | ||
5313 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, | 3946 | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, |
5314 | u16 *data) | 3947 | u16 *data) |
5315 | { | 3948 | { |
5316 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3949 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
5317 | u16 widx = 0; | 3950 | u16 widx = 0; |
5318 | 3951 | ||
5319 | DEBUGFUNC("e1000_write_eeprom_spi"); | 3952 | DEBUGFUNC("e1000_write_eeprom_spi"); |
5320 | 3953 | ||
5321 | while (widx < words) { | 3954 | while (widx < words) { |
5322 | u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; | 3955 | u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; |
5323 | 3956 | ||
5324 | if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; | 3957 | if (e1000_spi_eeprom_ready(hw)) |
3958 | return -E1000_ERR_EEPROM; | ||
5325 | 3959 | ||
5326 | e1000_standby_eeprom(hw); | 3960 | e1000_standby_eeprom(hw); |
5327 | 3961 | ||
5328 | /* Send the WRITE ENABLE command (8 bit opcode ) */ | 3962 | /* Send the WRITE ENABLE command (8 bit opcode ) */ |
5329 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | 3963 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, |
5330 | eeprom->opcode_bits); | 3964 | eeprom->opcode_bits); |
5331 | 3965 | ||
5332 | e1000_standby_eeprom(hw); | 3966 | e1000_standby_eeprom(hw); |
5333 | 3967 | ||
5334 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 3968 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
5335 | if ((eeprom->address_bits == 8) && (offset >= 128)) | 3969 | if ((eeprom->address_bits == 8) && (offset >= 128)) |
5336 | write_opcode |= EEPROM_A8_OPCODE_SPI; | 3970 | write_opcode |= EEPROM_A8_OPCODE_SPI; |
5337 | 3971 | ||
5338 | /* Send the Write command (8-bit opcode + addr) */ | 3972 | /* Send the Write command (8-bit opcode + addr) */ |
5339 | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | 3973 | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); |
5340 | 3974 | ||
5341 | e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2), | 3975 | e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), |
5342 | eeprom->address_bits); | 3976 | eeprom->address_bits); |
5343 | 3977 | ||
5344 | /* Send the data */ | 3978 | /* Send the data */ |
5345 | 3979 | ||
5346 | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ | 3980 | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ |
5347 | while (widx < words) { | 3981 | while (widx < words) { |
5348 | u16 word_out = data[widx]; | 3982 | u16 word_out = data[widx]; |
5349 | word_out = (word_out >> 8) | (word_out << 8); | 3983 | word_out = (word_out >> 8) | (word_out << 8); |
5350 | e1000_shift_out_ee_bits(hw, word_out, 16); | 3984 | e1000_shift_out_ee_bits(hw, word_out, 16); |
5351 | widx++; | 3985 | widx++; |
5352 | 3986 | ||
5353 | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE | 3987 | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE |
5354 | * operation, while the smaller eeproms are capable of an 8-byte | 3988 | * operation, while the smaller eeproms are capable of an 8-byte |
5355 | * PAGE WRITE operation. Break the inner loop to pass new address | 3989 | * PAGE WRITE operation. Break the inner loop to pass new address |
5356 | */ | 3990 | */ |
5357 | if ((((offset + widx)*2) % eeprom->page_size) == 0) { | 3991 | if ((((offset + widx) * 2) % eeprom->page_size) == 0) { |
5358 | e1000_standby_eeprom(hw); | 3992 | e1000_standby_eeprom(hw); |
5359 | break; | 3993 | break; |
5360 | } | 3994 | } |
5361 | } | 3995 | } |
5362 | } | 3996 | } |
5363 | 3997 | ||
5364 | return E1000_SUCCESS; | 3998 | return E1000_SUCCESS; |
5365 | } | 3999 | } |
5366 | 4000 | ||
5367 | /****************************************************************************** | 4001 | /** |
5368 | * Writes a 16 bit word to a given offset in a Microwire EEPROM. | 4002 | * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. |
5369 | * | 4003 | * @hw: Struct containing variables accessed by shared code |
5370 | * hw - Struct containing variables accessed by shared code | 4004 | * @offset: offset within the EEPROM to be written to |
5371 | * offset - offset within the EEPROM to be written to | 4005 | * @words: number of words to write |
5372 | * words - number of words to write | 4006 | * @data: pointer to array of 8 bit words to be written to the EEPROM |
5373 | * data - pointer to array of 16 bit words to be written to the EEPROM | 4007 | */ |
5374 | * | ||
5375 | *****************************************************************************/ | ||
5376 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 4008 | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
5377 | u16 words, u16 *data) | 4009 | u16 words, u16 *data) |
5378 | { | 4010 | { |
5379 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 4011 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
5380 | u32 eecd; | 4012 | u32 eecd; |
5381 | u16 words_written = 0; | 4013 | u16 words_written = 0; |
5382 | u16 i = 0; | 4014 | u16 i = 0; |
5383 | |||
5384 | DEBUGFUNC("e1000_write_eeprom_microwire"); | ||
5385 | |||
5386 | /* Send the write enable command to the EEPROM (3-bit opcode plus | ||
5387 | * 6/8-bit dummy address beginning with 11). It's less work to include | ||
5388 | * the 11 of the dummy address as part of the opcode than it is to shift | ||
5389 | * it over the correct number of bits for the address. This puts the | ||
5390 | * EEPROM into write/erase mode. | ||
5391 | */ | ||
5392 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | ||
5393 | (u16)(eeprom->opcode_bits + 2)); | ||
5394 | |||
5395 | e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); | ||
5396 | |||
5397 | /* Prepare the EEPROM */ | ||
5398 | e1000_standby_eeprom(hw); | ||
5399 | |||
5400 | while (words_written < words) { | ||
5401 | /* Send the Write command (3-bit opcode + addr) */ | ||
5402 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | ||
5403 | eeprom->opcode_bits); | ||
5404 | |||
5405 | e1000_shift_out_ee_bits(hw, (u16)(offset + words_written), | ||
5406 | eeprom->address_bits); | ||
5407 | |||
5408 | /* Send the data */ | ||
5409 | e1000_shift_out_ee_bits(hw, data[words_written], 16); | ||
5410 | |||
5411 | /* Toggle the CS line. This in effect tells the EEPROM to execute | ||
5412 | * the previous command. | ||
5413 | */ | ||
5414 | e1000_standby_eeprom(hw); | ||
5415 | |||
5416 | /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will | ||
5417 | * signal that the command has been completed by raising the DO signal. | ||
5418 | * If DO does not go high in 10 milliseconds, then error out. | ||
5419 | */ | ||
5420 | for (i = 0; i < 200; i++) { | ||
5421 | eecd = er32(EECD); | ||
5422 | if (eecd & E1000_EECD_DO) break; | ||
5423 | udelay(50); | ||
5424 | } | ||
5425 | if (i == 200) { | ||
5426 | DEBUGOUT("EEPROM Write did not complete\n"); | ||
5427 | return -E1000_ERR_EEPROM; | ||
5428 | } | ||
5429 | |||
5430 | /* Recover from write */ | ||
5431 | e1000_standby_eeprom(hw); | ||
5432 | |||
5433 | words_written++; | ||
5434 | } | ||
5435 | |||
5436 | /* Send the write disable command to the EEPROM (3-bit opcode plus | ||
5437 | * 6/8-bit dummy address beginning with 10). It's less work to include | ||
5438 | * the 10 of the dummy address as part of the opcode than it is to shift | ||
5439 | * it over the correct number of bits for the address. This takes the | ||
5440 | * EEPROM out of write/erase mode. | ||
5441 | */ | ||
5442 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | ||
5443 | (u16)(eeprom->opcode_bits + 2)); | ||
5444 | |||
5445 | e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); | ||
5446 | |||
5447 | return E1000_SUCCESS; | ||
5448 | } | ||
5449 | 4015 | ||
5450 | /****************************************************************************** | 4016 | DEBUGFUNC("e1000_write_eeprom_microwire"); |
5451 | * Flushes the cached eeprom to NVM. This is done by saving the modified values | 4017 | |
5452 | * in the eeprom cache and the non modified values in the currently active bank | 4018 | /* Send the write enable command to the EEPROM (3-bit opcode plus |
5453 | * to the new bank. | 4019 | * 6/8-bit dummy address beginning with 11). It's less work to include |
5454 | * | 4020 | * the 11 of the dummy address as part of the opcode than it is to shift |
5455 | * hw - Struct containing variables accessed by shared code | 4021 | * it over the correct number of bits for the address. This puts the |
5456 | * offset - offset of word in the EEPROM to read | 4022 | * EEPROM into write/erase mode. |
5457 | * data - word read from the EEPROM | 4023 | */ |
5458 | * words - number of words to read | 4024 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, |
5459 | *****************************************************************************/ | 4025 | (u16) (eeprom->opcode_bits + 2)); |
5460 | static s32 e1000_commit_shadow_ram(struct e1000_hw *hw) | 4026 | |
5461 | { | 4027 | e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); |
5462 | u32 attempts = 100000; | 4028 | |
5463 | u32 eecd = 0; | 4029 | /* Prepare the EEPROM */ |
5464 | u32 flop = 0; | 4030 | e1000_standby_eeprom(hw); |
5465 | u32 i = 0; | 4031 | |
5466 | s32 error = E1000_SUCCESS; | 4032 | while (words_written < words) { |
5467 | u32 old_bank_offset = 0; | 4033 | /* Send the Write command (3-bit opcode + addr) */ |
5468 | u32 new_bank_offset = 0; | 4034 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, |
5469 | u8 low_byte = 0; | 4035 | eeprom->opcode_bits); |
5470 | u8 high_byte = 0; | 4036 | |
5471 | bool sector_write_failed = false; | 4037 | e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), |
5472 | 4038 | eeprom->address_bits); | |
5473 | if (hw->mac_type == e1000_82573) { | 4039 | |
5474 | /* The flop register will be used to determine if flash type is STM */ | 4040 | /* Send the data */ |
5475 | flop = er32(FLOP); | 4041 | e1000_shift_out_ee_bits(hw, data[words_written], 16); |
5476 | for (i=0; i < attempts; i++) { | 4042 | |
5477 | eecd = er32(EECD); | 4043 | /* Toggle the CS line. This in effect tells the EEPROM to execute |
5478 | if ((eecd & E1000_EECD_FLUPD) == 0) { | 4044 | * the previous command. |
5479 | break; | 4045 | */ |
5480 | } | 4046 | e1000_standby_eeprom(hw); |
5481 | udelay(5); | 4047 | |
5482 | } | 4048 | /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will |
5483 | 4049 | * signal that the command has been completed by raising the DO signal. | |
5484 | if (i == attempts) { | 4050 | * If DO does not go high in 10 milliseconds, then error out. |
5485 | return -E1000_ERR_EEPROM; | 4051 | */ |
5486 | } | 4052 | for (i = 0; i < 200; i++) { |
5487 | 4053 | eecd = er32(EECD); | |
5488 | /* If STM opcode located in bits 15:8 of flop, reset firmware */ | 4054 | if (eecd & E1000_EECD_DO) |
5489 | if ((flop & 0xFF00) == E1000_STM_OPCODE) { | 4055 | break; |
5490 | ew32(HICR, E1000_HICR_FW_RESET); | 4056 | udelay(50); |
5491 | } | 4057 | } |
5492 | 4058 | if (i == 200) { | |
5493 | /* Perform the flash update */ | 4059 | DEBUGOUT("EEPROM Write did not complete\n"); |
5494 | ew32(EECD, eecd | E1000_EECD_FLUPD); | 4060 | return -E1000_ERR_EEPROM; |
5495 | 4061 | } | |
5496 | for (i=0; i < attempts; i++) { | 4062 | |
5497 | eecd = er32(EECD); | 4063 | /* Recover from write */ |
5498 | if ((eecd & E1000_EECD_FLUPD) == 0) { | 4064 | e1000_standby_eeprom(hw); |
5499 | break; | 4065 | |
5500 | } | 4066 | words_written++; |
5501 | udelay(5); | 4067 | } |
5502 | } | 4068 | |
5503 | 4069 | /* Send the write disable command to the EEPROM (3-bit opcode plus | |
5504 | if (i == attempts) { | 4070 | * 6/8-bit dummy address beginning with 10). It's less work to include |
5505 | return -E1000_ERR_EEPROM; | 4071 | * the 10 of the dummy address as part of the opcode than it is to shift |
5506 | } | 4072 | * it over the correct number of bits for the address. This takes the |
5507 | } | 4073 | * EEPROM out of write/erase mode. |
5508 | 4074 | */ | |
5509 | if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { | 4075 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, |
5510 | /* We're writing to the opposite bank so if we're on bank 1, | 4076 | (u16) (eeprom->opcode_bits + 2)); |
5511 | * write to bank 0 etc. We also need to erase the segment that | 4077 | |
5512 | * is going to be written */ | 4078 | e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); |
5513 | if (!(er32(EECD) & E1000_EECD_SEC1VAL)) { | 4079 | |
5514 | new_bank_offset = hw->flash_bank_size * 2; | 4080 | return E1000_SUCCESS; |
5515 | old_bank_offset = 0; | ||
5516 | e1000_erase_ich8_4k_segment(hw, 1); | ||
5517 | } else { | ||
5518 | old_bank_offset = hw->flash_bank_size * 2; | ||
5519 | new_bank_offset = 0; | ||
5520 | e1000_erase_ich8_4k_segment(hw, 0); | ||
5521 | } | ||
5522 | |||
5523 | sector_write_failed = false; | ||
5524 | /* Loop for every byte in the shadow RAM, | ||
5525 | * which is in units of words. */ | ||
5526 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
5527 | /* Determine whether to write the value stored | ||
5528 | * in the other NVM bank or a modified value stored | ||
5529 | * in the shadow RAM */ | ||
5530 | if (hw->eeprom_shadow_ram[i].modified) { | ||
5531 | low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word; | ||
5532 | udelay(100); | ||
5533 | error = e1000_verify_write_ich8_byte(hw, | ||
5534 | (i << 1) + new_bank_offset, low_byte); | ||
5535 | |||
5536 | if (error != E1000_SUCCESS) | ||
5537 | sector_write_failed = true; | ||
5538 | else { | ||
5539 | high_byte = | ||
5540 | (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); | ||
5541 | udelay(100); | ||
5542 | } | ||
5543 | } else { | ||
5544 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, | ||
5545 | &low_byte); | ||
5546 | udelay(100); | ||
5547 | error = e1000_verify_write_ich8_byte(hw, | ||
5548 | (i << 1) + new_bank_offset, low_byte); | ||
5549 | |||
5550 | if (error != E1000_SUCCESS) | ||
5551 | sector_write_failed = true; | ||
5552 | else { | ||
5553 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, | ||
5554 | &high_byte); | ||
5555 | udelay(100); | ||
5556 | } | ||
5557 | } | ||
5558 | |||
5559 | /* If the write of the low byte was successful, go ahead and | ||
5560 | * write the high byte while checking to make sure that if it | ||
5561 | * is the signature byte, then it is handled properly */ | ||
5562 | if (!sector_write_failed) { | ||
5563 | /* If the word is 0x13, then make sure the signature bits | ||
5564 | * (15:14) are 11b until the commit has completed. | ||
5565 | * This will allow us to write 10b which indicates the | ||
5566 | * signature is valid. We want to do this after the write | ||
5567 | * has completed so that we don't mark the segment valid | ||
5568 | * while the write is still in progress */ | ||
5569 | if (i == E1000_ICH_NVM_SIG_WORD) | ||
5570 | high_byte = E1000_ICH_NVM_SIG_MASK | high_byte; | ||
5571 | |||
5572 | error = e1000_verify_write_ich8_byte(hw, | ||
5573 | (i << 1) + new_bank_offset + 1, high_byte); | ||
5574 | if (error != E1000_SUCCESS) | ||
5575 | sector_write_failed = true; | ||
5576 | |||
5577 | } else { | ||
5578 | /* If the write failed then break from the loop and | ||
5579 | * return an error */ | ||
5580 | break; | ||
5581 | } | ||
5582 | } | ||
5583 | |||
5584 | /* Don't bother writing the segment valid bits if sector | ||
5585 | * programming failed. */ | ||
5586 | if (!sector_write_failed) { | ||
5587 | /* Finally validate the new segment by setting bit 15:14 | ||
5588 | * to 10b in word 0x13 , this can be done without an | ||
5589 | * erase as well since these bits are 11 to start with | ||
5590 | * and we need to change bit 14 to 0b */ | ||
5591 | e1000_read_ich8_byte(hw, | ||
5592 | E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, | ||
5593 | &high_byte); | ||
5594 | high_byte &= 0xBF; | ||
5595 | error = e1000_verify_write_ich8_byte(hw, | ||
5596 | E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte); | ||
5597 | /* And invalidate the previously valid segment by setting | ||
5598 | * its signature word (0x13) high_byte to 0b. This can be | ||
5599 | * done without an erase because flash erase sets all bits | ||
5600 | * to 1's. We can write 1's to 0's without an erase */ | ||
5601 | if (error == E1000_SUCCESS) { | ||
5602 | error = e1000_verify_write_ich8_byte(hw, | ||
5603 | E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0); | ||
5604 | } | ||
5605 | |||
5606 | /* Clear the now not used entry in the cache */ | ||
5607 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
5608 | hw->eeprom_shadow_ram[i].modified = false; | ||
5609 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
5610 | } | ||
5611 | } | ||
5612 | } | ||
5613 | |||
5614 | return error; | ||
5615 | } | 4081 | } |
5616 | 4082 | ||
5617 | /****************************************************************************** | 4083 | /** |
4084 | * e1000_read_mac_addr - read the adapters MAC from eeprom | ||
4085 | * @hw: Struct containing variables accessed by shared code | ||
4086 | * | ||
5618 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | 4087 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
5619 | * second function of dual function devices | 4088 | * second function of dual function devices |
5620 | * | 4089 | */ |
5621 | * hw - Struct containing variables accessed by shared code | ||
5622 | *****************************************************************************/ | ||
5623 | s32 e1000_read_mac_addr(struct e1000_hw *hw) | 4090 | s32 e1000_read_mac_addr(struct e1000_hw *hw) |
5624 | { | 4091 | { |
5625 | u16 offset; | 4092 | u16 offset; |
5626 | u16 eeprom_data, i; | 4093 | u16 eeprom_data, i; |
5627 | 4094 | ||
5628 | DEBUGFUNC("e1000_read_mac_addr"); | 4095 | DEBUGFUNC("e1000_read_mac_addr"); |
5629 | 4096 | ||
5630 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | 4097 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
5631 | offset = i >> 1; | 4098 | offset = i >> 1; |
5632 | if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | 4099 | if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
5633 | DEBUGOUT("EEPROM Read Error\n"); | 4100 | DEBUGOUT("EEPROM Read Error\n"); |
5634 | return -E1000_ERR_EEPROM; | 4101 | return -E1000_ERR_EEPROM; |
5635 | } | 4102 | } |
5636 | hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF); | 4103 | hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); |
5637 | hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8); | 4104 | hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); |
5638 | } | 4105 | } |
5639 | 4106 | ||
5640 | switch (hw->mac_type) { | 4107 | switch (hw->mac_type) { |
5641 | default: | 4108 | default: |
5642 | break; | 4109 | break; |
5643 | case e1000_82546: | 4110 | case e1000_82546: |
5644 | case e1000_82546_rev_3: | 4111 | case e1000_82546_rev_3: |
5645 | case e1000_82571: | 4112 | if (er32(STATUS) & E1000_STATUS_FUNC_1) |
5646 | case e1000_80003es2lan: | 4113 | hw->perm_mac_addr[5] ^= 0x01; |
5647 | if (er32(STATUS) & E1000_STATUS_FUNC_1) | 4114 | break; |
5648 | hw->perm_mac_addr[5] ^= 0x01; | 4115 | } |
5649 | break; | 4116 | |
5650 | } | 4117 | for (i = 0; i < NODE_ADDRESS_SIZE; i++) |
5651 | 4118 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | |
5652 | for (i = 0; i < NODE_ADDRESS_SIZE; i++) | 4119 | return E1000_SUCCESS; |
5653 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | ||
5654 | return E1000_SUCCESS; | ||
5655 | } | 4120 | } |
5656 | 4121 | ||
5657 | /****************************************************************************** | 4122 | /** |
5658 | * Initializes receive address filters. | 4123 | * e1000_init_rx_addrs - Initializes receive address filters. |
5659 | * | 4124 | * @hw: Struct containing variables accessed by shared code |
5660 | * hw - Struct containing variables accessed by shared code | ||
5661 | * | 4125 | * |
5662 | * Places the MAC address in receive address register 0 and clears the rest | 4126 | * Places the MAC address in receive address register 0 and clears the rest |
5663 | * of the receive addresss registers. Clears the multicast table. Assumes | 4127 | * of the receive address registers. Clears the multicast table. Assumes |
5664 | * the receiver is in reset when the routine is called. | 4128 | * the receiver is in reset when the routine is called. |
5665 | *****************************************************************************/ | 4129 | */ |
5666 | static void e1000_init_rx_addrs(struct e1000_hw *hw) | 4130 | static void e1000_init_rx_addrs(struct e1000_hw *hw) |
5667 | { | 4131 | { |
5668 | u32 i; | 4132 | u32 i; |
5669 | u32 rar_num; | 4133 | u32 rar_num; |
5670 | 4134 | ||
5671 | DEBUGFUNC("e1000_init_rx_addrs"); | 4135 | DEBUGFUNC("e1000_init_rx_addrs"); |
5672 | 4136 | ||
5673 | /* Setup the receive address. */ | 4137 | /* Setup the receive address. */ |
5674 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | 4138 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
5675 | 4139 | ||
5676 | e1000_rar_set(hw, hw->mac_addr, 0); | 4140 | e1000_rar_set(hw, hw->mac_addr, 0); |
5677 | 4141 | ||
5678 | rar_num = E1000_RAR_ENTRIES; | 4142 | rar_num = E1000_RAR_ENTRIES; |
5679 | 4143 | ||
5680 | /* Reserve a spot for the Locally Administered Address to work around | 4144 | /* Zero out the other 15 receive addresses. */ |
5681 | * an 82571 issue in which a reset on one port will reload the MAC on | 4145 | DEBUGOUT("Clearing RAR[1-15]\n"); |
5682 | * the other port. */ | 4146 | for (i = 1; i < rar_num; i++) { |
5683 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present)) | 4147 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
5684 | rar_num -= 1; | 4148 | E1000_WRITE_FLUSH(); |
5685 | if (hw->mac_type == e1000_ich8lan) | 4149 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
5686 | rar_num = E1000_RAR_ENTRIES_ICH8LAN; | 4150 | E1000_WRITE_FLUSH(); |
5687 | 4151 | } | |
5688 | /* Zero out the other 15 receive addresses. */ | ||
5689 | DEBUGOUT("Clearing RAR[1-15]\n"); | ||
5690 | for (i = 1; i < rar_num; i++) { | ||
5691 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | ||
5692 | E1000_WRITE_FLUSH(); | ||
5693 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | ||
5694 | E1000_WRITE_FLUSH(); | ||
5695 | } | ||
5696 | } | 4152 | } |
5697 | 4153 | ||
5698 | /****************************************************************************** | 4154 | /** |
5699 | * Hashes an address to determine its location in the multicast table | 4155 | * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table |
5700 | * | 4156 | * @hw: Struct containing variables accessed by shared code |
5701 | * hw - Struct containing variables accessed by shared code | 4157 | * @mc_addr: the multicast address to hash |
5702 | * mc_addr - the multicast address to hash | 4158 | */ |
5703 | *****************************************************************************/ | ||
5704 | u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | 4159 | u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) |
5705 | { | 4160 | { |
5706 | u32 hash_value = 0; | 4161 | u32 hash_value = 0; |
5707 | 4162 | ||
5708 | /* The portion of the address that is used for the hash table is | 4163 | /* The portion of the address that is used for the hash table is |
5709 | * determined by the mc_filter_type setting. | 4164 | * determined by the mc_filter_type setting. |
5710 | */ | 4165 | */ |
5711 | switch (hw->mc_filter_type) { | 4166 | switch (hw->mc_filter_type) { |
5712 | /* [0] [1] [2] [3] [4] [5] | 4167 | /* [0] [1] [2] [3] [4] [5] |
5713 | * 01 AA 00 12 34 56 | 4168 | * 01 AA 00 12 34 56 |
5714 | * LSB MSB | 4169 | * LSB MSB |
5715 | */ | 4170 | */ |
5716 | case 0: | 4171 | case 0: |
5717 | if (hw->mac_type == e1000_ich8lan) { | 4172 | /* [47:36] i.e. 0x563 for above example address */ |
5718 | /* [47:38] i.e. 0x158 for above example address */ | 4173 | hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); |
5719 | hash_value = ((mc_addr[4] >> 6) | (((u16)mc_addr[5]) << 2)); | 4174 | break; |
5720 | } else { | 4175 | case 1: |
5721 | /* [47:36] i.e. 0x563 for above example address */ | 4176 | /* [46:35] i.e. 0xAC6 for above example address */ |
5722 | hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | 4177 | hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); |
5723 | } | 4178 | break; |
5724 | break; | 4179 | case 2: |
5725 | case 1: | 4180 | /* [45:34] i.e. 0x5D8 for above example address */ |
5726 | if (hw->mac_type == e1000_ich8lan) { | 4181 | hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); |
5727 | /* [46:37] i.e. 0x2B1 for above example address */ | 4182 | break; |
5728 | hash_value = ((mc_addr[4] >> 5) | (((u16)mc_addr[5]) << 3)); | 4183 | case 3: |
5729 | } else { | 4184 | /* [43:32] i.e. 0x634 for above example address */ |
5730 | /* [46:35] i.e. 0xAC6 for above example address */ | 4185 | hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); |
5731 | hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); | 4186 | break; |
5732 | } | 4187 | } |
5733 | break; | 4188 | |
5734 | case 2: | 4189 | hash_value &= 0xFFF; |
5735 | if (hw->mac_type == e1000_ich8lan) { | 4190 | return hash_value; |
5736 | /*[45:36] i.e. 0x163 for above example address */ | ||
5737 | hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | ||
5738 | } else { | ||
5739 | /* [45:34] i.e. 0x5D8 for above example address */ | ||
5740 | hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | ||
5741 | } | ||
5742 | break; | ||
5743 | case 3: | ||
5744 | if (hw->mac_type == e1000_ich8lan) { | ||
5745 | /* [43:34] i.e. 0x18D for above example address */ | ||
5746 | hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | ||
5747 | } else { | ||
5748 | /* [43:32] i.e. 0x634 for above example address */ | ||
5749 | hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); | ||
5750 | } | ||
5751 | break; | ||
5752 | } | ||
5753 | |||
5754 | hash_value &= 0xFFF; | ||
5755 | if (hw->mac_type == e1000_ich8lan) | ||
5756 | hash_value &= 0x3FF; | ||
5757 | |||
5758 | return hash_value; | ||
5759 | } | 4191 | } |
5760 | 4192 | ||
5761 | /****************************************************************************** | 4193 | /** |
5762 | * Puts an ethernet address into a receive address register. | 4194 | * e1000_rar_set - Puts an ethernet address into a receive address register. |
5763 | * | 4195 | * @hw: Struct containing variables accessed by shared code |
5764 | * hw - Struct containing variables accessed by shared code | 4196 | * @addr: Address to put into receive address register |
5765 | * addr - Address to put into receive address register | 4197 | * @index: Receive address register to write |
5766 | * index - Receive address register to write | 4198 | */ |
5767 | *****************************************************************************/ | ||
5768 | void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | 4199 | void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) |
5769 | { | 4200 | { |
5770 | u32 rar_low, rar_high; | 4201 | u32 rar_low, rar_high; |
5771 | 4202 | ||
5772 | /* HW expects these in little endian so we reverse the byte order | 4203 | /* HW expects these in little endian so we reverse the byte order |
5773 | * from network order (big endian) to little endian | 4204 | * from network order (big endian) to little endian |
5774 | */ | 4205 | */ |
5775 | rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | | 4206 | rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | |
5776 | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); | 4207 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
5777 | rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); | 4208 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
5778 | 4209 | ||
5779 | /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx | 4210 | /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx |
5780 | * unit hang. | 4211 | * unit hang. |
5781 | * | 4212 | * |
5782 | * Description: | 4213 | * Description: |
5783 | * If there are any Rx frames queued up or otherwise present in the HW | 4214 | * If there are any Rx frames queued up or otherwise present in the HW |
5784 | * before RSS is enabled, and then we enable RSS, the HW Rx unit will | 4215 | * before RSS is enabled, and then we enable RSS, the HW Rx unit will |
5785 | * hang. To work around this issue, we have to disable receives and | 4216 | * hang. To work around this issue, we have to disable receives and |
5786 | * flush out all Rx frames before we enable RSS. To do so, we modify we | 4217 | * flush out all Rx frames before we enable RSS. To do so, we modify we |
5787 | * redirect all Rx traffic to manageability and then reset the HW. | 4218 | * redirect all Rx traffic to manageability and then reset the HW. |
5788 | * This flushes away Rx frames, and (since the redirections to | 4219 | * This flushes away Rx frames, and (since the redirections to |
5789 | * manageability persists across resets) keeps new ones from coming in | 4220 | * manageability persists across resets) keeps new ones from coming in |
5790 | * while we work. Then, we clear the Address Valid AV bit for all MAC | 4221 | * while we work. Then, we clear the Address Valid AV bit for all MAC |
5791 | * addresses and undo the re-direction to manageability. | 4222 | * addresses and undo the re-direction to manageability. |
5792 | * Now, frames are coming in again, but the MAC won't accept them, so | 4223 | * Now, frames are coming in again, but the MAC won't accept them, so |
5793 | * far so good. We now proceed to initialize RSS (if necessary) and | 4224 | * far so good. We now proceed to initialize RSS (if necessary) and |
5794 | * configure the Rx unit. Last, we re-enable the AV bits and continue | 4225 | * configure the Rx unit. Last, we re-enable the AV bits and continue |
5795 | * on our merry way. | 4226 | * on our merry way. |
5796 | */ | 4227 | */ |
5797 | switch (hw->mac_type) { | 4228 | switch (hw->mac_type) { |
5798 | case e1000_82571: | 4229 | default: |
5799 | case e1000_82572: | 4230 | /* Indicate to hardware the Address is Valid. */ |
5800 | case e1000_80003es2lan: | 4231 | rar_high |= E1000_RAH_AV; |
5801 | if (hw->leave_av_bit_off) | 4232 | break; |
5802 | break; | 4233 | } |
5803 | default: | 4234 | |
5804 | /* Indicate to hardware the Address is Valid. */ | 4235 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
5805 | rar_high |= E1000_RAH_AV; | 4236 | E1000_WRITE_FLUSH(); |
5806 | break; | 4237 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
5807 | } | 4238 | E1000_WRITE_FLUSH(); |
5808 | |||
5809 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | ||
5810 | E1000_WRITE_FLUSH(); | ||
5811 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | ||
5812 | E1000_WRITE_FLUSH(); | ||
5813 | } | 4239 | } |
5814 | 4240 | ||
5815 | /****************************************************************************** | 4241 | /** |
5816 | * Writes a value to the specified offset in the VLAN filter table. | 4242 | * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. |
5817 | * | 4243 | * @hw: Struct containing variables accessed by shared code |
5818 | * hw - Struct containing variables accessed by shared code | 4244 | * @offset: Offset in VLAN filer table to write |
5819 | * offset - Offset in VLAN filer table to write | 4245 | * @value: Value to write into VLAN filter table |
5820 | * value - Value to write into VLAN filter table | 4246 | */ |
5821 | *****************************************************************************/ | ||
5822 | void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | 4247 | void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) |
5823 | { | 4248 | { |
5824 | u32 temp; | 4249 | u32 temp; |
5825 | 4250 | ||
5826 | if (hw->mac_type == e1000_ich8lan) | 4251 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { |
5827 | return; | 4252 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
5828 | 4253 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | |
5829 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 4254 | E1000_WRITE_FLUSH(); |
5830 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 4255 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
5831 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 4256 | E1000_WRITE_FLUSH(); |
5832 | E1000_WRITE_FLUSH(); | 4257 | } else { |
5833 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 4258 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
5834 | E1000_WRITE_FLUSH(); | 4259 | E1000_WRITE_FLUSH(); |
5835 | } else { | 4260 | } |
5836 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | ||
5837 | E1000_WRITE_FLUSH(); | ||
5838 | } | ||
5839 | } | 4261 | } |
5840 | 4262 | ||
5841 | /****************************************************************************** | 4263 | /** |
5842 | * Clears the VLAN filer table | 4264 | * e1000_clear_vfta - Clears the VLAN filer table |
5843 | * | 4265 | * @hw: Struct containing variables accessed by shared code |
5844 | * hw - Struct containing variables accessed by shared code | 4266 | */ |
5845 | *****************************************************************************/ | ||
5846 | static void e1000_clear_vfta(struct e1000_hw *hw) | 4267 | static void e1000_clear_vfta(struct e1000_hw *hw) |
5847 | { | 4268 | { |
5848 | u32 offset; | 4269 | u32 offset; |
5849 | u32 vfta_value = 0; | 4270 | u32 vfta_value = 0; |
5850 | u32 vfta_offset = 0; | 4271 | u32 vfta_offset = 0; |
5851 | u32 vfta_bit_in_reg = 0; | 4272 | u32 vfta_bit_in_reg = 0; |
5852 | 4273 | ||
5853 | if (hw->mac_type == e1000_ich8lan) | 4274 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
5854 | return; | 4275 | /* If the offset we want to clear is the same offset of the |
5855 | 4276 | * manageability VLAN ID, then clear all bits except that of the | |
5856 | if (hw->mac_type == e1000_82573) { | 4277 | * manageability unit */ |
5857 | if (hw->mng_cookie.vlan_id != 0) { | 4278 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
5858 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | 4279 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
5859 | * ID. The following operations determine which 32b entry | 4280 | E1000_WRITE_FLUSH(); |
5860 | * (i.e. offset) into the array we want to set the VLAN ID | 4281 | } |
5861 | * (i.e. bit) of the manageability unit. */ | ||
5862 | vfta_offset = (hw->mng_cookie.vlan_id >> | ||
5863 | E1000_VFTA_ENTRY_SHIFT) & | ||
5864 | E1000_VFTA_ENTRY_MASK; | ||
5865 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | ||
5866 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
5867 | } | ||
5868 | } | ||
5869 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
5870 | /* If the offset we want to clear is the same offset of the | ||
5871 | * manageability VLAN ID, then clear all bits except that of the | ||
5872 | * manageability unit */ | ||
5873 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | ||
5874 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | ||
5875 | E1000_WRITE_FLUSH(); | ||
5876 | } | ||
5877 | } | 4282 | } |
5878 | 4283 | ||
5879 | static s32 e1000_id_led_init(struct e1000_hw *hw) | 4284 | static s32 e1000_id_led_init(struct e1000_hw *hw) |
5880 | { | 4285 | { |
5881 | u32 ledctl; | 4286 | u32 ledctl; |
5882 | const u32 ledctl_mask = 0x000000FF; | 4287 | const u32 ledctl_mask = 0x000000FF; |
5883 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 4288 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
5884 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 4289 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
5885 | u16 eeprom_data, i, temp; | 4290 | u16 eeprom_data, i, temp; |
5886 | const u16 led_mask = 0x0F; | 4291 | const u16 led_mask = 0x0F; |
5887 | 4292 | ||
5888 | DEBUGFUNC("e1000_id_led_init"); | 4293 | DEBUGFUNC("e1000_id_led_init"); |
5889 | 4294 | ||
5890 | if (hw->mac_type < e1000_82540) { | 4295 | if (hw->mac_type < e1000_82540) { |
5891 | /* Nothing to do */ | 4296 | /* Nothing to do */ |
5892 | return E1000_SUCCESS; | 4297 | return E1000_SUCCESS; |
5893 | } | 4298 | } |
5894 | 4299 | ||
5895 | ledctl = er32(LEDCTL); | 4300 | ledctl = er32(LEDCTL); |
5896 | hw->ledctl_default = ledctl; | 4301 | hw->ledctl_default = ledctl; |
5897 | hw->ledctl_mode1 = hw->ledctl_default; | 4302 | hw->ledctl_mode1 = hw->ledctl_default; |
5898 | hw->ledctl_mode2 = hw->ledctl_default; | 4303 | hw->ledctl_mode2 = hw->ledctl_default; |
5899 | 4304 | ||
5900 | if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { | 4305 | if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { |
5901 | DEBUGOUT("EEPROM Read Error\n"); | 4306 | DEBUGOUT("EEPROM Read Error\n"); |
5902 | return -E1000_ERR_EEPROM; | 4307 | return -E1000_ERR_EEPROM; |
5903 | } | 4308 | } |
5904 | 4309 | ||
5905 | if ((hw->mac_type == e1000_82573) && | 4310 | if ((eeprom_data == ID_LED_RESERVED_0000) || |
5906 | (eeprom_data == ID_LED_RESERVED_82573)) | 4311 | (eeprom_data == ID_LED_RESERVED_FFFF)) { |
5907 | eeprom_data = ID_LED_DEFAULT_82573; | 4312 | eeprom_data = ID_LED_DEFAULT; |
5908 | else if ((eeprom_data == ID_LED_RESERVED_0000) || | 4313 | } |
5909 | (eeprom_data == ID_LED_RESERVED_FFFF)) { | 4314 | |
5910 | if (hw->mac_type == e1000_ich8lan) | 4315 | for (i = 0; i < 4; i++) { |
5911 | eeprom_data = ID_LED_DEFAULT_ICH8LAN; | 4316 | temp = (eeprom_data >> (i << 2)) & led_mask; |
5912 | else | 4317 | switch (temp) { |
5913 | eeprom_data = ID_LED_DEFAULT; | 4318 | case ID_LED_ON1_DEF2: |
5914 | } | 4319 | case ID_LED_ON1_ON2: |
5915 | 4320 | case ID_LED_ON1_OFF2: | |
5916 | for (i = 0; i < 4; i++) { | 4321 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
5917 | temp = (eeprom_data >> (i << 2)) & led_mask; | 4322 | hw->ledctl_mode1 |= ledctl_on << (i << 3); |
5918 | switch (temp) { | 4323 | break; |
5919 | case ID_LED_ON1_DEF2: | 4324 | case ID_LED_OFF1_DEF2: |
5920 | case ID_LED_ON1_ON2: | 4325 | case ID_LED_OFF1_ON2: |
5921 | case ID_LED_ON1_OFF2: | 4326 | case ID_LED_OFF1_OFF2: |
5922 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 4327 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
5923 | hw->ledctl_mode1 |= ledctl_on << (i << 3); | 4328 | hw->ledctl_mode1 |= ledctl_off << (i << 3); |
5924 | break; | 4329 | break; |
5925 | case ID_LED_OFF1_DEF2: | 4330 | default: |
5926 | case ID_LED_OFF1_ON2: | 4331 | /* Do nothing */ |
5927 | case ID_LED_OFF1_OFF2: | 4332 | break; |
5928 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 4333 | } |
5929 | hw->ledctl_mode1 |= ledctl_off << (i << 3); | 4334 | switch (temp) { |
5930 | break; | 4335 | case ID_LED_DEF1_ON2: |
5931 | default: | 4336 | case ID_LED_ON1_ON2: |
5932 | /* Do nothing */ | 4337 | case ID_LED_OFF1_ON2: |
5933 | break; | 4338 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
5934 | } | 4339 | hw->ledctl_mode2 |= ledctl_on << (i << 3); |
5935 | switch (temp) { | 4340 | break; |
5936 | case ID_LED_DEF1_ON2: | 4341 | case ID_LED_DEF1_OFF2: |
5937 | case ID_LED_ON1_ON2: | 4342 | case ID_LED_ON1_OFF2: |
5938 | case ID_LED_OFF1_ON2: | 4343 | case ID_LED_OFF1_OFF2: |
5939 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 4344 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
5940 | hw->ledctl_mode2 |= ledctl_on << (i << 3); | 4345 | hw->ledctl_mode2 |= ledctl_off << (i << 3); |
5941 | break; | 4346 | break; |
5942 | case ID_LED_DEF1_OFF2: | 4347 | default: |
5943 | case ID_LED_ON1_OFF2: | 4348 | /* Do nothing */ |
5944 | case ID_LED_OFF1_OFF2: | 4349 | break; |
5945 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 4350 | } |
5946 | hw->ledctl_mode2 |= ledctl_off << (i << 3); | 4351 | } |
5947 | break; | 4352 | return E1000_SUCCESS; |
5948 | default: | ||
5949 | /* Do nothing */ | ||
5950 | break; | ||
5951 | } | ||
5952 | } | ||
5953 | return E1000_SUCCESS; | ||
5954 | } | 4353 | } |
5955 | 4354 | ||
5956 | /****************************************************************************** | 4355 | /** |
5957 | * Prepares SW controlable LED for use and saves the current state of the LED. | 4356 | * e1000_setup_led |
4357 | * @hw: Struct containing variables accessed by shared code | ||
5958 | * | 4358 | * |
5959 | * hw - Struct containing variables accessed by shared code | 4359 | * Prepares SW controlable LED for use and saves the current state of the LED. |
5960 | *****************************************************************************/ | 4360 | */ |
5961 | s32 e1000_setup_led(struct e1000_hw *hw) | 4361 | s32 e1000_setup_led(struct e1000_hw *hw) |
5962 | { | 4362 | { |
5963 | u32 ledctl; | 4363 | u32 ledctl; |
5964 | s32 ret_val = E1000_SUCCESS; | 4364 | s32 ret_val = E1000_SUCCESS; |
5965 | |||
5966 | DEBUGFUNC("e1000_setup_led"); | ||
5967 | |||
5968 | switch (hw->mac_type) { | ||
5969 | case e1000_82542_rev2_0: | ||
5970 | case e1000_82542_rev2_1: | ||
5971 | case e1000_82543: | ||
5972 | case e1000_82544: | ||
5973 | /* No setup necessary */ | ||
5974 | break; | ||
5975 | case e1000_82541: | ||
5976 | case e1000_82547: | ||
5977 | case e1000_82541_rev_2: | ||
5978 | case e1000_82547_rev_2: | ||
5979 | /* Turn off PHY Smart Power Down (if enabled) */ | ||
5980 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
5981 | &hw->phy_spd_default); | ||
5982 | if (ret_val) | ||
5983 | return ret_val; | ||
5984 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
5985 | (u16)(hw->phy_spd_default & | ||
5986 | ~IGP01E1000_GMII_SPD)); | ||
5987 | if (ret_val) | ||
5988 | return ret_val; | ||
5989 | /* Fall Through */ | ||
5990 | default: | ||
5991 | if (hw->media_type == e1000_media_type_fiber) { | ||
5992 | ledctl = er32(LEDCTL); | ||
5993 | /* Save current LEDCTL settings */ | ||
5994 | hw->ledctl_default = ledctl; | ||
5995 | /* Turn off LED0 */ | ||
5996 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | ||
5997 | E1000_LEDCTL_LED0_BLINK | | ||
5998 | E1000_LEDCTL_LED0_MODE_MASK); | ||
5999 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | ||
6000 | E1000_LEDCTL_LED0_MODE_SHIFT); | ||
6001 | ew32(LEDCTL, ledctl); | ||
6002 | } else if (hw->media_type == e1000_media_type_copper) | ||
6003 | ew32(LEDCTL, hw->ledctl_mode1); | ||
6004 | break; | ||
6005 | } | ||
6006 | |||
6007 | return E1000_SUCCESS; | ||
6008 | } | ||
6009 | 4365 | ||
4366 | DEBUGFUNC("e1000_setup_led"); | ||
6010 | 4367 | ||
6011 | /****************************************************************************** | 4368 | switch (hw->mac_type) { |
6012 | * Used on 82571 and later Si that has LED blink bits. | 4369 | case e1000_82542_rev2_0: |
6013 | * Callers must use their own timer and should have already called | 4370 | case e1000_82542_rev2_1: |
6014 | * e1000_id_led_init() | 4371 | case e1000_82543: |
6015 | * Call e1000_cleanup led() to stop blinking | 4372 | case e1000_82544: |
6016 | * | 4373 | /* No setup necessary */ |
6017 | * hw - Struct containing variables accessed by shared code | 4374 | break; |
6018 | *****************************************************************************/ | 4375 | case e1000_82541: |
6019 | s32 e1000_blink_led_start(struct e1000_hw *hw) | 4376 | case e1000_82547: |
6020 | { | 4377 | case e1000_82541_rev_2: |
6021 | s16 i; | 4378 | case e1000_82547_rev_2: |
6022 | u32 ledctl_blink = 0; | 4379 | /* Turn off PHY Smart Power Down (if enabled) */ |
6023 | 4380 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | |
6024 | DEBUGFUNC("e1000_id_led_blink_on"); | 4381 | &hw->phy_spd_default); |
6025 | 4382 | if (ret_val) | |
6026 | if (hw->mac_type < e1000_82571) { | 4383 | return ret_val; |
6027 | /* Nothing to do */ | 4384 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
6028 | return E1000_SUCCESS; | 4385 | (u16) (hw->phy_spd_default & |
6029 | } | 4386 | ~IGP01E1000_GMII_SPD)); |
6030 | if (hw->media_type == e1000_media_type_fiber) { | 4387 | if (ret_val) |
6031 | /* always blink LED0 for PCI-E fiber */ | 4388 | return ret_val; |
6032 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | 4389 | /* Fall Through */ |
6033 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | 4390 | default: |
6034 | } else { | 4391 | if (hw->media_type == e1000_media_type_fiber) { |
6035 | /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ | 4392 | ledctl = er32(LEDCTL); |
6036 | ledctl_blink = hw->ledctl_mode2; | 4393 | /* Save current LEDCTL settings */ |
6037 | for (i=0; i < 4; i++) | 4394 | hw->ledctl_default = ledctl; |
6038 | if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == | 4395 | /* Turn off LED0 */ |
6039 | E1000_LEDCTL_MODE_LED_ON) | 4396 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | |
6040 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); | 4397 | E1000_LEDCTL_LED0_BLINK | |
6041 | } | 4398 | E1000_LEDCTL_LED0_MODE_MASK); |
6042 | 4399 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | |
6043 | ew32(LEDCTL, ledctl_blink); | 4400 | E1000_LEDCTL_LED0_MODE_SHIFT); |
6044 | 4401 | ew32(LEDCTL, ledctl); | |
6045 | return E1000_SUCCESS; | 4402 | } else if (hw->media_type == e1000_media_type_copper) |
4403 | ew32(LEDCTL, hw->ledctl_mode1); | ||
4404 | break; | ||
4405 | } | ||
4406 | |||
4407 | return E1000_SUCCESS; | ||
6046 | } | 4408 | } |
6047 | 4409 | ||
6048 | /****************************************************************************** | 4410 | /** |
6049 | * Restores the saved state of the SW controlable LED. | 4411 | * e1000_cleanup_led - Restores the saved state of the SW controlable LED. |
6050 | * | 4412 | * @hw: Struct containing variables accessed by shared code |
6051 | * hw - Struct containing variables accessed by shared code | 4413 | */ |
6052 | *****************************************************************************/ | ||
6053 | s32 e1000_cleanup_led(struct e1000_hw *hw) | 4414 | s32 e1000_cleanup_led(struct e1000_hw *hw) |
6054 | { | 4415 | { |
6055 | s32 ret_val = E1000_SUCCESS; | 4416 | s32 ret_val = E1000_SUCCESS; |
6056 | 4417 | ||
6057 | DEBUGFUNC("e1000_cleanup_led"); | 4418 | DEBUGFUNC("e1000_cleanup_led"); |
6058 | 4419 | ||
6059 | switch (hw->mac_type) { | 4420 | switch (hw->mac_type) { |
6060 | case e1000_82542_rev2_0: | 4421 | case e1000_82542_rev2_0: |
6061 | case e1000_82542_rev2_1: | 4422 | case e1000_82542_rev2_1: |
6062 | case e1000_82543: | 4423 | case e1000_82543: |
6063 | case e1000_82544: | 4424 | case e1000_82544: |
6064 | /* No cleanup necessary */ | 4425 | /* No cleanup necessary */ |
6065 | break; | 4426 | break; |
6066 | case e1000_82541: | 4427 | case e1000_82541: |
6067 | case e1000_82547: | 4428 | case e1000_82547: |
6068 | case e1000_82541_rev_2: | 4429 | case e1000_82541_rev_2: |
6069 | case e1000_82547_rev_2: | 4430 | case e1000_82547_rev_2: |
6070 | /* Turn on PHY Smart Power Down (if previously enabled) */ | 4431 | /* Turn on PHY Smart Power Down (if previously enabled) */ |
6071 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 4432 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
6072 | hw->phy_spd_default); | 4433 | hw->phy_spd_default); |
6073 | if (ret_val) | 4434 | if (ret_val) |
6074 | return ret_val; | 4435 | return ret_val; |
6075 | /* Fall Through */ | 4436 | /* Fall Through */ |
6076 | default: | 4437 | default: |
6077 | if (hw->phy_type == e1000_phy_ife) { | 4438 | /* Restore LEDCTL settings */ |
6078 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | 4439 | ew32(LEDCTL, hw->ledctl_default); |
6079 | break; | 4440 | break; |
6080 | } | 4441 | } |
6081 | /* Restore LEDCTL settings */ | 4442 | |
6082 | ew32(LEDCTL, hw->ledctl_default); | 4443 | return E1000_SUCCESS; |
6083 | break; | ||
6084 | } | ||
6085 | |||
6086 | return E1000_SUCCESS; | ||
6087 | } | 4444 | } |
6088 | 4445 | ||
6089 | /****************************************************************************** | 4446 | /** |
6090 | * Turns on the software controllable LED | 4447 | * e1000_led_on - Turns on the software controllable LED |
6091 | * | 4448 | * @hw: Struct containing variables accessed by shared code |
6092 | * hw - Struct containing variables accessed by shared code | 4449 | */ |
6093 | *****************************************************************************/ | ||
6094 | s32 e1000_led_on(struct e1000_hw *hw) | 4450 | s32 e1000_led_on(struct e1000_hw *hw) |
6095 | { | 4451 | { |
6096 | u32 ctrl = er32(CTRL); | 4452 | u32 ctrl = er32(CTRL); |
6097 | 4453 | ||
6098 | DEBUGFUNC("e1000_led_on"); | 4454 | DEBUGFUNC("e1000_led_on"); |
6099 | 4455 | ||
6100 | switch (hw->mac_type) { | 4456 | switch (hw->mac_type) { |
6101 | case e1000_82542_rev2_0: | 4457 | case e1000_82542_rev2_0: |
6102 | case e1000_82542_rev2_1: | 4458 | case e1000_82542_rev2_1: |
6103 | case e1000_82543: | 4459 | case e1000_82543: |
6104 | /* Set SW Defineable Pin 0 to turn on the LED */ | 4460 | /* Set SW Defineable Pin 0 to turn on the LED */ |
6105 | ctrl |= E1000_CTRL_SWDPIN0; | 4461 | ctrl |= E1000_CTRL_SWDPIN0; |
6106 | ctrl |= E1000_CTRL_SWDPIO0; | 4462 | ctrl |= E1000_CTRL_SWDPIO0; |
6107 | break; | 4463 | break; |
6108 | case e1000_82544: | 4464 | case e1000_82544: |
6109 | if (hw->media_type == e1000_media_type_fiber) { | 4465 | if (hw->media_type == e1000_media_type_fiber) { |
6110 | /* Set SW Defineable Pin 0 to turn on the LED */ | 4466 | /* Set SW Defineable Pin 0 to turn on the LED */ |
6111 | ctrl |= E1000_CTRL_SWDPIN0; | 4467 | ctrl |= E1000_CTRL_SWDPIN0; |
6112 | ctrl |= E1000_CTRL_SWDPIO0; | 4468 | ctrl |= E1000_CTRL_SWDPIO0; |
6113 | } else { | 4469 | } else { |
6114 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 4470 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
6115 | ctrl &= ~E1000_CTRL_SWDPIN0; | 4471 | ctrl &= ~E1000_CTRL_SWDPIN0; |
6116 | ctrl |= E1000_CTRL_SWDPIO0; | 4472 | ctrl |= E1000_CTRL_SWDPIO0; |
6117 | } | 4473 | } |
6118 | break; | 4474 | break; |
6119 | default: | 4475 | default: |
6120 | if (hw->media_type == e1000_media_type_fiber) { | 4476 | if (hw->media_type == e1000_media_type_fiber) { |
6121 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 4477 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
6122 | ctrl &= ~E1000_CTRL_SWDPIN0; | 4478 | ctrl &= ~E1000_CTRL_SWDPIN0; |
6123 | ctrl |= E1000_CTRL_SWDPIO0; | 4479 | ctrl |= E1000_CTRL_SWDPIO0; |
6124 | } else if (hw->phy_type == e1000_phy_ife) { | 4480 | } else if (hw->media_type == e1000_media_type_copper) { |
6125 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | 4481 | ew32(LEDCTL, hw->ledctl_mode2); |
6126 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | 4482 | return E1000_SUCCESS; |
6127 | } else if (hw->media_type == e1000_media_type_copper) { | 4483 | } |
6128 | ew32(LEDCTL, hw->ledctl_mode2); | 4484 | break; |
6129 | return E1000_SUCCESS; | 4485 | } |
6130 | } | 4486 | |
6131 | break; | 4487 | ew32(CTRL, ctrl); |
6132 | } | 4488 | |
6133 | 4489 | return E1000_SUCCESS; | |
6134 | ew32(CTRL, ctrl); | ||
6135 | |||
6136 | return E1000_SUCCESS; | ||
6137 | } | 4490 | } |
6138 | 4491 | ||
6139 | /****************************************************************************** | 4492 | /** |
6140 | * Turns off the software controllable LED | 4493 | * e1000_led_off - Turns off the software controllable LED |
6141 | * | 4494 | * @hw: Struct containing variables accessed by shared code |
6142 | * hw - Struct containing variables accessed by shared code | 4495 | */ |
6143 | *****************************************************************************/ | ||
6144 | s32 e1000_led_off(struct e1000_hw *hw) | 4496 | s32 e1000_led_off(struct e1000_hw *hw) |
6145 | { | 4497 | { |
6146 | u32 ctrl = er32(CTRL); | 4498 | u32 ctrl = er32(CTRL); |
6147 | 4499 | ||
6148 | DEBUGFUNC("e1000_led_off"); | 4500 | DEBUGFUNC("e1000_led_off"); |
6149 | 4501 | ||
6150 | switch (hw->mac_type) { | 4502 | switch (hw->mac_type) { |
6151 | case e1000_82542_rev2_0: | 4503 | case e1000_82542_rev2_0: |
6152 | case e1000_82542_rev2_1: | 4504 | case e1000_82542_rev2_1: |
6153 | case e1000_82543: | 4505 | case e1000_82543: |
6154 | /* Clear SW Defineable Pin 0 to turn off the LED */ | 4506 | /* Clear SW Defineable Pin 0 to turn off the LED */ |
6155 | ctrl &= ~E1000_CTRL_SWDPIN0; | 4507 | ctrl &= ~E1000_CTRL_SWDPIN0; |
6156 | ctrl |= E1000_CTRL_SWDPIO0; | 4508 | ctrl |= E1000_CTRL_SWDPIO0; |
6157 | break; | 4509 | break; |
6158 | case e1000_82544: | 4510 | case e1000_82544: |
6159 | if (hw->media_type == e1000_media_type_fiber) { | 4511 | if (hw->media_type == e1000_media_type_fiber) { |
6160 | /* Clear SW Defineable Pin 0 to turn off the LED */ | 4512 | /* Clear SW Defineable Pin 0 to turn off the LED */ |
6161 | ctrl &= ~E1000_CTRL_SWDPIN0; | 4513 | ctrl &= ~E1000_CTRL_SWDPIN0; |
6162 | ctrl |= E1000_CTRL_SWDPIO0; | 4514 | ctrl |= E1000_CTRL_SWDPIO0; |
6163 | } else { | 4515 | } else { |
6164 | /* Set SW Defineable Pin 0 to turn off the LED */ | 4516 | /* Set SW Defineable Pin 0 to turn off the LED */ |
6165 | ctrl |= E1000_CTRL_SWDPIN0; | 4517 | ctrl |= E1000_CTRL_SWDPIN0; |
6166 | ctrl |= E1000_CTRL_SWDPIO0; | 4518 | ctrl |= E1000_CTRL_SWDPIO0; |
6167 | } | 4519 | } |
6168 | break; | 4520 | break; |
6169 | default: | 4521 | default: |
6170 | if (hw->media_type == e1000_media_type_fiber) { | 4522 | if (hw->media_type == e1000_media_type_fiber) { |
6171 | /* Set SW Defineable Pin 0 to turn off the LED */ | 4523 | /* Set SW Defineable Pin 0 to turn off the LED */ |
6172 | ctrl |= E1000_CTRL_SWDPIN0; | 4524 | ctrl |= E1000_CTRL_SWDPIN0; |
6173 | ctrl |= E1000_CTRL_SWDPIO0; | 4525 | ctrl |= E1000_CTRL_SWDPIO0; |
6174 | } else if (hw->phy_type == e1000_phy_ife) { | 4526 | } else if (hw->media_type == e1000_media_type_copper) { |
6175 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | 4527 | ew32(LEDCTL, hw->ledctl_mode1); |
6176 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); | 4528 | return E1000_SUCCESS; |
6177 | } else if (hw->media_type == e1000_media_type_copper) { | 4529 | } |
6178 | ew32(LEDCTL, hw->ledctl_mode1); | 4530 | break; |
6179 | return E1000_SUCCESS; | 4531 | } |
6180 | } | 4532 | |
6181 | break; | 4533 | ew32(CTRL, ctrl); |
6182 | } | 4534 | |
6183 | 4535 | return E1000_SUCCESS; | |
6184 | ew32(CTRL, ctrl); | ||
6185 | |||
6186 | return E1000_SUCCESS; | ||
6187 | } | 4536 | } |
6188 | 4537 | ||
6189 | /****************************************************************************** | 4538 | /** |
6190 | * Clears all hardware statistics counters. | 4539 | * e1000_clear_hw_cntrs - Clears all hardware statistics counters. |
6191 | * | 4540 | * @hw: Struct containing variables accessed by shared code |
6192 | * hw - Struct containing variables accessed by shared code | 4541 | */ |
6193 | *****************************************************************************/ | ||
6194 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw) | 4542 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw) |
6195 | { | 4543 | { |
6196 | volatile u32 temp; | 4544 | volatile u32 temp; |
6197 | 4545 | ||
6198 | temp = er32(CRCERRS); | 4546 | temp = er32(CRCERRS); |
6199 | temp = er32(SYMERRS); | 4547 | temp = er32(SYMERRS); |
6200 | temp = er32(MPC); | 4548 | temp = er32(MPC); |
6201 | temp = er32(SCC); | 4549 | temp = er32(SCC); |
6202 | temp = er32(ECOL); | 4550 | temp = er32(ECOL); |
6203 | temp = er32(MCC); | 4551 | temp = er32(MCC); |
6204 | temp = er32(LATECOL); | 4552 | temp = er32(LATECOL); |
6205 | temp = er32(COLC); | 4553 | temp = er32(COLC); |
6206 | temp = er32(DC); | 4554 | temp = er32(DC); |
6207 | temp = er32(SEC); | 4555 | temp = er32(SEC); |
6208 | temp = er32(RLEC); | 4556 | temp = er32(RLEC); |
6209 | temp = er32(XONRXC); | 4557 | temp = er32(XONRXC); |
6210 | temp = er32(XONTXC); | 4558 | temp = er32(XONTXC); |
6211 | temp = er32(XOFFRXC); | 4559 | temp = er32(XOFFRXC); |
6212 | temp = er32(XOFFTXC); | 4560 | temp = er32(XOFFTXC); |
6213 | temp = er32(FCRUC); | 4561 | temp = er32(FCRUC); |
6214 | 4562 | ||
6215 | if (hw->mac_type != e1000_ich8lan) { | 4563 | temp = er32(PRC64); |
6216 | temp = er32(PRC64); | 4564 | temp = er32(PRC127); |
6217 | temp = er32(PRC127); | 4565 | temp = er32(PRC255); |
6218 | temp = er32(PRC255); | 4566 | temp = er32(PRC511); |
6219 | temp = er32(PRC511); | 4567 | temp = er32(PRC1023); |
6220 | temp = er32(PRC1023); | 4568 | temp = er32(PRC1522); |
6221 | temp = er32(PRC1522); | 4569 | |
6222 | } | 4570 | temp = er32(GPRC); |
6223 | 4571 | temp = er32(BPRC); | |
6224 | temp = er32(GPRC); | 4572 | temp = er32(MPRC); |
6225 | temp = er32(BPRC); | 4573 | temp = er32(GPTC); |
6226 | temp = er32(MPRC); | 4574 | temp = er32(GORCL); |
6227 | temp = er32(GPTC); | 4575 | temp = er32(GORCH); |
6228 | temp = er32(GORCL); | 4576 | temp = er32(GOTCL); |
6229 | temp = er32(GORCH); | 4577 | temp = er32(GOTCH); |
6230 | temp = er32(GOTCL); | 4578 | temp = er32(RNBC); |
6231 | temp = er32(GOTCH); | 4579 | temp = er32(RUC); |
6232 | temp = er32(RNBC); | 4580 | temp = er32(RFC); |
6233 | temp = er32(RUC); | 4581 | temp = er32(ROC); |
6234 | temp = er32(RFC); | 4582 | temp = er32(RJC); |
6235 | temp = er32(ROC); | 4583 | temp = er32(TORL); |
6236 | temp = er32(RJC); | 4584 | temp = er32(TORH); |
6237 | temp = er32(TORL); | 4585 | temp = er32(TOTL); |
6238 | temp = er32(TORH); | 4586 | temp = er32(TOTH); |
6239 | temp = er32(TOTL); | 4587 | temp = er32(TPR); |
6240 | temp = er32(TOTH); | 4588 | temp = er32(TPT); |
6241 | temp = er32(TPR); | 4589 | |
6242 | temp = er32(TPT); | 4590 | temp = er32(PTC64); |
6243 | 4591 | temp = er32(PTC127); | |
6244 | if (hw->mac_type != e1000_ich8lan) { | 4592 | temp = er32(PTC255); |
6245 | temp = er32(PTC64); | 4593 | temp = er32(PTC511); |
6246 | temp = er32(PTC127); | 4594 | temp = er32(PTC1023); |
6247 | temp = er32(PTC255); | 4595 | temp = er32(PTC1522); |
6248 | temp = er32(PTC511); | 4596 | |
6249 | temp = er32(PTC1023); | 4597 | temp = er32(MPTC); |
6250 | temp = er32(PTC1522); | 4598 | temp = er32(BPTC); |
6251 | } | 4599 | |
6252 | 4600 | if (hw->mac_type < e1000_82543) | |
6253 | temp = er32(MPTC); | 4601 | return; |
6254 | temp = er32(BPTC); | 4602 | |
6255 | 4603 | temp = er32(ALGNERRC); | |
6256 | if (hw->mac_type < e1000_82543) return; | 4604 | temp = er32(RXERRC); |
6257 | 4605 | temp = er32(TNCRS); | |
6258 | temp = er32(ALGNERRC); | 4606 | temp = er32(CEXTERR); |
6259 | temp = er32(RXERRC); | 4607 | temp = er32(TSCTC); |
6260 | temp = er32(TNCRS); | 4608 | temp = er32(TSCTFC); |
6261 | temp = er32(CEXTERR); | 4609 | |
6262 | temp = er32(TSCTC); | 4610 | if (hw->mac_type <= e1000_82544) |
6263 | temp = er32(TSCTFC); | 4611 | return; |
6264 | 4612 | ||
6265 | if (hw->mac_type <= e1000_82544) return; | 4613 | temp = er32(MGTPRC); |
6266 | 4614 | temp = er32(MGTPDC); | |
6267 | temp = er32(MGTPRC); | 4615 | temp = er32(MGTPTC); |
6268 | temp = er32(MGTPDC); | 4616 | } |
6269 | temp = er32(MGTPTC); | 4617 | |
6270 | 4618 | /** | |
6271 | if (hw->mac_type <= e1000_82547_rev_2) return; | 4619 | * e1000_reset_adaptive - Resets Adaptive IFS to its default state. |
6272 | 4620 | * @hw: Struct containing variables accessed by shared code | |
6273 | temp = er32(IAC); | ||
6274 | temp = er32(ICRXOC); | ||
6275 | |||
6276 | if (hw->mac_type == e1000_ich8lan) return; | ||
6277 | |||
6278 | temp = er32(ICRXPTC); | ||
6279 | temp = er32(ICRXATC); | ||
6280 | temp = er32(ICTXPTC); | ||
6281 | temp = er32(ICTXATC); | ||
6282 | temp = er32(ICTXQEC); | ||
6283 | temp = er32(ICTXQMTC); | ||
6284 | temp = er32(ICRXDMTC); | ||
6285 | } | ||
6286 | |||
6287 | /****************************************************************************** | ||
6288 | * Resets Adaptive IFS to its default state. | ||
6289 | * | ||
6290 | * hw - Struct containing variables accessed by shared code | ||
6291 | * | 4621 | * |
6292 | * Call this after e1000_init_hw. You may override the IFS defaults by setting | 4622 | * Call this after e1000_init_hw. You may override the IFS defaults by setting |
6293 | * hw->ifs_params_forced to true. However, you must initialize hw-> | 4623 | * hw->ifs_params_forced to true. However, you must initialize hw-> |
6294 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | 4624 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio |
6295 | * before calling this function. | 4625 | * before calling this function. |
6296 | *****************************************************************************/ | 4626 | */ |
6297 | void e1000_reset_adaptive(struct e1000_hw *hw) | 4627 | void e1000_reset_adaptive(struct e1000_hw *hw) |
6298 | { | 4628 | { |
6299 | DEBUGFUNC("e1000_reset_adaptive"); | 4629 | DEBUGFUNC("e1000_reset_adaptive"); |
6300 | 4630 | ||
6301 | if (hw->adaptive_ifs) { | 4631 | if (hw->adaptive_ifs) { |
6302 | if (!hw->ifs_params_forced) { | 4632 | if (!hw->ifs_params_forced) { |
6303 | hw->current_ifs_val = 0; | 4633 | hw->current_ifs_val = 0; |
6304 | hw->ifs_min_val = IFS_MIN; | 4634 | hw->ifs_min_val = IFS_MIN; |
6305 | hw->ifs_max_val = IFS_MAX; | 4635 | hw->ifs_max_val = IFS_MAX; |
6306 | hw->ifs_step_size = IFS_STEP; | 4636 | hw->ifs_step_size = IFS_STEP; |
6307 | hw->ifs_ratio = IFS_RATIO; | 4637 | hw->ifs_ratio = IFS_RATIO; |
6308 | } | 4638 | } |
6309 | hw->in_ifs_mode = false; | 4639 | hw->in_ifs_mode = false; |
6310 | ew32(AIT, 0); | 4640 | ew32(AIT, 0); |
6311 | } else { | 4641 | } else { |
6312 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 4642 | DEBUGOUT("Not in Adaptive IFS mode!\n"); |
6313 | } | 4643 | } |
6314 | } | 4644 | } |
6315 | 4645 | ||
6316 | /****************************************************************************** | 4646 | /** |
4647 | * e1000_update_adaptive - update adaptive IFS | ||
4648 | * @hw: Struct containing variables accessed by shared code | ||
4649 | * @tx_packets: Number of transmits since last callback | ||
4650 | * @total_collisions: Number of collisions since last callback | ||
4651 | * | ||
6317 | * Called during the callback/watchdog routine to update IFS value based on | 4652 | * Called during the callback/watchdog routine to update IFS value based on |
6318 | * the ratio of transmits to collisions. | 4653 | * the ratio of transmits to collisions. |
6319 | * | 4654 | */ |
6320 | * hw - Struct containing variables accessed by shared code | ||
6321 | * tx_packets - Number of transmits since last callback | ||
6322 | * total_collisions - Number of collisions since last callback | ||
6323 | *****************************************************************************/ | ||
6324 | void e1000_update_adaptive(struct e1000_hw *hw) | 4655 | void e1000_update_adaptive(struct e1000_hw *hw) |
6325 | { | 4656 | { |
6326 | DEBUGFUNC("e1000_update_adaptive"); | 4657 | DEBUGFUNC("e1000_update_adaptive"); |
6327 | 4658 | ||
6328 | if (hw->adaptive_ifs) { | 4659 | if (hw->adaptive_ifs) { |
6329 | if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { | 4660 | if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { |
6330 | if (hw->tx_packet_delta > MIN_NUM_XMITS) { | 4661 | if (hw->tx_packet_delta > MIN_NUM_XMITS) { |
6331 | hw->in_ifs_mode = true; | 4662 | hw->in_ifs_mode = true; |
6332 | if (hw->current_ifs_val < hw->ifs_max_val) { | 4663 | if (hw->current_ifs_val < hw->ifs_max_val) { |
6333 | if (hw->current_ifs_val == 0) | 4664 | if (hw->current_ifs_val == 0) |
6334 | hw->current_ifs_val = hw->ifs_min_val; | 4665 | hw->current_ifs_val = |
6335 | else | 4666 | hw->ifs_min_val; |
6336 | hw->current_ifs_val += hw->ifs_step_size; | 4667 | else |
6337 | ew32(AIT, hw->current_ifs_val); | 4668 | hw->current_ifs_val += |
6338 | } | 4669 | hw->ifs_step_size; |
6339 | } | 4670 | ew32(AIT, hw->current_ifs_val); |
6340 | } else { | 4671 | } |
6341 | if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | 4672 | } |
6342 | hw->current_ifs_val = 0; | 4673 | } else { |
6343 | hw->in_ifs_mode = false; | 4674 | if (hw->in_ifs_mode |
6344 | ew32(AIT, 0); | 4675 | && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { |
6345 | } | 4676 | hw->current_ifs_val = 0; |
6346 | } | 4677 | hw->in_ifs_mode = false; |
6347 | } else { | 4678 | ew32(AIT, 0); |
6348 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 4679 | } |
6349 | } | 4680 | } |
4681 | } else { | ||
4682 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | ||
4683 | } | ||
6350 | } | 4684 | } |
6351 | 4685 | ||
6352 | /****************************************************************************** | 4686 | /** |
6353 | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | 4687 | * e1000_tbi_adjust_stats |
4688 | * @hw: Struct containing variables accessed by shared code | ||
4689 | * @frame_len: The length of the frame in question | ||
4690 | * @mac_addr: The Ethernet destination address of the frame in question | ||
6354 | * | 4691 | * |
6355 | * hw - Struct containing variables accessed by shared code | 4692 | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT |
6356 | * frame_len - The length of the frame in question | 4693 | */ |
6357 | * mac_addr - The Ethernet destination address of the frame in question | ||
6358 | *****************************************************************************/ | ||
6359 | void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, | 4694 | void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, |
6360 | u32 frame_len, u8 *mac_addr) | 4695 | u32 frame_len, u8 *mac_addr) |
6361 | { | 4696 | { |
6362 | u64 carry_bit; | 4697 | u64 carry_bit; |
6363 | 4698 | ||
6364 | /* First adjust the frame length. */ | 4699 | /* First adjust the frame length. */ |
6365 | frame_len--; | 4700 | frame_len--; |
6366 | /* We need to adjust the statistics counters, since the hardware | 4701 | /* We need to adjust the statistics counters, since the hardware |
6367 | * counters overcount this packet as a CRC error and undercount | 4702 | * counters overcount this packet as a CRC error and undercount |
6368 | * the packet as a good packet | 4703 | * the packet as a good packet |
6369 | */ | 4704 | */ |
6370 | /* This packet should not be counted as a CRC error. */ | 4705 | /* This packet should not be counted as a CRC error. */ |
6371 | stats->crcerrs--; | 4706 | stats->crcerrs--; |
6372 | /* This packet does count as a Good Packet Received. */ | 4707 | /* This packet does count as a Good Packet Received. */ |
6373 | stats->gprc++; | 4708 | stats->gprc++; |
6374 | 4709 | ||
6375 | /* Adjust the Good Octets received counters */ | 4710 | /* Adjust the Good Octets received counters */ |
6376 | carry_bit = 0x80000000 & stats->gorcl; | 4711 | carry_bit = 0x80000000 & stats->gorcl; |
6377 | stats->gorcl += frame_len; | 4712 | stats->gorcl += frame_len; |
6378 | /* If the high bit of Gorcl (the low 32 bits of the Good Octets | 4713 | /* If the high bit of Gorcl (the low 32 bits of the Good Octets |
6379 | * Received Count) was one before the addition, | 4714 | * Received Count) was one before the addition, |
6380 | * AND it is zero after, then we lost the carry out, | 4715 | * AND it is zero after, then we lost the carry out, |
6381 | * need to add one to Gorch (Good Octets Received Count High). | 4716 | * need to add one to Gorch (Good Octets Received Count High). |
6382 | * This could be simplified if all environments supported | 4717 | * This could be simplified if all environments supported |
6383 | * 64-bit integers. | 4718 | * 64-bit integers. |
6384 | */ | 4719 | */ |
6385 | if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) | 4720 | if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) |
6386 | stats->gorch++; | 4721 | stats->gorch++; |
6387 | /* Is this a broadcast or multicast? Check broadcast first, | 4722 | /* Is this a broadcast or multicast? Check broadcast first, |
6388 | * since the test for a multicast frame will test positive on | 4723 | * since the test for a multicast frame will test positive on |
6389 | * a broadcast frame. | 4724 | * a broadcast frame. |
6390 | */ | 4725 | */ |
6391 | if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff)) | 4726 | if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff)) |
6392 | /* Broadcast packet */ | 4727 | /* Broadcast packet */ |
6393 | stats->bprc++; | 4728 | stats->bprc++; |
6394 | else if (*mac_addr & 0x01) | 4729 | else if (*mac_addr & 0x01) |
6395 | /* Multicast packet */ | 4730 | /* Multicast packet */ |
6396 | stats->mprc++; | 4731 | stats->mprc++; |
6397 | 4732 | ||
6398 | if (frame_len == hw->max_frame_size) { | 4733 | if (frame_len == hw->max_frame_size) { |
6399 | /* In this case, the hardware has overcounted the number of | 4734 | /* In this case, the hardware has overcounted the number of |
6400 | * oversize frames. | 4735 | * oversize frames. |
6401 | */ | 4736 | */ |
6402 | if (stats->roc > 0) | 4737 | if (stats->roc > 0) |
6403 | stats->roc--; | 4738 | stats->roc--; |
6404 | } | 4739 | } |
6405 | 4740 | ||
6406 | /* Adjust the bin counters when the extra byte put the frame in the | 4741 | /* Adjust the bin counters when the extra byte put the frame in the |
6407 | * wrong bin. Remember that the frame_len was adjusted above. | 4742 | * wrong bin. Remember that the frame_len was adjusted above. |
6408 | */ | 4743 | */ |
6409 | if (frame_len == 64) { | 4744 | if (frame_len == 64) { |
6410 | stats->prc64++; | 4745 | stats->prc64++; |
6411 | stats->prc127--; | 4746 | stats->prc127--; |
6412 | } else if (frame_len == 127) { | 4747 | } else if (frame_len == 127) { |
6413 | stats->prc127++; | 4748 | stats->prc127++; |
6414 | stats->prc255--; | 4749 | stats->prc255--; |
6415 | } else if (frame_len == 255) { | 4750 | } else if (frame_len == 255) { |
6416 | stats->prc255++; | 4751 | stats->prc255++; |
6417 | stats->prc511--; | 4752 | stats->prc511--; |
6418 | } else if (frame_len == 511) { | 4753 | } else if (frame_len == 511) { |
6419 | stats->prc511++; | 4754 | stats->prc511++; |
6420 | stats->prc1023--; | 4755 | stats->prc1023--; |
6421 | } else if (frame_len == 1023) { | 4756 | } else if (frame_len == 1023) { |
6422 | stats->prc1023++; | 4757 | stats->prc1023++; |
6423 | stats->prc1522--; | 4758 | stats->prc1522--; |
6424 | } else if (frame_len == 1522) { | 4759 | } else if (frame_len == 1522) { |
6425 | stats->prc1522++; | 4760 | stats->prc1522++; |
6426 | } | 4761 | } |
6427 | } | 4762 | } |
6428 | 4763 | ||
6429 | /****************************************************************************** | 4764 | /** |
6430 | * Gets the current PCI bus type, speed, and width of the hardware | 4765 | * e1000_get_bus_info |
4766 | * @hw: Struct containing variables accessed by shared code | ||
6431 | * | 4767 | * |
6432 | * hw - Struct containing variables accessed by shared code | 4768 | * Gets the current PCI bus type, speed, and width of the hardware |
6433 | *****************************************************************************/ | 4769 | */ |
6434 | void e1000_get_bus_info(struct e1000_hw *hw) | 4770 | void e1000_get_bus_info(struct e1000_hw *hw) |
6435 | { | 4771 | { |
6436 | s32 ret_val; | 4772 | u32 status; |
6437 | u16 pci_ex_link_status; | 4773 | |
6438 | u32 status; | 4774 | switch (hw->mac_type) { |
6439 | 4775 | case e1000_82542_rev2_0: | |
6440 | switch (hw->mac_type) { | 4776 | case e1000_82542_rev2_1: |
6441 | case e1000_82542_rev2_0: | 4777 | hw->bus_type = e1000_bus_type_pci; |
6442 | case e1000_82542_rev2_1: | 4778 | hw->bus_speed = e1000_bus_speed_unknown; |
6443 | hw->bus_type = e1000_bus_type_pci; | 4779 | hw->bus_width = e1000_bus_width_unknown; |
6444 | hw->bus_speed = e1000_bus_speed_unknown; | 4780 | break; |
6445 | hw->bus_width = e1000_bus_width_unknown; | 4781 | default: |
6446 | break; | 4782 | status = er32(STATUS); |
6447 | case e1000_82571: | 4783 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
6448 | case e1000_82572: | 4784 | e1000_bus_type_pcix : e1000_bus_type_pci; |
6449 | case e1000_82573: | 4785 | |
6450 | case e1000_80003es2lan: | 4786 | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { |
6451 | hw->bus_type = e1000_bus_type_pci_express; | 4787 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? |
6452 | hw->bus_speed = e1000_bus_speed_2500; | 4788 | e1000_bus_speed_66 : e1000_bus_speed_120; |
6453 | ret_val = e1000_read_pcie_cap_reg(hw, | 4789 | } else if (hw->bus_type == e1000_bus_type_pci) { |
6454 | PCI_EX_LINK_STATUS, | 4790 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? |
6455 | &pci_ex_link_status); | 4791 | e1000_bus_speed_66 : e1000_bus_speed_33; |
6456 | if (ret_val) | 4792 | } else { |
6457 | hw->bus_width = e1000_bus_width_unknown; | 4793 | switch (status & E1000_STATUS_PCIX_SPEED) { |
6458 | else | 4794 | case E1000_STATUS_PCIX_SPEED_66: |
6459 | hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >> | 4795 | hw->bus_speed = e1000_bus_speed_66; |
6460 | PCI_EX_LINK_WIDTH_SHIFT; | 4796 | break; |
6461 | break; | 4797 | case E1000_STATUS_PCIX_SPEED_100: |
6462 | case e1000_ich8lan: | 4798 | hw->bus_speed = e1000_bus_speed_100; |
6463 | hw->bus_type = e1000_bus_type_pci_express; | 4799 | break; |
6464 | hw->bus_speed = e1000_bus_speed_2500; | 4800 | case E1000_STATUS_PCIX_SPEED_133: |
6465 | hw->bus_width = e1000_bus_width_pciex_1; | 4801 | hw->bus_speed = e1000_bus_speed_133; |
6466 | break; | 4802 | break; |
6467 | default: | 4803 | default: |
6468 | status = er32(STATUS); | 4804 | hw->bus_speed = e1000_bus_speed_reserved; |
6469 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 4805 | break; |
6470 | e1000_bus_type_pcix : e1000_bus_type_pci; | 4806 | } |
6471 | 4807 | } | |
6472 | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | 4808 | hw->bus_width = (status & E1000_STATUS_BUS64) ? |
6473 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | 4809 | e1000_bus_width_64 : e1000_bus_width_32; |
6474 | e1000_bus_speed_66 : e1000_bus_speed_120; | 4810 | break; |
6475 | } else if (hw->bus_type == e1000_bus_type_pci) { | 4811 | } |
6476 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? | ||
6477 | e1000_bus_speed_66 : e1000_bus_speed_33; | ||
6478 | } else { | ||
6479 | switch (status & E1000_STATUS_PCIX_SPEED) { | ||
6480 | case E1000_STATUS_PCIX_SPEED_66: | ||
6481 | hw->bus_speed = e1000_bus_speed_66; | ||
6482 | break; | ||
6483 | case E1000_STATUS_PCIX_SPEED_100: | ||
6484 | hw->bus_speed = e1000_bus_speed_100; | ||
6485 | break; | ||
6486 | case E1000_STATUS_PCIX_SPEED_133: | ||
6487 | hw->bus_speed = e1000_bus_speed_133; | ||
6488 | break; | ||
6489 | default: | ||
6490 | hw->bus_speed = e1000_bus_speed_reserved; | ||
6491 | break; | ||
6492 | } | ||
6493 | } | ||
6494 | hw->bus_width = (status & E1000_STATUS_BUS64) ? | ||
6495 | e1000_bus_width_64 : e1000_bus_width_32; | ||
6496 | break; | ||
6497 | } | ||
6498 | } | 4812 | } |
6499 | 4813 | ||
6500 | /****************************************************************************** | 4814 | /** |
4815 | * e1000_write_reg_io | ||
4816 | * @hw: Struct containing variables accessed by shared code | ||
4817 | * @offset: offset to write to | ||
4818 | * @value: value to write | ||
4819 | * | ||
6501 | * Writes a value to one of the devices registers using port I/O (as opposed to | 4820 | * Writes a value to one of the devices registers using port I/O (as opposed to |
6502 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 4821 | * memory mapped I/O). Only 82544 and newer devices support port I/O. |
6503 | * | 4822 | */ |
6504 | * hw - Struct containing variables accessed by shared code | ||
6505 | * offset - offset to write to | ||
6506 | * value - value to write | ||
6507 | *****************************************************************************/ | ||
6508 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) | 4823 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) |
6509 | { | 4824 | { |
6510 | unsigned long io_addr = hw->io_base; | 4825 | unsigned long io_addr = hw->io_base; |
6511 | unsigned long io_data = hw->io_base + 4; | 4826 | unsigned long io_data = hw->io_base + 4; |
6512 | 4827 | ||
6513 | e1000_io_write(hw, io_addr, offset); | 4828 | e1000_io_write(hw, io_addr, offset); |
6514 | e1000_io_write(hw, io_data, value); | 4829 | e1000_io_write(hw, io_data, value); |
6515 | } | 4830 | } |
6516 | 4831 | ||
6517 | /****************************************************************************** | 4832 | /** |
6518 | * Estimates the cable length. | 4833 | * e1000_get_cable_length - Estimates the cable length. |
6519 | * | 4834 | * @hw: Struct containing variables accessed by shared code |
6520 | * hw - Struct containing variables accessed by shared code | 4835 | * @min_length: The estimated minimum length |
6521 | * min_length - The estimated minimum length | 4836 | * @max_length: The estimated maximum length |
6522 | * max_length - The estimated maximum length | ||
6523 | * | 4837 | * |
6524 | * returns: - E1000_ERR_XXX | 4838 | * returns: - E1000_ERR_XXX |
6525 | * E1000_SUCCESS | 4839 | * E1000_SUCCESS |
@@ -6528,185 +4842,115 @@ static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) | |||
6528 | * So for M88 phy's, this function interprets the one value returned from the | 4842 | * So for M88 phy's, this function interprets the one value returned from the |
6529 | * register to the minimum and maximum range. | 4843 | * register to the minimum and maximum range. |
6530 | * For IGP phy's, the function calculates the range by the AGC registers. | 4844 | * For IGP phy's, the function calculates the range by the AGC registers. |
6531 | *****************************************************************************/ | 4845 | */ |
6532 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 4846 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
6533 | u16 *max_length) | 4847 | u16 *max_length) |
6534 | { | 4848 | { |
6535 | s32 ret_val; | 4849 | s32 ret_val; |
6536 | u16 agc_value = 0; | 4850 | u16 agc_value = 0; |
6537 | u16 i, phy_data; | 4851 | u16 i, phy_data; |
6538 | u16 cable_length; | 4852 | u16 cable_length; |
6539 | 4853 | ||
6540 | DEBUGFUNC("e1000_get_cable_length"); | 4854 | DEBUGFUNC("e1000_get_cable_length"); |
6541 | 4855 | ||
6542 | *min_length = *max_length = 0; | 4856 | *min_length = *max_length = 0; |
6543 | 4857 | ||
6544 | /* Use old method for Phy older than IGP */ | 4858 | /* Use old method for Phy older than IGP */ |
6545 | if (hw->phy_type == e1000_phy_m88) { | 4859 | if (hw->phy_type == e1000_phy_m88) { |
6546 | 4860 | ||
6547 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 4861 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
6548 | &phy_data); | 4862 | &phy_data); |
6549 | if (ret_val) | 4863 | if (ret_val) |
6550 | return ret_val; | 4864 | return ret_val; |
6551 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 4865 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
6552 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | 4866 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
6553 | 4867 | ||
6554 | /* Convert the enum value to ranged values */ | 4868 | /* Convert the enum value to ranged values */ |
6555 | switch (cable_length) { | 4869 | switch (cable_length) { |
6556 | case e1000_cable_length_50: | 4870 | case e1000_cable_length_50: |
6557 | *min_length = 0; | 4871 | *min_length = 0; |
6558 | *max_length = e1000_igp_cable_length_50; | 4872 | *max_length = e1000_igp_cable_length_50; |
6559 | break; | 4873 | break; |
6560 | case e1000_cable_length_50_80: | 4874 | case e1000_cable_length_50_80: |
6561 | *min_length = e1000_igp_cable_length_50; | 4875 | *min_length = e1000_igp_cable_length_50; |
6562 | *max_length = e1000_igp_cable_length_80; | 4876 | *max_length = e1000_igp_cable_length_80; |
6563 | break; | 4877 | break; |
6564 | case e1000_cable_length_80_110: | 4878 | case e1000_cable_length_80_110: |
6565 | *min_length = e1000_igp_cable_length_80; | 4879 | *min_length = e1000_igp_cable_length_80; |
6566 | *max_length = e1000_igp_cable_length_110; | 4880 | *max_length = e1000_igp_cable_length_110; |
6567 | break; | 4881 | break; |
6568 | case e1000_cable_length_110_140: | 4882 | case e1000_cable_length_110_140: |
6569 | *min_length = e1000_igp_cable_length_110; | 4883 | *min_length = e1000_igp_cable_length_110; |
6570 | *max_length = e1000_igp_cable_length_140; | 4884 | *max_length = e1000_igp_cable_length_140; |
6571 | break; | 4885 | break; |
6572 | case e1000_cable_length_140: | 4886 | case e1000_cable_length_140: |
6573 | *min_length = e1000_igp_cable_length_140; | 4887 | *min_length = e1000_igp_cable_length_140; |
6574 | *max_length = e1000_igp_cable_length_170; | 4888 | *max_length = e1000_igp_cable_length_170; |
6575 | break; | 4889 | break; |
6576 | default: | 4890 | default: |
6577 | return -E1000_ERR_PHY; | 4891 | return -E1000_ERR_PHY; |
6578 | break; | 4892 | break; |
6579 | } | 4893 | } |
6580 | } else if (hw->phy_type == e1000_phy_gg82563) { | 4894 | } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
6581 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, | 4895 | u16 cur_agc_value; |
6582 | &phy_data); | 4896 | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; |
6583 | if (ret_val) | 4897 | u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
6584 | return ret_val; | 4898 | { IGP01E1000_PHY_AGC_A, |
6585 | cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH; | 4899 | IGP01E1000_PHY_AGC_B, |
6586 | 4900 | IGP01E1000_PHY_AGC_C, | |
6587 | switch (cable_length) { | 4901 | IGP01E1000_PHY_AGC_D |
6588 | case e1000_gg_cable_length_60: | 4902 | }; |
6589 | *min_length = 0; | 4903 | /* Read the AGC registers for all channels */ |
6590 | *max_length = e1000_igp_cable_length_60; | 4904 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
6591 | break; | 4905 | |
6592 | case e1000_gg_cable_length_60_115: | 4906 | ret_val = |
6593 | *min_length = e1000_igp_cable_length_60; | 4907 | e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
6594 | *max_length = e1000_igp_cable_length_115; | 4908 | if (ret_val) |
6595 | break; | 4909 | return ret_val; |
6596 | case e1000_gg_cable_length_115_150: | 4910 | |
6597 | *min_length = e1000_igp_cable_length_115; | 4911 | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
6598 | *max_length = e1000_igp_cable_length_150; | 4912 | |
6599 | break; | 4913 | /* Value bound check. */ |
6600 | case e1000_gg_cable_length_150: | 4914 | if ((cur_agc_value >= |
6601 | *min_length = e1000_igp_cable_length_150; | 4915 | IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) |
6602 | *max_length = e1000_igp_cable_length_180; | 4916 | || (cur_agc_value == 0)) |
6603 | break; | 4917 | return -E1000_ERR_PHY; |
6604 | default: | 4918 | |
6605 | return -E1000_ERR_PHY; | 4919 | agc_value += cur_agc_value; |
6606 | break; | 4920 | |
6607 | } | 4921 | /* Update minimal AGC value. */ |
6608 | } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | 4922 | if (min_agc_value > cur_agc_value) |
6609 | u16 cur_agc_value; | 4923 | min_agc_value = cur_agc_value; |
6610 | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | 4924 | } |
6611 | u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 4925 | |
6612 | {IGP01E1000_PHY_AGC_A, | 4926 | /* Remove the minimal AGC result for length < 50m */ |
6613 | IGP01E1000_PHY_AGC_B, | 4927 | if (agc_value < |
6614 | IGP01E1000_PHY_AGC_C, | 4928 | IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
6615 | IGP01E1000_PHY_AGC_D}; | 4929 | agc_value -= min_agc_value; |
6616 | /* Read the AGC registers for all channels */ | 4930 | |
6617 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 4931 | /* Get the average length of the remaining 3 channels */ |
6618 | 4932 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | |
6619 | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | 4933 | } else { |
6620 | if (ret_val) | 4934 | /* Get the average length of all the 4 channels. */ |
6621 | return ret_val; | 4935 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; |
6622 | 4936 | } | |
6623 | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 4937 | |
6624 | 4938 | /* Set the range of the calculated length. */ | |
6625 | /* Value bound check. */ | 4939 | *min_length = ((e1000_igp_cable_length_table[agc_value] - |
6626 | if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | 4940 | IGP01E1000_AGC_RANGE) > 0) ? |
6627 | (cur_agc_value == 0)) | 4941 | (e1000_igp_cable_length_table[agc_value] - |
6628 | return -E1000_ERR_PHY; | 4942 | IGP01E1000_AGC_RANGE) : 0; |
6629 | 4943 | *max_length = e1000_igp_cable_length_table[agc_value] + | |
6630 | agc_value += cur_agc_value; | 4944 | IGP01E1000_AGC_RANGE; |
6631 | 4945 | } | |
6632 | /* Update minimal AGC value. */ | 4946 | |
6633 | if (min_agc_value > cur_agc_value) | 4947 | return E1000_SUCCESS; |
6634 | min_agc_value = cur_agc_value; | ||
6635 | } | ||
6636 | |||
6637 | /* Remove the minimal AGC result for length < 50m */ | ||
6638 | if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | ||
6639 | agc_value -= min_agc_value; | ||
6640 | |||
6641 | /* Get the average length of the remaining 3 channels */ | ||
6642 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | ||
6643 | } else { | ||
6644 | /* Get the average length of all the 4 channels. */ | ||
6645 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | ||
6646 | } | ||
6647 | |||
6648 | /* Set the range of the calculated length. */ | ||
6649 | *min_length = ((e1000_igp_cable_length_table[agc_value] - | ||
6650 | IGP01E1000_AGC_RANGE) > 0) ? | ||
6651 | (e1000_igp_cable_length_table[agc_value] - | ||
6652 | IGP01E1000_AGC_RANGE) : 0; | ||
6653 | *max_length = e1000_igp_cable_length_table[agc_value] + | ||
6654 | IGP01E1000_AGC_RANGE; | ||
6655 | } else if (hw->phy_type == e1000_phy_igp_2 || | ||
6656 | hw->phy_type == e1000_phy_igp_3) { | ||
6657 | u16 cur_agc_index, max_agc_index = 0; | ||
6658 | u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; | ||
6659 | u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | ||
6660 | {IGP02E1000_PHY_AGC_A, | ||
6661 | IGP02E1000_PHY_AGC_B, | ||
6662 | IGP02E1000_PHY_AGC_C, | ||
6663 | IGP02E1000_PHY_AGC_D}; | ||
6664 | /* Read the AGC registers for all channels */ | ||
6665 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | ||
6666 | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | ||
6667 | if (ret_val) | ||
6668 | return ret_val; | ||
6669 | |||
6670 | /* Getting bits 15:9, which represent the combination of course and | ||
6671 | * fine gain values. The result is a number that can be put into | ||
6672 | * the lookup table to obtain the approximate cable length. */ | ||
6673 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | ||
6674 | IGP02E1000_AGC_LENGTH_MASK; | ||
6675 | |||
6676 | /* Array index bound check. */ | ||
6677 | if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || | ||
6678 | (cur_agc_index == 0)) | ||
6679 | return -E1000_ERR_PHY; | ||
6680 | |||
6681 | /* Remove min & max AGC values from calculation. */ | ||
6682 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
6683 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
6684 | min_agc_index = cur_agc_index; | ||
6685 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
6686 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
6687 | max_agc_index = cur_agc_index; | ||
6688 | |||
6689 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
6690 | } | ||
6691 | |||
6692 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | ||
6693 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
6694 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | ||
6695 | |||
6696 | /* Calculate cable length with the error range of +/- 10 meters. */ | ||
6697 | *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | ||
6698 | (agc_value - IGP02E1000_AGC_RANGE) : 0; | ||
6699 | *max_length = agc_value + IGP02E1000_AGC_RANGE; | ||
6700 | } | ||
6701 | |||
6702 | return E1000_SUCCESS; | ||
6703 | } | 4948 | } |
6704 | 4949 | ||
6705 | /****************************************************************************** | 4950 | /** |
6706 | * Check the cable polarity | 4951 | * e1000_check_polarity - Check the cable polarity |
6707 | * | 4952 | * @hw: Struct containing variables accessed by shared code |
6708 | * hw - Struct containing variables accessed by shared code | 4953 | * @polarity: output parameter : 0 - Polarity is not reversed |
6709 | * polarity - output parameter : 0 - Polarity is not reversed | ||
6710 | * 1 - Polarity is reversed. | 4954 | * 1 - Polarity is reversed. |
6711 | * | 4955 | * |
6712 | * returns: - E1000_ERR_XXX | 4956 | * returns: - E1000_ERR_XXX |
@@ -6717,73 +4961,65 @@ static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | |||
6717 | * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will | 4961 | * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will |
6718 | * return 0. If the link speed is 1000 Mbps the polarity status is in the | 4962 | * return 0. If the link speed is 1000 Mbps the polarity status is in the |
6719 | * IGP01E1000_PHY_PCS_INIT_REG. | 4963 | * IGP01E1000_PHY_PCS_INIT_REG. |
6720 | *****************************************************************************/ | 4964 | */ |
6721 | static s32 e1000_check_polarity(struct e1000_hw *hw, | 4965 | static s32 e1000_check_polarity(struct e1000_hw *hw, |
6722 | e1000_rev_polarity *polarity) | 4966 | e1000_rev_polarity *polarity) |
6723 | { | 4967 | { |
6724 | s32 ret_val; | 4968 | s32 ret_val; |
6725 | u16 phy_data; | 4969 | u16 phy_data; |
6726 | 4970 | ||
6727 | DEBUGFUNC("e1000_check_polarity"); | 4971 | DEBUGFUNC("e1000_check_polarity"); |
6728 | 4972 | ||
6729 | if ((hw->phy_type == e1000_phy_m88) || | 4973 | if (hw->phy_type == e1000_phy_m88) { |
6730 | (hw->phy_type == e1000_phy_gg82563)) { | 4974 | /* return the Polarity bit in the Status register. */ |
6731 | /* return the Polarity bit in the Status register. */ | 4975 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
6732 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 4976 | &phy_data); |
6733 | &phy_data); | 4977 | if (ret_val) |
6734 | if (ret_val) | 4978 | return ret_val; |
6735 | return ret_val; | 4979 | *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> |
6736 | *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> | 4980 | M88E1000_PSSR_REV_POLARITY_SHIFT) ? |
6737 | M88E1000_PSSR_REV_POLARITY_SHIFT) ? | 4981 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
6738 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 4982 | |
6739 | 4983 | } else if (hw->phy_type == e1000_phy_igp) { | |
6740 | } else if (hw->phy_type == e1000_phy_igp || | 4984 | /* Read the Status register to check the speed */ |
6741 | hw->phy_type == e1000_phy_igp_3 || | 4985 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
6742 | hw->phy_type == e1000_phy_igp_2) { | 4986 | &phy_data); |
6743 | /* Read the Status register to check the speed */ | 4987 | if (ret_val) |
6744 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 4988 | return ret_val; |
6745 | &phy_data); | 4989 | |
6746 | if (ret_val) | 4990 | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to |
6747 | return ret_val; | 4991 | * find the polarity status */ |
6748 | 4992 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | |
6749 | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to | 4993 | IGP01E1000_PSSR_SPEED_1000MBPS) { |
6750 | * find the polarity status */ | 4994 | |
6751 | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 4995 | /* Read the GIG initialization PCS register (0x00B4) */ |
6752 | IGP01E1000_PSSR_SPEED_1000MBPS) { | 4996 | ret_val = |
6753 | 4997 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | |
6754 | /* Read the GIG initialization PCS register (0x00B4) */ | 4998 | &phy_data); |
6755 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | 4999 | if (ret_val) |
6756 | &phy_data); | 5000 | return ret_val; |
6757 | if (ret_val) | 5001 | |
6758 | return ret_val; | 5002 | /* Check the polarity bits */ |
6759 | 5003 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? | |
6760 | /* Check the polarity bits */ | 5004 | e1000_rev_polarity_reversed : |
6761 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? | 5005 | e1000_rev_polarity_normal; |
6762 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 5006 | } else { |
6763 | } else { | 5007 | /* For 10 Mbps, read the polarity bit in the status register. (for |
6764 | /* For 10 Mbps, read the polarity bit in the status register. (for | 5008 | * 100 Mbps this bit is always 0) */ |
6765 | * 100 Mbps this bit is always 0) */ | 5009 | *polarity = |
6766 | *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? | 5010 | (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? |
6767 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 5011 | e1000_rev_polarity_reversed : |
6768 | } | 5012 | e1000_rev_polarity_normal; |
6769 | } else if (hw->phy_type == e1000_phy_ife) { | 5013 | } |
6770 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, | 5014 | } |
6771 | &phy_data); | 5015 | return E1000_SUCCESS; |
6772 | if (ret_val) | ||
6773 | return ret_val; | ||
6774 | *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >> | ||
6775 | IFE_PESC_POLARITY_REVERSED_SHIFT) ? | ||
6776 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | ||
6777 | } | ||
6778 | return E1000_SUCCESS; | ||
6779 | } | 5016 | } |
6780 | 5017 | ||
6781 | /****************************************************************************** | 5018 | /** |
6782 | * Check if Downshift occured | 5019 | * e1000_check_downshift - Check if Downshift occurred |
6783 | * | 5020 | * @hw: Struct containing variables accessed by shared code |
6784 | * hw - Struct containing variables accessed by shared code | 5021 | * @downshift: output parameter : 0 - No Downshift occurred. |
6785 | * downshift - output parameter : 0 - No Downshift ocured. | 5022 | * 1 - Downshift occurred. |
6786 | * 1 - Downshift ocured. | ||
6787 | * | 5023 | * |
6788 | * returns: - E1000_ERR_XXX | 5024 | * returns: - E1000_ERR_XXX |
6789 | * E1000_SUCCESS | 5025 | * E1000_SUCCESS |
@@ -6792,2041 +5028,607 @@ static s32 e1000_check_polarity(struct e1000_hw *hw, | |||
6792 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the | 5028 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the |
6793 | * Link Health register. In IGP this bit is latched high, so the driver must | 5029 | * Link Health register. In IGP this bit is latched high, so the driver must |
6794 | * read it immediately after link is established. | 5030 | * read it immediately after link is established. |
6795 | *****************************************************************************/ | 5031 | */ |
6796 | static s32 e1000_check_downshift(struct e1000_hw *hw) | 5032 | static s32 e1000_check_downshift(struct e1000_hw *hw) |
6797 | { | 5033 | { |
6798 | s32 ret_val; | 5034 | s32 ret_val; |
6799 | u16 phy_data; | 5035 | u16 phy_data; |
6800 | |||
6801 | DEBUGFUNC("e1000_check_downshift"); | ||
6802 | |||
6803 | if (hw->phy_type == e1000_phy_igp || | ||
6804 | hw->phy_type == e1000_phy_igp_3 || | ||
6805 | hw->phy_type == e1000_phy_igp_2) { | ||
6806 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | ||
6807 | &phy_data); | ||
6808 | if (ret_val) | ||
6809 | return ret_val; | ||
6810 | |||
6811 | hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | ||
6812 | } else if ((hw->phy_type == e1000_phy_m88) || | ||
6813 | (hw->phy_type == e1000_phy_gg82563)) { | ||
6814 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
6815 | &phy_data); | ||
6816 | if (ret_val) | ||
6817 | return ret_val; | ||
6818 | |||
6819 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | ||
6820 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | ||
6821 | } else if (hw->phy_type == e1000_phy_ife) { | ||
6822 | /* e1000_phy_ife supports 10/100 speed only */ | ||
6823 | hw->speed_downgraded = false; | ||
6824 | } | ||
6825 | |||
6826 | return E1000_SUCCESS; | ||
6827 | } | ||
6828 | 5036 | ||
6829 | /***************************************************************************** | 5037 | DEBUGFUNC("e1000_check_downshift"); |
6830 | * | ||
6831 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | ||
6832 | * gigabit link is achieved to improve link quality. | ||
6833 | * | ||
6834 | * hw: Struct containing variables accessed by shared code | ||
6835 | * | ||
6836 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
6837 | * E1000_SUCCESS at any other case. | ||
6838 | * | ||
6839 | ****************************************************************************/ | ||
6840 | 5038 | ||
6841 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) | 5039 | if (hw->phy_type == e1000_phy_igp) { |
6842 | { | 5040 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
6843 | s32 ret_val; | 5041 | &phy_data); |
6844 | u16 phy_data, phy_saved_data, speed, duplex, i; | 5042 | if (ret_val) |
6845 | u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 5043 | return ret_val; |
6846 | {IGP01E1000_PHY_AGC_PARAM_A, | ||
6847 | IGP01E1000_PHY_AGC_PARAM_B, | ||
6848 | IGP01E1000_PHY_AGC_PARAM_C, | ||
6849 | IGP01E1000_PHY_AGC_PARAM_D}; | ||
6850 | u16 min_length, max_length; | ||
6851 | |||
6852 | DEBUGFUNC("e1000_config_dsp_after_link_change"); | ||
6853 | |||
6854 | if (hw->phy_type != e1000_phy_igp) | ||
6855 | return E1000_SUCCESS; | ||
6856 | |||
6857 | if (link_up) { | ||
6858 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
6859 | if (ret_val) { | ||
6860 | DEBUGOUT("Error getting link speed and duplex\n"); | ||
6861 | return ret_val; | ||
6862 | } | ||
6863 | |||
6864 | if (speed == SPEED_1000) { | ||
6865 | |||
6866 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | ||
6867 | if (ret_val) | ||
6868 | return ret_val; | ||
6869 | |||
6870 | if ((hw->dsp_config_state == e1000_dsp_config_enabled) && | ||
6871 | min_length >= e1000_igp_cable_length_50) { | ||
6872 | |||
6873 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
6874 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], | ||
6875 | &phy_data); | ||
6876 | if (ret_val) | ||
6877 | return ret_val; | ||
6878 | |||
6879 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
6880 | |||
6881 | ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], | ||
6882 | phy_data); | ||
6883 | if (ret_val) | ||
6884 | return ret_val; | ||
6885 | } | ||
6886 | hw->dsp_config_state = e1000_dsp_config_activated; | ||
6887 | } | ||
6888 | |||
6889 | if ((hw->ffe_config_state == e1000_ffe_config_enabled) && | ||
6890 | (min_length < e1000_igp_cable_length_50)) { | ||
6891 | |||
6892 | u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; | ||
6893 | u32 idle_errs = 0; | ||
6894 | |||
6895 | /* clear previous idle error counts */ | ||
6896 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | ||
6897 | &phy_data); | ||
6898 | if (ret_val) | ||
6899 | return ret_val; | ||
6900 | |||
6901 | for (i = 0; i < ffe_idle_err_timeout; i++) { | ||
6902 | udelay(1000); | ||
6903 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | ||
6904 | &phy_data); | ||
6905 | if (ret_val) | ||
6906 | return ret_val; | ||
6907 | |||
6908 | idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); | ||
6909 | if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { | ||
6910 | hw->ffe_config_state = e1000_ffe_config_active; | ||
6911 | |||
6912 | ret_val = e1000_write_phy_reg(hw, | ||
6913 | IGP01E1000_PHY_DSP_FFE, | ||
6914 | IGP01E1000_PHY_DSP_FFE_CM_CP); | ||
6915 | if (ret_val) | ||
6916 | return ret_val; | ||
6917 | break; | ||
6918 | } | ||
6919 | |||
6920 | if (idle_errs) | ||
6921 | ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; | ||
6922 | } | ||
6923 | } | ||
6924 | } | ||
6925 | } else { | ||
6926 | if (hw->dsp_config_state == e1000_dsp_config_activated) { | ||
6927 | /* Save off the current value of register 0x2F5B to be restored at | ||
6928 | * the end of the routines. */ | ||
6929 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
6930 | |||
6931 | if (ret_val) | ||
6932 | return ret_val; | ||
6933 | |||
6934 | /* Disable the PHY transmitter */ | ||
6935 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
6936 | |||
6937 | if (ret_val) | ||
6938 | return ret_val; | ||
6939 | |||
6940 | mdelay(20); | ||
6941 | |||
6942 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
6943 | IGP01E1000_IEEE_FORCE_GIGA); | ||
6944 | if (ret_val) | ||
6945 | return ret_val; | ||
6946 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
6947 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); | ||
6948 | if (ret_val) | ||
6949 | return ret_val; | ||
6950 | |||
6951 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
6952 | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | ||
6953 | |||
6954 | ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); | ||
6955 | if (ret_val) | ||
6956 | return ret_val; | ||
6957 | } | ||
6958 | |||
6959 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
6960 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
6961 | if (ret_val) | ||
6962 | return ret_val; | ||
6963 | |||
6964 | mdelay(20); | ||
6965 | |||
6966 | /* Now enable the transmitter */ | ||
6967 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
6968 | |||
6969 | if (ret_val) | ||
6970 | return ret_val; | ||
6971 | |||
6972 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
6973 | } | ||
6974 | |||
6975 | if (hw->ffe_config_state == e1000_ffe_config_active) { | ||
6976 | /* Save off the current value of register 0x2F5B to be restored at | ||
6977 | * the end of the routines. */ | ||
6978 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
6979 | |||
6980 | if (ret_val) | ||
6981 | return ret_val; | ||
6982 | |||
6983 | /* Disable the PHY transmitter */ | ||
6984 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
6985 | |||
6986 | if (ret_val) | ||
6987 | return ret_val; | ||
6988 | |||
6989 | mdelay(20); | ||
6990 | |||
6991 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
6992 | IGP01E1000_IEEE_FORCE_GIGA); | ||
6993 | if (ret_val) | ||
6994 | return ret_val; | ||
6995 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | ||
6996 | IGP01E1000_PHY_DSP_FFE_DEFAULT); | ||
6997 | if (ret_val) | ||
6998 | return ret_val; | ||
6999 | |||
7000 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
7001 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
7002 | if (ret_val) | ||
7003 | return ret_val; | ||
7004 | |||
7005 | mdelay(20); | ||
7006 | |||
7007 | /* Now enable the transmitter */ | ||
7008 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
7009 | |||
7010 | if (ret_val) | ||
7011 | return ret_val; | ||
7012 | |||
7013 | hw->ffe_config_state = e1000_ffe_config_enabled; | ||
7014 | } | ||
7015 | } | ||
7016 | return E1000_SUCCESS; | ||
7017 | } | ||
7018 | 5044 | ||
7019 | /***************************************************************************** | 5045 | hw->speed_downgraded = |
7020 | * Set PHY to class A mode | 5046 | (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; |
7021 | * Assumes the following operations will follow to enable the new class mode. | 5047 | } else if (hw->phy_type == e1000_phy_m88) { |
7022 | * 1. Do a PHY soft reset | 5048 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
7023 | * 2. Restart auto-negotiation or force link. | 5049 | &phy_data); |
7024 | * | 5050 | if (ret_val) |
7025 | * hw - Struct containing variables accessed by shared code | 5051 | return ret_val; |
7026 | ****************************************************************************/ | ||
7027 | static s32 e1000_set_phy_mode(struct e1000_hw *hw) | ||
7028 | { | ||
7029 | s32 ret_val; | ||
7030 | u16 eeprom_data; | ||
7031 | |||
7032 | DEBUGFUNC("e1000_set_phy_mode"); | ||
7033 | |||
7034 | if ((hw->mac_type == e1000_82545_rev_3) && | ||
7035 | (hw->media_type == e1000_media_type_copper)) { | ||
7036 | ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); | ||
7037 | if (ret_val) { | ||
7038 | return ret_val; | ||
7039 | } | ||
7040 | |||
7041 | if ((eeprom_data != EEPROM_RESERVED_WORD) && | ||
7042 | (eeprom_data & EEPROM_PHY_CLASS_A)) { | ||
7043 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); | ||
7044 | if (ret_val) | ||
7045 | return ret_val; | ||
7046 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); | ||
7047 | if (ret_val) | ||
7048 | return ret_val; | ||
7049 | |||
7050 | hw->phy_reset_disable = false; | ||
7051 | } | ||
7052 | } | ||
7053 | |||
7054 | return E1000_SUCCESS; | ||
7055 | } | ||
7056 | 5052 | ||
7057 | /***************************************************************************** | 5053 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
7058 | * | 5054 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
7059 | * This function sets the lplu state according to the active flag. When | 5055 | } |
7060 | * activating lplu this function also disables smart speed and vise versa. | ||
7061 | * lplu will not be activated unless the device autonegotiation advertisment | ||
7062 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
7063 | * hw: Struct containing variables accessed by shared code | ||
7064 | * active - true to enable lplu false to disable lplu. | ||
7065 | * | ||
7066 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
7067 | * E1000_SUCCESS at any other case. | ||
7068 | * | ||
7069 | ****************************************************************************/ | ||
7070 | 5056 | ||
7071 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | 5057 | return E1000_SUCCESS; |
7072 | { | ||
7073 | u32 phy_ctrl = 0; | ||
7074 | s32 ret_val; | ||
7075 | u16 phy_data; | ||
7076 | DEBUGFUNC("e1000_set_d3_lplu_state"); | ||
7077 | |||
7078 | if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 | ||
7079 | && hw->phy_type != e1000_phy_igp_3) | ||
7080 | return E1000_SUCCESS; | ||
7081 | |||
7082 | /* During driver activity LPLU should not be used or it will attain link | ||
7083 | * from the lowest speeds starting from 10Mbps. The capability is used for | ||
7084 | * Dx transitions and states */ | ||
7085 | if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { | ||
7086 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | ||
7087 | if (ret_val) | ||
7088 | return ret_val; | ||
7089 | } else if (hw->mac_type == e1000_ich8lan) { | ||
7090 | /* MAC writes into PHY register based on the state transition | ||
7091 | * and start auto-negotiation. SW driver can overwrite the settings | ||
7092 | * in CSR PHY power control E1000_PHY_CTRL register. */ | ||
7093 | phy_ctrl = er32(PHY_CTRL); | ||
7094 | } else { | ||
7095 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
7096 | if (ret_val) | ||
7097 | return ret_val; | ||
7098 | } | ||
7099 | |||
7100 | if (!active) { | ||
7101 | if (hw->mac_type == e1000_82541_rev_2 || | ||
7102 | hw->mac_type == e1000_82547_rev_2) { | ||
7103 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
7104 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
7105 | if (ret_val) | ||
7106 | return ret_val; | ||
7107 | } else { | ||
7108 | if (hw->mac_type == e1000_ich8lan) { | ||
7109 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | ||
7110 | ew32(PHY_CTRL, phy_ctrl); | ||
7111 | } else { | ||
7112 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | ||
7113 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
7114 | phy_data); | ||
7115 | if (ret_val) | ||
7116 | return ret_val; | ||
7117 | } | ||
7118 | } | ||
7119 | |||
7120 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | ||
7121 | * Dx states where the power conservation is most important. During | ||
7122 | * driver activity we should enable SmartSpeed, so performance is | ||
7123 | * maintained. */ | ||
7124 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
7125 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7126 | &phy_data); | ||
7127 | if (ret_val) | ||
7128 | return ret_val; | ||
7129 | |||
7130 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
7131 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7132 | phy_data); | ||
7133 | if (ret_val) | ||
7134 | return ret_val; | ||
7135 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
7136 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7137 | &phy_data); | ||
7138 | if (ret_val) | ||
7139 | return ret_val; | ||
7140 | |||
7141 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
7142 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7143 | phy_data); | ||
7144 | if (ret_val) | ||
7145 | return ret_val; | ||
7146 | } | ||
7147 | |||
7148 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || | ||
7149 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | ||
7150 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | ||
7151 | |||
7152 | if (hw->mac_type == e1000_82541_rev_2 || | ||
7153 | hw->mac_type == e1000_82547_rev_2) { | ||
7154 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | ||
7155 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
7156 | if (ret_val) | ||
7157 | return ret_val; | ||
7158 | } else { | ||
7159 | if (hw->mac_type == e1000_ich8lan) { | ||
7160 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | ||
7161 | ew32(PHY_CTRL, phy_ctrl); | ||
7162 | } else { | ||
7163 | phy_data |= IGP02E1000_PM_D3_LPLU; | ||
7164 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
7165 | phy_data); | ||
7166 | if (ret_val) | ||
7167 | return ret_val; | ||
7168 | } | ||
7169 | } | ||
7170 | |||
7171 | /* When LPLU is enabled we should disable SmartSpeed */ | ||
7172 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | ||
7173 | if (ret_val) | ||
7174 | return ret_val; | ||
7175 | |||
7176 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
7177 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | ||
7178 | if (ret_val) | ||
7179 | return ret_val; | ||
7180 | |||
7181 | } | ||
7182 | return E1000_SUCCESS; | ||
7183 | } | 5058 | } |
7184 | 5059 | ||
7185 | /***************************************************************************** | 5060 | /** |
7186 | * | 5061 | * e1000_config_dsp_after_link_change |
7187 | * This function sets the lplu d0 state according to the active flag. When | 5062 | * @hw: Struct containing variables accessed by shared code |
7188 | * activating lplu this function also disables smart speed and vise versa. | 5063 | * @link_up: was link up at the time this was called |
7189 | * lplu will not be activated unless the device autonegotiation advertisment | ||
7190 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
7191 | * hw: Struct containing variables accessed by shared code | ||
7192 | * active - true to enable lplu false to disable lplu. | ||
7193 | * | 5064 | * |
7194 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 5065 | * returns: - E1000_ERR_PHY if fail to read/write the PHY |
7195 | * E1000_SUCCESS at any other case. | 5066 | * E1000_SUCCESS at any other case. |
7196 | * | 5067 | * |
7197 | ****************************************************************************/ | 5068 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a |
7198 | 5069 | * gigabit link is achieved to improve link quality. | |
7199 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) | 5070 | */ |
7200 | { | ||
7201 | u32 phy_ctrl = 0; | ||
7202 | s32 ret_val; | ||
7203 | u16 phy_data; | ||
7204 | DEBUGFUNC("e1000_set_d0_lplu_state"); | ||
7205 | |||
7206 | if (hw->mac_type <= e1000_82547_rev_2) | ||
7207 | return E1000_SUCCESS; | ||
7208 | |||
7209 | if (hw->mac_type == e1000_ich8lan) { | ||
7210 | phy_ctrl = er32(PHY_CTRL); | ||
7211 | } else { | ||
7212 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
7213 | if (ret_val) | ||
7214 | return ret_val; | ||
7215 | } | ||
7216 | |||
7217 | if (!active) { | ||
7218 | if (hw->mac_type == e1000_ich8lan) { | ||
7219 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | ||
7220 | ew32(PHY_CTRL, phy_ctrl); | ||
7221 | } else { | ||
7222 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | ||
7223 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
7224 | if (ret_val) | ||
7225 | return ret_val; | ||
7226 | } | ||
7227 | |||
7228 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | ||
7229 | * Dx states where the power conservation is most important. During | ||
7230 | * driver activity we should enable SmartSpeed, so performance is | ||
7231 | * maintained. */ | ||
7232 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
7233 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7234 | &phy_data); | ||
7235 | if (ret_val) | ||
7236 | return ret_val; | ||
7237 | |||
7238 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
7239 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7240 | phy_data); | ||
7241 | if (ret_val) | ||
7242 | return ret_val; | ||
7243 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
7244 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7245 | &phy_data); | ||
7246 | if (ret_val) | ||
7247 | return ret_val; | ||
7248 | |||
7249 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
7250 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7251 | phy_data); | ||
7252 | if (ret_val) | ||
7253 | return ret_val; | ||
7254 | } | ||
7255 | |||
7256 | |||
7257 | } else { | ||
7258 | |||
7259 | if (hw->mac_type == e1000_ich8lan) { | ||
7260 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | ||
7261 | ew32(PHY_CTRL, phy_ctrl); | ||
7262 | } else { | ||
7263 | phy_data |= IGP02E1000_PM_D0_LPLU; | ||
7264 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
7265 | if (ret_val) | ||
7266 | return ret_val; | ||
7267 | } | ||
7268 | |||
7269 | /* When LPLU is enabled we should disable SmartSpeed */ | ||
7270 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | ||
7271 | if (ret_val) | ||
7272 | return ret_val; | ||
7273 | |||
7274 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
7275 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | ||
7276 | if (ret_val) | ||
7277 | return ret_val; | ||
7278 | |||
7279 | } | ||
7280 | return E1000_SUCCESS; | ||
7281 | } | ||
7282 | 5071 | ||
7283 | /****************************************************************************** | 5072 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) |
7284 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | ||
7285 | * | ||
7286 | * hw - Struct containing variables accessed by shared code | ||
7287 | *****************************************************************************/ | ||
7288 | static s32 e1000_set_vco_speed(struct e1000_hw *hw) | ||
7289 | { | 5073 | { |
7290 | s32 ret_val; | 5074 | s32 ret_val; |
7291 | u16 default_page = 0; | 5075 | u16 phy_data, phy_saved_data, speed, duplex, i; |
7292 | u16 phy_data; | 5076 | u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
7293 | 5077 | { IGP01E1000_PHY_AGC_PARAM_A, | |
7294 | DEBUGFUNC("e1000_set_vco_speed"); | 5078 | IGP01E1000_PHY_AGC_PARAM_B, |
5079 | IGP01E1000_PHY_AGC_PARAM_C, | ||
5080 | IGP01E1000_PHY_AGC_PARAM_D | ||
5081 | }; | ||
5082 | u16 min_length, max_length; | ||
5083 | |||
5084 | DEBUGFUNC("e1000_config_dsp_after_link_change"); | ||
5085 | |||
5086 | if (hw->phy_type != e1000_phy_igp) | ||
5087 | return E1000_SUCCESS; | ||
5088 | |||
5089 | if (link_up) { | ||
5090 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
5091 | if (ret_val) { | ||
5092 | DEBUGOUT("Error getting link speed and duplex\n"); | ||
5093 | return ret_val; | ||
5094 | } | ||
7295 | 5095 | ||
7296 | switch (hw->mac_type) { | 5096 | if (speed == SPEED_1000) { |
7297 | case e1000_82545_rev_3: | 5097 | |
7298 | case e1000_82546_rev_3: | 5098 | ret_val = |
7299 | break; | 5099 | e1000_get_cable_length(hw, &min_length, |
7300 | default: | 5100 | &max_length); |
7301 | return E1000_SUCCESS; | 5101 | if (ret_val) |
7302 | } | 5102 | return ret_val; |
5103 | |||
5104 | if ((hw->dsp_config_state == e1000_dsp_config_enabled) | ||
5105 | && min_length >= e1000_igp_cable_length_50) { | ||
5106 | |||
5107 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
5108 | ret_val = | ||
5109 | e1000_read_phy_reg(hw, | ||
5110 | dsp_reg_array[i], | ||
5111 | &phy_data); | ||
5112 | if (ret_val) | ||
5113 | return ret_val; | ||
5114 | |||
5115 | phy_data &= | ||
5116 | ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
5117 | |||
5118 | ret_val = | ||
5119 | e1000_write_phy_reg(hw, | ||
5120 | dsp_reg_array | ||
5121 | [i], phy_data); | ||
5122 | if (ret_val) | ||
5123 | return ret_val; | ||
5124 | } | ||
5125 | hw->dsp_config_state = | ||
5126 | e1000_dsp_config_activated; | ||
5127 | } | ||
5128 | |||
5129 | if ((hw->ffe_config_state == e1000_ffe_config_enabled) | ||
5130 | && (min_length < e1000_igp_cable_length_50)) { | ||
5131 | |||
5132 | u16 ffe_idle_err_timeout = | ||
5133 | FFE_IDLE_ERR_COUNT_TIMEOUT_20; | ||
5134 | u32 idle_errs = 0; | ||
5135 | |||
5136 | /* clear previous idle error counts */ | ||
5137 | ret_val = | ||
5138 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, | ||
5139 | &phy_data); | ||
5140 | if (ret_val) | ||
5141 | return ret_val; | ||
5142 | |||
5143 | for (i = 0; i < ffe_idle_err_timeout; i++) { | ||
5144 | udelay(1000); | ||
5145 | ret_val = | ||
5146 | e1000_read_phy_reg(hw, | ||
5147 | PHY_1000T_STATUS, | ||
5148 | &phy_data); | ||
5149 | if (ret_val) | ||
5150 | return ret_val; | ||
5151 | |||
5152 | idle_errs += | ||
5153 | (phy_data & | ||
5154 | SR_1000T_IDLE_ERROR_CNT); | ||
5155 | if (idle_errs > | ||
5156 | SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) | ||
5157 | { | ||
5158 | hw->ffe_config_state = | ||
5159 | e1000_ffe_config_active; | ||
5160 | |||
5161 | ret_val = | ||
5162 | e1000_write_phy_reg(hw, | ||
5163 | IGP01E1000_PHY_DSP_FFE, | ||
5164 | IGP01E1000_PHY_DSP_FFE_CM_CP); | ||
5165 | if (ret_val) | ||
5166 | return ret_val; | ||
5167 | break; | ||
5168 | } | ||
5169 | |||
5170 | if (idle_errs) | ||
5171 | ffe_idle_err_timeout = | ||
5172 | FFE_IDLE_ERR_COUNT_TIMEOUT_100; | ||
5173 | } | ||
5174 | } | ||
5175 | } | ||
5176 | } else { | ||
5177 | if (hw->dsp_config_state == e1000_dsp_config_activated) { | ||
5178 | /* Save off the current value of register 0x2F5B to be restored at | ||
5179 | * the end of the routines. */ | ||
5180 | ret_val = | ||
5181 | e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
5182 | |||
5183 | if (ret_val) | ||
5184 | return ret_val; | ||
5185 | |||
5186 | /* Disable the PHY transmitter */ | ||
5187 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
5188 | |||
5189 | if (ret_val) | ||
5190 | return ret_val; | ||
5191 | |||
5192 | mdelay(20); | ||
5193 | |||
5194 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5195 | IGP01E1000_IEEE_FORCE_GIGA); | ||
5196 | if (ret_val) | ||
5197 | return ret_val; | ||
5198 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
5199 | ret_val = | ||
5200 | e1000_read_phy_reg(hw, dsp_reg_array[i], | ||
5201 | &phy_data); | ||
5202 | if (ret_val) | ||
5203 | return ret_val; | ||
5204 | |||
5205 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
5206 | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | ||
5207 | |||
5208 | ret_val = | ||
5209 | e1000_write_phy_reg(hw, dsp_reg_array[i], | ||
5210 | phy_data); | ||
5211 | if (ret_val) | ||
5212 | return ret_val; | ||
5213 | } | ||
5214 | |||
5215 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5216 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
5217 | if (ret_val) | ||
5218 | return ret_val; | ||
5219 | |||
5220 | mdelay(20); | ||
5221 | |||
5222 | /* Now enable the transmitter */ | ||
5223 | ret_val = | ||
5224 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
5225 | |||
5226 | if (ret_val) | ||
5227 | return ret_val; | ||
5228 | |||
5229 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
5230 | } | ||
7303 | 5231 | ||
7304 | /* Set PHY register 30, page 5, bit 8 to 0 */ | 5232 | if (hw->ffe_config_state == e1000_ffe_config_active) { |
5233 | /* Save off the current value of register 0x2F5B to be restored at | ||
5234 | * the end of the routines. */ | ||
5235 | ret_val = | ||
5236 | e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
7305 | 5237 | ||
7306 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); | 5238 | if (ret_val) |
7307 | if (ret_val) | 5239 | return ret_val; |
7308 | return ret_val; | ||
7309 | 5240 | ||
7310 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); | 5241 | /* Disable the PHY transmitter */ |
7311 | if (ret_val) | 5242 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
7312 | return ret_val; | ||
7313 | 5243 | ||
7314 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 5244 | if (ret_val) |
7315 | if (ret_val) | 5245 | return ret_val; |
7316 | return ret_val; | ||
7317 | 5246 | ||
7318 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | 5247 | mdelay(20); |
7319 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | ||
7320 | if (ret_val) | ||
7321 | return ret_val; | ||
7322 | 5248 | ||
7323 | /* Set PHY register 30, page 4, bit 11 to 1 */ | 5249 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
5250 | IGP01E1000_IEEE_FORCE_GIGA); | ||
5251 | if (ret_val) | ||
5252 | return ret_val; | ||
5253 | ret_val = | ||
5254 | e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | ||
5255 | IGP01E1000_PHY_DSP_FFE_DEFAULT); | ||
5256 | if (ret_val) | ||
5257 | return ret_val; | ||
7324 | 5258 | ||
7325 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | 5259 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
7326 | if (ret_val) | 5260 | IGP01E1000_IEEE_RESTART_AUTONEG); |
7327 | return ret_val; | 5261 | if (ret_val) |
5262 | return ret_val; | ||
7328 | 5263 | ||
7329 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 5264 | mdelay(20); |
7330 | if (ret_val) | ||
7331 | return ret_val; | ||
7332 | 5265 | ||
7333 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; | 5266 | /* Now enable the transmitter */ |
7334 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 5267 | ret_val = |
7335 | if (ret_val) | 5268 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
7336 | return ret_val; | ||
7337 | 5269 | ||
7338 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); | 5270 | if (ret_val) |
7339 | if (ret_val) | 5271 | return ret_val; |
7340 | return ret_val; | ||
7341 | 5272 | ||
7342 | return E1000_SUCCESS; | 5273 | hw->ffe_config_state = e1000_ffe_config_enabled; |
5274 | } | ||
5275 | } | ||
5276 | return E1000_SUCCESS; | ||
7343 | } | 5277 | } |
7344 | 5278 | ||
7345 | 5279 | /** | |
7346 | /***************************************************************************** | 5280 | * e1000_set_phy_mode - Set PHY to class A mode |
7347 | * This function reads the cookie from ARC ram. | 5281 | * @hw: Struct containing variables accessed by shared code |
7348 | * | 5282 | * |
7349 | * returns: - E1000_SUCCESS . | 5283 | * Assumes the following operations will follow to enable the new class mode. |
7350 | ****************************************************************************/ | 5284 | * 1. Do a PHY soft reset |
7351 | static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer) | 5285 | * 2. Restart auto-negotiation or force link. |
5286 | */ | ||
5287 | static s32 e1000_set_phy_mode(struct e1000_hw *hw) | ||
7352 | { | 5288 | { |
7353 | u8 i; | 5289 | s32 ret_val; |
7354 | u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET; | 5290 | u16 eeprom_data; |
7355 | u8 length = E1000_MNG_DHCP_COOKIE_LENGTH; | ||
7356 | |||
7357 | length = (length >> 2); | ||
7358 | offset = (offset >> 2); | ||
7359 | |||
7360 | for (i = 0; i < length; i++) { | ||
7361 | *((u32 *)buffer + i) = | ||
7362 | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); | ||
7363 | } | ||
7364 | return E1000_SUCCESS; | ||
7365 | } | ||
7366 | 5291 | ||
5292 | DEBUGFUNC("e1000_set_phy_mode"); | ||
7367 | 5293 | ||
7368 | /***************************************************************************** | 5294 | if ((hw->mac_type == e1000_82545_rev_3) && |
7369 | * This function checks whether the HOST IF is enabled for command operaton | 5295 | (hw->media_type == e1000_media_type_copper)) { |
7370 | * and also checks whether the previous command is completed. | 5296 | ret_val = |
7371 | * It busy waits in case of previous command is not completed. | 5297 | e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, |
7372 | * | 5298 | &eeprom_data); |
7373 | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or | 5299 | if (ret_val) { |
7374 | * timeout | 5300 | return ret_val; |
7375 | * - E1000_SUCCESS for success. | 5301 | } |
7376 | ****************************************************************************/ | ||
7377 | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) | ||
7378 | { | ||
7379 | u32 hicr; | ||
7380 | u8 i; | ||
7381 | |||
7382 | /* Check that the host interface is enabled. */ | ||
7383 | hicr = er32(HICR); | ||
7384 | if ((hicr & E1000_HICR_EN) == 0) { | ||
7385 | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | ||
7386 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
7387 | } | ||
7388 | /* check the previous command is completed */ | ||
7389 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | ||
7390 | hicr = er32(HICR); | ||
7391 | if (!(hicr & E1000_HICR_C)) | ||
7392 | break; | ||
7393 | mdelay(1); | ||
7394 | } | ||
7395 | |||
7396 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | ||
7397 | DEBUGOUT("Previous command timeout failed .\n"); | ||
7398 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
7399 | } | ||
7400 | return E1000_SUCCESS; | ||
7401 | } | ||
7402 | 5302 | ||
7403 | /***************************************************************************** | 5303 | if ((eeprom_data != EEPROM_RESERVED_WORD) && |
7404 | * This function writes the buffer content at the offset given on the host if. | 5304 | (eeprom_data & EEPROM_PHY_CLASS_A)) { |
7405 | * It also does alignment considerations to do the writes in most efficient way. | 5305 | ret_val = |
7406 | * Also fills up the sum of the buffer in *buffer parameter. | 5306 | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, |
7407 | * | 5307 | 0x000B); |
7408 | * returns - E1000_SUCCESS for success. | 5308 | if (ret_val) |
7409 | ****************************************************************************/ | 5309 | return ret_val; |
7410 | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, | 5310 | ret_val = |
7411 | u16 offset, u8 *sum) | 5311 | e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, |
7412 | { | 5312 | 0x8104); |
7413 | u8 *tmp; | 5313 | if (ret_val) |
7414 | u8 *bufptr = buffer; | 5314 | return ret_val; |
7415 | u32 data = 0; | 5315 | |
7416 | u16 remaining, i, j, prev_bytes; | 5316 | hw->phy_reset_disable = false; |
7417 | 5317 | } | |
7418 | /* sum = only sum of the data and it is not checksum */ | 5318 | } |
7419 | |||
7420 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { | ||
7421 | return -E1000_ERR_PARAM; | ||
7422 | } | ||
7423 | |||
7424 | tmp = (u8 *)&data; | ||
7425 | prev_bytes = offset & 0x3; | ||
7426 | offset &= 0xFFFC; | ||
7427 | offset >>= 2; | ||
7428 | |||
7429 | if (prev_bytes) { | ||
7430 | data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); | ||
7431 | for (j = prev_bytes; j < sizeof(u32); j++) { | ||
7432 | *(tmp + j) = *bufptr++; | ||
7433 | *sum += *(tmp + j); | ||
7434 | } | ||
7435 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); | ||
7436 | length -= j - prev_bytes; | ||
7437 | offset++; | ||
7438 | } | ||
7439 | |||
7440 | remaining = length & 0x3; | ||
7441 | length -= remaining; | ||
7442 | |||
7443 | /* Calculate length in DWORDs */ | ||
7444 | length >>= 2; | ||
7445 | |||
7446 | /* The device driver writes the relevant command block into the | ||
7447 | * ram area. */ | ||
7448 | for (i = 0; i < length; i++) { | ||
7449 | for (j = 0; j < sizeof(u32); j++) { | ||
7450 | *(tmp + j) = *bufptr++; | ||
7451 | *sum += *(tmp + j); | ||
7452 | } | ||
7453 | |||
7454 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
7455 | } | ||
7456 | if (remaining) { | ||
7457 | for (j = 0; j < sizeof(u32); j++) { | ||
7458 | if (j < remaining) | ||
7459 | *(tmp + j) = *bufptr++; | ||
7460 | else | ||
7461 | *(tmp + j) = 0; | ||
7462 | |||
7463 | *sum += *(tmp + j); | ||
7464 | } | ||
7465 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
7466 | } | ||
7467 | |||
7468 | return E1000_SUCCESS; | ||
7469 | } | ||
7470 | 5319 | ||
5320 | return E1000_SUCCESS; | ||
5321 | } | ||
7471 | 5322 | ||
7472 | /***************************************************************************** | 5323 | /** |
7473 | * This function writes the command header after does the checksum calculation. | 5324 | * e1000_set_d3_lplu_state - set d3 link power state |
5325 | * @hw: Struct containing variables accessed by shared code | ||
5326 | * @active: true to enable lplu false to disable lplu. | ||
5327 | * | ||
5328 | * This function sets the lplu state according to the active flag. When | ||
5329 | * activating lplu this function also disables smart speed and vise versa. | ||
5330 | * lplu will not be activated unless the device autonegotiation advertisement | ||
5331 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
7474 | * | 5332 | * |
7475 | * returns - E1000_SUCCESS for success. | 5333 | * returns: - E1000_ERR_PHY if fail to read/write the PHY |
7476 | ****************************************************************************/ | 5334 | * E1000_SUCCESS at any other case. |
7477 | static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, | 5335 | */ |
7478 | struct e1000_host_mng_command_header *hdr) | 5336 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
7479 | { | 5337 | { |
7480 | u16 i; | 5338 | s32 ret_val; |
7481 | u8 sum; | 5339 | u16 phy_data; |
7482 | u8 *buffer; | 5340 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
7483 | 5341 | ||
7484 | /* Write the whole command header structure which includes sum of | 5342 | if (hw->phy_type != e1000_phy_igp) |
7485 | * the buffer */ | 5343 | return E1000_SUCCESS; |
7486 | 5344 | ||
7487 | u16 length = sizeof(struct e1000_host_mng_command_header); | 5345 | /* During driver activity LPLU should not be used or it will attain link |
5346 | * from the lowest speeds starting from 10Mbps. The capability is used for | ||
5347 | * Dx transitions and states */ | ||
5348 | if (hw->mac_type == e1000_82541_rev_2 | ||
5349 | || hw->mac_type == e1000_82547_rev_2) { | ||
5350 | ret_val = | ||
5351 | e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | ||
5352 | if (ret_val) | ||
5353 | return ret_val; | ||
5354 | } | ||
7488 | 5355 | ||
7489 | sum = hdr->checksum; | 5356 | if (!active) { |
7490 | hdr->checksum = 0; | 5357 | if (hw->mac_type == e1000_82541_rev_2 || |
5358 | hw->mac_type == e1000_82547_rev_2) { | ||
5359 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5360 | ret_val = | ||
5361 | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
5362 | phy_data); | ||
5363 | if (ret_val) | ||
5364 | return ret_val; | ||
5365 | } | ||
7491 | 5366 | ||
7492 | buffer = (u8 *)hdr; | 5367 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
7493 | i = length; | 5368 | * Dx states where the power conservation is most important. During |
7494 | while (i--) | 5369 | * driver activity we should enable SmartSpeed, so performance is |
7495 | sum += buffer[i]; | 5370 | * maintained. */ |
5371 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
5372 | ret_val = | ||
5373 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5374 | &phy_data); | ||
5375 | if (ret_val) | ||
5376 | return ret_val; | ||
5377 | |||
5378 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
5379 | ret_val = | ||
5380 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5381 | phy_data); | ||
5382 | if (ret_val) | ||
5383 | return ret_val; | ||
5384 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
5385 | ret_val = | ||
5386 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5387 | &phy_data); | ||
5388 | if (ret_val) | ||
5389 | return ret_val; | ||
5390 | |||
5391 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5392 | ret_val = | ||
5393 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5394 | phy_data); | ||
5395 | if (ret_val) | ||
5396 | return ret_val; | ||
5397 | } | ||
5398 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) | ||
5399 | || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) | ||
5400 | || (hw->autoneg_advertised == | ||
5401 | AUTONEG_ADVERTISE_10_100_ALL)) { | ||
5402 | |||
5403 | if (hw->mac_type == e1000_82541_rev_2 || | ||
5404 | hw->mac_type == e1000_82547_rev_2) { | ||
5405 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | ||
5406 | ret_val = | ||
5407 | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
5408 | phy_data); | ||
5409 | if (ret_val) | ||
5410 | return ret_val; | ||
5411 | } | ||
7496 | 5412 | ||
7497 | hdr->checksum = 0 - sum; | 5413 | /* When LPLU is enabled we should disable SmartSpeed */ |
5414 | ret_val = | ||
5415 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5416 | &phy_data); | ||
5417 | if (ret_val) | ||
5418 | return ret_val; | ||
7498 | 5419 | ||
7499 | length >>= 2; | 5420 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
7500 | /* The device driver writes the relevant command block into the ram area. */ | 5421 | ret_val = |
7501 | for (i = 0; i < length; i++) { | 5422 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
7502 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *)hdr + i)); | 5423 | phy_data); |
7503 | E1000_WRITE_FLUSH(); | 5424 | if (ret_val) |
7504 | } | 5425 | return ret_val; |
7505 | 5426 | ||
7506 | return E1000_SUCCESS; | 5427 | } |
5428 | return E1000_SUCCESS; | ||
7507 | } | 5429 | } |
7508 | 5430 | ||
7509 | 5431 | /** | |
7510 | /***************************************************************************** | 5432 | * e1000_set_vco_speed |
7511 | * This function indicates to ARC that a new command is pending which completes | 5433 | * @hw: Struct containing variables accessed by shared code |
7512 | * one write operation by the driver. | ||
7513 | * | 5434 | * |
7514 | * returns - E1000_SUCCESS for success. | 5435 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. |
7515 | ****************************************************************************/ | 5436 | */ |
7516 | static s32 e1000_mng_write_commit(struct e1000_hw *hw) | 5437 | static s32 e1000_set_vco_speed(struct e1000_hw *hw) |
7517 | { | 5438 | { |
7518 | u32 hicr; | 5439 | s32 ret_val; |
5440 | u16 default_page = 0; | ||
5441 | u16 phy_data; | ||
7519 | 5442 | ||
7520 | hicr = er32(HICR); | 5443 | DEBUGFUNC("e1000_set_vco_speed"); |
7521 | /* Setting this bit tells the ARC that a new command is pending. */ | ||
7522 | ew32(HICR, hicr | E1000_HICR_C); | ||
7523 | 5444 | ||
7524 | return E1000_SUCCESS; | 5445 | switch (hw->mac_type) { |
7525 | } | 5446 | case e1000_82545_rev_3: |
5447 | case e1000_82546_rev_3: | ||
5448 | break; | ||
5449 | default: | ||
5450 | return E1000_SUCCESS; | ||
5451 | } | ||
7526 | 5452 | ||
5453 | /* Set PHY register 30, page 5, bit 8 to 0 */ | ||
7527 | 5454 | ||
7528 | /***************************************************************************** | 5455 | ret_val = |
7529 | * This function checks the mode of the firmware. | 5456 | e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); |
7530 | * | 5457 | if (ret_val) |
7531 | * returns - true when the mode is IAMT or false. | 5458 | return ret_val; |
7532 | ****************************************************************************/ | ||
7533 | bool e1000_check_mng_mode(struct e1000_hw *hw) | ||
7534 | { | ||
7535 | u32 fwsm; | ||
7536 | |||
7537 | fwsm = er32(FWSM); | ||
7538 | 5459 | ||
7539 | if (hw->mac_type == e1000_ich8lan) { | 5460 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); |
7540 | if ((fwsm & E1000_FWSM_MODE_MASK) == | 5461 | if (ret_val) |
7541 | (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | 5462 | return ret_val; |
7542 | return true; | ||
7543 | } else if ((fwsm & E1000_FWSM_MODE_MASK) == | ||
7544 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
7545 | return true; | ||
7546 | 5463 | ||
7547 | return false; | 5464 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
7548 | } | 5465 | if (ret_val) |
5466 | return ret_val; | ||
7549 | 5467 | ||
5468 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | ||
5469 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | ||
5470 | if (ret_val) | ||
5471 | return ret_val; | ||
7550 | 5472 | ||
7551 | /***************************************************************************** | 5473 | /* Set PHY register 30, page 4, bit 11 to 1 */ |
7552 | * This function writes the dhcp info . | ||
7553 | ****************************************************************************/ | ||
7554 | s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) | ||
7555 | { | ||
7556 | s32 ret_val; | ||
7557 | struct e1000_host_mng_command_header hdr; | ||
7558 | |||
7559 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | ||
7560 | hdr.command_length = length; | ||
7561 | hdr.reserved1 = 0; | ||
7562 | hdr.reserved2 = 0; | ||
7563 | hdr.checksum = 0; | ||
7564 | |||
7565 | ret_val = e1000_mng_enable_host_if(hw); | ||
7566 | if (ret_val == E1000_SUCCESS) { | ||
7567 | ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), | ||
7568 | &(hdr.checksum)); | ||
7569 | if (ret_val == E1000_SUCCESS) { | ||
7570 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | ||
7571 | if (ret_val == E1000_SUCCESS) | ||
7572 | ret_val = e1000_mng_write_commit(hw); | ||
7573 | } | ||
7574 | } | ||
7575 | return ret_val; | ||
7576 | } | ||
7577 | 5474 | ||
5475 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | ||
5476 | if (ret_val) | ||
5477 | return ret_val; | ||
7578 | 5478 | ||
7579 | /***************************************************************************** | 5479 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
7580 | * This function calculates the checksum. | 5480 | if (ret_val) |
7581 | * | 5481 | return ret_val; |
7582 | * returns - checksum of buffer contents. | ||
7583 | ****************************************************************************/ | ||
7584 | static u8 e1000_calculate_mng_checksum(char *buffer, u32 length) | ||
7585 | { | ||
7586 | u8 sum = 0; | ||
7587 | u32 i; | ||
7588 | 5482 | ||
7589 | if (!buffer) | 5483 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; |
7590 | return 0; | 5484 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
5485 | if (ret_val) | ||
5486 | return ret_val; | ||
7591 | 5487 | ||
7592 | for (i=0; i < length; i++) | 5488 | ret_val = |
7593 | sum += buffer[i]; | 5489 | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); |
5490 | if (ret_val) | ||
5491 | return ret_val; | ||
7594 | 5492 | ||
7595 | return (u8)(0 - sum); | 5493 | return E1000_SUCCESS; |
7596 | } | 5494 | } |
7597 | 5495 | ||
7598 | /***************************************************************************** | ||
7599 | * This function checks whether tx pkt filtering needs to be enabled or not. | ||
7600 | * | ||
7601 | * returns - true for packet filtering or false. | ||
7602 | ****************************************************************************/ | ||
7603 | bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) | ||
7604 | { | ||
7605 | /* called in init as well as watchdog timer functions */ | ||
7606 | |||
7607 | s32 ret_val, checksum; | ||
7608 | bool tx_filter = false; | ||
7609 | struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | ||
7610 | u8 *buffer = (u8 *) &(hw->mng_cookie); | ||
7611 | |||
7612 | if (e1000_check_mng_mode(hw)) { | ||
7613 | ret_val = e1000_mng_enable_host_if(hw); | ||
7614 | if (ret_val == E1000_SUCCESS) { | ||
7615 | ret_val = e1000_host_if_read_cookie(hw, buffer); | ||
7616 | if (ret_val == E1000_SUCCESS) { | ||
7617 | checksum = hdr->checksum; | ||
7618 | hdr->checksum = 0; | ||
7619 | if ((hdr->signature == E1000_IAMT_SIGNATURE) && | ||
7620 | checksum == e1000_calculate_mng_checksum((char *)buffer, | ||
7621 | E1000_MNG_DHCP_COOKIE_LENGTH)) { | ||
7622 | if (hdr->status & | ||
7623 | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) | ||
7624 | tx_filter = true; | ||
7625 | } else | ||
7626 | tx_filter = true; | ||
7627 | } else | ||
7628 | tx_filter = true; | ||
7629 | } | ||
7630 | } | ||
7631 | |||
7632 | hw->tx_pkt_filtering = tx_filter; | ||
7633 | return tx_filter; | ||
7634 | } | ||
7635 | 5496 | ||
7636 | /****************************************************************************** | 5497 | /** |
7637 | * Verifies the hardware needs to allow ARPs to be processed by the host | 5498 | * e1000_enable_mng_pass_thru - check for bmc pass through |
7638 | * | 5499 | * @hw: Struct containing variables accessed by shared code |
7639 | * hw - Struct containing variables accessed by shared code | ||
7640 | * | 5500 | * |
5501 | * Verifies the hardware needs to allow ARPs to be processed by the host | ||
7641 | * returns: - true/false | 5502 | * returns: - true/false |
7642 | * | 5503 | */ |
7643 | *****************************************************************************/ | ||
7644 | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) | 5504 | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) |
7645 | { | 5505 | { |
7646 | u32 manc; | 5506 | u32 manc; |
7647 | u32 fwsm, factps; | ||
7648 | |||
7649 | if (hw->asf_firmware_present) { | ||
7650 | manc = er32(MANC); | ||
7651 | |||
7652 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | ||
7653 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | ||
7654 | return false; | ||
7655 | if (e1000_arc_subsystem_valid(hw)) { | ||
7656 | fwsm = er32(FWSM); | ||
7657 | factps = er32(FACTPS); | ||
7658 | |||
7659 | if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) == | ||
7660 | e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG)) | ||
7661 | return true; | ||
7662 | } else | ||
7663 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | ||
7664 | return true; | ||
7665 | } | ||
7666 | return false; | ||
7667 | } | ||
7668 | 5507 | ||
7669 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 5508 | if (hw->asf_firmware_present) { |
7670 | { | 5509 | manc = er32(MANC); |
7671 | s32 ret_val; | 5510 | |
7672 | u16 mii_status_reg; | 5511 | if (!(manc & E1000_MANC_RCV_TCO_EN) || |
7673 | u16 i; | 5512 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
7674 | 5513 | return false; | |
7675 | /* Polarity reversal workaround for forced 10F/10H links. */ | 5514 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) |
7676 | 5515 | return true; | |
7677 | /* Disable the transmitter on the PHY */ | 5516 | } |
7678 | 5517 | return false; | |
7679 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | ||
7680 | if (ret_val) | ||
7681 | return ret_val; | ||
7682 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); | ||
7683 | if (ret_val) | ||
7684 | return ret_val; | ||
7685 | |||
7686 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | ||
7687 | if (ret_val) | ||
7688 | return ret_val; | ||
7689 | |||
7690 | /* This loop will early-out if the NO link condition has been met. */ | ||
7691 | for (i = PHY_FORCE_TIME; i > 0; i--) { | ||
7692 | /* Read the MII Status Register and wait for Link Status bit | ||
7693 | * to be clear. | ||
7694 | */ | ||
7695 | |||
7696 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
7697 | if (ret_val) | ||
7698 | return ret_val; | ||
7699 | |||
7700 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
7701 | if (ret_val) | ||
7702 | return ret_val; | ||
7703 | |||
7704 | if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; | ||
7705 | mdelay(100); | ||
7706 | } | ||
7707 | |||
7708 | /* Recommended delay time after link has been lost */ | ||
7709 | mdelay(1000); | ||
7710 | |||
7711 | /* Now we will re-enable th transmitter on the PHY */ | ||
7712 | |||
7713 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | ||
7714 | if (ret_val) | ||
7715 | return ret_val; | ||
7716 | mdelay(50); | ||
7717 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | ||
7718 | if (ret_val) | ||
7719 | return ret_val; | ||
7720 | mdelay(50); | ||
7721 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | ||
7722 | if (ret_val) | ||
7723 | return ret_val; | ||
7724 | mdelay(50); | ||
7725 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | ||
7726 | if (ret_val) | ||
7727 | return ret_val; | ||
7728 | |||
7729 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | ||
7730 | if (ret_val) | ||
7731 | return ret_val; | ||
7732 | |||
7733 | /* This loop will early-out if the link condition has been met. */ | ||
7734 | for (i = PHY_FORCE_TIME; i > 0; i--) { | ||
7735 | /* Read the MII Status Register and wait for Link Status bit | ||
7736 | * to be set. | ||
7737 | */ | ||
7738 | |||
7739 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
7740 | if (ret_val) | ||
7741 | return ret_val; | ||
7742 | |||
7743 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
7744 | if (ret_val) | ||
7745 | return ret_val; | ||
7746 | |||
7747 | if (mii_status_reg & MII_SR_LINK_STATUS) break; | ||
7748 | mdelay(100); | ||
7749 | } | ||
7750 | return E1000_SUCCESS; | ||
7751 | } | 5518 | } |
7752 | 5519 | ||
7753 | /*************************************************************************** | 5520 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
7754 | * | ||
7755 | * Disables PCI-Express master access. | ||
7756 | * | ||
7757 | * hw: Struct containing variables accessed by shared code | ||
7758 | * | ||
7759 | * returns: - none. | ||
7760 | * | ||
7761 | ***************************************************************************/ | ||
7762 | static void e1000_set_pci_express_master_disable(struct e1000_hw *hw) | ||
7763 | { | 5521 | { |
7764 | u32 ctrl; | 5522 | s32 ret_val; |
5523 | u16 mii_status_reg; | ||
5524 | u16 i; | ||
7765 | 5525 | ||
7766 | DEBUGFUNC("e1000_set_pci_express_master_disable"); | 5526 | /* Polarity reversal workaround for forced 10F/10H links. */ |
7767 | 5527 | ||
7768 | if (hw->bus_type != e1000_bus_type_pci_express) | 5528 | /* Disable the transmitter on the PHY */ |
7769 | return; | ||
7770 | 5529 | ||
7771 | ctrl = er32(CTRL); | 5530 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
7772 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | 5531 | if (ret_val) |
7773 | ew32(CTRL, ctrl); | 5532 | return ret_val; |
7774 | } | 5533 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); |
5534 | if (ret_val) | ||
5535 | return ret_val; | ||
7775 | 5536 | ||
7776 | /******************************************************************************* | 5537 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
7777 | * | 5538 | if (ret_val) |
7778 | * Disables PCI-Express master access and verifies there are no pending requests | 5539 | return ret_val; |
7779 | * | ||
7780 | * hw: Struct containing variables accessed by shared code | ||
7781 | * | ||
7782 | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | ||
7783 | * caused the master requests to be disabled. | ||
7784 | * E1000_SUCCESS master requests disabled. | ||
7785 | * | ||
7786 | ******************************************************************************/ | ||
7787 | s32 e1000_disable_pciex_master(struct e1000_hw *hw) | ||
7788 | { | ||
7789 | s32 timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ | ||
7790 | 5540 | ||
7791 | DEBUGFUNC("e1000_disable_pciex_master"); | 5541 | /* This loop will early-out if the NO link condition has been met. */ |
5542 | for (i = PHY_FORCE_TIME; i > 0; i--) { | ||
5543 | /* Read the MII Status Register and wait for Link Status bit | ||
5544 | * to be clear. | ||
5545 | */ | ||
7792 | 5546 | ||
7793 | if (hw->bus_type != e1000_bus_type_pci_express) | 5547 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
7794 | return E1000_SUCCESS; | 5548 | if (ret_val) |
5549 | return ret_val; | ||
7795 | 5550 | ||
7796 | e1000_set_pci_express_master_disable(hw); | 5551 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
5552 | if (ret_val) | ||
5553 | return ret_val; | ||
7797 | 5554 | ||
7798 | while (timeout) { | 5555 | if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) |
7799 | if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) | 5556 | break; |
7800 | break; | 5557 | mdelay(100); |
7801 | else | 5558 | } |
7802 | udelay(100); | ||
7803 | timeout--; | ||
7804 | } | ||
7805 | |||
7806 | if (!timeout) { | ||
7807 | DEBUGOUT("Master requests are pending.\n"); | ||
7808 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
7809 | } | ||
7810 | 5559 | ||
7811 | return E1000_SUCCESS; | 5560 | /* Recommended delay time after link has been lost */ |
5561 | mdelay(1000); | ||
5562 | |||
5563 | /* Now we will re-enable th transmitter on the PHY */ | ||
5564 | |||
5565 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | ||
5566 | if (ret_val) | ||
5567 | return ret_val; | ||
5568 | mdelay(50); | ||
5569 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | ||
5570 | if (ret_val) | ||
5571 | return ret_val; | ||
5572 | mdelay(50); | ||
5573 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | ||
5574 | if (ret_val) | ||
5575 | return ret_val; | ||
5576 | mdelay(50); | ||
5577 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | ||
5578 | if (ret_val) | ||
5579 | return ret_val; | ||
5580 | |||
5581 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | ||
5582 | if (ret_val) | ||
5583 | return ret_val; | ||
5584 | |||
5585 | /* This loop will early-out if the link condition has been met. */ | ||
5586 | for (i = PHY_FORCE_TIME; i > 0; i--) { | ||
5587 | /* Read the MII Status Register and wait for Link Status bit | ||
5588 | * to be set. | ||
5589 | */ | ||
5590 | |||
5591 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5592 | if (ret_val) | ||
5593 | return ret_val; | ||
5594 | |||
5595 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5596 | if (ret_val) | ||
5597 | return ret_val; | ||
5598 | |||
5599 | if (mii_status_reg & MII_SR_LINK_STATUS) | ||
5600 | break; | ||
5601 | mdelay(100); | ||
5602 | } | ||
5603 | return E1000_SUCCESS; | ||
7812 | } | 5604 | } |
7813 | 5605 | ||
7814 | /******************************************************************************* | 5606 | /** |
5607 | * e1000_get_auto_rd_done | ||
5608 | * @hw: Struct containing variables accessed by shared code | ||
7815 | * | 5609 | * |
7816 | * Check for EEPROM Auto Read bit done. | 5610 | * Check for EEPROM Auto Read bit done. |
7817 | * | ||
7818 | * hw: Struct containing variables accessed by shared code | ||
7819 | * | ||
7820 | * returns: - E1000_ERR_RESET if fail to reset MAC | 5611 | * returns: - E1000_ERR_RESET if fail to reset MAC |
7821 | * E1000_SUCCESS at any other case. | 5612 | * E1000_SUCCESS at any other case. |
7822 | * | 5613 | */ |
7823 | ******************************************************************************/ | ||
7824 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) | 5614 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) |
7825 | { | 5615 | { |
7826 | s32 timeout = AUTO_READ_DONE_TIMEOUT; | 5616 | DEBUGFUNC("e1000_get_auto_rd_done"); |
7827 | 5617 | msleep(5); | |
7828 | DEBUGFUNC("e1000_get_auto_rd_done"); | 5618 | return E1000_SUCCESS; |
7829 | |||
7830 | switch (hw->mac_type) { | ||
7831 | default: | ||
7832 | msleep(5); | ||
7833 | break; | ||
7834 | case e1000_82571: | ||
7835 | case e1000_82572: | ||
7836 | case e1000_82573: | ||
7837 | case e1000_80003es2lan: | ||
7838 | case e1000_ich8lan: | ||
7839 | while (timeout) { | ||
7840 | if (er32(EECD) & E1000_EECD_AUTO_RD) | ||
7841 | break; | ||
7842 | else msleep(1); | ||
7843 | timeout--; | ||
7844 | } | ||
7845 | |||
7846 | if (!timeout) { | ||
7847 | DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); | ||
7848 | return -E1000_ERR_RESET; | ||
7849 | } | ||
7850 | break; | ||
7851 | } | ||
7852 | |||
7853 | /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high. | ||
7854 | * Need to wait for PHY configuration completion before accessing NVM | ||
7855 | * and PHY. */ | ||
7856 | if (hw->mac_type == e1000_82573) | ||
7857 | msleep(25); | ||
7858 | |||
7859 | return E1000_SUCCESS; | ||
7860 | } | 5619 | } |
7861 | 5620 | ||
7862 | /*************************************************************************** | 5621 | /** |
7863 | * Checks if the PHY configuration is done | 5622 | * e1000_get_phy_cfg_done |
7864 | * | 5623 | * @hw: Struct containing variables accessed by shared code |
7865 | * hw: Struct containing variables accessed by shared code | ||
7866 | * | 5624 | * |
5625 | * Checks if the PHY configuration is done | ||
7867 | * returns: - E1000_ERR_RESET if fail to reset MAC | 5626 | * returns: - E1000_ERR_RESET if fail to reset MAC |
7868 | * E1000_SUCCESS at any other case. | 5627 | * E1000_SUCCESS at any other case. |
7869 | * | 5628 | */ |
7870 | ***************************************************************************/ | ||
7871 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | 5629 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) |
7872 | { | 5630 | { |
7873 | s32 timeout = PHY_CFG_TIMEOUT; | 5631 | DEBUGFUNC("e1000_get_phy_cfg_done"); |
7874 | u32 cfg_mask = E1000_EEPROM_CFG_DONE; | 5632 | mdelay(10); |
7875 | 5633 | return E1000_SUCCESS; | |
7876 | DEBUGFUNC("e1000_get_phy_cfg_done"); | ||
7877 | |||
7878 | switch (hw->mac_type) { | ||
7879 | default: | ||
7880 | mdelay(10); | ||
7881 | break; | ||
7882 | case e1000_80003es2lan: | ||
7883 | /* Separate *_CFG_DONE_* bit for each port */ | ||
7884 | if (er32(STATUS) & E1000_STATUS_FUNC_1) | ||
7885 | cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; | ||
7886 | /* Fall Through */ | ||
7887 | case e1000_82571: | ||
7888 | case e1000_82572: | ||
7889 | while (timeout) { | ||
7890 | if (er32(EEMNGCTL) & cfg_mask) | ||
7891 | break; | ||
7892 | else | ||
7893 | msleep(1); | ||
7894 | timeout--; | ||
7895 | } | ||
7896 | if (!timeout) { | ||
7897 | DEBUGOUT("MNG configuration cycle has not completed.\n"); | ||
7898 | return -E1000_ERR_RESET; | ||
7899 | } | ||
7900 | break; | ||
7901 | } | ||
7902 | |||
7903 | return E1000_SUCCESS; | ||
7904 | } | ||
7905 | |||
7906 | /*************************************************************************** | ||
7907 | * | ||
7908 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting | ||
7909 | * adapter or Eeprom access. | ||
7910 | * | ||
7911 | * hw: Struct containing variables accessed by shared code | ||
7912 | * | ||
7913 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | ||
7914 | * E1000_SUCCESS at any other case. | ||
7915 | * | ||
7916 | ***************************************************************************/ | ||
7917 | static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) | ||
7918 | { | ||
7919 | s32 timeout; | ||
7920 | u32 swsm; | ||
7921 | |||
7922 | DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); | ||
7923 | |||
7924 | if (!hw->eeprom_semaphore_present) | ||
7925 | return E1000_SUCCESS; | ||
7926 | |||
7927 | if (hw->mac_type == e1000_80003es2lan) { | ||
7928 | /* Get the SW semaphore. */ | ||
7929 | if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) | ||
7930 | return -E1000_ERR_EEPROM; | ||
7931 | } | ||
7932 | |||
7933 | /* Get the FW semaphore. */ | ||
7934 | timeout = hw->eeprom.word_size + 1; | ||
7935 | while (timeout) { | ||
7936 | swsm = er32(SWSM); | ||
7937 | swsm |= E1000_SWSM_SWESMBI; | ||
7938 | ew32(SWSM, swsm); | ||
7939 | /* if we managed to set the bit we got the semaphore. */ | ||
7940 | swsm = er32(SWSM); | ||
7941 | if (swsm & E1000_SWSM_SWESMBI) | ||
7942 | break; | ||
7943 | |||
7944 | udelay(50); | ||
7945 | timeout--; | ||
7946 | } | ||
7947 | |||
7948 | if (!timeout) { | ||
7949 | /* Release semaphores */ | ||
7950 | e1000_put_hw_eeprom_semaphore(hw); | ||
7951 | DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); | ||
7952 | return -E1000_ERR_EEPROM; | ||
7953 | } | ||
7954 | |||
7955 | return E1000_SUCCESS; | ||
7956 | } | ||
7957 | |||
7958 | /*************************************************************************** | ||
7959 | * This function clears HW semaphore bits. | ||
7960 | * | ||
7961 | * hw: Struct containing variables accessed by shared code | ||
7962 | * | ||
7963 | * returns: - None. | ||
7964 | * | ||
7965 | ***************************************************************************/ | ||
7966 | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | ||
7967 | { | ||
7968 | u32 swsm; | ||
7969 | |||
7970 | DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); | ||
7971 | |||
7972 | if (!hw->eeprom_semaphore_present) | ||
7973 | return; | ||
7974 | |||
7975 | swsm = er32(SWSM); | ||
7976 | if (hw->mac_type == e1000_80003es2lan) { | ||
7977 | /* Release both semaphores. */ | ||
7978 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
7979 | } else | ||
7980 | swsm &= ~(E1000_SWSM_SWESMBI); | ||
7981 | ew32(SWSM, swsm); | ||
7982 | } | ||
7983 | |||
7984 | /*************************************************************************** | ||
7985 | * | ||
7986 | * Obtaining software semaphore bit (SMBI) before resetting PHY. | ||
7987 | * | ||
7988 | * hw: Struct containing variables accessed by shared code | ||
7989 | * | ||
7990 | * returns: - E1000_ERR_RESET if fail to obtain semaphore. | ||
7991 | * E1000_SUCCESS at any other case. | ||
7992 | * | ||
7993 | ***************************************************************************/ | ||
7994 | static s32 e1000_get_software_semaphore(struct e1000_hw *hw) | ||
7995 | { | ||
7996 | s32 timeout = hw->eeprom.word_size + 1; | ||
7997 | u32 swsm; | ||
7998 | |||
7999 | DEBUGFUNC("e1000_get_software_semaphore"); | ||
8000 | |||
8001 | if (hw->mac_type != e1000_80003es2lan) { | ||
8002 | return E1000_SUCCESS; | ||
8003 | } | ||
8004 | |||
8005 | while (timeout) { | ||
8006 | swsm = er32(SWSM); | ||
8007 | /* If SMBI bit cleared, it is now set and we hold the semaphore */ | ||
8008 | if (!(swsm & E1000_SWSM_SMBI)) | ||
8009 | break; | ||
8010 | mdelay(1); | ||
8011 | timeout--; | ||
8012 | } | ||
8013 | |||
8014 | if (!timeout) { | ||
8015 | DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); | ||
8016 | return -E1000_ERR_RESET; | ||
8017 | } | ||
8018 | |||
8019 | return E1000_SUCCESS; | ||
8020 | } | ||
8021 | |||
8022 | /*************************************************************************** | ||
8023 | * | ||
8024 | * Release semaphore bit (SMBI). | ||
8025 | * | ||
8026 | * hw: Struct containing variables accessed by shared code | ||
8027 | * | ||
8028 | ***************************************************************************/ | ||
8029 | static void e1000_release_software_semaphore(struct e1000_hw *hw) | ||
8030 | { | ||
8031 | u32 swsm; | ||
8032 | |||
8033 | DEBUGFUNC("e1000_release_software_semaphore"); | ||
8034 | |||
8035 | if (hw->mac_type != e1000_80003es2lan) { | ||
8036 | return; | ||
8037 | } | ||
8038 | |||
8039 | swsm = er32(SWSM); | ||
8040 | /* Release the SW semaphores.*/ | ||
8041 | swsm &= ~E1000_SWSM_SMBI; | ||
8042 | ew32(SWSM, swsm); | ||
8043 | } | ||
8044 | |||
8045 | /****************************************************************************** | ||
8046 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | ||
8047 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to | ||
8048 | * the caller to figure out how to deal with it. | ||
8049 | * | ||
8050 | * hw - Struct containing variables accessed by shared code | ||
8051 | * | ||
8052 | * returns: - E1000_BLK_PHY_RESET | ||
8053 | * E1000_SUCCESS | ||
8054 | * | ||
8055 | *****************************************************************************/ | ||
8056 | s32 e1000_check_phy_reset_block(struct e1000_hw *hw) | ||
8057 | { | ||
8058 | u32 manc = 0; | ||
8059 | u32 fwsm = 0; | ||
8060 | |||
8061 | if (hw->mac_type == e1000_ich8lan) { | ||
8062 | fwsm = er32(FWSM); | ||
8063 | return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS | ||
8064 | : E1000_BLK_PHY_RESET; | ||
8065 | } | ||
8066 | |||
8067 | if (hw->mac_type > e1000_82547_rev_2) | ||
8068 | manc = er32(MANC); | ||
8069 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
8070 | E1000_BLK_PHY_RESET : E1000_SUCCESS; | ||
8071 | } | ||
8072 | |||
8073 | static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw) | ||
8074 | { | ||
8075 | u32 fwsm; | ||
8076 | |||
8077 | /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC | ||
8078 | * may not be provided a DMA clock when no manageability features are | ||
8079 | * enabled. We do not want to perform any reads/writes to these registers | ||
8080 | * if this is the case. We read FWSM to determine the manageability mode. | ||
8081 | */ | ||
8082 | switch (hw->mac_type) { | ||
8083 | case e1000_82571: | ||
8084 | case e1000_82572: | ||
8085 | case e1000_82573: | ||
8086 | case e1000_80003es2lan: | ||
8087 | fwsm = er32(FWSM); | ||
8088 | if ((fwsm & E1000_FWSM_MODE_MASK) != 0) | ||
8089 | return true; | ||
8090 | break; | ||
8091 | case e1000_ich8lan: | ||
8092 | return true; | ||
8093 | default: | ||
8094 | break; | ||
8095 | } | ||
8096 | return false; | ||
8097 | } | ||
8098 | |||
8099 | |||
8100 | /****************************************************************************** | ||
8101 | * Configure PCI-Ex no-snoop | ||
8102 | * | ||
8103 | * hw - Struct containing variables accessed by shared code. | ||
8104 | * no_snoop - Bitmap of no-snoop events. | ||
8105 | * | ||
8106 | * returns: E1000_SUCCESS | ||
8107 | * | ||
8108 | *****************************************************************************/ | ||
8109 | static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop) | ||
8110 | { | ||
8111 | u32 gcr_reg = 0; | ||
8112 | |||
8113 | DEBUGFUNC("e1000_set_pci_ex_no_snoop"); | ||
8114 | |||
8115 | if (hw->bus_type == e1000_bus_type_unknown) | ||
8116 | e1000_get_bus_info(hw); | ||
8117 | |||
8118 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
8119 | return E1000_SUCCESS; | ||
8120 | |||
8121 | if (no_snoop) { | ||
8122 | gcr_reg = er32(GCR); | ||
8123 | gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); | ||
8124 | gcr_reg |= no_snoop; | ||
8125 | ew32(GCR, gcr_reg); | ||
8126 | } | ||
8127 | if (hw->mac_type == e1000_ich8lan) { | ||
8128 | u32 ctrl_ext; | ||
8129 | |||
8130 | ew32(GCR, PCI_EX_82566_SNOOP_ALL); | ||
8131 | |||
8132 | ctrl_ext = er32(CTRL_EXT); | ||
8133 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | ||
8134 | ew32(CTRL_EXT, ctrl_ext); | ||
8135 | } | ||
8136 | |||
8137 | return E1000_SUCCESS; | ||
8138 | } | ||
8139 | |||
8140 | /*************************************************************************** | ||
8141 | * | ||
8142 | * Get software semaphore FLAG bit (SWFLAG). | ||
8143 | * SWFLAG is used to synchronize the access to all shared resource between | ||
8144 | * SW, FW and HW. | ||
8145 | * | ||
8146 | * hw: Struct containing variables accessed by shared code | ||
8147 | * | ||
8148 | ***************************************************************************/ | ||
8149 | static s32 e1000_get_software_flag(struct e1000_hw *hw) | ||
8150 | { | ||
8151 | s32 timeout = PHY_CFG_TIMEOUT; | ||
8152 | u32 extcnf_ctrl; | ||
8153 | |||
8154 | DEBUGFUNC("e1000_get_software_flag"); | ||
8155 | |||
8156 | if (hw->mac_type == e1000_ich8lan) { | ||
8157 | while (timeout) { | ||
8158 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
8159 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | ||
8160 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
8161 | |||
8162 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
8163 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | ||
8164 | break; | ||
8165 | mdelay(1); | ||
8166 | timeout--; | ||
8167 | } | ||
8168 | |||
8169 | if (!timeout) { | ||
8170 | DEBUGOUT("FW or HW locks the resource too long.\n"); | ||
8171 | return -E1000_ERR_CONFIG; | ||
8172 | } | ||
8173 | } | ||
8174 | |||
8175 | return E1000_SUCCESS; | ||
8176 | } | ||
8177 | |||
8178 | /*************************************************************************** | ||
8179 | * | ||
8180 | * Release software semaphore FLAG bit (SWFLAG). | ||
8181 | * SWFLAG is used to synchronize the access to all shared resource between | ||
8182 | * SW, FW and HW. | ||
8183 | * | ||
8184 | * hw: Struct containing variables accessed by shared code | ||
8185 | * | ||
8186 | ***************************************************************************/ | ||
8187 | static void e1000_release_software_flag(struct e1000_hw *hw) | ||
8188 | { | ||
8189 | u32 extcnf_ctrl; | ||
8190 | |||
8191 | DEBUGFUNC("e1000_release_software_flag"); | ||
8192 | |||
8193 | if (hw->mac_type == e1000_ich8lan) { | ||
8194 | extcnf_ctrl= er32(EXTCNF_CTRL); | ||
8195 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | ||
8196 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
8197 | } | ||
8198 | |||
8199 | return; | ||
8200 | } | ||
8201 | |||
8202 | /****************************************************************************** | ||
8203 | * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access | ||
8204 | * register. | ||
8205 | * | ||
8206 | * hw - Struct containing variables accessed by shared code | ||
8207 | * offset - offset of word in the EEPROM to read | ||
8208 | * data - word read from the EEPROM | ||
8209 | * words - number of words to read | ||
8210 | *****************************************************************************/ | ||
8211 | static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | ||
8212 | u16 *data) | ||
8213 | { | ||
8214 | s32 error = E1000_SUCCESS; | ||
8215 | u32 flash_bank = 0; | ||
8216 | u32 act_offset = 0; | ||
8217 | u32 bank_offset = 0; | ||
8218 | u16 word = 0; | ||
8219 | u16 i = 0; | ||
8220 | |||
8221 | /* We need to know which is the valid flash bank. In the event | ||
8222 | * that we didn't allocate eeprom_shadow_ram, we may not be | ||
8223 | * managing flash_bank. So it cannot be trusted and needs | ||
8224 | * to be updated with each read. | ||
8225 | */ | ||
8226 | /* Value of bit 22 corresponds to the flash bank we're on. */ | ||
8227 | flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; | ||
8228 | |||
8229 | /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ | ||
8230 | bank_offset = flash_bank * (hw->flash_bank_size * 2); | ||
8231 | |||
8232 | error = e1000_get_software_flag(hw); | ||
8233 | if (error != E1000_SUCCESS) | ||
8234 | return error; | ||
8235 | |||
8236 | for (i = 0; i < words; i++) { | ||
8237 | if (hw->eeprom_shadow_ram != NULL && | ||
8238 | hw->eeprom_shadow_ram[offset+i].modified) { | ||
8239 | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | ||
8240 | } else { | ||
8241 | /* The NVM part needs a byte offset, hence * 2 */ | ||
8242 | act_offset = bank_offset + ((offset + i) * 2); | ||
8243 | error = e1000_read_ich8_word(hw, act_offset, &word); | ||
8244 | if (error != E1000_SUCCESS) | ||
8245 | break; | ||
8246 | data[i] = word; | ||
8247 | } | ||
8248 | } | ||
8249 | |||
8250 | e1000_release_software_flag(hw); | ||
8251 | |||
8252 | return error; | ||
8253 | } | ||
8254 | |||
8255 | /****************************************************************************** | ||
8256 | * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access | ||
8257 | * register. Actually, writes are written to the shadow ram cache in the hw | ||
8258 | * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to | ||
8259 | * the NVM, which occurs when the NVM checksum is updated. | ||
8260 | * | ||
8261 | * hw - Struct containing variables accessed by shared code | ||
8262 | * offset - offset of word in the EEPROM to write | ||
8263 | * words - number of words to write | ||
8264 | * data - words to write to the EEPROM | ||
8265 | *****************************************************************************/ | ||
8266 | static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | ||
8267 | u16 *data) | ||
8268 | { | ||
8269 | u32 i = 0; | ||
8270 | s32 error = E1000_SUCCESS; | ||
8271 | |||
8272 | error = e1000_get_software_flag(hw); | ||
8273 | if (error != E1000_SUCCESS) | ||
8274 | return error; | ||
8275 | |||
8276 | /* A driver can write to the NVM only if it has eeprom_shadow_ram | ||
8277 | * allocated. Subsequent reads to the modified words are read from | ||
8278 | * this cached structure as well. Writes will only go into this | ||
8279 | * cached structure unless it's followed by a call to | ||
8280 | * e1000_update_eeprom_checksum() where it will commit the changes | ||
8281 | * and clear the "modified" field. | ||
8282 | */ | ||
8283 | if (hw->eeprom_shadow_ram != NULL) { | ||
8284 | for (i = 0; i < words; i++) { | ||
8285 | if ((offset + i) < E1000_SHADOW_RAM_WORDS) { | ||
8286 | hw->eeprom_shadow_ram[offset+i].modified = true; | ||
8287 | hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; | ||
8288 | } else { | ||
8289 | error = -E1000_ERR_EEPROM; | ||
8290 | break; | ||
8291 | } | ||
8292 | } | ||
8293 | } else { | ||
8294 | /* Drivers have the option to not allocate eeprom_shadow_ram as long | ||
8295 | * as they don't perform any NVM writes. An attempt in doing so | ||
8296 | * will result in this error. | ||
8297 | */ | ||
8298 | error = -E1000_ERR_EEPROM; | ||
8299 | } | ||
8300 | |||
8301 | e1000_release_software_flag(hw); | ||
8302 | |||
8303 | return error; | ||
8304 | } | ||
8305 | |||
8306 | /****************************************************************************** | ||
8307 | * This function does initial flash setup so that a new read/write/erase cycle | ||
8308 | * can be started. | ||
8309 | * | ||
8310 | * hw - The pointer to the hw structure | ||
8311 | ****************************************************************************/ | ||
8312 | static s32 e1000_ich8_cycle_init(struct e1000_hw *hw) | ||
8313 | { | ||
8314 | union ich8_hws_flash_status hsfsts; | ||
8315 | s32 error = E1000_ERR_EEPROM; | ||
8316 | s32 i = 0; | ||
8317 | |||
8318 | DEBUGFUNC("e1000_ich8_cycle_init"); | ||
8319 | |||
8320 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8321 | |||
8322 | /* May be check the Flash Des Valid bit in Hw status */ | ||
8323 | if (hsfsts.hsf_status.fldesvalid == 0) { | ||
8324 | DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); | ||
8325 | return error; | ||
8326 | } | ||
8327 | |||
8328 | /* Clear FCERR in Hw status by writing 1 */ | ||
8329 | /* Clear DAEL in Hw status by writing a 1 */ | ||
8330 | hsfsts.hsf_status.flcerr = 1; | ||
8331 | hsfsts.hsf_status.dael = 1; | ||
8332 | |||
8333 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); | ||
8334 | |||
8335 | /* Either we should have a hardware SPI cycle in progress bit to check | ||
8336 | * against, in order to start a new cycle or FDONE bit should be changed | ||
8337 | * in the hardware so that it is 1 after harware reset, which can then be | ||
8338 | * used as an indication whether a cycle is in progress or has been | ||
8339 | * completed .. we should also have some software semaphore mechanism to | ||
8340 | * guard FDONE or the cycle in progress bit so that two threads access to | ||
8341 | * those bits can be sequentiallized or a way so that 2 threads dont | ||
8342 | * start the cycle at the same time */ | ||
8343 | |||
8344 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
8345 | /* There is no cycle running at present, so we can start a cycle */ | ||
8346 | /* Begin by setting Flash Cycle Done. */ | ||
8347 | hsfsts.hsf_status.flcdone = 1; | ||
8348 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); | ||
8349 | error = E1000_SUCCESS; | ||
8350 | } else { | ||
8351 | /* otherwise poll for sometime so the current cycle has a chance | ||
8352 | * to end before giving up. */ | ||
8353 | for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { | ||
8354 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8355 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
8356 | error = E1000_SUCCESS; | ||
8357 | break; | ||
8358 | } | ||
8359 | udelay(1); | ||
8360 | } | ||
8361 | if (error == E1000_SUCCESS) { | ||
8362 | /* Successful in waiting for previous cycle to timeout, | ||
8363 | * now set the Flash Cycle Done. */ | ||
8364 | hsfsts.hsf_status.flcdone = 1; | ||
8365 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); | ||
8366 | } else { | ||
8367 | DEBUGOUT("Flash controller busy, cannot get access"); | ||
8368 | } | ||
8369 | } | ||
8370 | return error; | ||
8371 | } | ||
8372 | |||
8373 | /****************************************************************************** | ||
8374 | * This function starts a flash cycle and waits for its completion | ||
8375 | * | ||
8376 | * hw - The pointer to the hw structure | ||
8377 | ****************************************************************************/ | ||
8378 | static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout) | ||
8379 | { | ||
8380 | union ich8_hws_flash_ctrl hsflctl; | ||
8381 | union ich8_hws_flash_status hsfsts; | ||
8382 | s32 error = E1000_ERR_EEPROM; | ||
8383 | u32 i = 0; | ||
8384 | |||
8385 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | ||
8386 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | ||
8387 | hsflctl.hsf_ctrl.flcgo = 1; | ||
8388 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | ||
8389 | |||
8390 | /* wait till FDONE bit is set to 1 */ | ||
8391 | do { | ||
8392 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8393 | if (hsfsts.hsf_status.flcdone == 1) | ||
8394 | break; | ||
8395 | udelay(1); | ||
8396 | i++; | ||
8397 | } while (i < timeout); | ||
8398 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { | ||
8399 | error = E1000_SUCCESS; | ||
8400 | } | ||
8401 | return error; | ||
8402 | } | ||
8403 | |||
8404 | /****************************************************************************** | ||
8405 | * Reads a byte or word from the NVM using the ICH8 flash access registers. | ||
8406 | * | ||
8407 | * hw - The pointer to the hw structure | ||
8408 | * index - The index of the byte or word to read. | ||
8409 | * size - Size of data to read, 1=byte 2=word | ||
8410 | * data - Pointer to the word to store the value read. | ||
8411 | *****************************************************************************/ | ||
8412 | static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | ||
8413 | u16 *data) | ||
8414 | { | ||
8415 | union ich8_hws_flash_status hsfsts; | ||
8416 | union ich8_hws_flash_ctrl hsflctl; | ||
8417 | u32 flash_linear_address; | ||
8418 | u32 flash_data = 0; | ||
8419 | s32 error = -E1000_ERR_EEPROM; | ||
8420 | s32 count = 0; | ||
8421 | |||
8422 | DEBUGFUNC("e1000_read_ich8_data"); | ||
8423 | |||
8424 | if (size < 1 || size > 2 || data == NULL || | ||
8425 | index > ICH_FLASH_LINEAR_ADDR_MASK) | ||
8426 | return error; | ||
8427 | |||
8428 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + | ||
8429 | hw->flash_base_addr; | ||
8430 | |||
8431 | do { | ||
8432 | udelay(1); | ||
8433 | /* Steps */ | ||
8434 | error = e1000_ich8_cycle_init(hw); | ||
8435 | if (error != E1000_SUCCESS) | ||
8436 | break; | ||
8437 | |||
8438 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | ||
8439 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
8440 | hsflctl.hsf_ctrl.fldbcount = size - 1; | ||
8441 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; | ||
8442 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | ||
8443 | |||
8444 | /* Write the last 24 bits of index into Flash Linear address field in | ||
8445 | * Flash Address */ | ||
8446 | /* TODO: TBD maybe check the index against the size of flash */ | ||
8447 | |||
8448 | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); | ||
8449 | |||
8450 | error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); | ||
8451 | |||
8452 | /* Check if FCERR is set to 1, if set to 1, clear it and try the whole | ||
8453 | * sequence a few more times, else read in (shift in) the Flash Data0, | ||
8454 | * the order is least significant byte first msb to lsb */ | ||
8455 | if (error == E1000_SUCCESS) { | ||
8456 | flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0); | ||
8457 | if (size == 1) { | ||
8458 | *data = (u8)(flash_data & 0x000000FF); | ||
8459 | } else if (size == 2) { | ||
8460 | *data = (u16)(flash_data & 0x0000FFFF); | ||
8461 | } | ||
8462 | break; | ||
8463 | } else { | ||
8464 | /* If we've gotten here, then things are probably completely hosed, | ||
8465 | * but if the error condition is detected, it won't hurt to give | ||
8466 | * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||
8467 | */ | ||
8468 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8469 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8470 | /* Repeat for some time before giving up. */ | ||
8471 | continue; | ||
8472 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8473 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
8474 | break; | ||
8475 | } | ||
8476 | } | ||
8477 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
8478 | |||
8479 | return error; | ||
8480 | } | ||
8481 | |||
8482 | /****************************************************************************** | ||
8483 | * Writes One /two bytes to the NVM using the ICH8 flash access registers. | ||
8484 | * | ||
8485 | * hw - The pointer to the hw structure | ||
8486 | * index - The index of the byte/word to read. | ||
8487 | * size - Size of data to read, 1=byte 2=word | ||
8488 | * data - The byte(s) to write to the NVM. | ||
8489 | *****************************************************************************/ | ||
8490 | static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | ||
8491 | u16 data) | ||
8492 | { | ||
8493 | union ich8_hws_flash_status hsfsts; | ||
8494 | union ich8_hws_flash_ctrl hsflctl; | ||
8495 | u32 flash_linear_address; | ||
8496 | u32 flash_data = 0; | ||
8497 | s32 error = -E1000_ERR_EEPROM; | ||
8498 | s32 count = 0; | ||
8499 | |||
8500 | DEBUGFUNC("e1000_write_ich8_data"); | ||
8501 | |||
8502 | if (size < 1 || size > 2 || data > size * 0xff || | ||
8503 | index > ICH_FLASH_LINEAR_ADDR_MASK) | ||
8504 | return error; | ||
8505 | |||
8506 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + | ||
8507 | hw->flash_base_addr; | ||
8508 | |||
8509 | do { | ||
8510 | udelay(1); | ||
8511 | /* Steps */ | ||
8512 | error = e1000_ich8_cycle_init(hw); | ||
8513 | if (error != E1000_SUCCESS) | ||
8514 | break; | ||
8515 | |||
8516 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | ||
8517 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
8518 | hsflctl.hsf_ctrl.fldbcount = size -1; | ||
8519 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; | ||
8520 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | ||
8521 | |||
8522 | /* Write the last 24 bits of index into Flash Linear address field in | ||
8523 | * Flash Address */ | ||
8524 | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); | ||
8525 | |||
8526 | if (size == 1) | ||
8527 | flash_data = (u32)data & 0x00FF; | ||
8528 | else | ||
8529 | flash_data = (u32)data; | ||
8530 | |||
8531 | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); | ||
8532 | |||
8533 | /* check if FCERR is set to 1 , if set to 1, clear it and try the whole | ||
8534 | * sequence a few more times else done */ | ||
8535 | error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); | ||
8536 | if (error == E1000_SUCCESS) { | ||
8537 | break; | ||
8538 | } else { | ||
8539 | /* If we're here, then things are most likely completely hosed, | ||
8540 | * but if the error condition is detected, it won't hurt to give | ||
8541 | * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||
8542 | */ | ||
8543 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8544 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8545 | /* Repeat for some time before giving up. */ | ||
8546 | continue; | ||
8547 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8548 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
8549 | break; | ||
8550 | } | ||
8551 | } | ||
8552 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
8553 | |||
8554 | return error; | ||
8555 | } | ||
8556 | |||
8557 | /****************************************************************************** | ||
8558 | * Reads a single byte from the NVM using the ICH8 flash access registers. | ||
8559 | * | ||
8560 | * hw - pointer to e1000_hw structure | ||
8561 | * index - The index of the byte to read. | ||
8562 | * data - Pointer to a byte to store the value read. | ||
8563 | *****************************************************************************/ | ||
8564 | static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data) | ||
8565 | { | ||
8566 | s32 status = E1000_SUCCESS; | ||
8567 | u16 word = 0; | ||
8568 | |||
8569 | status = e1000_read_ich8_data(hw, index, 1, &word); | ||
8570 | if (status == E1000_SUCCESS) { | ||
8571 | *data = (u8)word; | ||
8572 | } | ||
8573 | |||
8574 | return status; | ||
8575 | } | ||
8576 | |||
8577 | /****************************************************************************** | ||
8578 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
8579 | * Performs verification by reading back the value and then going through | ||
8580 | * a retry algorithm before giving up. | ||
8581 | * | ||
8582 | * hw - pointer to e1000_hw structure | ||
8583 | * index - The index of the byte to write. | ||
8584 | * byte - The byte to write to the NVM. | ||
8585 | *****************************************************************************/ | ||
8586 | static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte) | ||
8587 | { | ||
8588 | s32 error = E1000_SUCCESS; | ||
8589 | s32 program_retries = 0; | ||
8590 | |||
8591 | DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); | ||
8592 | |||
8593 | error = e1000_write_ich8_byte(hw, index, byte); | ||
8594 | |||
8595 | if (error != E1000_SUCCESS) { | ||
8596 | for (program_retries = 0; program_retries < 100; program_retries++) { | ||
8597 | DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index); | ||
8598 | error = e1000_write_ich8_byte(hw, index, byte); | ||
8599 | udelay(100); | ||
8600 | if (error == E1000_SUCCESS) | ||
8601 | break; | ||
8602 | } | ||
8603 | } | ||
8604 | |||
8605 | if (program_retries == 100) | ||
8606 | error = E1000_ERR_EEPROM; | ||
8607 | |||
8608 | return error; | ||
8609 | } | ||
8610 | |||
8611 | /****************************************************************************** | ||
8612 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
8613 | * | ||
8614 | * hw - pointer to e1000_hw structure | ||
8615 | * index - The index of the byte to read. | ||
8616 | * data - The byte to write to the NVM. | ||
8617 | *****************************************************************************/ | ||
8618 | static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data) | ||
8619 | { | ||
8620 | s32 status = E1000_SUCCESS; | ||
8621 | u16 word = (u16)data; | ||
8622 | |||
8623 | status = e1000_write_ich8_data(hw, index, 1, word); | ||
8624 | |||
8625 | return status; | ||
8626 | } | ||
8627 | |||
8628 | /****************************************************************************** | ||
8629 | * Reads a word from the NVM using the ICH8 flash access registers. | ||
8630 | * | ||
8631 | * hw - pointer to e1000_hw structure | ||
8632 | * index - The starting byte index of the word to read. | ||
8633 | * data - Pointer to a word to store the value read. | ||
8634 | *****************************************************************************/ | ||
8635 | static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data) | ||
8636 | { | ||
8637 | s32 status = E1000_SUCCESS; | ||
8638 | status = e1000_read_ich8_data(hw, index, 2, data); | ||
8639 | return status; | ||
8640 | } | ||
8641 | |||
8642 | /****************************************************************************** | ||
8643 | * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 | ||
8644 | * based. | ||
8645 | * | ||
8646 | * hw - pointer to e1000_hw structure | ||
8647 | * bank - 0 for first bank, 1 for second bank | ||
8648 | * | ||
8649 | * Note that this function may actually erase as much as 8 or 64 KBytes. The | ||
8650 | * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the | ||
8651 | * bank size may be 4, 8 or 64 KBytes | ||
8652 | *****************************************************************************/ | ||
8653 | static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank) | ||
8654 | { | ||
8655 | union ich8_hws_flash_status hsfsts; | ||
8656 | union ich8_hws_flash_ctrl hsflctl; | ||
8657 | u32 flash_linear_address; | ||
8658 | s32 count = 0; | ||
8659 | s32 error = E1000_ERR_EEPROM; | ||
8660 | s32 iteration; | ||
8661 | s32 sub_sector_size = 0; | ||
8662 | s32 bank_size; | ||
8663 | s32 j = 0; | ||
8664 | s32 error_flag = 0; | ||
8665 | |||
8666 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8667 | |||
8668 | /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ | ||
8669 | /* 00: The Hw sector is 256 bytes, hence we need to erase 16 | ||
8670 | * consecutive sectors. The start index for the nth Hw sector can be | ||
8671 | * calculated as bank * 4096 + n * 256 | ||
8672 | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | ||
8673 | * The start index for the nth Hw sector can be calculated | ||
8674 | * as bank * 4096 | ||
8675 | * 10: The HW sector is 8K bytes | ||
8676 | * 11: The Hw sector size is 64K bytes */ | ||
8677 | if (hsfsts.hsf_status.berasesz == 0x0) { | ||
8678 | /* Hw sector size 256 */ | ||
8679 | sub_sector_size = ICH_FLASH_SEG_SIZE_256; | ||
8680 | bank_size = ICH_FLASH_SECTOR_SIZE; | ||
8681 | iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256; | ||
8682 | } else if (hsfsts.hsf_status.berasesz == 0x1) { | ||
8683 | bank_size = ICH_FLASH_SEG_SIZE_4K; | ||
8684 | iteration = 1; | ||
8685 | } else if (hsfsts.hsf_status.berasesz == 0x3) { | ||
8686 | bank_size = ICH_FLASH_SEG_SIZE_64K; | ||
8687 | iteration = 1; | ||
8688 | } else { | ||
8689 | return error; | ||
8690 | } | ||
8691 | |||
8692 | for (j = 0; j < iteration ; j++) { | ||
8693 | do { | ||
8694 | count++; | ||
8695 | /* Steps */ | ||
8696 | error = e1000_ich8_cycle_init(hw); | ||
8697 | if (error != E1000_SUCCESS) { | ||
8698 | error_flag = 1; | ||
8699 | break; | ||
8700 | } | ||
8701 | |||
8702 | /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash | ||
8703 | * Control */ | ||
8704 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | ||
8705 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; | ||
8706 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | ||
8707 | |||
8708 | /* Write the last 24 bits of an index within the block into Flash | ||
8709 | * Linear address field in Flash Address. This probably needs to | ||
8710 | * be calculated here based off the on-chip erase sector size and | ||
8711 | * the software bank size (4, 8 or 64 KBytes) */ | ||
8712 | flash_linear_address = bank * bank_size + j * sub_sector_size; | ||
8713 | flash_linear_address += hw->flash_base_addr; | ||
8714 | flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK; | ||
8715 | |||
8716 | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); | ||
8717 | |||
8718 | error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT); | ||
8719 | /* Check if FCERR is set to 1. If 1, clear it and try the whole | ||
8720 | * sequence a few more times else Done */ | ||
8721 | if (error == E1000_SUCCESS) { | ||
8722 | break; | ||
8723 | } else { | ||
8724 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8725 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8726 | /* repeat for some time before giving up */ | ||
8727 | continue; | ||
8728 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8729 | error_flag = 1; | ||
8730 | break; | ||
8731 | } | ||
8732 | } | ||
8733 | } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); | ||
8734 | if (error_flag == 1) | ||
8735 | break; | ||
8736 | } | ||
8737 | if (error_flag != 1) | ||
8738 | error = E1000_SUCCESS; | ||
8739 | return error; | ||
8740 | } | ||
8741 | |||
8742 | static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, | ||
8743 | u32 cnf_base_addr, | ||
8744 | u32 cnf_size) | ||
8745 | { | ||
8746 | u32 ret_val = E1000_SUCCESS; | ||
8747 | u16 word_addr, reg_data, reg_addr; | ||
8748 | u16 i; | ||
8749 | |||
8750 | /* cnf_base_addr is in DWORD */ | ||
8751 | word_addr = (u16)(cnf_base_addr << 1); | ||
8752 | |||
8753 | /* cnf_size is returned in size of dwords */ | ||
8754 | for (i = 0; i < cnf_size; i++) { | ||
8755 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); | ||
8756 | if (ret_val) | ||
8757 | return ret_val; | ||
8758 | |||
8759 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); | ||
8760 | if (ret_val) | ||
8761 | return ret_val; | ||
8762 | |||
8763 | ret_val = e1000_get_software_flag(hw); | ||
8764 | if (ret_val != E1000_SUCCESS) | ||
8765 | return ret_val; | ||
8766 | |||
8767 | ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data); | ||
8768 | |||
8769 | e1000_release_software_flag(hw); | ||
8770 | } | ||
8771 | |||
8772 | return ret_val; | ||
8773 | } | ||
8774 | |||
8775 | |||
8776 | /****************************************************************************** | ||
8777 | * This function initializes the PHY from the NVM on ICH8 platforms. This | ||
8778 | * is needed due to an issue where the NVM configuration is not properly | ||
8779 | * autoloaded after power transitions. Therefore, after each PHY reset, we | ||
8780 | * will load the configuration data out of the NVM manually. | ||
8781 | * | ||
8782 | * hw: Struct containing variables accessed by shared code | ||
8783 | *****************************************************************************/ | ||
8784 | static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw) | ||
8785 | { | ||
8786 | u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop; | ||
8787 | |||
8788 | if (hw->phy_type != e1000_phy_igp_3) | ||
8789 | return E1000_SUCCESS; | ||
8790 | |||
8791 | /* Check if SW needs configure the PHY */ | ||
8792 | reg_data = er32(FEXTNVM); | ||
8793 | if (!(reg_data & FEXTNVM_SW_CONFIG)) | ||
8794 | return E1000_SUCCESS; | ||
8795 | |||
8796 | /* Wait for basic configuration completes before proceeding*/ | ||
8797 | loop = 0; | ||
8798 | do { | ||
8799 | reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE; | ||
8800 | udelay(100); | ||
8801 | loop++; | ||
8802 | } while ((!reg_data) && (loop < 50)); | ||
8803 | |||
8804 | /* Clear the Init Done bit for the next init event */ | ||
8805 | reg_data = er32(STATUS); | ||
8806 | reg_data &= ~E1000_STATUS_LAN_INIT_DONE; | ||
8807 | ew32(STATUS, reg_data); | ||
8808 | |||
8809 | /* Make sure HW does not configure LCD from PHY extended configuration | ||
8810 | before SW configuration */ | ||
8811 | reg_data = er32(EXTCNF_CTRL); | ||
8812 | if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { | ||
8813 | reg_data = er32(EXTCNF_SIZE); | ||
8814 | cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; | ||
8815 | cnf_size >>= 16; | ||
8816 | if (cnf_size) { | ||
8817 | reg_data = er32(EXTCNF_CTRL); | ||
8818 | cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; | ||
8819 | /* cnf_base_addr is in DWORD */ | ||
8820 | cnf_base_addr >>= 16; | ||
8821 | |||
8822 | /* Configure LCD from extended configuration region. */ | ||
8823 | ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, | ||
8824 | cnf_size); | ||
8825 | if (ret_val) | ||
8826 | return ret_val; | ||
8827 | } | ||
8828 | } | ||
8829 | |||
8830 | return E1000_SUCCESS; | ||
8831 | } | 5634 | } |
8832 | |||