diff options
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 3281 |
1 files changed, 100 insertions, 3181 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 45ac225a7aaa..74aa59973316 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -35,49 +35,23 @@ | |||
35 | 35 | ||
36 | static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask); | 36 | static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask); |
37 | static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask); | 37 | static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask); |
38 | static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data); | ||
39 | static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data); | ||
40 | static s32 e1000_get_software_semaphore(struct e1000_hw *hw); | ||
41 | static void e1000_release_software_semaphore(struct e1000_hw *hw); | ||
42 | 38 | ||
43 | static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw); | ||
44 | static s32 e1000_check_downshift(struct e1000_hw *hw); | 39 | static s32 e1000_check_downshift(struct e1000_hw *hw); |
45 | static s32 e1000_check_polarity(struct e1000_hw *hw, | 40 | static s32 e1000_check_polarity(struct e1000_hw *hw, |
46 | e1000_rev_polarity *polarity); | 41 | e1000_rev_polarity *polarity); |
47 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); | 42 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
48 | static void e1000_clear_vfta(struct e1000_hw *hw); | 43 | static void e1000_clear_vfta(struct e1000_hw *hw); |
49 | static s32 e1000_commit_shadow_ram(struct e1000_hw *hw); | ||
50 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, | 44 | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, |
51 | bool link_up); | 45 | bool link_up); |
52 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); | 46 | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); |
53 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw); | 47 | static s32 e1000_detect_gig_phy(struct e1000_hw *hw); |
54 | static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank); | ||
55 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); | 48 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); |
56 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 49 | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
57 | u16 *max_length); | 50 | u16 *max_length); |
58 | static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); | 51 | static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); |
59 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); | 52 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); |
60 | static s32 e1000_get_software_flag(struct e1000_hw *hw); | ||
61 | static s32 e1000_ich8_cycle_init(struct e1000_hw *hw); | ||
62 | static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout); | ||
63 | static s32 e1000_id_led_init(struct e1000_hw *hw); | 53 | static s32 e1000_id_led_init(struct e1000_hw *hw); |
64 | static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, | ||
65 | u32 cnf_base_addr, | ||
66 | u32 cnf_size); | ||
67 | static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw); | ||
68 | static void e1000_init_rx_addrs(struct e1000_hw *hw); | 54 | static void e1000_init_rx_addrs(struct e1000_hw *hw); |
69 | static void e1000_initialize_hardware_bits(struct e1000_hw *hw); | ||
70 | static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); | ||
71 | static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); | ||
72 | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw); | ||
73 | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, | ||
74 | u16 offset, u8 *sum); | ||
75 | static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw, | ||
76 | struct e1000_host_mng_command_header | ||
77 | *hdr); | ||
78 | static s32 e1000_mng_write_commit(struct e1000_hw *hw); | ||
79 | static s32 e1000_phy_ife_get_info(struct e1000_hw *hw, | ||
80 | struct e1000_phy_info *phy_info); | ||
81 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 55 | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
82 | struct e1000_phy_info *phy_info); | 56 | struct e1000_phy_info *phy_info); |
83 | static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, | 57 | static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, |
@@ -88,24 +62,7 @@ static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); | |||
88 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 62 | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
89 | struct e1000_phy_info *phy_info); | 63 | struct e1000_phy_info *phy_info); |
90 | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); | 64 | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); |
91 | static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data); | ||
92 | static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, | ||
93 | u8 byte); | ||
94 | static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte); | ||
95 | static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data); | ||
96 | static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | ||
97 | u16 *data); | ||
98 | static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | ||
99 | u16 data); | ||
100 | static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | ||
101 | u16 *data); | ||
102 | static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | ||
103 | u16 *data); | ||
104 | static void e1000_release_software_flag(struct e1000_hw *hw); | ||
105 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); | 65 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); |
106 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); | ||
107 | static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop); | ||
108 | static void e1000_set_pci_express_master_disable(struct e1000_hw *hw); | ||
109 | static s32 e1000_wait_autoneg(struct e1000_hw *hw); | 66 | static s32 e1000_wait_autoneg(struct e1000_hw *hw); |
110 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); | 67 | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); |
111 | static s32 e1000_set_phy_type(struct e1000_hw *hw); | 68 | static s32 e1000_set_phy_type(struct e1000_hw *hw); |
@@ -140,10 +97,6 @@ static void e1000_standby_eeprom(struct e1000_hw *hw); | |||
140 | static s32 e1000_set_vco_speed(struct e1000_hw *hw); | 97 | static s32 e1000_set_vco_speed(struct e1000_hw *hw); |
141 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 98 | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
142 | static s32 e1000_set_phy_mode(struct e1000_hw *hw); | 99 | static s32 e1000_set_phy_mode(struct e1000_hw *hw); |
143 | static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer); | ||
144 | static u8 e1000_calculate_mng_checksum(char *buffer, u32 length); | ||
145 | static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex); | ||
146 | static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw); | ||
147 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | 100 | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); |
148 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | 101 | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); |
149 | 102 | ||
@@ -159,17 +112,6 @@ u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | |||
159 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 112 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
160 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | 113 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; |
161 | 114 | ||
162 | static const | ||
163 | u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = | ||
164 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | ||
165 | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | ||
166 | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | ||
167 | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | ||
168 | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | ||
169 | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | ||
170 | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, | ||
171 | 104, 109, 114, 118, 121, 124}; | ||
172 | |||
173 | static DEFINE_SPINLOCK(e1000_eeprom_lock); | 115 | static DEFINE_SPINLOCK(e1000_eeprom_lock); |
174 | 116 | ||
175 | /****************************************************************************** | 117 | /****************************************************************************** |
@@ -199,20 +141,6 @@ static s32 e1000_set_phy_type(struct e1000_hw *hw) | |||
199 | hw->phy_type = e1000_phy_igp; | 141 | hw->phy_type = e1000_phy_igp; |
200 | break; | 142 | break; |
201 | } | 143 | } |
202 | case IGP03E1000_E_PHY_ID: | ||
203 | hw->phy_type = e1000_phy_igp_3; | ||
204 | break; | ||
205 | case IFE_E_PHY_ID: | ||
206 | case IFE_PLUS_E_PHY_ID: | ||
207 | case IFE_C_E_PHY_ID: | ||
208 | hw->phy_type = e1000_phy_ife; | ||
209 | break; | ||
210 | case GG82563_E_PHY_ID: | ||
211 | if (hw->mac_type == e1000_80003es2lan) { | ||
212 | hw->phy_type = e1000_phy_gg82563; | ||
213 | break; | ||
214 | } | ||
215 | /* Fall Through */ | ||
216 | default: | 144 | default: |
217 | /* Should never have loaded on this device */ | 145 | /* Should never have loaded on this device */ |
218 | hw->phy_type = e1000_phy_undefined; | 146 | hw->phy_type = e1000_phy_undefined; |
@@ -397,61 +325,12 @@ s32 e1000_set_mac_type(struct e1000_hw *hw) | |||
397 | case E1000_DEV_ID_82547GI: | 325 | case E1000_DEV_ID_82547GI: |
398 | hw->mac_type = e1000_82547_rev_2; | 326 | hw->mac_type = e1000_82547_rev_2; |
399 | break; | 327 | break; |
400 | case E1000_DEV_ID_82571EB_COPPER: | ||
401 | case E1000_DEV_ID_82571EB_FIBER: | ||
402 | case E1000_DEV_ID_82571EB_SERDES: | ||
403 | case E1000_DEV_ID_82571EB_SERDES_DUAL: | ||
404 | case E1000_DEV_ID_82571EB_SERDES_QUAD: | ||
405 | case E1000_DEV_ID_82571EB_QUAD_COPPER: | ||
406 | case E1000_DEV_ID_82571PT_QUAD_COPPER: | ||
407 | case E1000_DEV_ID_82571EB_QUAD_FIBER: | ||
408 | case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: | ||
409 | hw->mac_type = e1000_82571; | ||
410 | break; | ||
411 | case E1000_DEV_ID_82572EI_COPPER: | ||
412 | case E1000_DEV_ID_82572EI_FIBER: | ||
413 | case E1000_DEV_ID_82572EI_SERDES: | ||
414 | case E1000_DEV_ID_82572EI: | ||
415 | hw->mac_type = e1000_82572; | ||
416 | break; | ||
417 | case E1000_DEV_ID_82573E: | ||
418 | case E1000_DEV_ID_82573E_IAMT: | ||
419 | case E1000_DEV_ID_82573L: | ||
420 | hw->mac_type = e1000_82573; | ||
421 | break; | ||
422 | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: | ||
423 | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: | ||
424 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: | ||
425 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | ||
426 | hw->mac_type = e1000_80003es2lan; | ||
427 | break; | ||
428 | case E1000_DEV_ID_ICH8_IGP_M_AMT: | ||
429 | case E1000_DEV_ID_ICH8_IGP_AMT: | ||
430 | case E1000_DEV_ID_ICH8_IGP_C: | ||
431 | case E1000_DEV_ID_ICH8_IFE: | ||
432 | case E1000_DEV_ID_ICH8_IFE_GT: | ||
433 | case E1000_DEV_ID_ICH8_IFE_G: | ||
434 | case E1000_DEV_ID_ICH8_IGP_M: | ||
435 | hw->mac_type = e1000_ich8lan; | ||
436 | break; | ||
437 | default: | 328 | default: |
438 | /* Should never have loaded on this device */ | 329 | /* Should never have loaded on this device */ |
439 | return -E1000_ERR_MAC_TYPE; | 330 | return -E1000_ERR_MAC_TYPE; |
440 | } | 331 | } |
441 | 332 | ||
442 | switch (hw->mac_type) { | 333 | switch (hw->mac_type) { |
443 | case e1000_ich8lan: | ||
444 | hw->swfwhw_semaphore_present = true; | ||
445 | hw->asf_firmware_present = true; | ||
446 | break; | ||
447 | case e1000_80003es2lan: | ||
448 | hw->swfw_sync_present = true; | ||
449 | /* fall through */ | ||
450 | case e1000_82571: | ||
451 | case e1000_82572: | ||
452 | case e1000_82573: | ||
453 | hw->eeprom_semaphore_present = true; | ||
454 | /* fall through */ | ||
455 | case e1000_82541: | 334 | case e1000_82541: |
456 | case e1000_82547: | 335 | case e1000_82547: |
457 | case e1000_82541_rev_2: | 336 | case e1000_82541_rev_2: |
@@ -468,16 +347,6 @@ s32 e1000_set_mac_type(struct e1000_hw *hw) | |||
468 | if (hw->mac_type == e1000_82543) | 347 | if (hw->mac_type == e1000_82543) |
469 | hw->bad_tx_carr_stats_fd = true; | 348 | hw->bad_tx_carr_stats_fd = true; |
470 | 349 | ||
471 | /* capable of receiving management packets to the host */ | ||
472 | if (hw->mac_type >= e1000_82571) | ||
473 | hw->has_manc2h = true; | ||
474 | |||
475 | /* In rare occasions, ESB2 systems would end up started without | ||
476 | * the RX unit being turned on. | ||
477 | */ | ||
478 | if (hw->mac_type == e1000_80003es2lan) | ||
479 | hw->rx_needs_kicking = true; | ||
480 | |||
481 | if (hw->mac_type > e1000_82544) | 350 | if (hw->mac_type > e1000_82544) |
482 | hw->has_smbus = true; | 351 | hw->has_smbus = true; |
483 | 352 | ||
@@ -503,11 +372,6 @@ void e1000_set_media_type(struct e1000_hw *hw) | |||
503 | switch (hw->device_id) { | 372 | switch (hw->device_id) { |
504 | case E1000_DEV_ID_82545GM_SERDES: | 373 | case E1000_DEV_ID_82545GM_SERDES: |
505 | case E1000_DEV_ID_82546GB_SERDES: | 374 | case E1000_DEV_ID_82546GB_SERDES: |
506 | case E1000_DEV_ID_82571EB_SERDES: | ||
507 | case E1000_DEV_ID_82571EB_SERDES_DUAL: | ||
508 | case E1000_DEV_ID_82571EB_SERDES_QUAD: | ||
509 | case E1000_DEV_ID_82572EI_SERDES: | ||
510 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | ||
511 | hw->media_type = e1000_media_type_internal_serdes; | 375 | hw->media_type = e1000_media_type_internal_serdes; |
512 | break; | 376 | break; |
513 | default: | 377 | default: |
@@ -516,13 +380,6 @@ void e1000_set_media_type(struct e1000_hw *hw) | |||
516 | case e1000_82542_rev2_1: | 380 | case e1000_82542_rev2_1: |
517 | hw->media_type = e1000_media_type_fiber; | 381 | hw->media_type = e1000_media_type_fiber; |
518 | break; | 382 | break; |
519 | case e1000_ich8lan: | ||
520 | case e1000_82573: | ||
521 | /* The STATUS_TBIMODE bit is reserved or reused for the this | ||
522 | * device. | ||
523 | */ | ||
524 | hw->media_type = e1000_media_type_copper; | ||
525 | break; | ||
526 | default: | 383 | default: |
527 | status = er32(STATUS); | 384 | status = er32(STATUS); |
528 | if (status & E1000_STATUS_TBIMODE) { | 385 | if (status & E1000_STATUS_TBIMODE) { |
@@ -549,8 +406,6 @@ s32 e1000_reset_hw(struct e1000_hw *hw) | |||
549 | u32 icr; | 406 | u32 icr; |
550 | u32 manc; | 407 | u32 manc; |
551 | u32 led_ctrl; | 408 | u32 led_ctrl; |
552 | u32 timeout; | ||
553 | u32 extcnf_ctrl; | ||
554 | s32 ret_val; | 409 | s32 ret_val; |
555 | 410 | ||
556 | DEBUGFUNC("e1000_reset_hw"); | 411 | DEBUGFUNC("e1000_reset_hw"); |
@@ -561,15 +416,6 @@ s32 e1000_reset_hw(struct e1000_hw *hw) | |||
561 | e1000_pci_clear_mwi(hw); | 416 | e1000_pci_clear_mwi(hw); |
562 | } | 417 | } |
563 | 418 | ||
564 | if (hw->bus_type == e1000_bus_type_pci_express) { | ||
565 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | ||
566 | * on the last TLP read/write transaction when MAC is reset. | ||
567 | */ | ||
568 | if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) { | ||
569 | DEBUGOUT("PCI-E Master disable polling has failed.\n"); | ||
570 | } | ||
571 | } | ||
572 | |||
573 | /* Clear interrupt mask to stop board from generating interrupts */ | 419 | /* Clear interrupt mask to stop board from generating interrupts */ |
574 | DEBUGOUT("Masking off all interrupts\n"); | 420 | DEBUGOUT("Masking off all interrupts\n"); |
575 | ew32(IMC, 0xffffffff); | 421 | ew32(IMC, 0xffffffff); |
@@ -598,36 +444,6 @@ s32 e1000_reset_hw(struct e1000_hw *hw) | |||
598 | msleep(5); | 444 | msleep(5); |
599 | } | 445 | } |
600 | 446 | ||
601 | /* Must acquire the MDIO ownership before MAC reset. | ||
602 | * Ownership defaults to firmware after a reset. */ | ||
603 | if (hw->mac_type == e1000_82573) { | ||
604 | timeout = 10; | ||
605 | |||
606 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
607 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
608 | |||
609 | do { | ||
610 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
611 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
612 | |||
613 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | ||
614 | break; | ||
615 | else | ||
616 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
617 | |||
618 | msleep(2); | ||
619 | timeout--; | ||
620 | } while (timeout); | ||
621 | } | ||
622 | |||
623 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | ||
624 | if (hw->mac_type == e1000_ich8lan) { | ||
625 | /* Set Tx and Rx buffer allocation to 8k apiece. */ | ||
626 | ew32(PBA, E1000_PBA_8K); | ||
627 | /* Set Packet Buffer Size to 16k. */ | ||
628 | ew32(PBS, E1000_PBS_16K); | ||
629 | } | ||
630 | |||
631 | /* Issue a global reset to the MAC. This will reset the chip's | 447 | /* Issue a global reset to the MAC. This will reset the chip's |
632 | * transmit, receive, DMA, and link units. It will not effect | 448 | * transmit, receive, DMA, and link units. It will not effect |
633 | * the current PCI configuration. The global reset bit is self- | 449 | * the current PCI configuration. The global reset bit is self- |
@@ -651,20 +467,6 @@ s32 e1000_reset_hw(struct e1000_hw *hw) | |||
651 | /* Reset is performed on a shadow of the control register */ | 467 | /* Reset is performed on a shadow of the control register */ |
652 | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 468 | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
653 | break; | 469 | break; |
654 | case e1000_ich8lan: | ||
655 | if (!hw->phy_reset_disable && | ||
656 | e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { | ||
657 | /* e1000_ich8lan PHY HW reset requires MAC CORE reset | ||
658 | * at the same time to make sure the interface between | ||
659 | * MAC and the external PHY is reset. | ||
660 | */ | ||
661 | ctrl |= E1000_CTRL_PHY_RST; | ||
662 | } | ||
663 | |||
664 | e1000_get_software_flag(hw); | ||
665 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | ||
666 | msleep(5); | ||
667 | break; | ||
668 | default: | 470 | default: |
669 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | 471 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
670 | break; | 472 | break; |
@@ -695,15 +497,6 @@ s32 e1000_reset_hw(struct e1000_hw *hw) | |||
695 | /* Wait for EEPROM reload */ | 497 | /* Wait for EEPROM reload */ |
696 | msleep(20); | 498 | msleep(20); |
697 | break; | 499 | break; |
698 | case e1000_82573: | ||
699 | if (!e1000_is_onboard_nvm_eeprom(hw)) { | ||
700 | udelay(10); | ||
701 | ctrl_ext = er32(CTRL_EXT); | ||
702 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
703 | ew32(CTRL_EXT, ctrl_ext); | ||
704 | E1000_WRITE_FLUSH(); | ||
705 | } | ||
706 | /* fall through */ | ||
707 | default: | 500 | default: |
708 | /* Auto read done will delay 5ms or poll based on mac type */ | 501 | /* Auto read done will delay 5ms or poll based on mac type */ |
709 | ret_val = e1000_get_auto_rd_done(hw); | 502 | ret_val = e1000_get_auto_rd_done(hw); |
@@ -713,7 +506,7 @@ s32 e1000_reset_hw(struct e1000_hw *hw) | |||
713 | } | 506 | } |
714 | 507 | ||
715 | /* Disable HW ARPs on ASF enabled adapters */ | 508 | /* Disable HW ARPs on ASF enabled adapters */ |
716 | if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { | 509 | if (hw->mac_type >= e1000_82540) { |
717 | manc = er32(MANC); | 510 | manc = er32(MANC); |
718 | manc &= ~(E1000_MANC_ARP_EN); | 511 | manc &= ~(E1000_MANC_ARP_EN); |
719 | ew32(MANC, manc); | 512 | ew32(MANC, manc); |
@@ -742,132 +535,10 @@ s32 e1000_reset_hw(struct e1000_hw *hw) | |||
742 | e1000_pci_set_mwi(hw); | 535 | e1000_pci_set_mwi(hw); |
743 | } | 536 | } |
744 | 537 | ||
745 | if (hw->mac_type == e1000_ich8lan) { | ||
746 | u32 kab = er32(KABGTXD); | ||
747 | kab |= E1000_KABGTXD_BGSQLBIAS; | ||
748 | ew32(KABGTXD, kab); | ||
749 | } | ||
750 | |||
751 | return E1000_SUCCESS; | 538 | return E1000_SUCCESS; |
752 | } | 539 | } |
753 | 540 | ||
754 | /****************************************************************************** | 541 | /****************************************************************************** |
755 | * | ||
756 | * Initialize a number of hardware-dependent bits | ||
757 | * | ||
758 | * hw: Struct containing variables accessed by shared code | ||
759 | * | ||
760 | * This function contains hardware limitation workarounds for PCI-E adapters | ||
761 | * | ||
762 | *****************************************************************************/ | ||
763 | static void e1000_initialize_hardware_bits(struct e1000_hw *hw) | ||
764 | { | ||
765 | if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) { | ||
766 | /* Settings common to all PCI-express silicon */ | ||
767 | u32 reg_ctrl, reg_ctrl_ext; | ||
768 | u32 reg_tarc0, reg_tarc1; | ||
769 | u32 reg_tctl; | ||
770 | u32 reg_txdctl, reg_txdctl1; | ||
771 | |||
772 | /* link autonegotiation/sync workarounds */ | ||
773 | reg_tarc0 = er32(TARC0); | ||
774 | reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); | ||
775 | |||
776 | /* Enable not-done TX descriptor counting */ | ||
777 | reg_txdctl = er32(TXDCTL); | ||
778 | reg_txdctl |= E1000_TXDCTL_COUNT_DESC; | ||
779 | ew32(TXDCTL, reg_txdctl); | ||
780 | reg_txdctl1 = er32(TXDCTL1); | ||
781 | reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; | ||
782 | ew32(TXDCTL1, reg_txdctl1); | ||
783 | |||
784 | switch (hw->mac_type) { | ||
785 | case e1000_82571: | ||
786 | case e1000_82572: | ||
787 | /* Clear PHY TX compatible mode bits */ | ||
788 | reg_tarc1 = er32(TARC1); | ||
789 | reg_tarc1 &= ~((1 << 30)|(1 << 29)); | ||
790 | |||
791 | /* link autonegotiation/sync workarounds */ | ||
792 | reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); | ||
793 | |||
794 | /* TX ring control fixes */ | ||
795 | reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); | ||
796 | |||
797 | /* Multiple read bit is reversed polarity */ | ||
798 | reg_tctl = er32(TCTL); | ||
799 | if (reg_tctl & E1000_TCTL_MULR) | ||
800 | reg_tarc1 &= ~(1 << 28); | ||
801 | else | ||
802 | reg_tarc1 |= (1 << 28); | ||
803 | |||
804 | ew32(TARC1, reg_tarc1); | ||
805 | break; | ||
806 | case e1000_82573: | ||
807 | reg_ctrl_ext = er32(CTRL_EXT); | ||
808 | reg_ctrl_ext &= ~(1 << 23); | ||
809 | reg_ctrl_ext |= (1 << 22); | ||
810 | |||
811 | /* TX byte count fix */ | ||
812 | reg_ctrl = er32(CTRL); | ||
813 | reg_ctrl &= ~(1 << 29); | ||
814 | |||
815 | ew32(CTRL_EXT, reg_ctrl_ext); | ||
816 | ew32(CTRL, reg_ctrl); | ||
817 | break; | ||
818 | case e1000_80003es2lan: | ||
819 | /* improve small packet performace for fiber/serdes */ | ||
820 | if ((hw->media_type == e1000_media_type_fiber) || | ||
821 | (hw->media_type == e1000_media_type_internal_serdes)) { | ||
822 | reg_tarc0 &= ~(1 << 20); | ||
823 | } | ||
824 | |||
825 | /* Multiple read bit is reversed polarity */ | ||
826 | reg_tctl = er32(TCTL); | ||
827 | reg_tarc1 = er32(TARC1); | ||
828 | if (reg_tctl & E1000_TCTL_MULR) | ||
829 | reg_tarc1 &= ~(1 << 28); | ||
830 | else | ||
831 | reg_tarc1 |= (1 << 28); | ||
832 | |||
833 | ew32(TARC1, reg_tarc1); | ||
834 | break; | ||
835 | case e1000_ich8lan: | ||
836 | /* Reduce concurrent DMA requests to 3 from 4 */ | ||
837 | if ((hw->revision_id < 3) || | ||
838 | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && | ||
839 | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) | ||
840 | reg_tarc0 |= ((1 << 29)|(1 << 28)); | ||
841 | |||
842 | reg_ctrl_ext = er32(CTRL_EXT); | ||
843 | reg_ctrl_ext |= (1 << 22); | ||
844 | ew32(CTRL_EXT, reg_ctrl_ext); | ||
845 | |||
846 | /* workaround TX hang with TSO=on */ | ||
847 | reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); | ||
848 | |||
849 | /* Multiple read bit is reversed polarity */ | ||
850 | reg_tctl = er32(TCTL); | ||
851 | reg_tarc1 = er32(TARC1); | ||
852 | if (reg_tctl & E1000_TCTL_MULR) | ||
853 | reg_tarc1 &= ~(1 << 28); | ||
854 | else | ||
855 | reg_tarc1 |= (1 << 28); | ||
856 | |||
857 | /* workaround TX hang with TSO=on */ | ||
858 | reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); | ||
859 | |||
860 | ew32(TARC1, reg_tarc1); | ||
861 | break; | ||
862 | default: | ||
863 | break; | ||
864 | } | ||
865 | |||
866 | ew32(TARC0, reg_tarc0); | ||
867 | } | ||
868 | } | ||
869 | |||
870 | /****************************************************************************** | ||
871 | * Performs basic configuration of the adapter. | 542 | * Performs basic configuration of the adapter. |
872 | * | 543 | * |
873 | * hw - Struct containing variables accessed by shared code | 544 | * hw - Struct containing variables accessed by shared code |
@@ -884,21 +555,10 @@ s32 e1000_init_hw(struct e1000_hw *hw) | |||
884 | u32 i; | 555 | u32 i; |
885 | s32 ret_val; | 556 | s32 ret_val; |
886 | u32 mta_size; | 557 | u32 mta_size; |
887 | u32 reg_data; | ||
888 | u32 ctrl_ext; | 558 | u32 ctrl_ext; |
889 | 559 | ||
890 | DEBUGFUNC("e1000_init_hw"); | 560 | DEBUGFUNC("e1000_init_hw"); |
891 | 561 | ||
892 | /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ | ||
893 | if ((hw->mac_type == e1000_ich8lan) && | ||
894 | ((hw->revision_id < 3) || | ||
895 | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && | ||
896 | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { | ||
897 | reg_data = er32(STATUS); | ||
898 | reg_data &= ~0x80000000; | ||
899 | ew32(STATUS, reg_data); | ||
900 | } | ||
901 | |||
902 | /* Initialize Identification LED */ | 562 | /* Initialize Identification LED */ |
903 | ret_val = e1000_id_led_init(hw); | 563 | ret_val = e1000_id_led_init(hw); |
904 | if (ret_val) { | 564 | if (ret_val) { |
@@ -909,17 +569,11 @@ s32 e1000_init_hw(struct e1000_hw *hw) | |||
909 | /* Set the media type and TBI compatibility */ | 569 | /* Set the media type and TBI compatibility */ |
910 | e1000_set_media_type(hw); | 570 | e1000_set_media_type(hw); |
911 | 571 | ||
912 | /* Must be called after e1000_set_media_type because media_type is used */ | ||
913 | e1000_initialize_hardware_bits(hw); | ||
914 | |||
915 | /* Disabling VLAN filtering. */ | 572 | /* Disabling VLAN filtering. */ |
916 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 573 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
917 | /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ | 574 | if (hw->mac_type < e1000_82545_rev_3) |
918 | if (hw->mac_type != e1000_ich8lan) { | 575 | ew32(VET, 0); |
919 | if (hw->mac_type < e1000_82545_rev_3) | 576 | e1000_clear_vfta(hw); |
920 | ew32(VET, 0); | ||
921 | e1000_clear_vfta(hw); | ||
922 | } | ||
923 | 577 | ||
924 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 578 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
925 | if (hw->mac_type == e1000_82542_rev2_0) { | 579 | if (hw->mac_type == e1000_82542_rev2_0) { |
@@ -947,8 +601,6 @@ s32 e1000_init_hw(struct e1000_hw *hw) | |||
947 | /* Zero out the Multicast HASH table */ | 601 | /* Zero out the Multicast HASH table */ |
948 | DEBUGOUT("Zeroing the MTA\n"); | 602 | DEBUGOUT("Zeroing the MTA\n"); |
949 | mta_size = E1000_MC_TBL_SIZE; | 603 | mta_size = E1000_MC_TBL_SIZE; |
950 | if (hw->mac_type == e1000_ich8lan) | ||
951 | mta_size = E1000_MC_TBL_SIZE_ICH8LAN; | ||
952 | for (i = 0; i < mta_size; i++) { | 604 | for (i = 0; i < mta_size; i++) { |
953 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 605 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
954 | /* use write flush to prevent Memory Write Block (MWB) from | 606 | /* use write flush to prevent Memory Write Block (MWB) from |
@@ -977,10 +629,6 @@ s32 e1000_init_hw(struct e1000_hw *hw) | |||
977 | break; | 629 | break; |
978 | } | 630 | } |
979 | 631 | ||
980 | /* More time needed for PHY to initialize */ | ||
981 | if (hw->mac_type == e1000_ich8lan) | ||
982 | msleep(15); | ||
983 | |||
984 | /* Call a subroutine to configure the link and setup flow control. */ | 632 | /* Call a subroutine to configure the link and setup flow control. */ |
985 | ret_val = e1000_setup_link(hw); | 633 | ret_val = e1000_setup_link(hw); |
986 | 634 | ||
@@ -991,51 +639,6 @@ s32 e1000_init_hw(struct e1000_hw *hw) | |||
991 | ew32(TXDCTL, ctrl); | 639 | ew32(TXDCTL, ctrl); |
992 | } | 640 | } |
993 | 641 | ||
994 | if (hw->mac_type == e1000_82573) { | ||
995 | e1000_enable_tx_pkt_filtering(hw); | ||
996 | } | ||
997 | |||
998 | switch (hw->mac_type) { | ||
999 | default: | ||
1000 | break; | ||
1001 | case e1000_80003es2lan: | ||
1002 | /* Enable retransmit on late collisions */ | ||
1003 | reg_data = er32(TCTL); | ||
1004 | reg_data |= E1000_TCTL_RTLC; | ||
1005 | ew32(TCTL, reg_data); | ||
1006 | |||
1007 | /* Configure Gigabit Carry Extend Padding */ | ||
1008 | reg_data = er32(TCTL_EXT); | ||
1009 | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; | ||
1010 | reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; | ||
1011 | ew32(TCTL_EXT, reg_data); | ||
1012 | |||
1013 | /* Configure Transmit Inter-Packet Gap */ | ||
1014 | reg_data = er32(TIPG); | ||
1015 | reg_data &= ~E1000_TIPG_IPGT_MASK; | ||
1016 | reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | ||
1017 | ew32(TIPG, reg_data); | ||
1018 | |||
1019 | reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); | ||
1020 | reg_data &= ~0x00100000; | ||
1021 | E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); | ||
1022 | /* Fall through */ | ||
1023 | case e1000_82571: | ||
1024 | case e1000_82572: | ||
1025 | case e1000_ich8lan: | ||
1026 | ctrl = er32(TXDCTL1); | ||
1027 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | ||
1028 | ew32(TXDCTL1, ctrl); | ||
1029 | break; | ||
1030 | } | ||
1031 | |||
1032 | |||
1033 | if (hw->mac_type == e1000_82573) { | ||
1034 | u32 gcr = er32(GCR); | ||
1035 | gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; | ||
1036 | ew32(GCR, gcr); | ||
1037 | } | ||
1038 | |||
1039 | /* Clear all of the statistics registers (clear on read). It is | 642 | /* Clear all of the statistics registers (clear on read). It is |
1040 | * important that we do this after we have tried to establish link | 643 | * important that we do this after we have tried to establish link |
1041 | * because the symbol error count will increment wildly if there | 644 | * because the symbol error count will increment wildly if there |
@@ -1043,11 +646,6 @@ s32 e1000_init_hw(struct e1000_hw *hw) | |||
1043 | */ | 646 | */ |
1044 | e1000_clear_hw_cntrs(hw); | 647 | e1000_clear_hw_cntrs(hw); |
1045 | 648 | ||
1046 | /* ICH8 No-snoop bits are opposite polarity. | ||
1047 | * Set to snoop by default after reset. */ | ||
1048 | if (hw->mac_type == e1000_ich8lan) | ||
1049 | e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); | ||
1050 | |||
1051 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | 649 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
1052 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | 650 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
1053 | ctrl_ext = er32(CTRL_EXT); | 651 | ctrl_ext = er32(CTRL_EXT); |
@@ -1118,11 +716,6 @@ s32 e1000_setup_link(struct e1000_hw *hw) | |||
1118 | 716 | ||
1119 | DEBUGFUNC("e1000_setup_link"); | 717 | DEBUGFUNC("e1000_setup_link"); |
1120 | 718 | ||
1121 | /* In the case of the phy reset being blocked, we already have a link. | ||
1122 | * We do not have to set it up again. */ | ||
1123 | if (e1000_check_phy_reset_block(hw)) | ||
1124 | return E1000_SUCCESS; | ||
1125 | |||
1126 | /* Read and store word 0x0F of the EEPROM. This word contains bits | 719 | /* Read and store word 0x0F of the EEPROM. This word contains bits |
1127 | * that determine the hardware's default PAUSE (flow control) mode, | 720 | * that determine the hardware's default PAUSE (flow control) mode, |
1128 | * a bit that determines whether the HW defaults to enabling or | 721 | * a bit that determines whether the HW defaults to enabling or |
@@ -1132,27 +725,19 @@ s32 e1000_setup_link(struct e1000_hw *hw) | |||
1132 | * be initialized based on a value in the EEPROM. | 725 | * be initialized based on a value in the EEPROM. |
1133 | */ | 726 | */ |
1134 | if (hw->fc == E1000_FC_DEFAULT) { | 727 | if (hw->fc == E1000_FC_DEFAULT) { |
1135 | switch (hw->mac_type) { | 728 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
1136 | case e1000_ich8lan: | 729 | 1, &eeprom_data); |
1137 | case e1000_82573: | 730 | if (ret_val) { |
1138 | hw->fc = E1000_FC_FULL; | 731 | DEBUGOUT("EEPROM Read Error\n"); |
1139 | break; | 732 | return -E1000_ERR_EEPROM; |
1140 | default: | ||
1141 | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | ||
1142 | 1, &eeprom_data); | ||
1143 | if (ret_val) { | ||
1144 | DEBUGOUT("EEPROM Read Error\n"); | ||
1145 | return -E1000_ERR_EEPROM; | ||
1146 | } | ||
1147 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | ||
1148 | hw->fc = E1000_FC_NONE; | ||
1149 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | ||
1150 | EEPROM_WORD0F_ASM_DIR) | ||
1151 | hw->fc = E1000_FC_TX_PAUSE; | ||
1152 | else | ||
1153 | hw->fc = E1000_FC_FULL; | ||
1154 | break; | ||
1155 | } | 733 | } |
734 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | ||
735 | hw->fc = E1000_FC_NONE; | ||
736 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | ||
737 | EEPROM_WORD0F_ASM_DIR) | ||
738 | hw->fc = E1000_FC_TX_PAUSE; | ||
739 | else | ||
740 | hw->fc = E1000_FC_FULL; | ||
1156 | } | 741 | } |
1157 | 742 | ||
1158 | /* We want to save off the original Flow Control configuration just | 743 | /* We want to save off the original Flow Control configuration just |
@@ -1200,12 +785,9 @@ s32 e1000_setup_link(struct e1000_hw *hw) | |||
1200 | */ | 785 | */ |
1201 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 786 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); |
1202 | 787 | ||
1203 | /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ | 788 | ew32(FCT, FLOW_CONTROL_TYPE); |
1204 | if (hw->mac_type != e1000_ich8lan) { | 789 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
1205 | ew32(FCT, FLOW_CONTROL_TYPE); | 790 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); |
1206 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
1207 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
1208 | } | ||
1209 | 791 | ||
1210 | ew32(FCTTV, hw->fc_pause_time); | 792 | ew32(FCTTV, hw->fc_pause_time); |
1211 | 793 | ||
@@ -1253,14 +835,6 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | |||
1253 | 835 | ||
1254 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); | 836 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); |
1255 | 837 | ||
1256 | /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists | ||
1257 | * until explicitly turned off or a power cycle is performed. A read to | ||
1258 | * the register does not indicate its status. Therefore, we ensure | ||
1259 | * loopback mode is disabled during initialization. | ||
1260 | */ | ||
1261 | if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) | ||
1262 | ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK); | ||
1263 | |||
1264 | /* On adapters with a MAC newer than 82544, SWDP 1 will be | 838 | /* On adapters with a MAC newer than 82544, SWDP 1 will be |
1265 | * set when the optics detect a signal. On older adapters, it will be | 839 | * set when the optics detect a signal. On older adapters, it will be |
1266 | * cleared when there is a signal. This applies to fiber media only. | 840 | * cleared when there is a signal. This applies to fiber media only. |
@@ -1466,13 +1040,11 @@ static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) | |||
1466 | 1040 | ||
1467 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | 1041 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
1468 | msleep(15); | 1042 | msleep(15); |
1469 | if (hw->mac_type != e1000_ich8lan) { | ||
1470 | /* Configure activity LED after PHY reset */ | 1043 | /* Configure activity LED after PHY reset */ |
1471 | led_ctrl = er32(LEDCTL); | 1044 | led_ctrl = er32(LEDCTL); |
1472 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 1045 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
1473 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 1046 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
1474 | ew32(LEDCTL, led_ctrl); | 1047 | ew32(LEDCTL, led_ctrl); |
1475 | } | ||
1476 | 1048 | ||
1477 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | 1049 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
1478 | if (hw->phy_type == e1000_phy_igp) { | 1050 | if (hw->phy_type == e1000_phy_igp) { |
@@ -1484,12 +1056,6 @@ static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) | |||
1484 | } | 1056 | } |
1485 | } | 1057 | } |
1486 | 1058 | ||
1487 | /* disable lplu d0 during driver init */ | ||
1488 | ret_val = e1000_set_d0_lplu_state(hw, false); | ||
1489 | if (ret_val) { | ||
1490 | DEBUGOUT("Error Disabling LPLU D0\n"); | ||
1491 | return ret_val; | ||
1492 | } | ||
1493 | /* Configure mdi-mdix settings */ | 1059 | /* Configure mdi-mdix settings */ |
1494 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 1060 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
1495 | if (ret_val) | 1061 | if (ret_val) |
@@ -1589,153 +1155,6 @@ static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) | |||
1589 | } | 1155 | } |
1590 | 1156 | ||
1591 | /******************************************************************** | 1157 | /******************************************************************** |
1592 | * Copper link setup for e1000_phy_gg82563 series. | ||
1593 | * | ||
1594 | * hw - Struct containing variables accessed by shared code | ||
1595 | *********************************************************************/ | ||
1596 | static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw) | ||
1597 | { | ||
1598 | s32 ret_val; | ||
1599 | u16 phy_data; | ||
1600 | u32 reg_data; | ||
1601 | |||
1602 | DEBUGFUNC("e1000_copper_link_ggp_setup"); | ||
1603 | |||
1604 | if (!hw->phy_reset_disable) { | ||
1605 | |||
1606 | /* Enable CRS on TX for half-duplex operation. */ | ||
1607 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, | ||
1608 | &phy_data); | ||
1609 | if (ret_val) | ||
1610 | return ret_val; | ||
1611 | |||
1612 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | ||
1613 | /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ | ||
1614 | phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; | ||
1615 | |||
1616 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, | ||
1617 | phy_data); | ||
1618 | if (ret_val) | ||
1619 | return ret_val; | ||
1620 | |||
1621 | /* Options: | ||
1622 | * MDI/MDI-X = 0 (default) | ||
1623 | * 0 - Auto for all speeds | ||
1624 | * 1 - MDI mode | ||
1625 | * 2 - MDI-X mode | ||
1626 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
1627 | */ | ||
1628 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); | ||
1629 | if (ret_val) | ||
1630 | return ret_val; | ||
1631 | |||
1632 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; | ||
1633 | |||
1634 | switch (hw->mdix) { | ||
1635 | case 1: | ||
1636 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; | ||
1637 | break; | ||
1638 | case 2: | ||
1639 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; | ||
1640 | break; | ||
1641 | case 0: | ||
1642 | default: | ||
1643 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; | ||
1644 | break; | ||
1645 | } | ||
1646 | |||
1647 | /* Options: | ||
1648 | * disable_polarity_correction = 0 (default) | ||
1649 | * Automatic Correction for Reversed Cable Polarity | ||
1650 | * 0 - Disabled | ||
1651 | * 1 - Enabled | ||
1652 | */ | ||
1653 | phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | ||
1654 | if (hw->disable_polarity_correction == 1) | ||
1655 | phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | ||
1656 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); | ||
1657 | |||
1658 | if (ret_val) | ||
1659 | return ret_val; | ||
1660 | |||
1661 | /* SW Reset the PHY so all changes take effect */ | ||
1662 | ret_val = e1000_phy_reset(hw); | ||
1663 | if (ret_val) { | ||
1664 | DEBUGOUT("Error Resetting the PHY\n"); | ||
1665 | return ret_val; | ||
1666 | } | ||
1667 | } /* phy_reset_disable */ | ||
1668 | |||
1669 | if (hw->mac_type == e1000_80003es2lan) { | ||
1670 | /* Bypass RX and TX FIFO's */ | ||
1671 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, | ||
1672 | E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | | ||
1673 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); | ||
1674 | if (ret_val) | ||
1675 | return ret_val; | ||
1676 | |||
1677 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); | ||
1678 | if (ret_val) | ||
1679 | return ret_val; | ||
1680 | |||
1681 | phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; | ||
1682 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); | ||
1683 | |||
1684 | if (ret_val) | ||
1685 | return ret_val; | ||
1686 | |||
1687 | reg_data = er32(CTRL_EXT); | ||
1688 | reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); | ||
1689 | ew32(CTRL_EXT, reg_data); | ||
1690 | |||
1691 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, | ||
1692 | &phy_data); | ||
1693 | if (ret_val) | ||
1694 | return ret_val; | ||
1695 | |||
1696 | /* Do not init these registers when the HW is in IAMT mode, since the | ||
1697 | * firmware will have already initialized them. We only initialize | ||
1698 | * them if the HW is not in IAMT mode. | ||
1699 | */ | ||
1700 | if (!e1000_check_mng_mode(hw)) { | ||
1701 | /* Enable Electrical Idle on the PHY */ | ||
1702 | phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; | ||
1703 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, | ||
1704 | phy_data); | ||
1705 | if (ret_val) | ||
1706 | return ret_val; | ||
1707 | |||
1708 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, | ||
1709 | &phy_data); | ||
1710 | if (ret_val) | ||
1711 | return ret_val; | ||
1712 | |||
1713 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1714 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, | ||
1715 | phy_data); | ||
1716 | |||
1717 | if (ret_val) | ||
1718 | return ret_val; | ||
1719 | } | ||
1720 | |||
1721 | /* Workaround: Disable padding in Kumeran interface in the MAC | ||
1722 | * and in the PHY to avoid CRC errors. | ||
1723 | */ | ||
1724 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, | ||
1725 | &phy_data); | ||
1726 | if (ret_val) | ||
1727 | return ret_val; | ||
1728 | phy_data |= GG82563_ICR_DIS_PADDING; | ||
1729 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, | ||
1730 | phy_data); | ||
1731 | if (ret_val) | ||
1732 | return ret_val; | ||
1733 | } | ||
1734 | |||
1735 | return E1000_SUCCESS; | ||
1736 | } | ||
1737 | |||
1738 | /******************************************************************** | ||
1739 | * Copper link setup for e1000_phy_m88 series. | 1158 | * Copper link setup for e1000_phy_m88 series. |
1740 | * | 1159 | * |
1741 | * hw - Struct containing variables accessed by shared code | 1160 | * hw - Struct containing variables accessed by shared code |
@@ -1861,10 +1280,6 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | |||
1861 | if (hw->autoneg_advertised == 0) | 1280 | if (hw->autoneg_advertised == 0) |
1862 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 1281 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
1863 | 1282 | ||
1864 | /* IFE phy only supports 10/100 */ | ||
1865 | if (hw->phy_type == e1000_phy_ife) | ||
1866 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; | ||
1867 | |||
1868 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 1283 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
1869 | ret_val = e1000_phy_setup_autoneg(hw); | 1284 | ret_val = e1000_phy_setup_autoneg(hw); |
1870 | if (ret_val) { | 1285 | if (ret_val) { |
@@ -1955,52 +1370,15 @@ static s32 e1000_setup_copper_link(struct e1000_hw *hw) | |||
1955 | s32 ret_val; | 1370 | s32 ret_val; |
1956 | u16 i; | 1371 | u16 i; |
1957 | u16 phy_data; | 1372 | u16 phy_data; |
1958 | u16 reg_data = 0; | ||
1959 | 1373 | ||
1960 | DEBUGFUNC("e1000_setup_copper_link"); | 1374 | DEBUGFUNC("e1000_setup_copper_link"); |
1961 | 1375 | ||
1962 | switch (hw->mac_type) { | ||
1963 | case e1000_80003es2lan: | ||
1964 | case e1000_ich8lan: | ||
1965 | /* Set the mac to wait the maximum time between each | ||
1966 | * iteration and increase the max iterations when | ||
1967 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ | ||
1968 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); | ||
1969 | if (ret_val) | ||
1970 | return ret_val; | ||
1971 | ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); | ||
1972 | if (ret_val) | ||
1973 | return ret_val; | ||
1974 | reg_data |= 0x3F; | ||
1975 | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); | ||
1976 | if (ret_val) | ||
1977 | return ret_val; | ||
1978 | default: | ||
1979 | break; | ||
1980 | } | ||
1981 | |||
1982 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 1376 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
1983 | ret_val = e1000_copper_link_preconfig(hw); | 1377 | ret_val = e1000_copper_link_preconfig(hw); |
1984 | if (ret_val) | 1378 | if (ret_val) |
1985 | return ret_val; | 1379 | return ret_val; |
1986 | 1380 | ||
1987 | switch (hw->mac_type) { | 1381 | if (hw->phy_type == e1000_phy_igp) { |
1988 | case e1000_80003es2lan: | ||
1989 | /* Kumeran registers are written-only */ | ||
1990 | reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; | ||
1991 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; | ||
1992 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, | ||
1993 | reg_data); | ||
1994 | if (ret_val) | ||
1995 | return ret_val; | ||
1996 | break; | ||
1997 | default: | ||
1998 | break; | ||
1999 | } | ||
2000 | |||
2001 | if (hw->phy_type == e1000_phy_igp || | ||
2002 | hw->phy_type == e1000_phy_igp_3 || | ||
2003 | hw->phy_type == e1000_phy_igp_2) { | ||
2004 | ret_val = e1000_copper_link_igp_setup(hw); | 1382 | ret_val = e1000_copper_link_igp_setup(hw); |
2005 | if (ret_val) | 1383 | if (ret_val) |
2006 | return ret_val; | 1384 | return ret_val; |
@@ -2008,10 +1386,6 @@ static s32 e1000_setup_copper_link(struct e1000_hw *hw) | |||
2008 | ret_val = e1000_copper_link_mgp_setup(hw); | 1386 | ret_val = e1000_copper_link_mgp_setup(hw); |
2009 | if (ret_val) | 1387 | if (ret_val) |
2010 | return ret_val; | 1388 | return ret_val; |
2011 | } else if (hw->phy_type == e1000_phy_gg82563) { | ||
2012 | ret_val = e1000_copper_link_ggp_setup(hw); | ||
2013 | if (ret_val) | ||
2014 | return ret_val; | ||
2015 | } | 1389 | } |
2016 | 1390 | ||
2017 | if (hw->autoneg) { | 1391 | if (hw->autoneg) { |
@@ -2059,77 +1433,6 @@ static s32 e1000_setup_copper_link(struct e1000_hw *hw) | |||
2059 | } | 1433 | } |
2060 | 1434 | ||
2061 | /****************************************************************************** | 1435 | /****************************************************************************** |
2062 | * Configure the MAC-to-PHY interface for 10/100Mbps | ||
2063 | * | ||
2064 | * hw - Struct containing variables accessed by shared code | ||
2065 | ******************************************************************************/ | ||
2066 | static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex) | ||
2067 | { | ||
2068 | s32 ret_val = E1000_SUCCESS; | ||
2069 | u32 tipg; | ||
2070 | u16 reg_data; | ||
2071 | |||
2072 | DEBUGFUNC("e1000_configure_kmrn_for_10_100"); | ||
2073 | |||
2074 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; | ||
2075 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, | ||
2076 | reg_data); | ||
2077 | if (ret_val) | ||
2078 | return ret_val; | ||
2079 | |||
2080 | /* Configure Transmit Inter-Packet Gap */ | ||
2081 | tipg = er32(TIPG); | ||
2082 | tipg &= ~E1000_TIPG_IPGT_MASK; | ||
2083 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; | ||
2084 | ew32(TIPG, tipg); | ||
2085 | |||
2086 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
2087 | |||
2088 | if (ret_val) | ||
2089 | return ret_val; | ||
2090 | |||
2091 | if (duplex == HALF_DUPLEX) | ||
2092 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | ||
2093 | else | ||
2094 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
2095 | |||
2096 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
2097 | |||
2098 | return ret_val; | ||
2099 | } | ||
2100 | |||
2101 | static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw) | ||
2102 | { | ||
2103 | s32 ret_val = E1000_SUCCESS; | ||
2104 | u16 reg_data; | ||
2105 | u32 tipg; | ||
2106 | |||
2107 | DEBUGFUNC("e1000_configure_kmrn_for_1000"); | ||
2108 | |||
2109 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; | ||
2110 | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, | ||
2111 | reg_data); | ||
2112 | if (ret_val) | ||
2113 | return ret_val; | ||
2114 | |||
2115 | /* Configure Transmit Inter-Packet Gap */ | ||
2116 | tipg = er32(TIPG); | ||
2117 | tipg &= ~E1000_TIPG_IPGT_MASK; | ||
2118 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | ||
2119 | ew32(TIPG, tipg); | ||
2120 | |||
2121 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
2122 | |||
2123 | if (ret_val) | ||
2124 | return ret_val; | ||
2125 | |||
2126 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
2127 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
2128 | |||
2129 | return ret_val; | ||
2130 | } | ||
2131 | |||
2132 | /****************************************************************************** | ||
2133 | * Configures PHY autoneg and flow control advertisement settings | 1436 | * Configures PHY autoneg and flow control advertisement settings |
2134 | * | 1437 | * |
2135 | * hw - Struct containing variables accessed by shared code | 1438 | * hw - Struct containing variables accessed by shared code |
@@ -2147,13 +1450,10 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
2147 | if (ret_val) | 1450 | if (ret_val) |
2148 | return ret_val; | 1451 | return ret_val; |
2149 | 1452 | ||
2150 | if (hw->phy_type != e1000_phy_ife) { | 1453 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
2151 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 1454 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
2152 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 1455 | if (ret_val) |
2153 | if (ret_val) | 1456 | return ret_val; |
2154 | return ret_val; | ||
2155 | } else | ||
2156 | mii_1000t_ctrl_reg=0; | ||
2157 | 1457 | ||
2158 | /* Need to parse both autoneg_advertised and fc and set up | 1458 | /* Need to parse both autoneg_advertised and fc and set up |
2159 | * the appropriate PHY registers. First we will parse for | 1459 | * the appropriate PHY registers. First we will parse for |
@@ -2204,9 +1504,6 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
2204 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 1504 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
2205 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | 1505 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
2206 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 1506 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
2207 | if (hw->phy_type == e1000_phy_ife) { | ||
2208 | DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); | ||
2209 | } | ||
2210 | } | 1507 | } |
2211 | 1508 | ||
2212 | /* Check for a software override of the flow control settings, and | 1509 | /* Check for a software override of the flow control settings, and |
@@ -2268,11 +1565,9 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
2268 | 1565 | ||
2269 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 1566 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
2270 | 1567 | ||
2271 | if (hw->phy_type != e1000_phy_ife) { | 1568 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
2272 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 1569 | if (ret_val) |
2273 | if (ret_val) | 1570 | return ret_val; |
2274 | return ret_val; | ||
2275 | } | ||
2276 | 1571 | ||
2277 | return E1000_SUCCESS; | 1572 | return E1000_SUCCESS; |
2278 | } | 1573 | } |
@@ -2356,8 +1651,7 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | |||
2356 | /* Write the configured values back to the Device Control Reg. */ | 1651 | /* Write the configured values back to the Device Control Reg. */ |
2357 | ew32(CTRL, ctrl); | 1652 | ew32(CTRL, ctrl); |
2358 | 1653 | ||
2359 | if ((hw->phy_type == e1000_phy_m88) || | 1654 | if (hw->phy_type == e1000_phy_m88) { |
2360 | (hw->phy_type == e1000_phy_gg82563)) { | ||
2361 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 1655 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
2362 | if (ret_val) | 1656 | if (ret_val) |
2363 | return ret_val; | 1657 | return ret_val; |
@@ -2375,19 +1669,6 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | |||
2375 | /* Need to reset the PHY or these changes will be ignored */ | 1669 | /* Need to reset the PHY or these changes will be ignored */ |
2376 | mii_ctrl_reg |= MII_CR_RESET; | 1670 | mii_ctrl_reg |= MII_CR_RESET; |
2377 | 1671 | ||
2378 | /* Disable MDI-X support for 10/100 */ | ||
2379 | } else if (hw->phy_type == e1000_phy_ife) { | ||
2380 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | ||
2381 | if (ret_val) | ||
2382 | return ret_val; | ||
2383 | |||
2384 | phy_data &= ~IFE_PMC_AUTO_MDIX; | ||
2385 | phy_data &= ~IFE_PMC_FORCE_MDIX; | ||
2386 | |||
2387 | ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); | ||
2388 | if (ret_val) | ||
2389 | return ret_val; | ||
2390 | |||
2391 | } else { | 1672 | } else { |
2392 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | 1673 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
2393 | * forced whenever speed or duplex are forced. | 1674 | * forced whenever speed or duplex are forced. |
@@ -2440,8 +1721,7 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | |||
2440 | msleep(100); | 1721 | msleep(100); |
2441 | } | 1722 | } |
2442 | if ((i == 0) && | 1723 | if ((i == 0) && |
2443 | ((hw->phy_type == e1000_phy_m88) || | 1724 | (hw->phy_type == e1000_phy_m88)) { |
2444 | (hw->phy_type == e1000_phy_gg82563))) { | ||
2445 | /* We didn't get link. Reset the DSP and wait again for link. */ | 1725 | /* We didn't get link. Reset the DSP and wait again for link. */ |
2446 | ret_val = e1000_phy_reset_dsp(hw); | 1726 | ret_val = e1000_phy_reset_dsp(hw); |
2447 | if (ret_val) { | 1727 | if (ret_val) { |
@@ -2499,27 +1779,6 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | |||
2499 | if (ret_val) | 1779 | if (ret_val) |
2500 | return ret_val; | 1780 | return ret_val; |
2501 | } | 1781 | } |
2502 | } else if (hw->phy_type == e1000_phy_gg82563) { | ||
2503 | /* The TX_CLK of the Extended PHY Specific Control Register defaults | ||
2504 | * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if | ||
2505 | * we're not in a forced 10/duplex configuration. */ | ||
2506 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); | ||
2507 | if (ret_val) | ||
2508 | return ret_val; | ||
2509 | |||
2510 | phy_data &= ~GG82563_MSCR_TX_CLK_MASK; | ||
2511 | if ((hw->forced_speed_duplex == e1000_10_full) || | ||
2512 | (hw->forced_speed_duplex == e1000_10_half)) | ||
2513 | phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ; | ||
2514 | else | ||
2515 | phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ; | ||
2516 | |||
2517 | /* Also due to the reset, we need to enable CRS on Tx. */ | ||
2518 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | ||
2519 | |||
2520 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); | ||
2521 | if (ret_val) | ||
2522 | return ret_val; | ||
2523 | } | 1782 | } |
2524 | return E1000_SUCCESS; | 1783 | return E1000_SUCCESS; |
2525 | } | 1784 | } |
@@ -3179,22 +2438,6 @@ s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) | |||
3179 | } | 2438 | } |
3180 | } | 2439 | } |
3181 | 2440 | ||
3182 | if ((hw->mac_type == e1000_80003es2lan) && | ||
3183 | (hw->media_type == e1000_media_type_copper)) { | ||
3184 | if (*speed == SPEED_1000) | ||
3185 | ret_val = e1000_configure_kmrn_for_1000(hw); | ||
3186 | else | ||
3187 | ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); | ||
3188 | if (ret_val) | ||
3189 | return ret_val; | ||
3190 | } | ||
3191 | |||
3192 | if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { | ||
3193 | ret_val = e1000_kumeran_lock_loss_workaround(hw); | ||
3194 | if (ret_val) | ||
3195 | return ret_val; | ||
3196 | } | ||
3197 | |||
3198 | return E1000_SUCCESS; | 2441 | return E1000_SUCCESS; |
3199 | } | 2442 | } |
3200 | 2443 | ||
@@ -3373,9 +2616,6 @@ static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask) | |||
3373 | 2616 | ||
3374 | DEBUGFUNC("e1000_swfw_sync_acquire"); | 2617 | DEBUGFUNC("e1000_swfw_sync_acquire"); |
3375 | 2618 | ||
3376 | if (hw->swfwhw_semaphore_present) | ||
3377 | return e1000_get_software_flag(hw); | ||
3378 | |||
3379 | if (!hw->swfw_sync_present) | 2619 | if (!hw->swfw_sync_present) |
3380 | return e1000_get_hw_eeprom_semaphore(hw); | 2620 | return e1000_get_hw_eeprom_semaphore(hw); |
3381 | 2621 | ||
@@ -3414,11 +2654,6 @@ static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask) | |||
3414 | 2654 | ||
3415 | DEBUGFUNC("e1000_swfw_sync_release"); | 2655 | DEBUGFUNC("e1000_swfw_sync_release"); |
3416 | 2656 | ||
3417 | if (hw->swfwhw_semaphore_present) { | ||
3418 | e1000_release_software_flag(hw); | ||
3419 | return; | ||
3420 | } | ||
3421 | |||
3422 | if (!hw->swfw_sync_present) { | 2657 | if (!hw->swfw_sync_present) { |
3423 | e1000_put_hw_eeprom_semaphore(hw); | 2658 | e1000_put_hw_eeprom_semaphore(hw); |
3424 | return; | 2659 | return; |
@@ -3449,46 +2684,18 @@ s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) | |||
3449 | 2684 | ||
3450 | DEBUGFUNC("e1000_read_phy_reg"); | 2685 | DEBUGFUNC("e1000_read_phy_reg"); |
3451 | 2686 | ||
3452 | if ((hw->mac_type == e1000_80003es2lan) && | 2687 | swfw = E1000_SWFW_PHY0_SM; |
3453 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | ||
3454 | swfw = E1000_SWFW_PHY1_SM; | ||
3455 | } else { | ||
3456 | swfw = E1000_SWFW_PHY0_SM; | ||
3457 | } | ||
3458 | if (e1000_swfw_sync_acquire(hw, swfw)) | 2688 | if (e1000_swfw_sync_acquire(hw, swfw)) |
3459 | return -E1000_ERR_SWFW_SYNC; | 2689 | return -E1000_ERR_SWFW_SYNC; |
3460 | 2690 | ||
3461 | if ((hw->phy_type == e1000_phy_igp || | 2691 | if ((hw->phy_type == e1000_phy_igp) && |
3462 | hw->phy_type == e1000_phy_igp_3 || | 2692 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
3463 | hw->phy_type == e1000_phy_igp_2) && | ||
3464 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
3465 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2693 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
3466 | (u16)reg_addr); | 2694 | (u16)reg_addr); |
3467 | if (ret_val) { | 2695 | if (ret_val) { |
3468 | e1000_swfw_sync_release(hw, swfw); | 2696 | e1000_swfw_sync_release(hw, swfw); |
3469 | return ret_val; | 2697 | return ret_val; |
3470 | } | 2698 | } |
3471 | } else if (hw->phy_type == e1000_phy_gg82563) { | ||
3472 | if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || | ||
3473 | (hw->mac_type == e1000_80003es2lan)) { | ||
3474 | /* Select Configuration Page */ | ||
3475 | if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { | ||
3476 | ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, | ||
3477 | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | ||
3478 | } else { | ||
3479 | /* Use Alternative Page Select register to access | ||
3480 | * registers 30 and 31 | ||
3481 | */ | ||
3482 | ret_val = e1000_write_phy_reg_ex(hw, | ||
3483 | GG82563_PHY_PAGE_SELECT_ALT, | ||
3484 | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | ||
3485 | } | ||
3486 | |||
3487 | if (ret_val) { | ||
3488 | e1000_swfw_sync_release(hw, swfw); | ||
3489 | return ret_val; | ||
3490 | } | ||
3491 | } | ||
3492 | } | 2699 | } |
3493 | 2700 | ||
3494 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 2701 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
@@ -3584,46 +2791,18 @@ s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) | |||
3584 | 2791 | ||
3585 | DEBUGFUNC("e1000_write_phy_reg"); | 2792 | DEBUGFUNC("e1000_write_phy_reg"); |
3586 | 2793 | ||
3587 | if ((hw->mac_type == e1000_80003es2lan) && | 2794 | swfw = E1000_SWFW_PHY0_SM; |
3588 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | ||
3589 | swfw = E1000_SWFW_PHY1_SM; | ||
3590 | } else { | ||
3591 | swfw = E1000_SWFW_PHY0_SM; | ||
3592 | } | ||
3593 | if (e1000_swfw_sync_acquire(hw, swfw)) | 2795 | if (e1000_swfw_sync_acquire(hw, swfw)) |
3594 | return -E1000_ERR_SWFW_SYNC; | 2796 | return -E1000_ERR_SWFW_SYNC; |
3595 | 2797 | ||
3596 | if ((hw->phy_type == e1000_phy_igp || | 2798 | if ((hw->phy_type == e1000_phy_igp) && |
3597 | hw->phy_type == e1000_phy_igp_3 || | 2799 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
3598 | hw->phy_type == e1000_phy_igp_2) && | ||
3599 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
3600 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2800 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
3601 | (u16)reg_addr); | 2801 | (u16)reg_addr); |
3602 | if (ret_val) { | 2802 | if (ret_val) { |
3603 | e1000_swfw_sync_release(hw, swfw); | 2803 | e1000_swfw_sync_release(hw, swfw); |
3604 | return ret_val; | 2804 | return ret_val; |
3605 | } | 2805 | } |
3606 | } else if (hw->phy_type == e1000_phy_gg82563) { | ||
3607 | if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || | ||
3608 | (hw->mac_type == e1000_80003es2lan)) { | ||
3609 | /* Select Configuration Page */ | ||
3610 | if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { | ||
3611 | ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, | ||
3612 | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | ||
3613 | } else { | ||
3614 | /* Use Alternative Page Select register to access | ||
3615 | * registers 30 and 31 | ||
3616 | */ | ||
3617 | ret_val = e1000_write_phy_reg_ex(hw, | ||
3618 | GG82563_PHY_PAGE_SELECT_ALT, | ||
3619 | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | ||
3620 | } | ||
3621 | |||
3622 | if (ret_val) { | ||
3623 | e1000_swfw_sync_release(hw, swfw); | ||
3624 | return ret_val; | ||
3625 | } | ||
3626 | } | ||
3627 | } | 2806 | } |
3628 | 2807 | ||
3629 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 2808 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
@@ -3694,60 +2873,6 @@ static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | |||
3694 | return E1000_SUCCESS; | 2873 | return E1000_SUCCESS; |
3695 | } | 2874 | } |
3696 | 2875 | ||
3697 | static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data) | ||
3698 | { | ||
3699 | u32 reg_val; | ||
3700 | u16 swfw; | ||
3701 | DEBUGFUNC("e1000_read_kmrn_reg"); | ||
3702 | |||
3703 | if ((hw->mac_type == e1000_80003es2lan) && | ||
3704 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | ||
3705 | swfw = E1000_SWFW_PHY1_SM; | ||
3706 | } else { | ||
3707 | swfw = E1000_SWFW_PHY0_SM; | ||
3708 | } | ||
3709 | if (e1000_swfw_sync_acquire(hw, swfw)) | ||
3710 | return -E1000_ERR_SWFW_SYNC; | ||
3711 | |||
3712 | /* Write register address */ | ||
3713 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & | ||
3714 | E1000_KUMCTRLSTA_OFFSET) | | ||
3715 | E1000_KUMCTRLSTA_REN; | ||
3716 | ew32(KUMCTRLSTA, reg_val); | ||
3717 | udelay(2); | ||
3718 | |||
3719 | /* Read the data returned */ | ||
3720 | reg_val = er32(KUMCTRLSTA); | ||
3721 | *data = (u16)reg_val; | ||
3722 | |||
3723 | e1000_swfw_sync_release(hw, swfw); | ||
3724 | return E1000_SUCCESS; | ||
3725 | } | ||
3726 | |||
3727 | static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data) | ||
3728 | { | ||
3729 | u32 reg_val; | ||
3730 | u16 swfw; | ||
3731 | DEBUGFUNC("e1000_write_kmrn_reg"); | ||
3732 | |||
3733 | if ((hw->mac_type == e1000_80003es2lan) && | ||
3734 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | ||
3735 | swfw = E1000_SWFW_PHY1_SM; | ||
3736 | } else { | ||
3737 | swfw = E1000_SWFW_PHY0_SM; | ||
3738 | } | ||
3739 | if (e1000_swfw_sync_acquire(hw, swfw)) | ||
3740 | return -E1000_ERR_SWFW_SYNC; | ||
3741 | |||
3742 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & | ||
3743 | E1000_KUMCTRLSTA_OFFSET) | data; | ||
3744 | ew32(KUMCTRLSTA, reg_val); | ||
3745 | udelay(2); | ||
3746 | |||
3747 | e1000_swfw_sync_release(hw, swfw); | ||
3748 | return E1000_SUCCESS; | ||
3749 | } | ||
3750 | |||
3751 | /****************************************************************************** | 2876 | /****************************************************************************** |
3752 | * Returns the PHY to the power-on reset state | 2877 | * Returns the PHY to the power-on reset state |
3753 | * | 2878 | * |
@@ -3762,46 +2887,28 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw) | |||
3762 | 2887 | ||
3763 | DEBUGFUNC("e1000_phy_hw_reset"); | 2888 | DEBUGFUNC("e1000_phy_hw_reset"); |
3764 | 2889 | ||
3765 | /* In the case of the phy reset being blocked, it's not an error, we | ||
3766 | * simply return success without performing the reset. */ | ||
3767 | ret_val = e1000_check_phy_reset_block(hw); | ||
3768 | if (ret_val) | ||
3769 | return E1000_SUCCESS; | ||
3770 | |||
3771 | DEBUGOUT("Resetting Phy...\n"); | 2890 | DEBUGOUT("Resetting Phy...\n"); |
3772 | 2891 | ||
3773 | if (hw->mac_type > e1000_82543) { | 2892 | if (hw->mac_type > e1000_82543) { |
3774 | if ((hw->mac_type == e1000_80003es2lan) && | 2893 | swfw = E1000_SWFW_PHY0_SM; |
3775 | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | ||
3776 | swfw = E1000_SWFW_PHY1_SM; | ||
3777 | } else { | ||
3778 | swfw = E1000_SWFW_PHY0_SM; | ||
3779 | } | ||
3780 | if (e1000_swfw_sync_acquire(hw, swfw)) { | 2894 | if (e1000_swfw_sync_acquire(hw, swfw)) { |
3781 | DEBUGOUT("Unable to acquire swfw sync\n"); | 2895 | DEBUGOUT("Unable to acquire swfw sync\n"); |
3782 | return -E1000_ERR_SWFW_SYNC; | 2896 | return -E1000_ERR_SWFW_SYNC; |
3783 | } | 2897 | } |
3784 | /* Read the device control register and assert the E1000_CTRL_PHY_RST | 2898 | /* Read the device control register and assert the E1000_CTRL_PHY_RST |
3785 | * bit. Then, take it out of reset. | 2899 | * bit. Then, take it out of reset. |
3786 | * For pre-e1000_82571 hardware, we delay for 10ms between the assert | 2900 | * For e1000 hardware, we delay for 10ms between the assert |
3787 | * and deassert. For e1000_82571 hardware and later, we instead delay | 2901 | * and deassert. |
3788 | * for 50us between and 10ms after the deassertion. | ||
3789 | */ | 2902 | */ |
3790 | ctrl = er32(CTRL); | 2903 | ctrl = er32(CTRL); |
3791 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | 2904 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); |
3792 | E1000_WRITE_FLUSH(); | 2905 | E1000_WRITE_FLUSH(); |
3793 | 2906 | ||
3794 | if (hw->mac_type < e1000_82571) | 2907 | msleep(10); |
3795 | msleep(10); | ||
3796 | else | ||
3797 | udelay(100); | ||
3798 | 2908 | ||
3799 | ew32(CTRL, ctrl); | 2909 | ew32(CTRL, ctrl); |
3800 | E1000_WRITE_FLUSH(); | 2910 | E1000_WRITE_FLUSH(); |
3801 | 2911 | ||
3802 | if (hw->mac_type >= e1000_82571) | ||
3803 | mdelay(10); | ||
3804 | |||
3805 | e1000_swfw_sync_release(hw, swfw); | 2912 | e1000_swfw_sync_release(hw, swfw); |
3806 | } else { | 2913 | } else { |
3807 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 2914 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
@@ -3831,10 +2938,6 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw) | |||
3831 | ret_val = e1000_get_phy_cfg_done(hw); | 2938 | ret_val = e1000_get_phy_cfg_done(hw); |
3832 | if (ret_val != E1000_SUCCESS) | 2939 | if (ret_val != E1000_SUCCESS) |
3833 | return ret_val; | 2940 | return ret_val; |
3834 | e1000_release_software_semaphore(hw); | ||
3835 | |||
3836 | if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3)) | ||
3837 | ret_val = e1000_init_lcd_from_nvm(hw); | ||
3838 | 2941 | ||
3839 | return ret_val; | 2942 | return ret_val; |
3840 | } | 2943 | } |
@@ -3853,17 +2956,8 @@ s32 e1000_phy_reset(struct e1000_hw *hw) | |||
3853 | 2956 | ||
3854 | DEBUGFUNC("e1000_phy_reset"); | 2957 | DEBUGFUNC("e1000_phy_reset"); |
3855 | 2958 | ||
3856 | /* In the case of the phy reset being blocked, it's not an error, we | ||
3857 | * simply return success without performing the reset. */ | ||
3858 | ret_val = e1000_check_phy_reset_block(hw); | ||
3859 | if (ret_val) | ||
3860 | return E1000_SUCCESS; | ||
3861 | |||
3862 | switch (hw->phy_type) { | 2959 | switch (hw->phy_type) { |
3863 | case e1000_phy_igp: | 2960 | case e1000_phy_igp: |
3864 | case e1000_phy_igp_2: | ||
3865 | case e1000_phy_igp_3: | ||
3866 | case e1000_phy_ife: | ||
3867 | ret_val = e1000_phy_hw_reset(hw); | 2961 | ret_val = e1000_phy_hw_reset(hw); |
3868 | if (ret_val) | 2962 | if (ret_val) |
3869 | return ret_val; | 2963 | return ret_val; |
@@ -3882,121 +2976,13 @@ s32 e1000_phy_reset(struct e1000_hw *hw) | |||
3882 | break; | 2976 | break; |
3883 | } | 2977 | } |
3884 | 2978 | ||
3885 | if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) | 2979 | if (hw->phy_type == e1000_phy_igp) |
3886 | e1000_phy_init_script(hw); | 2980 | e1000_phy_init_script(hw); |
3887 | 2981 | ||
3888 | return E1000_SUCCESS; | 2982 | return E1000_SUCCESS; |
3889 | } | 2983 | } |
3890 | 2984 | ||
3891 | /****************************************************************************** | 2985 | /****************************************************************************** |
3892 | * Work-around for 82566 power-down: on D3 entry- | ||
3893 | * 1) disable gigabit link | ||
3894 | * 2) write VR power-down enable | ||
3895 | * 3) read it back | ||
3896 | * if successful continue, else issue LCD reset and repeat | ||
3897 | * | ||
3898 | * hw - struct containing variables accessed by shared code | ||
3899 | ******************************************************************************/ | ||
3900 | void e1000_phy_powerdown_workaround(struct e1000_hw *hw) | ||
3901 | { | ||
3902 | s32 reg; | ||
3903 | u16 phy_data; | ||
3904 | s32 retry = 0; | ||
3905 | |||
3906 | DEBUGFUNC("e1000_phy_powerdown_workaround"); | ||
3907 | |||
3908 | if (hw->phy_type != e1000_phy_igp_3) | ||
3909 | return; | ||
3910 | |||
3911 | do { | ||
3912 | /* Disable link */ | ||
3913 | reg = er32(PHY_CTRL); | ||
3914 | ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
3915 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3916 | |||
3917 | /* Write VR power-down enable - bits 9:8 should be 10b */ | ||
3918 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | ||
3919 | phy_data |= (1 << 9); | ||
3920 | phy_data &= ~(1 << 8); | ||
3921 | e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data); | ||
3922 | |||
3923 | /* Read it back and test */ | ||
3924 | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | ||
3925 | if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry) | ||
3926 | break; | ||
3927 | |||
3928 | /* Issue PHY reset and repeat at most one more time */ | ||
3929 | reg = er32(CTRL); | ||
3930 | ew32(CTRL, reg | E1000_CTRL_PHY_RST); | ||
3931 | retry++; | ||
3932 | } while (retry); | ||
3933 | |||
3934 | return; | ||
3935 | |||
3936 | } | ||
3937 | |||
3938 | /****************************************************************************** | ||
3939 | * Work-around for 82566 Kumeran PCS lock loss: | ||
3940 | * On link status change (i.e. PCI reset, speed change) and link is up and | ||
3941 | * speed is gigabit- | ||
3942 | * 0) if workaround is optionally disabled do nothing | ||
3943 | * 1) wait 1ms for Kumeran link to come up | ||
3944 | * 2) check Kumeran Diagnostic register PCS lock loss bit | ||
3945 | * 3) if not set the link is locked (all is good), otherwise... | ||
3946 | * 4) reset the PHY | ||
3947 | * 5) repeat up to 10 times | ||
3948 | * Note: this is only called for IGP3 copper when speed is 1gb. | ||
3949 | * | ||
3950 | * hw - struct containing variables accessed by shared code | ||
3951 | ******************************************************************************/ | ||
3952 | static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) | ||
3953 | { | ||
3954 | s32 ret_val; | ||
3955 | s32 reg; | ||
3956 | s32 cnt; | ||
3957 | u16 phy_data; | ||
3958 | |||
3959 | if (hw->kmrn_lock_loss_workaround_disabled) | ||
3960 | return E1000_SUCCESS; | ||
3961 | |||
3962 | /* Make sure link is up before proceeding. If not just return. | ||
3963 | * Attempting this while link is negotiating fouled up link | ||
3964 | * stability */ | ||
3965 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3966 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3967 | |||
3968 | if (phy_data & MII_SR_LINK_STATUS) { | ||
3969 | for (cnt = 0; cnt < 10; cnt++) { | ||
3970 | /* read once to clear */ | ||
3971 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
3972 | if (ret_val) | ||
3973 | return ret_val; | ||
3974 | /* and again to get new status */ | ||
3975 | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | ||
3976 | if (ret_val) | ||
3977 | return ret_val; | ||
3978 | |||
3979 | /* check for PCS lock */ | ||
3980 | if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | ||
3981 | return E1000_SUCCESS; | ||
3982 | |||
3983 | /* Issue PHY reset */ | ||
3984 | e1000_phy_hw_reset(hw); | ||
3985 | mdelay(5); | ||
3986 | } | ||
3987 | /* Disable GigE link negotiation */ | ||
3988 | reg = er32(PHY_CTRL); | ||
3989 | ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | ||
3990 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3991 | |||
3992 | /* unable to acquire PCS lock */ | ||
3993 | return E1000_ERR_PHY; | ||
3994 | } | ||
3995 | |||
3996 | return E1000_SUCCESS; | ||
3997 | } | ||
3998 | |||
3999 | /****************************************************************************** | ||
4000 | * Probes the expected PHY address for known PHY IDs | 2986 | * Probes the expected PHY address for known PHY IDs |
4001 | * | 2987 | * |
4002 | * hw - Struct containing variables accessed by shared code | 2988 | * hw - Struct containing variables accessed by shared code |
@@ -4012,25 +2998,6 @@ static s32 e1000_detect_gig_phy(struct e1000_hw *hw) | |||
4012 | if (hw->phy_id != 0) | 2998 | if (hw->phy_id != 0) |
4013 | return E1000_SUCCESS; | 2999 | return E1000_SUCCESS; |
4014 | 3000 | ||
4015 | /* The 82571 firmware may still be configuring the PHY. In this | ||
4016 | * case, we cannot access the PHY until the configuration is done. So | ||
4017 | * we explicitly set the PHY values. */ | ||
4018 | if (hw->mac_type == e1000_82571 || | ||
4019 | hw->mac_type == e1000_82572) { | ||
4020 | hw->phy_id = IGP01E1000_I_PHY_ID; | ||
4021 | hw->phy_type = e1000_phy_igp_2; | ||
4022 | return E1000_SUCCESS; | ||
4023 | } | ||
4024 | |||
4025 | /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work- | ||
4026 | * around that forces PHY page 0 to be set or the reads fail. The rest of | ||
4027 | * the code in this routine uses e1000_read_phy_reg to read the PHY ID. | ||
4028 | * So for ESB-2 we need to have this set so our reads won't fail. If the | ||
4029 | * attached PHY is not a e1000_phy_gg82563, the routines below will figure | ||
4030 | * this out as well. */ | ||
4031 | if (hw->mac_type == e1000_80003es2lan) | ||
4032 | hw->phy_type = e1000_phy_gg82563; | ||
4033 | |||
4034 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 3001 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
4035 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 3002 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
4036 | if (ret_val) | 3003 | if (ret_val) |
@@ -4065,18 +3032,6 @@ static s32 e1000_detect_gig_phy(struct e1000_hw *hw) | |||
4065 | case e1000_82547_rev_2: | 3032 | case e1000_82547_rev_2: |
4066 | if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true; | 3033 | if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true; |
4067 | break; | 3034 | break; |
4068 | case e1000_82573: | ||
4069 | if (hw->phy_id == M88E1111_I_PHY_ID) match = true; | ||
4070 | break; | ||
4071 | case e1000_80003es2lan: | ||
4072 | if (hw->phy_id == GG82563_E_PHY_ID) match = true; | ||
4073 | break; | ||
4074 | case e1000_ich8lan: | ||
4075 | if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true; | ||
4076 | if (hw->phy_id == IFE_E_PHY_ID) match = true; | ||
4077 | if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true; | ||
4078 | if (hw->phy_id == IFE_C_E_PHY_ID) match = true; | ||
4079 | break; | ||
4080 | default: | 3035 | default: |
4081 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 3036 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
4082 | return -E1000_ERR_CONFIG; | 3037 | return -E1000_ERR_CONFIG; |
@@ -4102,10 +3057,8 @@ static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) | |||
4102 | DEBUGFUNC("e1000_phy_reset_dsp"); | 3057 | DEBUGFUNC("e1000_phy_reset_dsp"); |
4103 | 3058 | ||
4104 | do { | 3059 | do { |
4105 | if (hw->phy_type != e1000_phy_gg82563) { | 3060 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); |
4106 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | 3061 | if (ret_val) break; |
4107 | if (ret_val) break; | ||
4108 | } | ||
4109 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | 3062 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); |
4110 | if (ret_val) break; | 3063 | if (ret_val) break; |
4111 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | 3064 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); |
@@ -4192,54 +3145,6 @@ static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
4192 | return E1000_SUCCESS; | 3145 | return E1000_SUCCESS; |
4193 | } | 3146 | } |
4194 | 3147 | ||
4195 | /****************************************************************************** | ||
4196 | * Get PHY information from various PHY registers for ife PHY only. | ||
4197 | * | ||
4198 | * hw - Struct containing variables accessed by shared code | ||
4199 | * phy_info - PHY information structure | ||
4200 | ******************************************************************************/ | ||
4201 | static s32 e1000_phy_ife_get_info(struct e1000_hw *hw, | ||
4202 | struct e1000_phy_info *phy_info) | ||
4203 | { | ||
4204 | s32 ret_val; | ||
4205 | u16 phy_data; | ||
4206 | e1000_rev_polarity polarity; | ||
4207 | |||
4208 | DEBUGFUNC("e1000_phy_ife_get_info"); | ||
4209 | |||
4210 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | ||
4211 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | ||
4212 | |||
4213 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | ||
4214 | if (ret_val) | ||
4215 | return ret_val; | ||
4216 | phy_info->polarity_correction = | ||
4217 | ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> | ||
4218 | IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ? | ||
4219 | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | ||
4220 | |||
4221 | if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { | ||
4222 | ret_val = e1000_check_polarity(hw, &polarity); | ||
4223 | if (ret_val) | ||
4224 | return ret_val; | ||
4225 | } else { | ||
4226 | /* Polarity is forced. */ | ||
4227 | polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >> | ||
4228 | IFE_PSC_FORCE_POLARITY_SHIFT) ? | ||
4229 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | ||
4230 | } | ||
4231 | phy_info->cable_polarity = polarity; | ||
4232 | |||
4233 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | ||
4234 | if (ret_val) | ||
4235 | return ret_val; | ||
4236 | |||
4237 | phy_info->mdix_mode = (e1000_auto_x_mode) | ||
4238 | ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> | ||
4239 | IFE_PMC_MDIX_MODE_SHIFT); | ||
4240 | |||
4241 | return E1000_SUCCESS; | ||
4242 | } | ||
4243 | 3148 | ||
4244 | /****************************************************************************** | 3149 | /****************************************************************************** |
4245 | * Get PHY information from various PHY registers fot m88 PHY only. | 3150 | * Get PHY information from various PHY registers fot m88 PHY only. |
@@ -4291,17 +3196,8 @@ static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | |||
4291 | /* Cable Length Estimation and Local/Remote Receiver Information | 3196 | /* Cable Length Estimation and Local/Remote Receiver Information |
4292 | * are only valid at 1000 Mbps. | 3197 | * are only valid at 1000 Mbps. |
4293 | */ | 3198 | */ |
4294 | if (hw->phy_type != e1000_phy_gg82563) { | 3199 | phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
4295 | phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 3200 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
4296 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); | ||
4297 | } else { | ||
4298 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, | ||
4299 | &phy_data); | ||
4300 | if (ret_val) | ||
4301 | return ret_val; | ||
4302 | |||
4303 | phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH); | ||
4304 | } | ||
4305 | 3201 | ||
4306 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 3202 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
4307 | if (ret_val) | 3203 | if (ret_val) |
@@ -4359,12 +3255,8 @@ s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) | |||
4359 | return -E1000_ERR_CONFIG; | 3255 | return -E1000_ERR_CONFIG; |
4360 | } | 3256 | } |
4361 | 3257 | ||
4362 | if (hw->phy_type == e1000_phy_igp || | 3258 | if (hw->phy_type == e1000_phy_igp) |
4363 | hw->phy_type == e1000_phy_igp_3 || | ||
4364 | hw->phy_type == e1000_phy_igp_2) | ||
4365 | return e1000_phy_igp_get_info(hw, phy_info); | 3259 | return e1000_phy_igp_get_info(hw, phy_info); |
4366 | else if (hw->phy_type == e1000_phy_ife) | ||
4367 | return e1000_phy_ife_get_info(hw, phy_info); | ||
4368 | else | 3260 | else |
4369 | return e1000_phy_m88_get_info(hw, phy_info); | 3261 | return e1000_phy_m88_get_info(hw, phy_info); |
4370 | } | 3262 | } |
@@ -4384,8 +3276,7 @@ s32 e1000_validate_mdi_setting(struct e1000_hw *hw) | |||
4384 | 3276 | ||
4385 | /****************************************************************************** | 3277 | /****************************************************************************** |
4386 | * Sets up eeprom variables in the hw struct. Must be called after mac_type | 3278 | * Sets up eeprom variables in the hw struct. Must be called after mac_type |
4387 | * is configured. Additionally, if this is ICH8, the flash controller GbE | 3279 | * is configured. |
4388 | * registers must be mapped, or this will crash. | ||
4389 | * | 3280 | * |
4390 | * hw - Struct containing variables accessed by shared code | 3281 | * hw - Struct containing variables accessed by shared code |
4391 | *****************************************************************************/ | 3282 | *****************************************************************************/ |
@@ -4459,89 +3350,6 @@ s32 e1000_init_eeprom_params(struct e1000_hw *hw) | |||
4459 | eeprom->use_eerd = false; | 3350 | eeprom->use_eerd = false; |
4460 | eeprom->use_eewr = false; | 3351 | eeprom->use_eewr = false; |
4461 | break; | 3352 | break; |
4462 | case e1000_82571: | ||
4463 | case e1000_82572: | ||
4464 | eeprom->type = e1000_eeprom_spi; | ||
4465 | eeprom->opcode_bits = 8; | ||
4466 | eeprom->delay_usec = 1; | ||
4467 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
4468 | eeprom->page_size = 32; | ||
4469 | eeprom->address_bits = 16; | ||
4470 | } else { | ||
4471 | eeprom->page_size = 8; | ||
4472 | eeprom->address_bits = 8; | ||
4473 | } | ||
4474 | eeprom->use_eerd = false; | ||
4475 | eeprom->use_eewr = false; | ||
4476 | break; | ||
4477 | case e1000_82573: | ||
4478 | eeprom->type = e1000_eeprom_spi; | ||
4479 | eeprom->opcode_bits = 8; | ||
4480 | eeprom->delay_usec = 1; | ||
4481 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
4482 | eeprom->page_size = 32; | ||
4483 | eeprom->address_bits = 16; | ||
4484 | } else { | ||
4485 | eeprom->page_size = 8; | ||
4486 | eeprom->address_bits = 8; | ||
4487 | } | ||
4488 | eeprom->use_eerd = true; | ||
4489 | eeprom->use_eewr = true; | ||
4490 | if (!e1000_is_onboard_nvm_eeprom(hw)) { | ||
4491 | eeprom->type = e1000_eeprom_flash; | ||
4492 | eeprom->word_size = 2048; | ||
4493 | |||
4494 | /* Ensure that the Autonomous FLASH update bit is cleared due to | ||
4495 | * Flash update issue on parts which use a FLASH for NVM. */ | ||
4496 | eecd &= ~E1000_EECD_AUPDEN; | ||
4497 | ew32(EECD, eecd); | ||
4498 | } | ||
4499 | break; | ||
4500 | case e1000_80003es2lan: | ||
4501 | eeprom->type = e1000_eeprom_spi; | ||
4502 | eeprom->opcode_bits = 8; | ||
4503 | eeprom->delay_usec = 1; | ||
4504 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
4505 | eeprom->page_size = 32; | ||
4506 | eeprom->address_bits = 16; | ||
4507 | } else { | ||
4508 | eeprom->page_size = 8; | ||
4509 | eeprom->address_bits = 8; | ||
4510 | } | ||
4511 | eeprom->use_eerd = true; | ||
4512 | eeprom->use_eewr = false; | ||
4513 | break; | ||
4514 | case e1000_ich8lan: | ||
4515 | { | ||
4516 | s32 i = 0; | ||
4517 | u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); | ||
4518 | |||
4519 | eeprom->type = e1000_eeprom_ich8; | ||
4520 | eeprom->use_eerd = false; | ||
4521 | eeprom->use_eewr = false; | ||
4522 | eeprom->word_size = E1000_SHADOW_RAM_WORDS; | ||
4523 | |||
4524 | /* Zero the shadow RAM structure. But don't load it from NVM | ||
4525 | * so as to save time for driver init */ | ||
4526 | if (hw->eeprom_shadow_ram != NULL) { | ||
4527 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
4528 | hw->eeprom_shadow_ram[i].modified = false; | ||
4529 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
4530 | } | ||
4531 | } | ||
4532 | |||
4533 | hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * | ||
4534 | ICH_FLASH_SECTOR_SIZE; | ||
4535 | |||
4536 | hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1; | ||
4537 | hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); | ||
4538 | |||
4539 | hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; | ||
4540 | |||
4541 | hw->flash_bank_size /= 2 * sizeof(u16); | ||
4542 | |||
4543 | break; | ||
4544 | } | ||
4545 | default: | 3353 | default: |
4546 | break; | 3354 | break; |
4547 | } | 3355 | } |
@@ -4550,22 +3358,17 @@ s32 e1000_init_eeprom_params(struct e1000_hw *hw) | |||
4550 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to | 3358 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
4551 | * 32KB (incremented by powers of 2). | 3359 | * 32KB (incremented by powers of 2). |
4552 | */ | 3360 | */ |
4553 | if (hw->mac_type <= e1000_82547_rev_2) { | 3361 | /* Set to default value for initial eeprom read. */ |
4554 | /* Set to default value for initial eeprom read. */ | 3362 | eeprom->word_size = 64; |
4555 | eeprom->word_size = 64; | 3363 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
4556 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); | 3364 | if (ret_val) |
4557 | if (ret_val) | 3365 | return ret_val; |
4558 | return ret_val; | 3366 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
4559 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; | 3367 | /* 256B eeprom size was not supported in earlier hardware, so we |
4560 | /* 256B eeprom size was not supported in earlier hardware, so we | 3368 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
4561 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) | 3369 | * is never the result used in the shifting logic below. */ |
4562 | * is never the result used in the shifting logic below. */ | 3370 | if (eeprom_size) |
4563 | if (eeprom_size) | 3371 | eeprom_size++; |
4564 | eeprom_size++; | ||
4565 | } else { | ||
4566 | eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | ||
4567 | E1000_EECD_SIZE_EX_SHIFT); | ||
4568 | } | ||
4569 | 3372 | ||
4570 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | 3373 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
4571 | } | 3374 | } |
@@ -4716,25 +3519,23 @@ static s32 e1000_acquire_eeprom(struct e1000_hw *hw) | |||
4716 | return -E1000_ERR_SWFW_SYNC; | 3519 | return -E1000_ERR_SWFW_SYNC; |
4717 | eecd = er32(EECD); | 3520 | eecd = er32(EECD); |
4718 | 3521 | ||
4719 | if (hw->mac_type != e1000_82573) { | 3522 | /* Request EEPROM Access */ |
4720 | /* Request EEPROM Access */ | 3523 | if (hw->mac_type > e1000_82544) { |
4721 | if (hw->mac_type > e1000_82544) { | 3524 | eecd |= E1000_EECD_REQ; |
4722 | eecd |= E1000_EECD_REQ; | 3525 | ew32(EECD, eecd); |
4723 | ew32(EECD, eecd); | 3526 | eecd = er32(EECD); |
3527 | while ((!(eecd & E1000_EECD_GNT)) && | ||
3528 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | ||
3529 | i++; | ||
3530 | udelay(5); | ||
4724 | eecd = er32(EECD); | 3531 | eecd = er32(EECD); |
4725 | while ((!(eecd & E1000_EECD_GNT)) && | 3532 | } |
4726 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | 3533 | if (!(eecd & E1000_EECD_GNT)) { |
4727 | i++; | 3534 | eecd &= ~E1000_EECD_REQ; |
4728 | udelay(5); | 3535 | ew32(EECD, eecd); |
4729 | eecd = er32(EECD); | 3536 | DEBUGOUT("Could not acquire EEPROM grant\n"); |
4730 | } | 3537 | e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); |
4731 | if (!(eecd & E1000_EECD_GNT)) { | 3538 | return -E1000_ERR_EEPROM; |
4732 | eecd &= ~E1000_EECD_REQ; | ||
4733 | ew32(EECD, eecd); | ||
4734 | DEBUGOUT("Could not acquire EEPROM grant\n"); | ||
4735 | e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); | ||
4736 | return -E1000_ERR_EEPROM; | ||
4737 | } | ||
4738 | } | 3539 | } |
4739 | } | 3540 | } |
4740 | 3541 | ||
@@ -4939,7 +3740,7 @@ static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 | |||
4939 | * directly. In this case, we need to acquire the EEPROM so that | 3740 | * directly. In this case, we need to acquire the EEPROM so that |
4940 | * FW or other port software does not interrupt. | 3741 | * FW or other port software does not interrupt. |
4941 | */ | 3742 | */ |
4942 | if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) { | 3743 | if (!hw->eeprom.use_eerd) { |
4943 | /* Prepare the EEPROM for bit-bang reading */ | 3744 | /* Prepare the EEPROM for bit-bang reading */ |
4944 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 3745 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
4945 | return -E1000_ERR_EEPROM; | 3746 | return -E1000_ERR_EEPROM; |
@@ -4949,10 +3750,6 @@ static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 | |||
4949 | if (eeprom->use_eerd) | 3750 | if (eeprom->use_eerd) |
4950 | return e1000_read_eeprom_eerd(hw, offset, words, data); | 3751 | return e1000_read_eeprom_eerd(hw, offset, words, data); |
4951 | 3752 | ||
4952 | /* ICH EEPROM access is done via the ICH flash controller */ | ||
4953 | if (eeprom->type == e1000_eeprom_ich8) | ||
4954 | return e1000_read_eeprom_ich8(hw, offset, words, data); | ||
4955 | |||
4956 | /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have | 3753 | /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
4957 | * acquired the EEPROM at this point, so any returns should relase it */ | 3754 | * acquired the EEPROM at this point, so any returns should relase it */ |
4958 | if (eeprom->type == e1000_eeprom_spi) { | 3755 | if (eeprom->type == e1000_eeprom_spi) { |
@@ -5103,34 +3900,6 @@ static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | |||
5103 | return done; | 3900 | return done; |
5104 | } | 3901 | } |
5105 | 3902 | ||
5106 | /*************************************************************************** | ||
5107 | * Description: Determines if the onboard NVM is FLASH or EEPROM. | ||
5108 | * | ||
5109 | * hw - Struct containing variables accessed by shared code | ||
5110 | ****************************************************************************/ | ||
5111 | static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | ||
5112 | { | ||
5113 | u32 eecd = 0; | ||
5114 | |||
5115 | DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); | ||
5116 | |||
5117 | if (hw->mac_type == e1000_ich8lan) | ||
5118 | return false; | ||
5119 | |||
5120 | if (hw->mac_type == e1000_82573) { | ||
5121 | eecd = er32(EECD); | ||
5122 | |||
5123 | /* Isolate bits 15 & 16 */ | ||
5124 | eecd = ((eecd >> 15) & 0x03); | ||
5125 | |||
5126 | /* If both bits are set, device is Flash type */ | ||
5127 | if (eecd == 0x03) { | ||
5128 | return false; | ||
5129 | } | ||
5130 | } | ||
5131 | return true; | ||
5132 | } | ||
5133 | |||
5134 | /****************************************************************************** | 3903 | /****************************************************************************** |
5135 | * Verifies that the EEPROM has a valid checksum | 3904 | * Verifies that the EEPROM has a valid checksum |
5136 | * | 3905 | * |
@@ -5147,38 +3916,6 @@ s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
5147 | 3916 | ||
5148 | DEBUGFUNC("e1000_validate_eeprom_checksum"); | 3917 | DEBUGFUNC("e1000_validate_eeprom_checksum"); |
5149 | 3918 | ||
5150 | if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) { | ||
5151 | /* Check bit 4 of word 10h. If it is 0, firmware is done updating | ||
5152 | * 10h-12h. Checksum may need to be fixed. */ | ||
5153 | e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); | ||
5154 | if ((eeprom_data & 0x10) == 0) { | ||
5155 | /* Read 0x23 and check bit 15. This bit is a 1 when the checksum | ||
5156 | * has already been fixed. If the checksum is still wrong and this | ||
5157 | * bit is a 1, we need to return bad checksum. Otherwise, we need | ||
5158 | * to set this bit to a 1 and update the checksum. */ | ||
5159 | e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); | ||
5160 | if ((eeprom_data & 0x8000) == 0) { | ||
5161 | eeprom_data |= 0x8000; | ||
5162 | e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); | ||
5163 | e1000_update_eeprom_checksum(hw); | ||
5164 | } | ||
5165 | } | ||
5166 | } | ||
5167 | |||
5168 | if (hw->mac_type == e1000_ich8lan) { | ||
5169 | /* Drivers must allocate the shadow ram structure for the | ||
5170 | * EEPROM checksum to be updated. Otherwise, this bit as well | ||
5171 | * as the checksum must both be set correctly for this | ||
5172 | * validation to pass. | ||
5173 | */ | ||
5174 | e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); | ||
5175 | if ((eeprom_data & 0x40) == 0) { | ||
5176 | eeprom_data |= 0x40; | ||
5177 | e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); | ||
5178 | e1000_update_eeprom_checksum(hw); | ||
5179 | } | ||
5180 | } | ||
5181 | |||
5182 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 3919 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
5183 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 3920 | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
5184 | DEBUGOUT("EEPROM Read Error\n"); | 3921 | DEBUGOUT("EEPROM Read Error\n"); |
@@ -5205,7 +3942,6 @@ s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
5205 | *****************************************************************************/ | 3942 | *****************************************************************************/ |
5206 | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) | 3943 | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) |
5207 | { | 3944 | { |
5208 | u32 ctrl_ext; | ||
5209 | u16 checksum = 0; | 3945 | u16 checksum = 0; |
5210 | u16 i, eeprom_data; | 3946 | u16 i, eeprom_data; |
5211 | 3947 | ||
@@ -5222,16 +3958,6 @@ s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) | |||
5222 | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 3958 | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
5223 | DEBUGOUT("EEPROM Write Error\n"); | 3959 | DEBUGOUT("EEPROM Write Error\n"); |
5224 | return -E1000_ERR_EEPROM; | 3960 | return -E1000_ERR_EEPROM; |
5225 | } else if (hw->eeprom.type == e1000_eeprom_flash) { | ||
5226 | e1000_commit_shadow_ram(hw); | ||
5227 | } else if (hw->eeprom.type == e1000_eeprom_ich8) { | ||
5228 | e1000_commit_shadow_ram(hw); | ||
5229 | /* Reload the EEPROM, or else modifications will not appear | ||
5230 | * until after next adapter reset. */ | ||
5231 | ctrl_ext = er32(CTRL_EXT); | ||
5232 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
5233 | ew32(CTRL_EXT, ctrl_ext); | ||
5234 | msleep(10); | ||
5235 | } | 3961 | } |
5236 | return E1000_SUCCESS; | 3962 | return E1000_SUCCESS; |
5237 | } | 3963 | } |
@@ -5277,13 +4003,9 @@ static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 | |||
5277 | return -E1000_ERR_EEPROM; | 4003 | return -E1000_ERR_EEPROM; |
5278 | } | 4004 | } |
5279 | 4005 | ||
5280 | /* 82573 writes only through eewr */ | ||
5281 | if (eeprom->use_eewr) | 4006 | if (eeprom->use_eewr) |
5282 | return e1000_write_eeprom_eewr(hw, offset, words, data); | 4007 | return e1000_write_eeprom_eewr(hw, offset, words, data); |
5283 | 4008 | ||
5284 | if (eeprom->type == e1000_eeprom_ich8) | ||
5285 | return e1000_write_eeprom_ich8(hw, offset, words, data); | ||
5286 | |||
5287 | /* Prepare the EEPROM for writing */ | 4009 | /* Prepare the EEPROM for writing */ |
5288 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 4010 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
5289 | return -E1000_ERR_EEPROM; | 4011 | return -E1000_ERR_EEPROM; |
@@ -5448,173 +4170,6 @@ static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | |||
5448 | } | 4170 | } |
5449 | 4171 | ||
5450 | /****************************************************************************** | 4172 | /****************************************************************************** |
5451 | * Flushes the cached eeprom to NVM. This is done by saving the modified values | ||
5452 | * in the eeprom cache and the non modified values in the currently active bank | ||
5453 | * to the new bank. | ||
5454 | * | ||
5455 | * hw - Struct containing variables accessed by shared code | ||
5456 | * offset - offset of word in the EEPROM to read | ||
5457 | * data - word read from the EEPROM | ||
5458 | * words - number of words to read | ||
5459 | *****************************************************************************/ | ||
5460 | static s32 e1000_commit_shadow_ram(struct e1000_hw *hw) | ||
5461 | { | ||
5462 | u32 attempts = 100000; | ||
5463 | u32 eecd = 0; | ||
5464 | u32 flop = 0; | ||
5465 | u32 i = 0; | ||
5466 | s32 error = E1000_SUCCESS; | ||
5467 | u32 old_bank_offset = 0; | ||
5468 | u32 new_bank_offset = 0; | ||
5469 | u8 low_byte = 0; | ||
5470 | u8 high_byte = 0; | ||
5471 | bool sector_write_failed = false; | ||
5472 | |||
5473 | if (hw->mac_type == e1000_82573) { | ||
5474 | /* The flop register will be used to determine if flash type is STM */ | ||
5475 | flop = er32(FLOP); | ||
5476 | for (i=0; i < attempts; i++) { | ||
5477 | eecd = er32(EECD); | ||
5478 | if ((eecd & E1000_EECD_FLUPD) == 0) { | ||
5479 | break; | ||
5480 | } | ||
5481 | udelay(5); | ||
5482 | } | ||
5483 | |||
5484 | if (i == attempts) { | ||
5485 | return -E1000_ERR_EEPROM; | ||
5486 | } | ||
5487 | |||
5488 | /* If STM opcode located in bits 15:8 of flop, reset firmware */ | ||
5489 | if ((flop & 0xFF00) == E1000_STM_OPCODE) { | ||
5490 | ew32(HICR, E1000_HICR_FW_RESET); | ||
5491 | } | ||
5492 | |||
5493 | /* Perform the flash update */ | ||
5494 | ew32(EECD, eecd | E1000_EECD_FLUPD); | ||
5495 | |||
5496 | for (i=0; i < attempts; i++) { | ||
5497 | eecd = er32(EECD); | ||
5498 | if ((eecd & E1000_EECD_FLUPD) == 0) { | ||
5499 | break; | ||
5500 | } | ||
5501 | udelay(5); | ||
5502 | } | ||
5503 | |||
5504 | if (i == attempts) { | ||
5505 | return -E1000_ERR_EEPROM; | ||
5506 | } | ||
5507 | } | ||
5508 | |||
5509 | if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { | ||
5510 | /* We're writing to the opposite bank so if we're on bank 1, | ||
5511 | * write to bank 0 etc. We also need to erase the segment that | ||
5512 | * is going to be written */ | ||
5513 | if (!(er32(EECD) & E1000_EECD_SEC1VAL)) { | ||
5514 | new_bank_offset = hw->flash_bank_size * 2; | ||
5515 | old_bank_offset = 0; | ||
5516 | e1000_erase_ich8_4k_segment(hw, 1); | ||
5517 | } else { | ||
5518 | old_bank_offset = hw->flash_bank_size * 2; | ||
5519 | new_bank_offset = 0; | ||
5520 | e1000_erase_ich8_4k_segment(hw, 0); | ||
5521 | } | ||
5522 | |||
5523 | sector_write_failed = false; | ||
5524 | /* Loop for every byte in the shadow RAM, | ||
5525 | * which is in units of words. */ | ||
5526 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
5527 | /* Determine whether to write the value stored | ||
5528 | * in the other NVM bank or a modified value stored | ||
5529 | * in the shadow RAM */ | ||
5530 | if (hw->eeprom_shadow_ram[i].modified) { | ||
5531 | low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word; | ||
5532 | udelay(100); | ||
5533 | error = e1000_verify_write_ich8_byte(hw, | ||
5534 | (i << 1) + new_bank_offset, low_byte); | ||
5535 | |||
5536 | if (error != E1000_SUCCESS) | ||
5537 | sector_write_failed = true; | ||
5538 | else { | ||
5539 | high_byte = | ||
5540 | (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); | ||
5541 | udelay(100); | ||
5542 | } | ||
5543 | } else { | ||
5544 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, | ||
5545 | &low_byte); | ||
5546 | udelay(100); | ||
5547 | error = e1000_verify_write_ich8_byte(hw, | ||
5548 | (i << 1) + new_bank_offset, low_byte); | ||
5549 | |||
5550 | if (error != E1000_SUCCESS) | ||
5551 | sector_write_failed = true; | ||
5552 | else { | ||
5553 | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, | ||
5554 | &high_byte); | ||
5555 | udelay(100); | ||
5556 | } | ||
5557 | } | ||
5558 | |||
5559 | /* If the write of the low byte was successful, go ahead and | ||
5560 | * write the high byte while checking to make sure that if it | ||
5561 | * is the signature byte, then it is handled properly */ | ||
5562 | if (!sector_write_failed) { | ||
5563 | /* If the word is 0x13, then make sure the signature bits | ||
5564 | * (15:14) are 11b until the commit has completed. | ||
5565 | * This will allow us to write 10b which indicates the | ||
5566 | * signature is valid. We want to do this after the write | ||
5567 | * has completed so that we don't mark the segment valid | ||
5568 | * while the write is still in progress */ | ||
5569 | if (i == E1000_ICH_NVM_SIG_WORD) | ||
5570 | high_byte = E1000_ICH_NVM_SIG_MASK | high_byte; | ||
5571 | |||
5572 | error = e1000_verify_write_ich8_byte(hw, | ||
5573 | (i << 1) + new_bank_offset + 1, high_byte); | ||
5574 | if (error != E1000_SUCCESS) | ||
5575 | sector_write_failed = true; | ||
5576 | |||
5577 | } else { | ||
5578 | /* If the write failed then break from the loop and | ||
5579 | * return an error */ | ||
5580 | break; | ||
5581 | } | ||
5582 | } | ||
5583 | |||
5584 | /* Don't bother writing the segment valid bits if sector | ||
5585 | * programming failed. */ | ||
5586 | if (!sector_write_failed) { | ||
5587 | /* Finally validate the new segment by setting bit 15:14 | ||
5588 | * to 10b in word 0x13 , this can be done without an | ||
5589 | * erase as well since these bits are 11 to start with | ||
5590 | * and we need to change bit 14 to 0b */ | ||
5591 | e1000_read_ich8_byte(hw, | ||
5592 | E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, | ||
5593 | &high_byte); | ||
5594 | high_byte &= 0xBF; | ||
5595 | error = e1000_verify_write_ich8_byte(hw, | ||
5596 | E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte); | ||
5597 | /* And invalidate the previously valid segment by setting | ||
5598 | * its signature word (0x13) high_byte to 0b. This can be | ||
5599 | * done without an erase because flash erase sets all bits | ||
5600 | * to 1's. We can write 1's to 0's without an erase */ | ||
5601 | if (error == E1000_SUCCESS) { | ||
5602 | error = e1000_verify_write_ich8_byte(hw, | ||
5603 | E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0); | ||
5604 | } | ||
5605 | |||
5606 | /* Clear the now not used entry in the cache */ | ||
5607 | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | ||
5608 | hw->eeprom_shadow_ram[i].modified = false; | ||
5609 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||
5610 | } | ||
5611 | } | ||
5612 | } | ||
5613 | |||
5614 | return error; | ||
5615 | } | ||
5616 | |||
5617 | /****************************************************************************** | ||
5618 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | 4173 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
5619 | * second function of dual function devices | 4174 | * second function of dual function devices |
5620 | * | 4175 | * |
@@ -5642,8 +4197,6 @@ s32 e1000_read_mac_addr(struct e1000_hw *hw) | |||
5642 | break; | 4197 | break; |
5643 | case e1000_82546: | 4198 | case e1000_82546: |
5644 | case e1000_82546_rev_3: | 4199 | case e1000_82546_rev_3: |
5645 | case e1000_82571: | ||
5646 | case e1000_80003es2lan: | ||
5647 | if (er32(STATUS) & E1000_STATUS_FUNC_1) | 4200 | if (er32(STATUS) & E1000_STATUS_FUNC_1) |
5648 | hw->perm_mac_addr[5] ^= 0x01; | 4201 | hw->perm_mac_addr[5] ^= 0x01; |
5649 | break; | 4202 | break; |
@@ -5677,14 +4230,6 @@ static void e1000_init_rx_addrs(struct e1000_hw *hw) | |||
5677 | 4230 | ||
5678 | rar_num = E1000_RAR_ENTRIES; | 4231 | rar_num = E1000_RAR_ENTRIES; |
5679 | 4232 | ||
5680 | /* Reserve a spot for the Locally Administered Address to work around | ||
5681 | * an 82571 issue in which a reset on one port will reload the MAC on | ||
5682 | * the other port. */ | ||
5683 | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present)) | ||
5684 | rar_num -= 1; | ||
5685 | if (hw->mac_type == e1000_ich8lan) | ||
5686 | rar_num = E1000_RAR_ENTRIES_ICH8LAN; | ||
5687 | |||
5688 | /* Zero out the other 15 receive addresses. */ | 4233 | /* Zero out the other 15 receive addresses. */ |
5689 | DEBUGOUT("Clearing RAR[1-15]\n"); | 4234 | DEBUGOUT("Clearing RAR[1-15]\n"); |
5690 | for (i = 1; i < rar_num; i++) { | 4235 | for (i = 1; i < rar_num; i++) { |
@@ -5714,47 +4259,24 @@ u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | |||
5714 | * LSB MSB | 4259 | * LSB MSB |
5715 | */ | 4260 | */ |
5716 | case 0: | 4261 | case 0: |
5717 | if (hw->mac_type == e1000_ich8lan) { | 4262 | /* [47:36] i.e. 0x563 for above example address */ |
5718 | /* [47:38] i.e. 0x158 for above example address */ | 4263 | hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); |
5719 | hash_value = ((mc_addr[4] >> 6) | (((u16)mc_addr[5]) << 2)); | ||
5720 | } else { | ||
5721 | /* [47:36] i.e. 0x563 for above example address */ | ||
5722 | hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | ||
5723 | } | ||
5724 | break; | 4264 | break; |
5725 | case 1: | 4265 | case 1: |
5726 | if (hw->mac_type == e1000_ich8lan) { | 4266 | /* [46:35] i.e. 0xAC6 for above example address */ |
5727 | /* [46:37] i.e. 0x2B1 for above example address */ | 4267 | hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); |
5728 | hash_value = ((mc_addr[4] >> 5) | (((u16)mc_addr[5]) << 3)); | ||
5729 | } else { | ||
5730 | /* [46:35] i.e. 0xAC6 for above example address */ | ||
5731 | hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); | ||
5732 | } | ||
5733 | break; | 4268 | break; |
5734 | case 2: | 4269 | case 2: |
5735 | if (hw->mac_type == e1000_ich8lan) { | 4270 | /* [45:34] i.e. 0x5D8 for above example address */ |
5736 | /*[45:36] i.e. 0x163 for above example address */ | 4271 | hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); |
5737 | hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | ||
5738 | } else { | ||
5739 | /* [45:34] i.e. 0x5D8 for above example address */ | ||
5740 | hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | ||
5741 | } | ||
5742 | break; | 4272 | break; |
5743 | case 3: | 4273 | case 3: |
5744 | if (hw->mac_type == e1000_ich8lan) { | 4274 | /* [43:32] i.e. 0x634 for above example address */ |
5745 | /* [43:34] i.e. 0x18D for above example address */ | 4275 | hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); |
5746 | hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | ||
5747 | } else { | ||
5748 | /* [43:32] i.e. 0x634 for above example address */ | ||
5749 | hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); | ||
5750 | } | ||
5751 | break; | 4276 | break; |
5752 | } | 4277 | } |
5753 | 4278 | ||
5754 | hash_value &= 0xFFF; | 4279 | hash_value &= 0xFFF; |
5755 | if (hw->mac_type == e1000_ich8lan) | ||
5756 | hash_value &= 0x3FF; | ||
5757 | |||
5758 | return hash_value; | 4280 | return hash_value; |
5759 | } | 4281 | } |
5760 | 4282 | ||
@@ -5795,11 +4317,6 @@ void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | |||
5795 | * on our merry way. | 4317 | * on our merry way. |
5796 | */ | 4318 | */ |
5797 | switch (hw->mac_type) { | 4319 | switch (hw->mac_type) { |
5798 | case e1000_82571: | ||
5799 | case e1000_82572: | ||
5800 | case e1000_80003es2lan: | ||
5801 | if (hw->leave_av_bit_off) | ||
5802 | break; | ||
5803 | default: | 4320 | default: |
5804 | /* Indicate to hardware the Address is Valid. */ | 4321 | /* Indicate to hardware the Address is Valid. */ |
5805 | rar_high |= E1000_RAH_AV; | 4322 | rar_high |= E1000_RAH_AV; |
@@ -5823,9 +4340,6 @@ void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | |||
5823 | { | 4340 | { |
5824 | u32 temp; | 4341 | u32 temp; |
5825 | 4342 | ||
5826 | if (hw->mac_type == e1000_ich8lan) | ||
5827 | return; | ||
5828 | |||
5829 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 4343 | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { |
5830 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 4344 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
5831 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 4345 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
@@ -5850,22 +4364,6 @@ static void e1000_clear_vfta(struct e1000_hw *hw) | |||
5850 | u32 vfta_offset = 0; | 4364 | u32 vfta_offset = 0; |
5851 | u32 vfta_bit_in_reg = 0; | 4365 | u32 vfta_bit_in_reg = 0; |
5852 | 4366 | ||
5853 | if (hw->mac_type == e1000_ich8lan) | ||
5854 | return; | ||
5855 | |||
5856 | if (hw->mac_type == e1000_82573) { | ||
5857 | if (hw->mng_cookie.vlan_id != 0) { | ||
5858 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | ||
5859 | * ID. The following operations determine which 32b entry | ||
5860 | * (i.e. offset) into the array we want to set the VLAN ID | ||
5861 | * (i.e. bit) of the manageability unit. */ | ||
5862 | vfta_offset = (hw->mng_cookie.vlan_id >> | ||
5863 | E1000_VFTA_ENTRY_SHIFT) & | ||
5864 | E1000_VFTA_ENTRY_MASK; | ||
5865 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | ||
5866 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
5867 | } | ||
5868 | } | ||
5869 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 4367 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
5870 | /* If the offset we want to clear is the same offset of the | 4368 | /* If the offset we want to clear is the same offset of the |
5871 | * manageability VLAN ID, then clear all bits except that of the | 4369 | * manageability VLAN ID, then clear all bits except that of the |
@@ -5902,14 +4400,8 @@ static s32 e1000_id_led_init(struct e1000_hw *hw) | |||
5902 | return -E1000_ERR_EEPROM; | 4400 | return -E1000_ERR_EEPROM; |
5903 | } | 4401 | } |
5904 | 4402 | ||
5905 | if ((hw->mac_type == e1000_82573) && | 4403 | if ((eeprom_data == ID_LED_RESERVED_0000) || |
5906 | (eeprom_data == ID_LED_RESERVED_82573)) | ||
5907 | eeprom_data = ID_LED_DEFAULT_82573; | ||
5908 | else if ((eeprom_data == ID_LED_RESERVED_0000) || | ||
5909 | (eeprom_data == ID_LED_RESERVED_FFFF)) { | 4404 | (eeprom_data == ID_LED_RESERVED_FFFF)) { |
5910 | if (hw->mac_type == e1000_ich8lan) | ||
5911 | eeprom_data = ID_LED_DEFAULT_ICH8LAN; | ||
5912 | else | ||
5913 | eeprom_data = ID_LED_DEFAULT; | 4405 | eeprom_data = ID_LED_DEFAULT; |
5914 | } | 4406 | } |
5915 | 4407 | ||
@@ -6007,44 +4499,6 @@ s32 e1000_setup_led(struct e1000_hw *hw) | |||
6007 | return E1000_SUCCESS; | 4499 | return E1000_SUCCESS; |
6008 | } | 4500 | } |
6009 | 4501 | ||
6010 | |||
6011 | /****************************************************************************** | ||
6012 | * Used on 82571 and later Si that has LED blink bits. | ||
6013 | * Callers must use their own timer and should have already called | ||
6014 | * e1000_id_led_init() | ||
6015 | * Call e1000_cleanup led() to stop blinking | ||
6016 | * | ||
6017 | * hw - Struct containing variables accessed by shared code | ||
6018 | *****************************************************************************/ | ||
6019 | s32 e1000_blink_led_start(struct e1000_hw *hw) | ||
6020 | { | ||
6021 | s16 i; | ||
6022 | u32 ledctl_blink = 0; | ||
6023 | |||
6024 | DEBUGFUNC("e1000_id_led_blink_on"); | ||
6025 | |||
6026 | if (hw->mac_type < e1000_82571) { | ||
6027 | /* Nothing to do */ | ||
6028 | return E1000_SUCCESS; | ||
6029 | } | ||
6030 | if (hw->media_type == e1000_media_type_fiber) { | ||
6031 | /* always blink LED0 for PCI-E fiber */ | ||
6032 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
6033 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
6034 | } else { | ||
6035 | /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ | ||
6036 | ledctl_blink = hw->ledctl_mode2; | ||
6037 | for (i=0; i < 4; i++) | ||
6038 | if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
6039 | E1000_LEDCTL_MODE_LED_ON) | ||
6040 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); | ||
6041 | } | ||
6042 | |||
6043 | ew32(LEDCTL, ledctl_blink); | ||
6044 | |||
6045 | return E1000_SUCCESS; | ||
6046 | } | ||
6047 | |||
6048 | /****************************************************************************** | 4502 | /****************************************************************************** |
6049 | * Restores the saved state of the SW controlable LED. | 4503 | * Restores the saved state of the SW controlable LED. |
6050 | * | 4504 | * |
@@ -6074,10 +4528,6 @@ s32 e1000_cleanup_led(struct e1000_hw *hw) | |||
6074 | return ret_val; | 4528 | return ret_val; |
6075 | /* Fall Through */ | 4529 | /* Fall Through */ |
6076 | default: | 4530 | default: |
6077 | if (hw->phy_type == e1000_phy_ife) { | ||
6078 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | ||
6079 | break; | ||
6080 | } | ||
6081 | /* Restore LEDCTL settings */ | 4531 | /* Restore LEDCTL settings */ |
6082 | ew32(LEDCTL, hw->ledctl_default); | 4532 | ew32(LEDCTL, hw->ledctl_default); |
6083 | break; | 4533 | break; |
@@ -6121,9 +4571,6 @@ s32 e1000_led_on(struct e1000_hw *hw) | |||
6121 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 4571 | /* Clear SW Defineable Pin 0 to turn on the LED */ |
6122 | ctrl &= ~E1000_CTRL_SWDPIN0; | 4572 | ctrl &= ~E1000_CTRL_SWDPIN0; |
6123 | ctrl |= E1000_CTRL_SWDPIO0; | 4573 | ctrl |= E1000_CTRL_SWDPIO0; |
6124 | } else if (hw->phy_type == e1000_phy_ife) { | ||
6125 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
6126 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | ||
6127 | } else if (hw->media_type == e1000_media_type_copper) { | 4574 | } else if (hw->media_type == e1000_media_type_copper) { |
6128 | ew32(LEDCTL, hw->ledctl_mode2); | 4575 | ew32(LEDCTL, hw->ledctl_mode2); |
6129 | return E1000_SUCCESS; | 4576 | return E1000_SUCCESS; |
@@ -6171,9 +4618,6 @@ s32 e1000_led_off(struct e1000_hw *hw) | |||
6171 | /* Set SW Defineable Pin 0 to turn off the LED */ | 4618 | /* Set SW Defineable Pin 0 to turn off the LED */ |
6172 | ctrl |= E1000_CTRL_SWDPIN0; | 4619 | ctrl |= E1000_CTRL_SWDPIN0; |
6173 | ctrl |= E1000_CTRL_SWDPIO0; | 4620 | ctrl |= E1000_CTRL_SWDPIO0; |
6174 | } else if (hw->phy_type == e1000_phy_ife) { | ||
6175 | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
6176 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); | ||
6177 | } else if (hw->media_type == e1000_media_type_copper) { | 4621 | } else if (hw->media_type == e1000_media_type_copper) { |
6178 | ew32(LEDCTL, hw->ledctl_mode1); | 4622 | ew32(LEDCTL, hw->ledctl_mode1); |
6179 | return E1000_SUCCESS; | 4623 | return E1000_SUCCESS; |
@@ -6212,14 +4656,12 @@ static void e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
6212 | temp = er32(XOFFTXC); | 4656 | temp = er32(XOFFTXC); |
6213 | temp = er32(FCRUC); | 4657 | temp = er32(FCRUC); |
6214 | 4658 | ||
6215 | if (hw->mac_type != e1000_ich8lan) { | ||
6216 | temp = er32(PRC64); | 4659 | temp = er32(PRC64); |
6217 | temp = er32(PRC127); | 4660 | temp = er32(PRC127); |
6218 | temp = er32(PRC255); | 4661 | temp = er32(PRC255); |
6219 | temp = er32(PRC511); | 4662 | temp = er32(PRC511); |
6220 | temp = er32(PRC1023); | 4663 | temp = er32(PRC1023); |
6221 | temp = er32(PRC1522); | 4664 | temp = er32(PRC1522); |
6222 | } | ||
6223 | 4665 | ||
6224 | temp = er32(GPRC); | 4666 | temp = er32(GPRC); |
6225 | temp = er32(BPRC); | 4667 | temp = er32(BPRC); |
@@ -6241,14 +4683,12 @@ static void e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
6241 | temp = er32(TPR); | 4683 | temp = er32(TPR); |
6242 | temp = er32(TPT); | 4684 | temp = er32(TPT); |
6243 | 4685 | ||
6244 | if (hw->mac_type != e1000_ich8lan) { | ||
6245 | temp = er32(PTC64); | 4686 | temp = er32(PTC64); |
6246 | temp = er32(PTC127); | 4687 | temp = er32(PTC127); |
6247 | temp = er32(PTC255); | 4688 | temp = er32(PTC255); |
6248 | temp = er32(PTC511); | 4689 | temp = er32(PTC511); |
6249 | temp = er32(PTC1023); | 4690 | temp = er32(PTC1023); |
6250 | temp = er32(PTC1522); | 4691 | temp = er32(PTC1522); |
6251 | } | ||
6252 | 4692 | ||
6253 | temp = er32(MPTC); | 4693 | temp = er32(MPTC); |
6254 | temp = er32(BPTC); | 4694 | temp = er32(BPTC); |
@@ -6267,21 +4707,6 @@ static void e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
6267 | temp = er32(MGTPRC); | 4707 | temp = er32(MGTPRC); |
6268 | temp = er32(MGTPDC); | 4708 | temp = er32(MGTPDC); |
6269 | temp = er32(MGTPTC); | 4709 | temp = er32(MGTPTC); |
6270 | |||
6271 | if (hw->mac_type <= e1000_82547_rev_2) return; | ||
6272 | |||
6273 | temp = er32(IAC); | ||
6274 | temp = er32(ICRXOC); | ||
6275 | |||
6276 | if (hw->mac_type == e1000_ich8lan) return; | ||
6277 | |||
6278 | temp = er32(ICRXPTC); | ||
6279 | temp = er32(ICRXATC); | ||
6280 | temp = er32(ICTXPTC); | ||
6281 | temp = er32(ICTXATC); | ||
6282 | temp = er32(ICTXQEC); | ||
6283 | temp = er32(ICTXQMTC); | ||
6284 | temp = er32(ICRXDMTC); | ||
6285 | } | 4710 | } |
6286 | 4711 | ||
6287 | /****************************************************************************** | 4712 | /****************************************************************************** |
@@ -6433,8 +4858,6 @@ void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, | |||
6433 | *****************************************************************************/ | 4858 | *****************************************************************************/ |
6434 | void e1000_get_bus_info(struct e1000_hw *hw) | 4859 | void e1000_get_bus_info(struct e1000_hw *hw) |
6435 | { | 4860 | { |
6436 | s32 ret_val; | ||
6437 | u16 pci_ex_link_status; | ||
6438 | u32 status; | 4861 | u32 status; |
6439 | 4862 | ||
6440 | switch (hw->mac_type) { | 4863 | switch (hw->mac_type) { |
@@ -6444,26 +4867,6 @@ void e1000_get_bus_info(struct e1000_hw *hw) | |||
6444 | hw->bus_speed = e1000_bus_speed_unknown; | 4867 | hw->bus_speed = e1000_bus_speed_unknown; |
6445 | hw->bus_width = e1000_bus_width_unknown; | 4868 | hw->bus_width = e1000_bus_width_unknown; |
6446 | break; | 4869 | break; |
6447 | case e1000_82571: | ||
6448 | case e1000_82572: | ||
6449 | case e1000_82573: | ||
6450 | case e1000_80003es2lan: | ||
6451 | hw->bus_type = e1000_bus_type_pci_express; | ||
6452 | hw->bus_speed = e1000_bus_speed_2500; | ||
6453 | ret_val = e1000_read_pcie_cap_reg(hw, | ||
6454 | PCI_EX_LINK_STATUS, | ||
6455 | &pci_ex_link_status); | ||
6456 | if (ret_val) | ||
6457 | hw->bus_width = e1000_bus_width_unknown; | ||
6458 | else | ||
6459 | hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >> | ||
6460 | PCI_EX_LINK_WIDTH_SHIFT; | ||
6461 | break; | ||
6462 | case e1000_ich8lan: | ||
6463 | hw->bus_type = e1000_bus_type_pci_express; | ||
6464 | hw->bus_speed = e1000_bus_speed_2500; | ||
6465 | hw->bus_width = e1000_bus_width_pciex_1; | ||
6466 | break; | ||
6467 | default: | 4870 | default: |
6468 | status = er32(STATUS); | 4871 | status = er32(STATUS); |
6469 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 4872 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
@@ -6577,34 +4980,6 @@ static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | |||
6577 | return -E1000_ERR_PHY; | 4980 | return -E1000_ERR_PHY; |
6578 | break; | 4981 | break; |
6579 | } | 4982 | } |
6580 | } else if (hw->phy_type == e1000_phy_gg82563) { | ||
6581 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, | ||
6582 | &phy_data); | ||
6583 | if (ret_val) | ||
6584 | return ret_val; | ||
6585 | cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH; | ||
6586 | |||
6587 | switch (cable_length) { | ||
6588 | case e1000_gg_cable_length_60: | ||
6589 | *min_length = 0; | ||
6590 | *max_length = e1000_igp_cable_length_60; | ||
6591 | break; | ||
6592 | case e1000_gg_cable_length_60_115: | ||
6593 | *min_length = e1000_igp_cable_length_60; | ||
6594 | *max_length = e1000_igp_cable_length_115; | ||
6595 | break; | ||
6596 | case e1000_gg_cable_length_115_150: | ||
6597 | *min_length = e1000_igp_cable_length_115; | ||
6598 | *max_length = e1000_igp_cable_length_150; | ||
6599 | break; | ||
6600 | case e1000_gg_cable_length_150: | ||
6601 | *min_length = e1000_igp_cable_length_150; | ||
6602 | *max_length = e1000_igp_cable_length_180; | ||
6603 | break; | ||
6604 | default: | ||
6605 | return -E1000_ERR_PHY; | ||
6606 | break; | ||
6607 | } | ||
6608 | } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | 4983 | } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
6609 | u16 cur_agc_value; | 4984 | u16 cur_agc_value; |
6610 | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | 4985 | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; |
@@ -6652,51 +5027,6 @@ static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | |||
6652 | IGP01E1000_AGC_RANGE) : 0; | 5027 | IGP01E1000_AGC_RANGE) : 0; |
6653 | *max_length = e1000_igp_cable_length_table[agc_value] + | 5028 | *max_length = e1000_igp_cable_length_table[agc_value] + |
6654 | IGP01E1000_AGC_RANGE; | 5029 | IGP01E1000_AGC_RANGE; |
6655 | } else if (hw->phy_type == e1000_phy_igp_2 || | ||
6656 | hw->phy_type == e1000_phy_igp_3) { | ||
6657 | u16 cur_agc_index, max_agc_index = 0; | ||
6658 | u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; | ||
6659 | u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | ||
6660 | {IGP02E1000_PHY_AGC_A, | ||
6661 | IGP02E1000_PHY_AGC_B, | ||
6662 | IGP02E1000_PHY_AGC_C, | ||
6663 | IGP02E1000_PHY_AGC_D}; | ||
6664 | /* Read the AGC registers for all channels */ | ||
6665 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | ||
6666 | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | ||
6667 | if (ret_val) | ||
6668 | return ret_val; | ||
6669 | |||
6670 | /* Getting bits 15:9, which represent the combination of course and | ||
6671 | * fine gain values. The result is a number that can be put into | ||
6672 | * the lookup table to obtain the approximate cable length. */ | ||
6673 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | ||
6674 | IGP02E1000_AGC_LENGTH_MASK; | ||
6675 | |||
6676 | /* Array index bound check. */ | ||
6677 | if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || | ||
6678 | (cur_agc_index == 0)) | ||
6679 | return -E1000_ERR_PHY; | ||
6680 | |||
6681 | /* Remove min & max AGC values from calculation. */ | ||
6682 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
6683 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
6684 | min_agc_index = cur_agc_index; | ||
6685 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
6686 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
6687 | max_agc_index = cur_agc_index; | ||
6688 | |||
6689 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
6690 | } | ||
6691 | |||
6692 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | ||
6693 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
6694 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | ||
6695 | |||
6696 | /* Calculate cable length with the error range of +/- 10 meters. */ | ||
6697 | *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | ||
6698 | (agc_value - IGP02E1000_AGC_RANGE) : 0; | ||
6699 | *max_length = agc_value + IGP02E1000_AGC_RANGE; | ||
6700 | } | 5030 | } |
6701 | 5031 | ||
6702 | return E1000_SUCCESS; | 5032 | return E1000_SUCCESS; |
@@ -6726,8 +5056,7 @@ static s32 e1000_check_polarity(struct e1000_hw *hw, | |||
6726 | 5056 | ||
6727 | DEBUGFUNC("e1000_check_polarity"); | 5057 | DEBUGFUNC("e1000_check_polarity"); |
6728 | 5058 | ||
6729 | if ((hw->phy_type == e1000_phy_m88) || | 5059 | if (hw->phy_type == e1000_phy_m88) { |
6730 | (hw->phy_type == e1000_phy_gg82563)) { | ||
6731 | /* return the Polarity bit in the Status register. */ | 5060 | /* return the Polarity bit in the Status register. */ |
6732 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 5061 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
6733 | &phy_data); | 5062 | &phy_data); |
@@ -6737,9 +5066,7 @@ static s32 e1000_check_polarity(struct e1000_hw *hw, | |||
6737 | M88E1000_PSSR_REV_POLARITY_SHIFT) ? | 5066 | M88E1000_PSSR_REV_POLARITY_SHIFT) ? |
6738 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 5067 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
6739 | 5068 | ||
6740 | } else if (hw->phy_type == e1000_phy_igp || | 5069 | } else if (hw->phy_type == e1000_phy_igp) { |
6741 | hw->phy_type == e1000_phy_igp_3 || | ||
6742 | hw->phy_type == e1000_phy_igp_2) { | ||
6743 | /* Read the Status register to check the speed */ | 5070 | /* Read the Status register to check the speed */ |
6744 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 5071 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
6745 | &phy_data); | 5072 | &phy_data); |
@@ -6766,14 +5093,6 @@ static s32 e1000_check_polarity(struct e1000_hw *hw, | |||
6766 | *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? | 5093 | *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? |
6767 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 5094 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
6768 | } | 5095 | } |
6769 | } else if (hw->phy_type == e1000_phy_ife) { | ||
6770 | ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, | ||
6771 | &phy_data); | ||
6772 | if (ret_val) | ||
6773 | return ret_val; | ||
6774 | *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >> | ||
6775 | IFE_PESC_POLARITY_REVERSED_SHIFT) ? | ||
6776 | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | ||
6777 | } | 5096 | } |
6778 | return E1000_SUCCESS; | 5097 | return E1000_SUCCESS; |
6779 | } | 5098 | } |
@@ -6800,17 +5119,14 @@ static s32 e1000_check_downshift(struct e1000_hw *hw) | |||
6800 | 5119 | ||
6801 | DEBUGFUNC("e1000_check_downshift"); | 5120 | DEBUGFUNC("e1000_check_downshift"); |
6802 | 5121 | ||
6803 | if (hw->phy_type == e1000_phy_igp || | 5122 | if (hw->phy_type == e1000_phy_igp) { |
6804 | hw->phy_type == e1000_phy_igp_3 || | ||
6805 | hw->phy_type == e1000_phy_igp_2) { | ||
6806 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 5123 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
6807 | &phy_data); | 5124 | &phy_data); |
6808 | if (ret_val) | 5125 | if (ret_val) |
6809 | return ret_val; | 5126 | return ret_val; |
6810 | 5127 | ||
6811 | hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | 5128 | hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; |
6812 | } else if ((hw->phy_type == e1000_phy_m88) || | 5129 | } else if (hw->phy_type == e1000_phy_m88) { |
6813 | (hw->phy_type == e1000_phy_gg82563)) { | ||
6814 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 5130 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
6815 | &phy_data); | 5131 | &phy_data); |
6816 | if (ret_val) | 5132 | if (ret_val) |
@@ -6818,9 +5134,6 @@ static s32 e1000_check_downshift(struct e1000_hw *hw) | |||
6818 | 5134 | ||
6819 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 5135 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
6820 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 5136 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
6821 | } else if (hw->phy_type == e1000_phy_ife) { | ||
6822 | /* e1000_phy_ife supports 10/100 speed only */ | ||
6823 | hw->speed_downgraded = false; | ||
6824 | } | 5137 | } |
6825 | 5138 | ||
6826 | return E1000_SUCCESS; | 5139 | return E1000_SUCCESS; |
@@ -7070,13 +5383,11 @@ static s32 e1000_set_phy_mode(struct e1000_hw *hw) | |||
7070 | 5383 | ||
7071 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | 5384 | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
7072 | { | 5385 | { |
7073 | u32 phy_ctrl = 0; | ||
7074 | s32 ret_val; | 5386 | s32 ret_val; |
7075 | u16 phy_data; | 5387 | u16 phy_data; |
7076 | DEBUGFUNC("e1000_set_d3_lplu_state"); | 5388 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
7077 | 5389 | ||
7078 | if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 | 5390 | if (hw->phy_type != e1000_phy_igp) |
7079 | && hw->phy_type != e1000_phy_igp_3) | ||
7080 | return E1000_SUCCESS; | 5391 | return E1000_SUCCESS; |
7081 | 5392 | ||
7082 | /* During driver activity LPLU should not be used or it will attain link | 5393 | /* During driver activity LPLU should not be used or it will attain link |
@@ -7086,11 +5397,6 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | |||
7086 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 5397 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
7087 | if (ret_val) | 5398 | if (ret_val) |
7088 | return ret_val; | 5399 | return ret_val; |
7089 | } else if (hw->mac_type == e1000_ich8lan) { | ||
7090 | /* MAC writes into PHY register based on the state transition | ||
7091 | * and start auto-negotiation. SW driver can overwrite the settings | ||
7092 | * in CSR PHY power control E1000_PHY_CTRL register. */ | ||
7093 | phy_ctrl = er32(PHY_CTRL); | ||
7094 | } else { | 5400 | } else { |
7095 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 5401 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
7096 | if (ret_val) | 5402 | if (ret_val) |
@@ -7105,16 +5411,11 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | |||
7105 | if (ret_val) | 5411 | if (ret_val) |
7106 | return ret_val; | 5412 | return ret_val; |
7107 | } else { | 5413 | } else { |
7108 | if (hw->mac_type == e1000_ich8lan) { | 5414 | phy_data &= ~IGP02E1000_PM_D3_LPLU; |
7109 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | 5415 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
7110 | ew32(PHY_CTRL, phy_ctrl); | 5416 | phy_data); |
7111 | } else { | 5417 | if (ret_val) |
7112 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | 5418 | return ret_val; |
7113 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
7114 | phy_data); | ||
7115 | if (ret_val) | ||
7116 | return ret_val; | ||
7117 | } | ||
7118 | } | 5419 | } |
7119 | 5420 | ||
7120 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 5421 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
@@ -7156,114 +5457,11 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | |||
7156 | if (ret_val) | 5457 | if (ret_val) |
7157 | return ret_val; | 5458 | return ret_val; |
7158 | } else { | 5459 | } else { |
7159 | if (hw->mac_type == e1000_ich8lan) { | 5460 | phy_data |= IGP02E1000_PM_D3_LPLU; |
7160 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | 5461 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
7161 | ew32(PHY_CTRL, phy_ctrl); | ||
7162 | } else { | ||
7163 | phy_data |= IGP02E1000_PM_D3_LPLU; | ||
7164 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
7165 | phy_data); | ||
7166 | if (ret_val) | ||
7167 | return ret_val; | ||
7168 | } | ||
7169 | } | ||
7170 | |||
7171 | /* When LPLU is enabled we should disable SmartSpeed */ | ||
7172 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | ||
7173 | if (ret_val) | ||
7174 | return ret_val; | ||
7175 | |||
7176 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
7177 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | ||
7178 | if (ret_val) | ||
7179 | return ret_val; | ||
7180 | |||
7181 | } | ||
7182 | return E1000_SUCCESS; | ||
7183 | } | ||
7184 | |||
7185 | /***************************************************************************** | ||
7186 | * | ||
7187 | * This function sets the lplu d0 state according to the active flag. When | ||
7188 | * activating lplu this function also disables smart speed and vise versa. | ||
7189 | * lplu will not be activated unless the device autonegotiation advertisment | ||
7190 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
7191 | * hw: Struct containing variables accessed by shared code | ||
7192 | * active - true to enable lplu false to disable lplu. | ||
7193 | * | ||
7194 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
7195 | * E1000_SUCCESS at any other case. | ||
7196 | * | ||
7197 | ****************************************************************************/ | ||
7198 | |||
7199 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) | ||
7200 | { | ||
7201 | u32 phy_ctrl = 0; | ||
7202 | s32 ret_val; | ||
7203 | u16 phy_data; | ||
7204 | DEBUGFUNC("e1000_set_d0_lplu_state"); | ||
7205 | |||
7206 | if (hw->mac_type <= e1000_82547_rev_2) | ||
7207 | return E1000_SUCCESS; | ||
7208 | |||
7209 | if (hw->mac_type == e1000_ich8lan) { | ||
7210 | phy_ctrl = er32(PHY_CTRL); | ||
7211 | } else { | ||
7212 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
7213 | if (ret_val) | ||
7214 | return ret_val; | ||
7215 | } | ||
7216 | |||
7217 | if (!active) { | ||
7218 | if (hw->mac_type == e1000_ich8lan) { | ||
7219 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | ||
7220 | ew32(PHY_CTRL, phy_ctrl); | ||
7221 | } else { | ||
7222 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | ||
7223 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
7224 | if (ret_val) | ||
7225 | return ret_val; | ||
7226 | } | ||
7227 | |||
7228 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | ||
7229 | * Dx states where the power conservation is most important. During | ||
7230 | * driver activity we should enable SmartSpeed, so performance is | ||
7231 | * maintained. */ | ||
7232 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
7233 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7234 | &phy_data); | ||
7235 | if (ret_val) | ||
7236 | return ret_val; | ||
7237 | |||
7238 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
7239 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7240 | phy_data); | 5462 | phy_data); |
7241 | if (ret_val) | 5463 | if (ret_val) |
7242 | return ret_val; | 5464 | return ret_val; |
7243 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
7244 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7245 | &phy_data); | ||
7246 | if (ret_val) | ||
7247 | return ret_val; | ||
7248 | |||
7249 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
7250 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
7251 | phy_data); | ||
7252 | if (ret_val) | ||
7253 | return ret_val; | ||
7254 | } | ||
7255 | |||
7256 | |||
7257 | } else { | ||
7258 | |||
7259 | if (hw->mac_type == e1000_ich8lan) { | ||
7260 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | ||
7261 | ew32(PHY_CTRL, phy_ctrl); | ||
7262 | } else { | ||
7263 | phy_data |= IGP02E1000_PM_D0_LPLU; | ||
7264 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
7265 | if (ret_val) | ||
7266 | return ret_val; | ||
7267 | } | 5465 | } |
7268 | 5466 | ||
7269 | /* When LPLU is enabled we should disable SmartSpeed */ | 5467 | /* When LPLU is enabled we should disable SmartSpeed */ |
@@ -7343,296 +5541,6 @@ static s32 e1000_set_vco_speed(struct e1000_hw *hw) | |||
7343 | } | 5541 | } |
7344 | 5542 | ||
7345 | 5543 | ||
7346 | /***************************************************************************** | ||
7347 | * This function reads the cookie from ARC ram. | ||
7348 | * | ||
7349 | * returns: - E1000_SUCCESS . | ||
7350 | ****************************************************************************/ | ||
7351 | static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer) | ||
7352 | { | ||
7353 | u8 i; | ||
7354 | u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET; | ||
7355 | u8 length = E1000_MNG_DHCP_COOKIE_LENGTH; | ||
7356 | |||
7357 | length = (length >> 2); | ||
7358 | offset = (offset >> 2); | ||
7359 | |||
7360 | for (i = 0; i < length; i++) { | ||
7361 | *((u32 *)buffer + i) = | ||
7362 | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); | ||
7363 | } | ||
7364 | return E1000_SUCCESS; | ||
7365 | } | ||
7366 | |||
7367 | |||
7368 | /***************************************************************************** | ||
7369 | * This function checks whether the HOST IF is enabled for command operaton | ||
7370 | * and also checks whether the previous command is completed. | ||
7371 | * It busy waits in case of previous command is not completed. | ||
7372 | * | ||
7373 | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or | ||
7374 | * timeout | ||
7375 | * - E1000_SUCCESS for success. | ||
7376 | ****************************************************************************/ | ||
7377 | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) | ||
7378 | { | ||
7379 | u32 hicr; | ||
7380 | u8 i; | ||
7381 | |||
7382 | /* Check that the host interface is enabled. */ | ||
7383 | hicr = er32(HICR); | ||
7384 | if ((hicr & E1000_HICR_EN) == 0) { | ||
7385 | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | ||
7386 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
7387 | } | ||
7388 | /* check the previous command is completed */ | ||
7389 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | ||
7390 | hicr = er32(HICR); | ||
7391 | if (!(hicr & E1000_HICR_C)) | ||
7392 | break; | ||
7393 | mdelay(1); | ||
7394 | } | ||
7395 | |||
7396 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | ||
7397 | DEBUGOUT("Previous command timeout failed .\n"); | ||
7398 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
7399 | } | ||
7400 | return E1000_SUCCESS; | ||
7401 | } | ||
7402 | |||
7403 | /***************************************************************************** | ||
7404 | * This function writes the buffer content at the offset given on the host if. | ||
7405 | * It also does alignment considerations to do the writes in most efficient way. | ||
7406 | * Also fills up the sum of the buffer in *buffer parameter. | ||
7407 | * | ||
7408 | * returns - E1000_SUCCESS for success. | ||
7409 | ****************************************************************************/ | ||
7410 | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, | ||
7411 | u16 offset, u8 *sum) | ||
7412 | { | ||
7413 | u8 *tmp; | ||
7414 | u8 *bufptr = buffer; | ||
7415 | u32 data = 0; | ||
7416 | u16 remaining, i, j, prev_bytes; | ||
7417 | |||
7418 | /* sum = only sum of the data and it is not checksum */ | ||
7419 | |||
7420 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { | ||
7421 | return -E1000_ERR_PARAM; | ||
7422 | } | ||
7423 | |||
7424 | tmp = (u8 *)&data; | ||
7425 | prev_bytes = offset & 0x3; | ||
7426 | offset &= 0xFFFC; | ||
7427 | offset >>= 2; | ||
7428 | |||
7429 | if (prev_bytes) { | ||
7430 | data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); | ||
7431 | for (j = prev_bytes; j < sizeof(u32); j++) { | ||
7432 | *(tmp + j) = *bufptr++; | ||
7433 | *sum += *(tmp + j); | ||
7434 | } | ||
7435 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); | ||
7436 | length -= j - prev_bytes; | ||
7437 | offset++; | ||
7438 | } | ||
7439 | |||
7440 | remaining = length & 0x3; | ||
7441 | length -= remaining; | ||
7442 | |||
7443 | /* Calculate length in DWORDs */ | ||
7444 | length >>= 2; | ||
7445 | |||
7446 | /* The device driver writes the relevant command block into the | ||
7447 | * ram area. */ | ||
7448 | for (i = 0; i < length; i++) { | ||
7449 | for (j = 0; j < sizeof(u32); j++) { | ||
7450 | *(tmp + j) = *bufptr++; | ||
7451 | *sum += *(tmp + j); | ||
7452 | } | ||
7453 | |||
7454 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
7455 | } | ||
7456 | if (remaining) { | ||
7457 | for (j = 0; j < sizeof(u32); j++) { | ||
7458 | if (j < remaining) | ||
7459 | *(tmp + j) = *bufptr++; | ||
7460 | else | ||
7461 | *(tmp + j) = 0; | ||
7462 | |||
7463 | *sum += *(tmp + j); | ||
7464 | } | ||
7465 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
7466 | } | ||
7467 | |||
7468 | return E1000_SUCCESS; | ||
7469 | } | ||
7470 | |||
7471 | |||
7472 | /***************************************************************************** | ||
7473 | * This function writes the command header after does the checksum calculation. | ||
7474 | * | ||
7475 | * returns - E1000_SUCCESS for success. | ||
7476 | ****************************************************************************/ | ||
7477 | static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, | ||
7478 | struct e1000_host_mng_command_header *hdr) | ||
7479 | { | ||
7480 | u16 i; | ||
7481 | u8 sum; | ||
7482 | u8 *buffer; | ||
7483 | |||
7484 | /* Write the whole command header structure which includes sum of | ||
7485 | * the buffer */ | ||
7486 | |||
7487 | u16 length = sizeof(struct e1000_host_mng_command_header); | ||
7488 | |||
7489 | sum = hdr->checksum; | ||
7490 | hdr->checksum = 0; | ||
7491 | |||
7492 | buffer = (u8 *)hdr; | ||
7493 | i = length; | ||
7494 | while (i--) | ||
7495 | sum += buffer[i]; | ||
7496 | |||
7497 | hdr->checksum = 0 - sum; | ||
7498 | |||
7499 | length >>= 2; | ||
7500 | /* The device driver writes the relevant command block into the ram area. */ | ||
7501 | for (i = 0; i < length; i++) { | ||
7502 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *)hdr + i)); | ||
7503 | E1000_WRITE_FLUSH(); | ||
7504 | } | ||
7505 | |||
7506 | return E1000_SUCCESS; | ||
7507 | } | ||
7508 | |||
7509 | |||
7510 | /***************************************************************************** | ||
7511 | * This function indicates to ARC that a new command is pending which completes | ||
7512 | * one write operation by the driver. | ||
7513 | * | ||
7514 | * returns - E1000_SUCCESS for success. | ||
7515 | ****************************************************************************/ | ||
7516 | static s32 e1000_mng_write_commit(struct e1000_hw *hw) | ||
7517 | { | ||
7518 | u32 hicr; | ||
7519 | |||
7520 | hicr = er32(HICR); | ||
7521 | /* Setting this bit tells the ARC that a new command is pending. */ | ||
7522 | ew32(HICR, hicr | E1000_HICR_C); | ||
7523 | |||
7524 | return E1000_SUCCESS; | ||
7525 | } | ||
7526 | |||
7527 | |||
7528 | /***************************************************************************** | ||
7529 | * This function checks the mode of the firmware. | ||
7530 | * | ||
7531 | * returns - true when the mode is IAMT or false. | ||
7532 | ****************************************************************************/ | ||
7533 | bool e1000_check_mng_mode(struct e1000_hw *hw) | ||
7534 | { | ||
7535 | u32 fwsm; | ||
7536 | |||
7537 | fwsm = er32(FWSM); | ||
7538 | |||
7539 | if (hw->mac_type == e1000_ich8lan) { | ||
7540 | if ((fwsm & E1000_FWSM_MODE_MASK) == | ||
7541 | (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
7542 | return true; | ||
7543 | } else if ((fwsm & E1000_FWSM_MODE_MASK) == | ||
7544 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
7545 | return true; | ||
7546 | |||
7547 | return false; | ||
7548 | } | ||
7549 | |||
7550 | |||
7551 | /***************************************************************************** | ||
7552 | * This function writes the dhcp info . | ||
7553 | ****************************************************************************/ | ||
7554 | s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) | ||
7555 | { | ||
7556 | s32 ret_val; | ||
7557 | struct e1000_host_mng_command_header hdr; | ||
7558 | |||
7559 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | ||
7560 | hdr.command_length = length; | ||
7561 | hdr.reserved1 = 0; | ||
7562 | hdr.reserved2 = 0; | ||
7563 | hdr.checksum = 0; | ||
7564 | |||
7565 | ret_val = e1000_mng_enable_host_if(hw); | ||
7566 | if (ret_val == E1000_SUCCESS) { | ||
7567 | ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), | ||
7568 | &(hdr.checksum)); | ||
7569 | if (ret_val == E1000_SUCCESS) { | ||
7570 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | ||
7571 | if (ret_val == E1000_SUCCESS) | ||
7572 | ret_val = e1000_mng_write_commit(hw); | ||
7573 | } | ||
7574 | } | ||
7575 | return ret_val; | ||
7576 | } | ||
7577 | |||
7578 | |||
7579 | /***************************************************************************** | ||
7580 | * This function calculates the checksum. | ||
7581 | * | ||
7582 | * returns - checksum of buffer contents. | ||
7583 | ****************************************************************************/ | ||
7584 | static u8 e1000_calculate_mng_checksum(char *buffer, u32 length) | ||
7585 | { | ||
7586 | u8 sum = 0; | ||
7587 | u32 i; | ||
7588 | |||
7589 | if (!buffer) | ||
7590 | return 0; | ||
7591 | |||
7592 | for (i=0; i < length; i++) | ||
7593 | sum += buffer[i]; | ||
7594 | |||
7595 | return (u8)(0 - sum); | ||
7596 | } | ||
7597 | |||
7598 | /***************************************************************************** | ||
7599 | * This function checks whether tx pkt filtering needs to be enabled or not. | ||
7600 | * | ||
7601 | * returns - true for packet filtering or false. | ||
7602 | ****************************************************************************/ | ||
7603 | bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) | ||
7604 | { | ||
7605 | /* called in init as well as watchdog timer functions */ | ||
7606 | |||
7607 | s32 ret_val, checksum; | ||
7608 | bool tx_filter = false; | ||
7609 | struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | ||
7610 | u8 *buffer = (u8 *) &(hw->mng_cookie); | ||
7611 | |||
7612 | if (e1000_check_mng_mode(hw)) { | ||
7613 | ret_val = e1000_mng_enable_host_if(hw); | ||
7614 | if (ret_val == E1000_SUCCESS) { | ||
7615 | ret_val = e1000_host_if_read_cookie(hw, buffer); | ||
7616 | if (ret_val == E1000_SUCCESS) { | ||
7617 | checksum = hdr->checksum; | ||
7618 | hdr->checksum = 0; | ||
7619 | if ((hdr->signature == E1000_IAMT_SIGNATURE) && | ||
7620 | checksum == e1000_calculate_mng_checksum((char *)buffer, | ||
7621 | E1000_MNG_DHCP_COOKIE_LENGTH)) { | ||
7622 | if (hdr->status & | ||
7623 | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) | ||
7624 | tx_filter = true; | ||
7625 | } else | ||
7626 | tx_filter = true; | ||
7627 | } else | ||
7628 | tx_filter = true; | ||
7629 | } | ||
7630 | } | ||
7631 | |||
7632 | hw->tx_pkt_filtering = tx_filter; | ||
7633 | return tx_filter; | ||
7634 | } | ||
7635 | |||
7636 | /****************************************************************************** | 5544 | /****************************************************************************** |
7637 | * Verifies the hardware needs to allow ARPs to be processed by the host | 5545 | * Verifies the hardware needs to allow ARPs to be processed by the host |
7638 | * | 5546 | * |
@@ -7644,7 +5552,6 @@ bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) | |||
7644 | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) | 5552 | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) |
7645 | { | 5553 | { |
7646 | u32 manc; | 5554 | u32 manc; |
7647 | u32 fwsm, factps; | ||
7648 | 5555 | ||
7649 | if (hw->asf_firmware_present) { | 5556 | if (hw->asf_firmware_present) { |
7650 | manc = er32(MANC); | 5557 | manc = er32(MANC); |
@@ -7652,16 +5559,8 @@ u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) | |||
7652 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | 5559 | if (!(manc & E1000_MANC_RCV_TCO_EN) || |
7653 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 5560 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
7654 | return false; | 5561 | return false; |
7655 | if (e1000_arc_subsystem_valid(hw)) { | 5562 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) |
7656 | fwsm = er32(FWSM); | 5563 | return true; |
7657 | factps = er32(FACTPS); | ||
7658 | |||
7659 | if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) == | ||
7660 | e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG)) | ||
7661 | return true; | ||
7662 | } else | ||
7663 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | ||
7664 | return true; | ||
7665 | } | 5564 | } |
7666 | return false; | 5565 | return false; |
7667 | } | 5566 | } |
@@ -7750,67 +5649,6 @@ static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) | |||
7750 | return E1000_SUCCESS; | 5649 | return E1000_SUCCESS; |
7751 | } | 5650 | } |
7752 | 5651 | ||
7753 | /*************************************************************************** | ||
7754 | * | ||
7755 | * Disables PCI-Express master access. | ||
7756 | * | ||
7757 | * hw: Struct containing variables accessed by shared code | ||
7758 | * | ||
7759 | * returns: - none. | ||
7760 | * | ||
7761 | ***************************************************************************/ | ||
7762 | static void e1000_set_pci_express_master_disable(struct e1000_hw *hw) | ||
7763 | { | ||
7764 | u32 ctrl; | ||
7765 | |||
7766 | DEBUGFUNC("e1000_set_pci_express_master_disable"); | ||
7767 | |||
7768 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
7769 | return; | ||
7770 | |||
7771 | ctrl = er32(CTRL); | ||
7772 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
7773 | ew32(CTRL, ctrl); | ||
7774 | } | ||
7775 | |||
7776 | /******************************************************************************* | ||
7777 | * | ||
7778 | * Disables PCI-Express master access and verifies there are no pending requests | ||
7779 | * | ||
7780 | * hw: Struct containing variables accessed by shared code | ||
7781 | * | ||
7782 | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | ||
7783 | * caused the master requests to be disabled. | ||
7784 | * E1000_SUCCESS master requests disabled. | ||
7785 | * | ||
7786 | ******************************************************************************/ | ||
7787 | s32 e1000_disable_pciex_master(struct e1000_hw *hw) | ||
7788 | { | ||
7789 | s32 timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ | ||
7790 | |||
7791 | DEBUGFUNC("e1000_disable_pciex_master"); | ||
7792 | |||
7793 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
7794 | return E1000_SUCCESS; | ||
7795 | |||
7796 | e1000_set_pci_express_master_disable(hw); | ||
7797 | |||
7798 | while (timeout) { | ||
7799 | if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) | ||
7800 | break; | ||
7801 | else | ||
7802 | udelay(100); | ||
7803 | timeout--; | ||
7804 | } | ||
7805 | |||
7806 | if (!timeout) { | ||
7807 | DEBUGOUT("Master requests are pending.\n"); | ||
7808 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
7809 | } | ||
7810 | |||
7811 | return E1000_SUCCESS; | ||
7812 | } | ||
7813 | |||
7814 | /******************************************************************************* | 5652 | /******************************************************************************* |
7815 | * | 5653 | * |
7816 | * Check for EEPROM Auto Read bit done. | 5654 | * Check for EEPROM Auto Read bit done. |
@@ -7823,39 +5661,8 @@ s32 e1000_disable_pciex_master(struct e1000_hw *hw) | |||
7823 | ******************************************************************************/ | 5661 | ******************************************************************************/ |
7824 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) | 5662 | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) |
7825 | { | 5663 | { |
7826 | s32 timeout = AUTO_READ_DONE_TIMEOUT; | ||
7827 | |||
7828 | DEBUGFUNC("e1000_get_auto_rd_done"); | 5664 | DEBUGFUNC("e1000_get_auto_rd_done"); |
7829 | 5665 | msleep(5); | |
7830 | switch (hw->mac_type) { | ||
7831 | default: | ||
7832 | msleep(5); | ||
7833 | break; | ||
7834 | case e1000_82571: | ||
7835 | case e1000_82572: | ||
7836 | case e1000_82573: | ||
7837 | case e1000_80003es2lan: | ||
7838 | case e1000_ich8lan: | ||
7839 | while (timeout) { | ||
7840 | if (er32(EECD) & E1000_EECD_AUTO_RD) | ||
7841 | break; | ||
7842 | else msleep(1); | ||
7843 | timeout--; | ||
7844 | } | ||
7845 | |||
7846 | if (!timeout) { | ||
7847 | DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); | ||
7848 | return -E1000_ERR_RESET; | ||
7849 | } | ||
7850 | break; | ||
7851 | } | ||
7852 | |||
7853 | /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high. | ||
7854 | * Need to wait for PHY configuration completion before accessing NVM | ||
7855 | * and PHY. */ | ||
7856 | if (hw->mac_type == e1000_82573) | ||
7857 | msleep(25); | ||
7858 | |||
7859 | return E1000_SUCCESS; | 5666 | return E1000_SUCCESS; |
7860 | } | 5667 | } |
7861 | 5668 | ||
@@ -7870,36 +5677,8 @@ static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) | |||
7870 | ***************************************************************************/ | 5677 | ***************************************************************************/ |
7871 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | 5678 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) |
7872 | { | 5679 | { |
7873 | s32 timeout = PHY_CFG_TIMEOUT; | ||
7874 | u32 cfg_mask = E1000_EEPROM_CFG_DONE; | ||
7875 | |||
7876 | DEBUGFUNC("e1000_get_phy_cfg_done"); | 5680 | DEBUGFUNC("e1000_get_phy_cfg_done"); |
7877 | 5681 | mdelay(10); | |
7878 | switch (hw->mac_type) { | ||
7879 | default: | ||
7880 | mdelay(10); | ||
7881 | break; | ||
7882 | case e1000_80003es2lan: | ||
7883 | /* Separate *_CFG_DONE_* bit for each port */ | ||
7884 | if (er32(STATUS) & E1000_STATUS_FUNC_1) | ||
7885 | cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; | ||
7886 | /* Fall Through */ | ||
7887 | case e1000_82571: | ||
7888 | case e1000_82572: | ||
7889 | while (timeout) { | ||
7890 | if (er32(EEMNGCTL) & cfg_mask) | ||
7891 | break; | ||
7892 | else | ||
7893 | msleep(1); | ||
7894 | timeout--; | ||
7895 | } | ||
7896 | if (!timeout) { | ||
7897 | DEBUGOUT("MNG configuration cycle has not completed.\n"); | ||
7898 | return -E1000_ERR_RESET; | ||
7899 | } | ||
7900 | break; | ||
7901 | } | ||
7902 | |||
7903 | return E1000_SUCCESS; | 5682 | return E1000_SUCCESS; |
7904 | } | 5683 | } |
7905 | 5684 | ||
@@ -7924,12 +5703,6 @@ static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) | |||
7924 | if (!hw->eeprom_semaphore_present) | 5703 | if (!hw->eeprom_semaphore_present) |
7925 | return E1000_SUCCESS; | 5704 | return E1000_SUCCESS; |
7926 | 5705 | ||
7927 | if (hw->mac_type == e1000_80003es2lan) { | ||
7928 | /* Get the SW semaphore. */ | ||
7929 | if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) | ||
7930 | return -E1000_ERR_EEPROM; | ||
7931 | } | ||
7932 | |||
7933 | /* Get the FW semaphore. */ | 5706 | /* Get the FW semaphore. */ |
7934 | timeout = hw->eeprom.word_size + 1; | 5707 | timeout = hw->eeprom.word_size + 1; |
7935 | while (timeout) { | 5708 | while (timeout) { |
@@ -7973,860 +5746,6 @@ static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | |||
7973 | return; | 5746 | return; |
7974 | 5747 | ||
7975 | swsm = er32(SWSM); | 5748 | swsm = er32(SWSM); |
7976 | if (hw->mac_type == e1000_80003es2lan) { | 5749 | swsm &= ~(E1000_SWSM_SWESMBI); |
7977 | /* Release both semaphores. */ | ||
7978 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
7979 | } else | ||
7980 | swsm &= ~(E1000_SWSM_SWESMBI); | ||
7981 | ew32(SWSM, swsm); | ||
7982 | } | ||
7983 | |||
7984 | /*************************************************************************** | ||
7985 | * | ||
7986 | * Obtaining software semaphore bit (SMBI) before resetting PHY. | ||
7987 | * | ||
7988 | * hw: Struct containing variables accessed by shared code | ||
7989 | * | ||
7990 | * returns: - E1000_ERR_RESET if fail to obtain semaphore. | ||
7991 | * E1000_SUCCESS at any other case. | ||
7992 | * | ||
7993 | ***************************************************************************/ | ||
7994 | static s32 e1000_get_software_semaphore(struct e1000_hw *hw) | ||
7995 | { | ||
7996 | s32 timeout = hw->eeprom.word_size + 1; | ||
7997 | u32 swsm; | ||
7998 | |||
7999 | DEBUGFUNC("e1000_get_software_semaphore"); | ||
8000 | |||
8001 | if (hw->mac_type != e1000_80003es2lan) { | ||
8002 | return E1000_SUCCESS; | ||
8003 | } | ||
8004 | |||
8005 | while (timeout) { | ||
8006 | swsm = er32(SWSM); | ||
8007 | /* If SMBI bit cleared, it is now set and we hold the semaphore */ | ||
8008 | if (!(swsm & E1000_SWSM_SMBI)) | ||
8009 | break; | ||
8010 | mdelay(1); | ||
8011 | timeout--; | ||
8012 | } | ||
8013 | |||
8014 | if (!timeout) { | ||
8015 | DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); | ||
8016 | return -E1000_ERR_RESET; | ||
8017 | } | ||
8018 | |||
8019 | return E1000_SUCCESS; | ||
8020 | } | ||
8021 | |||
8022 | /*************************************************************************** | ||
8023 | * | ||
8024 | * Release semaphore bit (SMBI). | ||
8025 | * | ||
8026 | * hw: Struct containing variables accessed by shared code | ||
8027 | * | ||
8028 | ***************************************************************************/ | ||
8029 | static void e1000_release_software_semaphore(struct e1000_hw *hw) | ||
8030 | { | ||
8031 | u32 swsm; | ||
8032 | |||
8033 | DEBUGFUNC("e1000_release_software_semaphore"); | ||
8034 | |||
8035 | if (hw->mac_type != e1000_80003es2lan) { | ||
8036 | return; | ||
8037 | } | ||
8038 | |||
8039 | swsm = er32(SWSM); | ||
8040 | /* Release the SW semaphores.*/ | ||
8041 | swsm &= ~E1000_SWSM_SMBI; | ||
8042 | ew32(SWSM, swsm); | 5750 | ew32(SWSM, swsm); |
8043 | } | 5751 | } |
8044 | |||
8045 | /****************************************************************************** | ||
8046 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | ||
8047 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to | ||
8048 | * the caller to figure out how to deal with it. | ||
8049 | * | ||
8050 | * hw - Struct containing variables accessed by shared code | ||
8051 | * | ||
8052 | * returns: - E1000_BLK_PHY_RESET | ||
8053 | * E1000_SUCCESS | ||
8054 | * | ||
8055 | *****************************************************************************/ | ||
8056 | s32 e1000_check_phy_reset_block(struct e1000_hw *hw) | ||
8057 | { | ||
8058 | u32 manc = 0; | ||
8059 | u32 fwsm = 0; | ||
8060 | |||
8061 | if (hw->mac_type == e1000_ich8lan) { | ||
8062 | fwsm = er32(FWSM); | ||
8063 | return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS | ||
8064 | : E1000_BLK_PHY_RESET; | ||
8065 | } | ||
8066 | |||
8067 | if (hw->mac_type > e1000_82547_rev_2) | ||
8068 | manc = er32(MANC); | ||
8069 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
8070 | E1000_BLK_PHY_RESET : E1000_SUCCESS; | ||
8071 | } | ||
8072 | |||
8073 | static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw) | ||
8074 | { | ||
8075 | u32 fwsm; | ||
8076 | |||
8077 | /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC | ||
8078 | * may not be provided a DMA clock when no manageability features are | ||
8079 | * enabled. We do not want to perform any reads/writes to these registers | ||
8080 | * if this is the case. We read FWSM to determine the manageability mode. | ||
8081 | */ | ||
8082 | switch (hw->mac_type) { | ||
8083 | case e1000_82571: | ||
8084 | case e1000_82572: | ||
8085 | case e1000_82573: | ||
8086 | case e1000_80003es2lan: | ||
8087 | fwsm = er32(FWSM); | ||
8088 | if ((fwsm & E1000_FWSM_MODE_MASK) != 0) | ||
8089 | return true; | ||
8090 | break; | ||
8091 | case e1000_ich8lan: | ||
8092 | return true; | ||
8093 | default: | ||
8094 | break; | ||
8095 | } | ||
8096 | return false; | ||
8097 | } | ||
8098 | |||
8099 | |||
8100 | /****************************************************************************** | ||
8101 | * Configure PCI-Ex no-snoop | ||
8102 | * | ||
8103 | * hw - Struct containing variables accessed by shared code. | ||
8104 | * no_snoop - Bitmap of no-snoop events. | ||
8105 | * | ||
8106 | * returns: E1000_SUCCESS | ||
8107 | * | ||
8108 | *****************************************************************************/ | ||
8109 | static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop) | ||
8110 | { | ||
8111 | u32 gcr_reg = 0; | ||
8112 | |||
8113 | DEBUGFUNC("e1000_set_pci_ex_no_snoop"); | ||
8114 | |||
8115 | if (hw->bus_type == e1000_bus_type_unknown) | ||
8116 | e1000_get_bus_info(hw); | ||
8117 | |||
8118 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
8119 | return E1000_SUCCESS; | ||
8120 | |||
8121 | if (no_snoop) { | ||
8122 | gcr_reg = er32(GCR); | ||
8123 | gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); | ||
8124 | gcr_reg |= no_snoop; | ||
8125 | ew32(GCR, gcr_reg); | ||
8126 | } | ||
8127 | if (hw->mac_type == e1000_ich8lan) { | ||
8128 | u32 ctrl_ext; | ||
8129 | |||
8130 | ew32(GCR, PCI_EX_82566_SNOOP_ALL); | ||
8131 | |||
8132 | ctrl_ext = er32(CTRL_EXT); | ||
8133 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | ||
8134 | ew32(CTRL_EXT, ctrl_ext); | ||
8135 | } | ||
8136 | |||
8137 | return E1000_SUCCESS; | ||
8138 | } | ||
8139 | |||
8140 | /*************************************************************************** | ||
8141 | * | ||
8142 | * Get software semaphore FLAG bit (SWFLAG). | ||
8143 | * SWFLAG is used to synchronize the access to all shared resource between | ||
8144 | * SW, FW and HW. | ||
8145 | * | ||
8146 | * hw: Struct containing variables accessed by shared code | ||
8147 | * | ||
8148 | ***************************************************************************/ | ||
8149 | static s32 e1000_get_software_flag(struct e1000_hw *hw) | ||
8150 | { | ||
8151 | s32 timeout = PHY_CFG_TIMEOUT; | ||
8152 | u32 extcnf_ctrl; | ||
8153 | |||
8154 | DEBUGFUNC("e1000_get_software_flag"); | ||
8155 | |||
8156 | if (hw->mac_type == e1000_ich8lan) { | ||
8157 | while (timeout) { | ||
8158 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
8159 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | ||
8160 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
8161 | |||
8162 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
8163 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | ||
8164 | break; | ||
8165 | mdelay(1); | ||
8166 | timeout--; | ||
8167 | } | ||
8168 | |||
8169 | if (!timeout) { | ||
8170 | DEBUGOUT("FW or HW locks the resource too long.\n"); | ||
8171 | return -E1000_ERR_CONFIG; | ||
8172 | } | ||
8173 | } | ||
8174 | |||
8175 | return E1000_SUCCESS; | ||
8176 | } | ||
8177 | |||
8178 | /*************************************************************************** | ||
8179 | * | ||
8180 | * Release software semaphore FLAG bit (SWFLAG). | ||
8181 | * SWFLAG is used to synchronize the access to all shared resource between | ||
8182 | * SW, FW and HW. | ||
8183 | * | ||
8184 | * hw: Struct containing variables accessed by shared code | ||
8185 | * | ||
8186 | ***************************************************************************/ | ||
8187 | static void e1000_release_software_flag(struct e1000_hw *hw) | ||
8188 | { | ||
8189 | u32 extcnf_ctrl; | ||
8190 | |||
8191 | DEBUGFUNC("e1000_release_software_flag"); | ||
8192 | |||
8193 | if (hw->mac_type == e1000_ich8lan) { | ||
8194 | extcnf_ctrl= er32(EXTCNF_CTRL); | ||
8195 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | ||
8196 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
8197 | } | ||
8198 | |||
8199 | return; | ||
8200 | } | ||
8201 | |||
8202 | /****************************************************************************** | ||
8203 | * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access | ||
8204 | * register. | ||
8205 | * | ||
8206 | * hw - Struct containing variables accessed by shared code | ||
8207 | * offset - offset of word in the EEPROM to read | ||
8208 | * data - word read from the EEPROM | ||
8209 | * words - number of words to read | ||
8210 | *****************************************************************************/ | ||
8211 | static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | ||
8212 | u16 *data) | ||
8213 | { | ||
8214 | s32 error = E1000_SUCCESS; | ||
8215 | u32 flash_bank = 0; | ||
8216 | u32 act_offset = 0; | ||
8217 | u32 bank_offset = 0; | ||
8218 | u16 word = 0; | ||
8219 | u16 i = 0; | ||
8220 | |||
8221 | /* We need to know which is the valid flash bank. In the event | ||
8222 | * that we didn't allocate eeprom_shadow_ram, we may not be | ||
8223 | * managing flash_bank. So it cannot be trusted and needs | ||
8224 | * to be updated with each read. | ||
8225 | */ | ||
8226 | /* Value of bit 22 corresponds to the flash bank we're on. */ | ||
8227 | flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; | ||
8228 | |||
8229 | /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ | ||
8230 | bank_offset = flash_bank * (hw->flash_bank_size * 2); | ||
8231 | |||
8232 | error = e1000_get_software_flag(hw); | ||
8233 | if (error != E1000_SUCCESS) | ||
8234 | return error; | ||
8235 | |||
8236 | for (i = 0; i < words; i++) { | ||
8237 | if (hw->eeprom_shadow_ram != NULL && | ||
8238 | hw->eeprom_shadow_ram[offset+i].modified) { | ||
8239 | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | ||
8240 | } else { | ||
8241 | /* The NVM part needs a byte offset, hence * 2 */ | ||
8242 | act_offset = bank_offset + ((offset + i) * 2); | ||
8243 | error = e1000_read_ich8_word(hw, act_offset, &word); | ||
8244 | if (error != E1000_SUCCESS) | ||
8245 | break; | ||
8246 | data[i] = word; | ||
8247 | } | ||
8248 | } | ||
8249 | |||
8250 | e1000_release_software_flag(hw); | ||
8251 | |||
8252 | return error; | ||
8253 | } | ||
8254 | |||
8255 | /****************************************************************************** | ||
8256 | * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access | ||
8257 | * register. Actually, writes are written to the shadow ram cache in the hw | ||
8258 | * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to | ||
8259 | * the NVM, which occurs when the NVM checksum is updated. | ||
8260 | * | ||
8261 | * hw - Struct containing variables accessed by shared code | ||
8262 | * offset - offset of word in the EEPROM to write | ||
8263 | * words - number of words to write | ||
8264 | * data - words to write to the EEPROM | ||
8265 | *****************************************************************************/ | ||
8266 | static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | ||
8267 | u16 *data) | ||
8268 | { | ||
8269 | u32 i = 0; | ||
8270 | s32 error = E1000_SUCCESS; | ||
8271 | |||
8272 | error = e1000_get_software_flag(hw); | ||
8273 | if (error != E1000_SUCCESS) | ||
8274 | return error; | ||
8275 | |||
8276 | /* A driver can write to the NVM only if it has eeprom_shadow_ram | ||
8277 | * allocated. Subsequent reads to the modified words are read from | ||
8278 | * this cached structure as well. Writes will only go into this | ||
8279 | * cached structure unless it's followed by a call to | ||
8280 | * e1000_update_eeprom_checksum() where it will commit the changes | ||
8281 | * and clear the "modified" field. | ||
8282 | */ | ||
8283 | if (hw->eeprom_shadow_ram != NULL) { | ||
8284 | for (i = 0; i < words; i++) { | ||
8285 | if ((offset + i) < E1000_SHADOW_RAM_WORDS) { | ||
8286 | hw->eeprom_shadow_ram[offset+i].modified = true; | ||
8287 | hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; | ||
8288 | } else { | ||
8289 | error = -E1000_ERR_EEPROM; | ||
8290 | break; | ||
8291 | } | ||
8292 | } | ||
8293 | } else { | ||
8294 | /* Drivers have the option to not allocate eeprom_shadow_ram as long | ||
8295 | * as they don't perform any NVM writes. An attempt in doing so | ||
8296 | * will result in this error. | ||
8297 | */ | ||
8298 | error = -E1000_ERR_EEPROM; | ||
8299 | } | ||
8300 | |||
8301 | e1000_release_software_flag(hw); | ||
8302 | |||
8303 | return error; | ||
8304 | } | ||
8305 | |||
8306 | /****************************************************************************** | ||
8307 | * This function does initial flash setup so that a new read/write/erase cycle | ||
8308 | * can be started. | ||
8309 | * | ||
8310 | * hw - The pointer to the hw structure | ||
8311 | ****************************************************************************/ | ||
8312 | static s32 e1000_ich8_cycle_init(struct e1000_hw *hw) | ||
8313 | { | ||
8314 | union ich8_hws_flash_status hsfsts; | ||
8315 | s32 error = E1000_ERR_EEPROM; | ||
8316 | s32 i = 0; | ||
8317 | |||
8318 | DEBUGFUNC("e1000_ich8_cycle_init"); | ||
8319 | |||
8320 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8321 | |||
8322 | /* May be check the Flash Des Valid bit in Hw status */ | ||
8323 | if (hsfsts.hsf_status.fldesvalid == 0) { | ||
8324 | DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); | ||
8325 | return error; | ||
8326 | } | ||
8327 | |||
8328 | /* Clear FCERR in Hw status by writing 1 */ | ||
8329 | /* Clear DAEL in Hw status by writing a 1 */ | ||
8330 | hsfsts.hsf_status.flcerr = 1; | ||
8331 | hsfsts.hsf_status.dael = 1; | ||
8332 | |||
8333 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); | ||
8334 | |||
8335 | /* Either we should have a hardware SPI cycle in progress bit to check | ||
8336 | * against, in order to start a new cycle or FDONE bit should be changed | ||
8337 | * in the hardware so that it is 1 after harware reset, which can then be | ||
8338 | * used as an indication whether a cycle is in progress or has been | ||
8339 | * completed .. we should also have some software semaphore mechanism to | ||
8340 | * guard FDONE or the cycle in progress bit so that two threads access to | ||
8341 | * those bits can be sequentiallized or a way so that 2 threads dont | ||
8342 | * start the cycle at the same time */ | ||
8343 | |||
8344 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
8345 | /* There is no cycle running at present, so we can start a cycle */ | ||
8346 | /* Begin by setting Flash Cycle Done. */ | ||
8347 | hsfsts.hsf_status.flcdone = 1; | ||
8348 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); | ||
8349 | error = E1000_SUCCESS; | ||
8350 | } else { | ||
8351 | /* otherwise poll for sometime so the current cycle has a chance | ||
8352 | * to end before giving up. */ | ||
8353 | for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { | ||
8354 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8355 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
8356 | error = E1000_SUCCESS; | ||
8357 | break; | ||
8358 | } | ||
8359 | udelay(1); | ||
8360 | } | ||
8361 | if (error == E1000_SUCCESS) { | ||
8362 | /* Successful in waiting for previous cycle to timeout, | ||
8363 | * now set the Flash Cycle Done. */ | ||
8364 | hsfsts.hsf_status.flcdone = 1; | ||
8365 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); | ||
8366 | } else { | ||
8367 | DEBUGOUT("Flash controller busy, cannot get access"); | ||
8368 | } | ||
8369 | } | ||
8370 | return error; | ||
8371 | } | ||
8372 | |||
8373 | /****************************************************************************** | ||
8374 | * This function starts a flash cycle and waits for its completion | ||
8375 | * | ||
8376 | * hw - The pointer to the hw structure | ||
8377 | ****************************************************************************/ | ||
8378 | static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout) | ||
8379 | { | ||
8380 | union ich8_hws_flash_ctrl hsflctl; | ||
8381 | union ich8_hws_flash_status hsfsts; | ||
8382 | s32 error = E1000_ERR_EEPROM; | ||
8383 | u32 i = 0; | ||
8384 | |||
8385 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | ||
8386 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | ||
8387 | hsflctl.hsf_ctrl.flcgo = 1; | ||
8388 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | ||
8389 | |||
8390 | /* wait till FDONE bit is set to 1 */ | ||
8391 | do { | ||
8392 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8393 | if (hsfsts.hsf_status.flcdone == 1) | ||
8394 | break; | ||
8395 | udelay(1); | ||
8396 | i++; | ||
8397 | } while (i < timeout); | ||
8398 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { | ||
8399 | error = E1000_SUCCESS; | ||
8400 | } | ||
8401 | return error; | ||
8402 | } | ||
8403 | |||
8404 | /****************************************************************************** | ||
8405 | * Reads a byte or word from the NVM using the ICH8 flash access registers. | ||
8406 | * | ||
8407 | * hw - The pointer to the hw structure | ||
8408 | * index - The index of the byte or word to read. | ||
8409 | * size - Size of data to read, 1=byte 2=word | ||
8410 | * data - Pointer to the word to store the value read. | ||
8411 | *****************************************************************************/ | ||
8412 | static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | ||
8413 | u16 *data) | ||
8414 | { | ||
8415 | union ich8_hws_flash_status hsfsts; | ||
8416 | union ich8_hws_flash_ctrl hsflctl; | ||
8417 | u32 flash_linear_address; | ||
8418 | u32 flash_data = 0; | ||
8419 | s32 error = -E1000_ERR_EEPROM; | ||
8420 | s32 count = 0; | ||
8421 | |||
8422 | DEBUGFUNC("e1000_read_ich8_data"); | ||
8423 | |||
8424 | if (size < 1 || size > 2 || data == NULL || | ||
8425 | index > ICH_FLASH_LINEAR_ADDR_MASK) | ||
8426 | return error; | ||
8427 | |||
8428 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + | ||
8429 | hw->flash_base_addr; | ||
8430 | |||
8431 | do { | ||
8432 | udelay(1); | ||
8433 | /* Steps */ | ||
8434 | error = e1000_ich8_cycle_init(hw); | ||
8435 | if (error != E1000_SUCCESS) | ||
8436 | break; | ||
8437 | |||
8438 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | ||
8439 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
8440 | hsflctl.hsf_ctrl.fldbcount = size - 1; | ||
8441 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; | ||
8442 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | ||
8443 | |||
8444 | /* Write the last 24 bits of index into Flash Linear address field in | ||
8445 | * Flash Address */ | ||
8446 | /* TODO: TBD maybe check the index against the size of flash */ | ||
8447 | |||
8448 | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); | ||
8449 | |||
8450 | error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); | ||
8451 | |||
8452 | /* Check if FCERR is set to 1, if set to 1, clear it and try the whole | ||
8453 | * sequence a few more times, else read in (shift in) the Flash Data0, | ||
8454 | * the order is least significant byte first msb to lsb */ | ||
8455 | if (error == E1000_SUCCESS) { | ||
8456 | flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0); | ||
8457 | if (size == 1) { | ||
8458 | *data = (u8)(flash_data & 0x000000FF); | ||
8459 | } else if (size == 2) { | ||
8460 | *data = (u16)(flash_data & 0x0000FFFF); | ||
8461 | } | ||
8462 | break; | ||
8463 | } else { | ||
8464 | /* If we've gotten here, then things are probably completely hosed, | ||
8465 | * but if the error condition is detected, it won't hurt to give | ||
8466 | * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||
8467 | */ | ||
8468 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8469 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8470 | /* Repeat for some time before giving up. */ | ||
8471 | continue; | ||
8472 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8473 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
8474 | break; | ||
8475 | } | ||
8476 | } | ||
8477 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
8478 | |||
8479 | return error; | ||
8480 | } | ||
8481 | |||
8482 | /****************************************************************************** | ||
8483 | * Writes One /two bytes to the NVM using the ICH8 flash access registers. | ||
8484 | * | ||
8485 | * hw - The pointer to the hw structure | ||
8486 | * index - The index of the byte/word to read. | ||
8487 | * size - Size of data to read, 1=byte 2=word | ||
8488 | * data - The byte(s) to write to the NVM. | ||
8489 | *****************************************************************************/ | ||
8490 | static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | ||
8491 | u16 data) | ||
8492 | { | ||
8493 | union ich8_hws_flash_status hsfsts; | ||
8494 | union ich8_hws_flash_ctrl hsflctl; | ||
8495 | u32 flash_linear_address; | ||
8496 | u32 flash_data = 0; | ||
8497 | s32 error = -E1000_ERR_EEPROM; | ||
8498 | s32 count = 0; | ||
8499 | |||
8500 | DEBUGFUNC("e1000_write_ich8_data"); | ||
8501 | |||
8502 | if (size < 1 || size > 2 || data > size * 0xff || | ||
8503 | index > ICH_FLASH_LINEAR_ADDR_MASK) | ||
8504 | return error; | ||
8505 | |||
8506 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + | ||
8507 | hw->flash_base_addr; | ||
8508 | |||
8509 | do { | ||
8510 | udelay(1); | ||
8511 | /* Steps */ | ||
8512 | error = e1000_ich8_cycle_init(hw); | ||
8513 | if (error != E1000_SUCCESS) | ||
8514 | break; | ||
8515 | |||
8516 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | ||
8517 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
8518 | hsflctl.hsf_ctrl.fldbcount = size -1; | ||
8519 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; | ||
8520 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | ||
8521 | |||
8522 | /* Write the last 24 bits of index into Flash Linear address field in | ||
8523 | * Flash Address */ | ||
8524 | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); | ||
8525 | |||
8526 | if (size == 1) | ||
8527 | flash_data = (u32)data & 0x00FF; | ||
8528 | else | ||
8529 | flash_data = (u32)data; | ||
8530 | |||
8531 | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); | ||
8532 | |||
8533 | /* check if FCERR is set to 1 , if set to 1, clear it and try the whole | ||
8534 | * sequence a few more times else done */ | ||
8535 | error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); | ||
8536 | if (error == E1000_SUCCESS) { | ||
8537 | break; | ||
8538 | } else { | ||
8539 | /* If we're here, then things are most likely completely hosed, | ||
8540 | * but if the error condition is detected, it won't hurt to give | ||
8541 | * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||
8542 | */ | ||
8543 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8544 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8545 | /* Repeat for some time before giving up. */ | ||
8546 | continue; | ||
8547 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8548 | DEBUGOUT("Timeout error - flash cycle did not complete."); | ||
8549 | break; | ||
8550 | } | ||
8551 | } | ||
8552 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
8553 | |||
8554 | return error; | ||
8555 | } | ||
8556 | |||
8557 | /****************************************************************************** | ||
8558 | * Reads a single byte from the NVM using the ICH8 flash access registers. | ||
8559 | * | ||
8560 | * hw - pointer to e1000_hw structure | ||
8561 | * index - The index of the byte to read. | ||
8562 | * data - Pointer to a byte to store the value read. | ||
8563 | *****************************************************************************/ | ||
8564 | static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data) | ||
8565 | { | ||
8566 | s32 status = E1000_SUCCESS; | ||
8567 | u16 word = 0; | ||
8568 | |||
8569 | status = e1000_read_ich8_data(hw, index, 1, &word); | ||
8570 | if (status == E1000_SUCCESS) { | ||
8571 | *data = (u8)word; | ||
8572 | } | ||
8573 | |||
8574 | return status; | ||
8575 | } | ||
8576 | |||
8577 | /****************************************************************************** | ||
8578 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
8579 | * Performs verification by reading back the value and then going through | ||
8580 | * a retry algorithm before giving up. | ||
8581 | * | ||
8582 | * hw - pointer to e1000_hw structure | ||
8583 | * index - The index of the byte to write. | ||
8584 | * byte - The byte to write to the NVM. | ||
8585 | *****************************************************************************/ | ||
8586 | static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte) | ||
8587 | { | ||
8588 | s32 error = E1000_SUCCESS; | ||
8589 | s32 program_retries = 0; | ||
8590 | |||
8591 | DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); | ||
8592 | |||
8593 | error = e1000_write_ich8_byte(hw, index, byte); | ||
8594 | |||
8595 | if (error != E1000_SUCCESS) { | ||
8596 | for (program_retries = 0; program_retries < 100; program_retries++) { | ||
8597 | DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index); | ||
8598 | error = e1000_write_ich8_byte(hw, index, byte); | ||
8599 | udelay(100); | ||
8600 | if (error == E1000_SUCCESS) | ||
8601 | break; | ||
8602 | } | ||
8603 | } | ||
8604 | |||
8605 | if (program_retries == 100) | ||
8606 | error = E1000_ERR_EEPROM; | ||
8607 | |||
8608 | return error; | ||
8609 | } | ||
8610 | |||
8611 | /****************************************************************************** | ||
8612 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||
8613 | * | ||
8614 | * hw - pointer to e1000_hw structure | ||
8615 | * index - The index of the byte to read. | ||
8616 | * data - The byte to write to the NVM. | ||
8617 | *****************************************************************************/ | ||
8618 | static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data) | ||
8619 | { | ||
8620 | s32 status = E1000_SUCCESS; | ||
8621 | u16 word = (u16)data; | ||
8622 | |||
8623 | status = e1000_write_ich8_data(hw, index, 1, word); | ||
8624 | |||
8625 | return status; | ||
8626 | } | ||
8627 | |||
8628 | /****************************************************************************** | ||
8629 | * Reads a word from the NVM using the ICH8 flash access registers. | ||
8630 | * | ||
8631 | * hw - pointer to e1000_hw structure | ||
8632 | * index - The starting byte index of the word to read. | ||
8633 | * data - Pointer to a word to store the value read. | ||
8634 | *****************************************************************************/ | ||
8635 | static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data) | ||
8636 | { | ||
8637 | s32 status = E1000_SUCCESS; | ||
8638 | status = e1000_read_ich8_data(hw, index, 2, data); | ||
8639 | return status; | ||
8640 | } | ||
8641 | |||
8642 | /****************************************************************************** | ||
8643 | * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 | ||
8644 | * based. | ||
8645 | * | ||
8646 | * hw - pointer to e1000_hw structure | ||
8647 | * bank - 0 for first bank, 1 for second bank | ||
8648 | * | ||
8649 | * Note that this function may actually erase as much as 8 or 64 KBytes. The | ||
8650 | * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the | ||
8651 | * bank size may be 4, 8 or 64 KBytes | ||
8652 | *****************************************************************************/ | ||
8653 | static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank) | ||
8654 | { | ||
8655 | union ich8_hws_flash_status hsfsts; | ||
8656 | union ich8_hws_flash_ctrl hsflctl; | ||
8657 | u32 flash_linear_address; | ||
8658 | s32 count = 0; | ||
8659 | s32 error = E1000_ERR_EEPROM; | ||
8660 | s32 iteration; | ||
8661 | s32 sub_sector_size = 0; | ||
8662 | s32 bank_size; | ||
8663 | s32 j = 0; | ||
8664 | s32 error_flag = 0; | ||
8665 | |||
8666 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8667 | |||
8668 | /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ | ||
8669 | /* 00: The Hw sector is 256 bytes, hence we need to erase 16 | ||
8670 | * consecutive sectors. The start index for the nth Hw sector can be | ||
8671 | * calculated as bank * 4096 + n * 256 | ||
8672 | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | ||
8673 | * The start index for the nth Hw sector can be calculated | ||
8674 | * as bank * 4096 | ||
8675 | * 10: The HW sector is 8K bytes | ||
8676 | * 11: The Hw sector size is 64K bytes */ | ||
8677 | if (hsfsts.hsf_status.berasesz == 0x0) { | ||
8678 | /* Hw sector size 256 */ | ||
8679 | sub_sector_size = ICH_FLASH_SEG_SIZE_256; | ||
8680 | bank_size = ICH_FLASH_SECTOR_SIZE; | ||
8681 | iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256; | ||
8682 | } else if (hsfsts.hsf_status.berasesz == 0x1) { | ||
8683 | bank_size = ICH_FLASH_SEG_SIZE_4K; | ||
8684 | iteration = 1; | ||
8685 | } else if (hsfsts.hsf_status.berasesz == 0x3) { | ||
8686 | bank_size = ICH_FLASH_SEG_SIZE_64K; | ||
8687 | iteration = 1; | ||
8688 | } else { | ||
8689 | return error; | ||
8690 | } | ||
8691 | |||
8692 | for (j = 0; j < iteration ; j++) { | ||
8693 | do { | ||
8694 | count++; | ||
8695 | /* Steps */ | ||
8696 | error = e1000_ich8_cycle_init(hw); | ||
8697 | if (error != E1000_SUCCESS) { | ||
8698 | error_flag = 1; | ||
8699 | break; | ||
8700 | } | ||
8701 | |||
8702 | /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash | ||
8703 | * Control */ | ||
8704 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | ||
8705 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; | ||
8706 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | ||
8707 | |||
8708 | /* Write the last 24 bits of an index within the block into Flash | ||
8709 | * Linear address field in Flash Address. This probably needs to | ||
8710 | * be calculated here based off the on-chip erase sector size and | ||
8711 | * the software bank size (4, 8 or 64 KBytes) */ | ||
8712 | flash_linear_address = bank * bank_size + j * sub_sector_size; | ||
8713 | flash_linear_address += hw->flash_base_addr; | ||
8714 | flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK; | ||
8715 | |||
8716 | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); | ||
8717 | |||
8718 | error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT); | ||
8719 | /* Check if FCERR is set to 1. If 1, clear it and try the whole | ||
8720 | * sequence a few more times else Done */ | ||
8721 | if (error == E1000_SUCCESS) { | ||
8722 | break; | ||
8723 | } else { | ||
8724 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | ||
8725 | if (hsfsts.hsf_status.flcerr == 1) { | ||
8726 | /* repeat for some time before giving up */ | ||
8727 | continue; | ||
8728 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
8729 | error_flag = 1; | ||
8730 | break; | ||
8731 | } | ||
8732 | } | ||
8733 | } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); | ||
8734 | if (error_flag == 1) | ||
8735 | break; | ||
8736 | } | ||
8737 | if (error_flag != 1) | ||
8738 | error = E1000_SUCCESS; | ||
8739 | return error; | ||
8740 | } | ||
8741 | |||
8742 | static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, | ||
8743 | u32 cnf_base_addr, | ||
8744 | u32 cnf_size) | ||
8745 | { | ||
8746 | u32 ret_val = E1000_SUCCESS; | ||
8747 | u16 word_addr, reg_data, reg_addr; | ||
8748 | u16 i; | ||
8749 | |||
8750 | /* cnf_base_addr is in DWORD */ | ||
8751 | word_addr = (u16)(cnf_base_addr << 1); | ||
8752 | |||
8753 | /* cnf_size is returned in size of dwords */ | ||
8754 | for (i = 0; i < cnf_size; i++) { | ||
8755 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); | ||
8756 | if (ret_val) | ||
8757 | return ret_val; | ||
8758 | |||
8759 | ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); | ||
8760 | if (ret_val) | ||
8761 | return ret_val; | ||
8762 | |||
8763 | ret_val = e1000_get_software_flag(hw); | ||
8764 | if (ret_val != E1000_SUCCESS) | ||
8765 | return ret_val; | ||
8766 | |||
8767 | ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data); | ||
8768 | |||
8769 | e1000_release_software_flag(hw); | ||
8770 | } | ||
8771 | |||
8772 | return ret_val; | ||
8773 | } | ||
8774 | |||
8775 | |||
8776 | /****************************************************************************** | ||
8777 | * This function initializes the PHY from the NVM on ICH8 platforms. This | ||
8778 | * is needed due to an issue where the NVM configuration is not properly | ||
8779 | * autoloaded after power transitions. Therefore, after each PHY reset, we | ||
8780 | * will load the configuration data out of the NVM manually. | ||
8781 | * | ||
8782 | * hw: Struct containing variables accessed by shared code | ||
8783 | *****************************************************************************/ | ||
8784 | static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw) | ||
8785 | { | ||
8786 | u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop; | ||
8787 | |||
8788 | if (hw->phy_type != e1000_phy_igp_3) | ||
8789 | return E1000_SUCCESS; | ||
8790 | |||
8791 | /* Check if SW needs configure the PHY */ | ||
8792 | reg_data = er32(FEXTNVM); | ||
8793 | if (!(reg_data & FEXTNVM_SW_CONFIG)) | ||
8794 | return E1000_SUCCESS; | ||
8795 | |||
8796 | /* Wait for basic configuration completes before proceeding*/ | ||
8797 | loop = 0; | ||
8798 | do { | ||
8799 | reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE; | ||
8800 | udelay(100); | ||
8801 | loop++; | ||
8802 | } while ((!reg_data) && (loop < 50)); | ||
8803 | |||
8804 | /* Clear the Init Done bit for the next init event */ | ||
8805 | reg_data = er32(STATUS); | ||
8806 | reg_data &= ~E1000_STATUS_LAN_INIT_DONE; | ||
8807 | ew32(STATUS, reg_data); | ||
8808 | |||
8809 | /* Make sure HW does not configure LCD from PHY extended configuration | ||
8810 | before SW configuration */ | ||
8811 | reg_data = er32(EXTCNF_CTRL); | ||
8812 | if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { | ||
8813 | reg_data = er32(EXTCNF_SIZE); | ||
8814 | cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; | ||
8815 | cnf_size >>= 16; | ||
8816 | if (cnf_size) { | ||
8817 | reg_data = er32(EXTCNF_CTRL); | ||
8818 | cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; | ||
8819 | /* cnf_base_addr is in DWORD */ | ||
8820 | cnf_base_addr >>= 16; | ||
8821 | |||
8822 | /* Configure LCD from extended configuration region. */ | ||
8823 | ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, | ||
8824 | cnf_size); | ||
8825 | if (ret_val) | ||
8826 | return ret_val; | ||
8827 | } | ||
8828 | } | ||
8829 | |||
8830 | return E1000_SUCCESS; | ||
8831 | } | ||
8832 | |||