diff options
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 1984 |
1 files changed, 1596 insertions, 388 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 786a9b935659..b7a7ceb67f47 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -63,10 +63,11 @@ static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); | |||
63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); | 63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); |
64 | static void e1000_release_eeprom(struct e1000_hw *hw); | 64 | static void e1000_release_eeprom(struct e1000_hw *hw); |
65 | static void e1000_standby_eeprom(struct e1000_hw *hw); | 65 | static void e1000_standby_eeprom(struct e1000_hw *hw); |
66 | static int32_t e1000_id_led_init(struct e1000_hw * hw); | ||
67 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); | 66 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); |
68 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 67 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
69 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); | 68 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); |
69 | static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer); | ||
70 | static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length); | ||
70 | 71 | ||
71 | /* IGP cable length table */ | 72 | /* IGP cable length table */ |
72 | static const | 73 | static const |
@@ -80,6 +81,17 @@ uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | |||
80 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 81 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
81 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | 82 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; |
82 | 83 | ||
84 | static const | ||
85 | uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = | ||
86 | { 8, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, | ||
87 | 22, 24, 27, 30, 32, 35, 37, 40, 42, 44, 47, 49, 51, 54, 56, 58, | ||
88 | 32, 35, 38, 41, 44, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, | ||
89 | 43, 47, 51, 54, 58, 61, 64, 67, 71, 74, 77, 80, 82, 85, 88, 90, | ||
90 | 57, 62, 66, 70, 74, 77, 81, 85, 88, 91, 94, 97, 100, 103, 106, 108, | ||
91 | 73, 78, 82, 87, 91, 95, 98, 102, 105, 109, 112, 114, 117, 119, 122, 124, | ||
92 | 91, 96, 101, 105, 109, 113, 116, 119, 122, 125, 127, 128, 128, 128, 128, 128, | ||
93 | 108, 113, 117, 121, 124, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}; | ||
94 | |||
83 | 95 | ||
84 | /****************************************************************************** | 96 | /****************************************************************************** |
85 | * Set the phy type member in the hw struct. | 97 | * Set the phy type member in the hw struct. |
@@ -91,10 +103,14 @@ e1000_set_phy_type(struct e1000_hw *hw) | |||
91 | { | 103 | { |
92 | DEBUGFUNC("e1000_set_phy_type"); | 104 | DEBUGFUNC("e1000_set_phy_type"); |
93 | 105 | ||
106 | if(hw->mac_type == e1000_undefined) | ||
107 | return -E1000_ERR_PHY_TYPE; | ||
108 | |||
94 | switch(hw->phy_id) { | 109 | switch(hw->phy_id) { |
95 | case M88E1000_E_PHY_ID: | 110 | case M88E1000_E_PHY_ID: |
96 | case M88E1000_I_PHY_ID: | 111 | case M88E1000_I_PHY_ID: |
97 | case M88E1011_I_PHY_ID: | 112 | case M88E1011_I_PHY_ID: |
113 | case M88E1111_I_PHY_ID: | ||
98 | hw->phy_type = e1000_phy_m88; | 114 | hw->phy_type = e1000_phy_m88; |
99 | break; | 115 | break; |
100 | case IGP01E1000_I_PHY_ID: | 116 | case IGP01E1000_I_PHY_ID: |
@@ -271,6 +287,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
271 | case E1000_DEV_ID_82546GB_FIBER: | 287 | case E1000_DEV_ID_82546GB_FIBER: |
272 | case E1000_DEV_ID_82546GB_SERDES: | 288 | case E1000_DEV_ID_82546GB_SERDES: |
273 | case E1000_DEV_ID_82546GB_PCIE: | 289 | case E1000_DEV_ID_82546GB_PCIE: |
290 | case E1000_DEV_ID_82546GB_QUAD_COPPER: | ||
274 | hw->mac_type = e1000_82546_rev_3; | 291 | hw->mac_type = e1000_82546_rev_3; |
275 | break; | 292 | break; |
276 | case E1000_DEV_ID_82541EI: | 293 | case E1000_DEV_ID_82541EI: |
@@ -289,12 +306,19 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
289 | case E1000_DEV_ID_82547GI: | 306 | case E1000_DEV_ID_82547GI: |
290 | hw->mac_type = e1000_82547_rev_2; | 307 | hw->mac_type = e1000_82547_rev_2; |
291 | break; | 308 | break; |
309 | case E1000_DEV_ID_82573E: | ||
310 | case E1000_DEV_ID_82573E_IAMT: | ||
311 | hw->mac_type = e1000_82573; | ||
312 | break; | ||
292 | default: | 313 | default: |
293 | /* Should never have loaded on this device */ | 314 | /* Should never have loaded on this device */ |
294 | return -E1000_ERR_MAC_TYPE; | 315 | return -E1000_ERR_MAC_TYPE; |
295 | } | 316 | } |
296 | 317 | ||
297 | switch(hw->mac_type) { | 318 | switch(hw->mac_type) { |
319 | case e1000_82573: | ||
320 | hw->eeprom_semaphore_present = TRUE; | ||
321 | /* fall through */ | ||
298 | case e1000_82541: | 322 | case e1000_82541: |
299 | case e1000_82547: | 323 | case e1000_82547: |
300 | case e1000_82541_rev_2: | 324 | case e1000_82541_rev_2: |
@@ -360,6 +384,9 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
360 | uint32_t icr; | 384 | uint32_t icr; |
361 | uint32_t manc; | 385 | uint32_t manc; |
362 | uint32_t led_ctrl; | 386 | uint32_t led_ctrl; |
387 | uint32_t timeout; | ||
388 | uint32_t extcnf_ctrl; | ||
389 | int32_t ret_val; | ||
363 | 390 | ||
364 | DEBUGFUNC("e1000_reset_hw"); | 391 | DEBUGFUNC("e1000_reset_hw"); |
365 | 392 | ||
@@ -369,6 +396,15 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
369 | e1000_pci_clear_mwi(hw); | 396 | e1000_pci_clear_mwi(hw); |
370 | } | 397 | } |
371 | 398 | ||
399 | if(hw->bus_type == e1000_bus_type_pci_express) { | ||
400 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | ||
401 | * on the last TLP read/write transaction when MAC is reset. | ||
402 | */ | ||
403 | if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) { | ||
404 | DEBUGOUT("PCI-E Master disable polling has failed.\n"); | ||
405 | } | ||
406 | } | ||
407 | |||
372 | /* Clear interrupt mask to stop board from generating interrupts */ | 408 | /* Clear interrupt mask to stop board from generating interrupts */ |
373 | DEBUGOUT("Masking off all interrupts\n"); | 409 | DEBUGOUT("Masking off all interrupts\n"); |
374 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | 410 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
@@ -393,10 +429,32 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
393 | 429 | ||
394 | /* Must reset the PHY before resetting the MAC */ | 430 | /* Must reset the PHY before resetting the MAC */ |
395 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 431 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
396 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); | 432 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
397 | msec_delay(5); | 433 | msec_delay(5); |
398 | } | 434 | } |
399 | 435 | ||
436 | /* Must acquire the MDIO ownership before MAC reset. | ||
437 | * Ownership defaults to firmware after a reset. */ | ||
438 | if(hw->mac_type == e1000_82573) { | ||
439 | timeout = 10; | ||
440 | |||
441 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
442 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
443 | |||
444 | do { | ||
445 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | ||
446 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
447 | |||
448 | if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | ||
449 | break; | ||
450 | else | ||
451 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
452 | |||
453 | msec_delay(2); | ||
454 | timeout--; | ||
455 | } while(timeout); | ||
456 | } | ||
457 | |||
400 | /* Issue a global reset to the MAC. This will reset the chip's | 458 | /* Issue a global reset to the MAC. This will reset the chip's |
401 | * transmit, receive, DMA, and link units. It will not effect | 459 | * transmit, receive, DMA, and link units. It will not effect |
402 | * the current PCI configuration. The global reset bit is self- | 460 | * the current PCI configuration. The global reset bit is self- |
@@ -450,6 +508,18 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
450 | /* Wait for EEPROM reload */ | 508 | /* Wait for EEPROM reload */ |
451 | msec_delay(20); | 509 | msec_delay(20); |
452 | break; | 510 | break; |
511 | case e1000_82573: | ||
512 | udelay(10); | ||
513 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
514 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
515 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
516 | E1000_WRITE_FLUSH(hw); | ||
517 | /* fall through */ | ||
518 | ret_val = e1000_get_auto_rd_done(hw); | ||
519 | if(ret_val) | ||
520 | /* We don't want to continue accessing MAC registers. */ | ||
521 | return ret_val; | ||
522 | break; | ||
453 | default: | 523 | default: |
454 | /* Wait for EEPROM reload (it happens automatically) */ | 524 | /* Wait for EEPROM reload (it happens automatically) */ |
455 | msec_delay(5); | 525 | msec_delay(5); |
@@ -457,7 +527,7 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
457 | } | 527 | } |
458 | 528 | ||
459 | /* Disable HW ARPs on ASF enabled adapters */ | 529 | /* Disable HW ARPs on ASF enabled adapters */ |
460 | if(hw->mac_type >= e1000_82540) { | 530 | if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { |
461 | manc = E1000_READ_REG(hw, MANC); | 531 | manc = E1000_READ_REG(hw, MANC); |
462 | manc &= ~(E1000_MANC_ARP_EN); | 532 | manc &= ~(E1000_MANC_ARP_EN); |
463 | E1000_WRITE_REG(hw, MANC, manc); | 533 | E1000_WRITE_REG(hw, MANC, manc); |
@@ -510,6 +580,8 @@ e1000_init_hw(struct e1000_hw *hw) | |||
510 | uint16_t pcix_stat_hi_word; | 580 | uint16_t pcix_stat_hi_word; |
511 | uint16_t cmd_mmrbc; | 581 | uint16_t cmd_mmrbc; |
512 | uint16_t stat_mmrbc; | 582 | uint16_t stat_mmrbc; |
583 | uint32_t mta_size; | ||
584 | |||
513 | DEBUGFUNC("e1000_init_hw"); | 585 | DEBUGFUNC("e1000_init_hw"); |
514 | 586 | ||
515 | /* Initialize Identification LED */ | 587 | /* Initialize Identification LED */ |
@@ -524,8 +596,8 @@ e1000_init_hw(struct e1000_hw *hw) | |||
524 | 596 | ||
525 | /* Disabling VLAN filtering. */ | 597 | /* Disabling VLAN filtering. */ |
526 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 598 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
527 | E1000_WRITE_REG(hw, VET, 0); | 599 | if (hw->mac_type < e1000_82545_rev_3) |
528 | 600 | E1000_WRITE_REG(hw, VET, 0); | |
529 | e1000_clear_vfta(hw); | 601 | e1000_clear_vfta(hw); |
530 | 602 | ||
531 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 603 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
@@ -553,14 +625,16 @@ e1000_init_hw(struct e1000_hw *hw) | |||
553 | 625 | ||
554 | /* Zero out the Multicast HASH table */ | 626 | /* Zero out the Multicast HASH table */ |
555 | DEBUGOUT("Zeroing the MTA\n"); | 627 | DEBUGOUT("Zeroing the MTA\n"); |
556 | for(i = 0; i < E1000_MC_TBL_SIZE; i++) | 628 | mta_size = E1000_MC_TBL_SIZE; |
629 | for(i = 0; i < mta_size; i++) | ||
557 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 630 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
558 | 631 | ||
559 | /* Set the PCI priority bit correctly in the CTRL register. This | 632 | /* Set the PCI priority bit correctly in the CTRL register. This |
560 | * determines if the adapter gives priority to receives, or if it | 633 | * determines if the adapter gives priority to receives, or if it |
561 | * gives equal priority to transmits and receives. | 634 | * gives equal priority to transmits and receives. Valid only on |
635 | * 82542 and 82543 silicon. | ||
562 | */ | 636 | */ |
563 | if(hw->dma_fairness) { | 637 | if(hw->dma_fairness && hw->mac_type <= e1000_82543) { |
564 | ctrl = E1000_READ_REG(hw, CTRL); | 638 | ctrl = E1000_READ_REG(hw, CTRL); |
565 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); | 639 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
566 | } | 640 | } |
@@ -598,9 +672,21 @@ e1000_init_hw(struct e1000_hw *hw) | |||
598 | if(hw->mac_type > e1000_82544) { | 672 | if(hw->mac_type > e1000_82544) { |
599 | ctrl = E1000_READ_REG(hw, TXDCTL); | 673 | ctrl = E1000_READ_REG(hw, TXDCTL); |
600 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 674 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
675 | switch (hw->mac_type) { | ||
676 | default: | ||
677 | break; | ||
678 | case e1000_82573: | ||
679 | ctrl |= E1000_TXDCTL_COUNT_DESC; | ||
680 | break; | ||
681 | } | ||
601 | E1000_WRITE_REG(hw, TXDCTL, ctrl); | 682 | E1000_WRITE_REG(hw, TXDCTL, ctrl); |
602 | } | 683 | } |
603 | 684 | ||
685 | if (hw->mac_type == e1000_82573) { | ||
686 | e1000_enable_tx_pkt_filtering(hw); | ||
687 | } | ||
688 | |||
689 | |||
604 | /* Clear all of the statistics registers (clear on read). It is | 690 | /* Clear all of the statistics registers (clear on read). It is |
605 | * important that we do this after we have tried to establish link | 691 | * important that we do this after we have tried to establish link |
606 | * because the symbol error count will increment wildly if there | 692 | * because the symbol error count will increment wildly if there |
@@ -679,7 +765,7 @@ e1000_setup_link(struct e1000_hw *hw) | |||
679 | * control setting, then the variable hw->fc will | 765 | * control setting, then the variable hw->fc will |
680 | * be initialized based on a value in the EEPROM. | 766 | * be initialized based on a value in the EEPROM. |
681 | */ | 767 | */ |
682 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) { | 768 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) { |
683 | DEBUGOUT("EEPROM Read Error\n"); | 769 | DEBUGOUT("EEPROM Read Error\n"); |
684 | return -E1000_ERR_EEPROM; | 770 | return -E1000_ERR_EEPROM; |
685 | } | 771 | } |
@@ -736,6 +822,7 @@ e1000_setup_link(struct e1000_hw *hw) | |||
736 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | 822 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
737 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 823 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
738 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | 824 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
825 | |||
739 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | 826 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
740 | 827 | ||
741 | /* Set the flow control receive threshold registers. Normally, | 828 | /* Set the flow control receive threshold registers. Normally, |
@@ -906,20 +993,18 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | |||
906 | } | 993 | } |
907 | 994 | ||
908 | /****************************************************************************** | 995 | /****************************************************************************** |
909 | * Detects which PHY is present and the speed and duplex | 996 | * Make sure we have a valid PHY and change PHY mode before link setup. |
910 | * | 997 | * |
911 | * hw - Struct containing variables accessed by shared code | 998 | * hw - Struct containing variables accessed by shared code |
912 | ******************************************************************************/ | 999 | ******************************************************************************/ |
913 | static int32_t | 1000 | static int32_t |
914 | e1000_setup_copper_link(struct e1000_hw *hw) | 1001 | e1000_copper_link_preconfig(struct e1000_hw *hw) |
915 | { | 1002 | { |
916 | uint32_t ctrl; | 1003 | uint32_t ctrl; |
917 | uint32_t led_ctrl; | ||
918 | int32_t ret_val; | 1004 | int32_t ret_val; |
919 | uint16_t i; | ||
920 | uint16_t phy_data; | 1005 | uint16_t phy_data; |
921 | 1006 | ||
922 | DEBUGFUNC("e1000_setup_copper_link"); | 1007 | DEBUGFUNC("e1000_copper_link_preconfig"); |
923 | 1008 | ||
924 | ctrl = E1000_READ_REG(hw, CTRL); | 1009 | ctrl = E1000_READ_REG(hw, CTRL); |
925 | /* With 82543, we need to force speed and duplex on the MAC equal to what | 1010 | /* With 82543, we need to force speed and duplex on the MAC equal to what |
@@ -933,7 +1018,9 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
933 | } else { | 1018 | } else { |
934 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 1019 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
935 | E1000_WRITE_REG(hw, CTRL, ctrl); | 1020 | E1000_WRITE_REG(hw, CTRL, ctrl); |
936 | e1000_phy_hw_reset(hw); | 1021 | ret_val = e1000_phy_hw_reset(hw); |
1022 | if(ret_val) | ||
1023 | return ret_val; | ||
937 | } | 1024 | } |
938 | 1025 | ||
939 | /* Make sure we have a valid PHY */ | 1026 | /* Make sure we have a valid PHY */ |
@@ -961,274 +1048,398 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
961 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | 1048 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) |
962 | hw->phy_reset_disable = FALSE; | 1049 | hw->phy_reset_disable = FALSE; |
963 | 1050 | ||
964 | if(!hw->phy_reset_disable) { | 1051 | return E1000_SUCCESS; |
965 | if (hw->phy_type == e1000_phy_igp) { | 1052 | } |
966 | 1053 | ||
967 | ret_val = e1000_phy_reset(hw); | ||
968 | if(ret_val) { | ||
969 | DEBUGOUT("Error Resetting the PHY\n"); | ||
970 | return ret_val; | ||
971 | } | ||
972 | 1054 | ||
973 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ | 1055 | /******************************************************************** |
974 | msec_delay(15); | 1056 | * Copper link setup for e1000_phy_igp series. |
1057 | * | ||
1058 | * hw - Struct containing variables accessed by shared code | ||
1059 | *********************************************************************/ | ||
1060 | static int32_t | ||
1061 | e1000_copper_link_igp_setup(struct e1000_hw *hw) | ||
1062 | { | ||
1063 | uint32_t led_ctrl; | ||
1064 | int32_t ret_val; | ||
1065 | uint16_t phy_data; | ||
975 | 1066 | ||
976 | /* Configure activity LED after PHY reset */ | 1067 | DEBUGFUNC("e1000_copper_link_igp_setup"); |
977 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | ||
978 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
979 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
980 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | ||
981 | 1068 | ||
982 | /* disable lplu d3 during driver init */ | 1069 | if (hw->phy_reset_disable) |
983 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); | 1070 | return E1000_SUCCESS; |
984 | if(ret_val) { | 1071 | |
985 | DEBUGOUT("Error Disabling LPLU D3\n"); | 1072 | ret_val = e1000_phy_reset(hw); |
986 | return ret_val; | 1073 | if (ret_val) { |
987 | } | 1074 | DEBUGOUT("Error Resetting the PHY\n"); |
1075 | return ret_val; | ||
1076 | } | ||
988 | 1077 | ||
989 | /* Configure mdi-mdix settings */ | 1078 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ |
990 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | 1079 | msec_delay(15); |
991 | &phy_data); | ||
992 | if(ret_val) | ||
993 | return ret_val; | ||
994 | 1080 | ||
995 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 1081 | /* Configure activity LED after PHY reset */ |
996 | hw->dsp_config_state = e1000_dsp_config_disabled; | 1082 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
997 | /* Force MDI for earlier revs of the IGP PHY */ | 1083 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
998 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | | 1084 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
999 | IGP01E1000_PSCR_FORCE_MDI_MDIX); | 1085 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
1000 | hw->mdix = 1; | ||
1001 | 1086 | ||
1002 | } else { | 1087 | /* disable lplu d3 during driver init */ |
1003 | hw->dsp_config_state = e1000_dsp_config_enabled; | 1088 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); |
1004 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 1089 | if (ret_val) { |
1005 | 1090 | DEBUGOUT("Error Disabling LPLU D3\n"); | |
1006 | switch (hw->mdix) { | 1091 | return ret_val; |
1007 | case 1: | 1092 | } |
1008 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1009 | break; | ||
1010 | case 2: | ||
1011 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1012 | break; | ||
1013 | case 0: | ||
1014 | default: | ||
1015 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
1016 | break; | ||
1017 | } | ||
1018 | } | ||
1019 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
1020 | phy_data); | ||
1021 | if(ret_val) | ||
1022 | return ret_val; | ||
1023 | 1093 | ||
1024 | /* set auto-master slave resolution settings */ | 1094 | /* disable lplu d0 during driver init */ |
1025 | if(hw->autoneg) { | 1095 | ret_val = e1000_set_d0_lplu_state(hw, FALSE); |
1026 | e1000_ms_type phy_ms_setting = hw->master_slave; | 1096 | if (ret_val) { |
1097 | DEBUGOUT("Error Disabling LPLU D0\n"); | ||
1098 | return ret_val; | ||
1099 | } | ||
1100 | /* Configure mdi-mdix settings */ | ||
1101 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1102 | if (ret_val) | ||
1103 | return ret_val; | ||
1027 | 1104 | ||
1028 | if(hw->ffe_config_state == e1000_ffe_config_active) | 1105 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
1029 | hw->ffe_config_state = e1000_ffe_config_enabled; | 1106 | hw->dsp_config_state = e1000_dsp_config_disabled; |
1107 | /* Force MDI for earlier revs of the IGP PHY */ | ||
1108 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); | ||
1109 | hw->mdix = 1; | ||
1030 | 1110 | ||
1031 | if(hw->dsp_config_state == e1000_dsp_config_activated) | 1111 | } else { |
1032 | hw->dsp_config_state = e1000_dsp_config_enabled; | 1112 | hw->dsp_config_state = e1000_dsp_config_enabled; |
1113 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1033 | 1114 | ||
1034 | /* when autonegotiation advertisment is only 1000Mbps then we | 1115 | switch (hw->mdix) { |
1035 | * should disable SmartSpeed and enable Auto MasterSlave | 1116 | case 1: |
1036 | * resolution as hardware default. */ | 1117 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1037 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 1118 | break; |
1038 | /* Disable SmartSpeed */ | 1119 | case 2: |
1039 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 1120 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1040 | &phy_data); | 1121 | break; |
1041 | if(ret_val) | 1122 | case 0: |
1042 | return ret_val; | 1123 | default: |
1043 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 1124 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
1044 | ret_val = e1000_write_phy_reg(hw, | 1125 | break; |
1045 | IGP01E1000_PHY_PORT_CONFIG, | 1126 | } |
1046 | phy_data); | 1127 | } |
1047 | if(ret_val) | 1128 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
1048 | return ret_val; | 1129 | if(ret_val) |
1049 | /* Set auto Master/Slave resolution process */ | 1130 | return ret_val; |
1050 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1051 | if(ret_val) | ||
1052 | return ret_val; | ||
1053 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1054 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1055 | if(ret_val) | ||
1056 | return ret_val; | ||
1057 | } | ||
1058 | 1131 | ||
1059 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 1132 | /* set auto-master slave resolution settings */ |
1060 | if(ret_val) | 1133 | if(hw->autoneg) { |
1061 | return ret_val; | 1134 | e1000_ms_type phy_ms_setting = hw->master_slave; |
1062 | 1135 | ||
1063 | /* load defaults for future use */ | 1136 | if(hw->ffe_config_state == e1000_ffe_config_active) |
1064 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | 1137 | hw->ffe_config_state = e1000_ffe_config_enabled; |
1065 | ((phy_data & CR_1000T_MS_VALUE) ? | 1138 | |
1066 | e1000_ms_force_master : | 1139 | if(hw->dsp_config_state == e1000_dsp_config_activated) |
1067 | e1000_ms_force_slave) : | 1140 | hw->dsp_config_state = e1000_dsp_config_enabled; |
1068 | e1000_ms_auto; | 1141 | |
1069 | 1142 | /* when autonegotiation advertisment is only 1000Mbps then we | |
1070 | switch (phy_ms_setting) { | 1143 | * should disable SmartSpeed and enable Auto MasterSlave |
1071 | case e1000_ms_force_master: | 1144 | * resolution as hardware default. */ |
1072 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 1145 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
1073 | break; | 1146 | /* Disable SmartSpeed */ |
1074 | case e1000_ms_force_slave: | 1147 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
1075 | phy_data |= CR_1000T_MS_ENABLE; | ||
1076 | phy_data &= ~(CR_1000T_MS_VALUE); | ||
1077 | break; | ||
1078 | case e1000_ms_auto: | ||
1079 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1080 | default: | ||
1081 | break; | ||
1082 | } | ||
1083 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1084 | if(ret_val) | ||
1085 | return ret_val; | ||
1086 | } | ||
1087 | } else { | ||
1088 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
1089 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1090 | &phy_data); | ||
1091 | if(ret_val) | 1148 | if(ret_val) |
1092 | return ret_val; | 1149 | return ret_val; |
1150 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1151 | ret_val = e1000_write_phy_reg(hw, | ||
1152 | IGP01E1000_PHY_PORT_CONFIG, | ||
1153 | phy_data); | ||
1154 | if(ret_val) | ||
1155 | return ret_val; | ||
1156 | /* Set auto Master/Slave resolution process */ | ||
1157 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1158 | if(ret_val) | ||
1159 | return ret_val; | ||
1160 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1161 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1162 | if(ret_val) | ||
1163 | return ret_val; | ||
1164 | } | ||
1093 | 1165 | ||
1094 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 1166 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
1167 | if(ret_val) | ||
1168 | return ret_val; | ||
1095 | 1169 | ||
1096 | /* Options: | 1170 | /* load defaults for future use */ |
1097 | * MDI/MDI-X = 0 (default) | 1171 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
1098 | * 0 - Auto for all speeds | 1172 | ((phy_data & CR_1000T_MS_VALUE) ? |
1099 | * 1 - MDI mode | 1173 | e1000_ms_force_master : |
1100 | * 2 - MDI-X mode | 1174 | e1000_ms_force_slave) : |
1101 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 1175 | e1000_ms_auto; |
1102 | */ | ||
1103 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1104 | 1176 | ||
1105 | switch (hw->mdix) { | 1177 | switch (phy_ms_setting) { |
1106 | case 1: | 1178 | case e1000_ms_force_master: |
1107 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 1179 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
1108 | break; | 1180 | break; |
1109 | case 2: | 1181 | case e1000_ms_force_slave: |
1110 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 1182 | phy_data |= CR_1000T_MS_ENABLE; |
1111 | break; | 1183 | phy_data &= ~(CR_1000T_MS_VALUE); |
1112 | case 3: | 1184 | break; |
1113 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 1185 | case e1000_ms_auto: |
1114 | break; | 1186 | phy_data &= ~CR_1000T_MS_ENABLE; |
1115 | case 0: | ||
1116 | default: | 1187 | default: |
1117 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 1188 | break; |
1118 | break; | 1189 | } |
1119 | } | 1190 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
1191 | if(ret_val) | ||
1192 | return ret_val; | ||
1193 | } | ||
1120 | 1194 | ||
1121 | /* Options: | 1195 | return E1000_SUCCESS; |
1122 | * disable_polarity_correction = 0 (default) | 1196 | } |
1123 | * Automatic Correction for Reversed Cable Polarity | ||
1124 | * 0 - Disabled | ||
1125 | * 1 - Enabled | ||
1126 | */ | ||
1127 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
1128 | if(hw->disable_polarity_correction == 1) | ||
1129 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
1130 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1131 | phy_data); | ||
1132 | if(ret_val) | ||
1133 | return ret_val; | ||
1134 | 1197 | ||
1135 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1136 | * to 25MHz clock. | ||
1137 | */ | ||
1138 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1139 | &phy_data); | ||
1140 | if(ret_val) | ||
1141 | return ret_val; | ||
1142 | 1198 | ||
1143 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 1199 | /******************************************************************** |
1200 | * Copper link setup for e1000_phy_m88 series. | ||
1201 | * | ||
1202 | * hw - Struct containing variables accessed by shared code | ||
1203 | *********************************************************************/ | ||
1204 | static int32_t | ||
1205 | e1000_copper_link_mgp_setup(struct e1000_hw *hw) | ||
1206 | { | ||
1207 | int32_t ret_val; | ||
1208 | uint16_t phy_data; | ||
1209 | |||
1210 | DEBUGFUNC("e1000_copper_link_mgp_setup"); | ||
1211 | |||
1212 | if(hw->phy_reset_disable) | ||
1213 | return E1000_SUCCESS; | ||
1214 | |||
1215 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
1216 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1217 | if(ret_val) | ||
1218 | return ret_val; | ||
1219 | |||
1220 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1221 | |||
1222 | /* Options: | ||
1223 | * MDI/MDI-X = 0 (default) | ||
1224 | * 0 - Auto for all speeds | ||
1225 | * 1 - MDI mode | ||
1226 | * 2 - MDI-X mode | ||
1227 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
1228 | */ | ||
1229 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1230 | |||
1231 | switch (hw->mdix) { | ||
1232 | case 1: | ||
1233 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
1234 | break; | ||
1235 | case 2: | ||
1236 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
1237 | break; | ||
1238 | case 3: | ||
1239 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
1240 | break; | ||
1241 | case 0: | ||
1242 | default: | ||
1243 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
1244 | break; | ||
1245 | } | ||
1144 | 1246 | ||
1145 | if (hw->phy_revision < M88E1011_I_REV_4) { | 1247 | /* Options: |
1146 | /* Configure Master and Slave downshift values */ | 1248 | * disable_polarity_correction = 0 (default) |
1147 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 1249 | * Automatic Correction for Reversed Cable Polarity |
1250 | * 0 - Disabled | ||
1251 | * 1 - Enabled | ||
1252 | */ | ||
1253 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
1254 | if(hw->disable_polarity_correction == 1) | ||
1255 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
1256 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1257 | if(ret_val) | ||
1258 | return ret_val; | ||
1259 | |||
1260 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1261 | * to 25MHz clock. | ||
1262 | */ | ||
1263 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1264 | if(ret_val) | ||
1265 | return ret_val; | ||
1266 | |||
1267 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1268 | |||
1269 | if (hw->phy_revision < M88E1011_I_REV_4) { | ||
1270 | /* Configure Master and Slave downshift values */ | ||
1271 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
1148 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 1272 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
1149 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 1273 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
1150 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 1274 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
1151 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | 1275 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
1152 | phy_data); | 1276 | if(ret_val) |
1153 | if(ret_val) | 1277 | return ret_val; |
1154 | return ret_val; | 1278 | } |
1155 | } | ||
1156 | 1279 | ||
1157 | /* SW Reset the PHY so all changes take effect */ | 1280 | /* SW Reset the PHY so all changes take effect */ |
1158 | ret_val = e1000_phy_reset(hw); | 1281 | ret_val = e1000_phy_reset(hw); |
1159 | if(ret_val) { | 1282 | if(ret_val) { |
1160 | DEBUGOUT("Error Resetting the PHY\n"); | 1283 | DEBUGOUT("Error Resetting the PHY\n"); |
1161 | return ret_val; | 1284 | return ret_val; |
1162 | } | 1285 | } |
1286 | |||
1287 | return E1000_SUCCESS; | ||
1288 | } | ||
1289 | |||
1290 | /******************************************************************** | ||
1291 | * Setup auto-negotiation and flow control advertisements, | ||
1292 | * and then perform auto-negotiation. | ||
1293 | * | ||
1294 | * hw - Struct containing variables accessed by shared code | ||
1295 | *********************************************************************/ | ||
1296 | static int32_t | ||
1297 | e1000_copper_link_autoneg(struct e1000_hw *hw) | ||
1298 | { | ||
1299 | int32_t ret_val; | ||
1300 | uint16_t phy_data; | ||
1301 | |||
1302 | DEBUGFUNC("e1000_copper_link_autoneg"); | ||
1303 | |||
1304 | /* Perform some bounds checking on the hw->autoneg_advertised | ||
1305 | * parameter. If this variable is zero, then set it to the default. | ||
1306 | */ | ||
1307 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1308 | |||
1309 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
1310 | * by the calling code so we set to advertise full capability. | ||
1311 | */ | ||
1312 | if(hw->autoneg_advertised == 0) | ||
1313 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1314 | |||
1315 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | ||
1316 | ret_val = e1000_phy_setup_autoneg(hw); | ||
1317 | if(ret_val) { | ||
1318 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | ||
1319 | return ret_val; | ||
1320 | } | ||
1321 | DEBUGOUT("Restarting Auto-Neg\n"); | ||
1322 | |||
1323 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
1324 | * the Auto Neg Restart bit in the PHY control register. | ||
1325 | */ | ||
1326 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
1327 | if(ret_val) | ||
1328 | return ret_val; | ||
1329 | |||
1330 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
1331 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
1332 | if(ret_val) | ||
1333 | return ret_val; | ||
1334 | |||
1335 | /* Does the user want to wait for Auto-Neg to complete here, or | ||
1336 | * check at a later time (for example, callback routine). | ||
1337 | */ | ||
1338 | if(hw->wait_autoneg_complete) { | ||
1339 | ret_val = e1000_wait_autoneg(hw); | ||
1340 | if(ret_val) { | ||
1341 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | ||
1342 | return ret_val; | ||
1163 | } | 1343 | } |
1344 | } | ||
1164 | 1345 | ||
1165 | /* Options: | 1346 | hw->get_link_status = TRUE; |
1166 | * autoneg = 1 (default) | ||
1167 | * PHY will advertise value(s) parsed from | ||
1168 | * autoneg_advertised and fc | ||
1169 | * autoneg = 0 | ||
1170 | * PHY will be set to 10H, 10F, 100H, or 100F | ||
1171 | * depending on value parsed from forced_speed_duplex. | ||
1172 | */ | ||
1173 | 1347 | ||
1174 | /* Is autoneg enabled? This is enabled by default or by software | 1348 | return E1000_SUCCESS; |
1175 | * override. If so, call e1000_phy_setup_autoneg routine to parse the | 1349 | } |
1176 | * autoneg_advertised and fc options. If autoneg is NOT enabled, then | ||
1177 | * the user should have provided a speed/duplex override. If so, then | ||
1178 | * call e1000_phy_force_speed_duplex to parse and set this up. | ||
1179 | */ | ||
1180 | if(hw->autoneg) { | ||
1181 | /* Perform some bounds checking on the hw->autoneg_advertised | ||
1182 | * parameter. If this variable is zero, then set it to the default. | ||
1183 | */ | ||
1184 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1185 | 1350 | ||
1186 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
1187 | * by the calling code so we set to advertise full capability. | ||
1188 | */ | ||
1189 | if(hw->autoneg_advertised == 0) | ||
1190 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1191 | 1351 | ||
1192 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 1352 | /****************************************************************************** |
1193 | ret_val = e1000_phy_setup_autoneg(hw); | 1353 | * Config the MAC and the PHY after link is up. |
1194 | if(ret_val) { | 1354 | * 1) Set up the MAC to the current PHY speed/duplex |
1195 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 1355 | * if we are on 82543. If we |
1196 | return ret_val; | 1356 | * are on newer silicon, we only need to configure |
1197 | } | 1357 | * collision distance in the Transmit Control Register. |
1198 | DEBUGOUT("Restarting Auto-Neg\n"); | 1358 | * 2) Set up flow control on the MAC to that established with |
1359 | * the link partner. | ||
1360 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. | ||
1361 | * | ||
1362 | * hw - Struct containing variables accessed by shared code | ||
1363 | ******************************************************************************/ | ||
1364 | static int32_t | ||
1365 | e1000_copper_link_postconfig(struct e1000_hw *hw) | ||
1366 | { | ||
1367 | int32_t ret_val; | ||
1368 | DEBUGFUNC("e1000_copper_link_postconfig"); | ||
1369 | |||
1370 | if(hw->mac_type >= e1000_82544) { | ||
1371 | e1000_config_collision_dist(hw); | ||
1372 | } else { | ||
1373 | ret_val = e1000_config_mac_to_phy(hw); | ||
1374 | if(ret_val) { | ||
1375 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
1376 | return ret_val; | ||
1377 | } | ||
1378 | } | ||
1379 | ret_val = e1000_config_fc_after_link_up(hw); | ||
1380 | if(ret_val) { | ||
1381 | DEBUGOUT("Error Configuring Flow Control\n"); | ||
1382 | return ret_val; | ||
1383 | } | ||
1199 | 1384 | ||
1200 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 1385 | /* Config DSP to improve Giga link quality */ |
1201 | * the Auto Neg Restart bit in the PHY control register. | 1386 | if(hw->phy_type == e1000_phy_igp) { |
1202 | */ | 1387 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); |
1203 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 1388 | if(ret_val) { |
1204 | if(ret_val) | 1389 | DEBUGOUT("Error Configuring DSP after link up\n"); |
1205 | return ret_val; | 1390 | return ret_val; |
1391 | } | ||
1392 | } | ||
1393 | |||
1394 | return E1000_SUCCESS; | ||
1395 | } | ||
1206 | 1396 | ||
1207 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 1397 | /****************************************************************************** |
1208 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 1398 | * Detects which PHY is present and setup the speed and duplex |
1209 | if(ret_val) | 1399 | * |
1210 | return ret_val; | 1400 | * hw - Struct containing variables accessed by shared code |
1401 | ******************************************************************************/ | ||
1402 | static int32_t | ||
1403 | e1000_setup_copper_link(struct e1000_hw *hw) | ||
1404 | { | ||
1405 | int32_t ret_val; | ||
1406 | uint16_t i; | ||
1407 | uint16_t phy_data; | ||
1211 | 1408 | ||
1212 | /* Does the user want to wait for Auto-Neg to complete here, or | 1409 | DEBUGFUNC("e1000_setup_copper_link"); |
1213 | * check at a later time (for example, callback routine). | 1410 | |
1214 | */ | 1411 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
1215 | if(hw->wait_autoneg_complete) { | 1412 | ret_val = e1000_copper_link_preconfig(hw); |
1216 | ret_val = e1000_wait_autoneg(hw); | 1413 | if(ret_val) |
1217 | if(ret_val) { | 1414 | return ret_val; |
1218 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | 1415 | |
1219 | return ret_val; | 1416 | if (hw->phy_type == e1000_phy_igp || |
1220 | } | 1417 | hw->phy_type == e1000_phy_igp_2) { |
1221 | } | 1418 | ret_val = e1000_copper_link_igp_setup(hw); |
1222 | hw->get_link_status = TRUE; | 1419 | if(ret_val) |
1223 | } else { | 1420 | return ret_val; |
1224 | DEBUGOUT("Forcing speed and duplex\n"); | 1421 | } else if (hw->phy_type == e1000_phy_m88) { |
1225 | ret_val = e1000_phy_force_speed_duplex(hw); | 1422 | ret_val = e1000_copper_link_mgp_setup(hw); |
1226 | if(ret_val) { | 1423 | if(ret_val) |
1227 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | 1424 | return ret_val; |
1228 | return ret_val; | 1425 | } |
1229 | } | 1426 | |
1427 | if(hw->autoneg) { | ||
1428 | /* Setup autoneg and flow control advertisement | ||
1429 | * and perform autonegotiation */ | ||
1430 | ret_val = e1000_copper_link_autoneg(hw); | ||
1431 | if(ret_val) | ||
1432 | return ret_val; | ||
1433 | } else { | ||
1434 | /* PHY will be set to 10H, 10F, 100H,or 100F | ||
1435 | * depending on value from forced_speed_duplex. */ | ||
1436 | DEBUGOUT("Forcing speed and duplex\n"); | ||
1437 | ret_val = e1000_phy_force_speed_duplex(hw); | ||
1438 | if(ret_val) { | ||
1439 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | ||
1440 | return ret_val; | ||
1230 | } | 1441 | } |
1231 | } /* !hw->phy_reset_disable */ | 1442 | } |
1232 | 1443 | ||
1233 | /* Check link status. Wait up to 100 microseconds for link to become | 1444 | /* Check link status. Wait up to 100 microseconds for link to become |
1234 | * valid. | 1445 | * valid. |
@@ -1242,37 +1453,11 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1242 | return ret_val; | 1453 | return ret_val; |
1243 | 1454 | ||
1244 | if(phy_data & MII_SR_LINK_STATUS) { | 1455 | if(phy_data & MII_SR_LINK_STATUS) { |
1245 | /* We have link, so we need to finish the config process: | 1456 | /* Config the MAC and PHY after link is up */ |
1246 | * 1) Set up the MAC to the current PHY speed/duplex | 1457 | ret_val = e1000_copper_link_postconfig(hw); |
1247 | * if we are on 82543. If we | 1458 | if(ret_val) |
1248 | * are on newer silicon, we only need to configure | ||
1249 | * collision distance in the Transmit Control Register. | ||
1250 | * 2) Set up flow control on the MAC to that established with | ||
1251 | * the link partner. | ||
1252 | */ | ||
1253 | if(hw->mac_type >= e1000_82544) { | ||
1254 | e1000_config_collision_dist(hw); | ||
1255 | } else { | ||
1256 | ret_val = e1000_config_mac_to_phy(hw); | ||
1257 | if(ret_val) { | ||
1258 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
1259 | return ret_val; | ||
1260 | } | ||
1261 | } | ||
1262 | ret_val = e1000_config_fc_after_link_up(hw); | ||
1263 | if(ret_val) { | ||
1264 | DEBUGOUT("Error Configuring Flow Control\n"); | ||
1265 | return ret_val; | 1459 | return ret_val; |
1266 | } | 1460 | |
1267 | DEBUGOUT("Valid link established!!!\n"); | ||
1268 | |||
1269 | if(hw->phy_type == e1000_phy_igp) { | ||
1270 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); | ||
1271 | if(ret_val) { | ||
1272 | DEBUGOUT("Error Configuring DSP after link up\n"); | ||
1273 | return ret_val; | ||
1274 | } | ||
1275 | } | ||
1276 | DEBUGOUT("Valid link established!!!\n"); | 1461 | DEBUGOUT("Valid link established!!!\n"); |
1277 | return E1000_SUCCESS; | 1462 | return E1000_SUCCESS; |
1278 | } | 1463 | } |
@@ -1302,10 +1487,10 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1302 | if(ret_val) | 1487 | if(ret_val) |
1303 | return ret_val; | 1488 | return ret_val; |
1304 | 1489 | ||
1305 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 1490 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
1306 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 1491 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
1307 | if(ret_val) | 1492 | if(ret_val) |
1308 | return ret_val; | 1493 | return ret_val; |
1309 | 1494 | ||
1310 | /* Need to parse both autoneg_advertised and fc and set up | 1495 | /* Need to parse both autoneg_advertised and fc and set up |
1311 | * the appropriate PHY registers. First we will parse for | 1496 | * the appropriate PHY registers. First we will parse for |
@@ -1417,7 +1602,7 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1417 | 1602 | ||
1418 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 1603 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
1419 | 1604 | ||
1420 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 1605 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
1421 | if(ret_val) | 1606 | if(ret_val) |
1422 | return ret_val; | 1607 | return ret_val; |
1423 | 1608 | ||
@@ -1678,6 +1863,11 @@ e1000_config_mac_to_phy(struct e1000_hw *hw) | |||
1678 | 1863 | ||
1679 | DEBUGFUNC("e1000_config_mac_to_phy"); | 1864 | DEBUGFUNC("e1000_config_mac_to_phy"); |
1680 | 1865 | ||
1866 | /* 82544 or newer MAC, Auto Speed Detection takes care of | ||
1867 | * MAC speed/duplex configuration.*/ | ||
1868 | if (hw->mac_type >= e1000_82544) | ||
1869 | return E1000_SUCCESS; | ||
1870 | |||
1681 | /* Read the Device Control Register and set the bits to Force Speed | 1871 | /* Read the Device Control Register and set the bits to Force Speed |
1682 | * and Duplex. | 1872 | * and Duplex. |
1683 | */ | 1873 | */ |
@@ -1688,45 +1878,25 @@ e1000_config_mac_to_phy(struct e1000_hw *hw) | |||
1688 | /* Set up duplex in the Device Control and Transmit Control | 1878 | /* Set up duplex in the Device Control and Transmit Control |
1689 | * registers depending on negotiated values. | 1879 | * registers depending on negotiated values. |
1690 | */ | 1880 | */ |
1691 | if (hw->phy_type == e1000_phy_igp) { | 1881 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
1692 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 1882 | if(ret_val) |
1693 | &phy_data); | 1883 | return ret_val; |
1694 | if(ret_val) | ||
1695 | return ret_val; | ||
1696 | |||
1697 | if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD; | ||
1698 | else ctrl &= ~E1000_CTRL_FD; | ||
1699 | |||
1700 | e1000_config_collision_dist(hw); | ||
1701 | 1884 | ||
1702 | /* Set up speed in the Device Control register depending on | 1885 | if(phy_data & M88E1000_PSSR_DPLX) |
1703 | * negotiated values. | 1886 | ctrl |= E1000_CTRL_FD; |
1704 | */ | 1887 | else |
1705 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 1888 | ctrl &= ~E1000_CTRL_FD; |
1706 | IGP01E1000_PSSR_SPEED_1000MBPS) | ||
1707 | ctrl |= E1000_CTRL_SPD_1000; | ||
1708 | else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1709 | IGP01E1000_PSSR_SPEED_100MBPS) | ||
1710 | ctrl |= E1000_CTRL_SPD_100; | ||
1711 | } else { | ||
1712 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1713 | &phy_data); | ||
1714 | if(ret_val) | ||
1715 | return ret_val; | ||
1716 | 1889 | ||
1717 | if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; | 1890 | e1000_config_collision_dist(hw); |
1718 | else ctrl &= ~E1000_CTRL_FD; | ||
1719 | 1891 | ||
1720 | e1000_config_collision_dist(hw); | 1892 | /* Set up speed in the Device Control register depending on |
1893 | * negotiated values. | ||
1894 | */ | ||
1895 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | ||
1896 | ctrl |= E1000_CTRL_SPD_1000; | ||
1897 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | ||
1898 | ctrl |= E1000_CTRL_SPD_100; | ||
1721 | 1899 | ||
1722 | /* Set up speed in the Device Control register depending on | ||
1723 | * negotiated values. | ||
1724 | */ | ||
1725 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | ||
1726 | ctrl |= E1000_CTRL_SPD_1000; | ||
1727 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | ||
1728 | ctrl |= E1000_CTRL_SPD_100; | ||
1729 | } | ||
1730 | /* Write the configured values back to the Device Control Reg. */ | 1900 | /* Write the configured values back to the Device Control Reg. */ |
1731 | E1000_WRITE_REG(hw, CTRL, ctrl); | 1901 | E1000_WRITE_REG(hw, CTRL, ctrl); |
1732 | return E1000_SUCCESS; | 1902 | return E1000_SUCCESS; |
@@ -2494,8 +2664,8 @@ e1000_read_phy_reg(struct e1000_hw *hw, | |||
2494 | 2664 | ||
2495 | DEBUGFUNC("e1000_read_phy_reg"); | 2665 | DEBUGFUNC("e1000_read_phy_reg"); |
2496 | 2666 | ||
2497 | 2667 | if((hw->phy_type == e1000_phy_igp || | |
2498 | if(hw->phy_type == e1000_phy_igp && | 2668 | hw->phy_type == e1000_phy_igp_2) && |
2499 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 2669 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
2500 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2670 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
2501 | (uint16_t)reg_addr); | 2671 | (uint16_t)reg_addr); |
@@ -2600,8 +2770,8 @@ e1000_write_phy_reg(struct e1000_hw *hw, | |||
2600 | 2770 | ||
2601 | DEBUGFUNC("e1000_write_phy_reg"); | 2771 | DEBUGFUNC("e1000_write_phy_reg"); |
2602 | 2772 | ||
2603 | 2773 | if((hw->phy_type == e1000_phy_igp || | |
2604 | if(hw->phy_type == e1000_phy_igp && | 2774 | hw->phy_type == e1000_phy_igp_2) && |
2605 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 2775 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
2606 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2776 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
2607 | (uint16_t)reg_addr); | 2777 | (uint16_t)reg_addr); |
@@ -2679,19 +2849,27 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw, | |||
2679 | return E1000_SUCCESS; | 2849 | return E1000_SUCCESS; |
2680 | } | 2850 | } |
2681 | 2851 | ||
2852 | |||
2682 | /****************************************************************************** | 2853 | /****************************************************************************** |
2683 | * Returns the PHY to the power-on reset state | 2854 | * Returns the PHY to the power-on reset state |
2684 | * | 2855 | * |
2685 | * hw - Struct containing variables accessed by shared code | 2856 | * hw - Struct containing variables accessed by shared code |
2686 | ******************************************************************************/ | 2857 | ******************************************************************************/ |
2687 | void | 2858 | int32_t |
2688 | e1000_phy_hw_reset(struct e1000_hw *hw) | 2859 | e1000_phy_hw_reset(struct e1000_hw *hw) |
2689 | { | 2860 | { |
2690 | uint32_t ctrl, ctrl_ext; | 2861 | uint32_t ctrl, ctrl_ext; |
2691 | uint32_t led_ctrl; | 2862 | uint32_t led_ctrl; |
2863 | int32_t ret_val; | ||
2692 | 2864 | ||
2693 | DEBUGFUNC("e1000_phy_hw_reset"); | 2865 | DEBUGFUNC("e1000_phy_hw_reset"); |
2694 | 2866 | ||
2867 | /* In the case of the phy reset being blocked, it's not an error, we | ||
2868 | * simply return success without performing the reset. */ | ||
2869 | ret_val = e1000_check_phy_reset_block(hw); | ||
2870 | if (ret_val) | ||
2871 | return E1000_SUCCESS; | ||
2872 | |||
2695 | DEBUGOUT("Resetting Phy...\n"); | 2873 | DEBUGOUT("Resetting Phy...\n"); |
2696 | 2874 | ||
2697 | if(hw->mac_type > e1000_82543) { | 2875 | if(hw->mac_type > e1000_82543) { |
@@ -2727,6 +2905,11 @@ e1000_phy_hw_reset(struct e1000_hw *hw) | |||
2727 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 2905 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
2728 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 2906 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
2729 | } | 2907 | } |
2908 | |||
2909 | /* Wait for FW to finish PHY configuration. */ | ||
2910 | ret_val = e1000_get_phy_cfg_done(hw); | ||
2911 | |||
2912 | return ret_val; | ||
2730 | } | 2913 | } |
2731 | 2914 | ||
2732 | /****************************************************************************** | 2915 | /****************************************************************************** |
@@ -2744,7 +2927,19 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
2744 | 2927 | ||
2745 | DEBUGFUNC("e1000_phy_reset"); | 2928 | DEBUGFUNC("e1000_phy_reset"); |
2746 | 2929 | ||
2747 | if(hw->mac_type != e1000_82541_rev_2) { | 2930 | /* In the case of the phy reset being blocked, it's not an error, we |
2931 | * simply return success without performing the reset. */ | ||
2932 | ret_val = e1000_check_phy_reset_block(hw); | ||
2933 | if (ret_val) | ||
2934 | return E1000_SUCCESS; | ||
2935 | |||
2936 | switch (hw->mac_type) { | ||
2937 | case e1000_82541_rev_2: | ||
2938 | ret_val = e1000_phy_hw_reset(hw); | ||
2939 | if(ret_val) | ||
2940 | return ret_val; | ||
2941 | break; | ||
2942 | default: | ||
2748 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 2943 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
2749 | if(ret_val) | 2944 | if(ret_val) |
2750 | return ret_val; | 2945 | return ret_val; |
@@ -2755,9 +2950,10 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
2755 | return ret_val; | 2950 | return ret_val; |
2756 | 2951 | ||
2757 | udelay(1); | 2952 | udelay(1); |
2758 | } else e1000_phy_hw_reset(hw); | 2953 | break; |
2954 | } | ||
2759 | 2955 | ||
2760 | if(hw->phy_type == e1000_phy_igp) | 2956 | if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) |
2761 | e1000_phy_init_script(hw); | 2957 | e1000_phy_init_script(hw); |
2762 | 2958 | ||
2763 | return E1000_SUCCESS; | 2959 | return E1000_SUCCESS; |
@@ -2811,6 +3007,9 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
2811 | case e1000_82547_rev_2: | 3007 | case e1000_82547_rev_2: |
2812 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; | 3008 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; |
2813 | break; | 3009 | break; |
3010 | case e1000_82573: | ||
3011 | if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; | ||
3012 | break; | ||
2814 | default: | 3013 | default: |
2815 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 3014 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
2816 | return -E1000_ERR_CONFIG; | 3015 | return -E1000_ERR_CONFIG; |
@@ -2866,7 +3065,7 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
2866 | 3065 | ||
2867 | /* The downshift status is checked only once, after link is established, | 3066 | /* The downshift status is checked only once, after link is established, |
2868 | * and it stored in the hw->speed_downgraded parameter. */ | 3067 | * and it stored in the hw->speed_downgraded parameter. */ |
2869 | phy_info->downshift = hw->speed_downgraded; | 3068 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
2870 | 3069 | ||
2871 | /* IGP01E1000 does not need to support it. */ | 3070 | /* IGP01E1000 does not need to support it. */ |
2872 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 3071 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
@@ -2905,7 +3104,7 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
2905 | if(ret_val) | 3104 | if(ret_val) |
2906 | return ret_val; | 3105 | return ret_val; |
2907 | 3106 | ||
2908 | /* transalte to old method */ | 3107 | /* Translate to old method */ |
2909 | average = (max_length + min_length) / 2; | 3108 | average = (max_length + min_length) / 2; |
2910 | 3109 | ||
2911 | if(average <= e1000_igp_cable_length_50) | 3110 | if(average <= e1000_igp_cable_length_50) |
@@ -2940,7 +3139,7 @@ e1000_phy_m88_get_info(struct e1000_hw *hw, | |||
2940 | 3139 | ||
2941 | /* The downshift status is checked only once, after link is established, | 3140 | /* The downshift status is checked only once, after link is established, |
2942 | * and it stored in the hw->speed_downgraded parameter. */ | 3141 | * and it stored in the hw->speed_downgraded parameter. */ |
2943 | phy_info->downshift = hw->speed_downgraded; | 3142 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
2944 | 3143 | ||
2945 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 3144 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
2946 | if(ret_val) | 3145 | if(ret_val) |
@@ -3029,7 +3228,8 @@ e1000_phy_get_info(struct e1000_hw *hw, | |||
3029 | return -E1000_ERR_CONFIG; | 3228 | return -E1000_ERR_CONFIG; |
3030 | } | 3229 | } |
3031 | 3230 | ||
3032 | if(hw->phy_type == e1000_phy_igp) | 3231 | if(hw->phy_type == e1000_phy_igp || |
3232 | hw->phy_type == e1000_phy_igp_2) | ||
3033 | return e1000_phy_igp_get_info(hw, phy_info); | 3233 | return e1000_phy_igp_get_info(hw, phy_info); |
3034 | else | 3234 | else |
3035 | return e1000_phy_m88_get_info(hw, phy_info); | 3235 | return e1000_phy_m88_get_info(hw, phy_info); |
@@ -3055,11 +3255,12 @@ e1000_validate_mdi_setting(struct e1000_hw *hw) | |||
3055 | * | 3255 | * |
3056 | * hw - Struct containing variables accessed by shared code | 3256 | * hw - Struct containing variables accessed by shared code |
3057 | *****************************************************************************/ | 3257 | *****************************************************************************/ |
3058 | void | 3258 | int32_t |
3059 | e1000_init_eeprom_params(struct e1000_hw *hw) | 3259 | e1000_init_eeprom_params(struct e1000_hw *hw) |
3060 | { | 3260 | { |
3061 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3261 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3062 | uint32_t eecd = E1000_READ_REG(hw, EECD); | 3262 | uint32_t eecd = E1000_READ_REG(hw, EECD); |
3263 | int32_t ret_val = E1000_SUCCESS; | ||
3063 | uint16_t eeprom_size; | 3264 | uint16_t eeprom_size; |
3064 | 3265 | ||
3065 | DEBUGFUNC("e1000_init_eeprom_params"); | 3266 | DEBUGFUNC("e1000_init_eeprom_params"); |
@@ -3074,6 +3275,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
3074 | eeprom->opcode_bits = 3; | 3275 | eeprom->opcode_bits = 3; |
3075 | eeprom->address_bits = 6; | 3276 | eeprom->address_bits = 6; |
3076 | eeprom->delay_usec = 50; | 3277 | eeprom->delay_usec = 50; |
3278 | eeprom->use_eerd = FALSE; | ||
3279 | eeprom->use_eewr = FALSE; | ||
3077 | break; | 3280 | break; |
3078 | case e1000_82540: | 3281 | case e1000_82540: |
3079 | case e1000_82545: | 3282 | case e1000_82545: |
@@ -3090,6 +3293,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
3090 | eeprom->word_size = 64; | 3293 | eeprom->word_size = 64; |
3091 | eeprom->address_bits = 6; | 3294 | eeprom->address_bits = 6; |
3092 | } | 3295 | } |
3296 | eeprom->use_eerd = FALSE; | ||
3297 | eeprom->use_eewr = FALSE; | ||
3093 | break; | 3298 | break; |
3094 | case e1000_82541: | 3299 | case e1000_82541: |
3095 | case e1000_82541_rev_2: | 3300 | case e1000_82541_rev_2: |
@@ -3118,42 +3323,60 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
3118 | eeprom->address_bits = 6; | 3323 | eeprom->address_bits = 6; |
3119 | } | 3324 | } |
3120 | } | 3325 | } |
3326 | eeprom->use_eerd = FALSE; | ||
3327 | eeprom->use_eewr = FALSE; | ||
3328 | break; | ||
3329 | case e1000_82573: | ||
3330 | eeprom->type = e1000_eeprom_spi; | ||
3331 | eeprom->opcode_bits = 8; | ||
3332 | eeprom->delay_usec = 1; | ||
3333 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
3334 | eeprom->page_size = 32; | ||
3335 | eeprom->address_bits = 16; | ||
3336 | } else { | ||
3337 | eeprom->page_size = 8; | ||
3338 | eeprom->address_bits = 8; | ||
3339 | } | ||
3340 | eeprom->use_eerd = TRUE; | ||
3341 | eeprom->use_eewr = TRUE; | ||
3342 | if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) { | ||
3343 | eeprom->type = e1000_eeprom_flash; | ||
3344 | eeprom->word_size = 2048; | ||
3345 | |||
3346 | /* Ensure that the Autonomous FLASH update bit is cleared due to | ||
3347 | * Flash update issue on parts which use a FLASH for NVM. */ | ||
3348 | eecd &= ~E1000_EECD_AUPDEN; | ||
3349 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3350 | } | ||
3121 | break; | 3351 | break; |
3122 | default: | 3352 | default: |
3123 | break; | 3353 | break; |
3124 | } | 3354 | } |
3125 | 3355 | ||
3126 | if (eeprom->type == e1000_eeprom_spi) { | 3356 | if (eeprom->type == e1000_eeprom_spi) { |
3127 | eeprom->word_size = 64; | 3357 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
3128 | if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) { | 3358 | * 32KB (incremented by powers of 2). |
3129 | eeprom_size &= EEPROM_SIZE_MASK; | 3359 | */ |
3130 | 3360 | if(hw->mac_type <= e1000_82547_rev_2) { | |
3131 | switch (eeprom_size) { | 3361 | /* Set to default value for initial eeprom read. */ |
3132 | case EEPROM_SIZE_16KB: | 3362 | eeprom->word_size = 64; |
3133 | eeprom->word_size = 8192; | 3363 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
3134 | break; | 3364 | if(ret_val) |
3135 | case EEPROM_SIZE_8KB: | 3365 | return ret_val; |
3136 | eeprom->word_size = 4096; | 3366 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
3137 | break; | 3367 | /* 256B eeprom size was not supported in earlier hardware, so we |
3138 | case EEPROM_SIZE_4KB: | 3368 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
3139 | eeprom->word_size = 2048; | 3369 | * is never the result used in the shifting logic below. */ |
3140 | break; | 3370 | if(eeprom_size) |
3141 | case EEPROM_SIZE_2KB: | 3371 | eeprom_size++; |
3142 | eeprom->word_size = 1024; | 3372 | } else { |
3143 | break; | 3373 | eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
3144 | case EEPROM_SIZE_1KB: | 3374 | E1000_EECD_SIZE_EX_SHIFT); |
3145 | eeprom->word_size = 512; | ||
3146 | break; | ||
3147 | case EEPROM_SIZE_512B: | ||
3148 | eeprom->word_size = 256; | ||
3149 | break; | ||
3150 | case EEPROM_SIZE_128B: | ||
3151 | default: | ||
3152 | eeprom->word_size = 64; | ||
3153 | break; | ||
3154 | } | ||
3155 | } | 3375 | } |
3376 | |||
3377 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | ||
3156 | } | 3378 | } |
3379 | return ret_val; | ||
3157 | } | 3380 | } |
3158 | 3381 | ||
3159 | /****************************************************************************** | 3382 | /****************************************************************************** |
@@ -3306,8 +3529,12 @@ e1000_acquire_eeprom(struct e1000_hw *hw) | |||
3306 | 3529 | ||
3307 | DEBUGFUNC("e1000_acquire_eeprom"); | 3530 | DEBUGFUNC("e1000_acquire_eeprom"); |
3308 | 3531 | ||
3532 | if(e1000_get_hw_eeprom_semaphore(hw)) | ||
3533 | return -E1000_ERR_EEPROM; | ||
3534 | |||
3309 | eecd = E1000_READ_REG(hw, EECD); | 3535 | eecd = E1000_READ_REG(hw, EECD); |
3310 | 3536 | ||
3537 | if (hw->mac_type != e1000_82573) { | ||
3311 | /* Request EEPROM Access */ | 3538 | /* Request EEPROM Access */ |
3312 | if(hw->mac_type > e1000_82544) { | 3539 | if(hw->mac_type > e1000_82544) { |
3313 | eecd |= E1000_EECD_REQ; | 3540 | eecd |= E1000_EECD_REQ; |
@@ -3326,6 +3553,7 @@ e1000_acquire_eeprom(struct e1000_hw *hw) | |||
3326 | return -E1000_ERR_EEPROM; | 3553 | return -E1000_ERR_EEPROM; |
3327 | } | 3554 | } |
3328 | } | 3555 | } |
3556 | } | ||
3329 | 3557 | ||
3330 | /* Setup EEPROM for Read/Write */ | 3558 | /* Setup EEPROM for Read/Write */ |
3331 | 3559 | ||
@@ -3443,6 +3671,8 @@ e1000_release_eeprom(struct e1000_hw *hw) | |||
3443 | eecd &= ~E1000_EECD_REQ; | 3671 | eecd &= ~E1000_EECD_REQ; |
3444 | E1000_WRITE_REG(hw, EECD, eecd); | 3672 | E1000_WRITE_REG(hw, EECD, eecd); |
3445 | } | 3673 | } |
3674 | |||
3675 | e1000_put_hw_eeprom_semaphore(hw); | ||
3446 | } | 3676 | } |
3447 | 3677 | ||
3448 | /****************************************************************************** | 3678 | /****************************************************************************** |
@@ -3504,8 +3734,10 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
3504 | { | 3734 | { |
3505 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3735 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3506 | uint32_t i = 0; | 3736 | uint32_t i = 0; |
3737 | int32_t ret_val; | ||
3507 | 3738 | ||
3508 | DEBUGFUNC("e1000_read_eeprom"); | 3739 | DEBUGFUNC("e1000_read_eeprom"); |
3740 | |||
3509 | /* A check for invalid values: offset too large, too many words, and not | 3741 | /* A check for invalid values: offset too large, too many words, and not |
3510 | * enough words. | 3742 | * enough words. |
3511 | */ | 3743 | */ |
@@ -3515,9 +3747,23 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
3515 | return -E1000_ERR_EEPROM; | 3747 | return -E1000_ERR_EEPROM; |
3516 | } | 3748 | } |
3517 | 3749 | ||
3518 | /* Prepare the EEPROM for reading */ | 3750 | /* FLASH reads without acquiring the semaphore are safe in 82573-based |
3519 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 3751 | * controllers. |
3520 | return -E1000_ERR_EEPROM; | 3752 | */ |
3753 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | ||
3754 | (hw->mac_type != e1000_82573)) { | ||
3755 | /* Prepare the EEPROM for reading */ | ||
3756 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
3757 | return -E1000_ERR_EEPROM; | ||
3758 | } | ||
3759 | |||
3760 | if(eeprom->use_eerd == TRUE) { | ||
3761 | ret_val = e1000_read_eeprom_eerd(hw, offset, words, data); | ||
3762 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | ||
3763 | (hw->mac_type != e1000_82573)) | ||
3764 | e1000_release_eeprom(hw); | ||
3765 | return ret_val; | ||
3766 | } | ||
3521 | 3767 | ||
3522 | if(eeprom->type == e1000_eeprom_spi) { | 3768 | if(eeprom->type == e1000_eeprom_spi) { |
3523 | uint16_t word_in; | 3769 | uint16_t word_in; |
@@ -3569,6 +3815,132 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
3569 | } | 3815 | } |
3570 | 3816 | ||
3571 | /****************************************************************************** | 3817 | /****************************************************************************** |
3818 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
3819 | * | ||
3820 | * hw - Struct containing variables accessed by shared code | ||
3821 | * offset - offset of word in the EEPROM to read | ||
3822 | * data - word read from the EEPROM | ||
3823 | * words - number of words to read | ||
3824 | *****************************************************************************/ | ||
3825 | int32_t | ||
3826 | e1000_read_eeprom_eerd(struct e1000_hw *hw, | ||
3827 | uint16_t offset, | ||
3828 | uint16_t words, | ||
3829 | uint16_t *data) | ||
3830 | { | ||
3831 | uint32_t i, eerd = 0; | ||
3832 | int32_t error = 0; | ||
3833 | |||
3834 | for (i = 0; i < words; i++) { | ||
3835 | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + | ||
3836 | E1000_EEPROM_RW_REG_START; | ||
3837 | |||
3838 | E1000_WRITE_REG(hw, EERD, eerd); | ||
3839 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); | ||
3840 | |||
3841 | if(error) { | ||
3842 | break; | ||
3843 | } | ||
3844 | data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); | ||
3845 | |||
3846 | } | ||
3847 | |||
3848 | return error; | ||
3849 | } | ||
3850 | |||
3851 | /****************************************************************************** | ||
3852 | * Writes a 16 bit word from the EEPROM using the EEWR register. | ||
3853 | * | ||
3854 | * hw - Struct containing variables accessed by shared code | ||
3855 | * offset - offset of word in the EEPROM to read | ||
3856 | * data - word read from the EEPROM | ||
3857 | * words - number of words to read | ||
3858 | *****************************************************************************/ | ||
3859 | int32_t | ||
3860 | e1000_write_eeprom_eewr(struct e1000_hw *hw, | ||
3861 | uint16_t offset, | ||
3862 | uint16_t words, | ||
3863 | uint16_t *data) | ||
3864 | { | ||
3865 | uint32_t register_value = 0; | ||
3866 | uint32_t i = 0; | ||
3867 | int32_t error = 0; | ||
3868 | |||
3869 | for (i = 0; i < words; i++) { | ||
3870 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | | ||
3871 | ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | | ||
3872 | E1000_EEPROM_RW_REG_START; | ||
3873 | |||
3874 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | ||
3875 | if(error) { | ||
3876 | break; | ||
3877 | } | ||
3878 | |||
3879 | E1000_WRITE_REG(hw, EEWR, register_value); | ||
3880 | |||
3881 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | ||
3882 | |||
3883 | if(error) { | ||
3884 | break; | ||
3885 | } | ||
3886 | } | ||
3887 | |||
3888 | return error; | ||
3889 | } | ||
3890 | |||
3891 | /****************************************************************************** | ||
3892 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | ||
3893 | * | ||
3894 | * hw - Struct containing variables accessed by shared code | ||
3895 | *****************************************************************************/ | ||
3896 | int32_t | ||
3897 | e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | ||
3898 | { | ||
3899 | uint32_t attempts = 100000; | ||
3900 | uint32_t i, reg = 0; | ||
3901 | int32_t done = E1000_ERR_EEPROM; | ||
3902 | |||
3903 | for(i = 0; i < attempts; i++) { | ||
3904 | if(eerd == E1000_EEPROM_POLL_READ) | ||
3905 | reg = E1000_READ_REG(hw, EERD); | ||
3906 | else | ||
3907 | reg = E1000_READ_REG(hw, EEWR); | ||
3908 | |||
3909 | if(reg & E1000_EEPROM_RW_REG_DONE) { | ||
3910 | done = E1000_SUCCESS; | ||
3911 | break; | ||
3912 | } | ||
3913 | udelay(5); | ||
3914 | } | ||
3915 | |||
3916 | return done; | ||
3917 | } | ||
3918 | |||
3919 | /*************************************************************************** | ||
3920 | * Description: Determines if the onboard NVM is FLASH or EEPROM. | ||
3921 | * | ||
3922 | * hw - Struct containing variables accessed by shared code | ||
3923 | ****************************************************************************/ | ||
3924 | boolean_t | ||
3925 | e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | ||
3926 | { | ||
3927 | uint32_t eecd = 0; | ||
3928 | |||
3929 | if(hw->mac_type == e1000_82573) { | ||
3930 | eecd = E1000_READ_REG(hw, EECD); | ||
3931 | |||
3932 | /* Isolate bits 15 & 16 */ | ||
3933 | eecd = ((eecd >> 15) & 0x03); | ||
3934 | |||
3935 | /* If both bits are set, device is Flash type */ | ||
3936 | if(eecd == 0x03) { | ||
3937 | return FALSE; | ||
3938 | } | ||
3939 | } | ||
3940 | return TRUE; | ||
3941 | } | ||
3942 | |||
3943 | /****************************************************************************** | ||
3572 | * Verifies that the EEPROM has a valid checksum | 3944 | * Verifies that the EEPROM has a valid checksum |
3573 | * | 3945 | * |
3574 | * hw - Struct containing variables accessed by shared code | 3946 | * hw - Struct containing variables accessed by shared code |
@@ -3585,6 +3957,25 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
3585 | 3957 | ||
3586 | DEBUGFUNC("e1000_validate_eeprom_checksum"); | 3958 | DEBUGFUNC("e1000_validate_eeprom_checksum"); |
3587 | 3959 | ||
3960 | if ((hw->mac_type == e1000_82573) && | ||
3961 | (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) { | ||
3962 | /* Check bit 4 of word 10h. If it is 0, firmware is done updating | ||
3963 | * 10h-12h. Checksum may need to be fixed. */ | ||
3964 | e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); | ||
3965 | if ((eeprom_data & 0x10) == 0) { | ||
3966 | /* Read 0x23 and check bit 15. This bit is a 1 when the checksum | ||
3967 | * has already been fixed. If the checksum is still wrong and this | ||
3968 | * bit is a 1, we need to return bad checksum. Otherwise, we need | ||
3969 | * to set this bit to a 1 and update the checksum. */ | ||
3970 | e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); | ||
3971 | if ((eeprom_data & 0x8000) == 0) { | ||
3972 | eeprom_data |= 0x8000; | ||
3973 | e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); | ||
3974 | e1000_update_eeprom_checksum(hw); | ||
3975 | } | ||
3976 | } | ||
3977 | } | ||
3978 | |||
3588 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 3979 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
3589 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 3980 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
3590 | DEBUGOUT("EEPROM Read Error\n"); | 3981 | DEBUGOUT("EEPROM Read Error\n"); |
@@ -3628,6 +4019,8 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw) | |||
3628 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 4019 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
3629 | DEBUGOUT("EEPROM Write Error\n"); | 4020 | DEBUGOUT("EEPROM Write Error\n"); |
3630 | return -E1000_ERR_EEPROM; | 4021 | return -E1000_ERR_EEPROM; |
4022 | } else if (hw->eeprom.type == e1000_eeprom_flash) { | ||
4023 | e1000_commit_shadow_ram(hw); | ||
3631 | } | 4024 | } |
3632 | return E1000_SUCCESS; | 4025 | return E1000_SUCCESS; |
3633 | } | 4026 | } |
@@ -3663,6 +4056,10 @@ e1000_write_eeprom(struct e1000_hw *hw, | |||
3663 | return -E1000_ERR_EEPROM; | 4056 | return -E1000_ERR_EEPROM; |
3664 | } | 4057 | } |
3665 | 4058 | ||
4059 | /* 82573 reads only through eerd */ | ||
4060 | if(eeprom->use_eewr == TRUE) | ||
4061 | return e1000_write_eeprom_eewr(hw, offset, words, data); | ||
4062 | |||
3666 | /* Prepare the EEPROM for writing */ | 4063 | /* Prepare the EEPROM for writing */ |
3667 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 4064 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
3668 | return -E1000_ERR_EEPROM; | 4065 | return -E1000_ERR_EEPROM; |
@@ -3833,6 +4230,65 @@ e1000_write_eeprom_microwire(struct e1000_hw *hw, | |||
3833 | } | 4230 | } |
3834 | 4231 | ||
3835 | /****************************************************************************** | 4232 | /****************************************************************************** |
4233 | * Flushes the cached eeprom to NVM. This is done by saving the modified values | ||
4234 | * in the eeprom cache and the non modified values in the currently active bank | ||
4235 | * to the new bank. | ||
4236 | * | ||
4237 | * hw - Struct containing variables accessed by shared code | ||
4238 | * offset - offset of word in the EEPROM to read | ||
4239 | * data - word read from the EEPROM | ||
4240 | * words - number of words to read | ||
4241 | *****************************************************************************/ | ||
4242 | int32_t | ||
4243 | e1000_commit_shadow_ram(struct e1000_hw *hw) | ||
4244 | { | ||
4245 | uint32_t attempts = 100000; | ||
4246 | uint32_t eecd = 0; | ||
4247 | uint32_t flop = 0; | ||
4248 | uint32_t i = 0; | ||
4249 | int32_t error = E1000_SUCCESS; | ||
4250 | |||
4251 | /* The flop register will be used to determine if flash type is STM */ | ||
4252 | flop = E1000_READ_REG(hw, FLOP); | ||
4253 | |||
4254 | if (hw->mac_type == e1000_82573) { | ||
4255 | for (i=0; i < attempts; i++) { | ||
4256 | eecd = E1000_READ_REG(hw, EECD); | ||
4257 | if ((eecd & E1000_EECD_FLUPD) == 0) { | ||
4258 | break; | ||
4259 | } | ||
4260 | udelay(5); | ||
4261 | } | ||
4262 | |||
4263 | if (i == attempts) { | ||
4264 | return -E1000_ERR_EEPROM; | ||
4265 | } | ||
4266 | |||
4267 | /* If STM opcode located in bits 15:8 of flop, reset firmware */ | ||
4268 | if ((flop & 0xFF00) == E1000_STM_OPCODE) { | ||
4269 | E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); | ||
4270 | } | ||
4271 | |||
4272 | /* Perform the flash update */ | ||
4273 | E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); | ||
4274 | |||
4275 | for (i=0; i < attempts; i++) { | ||
4276 | eecd = E1000_READ_REG(hw, EECD); | ||
4277 | if ((eecd & E1000_EECD_FLUPD) == 0) { | ||
4278 | break; | ||
4279 | } | ||
4280 | udelay(5); | ||
4281 | } | ||
4282 | |||
4283 | if (i == attempts) { | ||
4284 | return -E1000_ERR_EEPROM; | ||
4285 | } | ||
4286 | } | ||
4287 | |||
4288 | return error; | ||
4289 | } | ||
4290 | |||
4291 | /****************************************************************************** | ||
3836 | * Reads the adapter's part number from the EEPROM | 4292 | * Reads the adapter's part number from the EEPROM |
3837 | * | 4293 | * |
3838 | * hw - Struct containing variables accessed by shared code | 4294 | * hw - Struct containing variables accessed by shared code |
@@ -3911,6 +4367,7 @@ void | |||
3911 | e1000_init_rx_addrs(struct e1000_hw *hw) | 4367 | e1000_init_rx_addrs(struct e1000_hw *hw) |
3912 | { | 4368 | { |
3913 | uint32_t i; | 4369 | uint32_t i; |
4370 | uint32_t rar_num; | ||
3914 | 4371 | ||
3915 | DEBUGFUNC("e1000_init_rx_addrs"); | 4372 | DEBUGFUNC("e1000_init_rx_addrs"); |
3916 | 4373 | ||
@@ -3919,9 +4376,10 @@ e1000_init_rx_addrs(struct e1000_hw *hw) | |||
3919 | 4376 | ||
3920 | e1000_rar_set(hw, hw->mac_addr, 0); | 4377 | e1000_rar_set(hw, hw->mac_addr, 0); |
3921 | 4378 | ||
4379 | rar_num = E1000_RAR_ENTRIES; | ||
3922 | /* Zero out the other 15 receive addresses. */ | 4380 | /* Zero out the other 15 receive addresses. */ |
3923 | DEBUGOUT("Clearing RAR[1-15]\n"); | 4381 | DEBUGOUT("Clearing RAR[1-15]\n"); |
3924 | for(i = 1; i < E1000_RAR_ENTRIES; i++) { | 4382 | for(i = 1; i < rar_num; i++) { |
3925 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 4383 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
3926 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 4384 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
3927 | } | 4385 | } |
@@ -3950,7 +4408,9 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
3950 | { | 4408 | { |
3951 | uint32_t hash_value; | 4409 | uint32_t hash_value; |
3952 | uint32_t i; | 4410 | uint32_t i; |
3953 | 4411 | uint32_t num_rar_entry; | |
4412 | uint32_t num_mta_entry; | ||
4413 | |||
3954 | DEBUGFUNC("e1000_mc_addr_list_update"); | 4414 | DEBUGFUNC("e1000_mc_addr_list_update"); |
3955 | 4415 | ||
3956 | /* Set the new number of MC addresses that we are being requested to use. */ | 4416 | /* Set the new number of MC addresses that we are being requested to use. */ |
@@ -3958,14 +4418,16 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
3958 | 4418 | ||
3959 | /* Clear RAR[1-15] */ | 4419 | /* Clear RAR[1-15] */ |
3960 | DEBUGOUT(" Clearing RAR[1-15]\n"); | 4420 | DEBUGOUT(" Clearing RAR[1-15]\n"); |
3961 | for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) { | 4421 | num_rar_entry = E1000_RAR_ENTRIES; |
4422 | for(i = rar_used_count; i < num_rar_entry; i++) { | ||
3962 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 4423 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
3963 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 4424 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
3964 | } | 4425 | } |
3965 | 4426 | ||
3966 | /* Clear the MTA */ | 4427 | /* Clear the MTA */ |
3967 | DEBUGOUT(" Clearing MTA\n"); | 4428 | DEBUGOUT(" Clearing MTA\n"); |
3968 | for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) { | 4429 | num_mta_entry = E1000_NUM_MTA_REGISTERS; |
4430 | for(i = 0; i < num_mta_entry; i++) { | ||
3969 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 4431 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
3970 | } | 4432 | } |
3971 | 4433 | ||
@@ -3989,7 +4451,7 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
3989 | /* Place this multicast address in the RAR if there is room, * | 4451 | /* Place this multicast address in the RAR if there is room, * |
3990 | * else put it in the MTA | 4452 | * else put it in the MTA |
3991 | */ | 4453 | */ |
3992 | if(rar_used_count < E1000_RAR_ENTRIES) { | 4454 | if (rar_used_count < num_rar_entry) { |
3993 | e1000_rar_set(hw, | 4455 | e1000_rar_set(hw, |
3994 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), | 4456 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), |
3995 | rar_used_count); | 4457 | rar_used_count); |
@@ -4040,6 +4502,7 @@ e1000_hash_mc_addr(struct e1000_hw *hw, | |||
4040 | } | 4502 | } |
4041 | 4503 | ||
4042 | hash_value &= 0xFFF; | 4504 | hash_value &= 0xFFF; |
4505 | |||
4043 | return hash_value; | 4506 | return hash_value; |
4044 | } | 4507 | } |
4045 | 4508 | ||
@@ -4144,12 +4607,33 @@ void | |||
4144 | e1000_clear_vfta(struct e1000_hw *hw) | 4607 | e1000_clear_vfta(struct e1000_hw *hw) |
4145 | { | 4608 | { |
4146 | uint32_t offset; | 4609 | uint32_t offset; |
4147 | 4610 | uint32_t vfta_value = 0; | |
4148 | for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) | 4611 | uint32_t vfta_offset = 0; |
4149 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); | 4612 | uint32_t vfta_bit_in_reg = 0; |
4613 | |||
4614 | if (hw->mac_type == e1000_82573) { | ||
4615 | if (hw->mng_cookie.vlan_id != 0) { | ||
4616 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | ||
4617 | * ID. The following operations determine which 32b entry | ||
4618 | * (i.e. offset) into the array we want to set the VLAN ID | ||
4619 | * (i.e. bit) of the manageability unit. */ | ||
4620 | vfta_offset = (hw->mng_cookie.vlan_id >> | ||
4621 | E1000_VFTA_ENTRY_SHIFT) & | ||
4622 | E1000_VFTA_ENTRY_MASK; | ||
4623 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | ||
4624 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
4625 | } | ||
4626 | } | ||
4627 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
4628 | /* If the offset we want to clear is the same offset of the | ||
4629 | * manageability VLAN ID, then clear all bits except that of the | ||
4630 | * manageability unit */ | ||
4631 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | ||
4632 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | ||
4633 | } | ||
4150 | } | 4634 | } |
4151 | 4635 | ||
4152 | static int32_t | 4636 | int32_t |
4153 | e1000_id_led_init(struct e1000_hw * hw) | 4637 | e1000_id_led_init(struct e1000_hw * hw) |
4154 | { | 4638 | { |
4155 | uint32_t ledctl; | 4639 | uint32_t ledctl; |
@@ -4480,6 +4964,19 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
4480 | temp = E1000_READ_REG(hw, MGTPRC); | 4964 | temp = E1000_READ_REG(hw, MGTPRC); |
4481 | temp = E1000_READ_REG(hw, MGTPDC); | 4965 | temp = E1000_READ_REG(hw, MGTPDC); |
4482 | temp = E1000_READ_REG(hw, MGTPTC); | 4966 | temp = E1000_READ_REG(hw, MGTPTC); |
4967 | |||
4968 | if(hw->mac_type <= e1000_82547_rev_2) return; | ||
4969 | |||
4970 | temp = E1000_READ_REG(hw, IAC); | ||
4971 | temp = E1000_READ_REG(hw, ICRXOC); | ||
4972 | temp = E1000_READ_REG(hw, ICRXPTC); | ||
4973 | temp = E1000_READ_REG(hw, ICRXATC); | ||
4974 | temp = E1000_READ_REG(hw, ICTXPTC); | ||
4975 | temp = E1000_READ_REG(hw, ICTXATC); | ||
4976 | temp = E1000_READ_REG(hw, ICTXQEC); | ||
4977 | temp = E1000_READ_REG(hw, ICTXQMTC); | ||
4978 | temp = E1000_READ_REG(hw, ICRXDMTC); | ||
4979 | |||
4483 | } | 4980 | } |
4484 | 4981 | ||
4485 | /****************************************************************************** | 4982 | /****************************************************************************** |
@@ -4646,6 +5143,11 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
4646 | hw->bus_speed = e1000_bus_speed_unknown; | 5143 | hw->bus_speed = e1000_bus_speed_unknown; |
4647 | hw->bus_width = e1000_bus_width_unknown; | 5144 | hw->bus_width = e1000_bus_width_unknown; |
4648 | break; | 5145 | break; |
5146 | case e1000_82573: | ||
5147 | hw->bus_type = e1000_bus_type_pci_express; | ||
5148 | hw->bus_speed = e1000_bus_speed_2500; | ||
5149 | hw->bus_width = e1000_bus_width_pciex_4; | ||
5150 | break; | ||
4649 | default: | 5151 | default: |
4650 | status = E1000_READ_REG(hw, STATUS); | 5152 | status = E1000_READ_REG(hw, STATUS); |
4651 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 5153 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
@@ -4749,6 +5251,7 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
4749 | 5251 | ||
4750 | /* Use old method for Phy older than IGP */ | 5252 | /* Use old method for Phy older than IGP */ |
4751 | if(hw->phy_type == e1000_phy_m88) { | 5253 | if(hw->phy_type == e1000_phy_m88) { |
5254 | |||
4752 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 5255 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
4753 | &phy_data); | 5256 | &phy_data); |
4754 | if(ret_val) | 5257 | if(ret_val) |
@@ -4865,7 +5368,8 @@ e1000_check_polarity(struct e1000_hw *hw, | |||
4865 | return ret_val; | 5368 | return ret_val; |
4866 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | 5369 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> |
4867 | M88E1000_PSSR_REV_POLARITY_SHIFT; | 5370 | M88E1000_PSSR_REV_POLARITY_SHIFT; |
4868 | } else if(hw->phy_type == e1000_phy_igp) { | 5371 | } else if(hw->phy_type == e1000_phy_igp || |
5372 | hw->phy_type == e1000_phy_igp_2) { | ||
4869 | /* Read the Status register to check the speed */ | 5373 | /* Read the Status register to check the speed */ |
4870 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 5374 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
4871 | &phy_data); | 5375 | &phy_data); |
@@ -4917,7 +5421,8 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
4917 | 5421 | ||
4918 | DEBUGFUNC("e1000_check_downshift"); | 5422 | DEBUGFUNC("e1000_check_downshift"); |
4919 | 5423 | ||
4920 | if(hw->phy_type == e1000_phy_igp) { | 5424 | if(hw->phy_type == e1000_phy_igp || |
5425 | hw->phy_type == e1000_phy_igp_2) { | ||
4921 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 5426 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
4922 | &phy_data); | 5427 | &phy_data); |
4923 | if(ret_val) | 5428 | if(ret_val) |
@@ -4933,6 +5438,7 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
4933 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 5438 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
4934 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 5439 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
4935 | } | 5440 | } |
5441 | |||
4936 | return E1000_SUCCESS; | 5442 | return E1000_SUCCESS; |
4937 | } | 5443 | } |
4938 | 5444 | ||
@@ -5047,7 +5553,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5047 | if(ret_val) | 5553 | if(ret_val) |
5048 | return ret_val; | 5554 | return ret_val; |
5049 | 5555 | ||
5050 | msec_delay(20); | 5556 | msec_delay_irq(20); |
5051 | 5557 | ||
5052 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5558 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
5053 | IGP01E1000_IEEE_FORCE_GIGA); | 5559 | IGP01E1000_IEEE_FORCE_GIGA); |
@@ -5071,7 +5577,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5071 | if(ret_val) | 5577 | if(ret_val) |
5072 | return ret_val; | 5578 | return ret_val; |
5073 | 5579 | ||
5074 | msec_delay(20); | 5580 | msec_delay_irq(20); |
5075 | 5581 | ||
5076 | /* Now enable the transmitter */ | 5582 | /* Now enable the transmitter */ |
5077 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 5583 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
@@ -5096,7 +5602,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5096 | if(ret_val) | 5602 | if(ret_val) |
5097 | return ret_val; | 5603 | return ret_val; |
5098 | 5604 | ||
5099 | msec_delay(20); | 5605 | msec_delay_irq(20); |
5100 | 5606 | ||
5101 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5607 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
5102 | IGP01E1000_IEEE_FORCE_GIGA); | 5608 | IGP01E1000_IEEE_FORCE_GIGA); |
@@ -5112,7 +5618,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5112 | if(ret_val) | 5618 | if(ret_val) |
5113 | return ret_val; | 5619 | return ret_val; |
5114 | 5620 | ||
5115 | msec_delay(20); | 5621 | msec_delay_irq(20); |
5116 | 5622 | ||
5117 | /* Now enable the transmitter */ | 5623 | /* Now enable the transmitter */ |
5118 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 5624 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
@@ -5187,22 +5693,36 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
5187 | uint16_t phy_data; | 5693 | uint16_t phy_data; |
5188 | DEBUGFUNC("e1000_set_d3_lplu_state"); | 5694 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
5189 | 5695 | ||
5190 | if(!((hw->mac_type == e1000_82541_rev_2) || | 5696 | if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) |
5191 | (hw->mac_type == e1000_82547_rev_2))) | ||
5192 | return E1000_SUCCESS; | 5697 | return E1000_SUCCESS; |
5193 | 5698 | ||
5194 | /* During driver activity LPLU should not be used or it will attain link | 5699 | /* During driver activity LPLU should not be used or it will attain link |
5195 | * from the lowest speeds starting from 10Mbps. The capability is used for | 5700 | * from the lowest speeds starting from 10Mbps. The capability is used for |
5196 | * Dx transitions and states */ | 5701 | * Dx transitions and states */ |
5197 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 5702 | if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { |
5198 | if(ret_val) | 5703 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
5199 | return ret_val; | ||
5200 | |||
5201 | if(!active) { | ||
5202 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5203 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5204 | if(ret_val) | 5704 | if(ret_val) |
5205 | return ret_val; | 5705 | return ret_val; |
5706 | } else { | ||
5707 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
5708 | if(ret_val) | ||
5709 | return ret_val; | ||
5710 | } | ||
5711 | |||
5712 | if(!active) { | ||
5713 | if(hw->mac_type == e1000_82541_rev_2 || | ||
5714 | hw->mac_type == e1000_82547_rev_2) { | ||
5715 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5716 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5717 | if(ret_val) | ||
5718 | return ret_val; | ||
5719 | } else { | ||
5720 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | ||
5721 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
5722 | phy_data); | ||
5723 | if (ret_val) | ||
5724 | return ret_val; | ||
5725 | } | ||
5206 | 5726 | ||
5207 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 5727 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
5208 | * Dx states where the power conservation is most important. During | 5728 | * Dx states where the power conservation is most important. During |
@@ -5236,11 +5756,105 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
5236 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | 5756 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || |
5237 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 5757 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
5238 | 5758 | ||
5239 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 5759 | if(hw->mac_type == e1000_82541_rev_2 || |
5240 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 5760 | hw->mac_type == e1000_82547_rev_2) { |
5761 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | ||
5762 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5763 | if(ret_val) | ||
5764 | return ret_val; | ||
5765 | } else { | ||
5766 | phy_data |= IGP02E1000_PM_D3_LPLU; | ||
5767 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
5768 | phy_data); | ||
5769 | if (ret_val) | ||
5770 | return ret_val; | ||
5771 | } | ||
5772 | |||
5773 | /* When LPLU is enabled we should disable SmartSpeed */ | ||
5774 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | ||
5775 | if(ret_val) | ||
5776 | return ret_val; | ||
5777 | |||
5778 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5779 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | ||
5241 | if(ret_val) | 5780 | if(ret_val) |
5242 | return ret_val; | 5781 | return ret_val; |
5243 | 5782 | ||
5783 | } | ||
5784 | return E1000_SUCCESS; | ||
5785 | } | ||
5786 | |||
5787 | /***************************************************************************** | ||
5788 | * | ||
5789 | * This function sets the lplu d0 state according to the active flag. When | ||
5790 | * activating lplu this function also disables smart speed and vise versa. | ||
5791 | * lplu will not be activated unless the device autonegotiation advertisment | ||
5792 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
5793 | * hw: Struct containing variables accessed by shared code | ||
5794 | * active - true to enable lplu false to disable lplu. | ||
5795 | * | ||
5796 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
5797 | * E1000_SUCCESS at any other case. | ||
5798 | * | ||
5799 | ****************************************************************************/ | ||
5800 | |||
5801 | int32_t | ||
5802 | e1000_set_d0_lplu_state(struct e1000_hw *hw, | ||
5803 | boolean_t active) | ||
5804 | { | ||
5805 | int32_t ret_val; | ||
5806 | uint16_t phy_data; | ||
5807 | DEBUGFUNC("e1000_set_d0_lplu_state"); | ||
5808 | |||
5809 | if(hw->mac_type <= e1000_82547_rev_2) | ||
5810 | return E1000_SUCCESS; | ||
5811 | |||
5812 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
5813 | if(ret_val) | ||
5814 | return ret_val; | ||
5815 | |||
5816 | if (!active) { | ||
5817 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | ||
5818 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
5819 | if (ret_val) | ||
5820 | return ret_val; | ||
5821 | |||
5822 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | ||
5823 | * Dx states where the power conservation is most important. During | ||
5824 | * driver activity we should enable SmartSpeed, so performance is | ||
5825 | * maintained. */ | ||
5826 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
5827 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5828 | &phy_data); | ||
5829 | if(ret_val) | ||
5830 | return ret_val; | ||
5831 | |||
5832 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
5833 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5834 | phy_data); | ||
5835 | if(ret_val) | ||
5836 | return ret_val; | ||
5837 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
5838 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5839 | &phy_data); | ||
5840 | if (ret_val) | ||
5841 | return ret_val; | ||
5842 | |||
5843 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5844 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5845 | phy_data); | ||
5846 | if(ret_val) | ||
5847 | return ret_val; | ||
5848 | } | ||
5849 | |||
5850 | |||
5851 | } else { | ||
5852 | |||
5853 | phy_data |= IGP02E1000_PM_D0_LPLU; | ||
5854 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
5855 | if (ret_val) | ||
5856 | return ret_val; | ||
5857 | |||
5244 | /* When LPLU is enabled we should disable SmartSpeed */ | 5858 | /* When LPLU is enabled we should disable SmartSpeed */ |
5245 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 5859 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
5246 | if(ret_val) | 5860 | if(ret_val) |
@@ -5318,6 +5932,338 @@ e1000_set_vco_speed(struct e1000_hw *hw) | |||
5318 | return E1000_SUCCESS; | 5932 | return E1000_SUCCESS; |
5319 | } | 5933 | } |
5320 | 5934 | ||
5935 | |||
5936 | /***************************************************************************** | ||
5937 | * This function reads the cookie from ARC ram. | ||
5938 | * | ||
5939 | * returns: - E1000_SUCCESS . | ||
5940 | ****************************************************************************/ | ||
5941 | int32_t | ||
5942 | e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer) | ||
5943 | { | ||
5944 | uint8_t i; | ||
5945 | uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; | ||
5946 | uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; | ||
5947 | |||
5948 | length = (length >> 2); | ||
5949 | offset = (offset >> 2); | ||
5950 | |||
5951 | for (i = 0; i < length; i++) { | ||
5952 | *((uint32_t *) buffer + i) = | ||
5953 | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); | ||
5954 | } | ||
5955 | return E1000_SUCCESS; | ||
5956 | } | ||
5957 | |||
5958 | |||
5959 | /***************************************************************************** | ||
5960 | * This function checks whether the HOST IF is enabled for command operaton | ||
5961 | * and also checks whether the previous command is completed. | ||
5962 | * It busy waits in case of previous command is not completed. | ||
5963 | * | ||
5964 | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or | ||
5965 | * timeout | ||
5966 | * - E1000_SUCCESS for success. | ||
5967 | ****************************************************************************/ | ||
5968 | int32_t | ||
5969 | e1000_mng_enable_host_if(struct e1000_hw * hw) | ||
5970 | { | ||
5971 | uint32_t hicr; | ||
5972 | uint8_t i; | ||
5973 | |||
5974 | /* Check that the host interface is enabled. */ | ||
5975 | hicr = E1000_READ_REG(hw, HICR); | ||
5976 | if ((hicr & E1000_HICR_EN) == 0) { | ||
5977 | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | ||
5978 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
5979 | } | ||
5980 | /* check the previous command is completed */ | ||
5981 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | ||
5982 | hicr = E1000_READ_REG(hw, HICR); | ||
5983 | if (!(hicr & E1000_HICR_C)) | ||
5984 | break; | ||
5985 | msec_delay_irq(1); | ||
5986 | } | ||
5987 | |||
5988 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | ||
5989 | DEBUGOUT("Previous command timeout failed .\n"); | ||
5990 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
5991 | } | ||
5992 | return E1000_SUCCESS; | ||
5993 | } | ||
5994 | |||
5995 | /***************************************************************************** | ||
5996 | * This function writes the buffer content at the offset given on the host if. | ||
5997 | * It also does alignment considerations to do the writes in most efficient way. | ||
5998 | * Also fills up the sum of the buffer in *buffer parameter. | ||
5999 | * | ||
6000 | * returns - E1000_SUCCESS for success. | ||
6001 | ****************************************************************************/ | ||
6002 | int32_t | ||
6003 | e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer, | ||
6004 | uint16_t length, uint16_t offset, uint8_t *sum) | ||
6005 | { | ||
6006 | uint8_t *tmp; | ||
6007 | uint8_t *bufptr = buffer; | ||
6008 | uint32_t data; | ||
6009 | uint16_t remaining, i, j, prev_bytes; | ||
6010 | |||
6011 | /* sum = only sum of the data and it is not checksum */ | ||
6012 | |||
6013 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { | ||
6014 | return -E1000_ERR_PARAM; | ||
6015 | } | ||
6016 | |||
6017 | tmp = (uint8_t *)&data; | ||
6018 | prev_bytes = offset & 0x3; | ||
6019 | offset &= 0xFFFC; | ||
6020 | offset >>= 2; | ||
6021 | |||
6022 | if (prev_bytes) { | ||
6023 | data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); | ||
6024 | for (j = prev_bytes; j < sizeof(uint32_t); j++) { | ||
6025 | *(tmp + j) = *bufptr++; | ||
6026 | *sum += *(tmp + j); | ||
6027 | } | ||
6028 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); | ||
6029 | length -= j - prev_bytes; | ||
6030 | offset++; | ||
6031 | } | ||
6032 | |||
6033 | remaining = length & 0x3; | ||
6034 | length -= remaining; | ||
6035 | |||
6036 | /* Calculate length in DWORDs */ | ||
6037 | length >>= 2; | ||
6038 | |||
6039 | /* The device driver writes the relevant command block into the | ||
6040 | * ram area. */ | ||
6041 | for (i = 0; i < length; i++) { | ||
6042 | for (j = 0; j < sizeof(uint32_t); j++) { | ||
6043 | *(tmp + j) = *bufptr++; | ||
6044 | *sum += *(tmp + j); | ||
6045 | } | ||
6046 | |||
6047 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
6048 | } | ||
6049 | if (remaining) { | ||
6050 | for (j = 0; j < sizeof(uint32_t); j++) { | ||
6051 | if (j < remaining) | ||
6052 | *(tmp + j) = *bufptr++; | ||
6053 | else | ||
6054 | *(tmp + j) = 0; | ||
6055 | |||
6056 | *sum += *(tmp + j); | ||
6057 | } | ||
6058 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
6059 | } | ||
6060 | |||
6061 | return E1000_SUCCESS; | ||
6062 | } | ||
6063 | |||
6064 | |||
6065 | /***************************************************************************** | ||
6066 | * This function writes the command header after does the checksum calculation. | ||
6067 | * | ||
6068 | * returns - E1000_SUCCESS for success. | ||
6069 | ****************************************************************************/ | ||
6070 | int32_t | ||
6071 | e1000_mng_write_cmd_header(struct e1000_hw * hw, | ||
6072 | struct e1000_host_mng_command_header * hdr) | ||
6073 | { | ||
6074 | uint16_t i; | ||
6075 | uint8_t sum; | ||
6076 | uint8_t *buffer; | ||
6077 | |||
6078 | /* Write the whole command header structure which includes sum of | ||
6079 | * the buffer */ | ||
6080 | |||
6081 | uint16_t length = sizeof(struct e1000_host_mng_command_header); | ||
6082 | |||
6083 | sum = hdr->checksum; | ||
6084 | hdr->checksum = 0; | ||
6085 | |||
6086 | buffer = (uint8_t *) hdr; | ||
6087 | i = length; | ||
6088 | while(i--) | ||
6089 | sum += buffer[i]; | ||
6090 | |||
6091 | hdr->checksum = 0 - sum; | ||
6092 | |||
6093 | length >>= 2; | ||
6094 | /* The device driver writes the relevant command block into the ram area. */ | ||
6095 | for (i = 0; i < length; i++) | ||
6096 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); | ||
6097 | |||
6098 | return E1000_SUCCESS; | ||
6099 | } | ||
6100 | |||
6101 | |||
6102 | /***************************************************************************** | ||
6103 | * This function indicates to ARC that a new command is pending which completes | ||
6104 | * one write operation by the driver. | ||
6105 | * | ||
6106 | * returns - E1000_SUCCESS for success. | ||
6107 | ****************************************************************************/ | ||
6108 | int32_t | ||
6109 | e1000_mng_write_commit( | ||
6110 | struct e1000_hw * hw) | ||
6111 | { | ||
6112 | uint32_t hicr; | ||
6113 | |||
6114 | hicr = E1000_READ_REG(hw, HICR); | ||
6115 | /* Setting this bit tells the ARC that a new command is pending. */ | ||
6116 | E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); | ||
6117 | |||
6118 | return E1000_SUCCESS; | ||
6119 | } | ||
6120 | |||
6121 | |||
6122 | /***************************************************************************** | ||
6123 | * This function checks the mode of the firmware. | ||
6124 | * | ||
6125 | * returns - TRUE when the mode is IAMT or FALSE. | ||
6126 | ****************************************************************************/ | ||
6127 | boolean_t | ||
6128 | e1000_check_mng_mode( | ||
6129 | struct e1000_hw *hw) | ||
6130 | { | ||
6131 | uint32_t fwsm; | ||
6132 | |||
6133 | fwsm = E1000_READ_REG(hw, FWSM); | ||
6134 | |||
6135 | if((fwsm & E1000_FWSM_MODE_MASK) == | ||
6136 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
6137 | return TRUE; | ||
6138 | |||
6139 | return FALSE; | ||
6140 | } | ||
6141 | |||
6142 | |||
6143 | /***************************************************************************** | ||
6144 | * This function writes the dhcp info . | ||
6145 | ****************************************************************************/ | ||
6146 | int32_t | ||
6147 | e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer, | ||
6148 | uint16_t length) | ||
6149 | { | ||
6150 | int32_t ret_val; | ||
6151 | struct e1000_host_mng_command_header hdr; | ||
6152 | |||
6153 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | ||
6154 | hdr.command_length = length; | ||
6155 | hdr.reserved1 = 0; | ||
6156 | hdr.reserved2 = 0; | ||
6157 | hdr.checksum = 0; | ||
6158 | |||
6159 | ret_val = e1000_mng_enable_host_if(hw); | ||
6160 | if (ret_val == E1000_SUCCESS) { | ||
6161 | ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), | ||
6162 | &(hdr.checksum)); | ||
6163 | if (ret_val == E1000_SUCCESS) { | ||
6164 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | ||
6165 | if (ret_val == E1000_SUCCESS) | ||
6166 | ret_val = e1000_mng_write_commit(hw); | ||
6167 | } | ||
6168 | } | ||
6169 | return ret_val; | ||
6170 | } | ||
6171 | |||
6172 | |||
6173 | /***************************************************************************** | ||
6174 | * This function calculates the checksum. | ||
6175 | * | ||
6176 | * returns - checksum of buffer contents. | ||
6177 | ****************************************************************************/ | ||
6178 | uint8_t | ||
6179 | e1000_calculate_mng_checksum(char *buffer, uint32_t length) | ||
6180 | { | ||
6181 | uint8_t sum = 0; | ||
6182 | uint32_t i; | ||
6183 | |||
6184 | if (!buffer) | ||
6185 | return 0; | ||
6186 | |||
6187 | for (i=0; i < length; i++) | ||
6188 | sum += buffer[i]; | ||
6189 | |||
6190 | return (uint8_t) (0 - sum); | ||
6191 | } | ||
6192 | |||
6193 | /***************************************************************************** | ||
6194 | * This function checks whether tx pkt filtering needs to be enabled or not. | ||
6195 | * | ||
6196 | * returns - TRUE for packet filtering or FALSE. | ||
6197 | ****************************************************************************/ | ||
6198 | boolean_t | ||
6199 | e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) | ||
6200 | { | ||
6201 | /* called in init as well as watchdog timer functions */ | ||
6202 | |||
6203 | int32_t ret_val, checksum; | ||
6204 | boolean_t tx_filter = FALSE; | ||
6205 | struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | ||
6206 | uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); | ||
6207 | |||
6208 | if (e1000_check_mng_mode(hw)) { | ||
6209 | ret_val = e1000_mng_enable_host_if(hw); | ||
6210 | if (ret_val == E1000_SUCCESS) { | ||
6211 | ret_val = e1000_host_if_read_cookie(hw, buffer); | ||
6212 | if (ret_val == E1000_SUCCESS) { | ||
6213 | checksum = hdr->checksum; | ||
6214 | hdr->checksum = 0; | ||
6215 | if ((hdr->signature == E1000_IAMT_SIGNATURE) && | ||
6216 | checksum == e1000_calculate_mng_checksum((char *)buffer, | ||
6217 | E1000_MNG_DHCP_COOKIE_LENGTH)) { | ||
6218 | if (hdr->status & | ||
6219 | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) | ||
6220 | tx_filter = TRUE; | ||
6221 | } else | ||
6222 | tx_filter = TRUE; | ||
6223 | } else | ||
6224 | tx_filter = TRUE; | ||
6225 | } | ||
6226 | } | ||
6227 | |||
6228 | hw->tx_pkt_filtering = tx_filter; | ||
6229 | return tx_filter; | ||
6230 | } | ||
6231 | |||
6232 | /****************************************************************************** | ||
6233 | * Verifies the hardware needs to allow ARPs to be processed by the host | ||
6234 | * | ||
6235 | * hw - Struct containing variables accessed by shared code | ||
6236 | * | ||
6237 | * returns: - TRUE/FALSE | ||
6238 | * | ||
6239 | *****************************************************************************/ | ||
6240 | uint32_t | ||
6241 | e1000_enable_mng_pass_thru(struct e1000_hw *hw) | ||
6242 | { | ||
6243 | uint32_t manc; | ||
6244 | uint32_t fwsm, factps; | ||
6245 | |||
6246 | if (hw->asf_firmware_present) { | ||
6247 | manc = E1000_READ_REG(hw, MANC); | ||
6248 | |||
6249 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | ||
6250 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | ||
6251 | return FALSE; | ||
6252 | if (e1000_arc_subsystem_valid(hw) == TRUE) { | ||
6253 | fwsm = E1000_READ_REG(hw, FWSM); | ||
6254 | factps = E1000_READ_REG(hw, FACTPS); | ||
6255 | |||
6256 | if (((fwsm & E1000_FWSM_MODE_MASK) == | ||
6257 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) && | ||
6258 | (factps & E1000_FACTPS_MNGCG)) | ||
6259 | return TRUE; | ||
6260 | } else | ||
6261 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | ||
6262 | return TRUE; | ||
6263 | } | ||
6264 | return FALSE; | ||
6265 | } | ||
6266 | |||
5321 | static int32_t | 6267 | static int32_t |
5322 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 6268 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
5323 | { | 6269 | { |
@@ -5403,3 +6349,265 @@ e1000_polarity_reversal_workaround(struct e1000_hw *hw) | |||
5403 | return E1000_SUCCESS; | 6349 | return E1000_SUCCESS; |
5404 | } | 6350 | } |
5405 | 6351 | ||
6352 | /*************************************************************************** | ||
6353 | * | ||
6354 | * Disables PCI-Express master access. | ||
6355 | * | ||
6356 | * hw: Struct containing variables accessed by shared code | ||
6357 | * | ||
6358 | * returns: - none. | ||
6359 | * | ||
6360 | ***************************************************************************/ | ||
6361 | void | ||
6362 | e1000_set_pci_express_master_disable(struct e1000_hw *hw) | ||
6363 | { | ||
6364 | uint32_t ctrl; | ||
6365 | |||
6366 | DEBUGFUNC("e1000_set_pci_express_master_disable"); | ||
6367 | |||
6368 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
6369 | return; | ||
6370 | |||
6371 | ctrl = E1000_READ_REG(hw, CTRL); | ||
6372 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
6373 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
6374 | } | ||
6375 | |||
6376 | /*************************************************************************** | ||
6377 | * | ||
6378 | * Enables PCI-Express master access. | ||
6379 | * | ||
6380 | * hw: Struct containing variables accessed by shared code | ||
6381 | * | ||
6382 | * returns: - none. | ||
6383 | * | ||
6384 | ***************************************************************************/ | ||
6385 | void | ||
6386 | e1000_enable_pciex_master(struct e1000_hw *hw) | ||
6387 | { | ||
6388 | uint32_t ctrl; | ||
6389 | |||
6390 | DEBUGFUNC("e1000_enable_pciex_master"); | ||
6391 | |||
6392 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
6393 | return; | ||
6394 | |||
6395 | ctrl = E1000_READ_REG(hw, CTRL); | ||
6396 | ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; | ||
6397 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
6398 | } | ||
6399 | |||
6400 | /******************************************************************************* | ||
6401 | * | ||
6402 | * Disables PCI-Express master access and verifies there are no pending requests | ||
6403 | * | ||
6404 | * hw: Struct containing variables accessed by shared code | ||
6405 | * | ||
6406 | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | ||
6407 | * caused the master requests to be disabled. | ||
6408 | * E1000_SUCCESS master requests disabled. | ||
6409 | * | ||
6410 | ******************************************************************************/ | ||
6411 | int32_t | ||
6412 | e1000_disable_pciex_master(struct e1000_hw *hw) | ||
6413 | { | ||
6414 | int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ | ||
6415 | |||
6416 | DEBUGFUNC("e1000_disable_pciex_master"); | ||
6417 | |||
6418 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
6419 | return E1000_SUCCESS; | ||
6420 | |||
6421 | e1000_set_pci_express_master_disable(hw); | ||
6422 | |||
6423 | while(timeout) { | ||
6424 | if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) | ||
6425 | break; | ||
6426 | else | ||
6427 | udelay(100); | ||
6428 | timeout--; | ||
6429 | } | ||
6430 | |||
6431 | if(!timeout) { | ||
6432 | DEBUGOUT("Master requests are pending.\n"); | ||
6433 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
6434 | } | ||
6435 | |||
6436 | return E1000_SUCCESS; | ||
6437 | } | ||
6438 | |||
6439 | /******************************************************************************* | ||
6440 | * | ||
6441 | * Check for EEPROM Auto Read bit done. | ||
6442 | * | ||
6443 | * hw: Struct containing variables accessed by shared code | ||
6444 | * | ||
6445 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||
6446 | * E1000_SUCCESS at any other case. | ||
6447 | * | ||
6448 | ******************************************************************************/ | ||
6449 | int32_t | ||
6450 | e1000_get_auto_rd_done(struct e1000_hw *hw) | ||
6451 | { | ||
6452 | int32_t timeout = AUTO_READ_DONE_TIMEOUT; | ||
6453 | |||
6454 | DEBUGFUNC("e1000_get_auto_rd_done"); | ||
6455 | |||
6456 | switch (hw->mac_type) { | ||
6457 | default: | ||
6458 | msec_delay(5); | ||
6459 | break; | ||
6460 | case e1000_82573: | ||
6461 | while(timeout) { | ||
6462 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; | ||
6463 | else msec_delay(1); | ||
6464 | timeout--; | ||
6465 | } | ||
6466 | |||
6467 | if(!timeout) { | ||
6468 | DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); | ||
6469 | return -E1000_ERR_RESET; | ||
6470 | } | ||
6471 | break; | ||
6472 | } | ||
6473 | |||
6474 | return E1000_SUCCESS; | ||
6475 | } | ||
6476 | |||
6477 | /*************************************************************************** | ||
6478 | * Checks if the PHY configuration is done | ||
6479 | * | ||
6480 | * hw: Struct containing variables accessed by shared code | ||
6481 | * | ||
6482 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||
6483 | * E1000_SUCCESS at any other case. | ||
6484 | * | ||
6485 | ***************************************************************************/ | ||
6486 | int32_t | ||
6487 | e1000_get_phy_cfg_done(struct e1000_hw *hw) | ||
6488 | { | ||
6489 | DEBUGFUNC("e1000_get_phy_cfg_done"); | ||
6490 | |||
6491 | /* Simply wait for 10ms */ | ||
6492 | msec_delay(10); | ||
6493 | |||
6494 | return E1000_SUCCESS; | ||
6495 | } | ||
6496 | |||
6497 | /*************************************************************************** | ||
6498 | * | ||
6499 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting | ||
6500 | * adapter or Eeprom access. | ||
6501 | * | ||
6502 | * hw: Struct containing variables accessed by shared code | ||
6503 | * | ||
6504 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | ||
6505 | * E1000_SUCCESS at any other case. | ||
6506 | * | ||
6507 | ***************************************************************************/ | ||
6508 | int32_t | ||
6509 | e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) | ||
6510 | { | ||
6511 | int32_t timeout; | ||
6512 | uint32_t swsm; | ||
6513 | |||
6514 | DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); | ||
6515 | |||
6516 | if(!hw->eeprom_semaphore_present) | ||
6517 | return E1000_SUCCESS; | ||
6518 | |||
6519 | |||
6520 | /* Get the FW semaphore. */ | ||
6521 | timeout = hw->eeprom.word_size + 1; | ||
6522 | while(timeout) { | ||
6523 | swsm = E1000_READ_REG(hw, SWSM); | ||
6524 | swsm |= E1000_SWSM_SWESMBI; | ||
6525 | E1000_WRITE_REG(hw, SWSM, swsm); | ||
6526 | /* if we managed to set the bit we got the semaphore. */ | ||
6527 | swsm = E1000_READ_REG(hw, SWSM); | ||
6528 | if(swsm & E1000_SWSM_SWESMBI) | ||
6529 | break; | ||
6530 | |||
6531 | udelay(50); | ||
6532 | timeout--; | ||
6533 | } | ||
6534 | |||
6535 | if(!timeout) { | ||
6536 | /* Release semaphores */ | ||
6537 | e1000_put_hw_eeprom_semaphore(hw); | ||
6538 | DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); | ||
6539 | return -E1000_ERR_EEPROM; | ||
6540 | } | ||
6541 | |||
6542 | return E1000_SUCCESS; | ||
6543 | } | ||
6544 | |||
6545 | /*************************************************************************** | ||
6546 | * This function clears HW semaphore bits. | ||
6547 | * | ||
6548 | * hw: Struct containing variables accessed by shared code | ||
6549 | * | ||
6550 | * returns: - None. | ||
6551 | * | ||
6552 | ***************************************************************************/ | ||
6553 | void | ||
6554 | e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | ||
6555 | { | ||
6556 | uint32_t swsm; | ||
6557 | |||
6558 | DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); | ||
6559 | |||
6560 | if(!hw->eeprom_semaphore_present) | ||
6561 | return; | ||
6562 | |||
6563 | swsm = E1000_READ_REG(hw, SWSM); | ||
6564 | /* Release both semaphores. */ | ||
6565 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
6566 | E1000_WRITE_REG(hw, SWSM, swsm); | ||
6567 | } | ||
6568 | |||
6569 | /****************************************************************************** | ||
6570 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | ||
6571 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to | ||
6572 | * the caller to figure out how to deal with it. | ||
6573 | * | ||
6574 | * hw - Struct containing variables accessed by shared code | ||
6575 | * | ||
6576 | * returns: - E1000_BLK_PHY_RESET | ||
6577 | * E1000_SUCCESS | ||
6578 | * | ||
6579 | *****************************************************************************/ | ||
6580 | int32_t | ||
6581 | e1000_check_phy_reset_block(struct e1000_hw *hw) | ||
6582 | { | ||
6583 | uint32_t manc = 0; | ||
6584 | if(hw->mac_type > e1000_82547_rev_2) | ||
6585 | manc = E1000_READ_REG(hw, MANC); | ||
6586 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
6587 | E1000_BLK_PHY_RESET : E1000_SUCCESS; | ||
6588 | } | ||
6589 | |||
6590 | uint8_t | ||
6591 | e1000_arc_subsystem_valid(struct e1000_hw *hw) | ||
6592 | { | ||
6593 | uint32_t fwsm; | ||
6594 | |||
6595 | /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC | ||
6596 | * may not be provided a DMA clock when no manageability features are | ||
6597 | * enabled. We do not want to perform any reads/writes to these registers | ||
6598 | * if this is the case. We read FWSM to determine the manageability mode. | ||
6599 | */ | ||
6600 | switch (hw->mac_type) { | ||
6601 | case e1000_82573: | ||
6602 | fwsm = E1000_READ_REG(hw, FWSM); | ||
6603 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) | ||
6604 | return TRUE; | ||
6605 | break; | ||
6606 | default: | ||
6607 | break; | ||
6608 | } | ||
6609 | return FALSE; | ||
6610 | } | ||
6611 | |||
6612 | |||
6613 | |||