diff options
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 1819 |
1 files changed, 1701 insertions, 118 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 3959039b16ec..b3b919116e0f 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -101,9 +101,37 @@ static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, | |||
101 | 101 | ||
102 | #define E1000_WRITE_REG_IO(a, reg, val) \ | 102 | #define E1000_WRITE_REG_IO(a, reg, val) \ |
103 | e1000_write_reg_io((a), E1000_##reg, val) | 103 | e1000_write_reg_io((a), E1000_##reg, val) |
104 | static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw); | 104 | static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, |
105 | uint16_t duplex); | ||
105 | static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); | 106 | static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); |
106 | 107 | ||
108 | static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, | ||
109 | uint32_t segment); | ||
110 | static int32_t e1000_get_software_flag(struct e1000_hw *hw); | ||
111 | static int32_t e1000_get_software_semaphore(struct e1000_hw *hw); | ||
112 | static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw); | ||
113 | static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); | ||
114 | static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, | ||
115 | uint16_t words, uint16_t *data); | ||
116 | static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, | ||
117 | uint8_t* data); | ||
118 | static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, | ||
119 | uint16_t *data); | ||
120 | static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, | ||
121 | uint16_t *data); | ||
122 | static void e1000_release_software_flag(struct e1000_hw *hw); | ||
123 | static void e1000_release_software_semaphore(struct e1000_hw *hw); | ||
124 | static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, | ||
125 | uint32_t no_snoop); | ||
126 | static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, | ||
127 | uint32_t index, uint8_t byte); | ||
128 | static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, | ||
129 | uint16_t words, uint16_t *data); | ||
130 | static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, | ||
131 | uint8_t data); | ||
132 | static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, | ||
133 | uint16_t data); | ||
134 | |||
107 | /* IGP cable length table */ | 135 | /* IGP cable length table */ |
108 | static const | 136 | static const |
109 | uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | 137 | uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = |
@@ -156,6 +184,14 @@ e1000_set_phy_type(struct e1000_hw *hw) | |||
156 | hw->phy_type = e1000_phy_igp; | 184 | hw->phy_type = e1000_phy_igp; |
157 | break; | 185 | break; |
158 | } | 186 | } |
187 | case IGP03E1000_E_PHY_ID: | ||
188 | hw->phy_type = e1000_phy_igp_3; | ||
189 | break; | ||
190 | case IFE_E_PHY_ID: | ||
191 | case IFE_PLUS_E_PHY_ID: | ||
192 | case IFE_C_E_PHY_ID: | ||
193 | hw->phy_type = e1000_phy_ife; | ||
194 | break; | ||
159 | case GG82563_E_PHY_ID: | 195 | case GG82563_E_PHY_ID: |
160 | if (hw->mac_type == e1000_80003es2lan) { | 196 | if (hw->mac_type == e1000_80003es2lan) { |
161 | hw->phy_type = e1000_phy_gg82563; | 197 | hw->phy_type = e1000_phy_gg82563; |
@@ -332,6 +368,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
332 | break; | 368 | break; |
333 | case E1000_DEV_ID_82541EI: | 369 | case E1000_DEV_ID_82541EI: |
334 | case E1000_DEV_ID_82541EI_MOBILE: | 370 | case E1000_DEV_ID_82541EI_MOBILE: |
371 | case E1000_DEV_ID_82541ER_LOM: | ||
335 | hw->mac_type = e1000_82541; | 372 | hw->mac_type = e1000_82541; |
336 | break; | 373 | break; |
337 | case E1000_DEV_ID_82541ER: | 374 | case E1000_DEV_ID_82541ER: |
@@ -341,6 +378,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
341 | hw->mac_type = e1000_82541_rev_2; | 378 | hw->mac_type = e1000_82541_rev_2; |
342 | break; | 379 | break; |
343 | case E1000_DEV_ID_82547EI: | 380 | case E1000_DEV_ID_82547EI: |
381 | case E1000_DEV_ID_82547EI_MOBILE: | ||
344 | hw->mac_type = e1000_82547; | 382 | hw->mac_type = e1000_82547; |
345 | break; | 383 | break; |
346 | case E1000_DEV_ID_82547GI: | 384 | case E1000_DEV_ID_82547GI: |
@@ -354,6 +392,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
354 | case E1000_DEV_ID_82572EI_COPPER: | 392 | case E1000_DEV_ID_82572EI_COPPER: |
355 | case E1000_DEV_ID_82572EI_FIBER: | 393 | case E1000_DEV_ID_82572EI_FIBER: |
356 | case E1000_DEV_ID_82572EI_SERDES: | 394 | case E1000_DEV_ID_82572EI_SERDES: |
395 | case E1000_DEV_ID_82572EI: | ||
357 | hw->mac_type = e1000_82572; | 396 | hw->mac_type = e1000_82572; |
358 | break; | 397 | break; |
359 | case E1000_DEV_ID_82573E: | 398 | case E1000_DEV_ID_82573E: |
@@ -361,16 +400,29 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
361 | case E1000_DEV_ID_82573L: | 400 | case E1000_DEV_ID_82573L: |
362 | hw->mac_type = e1000_82573; | 401 | hw->mac_type = e1000_82573; |
363 | break; | 402 | break; |
403 | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: | ||
404 | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: | ||
364 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: | 405 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: |
365 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | 406 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
366 | hw->mac_type = e1000_80003es2lan; | 407 | hw->mac_type = e1000_80003es2lan; |
367 | break; | 408 | break; |
409 | case E1000_DEV_ID_ICH8_IGP_M_AMT: | ||
410 | case E1000_DEV_ID_ICH8_IGP_AMT: | ||
411 | case E1000_DEV_ID_ICH8_IGP_C: | ||
412 | case E1000_DEV_ID_ICH8_IFE: | ||
413 | case E1000_DEV_ID_ICH8_IGP_M: | ||
414 | hw->mac_type = e1000_ich8lan; | ||
415 | break; | ||
368 | default: | 416 | default: |
369 | /* Should never have loaded on this device */ | 417 | /* Should never have loaded on this device */ |
370 | return -E1000_ERR_MAC_TYPE; | 418 | return -E1000_ERR_MAC_TYPE; |
371 | } | 419 | } |
372 | 420 | ||
373 | switch(hw->mac_type) { | 421 | switch(hw->mac_type) { |
422 | case e1000_ich8lan: | ||
423 | hw->swfwhw_semaphore_present = TRUE; | ||
424 | hw->asf_firmware_present = TRUE; | ||
425 | break; | ||
374 | case e1000_80003es2lan: | 426 | case e1000_80003es2lan: |
375 | hw->swfw_sync_present = TRUE; | 427 | hw->swfw_sync_present = TRUE; |
376 | /* fall through */ | 428 | /* fall through */ |
@@ -423,6 +475,7 @@ e1000_set_media_type(struct e1000_hw *hw) | |||
423 | case e1000_82542_rev2_1: | 475 | case e1000_82542_rev2_1: |
424 | hw->media_type = e1000_media_type_fiber; | 476 | hw->media_type = e1000_media_type_fiber; |
425 | break; | 477 | break; |
478 | case e1000_ich8lan: | ||
426 | case e1000_82573: | 479 | case e1000_82573: |
427 | /* The STATUS_TBIMODE bit is reserved or reused for the this | 480 | /* The STATUS_TBIMODE bit is reserved or reused for the this |
428 | * device. | 481 | * device. |
@@ -527,6 +580,14 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
527 | } while(timeout); | 580 | } while(timeout); |
528 | } | 581 | } |
529 | 582 | ||
583 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | ||
584 | if (hw->mac_type == e1000_ich8lan) { | ||
585 | /* Set Tx and Rx buffer allocation to 8k apiece. */ | ||
586 | E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); | ||
587 | /* Set Packet Buffer Size to 16k. */ | ||
588 | E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); | ||
589 | } | ||
590 | |||
530 | /* Issue a global reset to the MAC. This will reset the chip's | 591 | /* Issue a global reset to the MAC. This will reset the chip's |
531 | * transmit, receive, DMA, and link units. It will not effect | 592 | * transmit, receive, DMA, and link units. It will not effect |
532 | * the current PCI configuration. The global reset bit is self- | 593 | * the current PCI configuration. The global reset bit is self- |
@@ -550,6 +611,20 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
550 | /* Reset is performed on a shadow of the control register */ | 611 | /* Reset is performed on a shadow of the control register */ |
551 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 612 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
552 | break; | 613 | break; |
614 | case e1000_ich8lan: | ||
615 | if (!hw->phy_reset_disable && | ||
616 | e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { | ||
617 | /* e1000_ich8lan PHY HW reset requires MAC CORE reset | ||
618 | * at the same time to make sure the interface between | ||
619 | * MAC and the external PHY is reset. | ||
620 | */ | ||
621 | ctrl |= E1000_CTRL_PHY_RST; | ||
622 | } | ||
623 | |||
624 | e1000_get_software_flag(hw); | ||
625 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | ||
626 | msec_delay(5); | ||
627 | break; | ||
553 | default: | 628 | default: |
554 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 629 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
555 | break; | 630 | break; |
@@ -591,6 +666,7 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
591 | /* fall through */ | 666 | /* fall through */ |
592 | case e1000_82571: | 667 | case e1000_82571: |
593 | case e1000_82572: | 668 | case e1000_82572: |
669 | case e1000_ich8lan: | ||
594 | case e1000_80003es2lan: | 670 | case e1000_80003es2lan: |
595 | ret_val = e1000_get_auto_rd_done(hw); | 671 | ret_val = e1000_get_auto_rd_done(hw); |
596 | if(ret_val) | 672 | if(ret_val) |
@@ -633,6 +709,12 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
633 | e1000_pci_set_mwi(hw); | 709 | e1000_pci_set_mwi(hw); |
634 | } | 710 | } |
635 | 711 | ||
712 | if (hw->mac_type == e1000_ich8lan) { | ||
713 | uint32_t kab = E1000_READ_REG(hw, KABGTXD); | ||
714 | kab |= E1000_KABGTXD_BGSQLBIAS; | ||
715 | E1000_WRITE_REG(hw, KABGTXD, kab); | ||
716 | } | ||
717 | |||
636 | return E1000_SUCCESS; | 718 | return E1000_SUCCESS; |
637 | } | 719 | } |
638 | 720 | ||
@@ -675,9 +757,12 @@ e1000_init_hw(struct e1000_hw *hw) | |||
675 | 757 | ||
676 | /* Disabling VLAN filtering. */ | 758 | /* Disabling VLAN filtering. */ |
677 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 759 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
678 | if (hw->mac_type < e1000_82545_rev_3) | 760 | /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ |
679 | E1000_WRITE_REG(hw, VET, 0); | 761 | if (hw->mac_type != e1000_ich8lan) { |
680 | e1000_clear_vfta(hw); | 762 | if (hw->mac_type < e1000_82545_rev_3) |
763 | E1000_WRITE_REG(hw, VET, 0); | ||
764 | e1000_clear_vfta(hw); | ||
765 | } | ||
681 | 766 | ||
682 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 767 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
683 | if(hw->mac_type == e1000_82542_rev2_0) { | 768 | if(hw->mac_type == e1000_82542_rev2_0) { |
@@ -705,8 +790,14 @@ e1000_init_hw(struct e1000_hw *hw) | |||
705 | /* Zero out the Multicast HASH table */ | 790 | /* Zero out the Multicast HASH table */ |
706 | DEBUGOUT("Zeroing the MTA\n"); | 791 | DEBUGOUT("Zeroing the MTA\n"); |
707 | mta_size = E1000_MC_TBL_SIZE; | 792 | mta_size = E1000_MC_TBL_SIZE; |
708 | for(i = 0; i < mta_size; i++) | 793 | if (hw->mac_type == e1000_ich8lan) |
794 | mta_size = E1000_MC_TBL_SIZE_ICH8LAN; | ||
795 | for(i = 0; i < mta_size; i++) { | ||
709 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 796 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
797 | /* use write flush to prevent Memory Write Block (MWB) from | ||
798 | * occuring when accessing our register space */ | ||
799 | E1000_WRITE_FLUSH(hw); | ||
800 | } | ||
710 | 801 | ||
711 | /* Set the PCI priority bit correctly in the CTRL register. This | 802 | /* Set the PCI priority bit correctly in the CTRL register. This |
712 | * determines if the adapter gives priority to receives, or if it | 803 | * determines if the adapter gives priority to receives, or if it |
@@ -744,6 +835,10 @@ e1000_init_hw(struct e1000_hw *hw) | |||
744 | break; | 835 | break; |
745 | } | 836 | } |
746 | 837 | ||
838 | /* More time needed for PHY to initialize */ | ||
839 | if (hw->mac_type == e1000_ich8lan) | ||
840 | msec_delay(15); | ||
841 | |||
747 | /* Call a subroutine to configure the link and setup flow control. */ | 842 | /* Call a subroutine to configure the link and setup flow control. */ |
748 | ret_val = e1000_setup_link(hw); | 843 | ret_val = e1000_setup_link(hw); |
749 | 844 | ||
@@ -757,6 +852,7 @@ e1000_init_hw(struct e1000_hw *hw) | |||
757 | case e1000_82571: | 852 | case e1000_82571: |
758 | case e1000_82572: | 853 | case e1000_82572: |
759 | case e1000_82573: | 854 | case e1000_82573: |
855 | case e1000_ich8lan: | ||
760 | case e1000_80003es2lan: | 856 | case e1000_80003es2lan: |
761 | ctrl |= E1000_TXDCTL_COUNT_DESC; | 857 | ctrl |= E1000_TXDCTL_COUNT_DESC; |
762 | break; | 858 | break; |
@@ -795,6 +891,7 @@ e1000_init_hw(struct e1000_hw *hw) | |||
795 | /* Fall through */ | 891 | /* Fall through */ |
796 | case e1000_82571: | 892 | case e1000_82571: |
797 | case e1000_82572: | 893 | case e1000_82572: |
894 | case e1000_ich8lan: | ||
798 | ctrl = E1000_READ_REG(hw, TXDCTL1); | 895 | ctrl = E1000_READ_REG(hw, TXDCTL1); |
799 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 896 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
800 | if(hw->mac_type >= e1000_82571) | 897 | if(hw->mac_type >= e1000_82571) |
@@ -818,6 +915,11 @@ e1000_init_hw(struct e1000_hw *hw) | |||
818 | */ | 915 | */ |
819 | e1000_clear_hw_cntrs(hw); | 916 | e1000_clear_hw_cntrs(hw); |
820 | 917 | ||
918 | /* ICH8 No-snoop bits are opposite polarity. | ||
919 | * Set to snoop by default after reset. */ | ||
920 | if (hw->mac_type == e1000_ich8lan) | ||
921 | e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); | ||
922 | |||
821 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | 923 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
822 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | 924 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
823 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 925 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
@@ -905,6 +1007,7 @@ e1000_setup_link(struct e1000_hw *hw) | |||
905 | */ | 1007 | */ |
906 | if (hw->fc == e1000_fc_default) { | 1008 | if (hw->fc == e1000_fc_default) { |
907 | switch (hw->mac_type) { | 1009 | switch (hw->mac_type) { |
1010 | case e1000_ich8lan: | ||
908 | case e1000_82573: | 1011 | case e1000_82573: |
909 | hw->fc = e1000_fc_full; | 1012 | hw->fc = e1000_fc_full; |
910 | break; | 1013 | break; |
@@ -971,9 +1074,12 @@ e1000_setup_link(struct e1000_hw *hw) | |||
971 | */ | 1074 | */ |
972 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 1075 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); |
973 | 1076 | ||
974 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | 1077 | /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ |
975 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 1078 | if (hw->mac_type != e1000_ich8lan) { |
976 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | 1079 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
1080 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
1081 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
1082 | } | ||
977 | 1083 | ||
978 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | 1084 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
979 | 1085 | ||
@@ -1237,12 +1343,13 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw) | |||
1237 | 1343 | ||
1238 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ | 1344 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ |
1239 | msec_delay(15); | 1345 | msec_delay(15); |
1240 | 1346 | if (hw->mac_type != e1000_ich8lan) { | |
1241 | /* Configure activity LED after PHY reset */ | 1347 | /* Configure activity LED after PHY reset */ |
1242 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | 1348 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
1243 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 1349 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
1244 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 1350 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
1245 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 1351 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
1352 | } | ||
1246 | 1353 | ||
1247 | /* disable lplu d3 during driver init */ | 1354 | /* disable lplu d3 during driver init */ |
1248 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); | 1355 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); |
@@ -1478,8 +1585,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw) | |||
1478 | if (ret_val) | 1585 | if (ret_val) |
1479 | return ret_val; | 1586 | return ret_val; |
1480 | 1587 | ||
1481 | /* Enable Pass False Carrier on the PHY */ | 1588 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
1482 | phy_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1483 | 1589 | ||
1484 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, | 1590 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
1485 | phy_data); | 1591 | phy_data); |
@@ -1561,28 +1667,40 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw) | |||
1561 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 1667 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
1562 | if(hw->disable_polarity_correction == 1) | 1668 | if(hw->disable_polarity_correction == 1) |
1563 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 1669 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
1564 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 1670 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
1565 | if(ret_val) | 1671 | if (ret_val) |
1566 | return ret_val; | ||
1567 | |||
1568 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1569 | * to 25MHz clock. | ||
1570 | */ | ||
1571 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1572 | if(ret_val) | ||
1573 | return ret_val; | 1672 | return ret_val; |
1574 | 1673 | ||
1575 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1576 | |||
1577 | if (hw->phy_revision < M88E1011_I_REV_4) { | 1674 | if (hw->phy_revision < M88E1011_I_REV_4) { |
1578 | /* Configure Master and Slave downshift values */ | 1675 | /* Force TX_CLK in the Extended PHY Specific Control Register |
1579 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 1676 | * to 25MHz clock. |
1677 | */ | ||
1678 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1679 | if (ret_val) | ||
1680 | return ret_val; | ||
1681 | |||
1682 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1683 | |||
1684 | if ((hw->phy_revision == E1000_REVISION_2) && | ||
1685 | (hw->phy_id == M88E1111_I_PHY_ID)) { | ||
1686 | /* Vidalia Phy, set the downshift counter to 5x */ | ||
1687 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | ||
1688 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
1689 | ret_val = e1000_write_phy_reg(hw, | ||
1690 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
1691 | if (ret_val) | ||
1692 | return ret_val; | ||
1693 | } else { | ||
1694 | /* Configure Master and Slave downshift values */ | ||
1695 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
1580 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 1696 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
1581 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 1697 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
1582 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 1698 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
1583 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 1699 | ret_val = e1000_write_phy_reg(hw, |
1584 | if(ret_val) | 1700 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
1585 | return ret_val; | 1701 | if (ret_val) |
1702 | return ret_val; | ||
1703 | } | ||
1586 | } | 1704 | } |
1587 | 1705 | ||
1588 | /* SW Reset the PHY so all changes take effect */ | 1706 | /* SW Reset the PHY so all changes take effect */ |
@@ -1620,6 +1738,10 @@ e1000_copper_link_autoneg(struct e1000_hw *hw) | |||
1620 | if(hw->autoneg_advertised == 0) | 1738 | if(hw->autoneg_advertised == 0) |
1621 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 1739 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
1622 | 1740 | ||
1741 | /* IFE phy only supports 10/100 */ | ||
1742 | if (hw->phy_type == e1000_phy_ife) | ||
1743 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; | ||
1744 | |||
1623 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 1745 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
1624 | ret_val = e1000_phy_setup_autoneg(hw); | 1746 | ret_val = e1000_phy_setup_autoneg(hw); |
1625 | if(ret_val) { | 1747 | if(ret_val) { |
@@ -1717,6 +1839,26 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1717 | 1839 | ||
1718 | DEBUGFUNC("e1000_setup_copper_link"); | 1840 | DEBUGFUNC("e1000_setup_copper_link"); |
1719 | 1841 | ||
1842 | switch (hw->mac_type) { | ||
1843 | case e1000_80003es2lan: | ||
1844 | case e1000_ich8lan: | ||
1845 | /* Set the mac to wait the maximum time between each | ||
1846 | * iteration and increase the max iterations when | ||
1847 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ | ||
1848 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); | ||
1849 | if (ret_val) | ||
1850 | return ret_val; | ||
1851 | ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); | ||
1852 | if (ret_val) | ||
1853 | return ret_val; | ||
1854 | reg_data |= 0x3F; | ||
1855 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); | ||
1856 | if (ret_val) | ||
1857 | return ret_val; | ||
1858 | default: | ||
1859 | break; | ||
1860 | } | ||
1861 | |||
1720 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 1862 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
1721 | ret_val = e1000_copper_link_preconfig(hw); | 1863 | ret_val = e1000_copper_link_preconfig(hw); |
1722 | if(ret_val) | 1864 | if(ret_val) |
@@ -1724,10 +1866,8 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1724 | 1866 | ||
1725 | switch (hw->mac_type) { | 1867 | switch (hw->mac_type) { |
1726 | case e1000_80003es2lan: | 1868 | case e1000_80003es2lan: |
1727 | ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, | 1869 | /* Kumeran registers are written-only */ |
1728 | ®_data); | 1870 | reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; |
1729 | if (ret_val) | ||
1730 | return ret_val; | ||
1731 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; | 1871 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; |
1732 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, | 1872 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, |
1733 | reg_data); | 1873 | reg_data); |
@@ -1739,6 +1879,7 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1739 | } | 1879 | } |
1740 | 1880 | ||
1741 | if (hw->phy_type == e1000_phy_igp || | 1881 | if (hw->phy_type == e1000_phy_igp || |
1882 | hw->phy_type == e1000_phy_igp_3 || | ||
1742 | hw->phy_type == e1000_phy_igp_2) { | 1883 | hw->phy_type == e1000_phy_igp_2) { |
1743 | ret_val = e1000_copper_link_igp_setup(hw); | 1884 | ret_val = e1000_copper_link_igp_setup(hw); |
1744 | if(ret_val) | 1885 | if(ret_val) |
@@ -1803,7 +1944,7 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1803 | * hw - Struct containing variables accessed by shared code | 1944 | * hw - Struct containing variables accessed by shared code |
1804 | ******************************************************************************/ | 1945 | ******************************************************************************/ |
1805 | static int32_t | 1946 | static int32_t |
1806 | e1000_configure_kmrn_for_10_100(struct e1000_hw *hw) | 1947 | e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) |
1807 | { | 1948 | { |
1808 | int32_t ret_val = E1000_SUCCESS; | 1949 | int32_t ret_val = E1000_SUCCESS; |
1809 | uint32_t tipg; | 1950 | uint32_t tipg; |
@@ -1823,6 +1964,18 @@ e1000_configure_kmrn_for_10_100(struct e1000_hw *hw) | |||
1823 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; | 1964 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; |
1824 | E1000_WRITE_REG(hw, TIPG, tipg); | 1965 | E1000_WRITE_REG(hw, TIPG, tipg); |
1825 | 1966 | ||
1967 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
1968 | |||
1969 | if (ret_val) | ||
1970 | return ret_val; | ||
1971 | |||
1972 | if (duplex == HALF_DUPLEX) | ||
1973 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1974 | else | ||
1975 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1976 | |||
1977 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
1978 | |||
1826 | return ret_val; | 1979 | return ret_val; |
1827 | } | 1980 | } |
1828 | 1981 | ||
@@ -1847,6 +2000,14 @@ e1000_configure_kmrn_for_1000(struct e1000_hw *hw) | |||
1847 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | 2000 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
1848 | E1000_WRITE_REG(hw, TIPG, tipg); | 2001 | E1000_WRITE_REG(hw, TIPG, tipg); |
1849 | 2002 | ||
2003 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
2004 | |||
2005 | if (ret_val) | ||
2006 | return ret_val; | ||
2007 | |||
2008 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
2009 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
2010 | |||
1850 | return ret_val; | 2011 | return ret_val; |
1851 | } | 2012 | } |
1852 | 2013 | ||
@@ -1869,10 +2030,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1869 | if(ret_val) | 2030 | if(ret_val) |
1870 | return ret_val; | 2031 | return ret_val; |
1871 | 2032 | ||
1872 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 2033 | if (hw->phy_type != e1000_phy_ife) { |
1873 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 2034 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
1874 | if(ret_val) | 2035 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
1875 | return ret_val; | 2036 | if (ret_val) |
2037 | return ret_val; | ||
2038 | } else | ||
2039 | mii_1000t_ctrl_reg=0; | ||
1876 | 2040 | ||
1877 | /* Need to parse both autoneg_advertised and fc and set up | 2041 | /* Need to parse both autoneg_advertised and fc and set up |
1878 | * the appropriate PHY registers. First we will parse for | 2042 | * the appropriate PHY registers. First we will parse for |
@@ -1923,6 +2087,9 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1923 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 2087 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
1924 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | 2088 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
1925 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 2089 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
2090 | if (hw->phy_type == e1000_phy_ife) { | ||
2091 | DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); | ||
2092 | } | ||
1926 | } | 2093 | } |
1927 | 2094 | ||
1928 | /* Check for a software override of the flow control settings, and | 2095 | /* Check for a software override of the flow control settings, and |
@@ -1984,9 +2151,11 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1984 | 2151 | ||
1985 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 2152 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
1986 | 2153 | ||
1987 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 2154 | if (hw->phy_type != e1000_phy_ife) { |
1988 | if(ret_val) | 2155 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
1989 | return ret_val; | 2156 | if (ret_val) |
2157 | return ret_val; | ||
2158 | } | ||
1990 | 2159 | ||
1991 | return E1000_SUCCESS; | 2160 | return E1000_SUCCESS; |
1992 | } | 2161 | } |
@@ -2089,6 +2258,18 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw) | |||
2089 | 2258 | ||
2090 | /* Need to reset the PHY or these changes will be ignored */ | 2259 | /* Need to reset the PHY or these changes will be ignored */ |
2091 | mii_ctrl_reg |= MII_CR_RESET; | 2260 | mii_ctrl_reg |= MII_CR_RESET; |
2261 | /* Disable MDI-X support for 10/100 */ | ||
2262 | } else if (hw->phy_type == e1000_phy_ife) { | ||
2263 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | ||
2264 | if (ret_val) | ||
2265 | return ret_val; | ||
2266 | |||
2267 | phy_data &= ~IFE_PMC_AUTO_MDIX; | ||
2268 | phy_data &= ~IFE_PMC_FORCE_MDIX; | ||
2269 | |||
2270 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); | ||
2271 | if (ret_val) | ||
2272 | return ret_val; | ||
2092 | } else { | 2273 | } else { |
2093 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | 2274 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
2094 | * forced whenever speed or duplex are forced. | 2275 | * forced whenever speed or duplex are forced. |
@@ -2721,8 +2902,12 @@ e1000_check_for_link(struct e1000_hw *hw) | |||
2721 | */ | 2902 | */ |
2722 | if(hw->tbi_compatibility_en) { | 2903 | if(hw->tbi_compatibility_en) { |
2723 | uint16_t speed, duplex; | 2904 | uint16_t speed, duplex; |
2724 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | 2905 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
2725 | if(speed != SPEED_1000) { | 2906 | if (ret_val) { |
2907 | DEBUGOUT("Error getting link speed and duplex\n"); | ||
2908 | return ret_val; | ||
2909 | } | ||
2910 | if (speed != SPEED_1000) { | ||
2726 | /* If link speed is not set to gigabit speed, we do not need | 2911 | /* If link speed is not set to gigabit speed, we do not need |
2727 | * to enable TBI compatibility. | 2912 | * to enable TBI compatibility. |
2728 | */ | 2913 | */ |
@@ -2889,7 +3074,13 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw, | |||
2889 | if (*speed == SPEED_1000) | 3074 | if (*speed == SPEED_1000) |
2890 | ret_val = e1000_configure_kmrn_for_1000(hw); | 3075 | ret_val = e1000_configure_kmrn_for_1000(hw); |
2891 | else | 3076 | else |
2892 | ret_val = e1000_configure_kmrn_for_10_100(hw); | 3077 | ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); |
3078 | if (ret_val) | ||
3079 | return ret_val; | ||
3080 | } | ||
3081 | |||
3082 | if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { | ||
3083 | ret_val = e1000_kumeran_lock_loss_workaround(hw); | ||
2893 | if (ret_val) | 3084 | if (ret_val) |
2894 | return ret_val; | 3085 | return ret_val; |
2895 | } | 3086 | } |
@@ -3069,7 +3260,7 @@ e1000_shift_in_mdi_bits(struct e1000_hw *hw) | |||
3069 | return data; | 3260 | return data; |
3070 | } | 3261 | } |
3071 | 3262 | ||
3072 | int32_t | 3263 | static int32_t |
3073 | e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) | 3264 | e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) |
3074 | { | 3265 | { |
3075 | uint32_t swfw_sync = 0; | 3266 | uint32_t swfw_sync = 0; |
@@ -3079,6 +3270,9 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) | |||
3079 | 3270 | ||
3080 | DEBUGFUNC("e1000_swfw_sync_acquire"); | 3271 | DEBUGFUNC("e1000_swfw_sync_acquire"); |
3081 | 3272 | ||
3273 | if (hw->swfwhw_semaphore_present) | ||
3274 | return e1000_get_software_flag(hw); | ||
3275 | |||
3082 | if (!hw->swfw_sync_present) | 3276 | if (!hw->swfw_sync_present) |
3083 | return e1000_get_hw_eeprom_semaphore(hw); | 3277 | return e1000_get_hw_eeprom_semaphore(hw); |
3084 | 3278 | ||
@@ -3110,7 +3304,7 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) | |||
3110 | return E1000_SUCCESS; | 3304 | return E1000_SUCCESS; |
3111 | } | 3305 | } |
3112 | 3306 | ||
3113 | void | 3307 | static void |
3114 | e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) | 3308 | e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) |
3115 | { | 3309 | { |
3116 | uint32_t swfw_sync; | 3310 | uint32_t swfw_sync; |
@@ -3118,6 +3312,11 @@ e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) | |||
3118 | 3312 | ||
3119 | DEBUGFUNC("e1000_swfw_sync_release"); | 3313 | DEBUGFUNC("e1000_swfw_sync_release"); |
3120 | 3314 | ||
3315 | if (hw->swfwhw_semaphore_present) { | ||
3316 | e1000_release_software_flag(hw); | ||
3317 | return; | ||
3318 | } | ||
3319 | |||
3121 | if (!hw->swfw_sync_present) { | 3320 | if (!hw->swfw_sync_present) { |
3122 | e1000_put_hw_eeprom_semaphore(hw); | 3321 | e1000_put_hw_eeprom_semaphore(hw); |
3123 | return; | 3322 | return; |
@@ -3160,7 +3359,8 @@ e1000_read_phy_reg(struct e1000_hw *hw, | |||
3160 | if (e1000_swfw_sync_acquire(hw, swfw)) | 3359 | if (e1000_swfw_sync_acquire(hw, swfw)) |
3161 | return -E1000_ERR_SWFW_SYNC; | 3360 | return -E1000_ERR_SWFW_SYNC; |
3162 | 3361 | ||
3163 | if((hw->phy_type == e1000_phy_igp || | 3362 | if ((hw->phy_type == e1000_phy_igp || |
3363 | hw->phy_type == e1000_phy_igp_3 || | ||
3164 | hw->phy_type == e1000_phy_igp_2) && | 3364 | hw->phy_type == e1000_phy_igp_2) && |
3165 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 3365 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
3166 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 3366 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
@@ -3299,7 +3499,8 @@ e1000_write_phy_reg(struct e1000_hw *hw, | |||
3299 | if (e1000_swfw_sync_acquire(hw, swfw)) | 3499 | if (e1000_swfw_sync_acquire(hw, swfw)) |
3300 | return -E1000_ERR_SWFW_SYNC; | 3500 | return -E1000_ERR_SWFW_SYNC; |
3301 | 3501 | ||
3302 | if((hw->phy_type == e1000_phy_igp || | 3502 | if ((hw->phy_type == e1000_phy_igp || |
3503 | hw->phy_type == e1000_phy_igp_3 || | ||
3303 | hw->phy_type == e1000_phy_igp_2) && | 3504 | hw->phy_type == e1000_phy_igp_2) && |
3304 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 3505 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
3305 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 3506 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
@@ -3401,7 +3602,7 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw, | |||
3401 | return E1000_SUCCESS; | 3602 | return E1000_SUCCESS; |
3402 | } | 3603 | } |
3403 | 3604 | ||
3404 | int32_t | 3605 | static int32_t |
3405 | e1000_read_kmrn_reg(struct e1000_hw *hw, | 3606 | e1000_read_kmrn_reg(struct e1000_hw *hw, |
3406 | uint32_t reg_addr, | 3607 | uint32_t reg_addr, |
3407 | uint16_t *data) | 3608 | uint16_t *data) |
@@ -3434,7 +3635,7 @@ e1000_read_kmrn_reg(struct e1000_hw *hw, | |||
3434 | return E1000_SUCCESS; | 3635 | return E1000_SUCCESS; |
3435 | } | 3636 | } |
3436 | 3637 | ||
3437 | int32_t | 3638 | static int32_t |
3438 | e1000_write_kmrn_reg(struct e1000_hw *hw, | 3639 | e1000_write_kmrn_reg(struct e1000_hw *hw, |
3439 | uint32_t reg_addr, | 3640 | uint32_t reg_addr, |
3440 | uint16_t data) | 3641 | uint16_t data) |
@@ -3514,7 +3715,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw) | |||
3514 | E1000_WRITE_FLUSH(hw); | 3715 | E1000_WRITE_FLUSH(hw); |
3515 | 3716 | ||
3516 | if (hw->mac_type >= e1000_82571) | 3717 | if (hw->mac_type >= e1000_82571) |
3517 | msec_delay(10); | 3718 | msec_delay_irq(10); |
3518 | e1000_swfw_sync_release(hw, swfw); | 3719 | e1000_swfw_sync_release(hw, swfw); |
3519 | } else { | 3720 | } else { |
3520 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 3721 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
@@ -3544,6 +3745,12 @@ e1000_phy_hw_reset(struct e1000_hw *hw) | |||
3544 | ret_val = e1000_get_phy_cfg_done(hw); | 3745 | ret_val = e1000_get_phy_cfg_done(hw); |
3545 | e1000_release_software_semaphore(hw); | 3746 | e1000_release_software_semaphore(hw); |
3546 | 3747 | ||
3748 | if ((hw->mac_type == e1000_ich8lan) && | ||
3749 | (hw->phy_type == e1000_phy_igp_3)) { | ||
3750 | ret_val = e1000_init_lcd_from_nvm(hw); | ||
3751 | if (ret_val) | ||
3752 | return ret_val; | ||
3753 | } | ||
3547 | return ret_val; | 3754 | return ret_val; |
3548 | } | 3755 | } |
3549 | 3756 | ||
@@ -3572,9 +3779,11 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
3572 | case e1000_82541_rev_2: | 3779 | case e1000_82541_rev_2: |
3573 | case e1000_82571: | 3780 | case e1000_82571: |
3574 | case e1000_82572: | 3781 | case e1000_82572: |
3782 | case e1000_ich8lan: | ||
3575 | ret_val = e1000_phy_hw_reset(hw); | 3783 | ret_val = e1000_phy_hw_reset(hw); |
3576 | if(ret_val) | 3784 | if(ret_val) |
3577 | return ret_val; | 3785 | return ret_val; |
3786 | |||
3578 | break; | 3787 | break; |
3579 | default: | 3788 | default: |
3580 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 3789 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
@@ -3597,11 +3806,120 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
3597 | } | 3806 | } |
3598 | 3807 | ||
3599 | /****************************************************************************** | 3808 | /****************************************************************************** |
3809 | * Work-around for 82566 power-down: on D3 entry- | ||
3810 | * 1) disable gigabit link | ||
3811 | * 2) write VR power-down enable | ||
3812 | * 3) read it back | ||
3813 | * if successful continue, else issue LCD reset and repeat | ||
3814 | * | ||
3815 | * hw - struct containing variables accessed by shared code | ||
3816 | ******************************************************************************/ | ||
3817 | void | ||
3818 | e1000_phy_powerdown_workaround(struct e1000_hw *hw) | ||
3819 | { | ||
3820 | int32_t reg; | ||
3821 | uint16_t phy_data; | ||
3822 | int32_t retry = 0; | ||
3823 | |||
3824 | DEBUGFUNC("e1000_phy_powerdown_workaround"); | ||
3825 | |||
3826 | if (hw->phy_type != e1000_phy_igp_3) | ||
3827 | return; | ||
3828 | |||
3829 | do { | ||
3830 | /* Disable link */ | ||
3831 | reg = E1000_READ_REG(hw, PHY_CTRL); | ||
3832 | E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
3833 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3834 | |||
3835 | /* Write VR power-down enable */ | ||
3836 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | ||
3837 | e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data | | ||
3838 | IGP3_VR_CTRL_MODE_SHUT); | ||
3839 | |||
3840 | /* Read it back and test */ | ||
3841 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | ||
3842 | if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry) | ||
3843 | break; | ||
3844 | |||
3845 | /* Issue PHY reset and repeat at most one more time */ | ||
3846 | reg = E1000_READ_REG(hw, CTRL); | ||
3847 | E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); | ||
3848 | retry++; | ||
3849 | } while (retry); | ||
3850 | |||
3851 | return; | ||
3852 | |||
3853 | } | ||
3854 | |||
3855 | /****************************************************************************** | ||
3856 | * Work-around for 82566 Kumeran PCS lock loss: | ||
3857 | * On link status change (i.e. PCI reset, speed change) and link is up and | ||
3858 | * speed is gigabit- | ||
3859 | * 0) if workaround is optionally disabled do nothing | ||
3860 | * 1) wait 1ms for Kumeran link to come up | ||
3861 | * 2) check Kumeran Diagnostic register PCS lock loss bit | ||
3862 | * 3) if not set the link is locked (all is good), otherwise... | ||
3863 | * 4) reset the PHY | ||
3864 | * 5) repeat up to 10 times | ||
3865 | * Note: this is only called for IGP3 copper when speed is 1gb. | ||
3866 | * | ||
3867 | * hw - struct containing variables accessed by shared code | ||
3868 | ******************************************************************************/ | ||
3869 | static int32_t | ||
3870 | e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) | ||
3871 | { | ||
3872 | int32_t ret_val; | ||
3873 | int32_t reg; | ||
3874 | int32_t cnt; | ||
3875 | uint16_t phy_data; | ||
3876 | |||
3877 | if (hw->kmrn_lock_loss_workaround_disabled) | ||
3878 | return E1000_SUCCESS; | ||
3879 | |||
3880 | /* Make sure link is up before proceeding. If not just return. | ||
3881 | * Attempting this while link is negotiating fouls up link | ||
3882 | * stability */ | ||
3883 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3884 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3885 | |||
3886 | if (phy_data & MII_SR_LINK_STATUS) { | ||
3887 | for (cnt = 0; cnt < 10; cnt++) { | ||
3888 | /* read once to clear */ | ||
3889 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
3890 | if (ret_val) | ||
3891 | return ret_val; | ||
3892 | /* and again to get new status */ | ||
3893 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
3894 | if (ret_val) | ||
3895 | return ret_val; | ||
3896 | |||
3897 | /* check for PCS lock */ | ||
3898 | if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | ||
3899 | return E1000_SUCCESS; | ||
3900 | |||
3901 | /* Issue PHY reset */ | ||
3902 | e1000_phy_hw_reset(hw); | ||
3903 | msec_delay_irq(5); | ||
3904 | } | ||
3905 | /* Disable GigE link negotiation */ | ||
3906 | reg = E1000_READ_REG(hw, PHY_CTRL); | ||
3907 | E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
3908 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3909 | |||
3910 | /* unable to acquire PCS lock */ | ||
3911 | return E1000_ERR_PHY; | ||
3912 | } | ||
3913 | |||
3914 | return E1000_SUCCESS; | ||
3915 | } | ||
3916 | |||
3917 | /****************************************************************************** | ||
3600 | * Probes the expected PHY address for known PHY IDs | 3918 | * Probes the expected PHY address for known PHY IDs |
3601 | * | 3919 | * |
3602 | * hw - Struct containing variables accessed by shared code | 3920 | * hw - Struct containing variables accessed by shared code |
3603 | ******************************************************************************/ | 3921 | ******************************************************************************/ |
3604 | static int32_t | 3922 | int32_t |
3605 | e1000_detect_gig_phy(struct e1000_hw *hw) | 3923 | e1000_detect_gig_phy(struct e1000_hw *hw) |
3606 | { | 3924 | { |
3607 | int32_t phy_init_status, ret_val; | 3925 | int32_t phy_init_status, ret_val; |
@@ -3613,8 +3931,8 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
3613 | /* The 82571 firmware may still be configuring the PHY. In this | 3931 | /* The 82571 firmware may still be configuring the PHY. In this |
3614 | * case, we cannot access the PHY until the configuration is done. So | 3932 | * case, we cannot access the PHY until the configuration is done. So |
3615 | * we explicitly set the PHY values. */ | 3933 | * we explicitly set the PHY values. */ |
3616 | if(hw->mac_type == e1000_82571 || | 3934 | if (hw->mac_type == e1000_82571 || |
3617 | hw->mac_type == e1000_82572) { | 3935 | hw->mac_type == e1000_82572) { |
3618 | hw->phy_id = IGP01E1000_I_PHY_ID; | 3936 | hw->phy_id = IGP01E1000_I_PHY_ID; |
3619 | hw->phy_type = e1000_phy_igp_2; | 3937 | hw->phy_type = e1000_phy_igp_2; |
3620 | return E1000_SUCCESS; | 3938 | return E1000_SUCCESS; |
@@ -3631,7 +3949,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
3631 | 3949 | ||
3632 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 3950 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
3633 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 3951 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
3634 | if(ret_val) | 3952 | if (ret_val) |
3635 | return ret_val; | 3953 | return ret_val; |
3636 | 3954 | ||
3637 | hw->phy_id = (uint32_t) (phy_id_high << 16); | 3955 | hw->phy_id = (uint32_t) (phy_id_high << 16); |
@@ -3669,6 +3987,12 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
3669 | case e1000_80003es2lan: | 3987 | case e1000_80003es2lan: |
3670 | if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; | 3988 | if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; |
3671 | break; | 3989 | break; |
3990 | case e1000_ich8lan: | ||
3991 | if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; | ||
3992 | if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; | ||
3993 | if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; | ||
3994 | if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; | ||
3995 | break; | ||
3672 | default: | 3996 | default: |
3673 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 3997 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
3674 | return -E1000_ERR_CONFIG; | 3998 | return -E1000_ERR_CONFIG; |
@@ -3784,6 +4108,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
3784 | } | 4108 | } |
3785 | 4109 | ||
3786 | /****************************************************************************** | 4110 | /****************************************************************************** |
4111 | * Get PHY information from various PHY registers for ife PHY only. | ||
4112 | * | ||
4113 | * hw - Struct containing variables accessed by shared code | ||
4114 | * phy_info - PHY information structure | ||
4115 | ******************************************************************************/ | ||
4116 | static int32_t | ||
4117 | e1000_phy_ife_get_info(struct e1000_hw *hw, | ||
4118 | struct e1000_phy_info *phy_info) | ||
4119 | { | ||
4120 | int32_t ret_val; | ||
4121 | uint16_t phy_data, polarity; | ||
4122 | |||
4123 | DEBUGFUNC("e1000_phy_ife_get_info"); | ||
4124 | |||
4125 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | ||
4126 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | ||
4127 | |||
4128 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
4129 | if (ret_val) | ||
4130 | return ret_val; | ||
4131 | phy_info->polarity_correction = | ||
4132 | (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> | ||
4133 | IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT; | ||
4134 | |||
4135 | if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { | ||
4136 | ret_val = e1000_check_polarity(hw, &polarity); | ||
4137 | if (ret_val) | ||
4138 | return ret_val; | ||
4139 | } else { | ||
4140 | /* Polarity is forced. */ | ||
4141 | polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >> | ||
4142 | IFE_PSC_FORCE_POLARITY_SHIFT; | ||
4143 | } | ||
4144 | phy_info->cable_polarity = polarity; | ||
4145 | |||
4146 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | ||
4147 | if (ret_val) | ||
4148 | return ret_val; | ||
4149 | |||
4150 | phy_info->mdix_mode = | ||
4151 | (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> | ||
4152 | IFE_PMC_MDIX_MODE_SHIFT; | ||
4153 | |||
4154 | return E1000_SUCCESS; | ||
4155 | } | ||
4156 | |||
4157 | /****************************************************************************** | ||
3787 | * Get PHY information from various PHY registers fot m88 PHY only. | 4158 | * Get PHY information from various PHY registers fot m88 PHY only. |
3788 | * | 4159 | * |
3789 | * hw - Struct containing variables accessed by shared code | 4160 | * hw - Struct containing variables accessed by shared code |
@@ -3898,9 +4269,12 @@ e1000_phy_get_info(struct e1000_hw *hw, | |||
3898 | return -E1000_ERR_CONFIG; | 4269 | return -E1000_ERR_CONFIG; |
3899 | } | 4270 | } |
3900 | 4271 | ||
3901 | if(hw->phy_type == e1000_phy_igp || | 4272 | if (hw->phy_type == e1000_phy_igp || |
4273 | hw->phy_type == e1000_phy_igp_3 || | ||
3902 | hw->phy_type == e1000_phy_igp_2) | 4274 | hw->phy_type == e1000_phy_igp_2) |
3903 | return e1000_phy_igp_get_info(hw, phy_info); | 4275 | return e1000_phy_igp_get_info(hw, phy_info); |
4276 | else if (hw->phy_type == e1000_phy_ife) | ||
4277 | return e1000_phy_ife_get_info(hw, phy_info); | ||
3904 | else | 4278 | else |
3905 | return e1000_phy_m88_get_info(hw, phy_info); | 4279 | return e1000_phy_m88_get_info(hw, phy_info); |
3906 | } | 4280 | } |
@@ -4049,6 +4423,35 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
4049 | eeprom->use_eerd = TRUE; | 4423 | eeprom->use_eerd = TRUE; |
4050 | eeprom->use_eewr = FALSE; | 4424 | eeprom->use_eewr = FALSE; |
4051 | break; | 4425 | break; |
4426 | case e1000_ich8lan: | ||
4427 | { | ||
4428 | int32_t i = 0; | ||
4429 | uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG); | ||
4430 | |||
4431 | eeprom->type = e1000_eeprom_ich8; | ||
4432 | eeprom->use_eerd = FALSE; | ||
4433 | eeprom->use_eewr = FALSE; | ||
4434 | eeprom->word_size = E1000_SHADOW_RAM_WORDS; | ||
4435 | |||
4436 | /* Zero the shadow RAM structure. But don't load it from NVM | ||
4437 | * so as to save time for driver init */ | ||
4438 | if (hw->eeprom_shadow_ram != NULL) { | ||
4439 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
4440 | hw->eeprom_shadow_ram[i].modified = FALSE; | ||
4441 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
4442 | } | ||
4443 | } | ||
4444 | |||
4445 | hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) * | ||
4446 | ICH8_FLASH_SECTOR_SIZE; | ||
4447 | |||
4448 | hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1; | ||
4449 | hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK); | ||
4450 | hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE; | ||
4451 | hw->flash_bank_size /= 2 * sizeof(uint16_t); | ||
4452 | |||
4453 | break; | ||
4454 | } | ||
4052 | default: | 4455 | default: |
4053 | break; | 4456 | break; |
4054 | } | 4457 | } |
@@ -4469,7 +4872,10 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
4469 | return ret_val; | 4872 | return ret_val; |
4470 | } | 4873 | } |
4471 | 4874 | ||
4472 | if(eeprom->type == e1000_eeprom_spi) { | 4875 | if (eeprom->type == e1000_eeprom_ich8) |
4876 | return e1000_read_eeprom_ich8(hw, offset, words, data); | ||
4877 | |||
4878 | if (eeprom->type == e1000_eeprom_spi) { | ||
4473 | uint16_t word_in; | 4879 | uint16_t word_in; |
4474 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; | 4880 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; |
4475 | 4881 | ||
@@ -4636,7 +5042,10 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | |||
4636 | 5042 | ||
4637 | DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); | 5043 | DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); |
4638 | 5044 | ||
4639 | if(hw->mac_type == e1000_82573) { | 5045 | if (hw->mac_type == e1000_ich8lan) |
5046 | return FALSE; | ||
5047 | |||
5048 | if (hw->mac_type == e1000_82573) { | ||
4640 | eecd = E1000_READ_REG(hw, EECD); | 5049 | eecd = E1000_READ_REG(hw, EECD); |
4641 | 5050 | ||
4642 | /* Isolate bits 15 & 16 */ | 5051 | /* Isolate bits 15 & 16 */ |
@@ -4686,8 +5095,22 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
4686 | } | 5095 | } |
4687 | } | 5096 | } |
4688 | 5097 | ||
4689 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 5098 | if (hw->mac_type == e1000_ich8lan) { |
4690 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 5099 | /* Drivers must allocate the shadow ram structure for the |
5100 | * EEPROM checksum to be updated. Otherwise, this bit as well | ||
5101 | * as the checksum must both be set correctly for this | ||
5102 | * validation to pass. | ||
5103 | */ | ||
5104 | e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); | ||
5105 | if ((eeprom_data & 0x40) == 0) { | ||
5106 | eeprom_data |= 0x40; | ||
5107 | e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); | ||
5108 | e1000_update_eeprom_checksum(hw); | ||
5109 | } | ||
5110 | } | ||
5111 | |||
5112 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
5113 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
4691 | DEBUGOUT("EEPROM Read Error\n"); | 5114 | DEBUGOUT("EEPROM Read Error\n"); |
4692 | return -E1000_ERR_EEPROM; | 5115 | return -E1000_ERR_EEPROM; |
4693 | } | 5116 | } |
@@ -4713,6 +5136,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
4713 | int32_t | 5136 | int32_t |
4714 | e1000_update_eeprom_checksum(struct e1000_hw *hw) | 5137 | e1000_update_eeprom_checksum(struct e1000_hw *hw) |
4715 | { | 5138 | { |
5139 | uint32_t ctrl_ext; | ||
4716 | uint16_t checksum = 0; | 5140 | uint16_t checksum = 0; |
4717 | uint16_t i, eeprom_data; | 5141 | uint16_t i, eeprom_data; |
4718 | 5142 | ||
@@ -4731,6 +5155,14 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw) | |||
4731 | return -E1000_ERR_EEPROM; | 5155 | return -E1000_ERR_EEPROM; |
4732 | } else if (hw->eeprom.type == e1000_eeprom_flash) { | 5156 | } else if (hw->eeprom.type == e1000_eeprom_flash) { |
4733 | e1000_commit_shadow_ram(hw); | 5157 | e1000_commit_shadow_ram(hw); |
5158 | } else if (hw->eeprom.type == e1000_eeprom_ich8) { | ||
5159 | e1000_commit_shadow_ram(hw); | ||
5160 | /* Reload the EEPROM, or else modifications will not appear | ||
5161 | * until after next adapter reset. */ | ||
5162 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
5163 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
5164 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
5165 | msec_delay(10); | ||
4734 | } | 5166 | } |
4735 | return E1000_SUCCESS; | 5167 | return E1000_SUCCESS; |
4736 | } | 5168 | } |
@@ -4770,6 +5202,9 @@ e1000_write_eeprom(struct e1000_hw *hw, | |||
4770 | if(eeprom->use_eewr == TRUE) | 5202 | if(eeprom->use_eewr == TRUE) |
4771 | return e1000_write_eeprom_eewr(hw, offset, words, data); | 5203 | return e1000_write_eeprom_eewr(hw, offset, words, data); |
4772 | 5204 | ||
5205 | if (eeprom->type == e1000_eeprom_ich8) | ||
5206 | return e1000_write_eeprom_ich8(hw, offset, words, data); | ||
5207 | |||
4773 | /* Prepare the EEPROM for writing */ | 5208 | /* Prepare the EEPROM for writing */ |
4774 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 5209 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
4775 | return -E1000_ERR_EEPROM; | 5210 | return -E1000_ERR_EEPROM; |
@@ -4957,11 +5392,17 @@ e1000_commit_shadow_ram(struct e1000_hw *hw) | |||
4957 | uint32_t flop = 0; | 5392 | uint32_t flop = 0; |
4958 | uint32_t i = 0; | 5393 | uint32_t i = 0; |
4959 | int32_t error = E1000_SUCCESS; | 5394 | int32_t error = E1000_SUCCESS; |
4960 | 5395 | uint32_t old_bank_offset = 0; | |
4961 | /* The flop register will be used to determine if flash type is STM */ | 5396 | uint32_t new_bank_offset = 0; |
4962 | flop = E1000_READ_REG(hw, FLOP); | 5397 | uint32_t sector_retries = 0; |
5398 | uint8_t low_byte = 0; | ||
5399 | uint8_t high_byte = 0; | ||
5400 | uint8_t temp_byte = 0; | ||
5401 | boolean_t sector_write_failed = FALSE; | ||
4963 | 5402 | ||
4964 | if (hw->mac_type == e1000_82573) { | 5403 | if (hw->mac_type == e1000_82573) { |
5404 | /* The flop register will be used to determine if flash type is STM */ | ||
5405 | flop = E1000_READ_REG(hw, FLOP); | ||
4965 | for (i=0; i < attempts; i++) { | 5406 | for (i=0; i < attempts; i++) { |
4966 | eecd = E1000_READ_REG(hw, EECD); | 5407 | eecd = E1000_READ_REG(hw, EECD); |
4967 | if ((eecd & E1000_EECD_FLUPD) == 0) { | 5408 | if ((eecd & E1000_EECD_FLUPD) == 0) { |
@@ -4995,6 +5436,106 @@ e1000_commit_shadow_ram(struct e1000_hw *hw) | |||
4995 | } | 5436 | } |
4996 | } | 5437 | } |
4997 | 5438 | ||
5439 | if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { | ||
5440 | /* We're writing to the opposite bank so if we're on bank 1, | ||
5441 | * write to bank 0 etc. We also need to erase the segment that | ||
5442 | * is going to be written */ | ||
5443 | if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { | ||
5444 | new_bank_offset = hw->flash_bank_size * 2; | ||
5445 | old_bank_offset = 0; | ||
5446 | e1000_erase_ich8_4k_segment(hw, 1); | ||
5447 | } else { | ||
5448 | old_bank_offset = hw->flash_bank_size * 2; | ||
5449 | new_bank_offset = 0; | ||
5450 | e1000_erase_ich8_4k_segment(hw, 0); | ||
5451 | } | ||
5452 | |||
5453 | do { | ||
5454 | sector_write_failed = FALSE; | ||
5455 | /* Loop for every byte in the shadow RAM, | ||
5456 | * which is in units of words. */ | ||
5457 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
5458 | /* Determine whether to write the value stored | ||
5459 | * in the other NVM bank or a modified value stored | ||
5460 | * in the shadow RAM */ | ||
5461 | if (hw->eeprom_shadow_ram[i].modified == TRUE) { | ||
5462 | low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; | ||
5463 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, | ||
5464 | &temp_byte); | ||
5465 | udelay(100); | ||
5466 | error = e1000_verify_write_ich8_byte(hw, | ||
5467 | (i << 1) + new_bank_offset, | ||
5468 | low_byte); | ||
5469 | if (error != E1000_SUCCESS) | ||
5470 | sector_write_failed = TRUE; | ||
5471 | high_byte = | ||
5472 | (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); | ||
5473 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, | ||
5474 | &temp_byte); | ||
5475 | udelay(100); | ||
5476 | } else { | ||
5477 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, | ||
5478 | &low_byte); | ||
5479 | udelay(100); | ||
5480 | error = e1000_verify_write_ich8_byte(hw, | ||
5481 | (i << 1) + new_bank_offset, low_byte); | ||
5482 | if (error != E1000_SUCCESS) | ||
5483 | sector_write_failed = TRUE; | ||
5484 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, | ||
5485 | &high_byte); | ||
5486 | } | ||
5487 | |||
5488 | /* If the word is 0x13, then make sure the signature bits | ||
5489 | * (15:14) are 11b until the commit has completed. | ||
5490 | * This will allow us to write 10b which indicates the | ||
5491 | * signature is valid. We want to do this after the write | ||
5492 | * has completed so that we don't mark the segment valid | ||
5493 | * while the write is still in progress */ | ||
5494 | if (i == E1000_ICH8_NVM_SIG_WORD) | ||
5495 | high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte; | ||
5496 | |||
5497 | error = e1000_verify_write_ich8_byte(hw, | ||
5498 | (i << 1) + new_bank_offset + 1, high_byte); | ||
5499 | if (error != E1000_SUCCESS) | ||
5500 | sector_write_failed = TRUE; | ||
5501 | |||
5502 | if (sector_write_failed == FALSE) { | ||
5503 | /* Clear the now not used entry in the cache */ | ||
5504 | hw->eeprom_shadow_ram[i].modified = FALSE; | ||
5505 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
5506 | } | ||
5507 | } | ||
5508 | |||
5509 | /* Don't bother writing the segment valid bits if sector | ||
5510 | * programming failed. */ | ||
5511 | if (sector_write_failed == FALSE) { | ||
5512 | /* Finally validate the new segment by setting bit 15:14 | ||
5513 | * to 10b in word 0x13 , this can be done without an | ||
5514 | * erase as well since these bits are 11 to start with | ||
5515 | * and we need to change bit 14 to 0b */ | ||
5516 | e1000_read_ich8_byte(hw, | ||
5517 | E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, | ||
5518 | &high_byte); | ||
5519 | high_byte &= 0xBF; | ||
5520 | error = e1000_verify_write_ich8_byte(hw, | ||
5521 | E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, | ||
5522 | high_byte); | ||
5523 | if (error != E1000_SUCCESS) | ||
5524 | sector_write_failed = TRUE; | ||
5525 | |||
5526 | /* And invalidate the previously valid segment by setting | ||
5527 | * its signature word (0x13) high_byte to 0b. This can be | ||
5528 | * done without an erase because flash erase sets all bits | ||
5529 | * to 1's. We can write 1's to 0's without an erase */ | ||
5530 | error = e1000_verify_write_ich8_byte(hw, | ||
5531 | E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset, | ||
5532 | 0); | ||
5533 | if (error != E1000_SUCCESS) | ||
5534 | sector_write_failed = TRUE; | ||
5535 | } | ||
5536 | } while (++sector_retries < 10 && sector_write_failed == TRUE); | ||
5537 | } | ||
5538 | |||
4998 | return error; | 5539 | return error; |
4999 | } | 5540 | } |
5000 | 5541 | ||
@@ -5102,15 +5643,19 @@ e1000_init_rx_addrs(struct e1000_hw *hw) | |||
5102 | * the other port. */ | 5643 | * the other port. */ |
5103 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) | 5644 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) |
5104 | rar_num -= 1; | 5645 | rar_num -= 1; |
5646 | if (hw->mac_type == e1000_ich8lan) | ||
5647 | rar_num = E1000_RAR_ENTRIES_ICH8LAN; | ||
5648 | |||
5105 | /* Zero out the other 15 receive addresses. */ | 5649 | /* Zero out the other 15 receive addresses. */ |
5106 | DEBUGOUT("Clearing RAR[1-15]\n"); | 5650 | DEBUGOUT("Clearing RAR[1-15]\n"); |
5107 | for(i = 1; i < rar_num; i++) { | 5651 | for(i = 1; i < rar_num; i++) { |
5108 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 5652 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
5653 | E1000_WRITE_FLUSH(hw); | ||
5109 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 5654 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
5655 | E1000_WRITE_FLUSH(hw); | ||
5110 | } | 5656 | } |
5111 | } | 5657 | } |
5112 | 5658 | ||
5113 | #if 0 | ||
5114 | /****************************************************************************** | 5659 | /****************************************************************************** |
5115 | * Updates the MAC's list of multicast addresses. | 5660 | * Updates the MAC's list of multicast addresses. |
5116 | * | 5661 | * |
@@ -5125,6 +5670,7 @@ e1000_init_rx_addrs(struct e1000_hw *hw) | |||
5125 | * for the first 15 multicast addresses, and hashes the rest into the | 5670 | * for the first 15 multicast addresses, and hashes the rest into the |
5126 | * multicast table. | 5671 | * multicast table. |
5127 | *****************************************************************************/ | 5672 | *****************************************************************************/ |
5673 | #if 0 | ||
5128 | void | 5674 | void |
5129 | e1000_mc_addr_list_update(struct e1000_hw *hw, | 5675 | e1000_mc_addr_list_update(struct e1000_hw *hw, |
5130 | uint8_t *mc_addr_list, | 5676 | uint8_t *mc_addr_list, |
@@ -5145,6 +5691,8 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
5145 | /* Clear RAR[1-15] */ | 5691 | /* Clear RAR[1-15] */ |
5146 | DEBUGOUT(" Clearing RAR[1-15]\n"); | 5692 | DEBUGOUT(" Clearing RAR[1-15]\n"); |
5147 | num_rar_entry = E1000_RAR_ENTRIES; | 5693 | num_rar_entry = E1000_RAR_ENTRIES; |
5694 | if (hw->mac_type == e1000_ich8lan) | ||
5695 | num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN; | ||
5148 | /* Reserve a spot for the Locally Administered Address to work around | 5696 | /* Reserve a spot for the Locally Administered Address to work around |
5149 | * an 82571 issue in which a reset on one port will reload the MAC on | 5697 | * an 82571 issue in which a reset on one port will reload the MAC on |
5150 | * the other port. */ | 5698 | * the other port. */ |
@@ -5153,14 +5701,19 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
5153 | 5701 | ||
5154 | for(i = rar_used_count; i < num_rar_entry; i++) { | 5702 | for(i = rar_used_count; i < num_rar_entry; i++) { |
5155 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 5703 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
5704 | E1000_WRITE_FLUSH(hw); | ||
5156 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 5705 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
5706 | E1000_WRITE_FLUSH(hw); | ||
5157 | } | 5707 | } |
5158 | 5708 | ||
5159 | /* Clear the MTA */ | 5709 | /* Clear the MTA */ |
5160 | DEBUGOUT(" Clearing MTA\n"); | 5710 | DEBUGOUT(" Clearing MTA\n"); |
5161 | num_mta_entry = E1000_NUM_MTA_REGISTERS; | 5711 | num_mta_entry = E1000_NUM_MTA_REGISTERS; |
5712 | if (hw->mac_type == e1000_ich8lan) | ||
5713 | num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; | ||
5162 | for(i = 0; i < num_mta_entry; i++) { | 5714 | for(i = 0; i < num_mta_entry; i++) { |
5163 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 5715 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
5716 | E1000_WRITE_FLUSH(hw); | ||
5164 | } | 5717 | } |
5165 | 5718 | ||
5166 | /* Add the new addresses */ | 5719 | /* Add the new addresses */ |
@@ -5217,24 +5770,46 @@ e1000_hash_mc_addr(struct e1000_hw *hw, | |||
5217 | * LSB MSB | 5770 | * LSB MSB |
5218 | */ | 5771 | */ |
5219 | case 0: | 5772 | case 0: |
5220 | /* [47:36] i.e. 0x563 for above example address */ | 5773 | if (hw->mac_type == e1000_ich8lan) { |
5221 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | 5774 | /* [47:38] i.e. 0x158 for above example address */ |
5775 | hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); | ||
5776 | } else { | ||
5777 | /* [47:36] i.e. 0x563 for above example address */ | ||
5778 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | ||
5779 | } | ||
5222 | break; | 5780 | break; |
5223 | case 1: | 5781 | case 1: |
5224 | /* [46:35] i.e. 0xAC6 for above example address */ | 5782 | if (hw->mac_type == e1000_ich8lan) { |
5225 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | 5783 | /* [46:37] i.e. 0x2B1 for above example address */ |
5784 | hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); | ||
5785 | } else { | ||
5786 | /* [46:35] i.e. 0xAC6 for above example address */ | ||
5787 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | ||
5788 | } | ||
5226 | break; | 5789 | break; |
5227 | case 2: | 5790 | case 2: |
5228 | /* [45:34] i.e. 0x5D8 for above example address */ | 5791 | if (hw->mac_type == e1000_ich8lan) { |
5229 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | 5792 | /*[45:36] i.e. 0x163 for above example address */ |
5793 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | ||
5794 | } else { | ||
5795 | /* [45:34] i.e. 0x5D8 for above example address */ | ||
5796 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | ||
5797 | } | ||
5230 | break; | 5798 | break; |
5231 | case 3: | 5799 | case 3: |
5232 | /* [43:32] i.e. 0x634 for above example address */ | 5800 | if (hw->mac_type == e1000_ich8lan) { |
5233 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | 5801 | /* [43:34] i.e. 0x18D for above example address */ |
5802 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | ||
5803 | } else { | ||
5804 | /* [43:32] i.e. 0x634 for above example address */ | ||
5805 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | ||
5806 | } | ||
5234 | break; | 5807 | break; |
5235 | } | 5808 | } |
5236 | 5809 | ||
5237 | hash_value &= 0xFFF; | 5810 | hash_value &= 0xFFF; |
5811 | if (hw->mac_type == e1000_ich8lan) | ||
5812 | hash_value &= 0x3FF; | ||
5238 | 5813 | ||
5239 | return hash_value; | 5814 | return hash_value; |
5240 | } | 5815 | } |
@@ -5262,6 +5837,8 @@ e1000_mta_set(struct e1000_hw *hw, | |||
5262 | * register are determined by the lower 5 bits of the value. | 5837 | * register are determined by the lower 5 bits of the value. |
5263 | */ | 5838 | */ |
5264 | hash_reg = (hash_value >> 5) & 0x7F; | 5839 | hash_reg = (hash_value >> 5) & 0x7F; |
5840 | if (hw->mac_type == e1000_ich8lan) | ||
5841 | hash_reg &= 0x1F; | ||
5265 | hash_bit = hash_value & 0x1F; | 5842 | hash_bit = hash_value & 0x1F; |
5266 | 5843 | ||
5267 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); | 5844 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); |
@@ -5275,9 +5852,12 @@ e1000_mta_set(struct e1000_hw *hw, | |||
5275 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { | 5852 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { |
5276 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); | 5853 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); |
5277 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 5854 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
5855 | E1000_WRITE_FLUSH(hw); | ||
5278 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); | 5856 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); |
5857 | E1000_WRITE_FLUSH(hw); | ||
5279 | } else { | 5858 | } else { |
5280 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 5859 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
5860 | E1000_WRITE_FLUSH(hw); | ||
5281 | } | 5861 | } |
5282 | } | 5862 | } |
5283 | 5863 | ||
@@ -5334,7 +5914,9 @@ e1000_rar_set(struct e1000_hw *hw, | |||
5334 | } | 5914 | } |
5335 | 5915 | ||
5336 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | 5916 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
5917 | E1000_WRITE_FLUSH(hw); | ||
5337 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | 5918 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
5919 | E1000_WRITE_FLUSH(hw); | ||
5338 | } | 5920 | } |
5339 | 5921 | ||
5340 | /****************************************************************************** | 5922 | /****************************************************************************** |
@@ -5351,12 +5933,18 @@ e1000_write_vfta(struct e1000_hw *hw, | |||
5351 | { | 5933 | { |
5352 | uint32_t temp; | 5934 | uint32_t temp; |
5353 | 5935 | ||
5354 | if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 5936 | if (hw->mac_type == e1000_ich8lan) |
5937 | return; | ||
5938 | |||
5939 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | ||
5355 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 5940 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
5356 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 5941 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
5942 | E1000_WRITE_FLUSH(hw); | ||
5357 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 5943 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
5944 | E1000_WRITE_FLUSH(hw); | ||
5358 | } else { | 5945 | } else { |
5359 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 5946 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
5947 | E1000_WRITE_FLUSH(hw); | ||
5360 | } | 5948 | } |
5361 | } | 5949 | } |
5362 | 5950 | ||
@@ -5373,6 +5961,9 @@ e1000_clear_vfta(struct e1000_hw *hw) | |||
5373 | uint32_t vfta_offset = 0; | 5961 | uint32_t vfta_offset = 0; |
5374 | uint32_t vfta_bit_in_reg = 0; | 5962 | uint32_t vfta_bit_in_reg = 0; |
5375 | 5963 | ||
5964 | if (hw->mac_type == e1000_ich8lan) | ||
5965 | return; | ||
5966 | |||
5376 | if (hw->mac_type == e1000_82573) { | 5967 | if (hw->mac_type == e1000_82573) { |
5377 | if (hw->mng_cookie.vlan_id != 0) { | 5968 | if (hw->mng_cookie.vlan_id != 0) { |
5378 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | 5969 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN |
@@ -5392,6 +5983,7 @@ e1000_clear_vfta(struct e1000_hw *hw) | |||
5392 | * manageability unit */ | 5983 | * manageability unit */ |
5393 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 5984 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
5394 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | 5985 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
5986 | E1000_WRITE_FLUSH(hw); | ||
5395 | } | 5987 | } |
5396 | } | 5988 | } |
5397 | 5989 | ||
@@ -5421,9 +6013,18 @@ e1000_id_led_init(struct e1000_hw * hw) | |||
5421 | DEBUGOUT("EEPROM Read Error\n"); | 6013 | DEBUGOUT("EEPROM Read Error\n"); |
5422 | return -E1000_ERR_EEPROM; | 6014 | return -E1000_ERR_EEPROM; |
5423 | } | 6015 | } |
5424 | if((eeprom_data== ID_LED_RESERVED_0000) || | 6016 | |
5425 | (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; | 6017 | if ((hw->mac_type == e1000_82573) && |
5426 | for(i = 0; i < 4; i++) { | 6018 | (eeprom_data == ID_LED_RESERVED_82573)) |
6019 | eeprom_data = ID_LED_DEFAULT_82573; | ||
6020 | else if ((eeprom_data == ID_LED_RESERVED_0000) || | ||
6021 | (eeprom_data == ID_LED_RESERVED_FFFF)) { | ||
6022 | if (hw->mac_type == e1000_ich8lan) | ||
6023 | eeprom_data = ID_LED_DEFAULT_ICH8LAN; | ||
6024 | else | ||
6025 | eeprom_data = ID_LED_DEFAULT; | ||
6026 | } | ||
6027 | for (i = 0; i < 4; i++) { | ||
5427 | temp = (eeprom_data >> (i << 2)) & led_mask; | 6028 | temp = (eeprom_data >> (i << 2)) & led_mask; |
5428 | switch(temp) { | 6029 | switch(temp) { |
5429 | case ID_LED_ON1_DEF2: | 6030 | case ID_LED_ON1_DEF2: |
@@ -5519,6 +6120,44 @@ e1000_setup_led(struct e1000_hw *hw) | |||
5519 | } | 6120 | } |
5520 | 6121 | ||
5521 | /****************************************************************************** | 6122 | /****************************************************************************** |
6123 | * Used on 82571 and later Si that has LED blink bits. | ||
6124 | * Callers must use their own timer and should have already called | ||
6125 | * e1000_id_led_init() | ||
6126 | * Call e1000_cleanup led() to stop blinking | ||
6127 | * | ||
6128 | * hw - Struct containing variables accessed by shared code | ||
6129 | *****************************************************************************/ | ||
6130 | int32_t | ||
6131 | e1000_blink_led_start(struct e1000_hw *hw) | ||
6132 | { | ||
6133 | int16_t i; | ||
6134 | uint32_t ledctl_blink = 0; | ||
6135 | |||
6136 | DEBUGFUNC("e1000_id_led_blink_on"); | ||
6137 | |||
6138 | if (hw->mac_type < e1000_82571) { | ||
6139 | /* Nothing to do */ | ||
6140 | return E1000_SUCCESS; | ||
6141 | } | ||
6142 | if (hw->media_type == e1000_media_type_fiber) { | ||
6143 | /* always blink LED0 for PCI-E fiber */ | ||
6144 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
6145 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
6146 | } else { | ||
6147 | /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ | ||
6148 | ledctl_blink = hw->ledctl_mode2; | ||
6149 | for (i=0; i < 4; i++) | ||
6150 | if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
6151 | E1000_LEDCTL_MODE_LED_ON) | ||
6152 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); | ||
6153 | } | ||
6154 | |||
6155 | E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); | ||
6156 | |||
6157 | return E1000_SUCCESS; | ||
6158 | } | ||
6159 | |||
6160 | /****************************************************************************** | ||
5522 | * Restores the saved state of the SW controlable LED. | 6161 | * Restores the saved state of the SW controlable LED. |
5523 | * | 6162 | * |
5524 | * hw - Struct containing variables accessed by shared code | 6163 | * hw - Struct containing variables accessed by shared code |
@@ -5548,6 +6187,10 @@ e1000_cleanup_led(struct e1000_hw *hw) | |||
5548 | return ret_val; | 6187 | return ret_val; |
5549 | /* Fall Through */ | 6188 | /* Fall Through */ |
5550 | default: | 6189 | default: |
6190 | if (hw->phy_type == e1000_phy_ife) { | ||
6191 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | ||
6192 | break; | ||
6193 | } | ||
5551 | /* Restore LEDCTL settings */ | 6194 | /* Restore LEDCTL settings */ |
5552 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); | 6195 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); |
5553 | break; | 6196 | break; |
@@ -5592,7 +6235,10 @@ e1000_led_on(struct e1000_hw *hw) | |||
5592 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 6235 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
5593 | ctrl &= ~E1000_CTRL_SWDPIN0; | 6236 | ctrl &= ~E1000_CTRL_SWDPIN0; |
5594 | ctrl |= E1000_CTRL_SWDPIO0; | 6237 | ctrl |= E1000_CTRL_SWDPIO0; |
5595 | } else if(hw->media_type == e1000_media_type_copper) { | 6238 | } else if (hw->phy_type == e1000_phy_ife) { |
6239 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
6240 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | ||
6241 | } else if (hw->media_type == e1000_media_type_copper) { | ||
5596 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); | 6242 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); |
5597 | return E1000_SUCCESS; | 6243 | return E1000_SUCCESS; |
5598 | } | 6244 | } |
@@ -5640,7 +6286,10 @@ e1000_led_off(struct e1000_hw *hw) | |||
5640 | /* Set SW Defineable Pin 0 to turn off the LED */ | 6286 | /* Set SW Defineable Pin 0 to turn off the LED */ |
5641 | ctrl |= E1000_CTRL_SWDPIN0; | 6287 | ctrl |= E1000_CTRL_SWDPIN0; |
5642 | ctrl |= E1000_CTRL_SWDPIO0; | 6288 | ctrl |= E1000_CTRL_SWDPIO0; |
5643 | } else if(hw->media_type == e1000_media_type_copper) { | 6289 | } else if (hw->phy_type == e1000_phy_ife) { |
6290 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
6291 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); | ||
6292 | } else if (hw->media_type == e1000_media_type_copper) { | ||
5644 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | 6293 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); |
5645 | return E1000_SUCCESS; | 6294 | return E1000_SUCCESS; |
5646 | } | 6295 | } |
@@ -5678,12 +6327,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
5678 | temp = E1000_READ_REG(hw, XOFFRXC); | 6327 | temp = E1000_READ_REG(hw, XOFFRXC); |
5679 | temp = E1000_READ_REG(hw, XOFFTXC); | 6328 | temp = E1000_READ_REG(hw, XOFFTXC); |
5680 | temp = E1000_READ_REG(hw, FCRUC); | 6329 | temp = E1000_READ_REG(hw, FCRUC); |
6330 | |||
6331 | if (hw->mac_type != e1000_ich8lan) { | ||
5681 | temp = E1000_READ_REG(hw, PRC64); | 6332 | temp = E1000_READ_REG(hw, PRC64); |
5682 | temp = E1000_READ_REG(hw, PRC127); | 6333 | temp = E1000_READ_REG(hw, PRC127); |
5683 | temp = E1000_READ_REG(hw, PRC255); | 6334 | temp = E1000_READ_REG(hw, PRC255); |
5684 | temp = E1000_READ_REG(hw, PRC511); | 6335 | temp = E1000_READ_REG(hw, PRC511); |
5685 | temp = E1000_READ_REG(hw, PRC1023); | 6336 | temp = E1000_READ_REG(hw, PRC1023); |
5686 | temp = E1000_READ_REG(hw, PRC1522); | 6337 | temp = E1000_READ_REG(hw, PRC1522); |
6338 | } | ||
6339 | |||
5687 | temp = E1000_READ_REG(hw, GPRC); | 6340 | temp = E1000_READ_REG(hw, GPRC); |
5688 | temp = E1000_READ_REG(hw, BPRC); | 6341 | temp = E1000_READ_REG(hw, BPRC); |
5689 | temp = E1000_READ_REG(hw, MPRC); | 6342 | temp = E1000_READ_REG(hw, MPRC); |
@@ -5703,12 +6356,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
5703 | temp = E1000_READ_REG(hw, TOTH); | 6356 | temp = E1000_READ_REG(hw, TOTH); |
5704 | temp = E1000_READ_REG(hw, TPR); | 6357 | temp = E1000_READ_REG(hw, TPR); |
5705 | temp = E1000_READ_REG(hw, TPT); | 6358 | temp = E1000_READ_REG(hw, TPT); |
6359 | |||
6360 | if (hw->mac_type != e1000_ich8lan) { | ||
5706 | temp = E1000_READ_REG(hw, PTC64); | 6361 | temp = E1000_READ_REG(hw, PTC64); |
5707 | temp = E1000_READ_REG(hw, PTC127); | 6362 | temp = E1000_READ_REG(hw, PTC127); |
5708 | temp = E1000_READ_REG(hw, PTC255); | 6363 | temp = E1000_READ_REG(hw, PTC255); |
5709 | temp = E1000_READ_REG(hw, PTC511); | 6364 | temp = E1000_READ_REG(hw, PTC511); |
5710 | temp = E1000_READ_REG(hw, PTC1023); | 6365 | temp = E1000_READ_REG(hw, PTC1023); |
5711 | temp = E1000_READ_REG(hw, PTC1522); | 6366 | temp = E1000_READ_REG(hw, PTC1522); |
6367 | } | ||
6368 | |||
5712 | temp = E1000_READ_REG(hw, MPTC); | 6369 | temp = E1000_READ_REG(hw, MPTC); |
5713 | temp = E1000_READ_REG(hw, BPTC); | 6370 | temp = E1000_READ_REG(hw, BPTC); |
5714 | 6371 | ||
@@ -5731,6 +6388,9 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
5731 | 6388 | ||
5732 | temp = E1000_READ_REG(hw, IAC); | 6389 | temp = E1000_READ_REG(hw, IAC); |
5733 | temp = E1000_READ_REG(hw, ICRXOC); | 6390 | temp = E1000_READ_REG(hw, ICRXOC); |
6391 | |||
6392 | if (hw->mac_type == e1000_ich8lan) return; | ||
6393 | |||
5734 | temp = E1000_READ_REG(hw, ICRXPTC); | 6394 | temp = E1000_READ_REG(hw, ICRXPTC); |
5735 | temp = E1000_READ_REG(hw, ICRXATC); | 6395 | temp = E1000_READ_REG(hw, ICRXATC); |
5736 | temp = E1000_READ_REG(hw, ICTXPTC); | 6396 | temp = E1000_READ_REG(hw, ICTXPTC); |
@@ -5911,6 +6571,7 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
5911 | hw->bus_width = e1000_bus_width_pciex_1; | 6571 | hw->bus_width = e1000_bus_width_pciex_1; |
5912 | break; | 6572 | break; |
5913 | case e1000_82571: | 6573 | case e1000_82571: |
6574 | case e1000_ich8lan: | ||
5914 | case e1000_80003es2lan: | 6575 | case e1000_80003es2lan: |
5915 | hw->bus_type = e1000_bus_type_pci_express; | 6576 | hw->bus_type = e1000_bus_type_pci_express; |
5916 | hw->bus_speed = e1000_bus_speed_2500; | 6577 | hw->bus_speed = e1000_bus_speed_2500; |
@@ -5948,8 +6609,6 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
5948 | break; | 6609 | break; |
5949 | } | 6610 | } |
5950 | } | 6611 | } |
5951 | |||
5952 | #if 0 | ||
5953 | /****************************************************************************** | 6612 | /****************************************************************************** |
5954 | * Reads a value from one of the devices registers using port I/O (as opposed | 6613 | * Reads a value from one of the devices registers using port I/O (as opposed |
5955 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 6614 | * memory mapped I/O). Only 82544 and newer devices support port I/O. |
@@ -5957,6 +6616,7 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
5957 | * hw - Struct containing variables accessed by shared code | 6616 | * hw - Struct containing variables accessed by shared code |
5958 | * offset - offset to read from | 6617 | * offset - offset to read from |
5959 | *****************************************************************************/ | 6618 | *****************************************************************************/ |
6619 | #if 0 | ||
5960 | uint32_t | 6620 | uint32_t |
5961 | e1000_read_reg_io(struct e1000_hw *hw, | 6621 | e1000_read_reg_io(struct e1000_hw *hw, |
5962 | uint32_t offset) | 6622 | uint32_t offset) |
@@ -6012,8 +6672,6 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6012 | { | 6672 | { |
6013 | int32_t ret_val; | 6673 | int32_t ret_val; |
6014 | uint16_t agc_value = 0; | 6674 | uint16_t agc_value = 0; |
6015 | uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | ||
6016 | uint16_t max_agc = 0; | ||
6017 | uint16_t i, phy_data; | 6675 | uint16_t i, phy_data; |
6018 | uint16_t cable_length; | 6676 | uint16_t cable_length; |
6019 | 6677 | ||
@@ -6086,6 +6744,8 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6086 | break; | 6744 | break; |
6087 | } | 6745 | } |
6088 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | 6746 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
6747 | uint16_t cur_agc_value; | ||
6748 | uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | ||
6089 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 6749 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
6090 | {IGP01E1000_PHY_AGC_A, | 6750 | {IGP01E1000_PHY_AGC_A, |
6091 | IGP01E1000_PHY_AGC_B, | 6751 | IGP01E1000_PHY_AGC_B, |
@@ -6098,23 +6758,23 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6098 | if(ret_val) | 6758 | if(ret_val) |
6099 | return ret_val; | 6759 | return ret_val; |
6100 | 6760 | ||
6101 | cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 6761 | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
6102 | 6762 | ||
6103 | /* Array bound check. */ | 6763 | /* Value bound check. */ |
6104 | if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | 6764 | if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || |
6105 | (cur_agc == 0)) | 6765 | (cur_agc_value == 0)) |
6106 | return -E1000_ERR_PHY; | 6766 | return -E1000_ERR_PHY; |
6107 | 6767 | ||
6108 | agc_value += cur_agc; | 6768 | agc_value += cur_agc_value; |
6109 | 6769 | ||
6110 | /* Update minimal AGC value. */ | 6770 | /* Update minimal AGC value. */ |
6111 | if(min_agc > cur_agc) | 6771 | if (min_agc_value > cur_agc_value) |
6112 | min_agc = cur_agc; | 6772 | min_agc_value = cur_agc_value; |
6113 | } | 6773 | } |
6114 | 6774 | ||
6115 | /* Remove the minimal AGC result for length < 50m */ | 6775 | /* Remove the minimal AGC result for length < 50m */ |
6116 | if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | 6776 | if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
6117 | agc_value -= min_agc; | 6777 | agc_value -= min_agc_value; |
6118 | 6778 | ||
6119 | /* Get the average length of the remaining 3 channels */ | 6779 | /* Get the average length of the remaining 3 channels */ |
6120 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | 6780 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
@@ -6130,7 +6790,10 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6130 | IGP01E1000_AGC_RANGE) : 0; | 6790 | IGP01E1000_AGC_RANGE) : 0; |
6131 | *max_length = e1000_igp_cable_length_table[agc_value] + | 6791 | *max_length = e1000_igp_cable_length_table[agc_value] + |
6132 | IGP01E1000_AGC_RANGE; | 6792 | IGP01E1000_AGC_RANGE; |
6133 | } else if (hw->phy_type == e1000_phy_igp_2) { | 6793 | } else if (hw->phy_type == e1000_phy_igp_2 || |
6794 | hw->phy_type == e1000_phy_igp_3) { | ||
6795 | uint16_t cur_agc_index, max_agc_index = 0; | ||
6796 | uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; | ||
6134 | uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | 6797 | uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = |
6135 | {IGP02E1000_PHY_AGC_A, | 6798 | {IGP02E1000_PHY_AGC_A, |
6136 | IGP02E1000_PHY_AGC_B, | 6799 | IGP02E1000_PHY_AGC_B, |
@@ -6145,19 +6808,27 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
6145 | /* Getting bits 15:9, which represent the combination of course and | 6808 | /* Getting bits 15:9, which represent the combination of course and |
6146 | * fine gain values. The result is a number that can be put into | 6809 | * fine gain values. The result is a number that can be put into |
6147 | * the lookup table to obtain the approximate cable length. */ | 6810 | * the lookup table to obtain the approximate cable length. */ |
6148 | cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | 6811 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & |
6149 | IGP02E1000_AGC_LENGTH_MASK; | 6812 | IGP02E1000_AGC_LENGTH_MASK; |
6150 | 6813 | ||
6151 | /* Remove min & max AGC values from calculation. */ | 6814 | /* Array index bound check. */ |
6152 | if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc]) | 6815 | if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || |
6153 | min_agc = cur_agc; | 6816 | (cur_agc_index == 0)) |
6154 | if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc]) | 6817 | return -E1000_ERR_PHY; |
6155 | max_agc = cur_agc; | ||
6156 | 6818 | ||
6157 | agc_value += e1000_igp_2_cable_length_table[cur_agc]; | 6819 | /* Remove min & max AGC values from calculation. */ |
6820 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
6821 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
6822 | min_agc_index = cur_agc_index; | ||
6823 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
6824 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
6825 | max_agc_index = cur_agc_index; | ||
6826 | |||
6827 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
6158 | } | 6828 | } |
6159 | 6829 | ||
6160 | agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]); | 6830 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + |
6831 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
6161 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | 6832 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); |
6162 | 6833 | ||
6163 | /* Calculate cable length with the error range of +/- 10 meters. */ | 6834 | /* Calculate cable length with the error range of +/- 10 meters. */ |
@@ -6203,7 +6874,8 @@ e1000_check_polarity(struct e1000_hw *hw, | |||
6203 | return ret_val; | 6874 | return ret_val; |
6204 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | 6875 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> |
6205 | M88E1000_PSSR_REV_POLARITY_SHIFT; | 6876 | M88E1000_PSSR_REV_POLARITY_SHIFT; |
6206 | } else if(hw->phy_type == e1000_phy_igp || | 6877 | } else if (hw->phy_type == e1000_phy_igp || |
6878 | hw->phy_type == e1000_phy_igp_3 || | ||
6207 | hw->phy_type == e1000_phy_igp_2) { | 6879 | hw->phy_type == e1000_phy_igp_2) { |
6208 | /* Read the Status register to check the speed */ | 6880 | /* Read the Status register to check the speed */ |
6209 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 6881 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
@@ -6229,6 +6901,13 @@ e1000_check_polarity(struct e1000_hw *hw, | |||
6229 | * 100 Mbps this bit is always 0) */ | 6901 | * 100 Mbps this bit is always 0) */ |
6230 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; | 6902 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; |
6231 | } | 6903 | } |
6904 | } else if (hw->phy_type == e1000_phy_ife) { | ||
6905 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, | ||
6906 | &phy_data); | ||
6907 | if (ret_val) | ||
6908 | return ret_val; | ||
6909 | *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >> | ||
6910 | IFE_PESC_POLARITY_REVERSED_SHIFT; | ||
6232 | } | 6911 | } |
6233 | return E1000_SUCCESS; | 6912 | return E1000_SUCCESS; |
6234 | } | 6913 | } |
@@ -6256,7 +6935,8 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
6256 | 6935 | ||
6257 | DEBUGFUNC("e1000_check_downshift"); | 6936 | DEBUGFUNC("e1000_check_downshift"); |
6258 | 6937 | ||
6259 | if(hw->phy_type == e1000_phy_igp || | 6938 | if (hw->phy_type == e1000_phy_igp || |
6939 | hw->phy_type == e1000_phy_igp_3 || | ||
6260 | hw->phy_type == e1000_phy_igp_2) { | 6940 | hw->phy_type == e1000_phy_igp_2) { |
6261 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 6941 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
6262 | &phy_data); | 6942 | &phy_data); |
@@ -6273,6 +6953,9 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
6273 | 6953 | ||
6274 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 6954 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
6275 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 6955 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
6956 | } else if (hw->phy_type == e1000_phy_ife) { | ||
6957 | /* e1000_phy_ife supports 10/100 speed only */ | ||
6958 | hw->speed_downgraded = FALSE; | ||
6276 | } | 6959 | } |
6277 | 6960 | ||
6278 | return E1000_SUCCESS; | 6961 | return E1000_SUCCESS; |
@@ -6317,7 +7000,9 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
6317 | 7000 | ||
6318 | if(speed == SPEED_1000) { | 7001 | if(speed == SPEED_1000) { |
6319 | 7002 | ||
6320 | e1000_get_cable_length(hw, &min_length, &max_length); | 7003 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
7004 | if (ret_val) | ||
7005 | return ret_val; | ||
6321 | 7006 | ||
6322 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && | 7007 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && |
6323 | min_length >= e1000_igp_cable_length_50) { | 7008 | min_length >= e1000_igp_cable_length_50) { |
@@ -6525,20 +7210,27 @@ static int32_t | |||
6525 | e1000_set_d3_lplu_state(struct e1000_hw *hw, | 7210 | e1000_set_d3_lplu_state(struct e1000_hw *hw, |
6526 | boolean_t active) | 7211 | boolean_t active) |
6527 | { | 7212 | { |
7213 | uint32_t phy_ctrl = 0; | ||
6528 | int32_t ret_val; | 7214 | int32_t ret_val; |
6529 | uint16_t phy_data; | 7215 | uint16_t phy_data; |
6530 | DEBUGFUNC("e1000_set_d3_lplu_state"); | 7216 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
6531 | 7217 | ||
6532 | if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) | 7218 | if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 |
7219 | && hw->phy_type != e1000_phy_igp_3) | ||
6533 | return E1000_SUCCESS; | 7220 | return E1000_SUCCESS; |
6534 | 7221 | ||
6535 | /* During driver activity LPLU should not be used or it will attain link | 7222 | /* During driver activity LPLU should not be used or it will attain link |
6536 | * from the lowest speeds starting from 10Mbps. The capability is used for | 7223 | * from the lowest speeds starting from 10Mbps. The capability is used for |
6537 | * Dx transitions and states */ | 7224 | * Dx transitions and states */ |
6538 | if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { | 7225 | if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { |
6539 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 7226 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
6540 | if(ret_val) | 7227 | if (ret_val) |
6541 | return ret_val; | 7228 | return ret_val; |
7229 | } else if (hw->mac_type == e1000_ich8lan) { | ||
7230 | /* MAC writes into PHY register based on the state transition | ||
7231 | * and start auto-negotiation. SW driver can overwrite the settings | ||
7232 | * in CSR PHY power control E1000_PHY_CTRL register. */ | ||
7233 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); | ||
6542 | } else { | 7234 | } else { |
6543 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 7235 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
6544 | if(ret_val) | 7236 | if(ret_val) |
@@ -6553,11 +7245,16 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
6553 | if(ret_val) | 7245 | if(ret_val) |
6554 | return ret_val; | 7246 | return ret_val; |
6555 | } else { | 7247 | } else { |
7248 | if (hw->mac_type == e1000_ich8lan) { | ||
7249 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | ||
7250 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
7251 | } else { | ||
6556 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | 7252 | phy_data &= ~IGP02E1000_PM_D3_LPLU; |
6557 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 7253 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
6558 | phy_data); | 7254 | phy_data); |
6559 | if (ret_val) | 7255 | if (ret_val) |
6560 | return ret_val; | 7256 | return ret_val; |
7257 | } | ||
6561 | } | 7258 | } |
6562 | 7259 | ||
6563 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 7260 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
@@ -6593,17 +7290,22 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
6593 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 7290 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
6594 | 7291 | ||
6595 | if(hw->mac_type == e1000_82541_rev_2 || | 7292 | if(hw->mac_type == e1000_82541_rev_2 || |
6596 | hw->mac_type == e1000_82547_rev_2) { | 7293 | hw->mac_type == e1000_82547_rev_2) { |
6597 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 7294 | phy_data |= IGP01E1000_GMII_FLEX_SPD; |
6598 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 7295 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); |
6599 | if(ret_val) | 7296 | if(ret_val) |
6600 | return ret_val; | 7297 | return ret_val; |
6601 | } else { | 7298 | } else { |
7299 | if (hw->mac_type == e1000_ich8lan) { | ||
7300 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | ||
7301 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
7302 | } else { | ||
6602 | phy_data |= IGP02E1000_PM_D3_LPLU; | 7303 | phy_data |= IGP02E1000_PM_D3_LPLU; |
6603 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 7304 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
6604 | phy_data); | 7305 | phy_data); |
6605 | if (ret_val) | 7306 | if (ret_val) |
6606 | return ret_val; | 7307 | return ret_val; |
7308 | } | ||
6607 | } | 7309 | } |
6608 | 7310 | ||
6609 | /* When LPLU is enabled we should disable SmartSpeed */ | 7311 | /* When LPLU is enabled we should disable SmartSpeed */ |
@@ -6638,6 +7340,7 @@ static int32_t | |||
6638 | e1000_set_d0_lplu_state(struct e1000_hw *hw, | 7340 | e1000_set_d0_lplu_state(struct e1000_hw *hw, |
6639 | boolean_t active) | 7341 | boolean_t active) |
6640 | { | 7342 | { |
7343 | uint32_t phy_ctrl = 0; | ||
6641 | int32_t ret_val; | 7344 | int32_t ret_val; |
6642 | uint16_t phy_data; | 7345 | uint16_t phy_data; |
6643 | DEBUGFUNC("e1000_set_d0_lplu_state"); | 7346 | DEBUGFUNC("e1000_set_d0_lplu_state"); |
@@ -6645,15 +7348,24 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, | |||
6645 | if(hw->mac_type <= e1000_82547_rev_2) | 7348 | if(hw->mac_type <= e1000_82547_rev_2) |
6646 | return E1000_SUCCESS; | 7349 | return E1000_SUCCESS; |
6647 | 7350 | ||
7351 | if (hw->mac_type == e1000_ich8lan) { | ||
7352 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); | ||
7353 | } else { | ||
6648 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 7354 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
6649 | if(ret_val) | 7355 | if(ret_val) |
6650 | return ret_val; | 7356 | return ret_val; |
7357 | } | ||
6651 | 7358 | ||
6652 | if (!active) { | 7359 | if (!active) { |
7360 | if (hw->mac_type == e1000_ich8lan) { | ||
7361 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | ||
7362 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
7363 | } else { | ||
6653 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | 7364 | phy_data &= ~IGP02E1000_PM_D0_LPLU; |
6654 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 7365 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
6655 | if (ret_val) | 7366 | if (ret_val) |
6656 | return ret_val; | 7367 | return ret_val; |
7368 | } | ||
6657 | 7369 | ||
6658 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 7370 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
6659 | * Dx states where the power conservation is most important. During | 7371 | * Dx states where the power conservation is most important. During |
@@ -6686,10 +7398,15 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw, | |||
6686 | 7398 | ||
6687 | } else { | 7399 | } else { |
6688 | 7400 | ||
7401 | if (hw->mac_type == e1000_ich8lan) { | ||
7402 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | ||
7403 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | ||
7404 | } else { | ||
6689 | phy_data |= IGP02E1000_PM_D0_LPLU; | 7405 | phy_data |= IGP02E1000_PM_D0_LPLU; |
6690 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 7406 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
6691 | if (ret_val) | 7407 | if (ret_val) |
6692 | return ret_val; | 7408 | return ret_val; |
7409 | } | ||
6693 | 7410 | ||
6694 | /* When LPLU is enabled we should disable SmartSpeed */ | 7411 | /* When LPLU is enabled we should disable SmartSpeed */ |
6695 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 7412 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
@@ -6928,8 +7645,10 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw, | |||
6928 | 7645 | ||
6929 | length >>= 2; | 7646 | length >>= 2; |
6930 | /* The device driver writes the relevant command block into the ram area. */ | 7647 | /* The device driver writes the relevant command block into the ram area. */ |
6931 | for (i = 0; i < length; i++) | 7648 | for (i = 0; i < length; i++) { |
6932 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); | 7649 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); |
7650 | E1000_WRITE_FLUSH(hw); | ||
7651 | } | ||
6933 | 7652 | ||
6934 | return E1000_SUCCESS; | 7653 | return E1000_SUCCESS; |
6935 | } | 7654 | } |
@@ -6961,15 +7680,18 @@ e1000_mng_write_commit( | |||
6961 | * returns - TRUE when the mode is IAMT or FALSE. | 7680 | * returns - TRUE when the mode is IAMT or FALSE. |
6962 | ****************************************************************************/ | 7681 | ****************************************************************************/ |
6963 | boolean_t | 7682 | boolean_t |
6964 | e1000_check_mng_mode( | 7683 | e1000_check_mng_mode(struct e1000_hw *hw) |
6965 | struct e1000_hw *hw) | ||
6966 | { | 7684 | { |
6967 | uint32_t fwsm; | 7685 | uint32_t fwsm; |
6968 | 7686 | ||
6969 | fwsm = E1000_READ_REG(hw, FWSM); | 7687 | fwsm = E1000_READ_REG(hw, FWSM); |
6970 | 7688 | ||
6971 | if((fwsm & E1000_FWSM_MODE_MASK) == | 7689 | if (hw->mac_type == e1000_ich8lan) { |
6972 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | 7690 | if ((fwsm & E1000_FWSM_MODE_MASK) == |
7691 | (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
7692 | return TRUE; | ||
7693 | } else if ((fwsm & E1000_FWSM_MODE_MASK) == | ||
7694 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
6973 | return TRUE; | 7695 | return TRUE; |
6974 | 7696 | ||
6975 | return FALSE; | 7697 | return FALSE; |
@@ -7209,7 +7931,6 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw) | |||
7209 | E1000_WRITE_REG(hw, CTRL, ctrl); | 7931 | E1000_WRITE_REG(hw, CTRL, ctrl); |
7210 | } | 7932 | } |
7211 | 7933 | ||
7212 | #if 0 | ||
7213 | /*************************************************************************** | 7934 | /*************************************************************************** |
7214 | * | 7935 | * |
7215 | * Enables PCI-Express master access. | 7936 | * Enables PCI-Express master access. |
@@ -7219,6 +7940,7 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw) | |||
7219 | * returns: - none. | 7940 | * returns: - none. |
7220 | * | 7941 | * |
7221 | ***************************************************************************/ | 7942 | ***************************************************************************/ |
7943 | #if 0 | ||
7222 | void | 7944 | void |
7223 | e1000_enable_pciex_master(struct e1000_hw *hw) | 7945 | e1000_enable_pciex_master(struct e1000_hw *hw) |
7224 | { | 7946 | { |
@@ -7299,8 +8021,10 @@ e1000_get_auto_rd_done(struct e1000_hw *hw) | |||
7299 | case e1000_82572: | 8021 | case e1000_82572: |
7300 | case e1000_82573: | 8022 | case e1000_82573: |
7301 | case e1000_80003es2lan: | 8023 | case e1000_80003es2lan: |
7302 | while(timeout) { | 8024 | case e1000_ich8lan: |
7303 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; | 8025 | while (timeout) { |
8026 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) | ||
8027 | break; | ||
7304 | else msec_delay(1); | 8028 | else msec_delay(1); |
7305 | timeout--; | 8029 | timeout--; |
7306 | } | 8030 | } |
@@ -7340,7 +8064,7 @@ e1000_get_phy_cfg_done(struct e1000_hw *hw) | |||
7340 | 8064 | ||
7341 | switch (hw->mac_type) { | 8065 | switch (hw->mac_type) { |
7342 | default: | 8066 | default: |
7343 | msec_delay(10); | 8067 | msec_delay_irq(10); |
7344 | break; | 8068 | break; |
7345 | case e1000_80003es2lan: | 8069 | case e1000_80003es2lan: |
7346 | /* Separate *_CFG_DONE_* bit for each port */ | 8070 | /* Separate *_CFG_DONE_* bit for each port */ |
@@ -7457,7 +8181,7 @@ e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | |||
7457 | * E1000_SUCCESS at any other case. | 8181 | * E1000_SUCCESS at any other case. |
7458 | * | 8182 | * |
7459 | ***************************************************************************/ | 8183 | ***************************************************************************/ |
7460 | int32_t | 8184 | static int32_t |
7461 | e1000_get_software_semaphore(struct e1000_hw *hw) | 8185 | e1000_get_software_semaphore(struct e1000_hw *hw) |
7462 | { | 8186 | { |
7463 | int32_t timeout = hw->eeprom.word_size + 1; | 8187 | int32_t timeout = hw->eeprom.word_size + 1; |
@@ -7492,7 +8216,7 @@ e1000_get_software_semaphore(struct e1000_hw *hw) | |||
7492 | * hw: Struct containing variables accessed by shared code | 8216 | * hw: Struct containing variables accessed by shared code |
7493 | * | 8217 | * |
7494 | ***************************************************************************/ | 8218 | ***************************************************************************/ |
7495 | void | 8219 | static void |
7496 | e1000_release_software_semaphore(struct e1000_hw *hw) | 8220 | e1000_release_software_semaphore(struct e1000_hw *hw) |
7497 | { | 8221 | { |
7498 | uint32_t swsm; | 8222 | uint32_t swsm; |
@@ -7523,6 +8247,13 @@ int32_t | |||
7523 | e1000_check_phy_reset_block(struct e1000_hw *hw) | 8247 | e1000_check_phy_reset_block(struct e1000_hw *hw) |
7524 | { | 8248 | { |
7525 | uint32_t manc = 0; | 8249 | uint32_t manc = 0; |
8250 | uint32_t fwsm = 0; | ||
8251 | |||
8252 | if (hw->mac_type == e1000_ich8lan) { | ||
8253 | fwsm = E1000_READ_REG(hw, FWSM); | ||
8254 | return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS | ||
8255 | : E1000_BLK_PHY_RESET; | ||
8256 | } | ||
7526 | 8257 | ||
7527 | if (hw->mac_type > e1000_82547_rev_2) | 8258 | if (hw->mac_type > e1000_82547_rev_2) |
7528 | manc = E1000_READ_REG(hw, MANC); | 8259 | manc = E1000_READ_REG(hw, MANC); |
@@ -7549,6 +8280,8 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) | |||
7549 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) | 8280 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) |
7550 | return TRUE; | 8281 | return TRUE; |
7551 | break; | 8282 | break; |
8283 | case e1000_ich8lan: | ||
8284 | return TRUE; | ||
7552 | default: | 8285 | default: |
7553 | break; | 8286 | break; |
7554 | } | 8287 | } |
@@ -7556,4 +8289,854 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) | |||
7556 | } | 8289 | } |
7557 | 8290 | ||
7558 | 8291 | ||
8292 | /****************************************************************************** | ||
8293 | * Configure PCI-Ex no-snoop | ||
8294 | * | ||
8295 | * hw - Struct containing variables accessed by shared code. | ||
8296 | * no_snoop - Bitmap of no-snoop events. | ||
8297 | * | ||
8298 | * returns: E1000_SUCCESS | ||
8299 | * | ||
8300 | *****************************************************************************/ | ||
8301 | static int32_t | ||
8302 | e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop) | ||
8303 | { | ||
8304 | uint32_t gcr_reg = 0; | ||
8305 | |||
8306 | DEBUGFUNC("e1000_set_pci_ex_no_snoop"); | ||
8307 | |||
8308 | if (hw->bus_type == e1000_bus_type_unknown) | ||
8309 | e1000_get_bus_info(hw); | ||
8310 | |||
8311 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
8312 | return E1000_SUCCESS; | ||
8313 | |||
8314 | if (no_snoop) { | ||
8315 | gcr_reg = E1000_READ_REG(hw, GCR); | ||
8316 | gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); | ||
8317 | gcr_reg |= no_snoop; | ||
8318 | E1000_WRITE_REG(hw, GCR, gcr_reg); | ||
8319 | } | ||
8320 | if (hw->mac_type == e1000_ich8lan) { | ||
8321 | uint32_t ctrl_ext; | ||
8322 | |||
8323 | E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); | ||
8324 | |||
8325 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
8326 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | ||
8327 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
8328 | } | ||
8329 | |||
8330 | return E1000_SUCCESS; | ||
8331 | } | ||
8332 | |||
8333 | /*************************************************************************** | ||
8334 | * | ||
8335 | * Get software semaphore FLAG bit (SWFLAG). | ||
8336 | * SWFLAG is used to synchronize the access to all shared resource between | ||
8337 | * SW, FW and HW. | ||
8338 | * | ||
8339 | * hw: Struct containing variables accessed by shared code | ||
8340 | * | ||
8341 | ***************************************************************************/ | ||
8342 | static int32_t | ||
8343 | e1000_get_software_flag(struct e1000_hw *hw) | ||
8344 | { | ||
8345 | int32_t timeout = PHY_CFG_TIMEOUT; | ||
8346 | uint32_t extcnf_ctrl; | ||
8347 | |||
8348 | DEBUGFUNC("e1000_get_software_flag"); | ||
8349 | |||
8350 | if (hw->mac_type == e1000_ich8lan) { | ||
8351 | while (timeout) { | ||
8352 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
8353 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | ||
8354 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | ||
8355 | |||
8356 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
8357 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | ||
8358 | break; | ||
8359 | msec_delay_irq(1); | ||
8360 | timeout--; | ||
8361 | } | ||
8362 | |||
8363 | if (!timeout) { | ||
8364 | DEBUGOUT("FW or HW locks the resource too long.\n"); | ||
8365 | return -E1000_ERR_CONFIG; | ||
8366 | } | ||
8367 | } | ||
8368 | |||
8369 | return E1000_SUCCESS; | ||
8370 | } | ||
8371 | |||
8372 | /*************************************************************************** | ||
8373 | * | ||
8374 | * Release software semaphore FLAG bit (SWFLAG). | ||
8375 | * SWFLAG is used to synchronize the access to all shared resource between | ||
8376 | * SW, FW and HW. | ||
8377 | * | ||
8378 | * hw: Struct containing variables accessed by shared code | ||
8379 | * | ||
8380 | ***************************************************************************/ | ||
8381 | static void | ||
8382 | e1000_release_software_flag(struct e1000_hw *hw) | ||
8383 | { | ||
8384 | uint32_t extcnf_ctrl; | ||
8385 | |||
8386 | DEBUGFUNC("e1000_release_software_flag"); | ||
8387 | |||
8388 | if (hw->mac_type == e1000_ich8lan) { | ||
8389 | extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); | ||
8390 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | ||
8391 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | ||
8392 | } | ||
8393 | |||
8394 | return; | ||
8395 | } | ||
8396 | |||
8397 | /*************************************************************************** | ||
8398 | * | ||
8399 | * Disable dynamic power down mode in ife PHY. | ||
8400 | * It can be used to workaround band-gap problem. | ||
8401 | * | ||
8402 | * hw: Struct containing variables accessed by shared code | ||
8403 | * | ||
8404 | ***************************************************************************/ | ||
8405 | #if 0 | ||
8406 | int32_t | ||
8407 | e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw) | ||
8408 | { | ||
8409 | uint16_t phy_data; | ||
8410 | int32_t ret_val = E1000_SUCCESS; | ||
8411 | |||
8412 | DEBUGFUNC("e1000_ife_disable_dynamic_power_down"); | ||
8413 | |||
8414 | if (hw->phy_type == e1000_phy_ife) { | ||
8415 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
8416 | if (ret_val) | ||
8417 | return ret_val; | ||
8418 | |||
8419 | phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; | ||
8420 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); | ||
8421 | } | ||
8422 | |||
8423 | return ret_val; | ||
8424 | } | ||
8425 | #endif /* 0 */ | ||
8426 | |||
8427 | /*************************************************************************** | ||
8428 | * | ||
8429 | * Enable dynamic power down mode in ife PHY. | ||
8430 | * It can be used to workaround band-gap problem. | ||
8431 | * | ||
8432 | * hw: Struct containing variables accessed by shared code | ||
8433 | * | ||
8434 | ***************************************************************************/ | ||
8435 | #if 0 | ||
8436 | int32_t | ||
8437 | e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw) | ||
8438 | { | ||
8439 | uint16_t phy_data; | ||
8440 | int32_t ret_val = E1000_SUCCESS; | ||
8441 | |||
8442 | DEBUGFUNC("e1000_ife_enable_dynamic_power_down"); | ||
8443 | |||
8444 | if (hw->phy_type == e1000_phy_ife) { | ||
8445 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
8446 | if (ret_val) | ||
8447 | return ret_val; | ||
8448 | |||
8449 | phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; | ||
8450 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); | ||
8451 | } | ||
8452 | |||
8453 | return ret_val; | ||
8454 | } | ||
8455 | #endif /* 0 */ | ||
8456 | |||
8457 | /****************************************************************************** | ||
8458 | * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access | ||
8459 | * register. | ||
8460 | * | ||
8461 | * hw - Struct containing variables accessed by shared code | ||
8462 | * offset - offset of word in the EEPROM to read | ||
8463 | * data - word read from the EEPROM | ||
8464 | * words - number of words to read | ||
8465 | *****************************************************************************/ | ||
8466 | static int32_t | ||
8467 | e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, | ||
8468 | uint16_t *data) | ||
8469 | { | ||
8470 | int32_t error = E1000_SUCCESS; | ||
8471 | uint32_t flash_bank = 0; | ||
8472 | uint32_t act_offset = 0; | ||
8473 | uint32_t bank_offset = 0; | ||
8474 | uint16_t word = 0; | ||
8475 | uint16_t i = 0; | ||
8476 | |||
8477 | /* We need to know which is the valid flash bank. In the event | ||
8478 | * that we didn't allocate eeprom_shadow_ram, we may not be | ||
8479 | * managing flash_bank. So it cannot be trusted and needs | ||
8480 | * to be updated with each read. | ||
8481 | */ | ||
8482 | /* Value of bit 22 corresponds to the flash bank we're on. */ | ||
8483 | flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; | ||
8484 | |||
8485 | /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ | ||
8486 | bank_offset = flash_bank * (hw->flash_bank_size * 2); | ||
8487 | |||
8488 | error = e1000_get_software_flag(hw); | ||
8489 | if (error != E1000_SUCCESS) | ||
8490 | return error; | ||
8491 | |||
8492 | for (i = 0; i < words; i++) { | ||
8493 | if (hw->eeprom_shadow_ram != NULL && | ||
8494 | hw->eeprom_shadow_ram[offset+i].modified == TRUE) { | ||
8495 | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | ||
8496 | } else { | ||
8497 | /* The NVM part needs a byte offset, hence * 2 */ | ||
8498 | act_offset = bank_offset + ((offset + i) * 2); | ||
8499 | error = e1000_read_ich8_word(hw, act_offset, &word); | ||
8500 | if (error != E1000_SUCCESS) | ||
8501 | break; | ||
8502 | data[i] = word; | ||
8503 | } | ||
8504 | } | ||
8505 | |||
8506 | e1000_release_software_flag(hw); | ||
8507 | |||
8508 | return error; | ||
8509 | } | ||
8510 | |||
8511 | /****************************************************************************** | ||
8512 | * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access | ||
8513 | * register. Actually, writes are written to the shadow ram cache in the hw | ||
8514 | * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to | ||
8515 | * the NVM, which occurs when the NVM checksum is updated. | ||
8516 | * | ||
8517 | * hw - Struct containing variables accessed by shared code | ||
8518 | * offset - offset of word in the EEPROM to write | ||
8519 | * words - number of words to write | ||
8520 | * data - words to write to the EEPROM | ||
8521 | *****************************************************************************/ | ||
8522 | static int32_t | ||
8523 | e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, | ||
8524 | uint16_t *data) | ||
8525 | { | ||
8526 | uint32_t i = 0; | ||
8527 | int32_t error = E1000_SUCCESS; | ||
8528 | |||
8529 | error = e1000_get_software_flag(hw); | ||
8530 | if (error != E1000_SUCCESS) | ||
8531 | return error; | ||
8532 | |||
8533 | /* A driver can write to the NVM only if it has eeprom_shadow_ram | ||
8534 | * allocated. Subsequent reads to the modified words are read from | ||
8535 | * this cached structure as well. Writes will only go into this | ||
8536 | * cached structure unless it's followed by a call to | ||
8537 | * e1000_update_eeprom_checksum() where it will commit the changes | ||
8538 | * and clear the "modified" field. | ||
8539 | */ | ||
8540 | if (hw->eeprom_shadow_ram != NULL) { | ||
8541 | for (i = 0; i < words; i++) { | ||
8542 | if ((offset + i) < E1000_SHADOW_RAM_WORDS) { | ||
8543 | hw->eeprom_shadow_ram[offset+i].modified = TRUE; | ||
8544 | hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; | ||
8545 | } else { | ||
8546 | error = -E1000_ERR_EEPROM; | ||
8547 | break; | ||
8548 | } | ||
8549 | } | ||
8550 | } else { | ||
8551 | /* Drivers have the option to not allocate eeprom_shadow_ram as long | ||
8552 | * as they don't perform any NVM writes. An attempt in doing so | ||
8553 | * will result in this error. | ||
8554 | */ | ||
8555 | error = -E1000_ERR_EEPROM; | ||
8556 | } | ||
8557 | |||
8558 | e1000_release_software_flag(hw); | ||
8559 | |||
8560 | return error; | ||
8561 | } | ||
8562 | |||
8563 | /****************************************************************************** | ||
8564 | * This function does initial flash setup so that a new read/write/erase cycle | ||
8565 | * can be started. | ||
8566 | * | ||
8567 | * hw - The pointer to the hw structure | ||
8568 | ****************************************************************************/ | ||
8569 | static int32_t | ||
8570 | e1000_ich8_cycle_init(struct e1000_hw *hw) | ||
8571 | { | ||
8572 | union ich8_hws_flash_status hsfsts; | ||
8573 | int32_t error = E1000_ERR_EEPROM; | ||
8574 | int32_t i = 0; | ||
8575 | |||
8576 | DEBUGFUNC("e1000_ich8_cycle_init"); | ||
8577 | |||
8578 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8579 | |||
8580 | /* May be check the Flash Des Valid bit in Hw status */ | ||
8581 | if (hsfsts.hsf_status.fldesvalid == 0) { | ||
8582 | DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); | ||
8583 | return error; | ||
8584 | } | ||
8585 | |||
8586 | /* Clear FCERR in Hw status by writing 1 */ | ||
8587 | /* Clear DAEL in Hw status by writing a 1 */ | ||
8588 | hsfsts.hsf_status.flcerr = 1; | ||
8589 | hsfsts.hsf_status.dael = 1; | ||
8590 | |||
8591 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); | ||
8592 | |||
8593 | /* Either we should have a hardware SPI cycle in progress bit to check | ||
8594 | * against, in order to start a new cycle or FDONE bit should be changed | ||
8595 | * in the hardware so that it is 1 after harware reset, which can then be | ||
8596 | * used as an indication whether a cycle is in progress or has been | ||
8597 | * completed .. we should also have some software semaphore mechanism to | ||
8598 | * guard FDONE or the cycle in progress bit so that two threads access to | ||
8599 | * those bits can be sequentiallized or a way so that 2 threads dont | ||
8600 | * start the cycle at the same time */ | ||
8601 | |||
8602 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
8603 | /* There is no cycle running at present, so we can start a cycle */ | ||
8604 | /* Begin by setting Flash Cycle Done. */ | ||
8605 | hsfsts.hsf_status.flcdone = 1; | ||
8606 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); | ||
8607 | error = E1000_SUCCESS; | ||
8608 | } else { | ||
8609 | /* otherwise poll for sometime so the current cycle has a chance | ||
8610 | * to end before giving up. */ | ||
8611 | for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) { | ||
8612 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8613 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
8614 | error = E1000_SUCCESS; | ||
8615 | break; | ||
8616 | } | ||
8617 | udelay(1); | ||
8618 | } | ||
8619 | if (error == E1000_SUCCESS) { | ||
8620 | /* Successful in waiting for previous cycle to timeout, | ||
8621 | * now set the Flash Cycle Done. */ | ||
8622 | hsfsts.hsf_status.flcdone = 1; | ||
8623 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); | ||
8624 | } else { | ||
8625 | DEBUGOUT("Flash controller busy, cannot get access"); | ||
8626 | } | ||
8627 | } | ||
8628 | return error; | ||
8629 | } | ||
8630 | |||
8631 | /****************************************************************************** | ||
8632 | * This function starts a flash cycle and waits for its completion | ||
8633 | * | ||
8634 | * hw - The pointer to the hw structure | ||
8635 | ****************************************************************************/ | ||
8636 | static int32_t | ||
8637 | e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout) | ||
8638 | { | ||
8639 | union ich8_hws_flash_ctrl hsflctl; | ||
8640 | union ich8_hws_flash_status hsfsts; | ||
8641 | int32_t error = E1000_ERR_EEPROM; | ||
8642 | uint32_t i = 0; | ||
8643 | |||
8644 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | ||
8645 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
8646 | hsflctl.hsf_ctrl.flcgo = 1; | ||
8647 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
8648 | |||
8649 | /* wait till FDONE bit is set to 1 */ | ||
8650 | do { | ||
8651 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8652 | if (hsfsts.hsf_status.flcdone == 1) | ||
8653 | break; | ||
8654 | udelay(1); | ||
8655 | i++; | ||
8656 | } while (i < timeout); | ||
8657 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { | ||
8658 | error = E1000_SUCCESS; | ||
8659 | } | ||
8660 | return error; | ||
8661 | } | ||
8662 | |||
8663 | /****************************************************************************** | ||
8664 | * Reads a byte or word from the NVM using the ICH8 flash access registers. | ||
8665 | * | ||
8666 | * hw - The pointer to the hw structure | ||
8667 | * index - The index of the byte or word to read. | ||
8668 | * size - Size of data to read, 1=byte 2=word | ||
8669 | * data - Pointer to the word to store the value read. | ||
8670 | *****************************************************************************/ | ||
8671 | static int32_t | ||
8672 | e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, | ||
8673 | uint32_t size, uint16_t* data) | ||
8674 | { | ||
8675 | union ich8_hws_flash_status hsfsts; | ||
8676 | union ich8_hws_flash_ctrl hsflctl; | ||
8677 | uint32_t flash_linear_address; | ||
8678 | uint32_t flash_data = 0; | ||
8679 | int32_t error = -E1000_ERR_EEPROM; | ||
8680 | int32_t count = 0; | ||
8681 | |||
8682 | DEBUGFUNC("e1000_read_ich8_data"); | ||
8683 | |||
8684 | if (size < 1 || size > 2 || data == 0x0 || | ||
8685 | index > ICH8_FLASH_LINEAR_ADDR_MASK) | ||
8686 | return error; | ||
8687 | |||
8688 | flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + | ||
8689 | hw->flash_base_addr; | ||
8690 | |||
8691 | do { | ||
8692 | udelay(1); | ||
8693 | /* Steps */ | ||
8694 | error = e1000_ich8_cycle_init(hw); | ||
8695 | if (error != E1000_SUCCESS) | ||
8696 | break; | ||
8697 | |||
8698 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
8699 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
8700 | hsflctl.hsf_ctrl.fldbcount = size - 1; | ||
8701 | hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ; | ||
8702 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
8703 | |||
8704 | /* Write the last 24 bits of index into Flash Linear address field in | ||
8705 | * Flash Address */ | ||
8706 | /* TODO: TBD maybe check the index against the size of flash */ | ||
8707 | |||
8708 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); | ||
8709 | |||
8710 | error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); | ||
8711 | |||
8712 | /* Check if FCERR is set to 1, if set to 1, clear it and try the whole | ||
8713 | * sequence a few more times, else read in (shift in) the Flash Data0, | ||
8714 | * the order is least significant byte first msb to lsb */ | ||
8715 | if (error == E1000_SUCCESS) { | ||
8716 | flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0); | ||
8717 | if (size == 1) { | ||
8718 | *data = (uint8_t)(flash_data & 0x000000FF); | ||
8719 | } else if (size == 2) { | ||
8720 | *data = (uint16_t)(flash_data & 0x0000FFFF); | ||
8721 | } | ||
8722 | break; | ||
8723 | } else { | ||
8724 | /* If we've gotten here, then things are probably completely hosed, | ||
8725 | * but if the error condition is detected, it won't hurt to give | ||
8726 | * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. | ||
8727 | */ | ||
8728 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8729 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8730 | /* Repeat for some time before giving up. */ | ||
8731 | continue; | ||
8732 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8733 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
8734 | break; | ||
8735 | } | ||
8736 | } | ||
8737 | } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); | ||
8738 | |||
8739 | return error; | ||
8740 | } | ||
8741 | |||
8742 | /****************************************************************************** | ||
8743 | * Writes One /two bytes to the NVM using the ICH8 flash access registers. | ||
8744 | * | ||
8745 | * hw - The pointer to the hw structure | ||
8746 | * index - The index of the byte/word to read. | ||
8747 | * size - Size of data to read, 1=byte 2=word | ||
8748 | * data - The byte(s) to write to the NVM. | ||
8749 | *****************************************************************************/ | ||
8750 | static int32_t | ||
8751 | e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, | ||
8752 | uint16_t data) | ||
8753 | { | ||
8754 | union ich8_hws_flash_status hsfsts; | ||
8755 | union ich8_hws_flash_ctrl hsflctl; | ||
8756 | uint32_t flash_linear_address; | ||
8757 | uint32_t flash_data = 0; | ||
8758 | int32_t error = -E1000_ERR_EEPROM; | ||
8759 | int32_t count = 0; | ||
8760 | |||
8761 | DEBUGFUNC("e1000_write_ich8_data"); | ||
8762 | |||
8763 | if (size < 1 || size > 2 || data > size * 0xff || | ||
8764 | index > ICH8_FLASH_LINEAR_ADDR_MASK) | ||
8765 | return error; | ||
8766 | |||
8767 | flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + | ||
8768 | hw->flash_base_addr; | ||
8769 | |||
8770 | do { | ||
8771 | udelay(1); | ||
8772 | /* Steps */ | ||
8773 | error = e1000_ich8_cycle_init(hw); | ||
8774 | if (error != E1000_SUCCESS) | ||
8775 | break; | ||
8776 | |||
8777 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
8778 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
8779 | hsflctl.hsf_ctrl.fldbcount = size -1; | ||
8780 | hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE; | ||
8781 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
8782 | |||
8783 | /* Write the last 24 bits of index into Flash Linear address field in | ||
8784 | * Flash Address */ | ||
8785 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); | ||
8786 | |||
8787 | if (size == 1) | ||
8788 | flash_data = (uint32_t)data & 0x00FF; | ||
8789 | else | ||
8790 | flash_data = (uint32_t)data; | ||
8791 | |||
8792 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data); | ||
8793 | |||
8794 | /* check if FCERR is set to 1 , if set to 1, clear it and try the whole | ||
8795 | * sequence a few more times else done */ | ||
8796 | error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); | ||
8797 | if (error == E1000_SUCCESS) { | ||
8798 | break; | ||
8799 | } else { | ||
8800 | /* If we're here, then things are most likely completely hosed, | ||
8801 | * but if the error condition is detected, it won't hurt to give | ||
8802 | * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. | ||
8803 | */ | ||
8804 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8805 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8806 | /* Repeat for some time before giving up. */ | ||
8807 | continue; | ||
8808 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8809 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
8810 | break; | ||
8811 | } | ||
8812 | } | ||
8813 | } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); | ||
8814 | |||
8815 | return error; | ||
8816 | } | ||
8817 | |||
8818 | /****************************************************************************** | ||
8819 | * Reads a single byte from the NVM using the ICH8 flash access registers. | ||
8820 | * | ||
8821 | * hw - pointer to e1000_hw structure | ||
8822 | * index - The index of the byte to read. | ||
8823 | * data - Pointer to a byte to store the value read. | ||
8824 | *****************************************************************************/ | ||
8825 | static int32_t | ||
8826 | e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data) | ||
8827 | { | ||
8828 | int32_t status = E1000_SUCCESS; | ||
8829 | uint16_t word = 0; | ||
8830 | |||
8831 | status = e1000_read_ich8_data(hw, index, 1, &word); | ||
8832 | if (status == E1000_SUCCESS) { | ||
8833 | *data = (uint8_t)word; | ||
8834 | } | ||
8835 | |||
8836 | return status; | ||
8837 | } | ||
8838 | |||
8839 | /****************************************************************************** | ||
8840 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
8841 | * Performs verification by reading back the value and then going through | ||
8842 | * a retry algorithm before giving up. | ||
8843 | * | ||
8844 | * hw - pointer to e1000_hw structure | ||
8845 | * index - The index of the byte to write. | ||
8846 | * byte - The byte to write to the NVM. | ||
8847 | *****************************************************************************/ | ||
8848 | static int32_t | ||
8849 | e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte) | ||
8850 | { | ||
8851 | int32_t error = E1000_SUCCESS; | ||
8852 | int32_t program_retries; | ||
8853 | uint8_t temp_byte; | ||
8854 | |||
8855 | e1000_write_ich8_byte(hw, index, byte); | ||
8856 | udelay(100); | ||
8857 | |||
8858 | for (program_retries = 0; program_retries < 100; program_retries++) { | ||
8859 | e1000_read_ich8_byte(hw, index, &temp_byte); | ||
8860 | if (temp_byte == byte) | ||
8861 | break; | ||
8862 | udelay(10); | ||
8863 | e1000_write_ich8_byte(hw, index, byte); | ||
8864 | udelay(100); | ||
8865 | } | ||
8866 | if (program_retries == 100) | ||
8867 | error = E1000_ERR_EEPROM; | ||
8868 | |||
8869 | return error; | ||
8870 | } | ||
8871 | |||
8872 | /****************************************************************************** | ||
8873 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
8874 | * | ||
8875 | * hw - pointer to e1000_hw structure | ||
8876 | * index - The index of the byte to read. | ||
8877 | * data - The byte to write to the NVM. | ||
8878 | *****************************************************************************/ | ||
8879 | static int32_t | ||
8880 | e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data) | ||
8881 | { | ||
8882 | int32_t status = E1000_SUCCESS; | ||
8883 | uint16_t word = (uint16_t)data; | ||
8884 | |||
8885 | status = e1000_write_ich8_data(hw, index, 1, word); | ||
8886 | |||
8887 | return status; | ||
8888 | } | ||
8889 | |||
8890 | /****************************************************************************** | ||
8891 | * Reads a word from the NVM using the ICH8 flash access registers. | ||
8892 | * | ||
8893 | * hw - pointer to e1000_hw structure | ||
8894 | * index - The starting byte index of the word to read. | ||
8895 | * data - Pointer to a word to store the value read. | ||
8896 | *****************************************************************************/ | ||
8897 | static int32_t | ||
8898 | e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data) | ||
8899 | { | ||
8900 | int32_t status = E1000_SUCCESS; | ||
8901 | status = e1000_read_ich8_data(hw, index, 2, data); | ||
8902 | return status; | ||
8903 | } | ||
8904 | |||
8905 | /****************************************************************************** | ||
8906 | * Writes a word to the NVM using the ICH8 flash access registers. | ||
8907 | * | ||
8908 | * hw - pointer to e1000_hw structure | ||
8909 | * index - The starting byte index of the word to read. | ||
8910 | * data - The word to write to the NVM. | ||
8911 | *****************************************************************************/ | ||
8912 | #if 0 | ||
8913 | int32_t | ||
8914 | e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data) | ||
8915 | { | ||
8916 | int32_t status = E1000_SUCCESS; | ||
8917 | status = e1000_write_ich8_data(hw, index, 2, data); | ||
8918 | return status; | ||
8919 | } | ||
8920 | #endif /* 0 */ | ||
8921 | |||
8922 | /****************************************************************************** | ||
8923 | * Erases the bank specified. Each bank is a 4k block. Segments are 0 based. | ||
8924 | * segment N is 4096 * N + flash_reg_addr. | ||
8925 | * | ||
8926 | * hw - pointer to e1000_hw structure | ||
8927 | * segment - 0 for first segment, 1 for second segment, etc. | ||
8928 | *****************************************************************************/ | ||
8929 | static int32_t | ||
8930 | e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment) | ||
8931 | { | ||
8932 | union ich8_hws_flash_status hsfsts; | ||
8933 | union ich8_hws_flash_ctrl hsflctl; | ||
8934 | uint32_t flash_linear_address; | ||
8935 | int32_t count = 0; | ||
8936 | int32_t error = E1000_ERR_EEPROM; | ||
8937 | int32_t iteration, seg_size; | ||
8938 | int32_t sector_size; | ||
8939 | int32_t j = 0; | ||
8940 | int32_t error_flag = 0; | ||
8941 | |||
8942 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
8943 | |||
8944 | /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ | ||
8945 | /* 00: The Hw sector is 256 bytes, hence we need to erase 16 | ||
8946 | * consecutive sectors. The start index for the nth Hw sector can be | ||
8947 | * calculated as = segment * 4096 + n * 256 | ||
8948 | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | ||
8949 | * The start index for the nth Hw sector can be calculated | ||
8950 | * as = segment * 4096 | ||
8951 | * 10: Error condition | ||
8952 | * 11: The Hw sector size is much bigger than the size asked to | ||
8953 | * erase...error condition */ | ||
8954 | if (hsfsts.hsf_status.berasesz == 0x0) { | ||
8955 | /* Hw sector size 256 */ | ||
8956 | sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256; | ||
8957 | iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256; | ||
8958 | } else if (hsfsts.hsf_status.berasesz == 0x1) { | ||
8959 | sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K; | ||
8960 | iteration = 1; | ||
8961 | } else if (hsfsts.hsf_status.berasesz == 0x3) { | ||
8962 | sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K; | ||
8963 | iteration = 1; | ||
8964 | } else { | ||
8965 | return error; | ||
8966 | } | ||
8967 | |||
8968 | for (j = 0; j < iteration ; j++) { | ||
8969 | do { | ||
8970 | count++; | ||
8971 | /* Steps */ | ||
8972 | error = e1000_ich8_cycle_init(hw); | ||
8973 | if (error != E1000_SUCCESS) { | ||
8974 | error_flag = 1; | ||
8975 | break; | ||
8976 | } | ||
8977 | |||
8978 | /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash | ||
8979 | * Control */ | ||
8980 | hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); | ||
8981 | hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE; | ||
8982 | E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); | ||
8983 | |||
8984 | /* Write the last 24 bits of an index within the block into Flash | ||
8985 | * Linear address field in Flash Address. This probably needs to | ||
8986 | * be calculated here based off the on-chip segment size and the | ||
8987 | * software segment size assumed (4K) */ | ||
8988 | /* TBD */ | ||
8989 | flash_linear_address = segment * sector_size + j * seg_size; | ||
8990 | flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK; | ||
8991 | flash_linear_address += hw->flash_base_addr; | ||
8992 | |||
8993 | E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); | ||
8994 | |||
8995 | error = e1000_ich8_flash_cycle(hw, 1000000); | ||
8996 | /* Check if FCERR is set to 1. If 1, clear it and try the whole | ||
8997 | * sequence a few more times else Done */ | ||
8998 | if (error == E1000_SUCCESS) { | ||
8999 | break; | ||
9000 | } else { | ||
9001 | hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); | ||
9002 | if (hsfsts.hsf_status.flcerr == 1) { | ||
9003 | /* repeat for some time before giving up */ | ||
9004 | continue; | ||
9005 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
9006 | error_flag = 1; | ||
9007 | break; | ||
9008 | } | ||
9009 | } | ||
9010 | } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); | ||
9011 | if (error_flag == 1) | ||
9012 | break; | ||
9013 | } | ||
9014 | if (error_flag != 1) | ||
9015 | error = E1000_SUCCESS; | ||
9016 | return error; | ||
9017 | } | ||
9018 | |||
9019 | /****************************************************************************** | ||
9020 | * | ||
9021 | * Reverse duplex setting without breaking the link. | ||
9022 | * | ||
9023 | * hw: Struct containing variables accessed by shared code | ||
9024 | * | ||
9025 | *****************************************************************************/ | ||
9026 | #if 0 | ||
9027 | int32_t | ||
9028 | e1000_duplex_reversal(struct e1000_hw *hw) | ||
9029 | { | ||
9030 | int32_t ret_val; | ||
9031 | uint16_t phy_data; | ||
9032 | |||
9033 | if (hw->phy_type != e1000_phy_igp_3) | ||
9034 | return E1000_SUCCESS; | ||
9035 | |||
9036 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
9037 | if (ret_val) | ||
9038 | return ret_val; | ||
9039 | |||
9040 | phy_data ^= MII_CR_FULL_DUPLEX; | ||
9041 | |||
9042 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
9043 | if (ret_val) | ||
9044 | return ret_val; | ||
9045 | |||
9046 | ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data); | ||
9047 | if (ret_val) | ||
9048 | return ret_val; | ||
9049 | |||
9050 | phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET; | ||
9051 | ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data); | ||
9052 | |||
9053 | return ret_val; | ||
9054 | } | ||
9055 | #endif /* 0 */ | ||
9056 | |||
9057 | static int32_t | ||
9058 | e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, | ||
9059 | uint32_t cnf_base_addr, uint32_t cnf_size) | ||
9060 | { | ||
9061 | uint32_t ret_val = E1000_SUCCESS; | ||
9062 | uint16_t word_addr, reg_data, reg_addr; | ||
9063 | uint16_t i; | ||
9064 | |||
9065 | /* cnf_base_addr is in DWORD */ | ||
9066 | word_addr = (uint16_t)(cnf_base_addr << 1); | ||
9067 | |||
9068 | /* cnf_size is returned in size of dwords */ | ||
9069 | for (i = 0; i < cnf_size; i++) { | ||
9070 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); | ||
9071 | if (ret_val) | ||
9072 | return ret_val; | ||
9073 | |||
9074 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); | ||
9075 | if (ret_val) | ||
9076 | return ret_val; | ||
9077 | |||
9078 | ret_val = e1000_get_software_flag(hw); | ||
9079 | if (ret_val != E1000_SUCCESS) | ||
9080 | return ret_val; | ||
9081 | |||
9082 | ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); | ||
9083 | |||
9084 | e1000_release_software_flag(hw); | ||
9085 | } | ||
9086 | |||
9087 | return ret_val; | ||
9088 | } | ||
9089 | |||
9090 | |||
9091 | static int32_t | ||
9092 | e1000_init_lcd_from_nvm(struct e1000_hw *hw) | ||
9093 | { | ||
9094 | uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; | ||
9095 | |||
9096 | if (hw->phy_type != e1000_phy_igp_3) | ||
9097 | return E1000_SUCCESS; | ||
9098 | |||
9099 | /* Check if SW needs configure the PHY */ | ||
9100 | reg_data = E1000_READ_REG(hw, FEXTNVM); | ||
9101 | if (!(reg_data & FEXTNVM_SW_CONFIG)) | ||
9102 | return E1000_SUCCESS; | ||
9103 | |||
9104 | /* Wait for basic configuration completes before proceeding*/ | ||
9105 | loop = 0; | ||
9106 | do { | ||
9107 | reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; | ||
9108 | udelay(100); | ||
9109 | loop++; | ||
9110 | } while ((!reg_data) && (loop < 50)); | ||
9111 | |||
9112 | /* Clear the Init Done bit for the next init event */ | ||
9113 | reg_data = E1000_READ_REG(hw, STATUS); | ||
9114 | reg_data &= ~E1000_STATUS_LAN_INIT_DONE; | ||
9115 | E1000_WRITE_REG(hw, STATUS, reg_data); | ||
9116 | |||
9117 | /* Make sure HW does not configure LCD from PHY extended configuration | ||
9118 | before SW configuration */ | ||
9119 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
9120 | if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { | ||
9121 | reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); | ||
9122 | cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; | ||
9123 | cnf_size >>= 16; | ||
9124 | if (cnf_size) { | ||
9125 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
9126 | cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; | ||
9127 | /* cnf_base_addr is in DWORD */ | ||
9128 | cnf_base_addr >>= 16; | ||
9129 | |||
9130 | /* Configure LCD from extended configuration region. */ | ||
9131 | ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, | ||
9132 | cnf_size); | ||
9133 | if (ret_val) | ||
9134 | return ret_val; | ||
9135 | } | ||
9136 | } | ||
9137 | |||
9138 | return E1000_SUCCESS; | ||
9139 | } | ||
9140 | |||
9141 | |||
7559 | 9142 | ||