diff options
Diffstat (limited to 'drivers/net/e1000/e1000_ethtool.c')
-rw-r--r-- | drivers/net/e1000/e1000_ethtool.c | 1673 |
1 files changed, 1673 insertions, 0 deletions
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c new file mode 100644 index 000000000000..0a2ca7c73a41 --- /dev/null +++ b/drivers/net/e1000/e1000_ethtool.c | |||
@@ -0,0 +1,1673 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | |||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the Free | ||
8 | Software Foundation; either version 2 of the License, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along with | ||
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | |||
20 | The full GNU General Public License is included in this distribution in the | ||
21 | file called LICENSE. | ||
22 | |||
23 | Contact Information: | ||
24 | Linux NICS <linux.nics@intel.com> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* ethtool support for e1000 */ | ||
30 | |||
31 | #include "e1000.h" | ||
32 | |||
33 | #include <asm/uaccess.h> | ||
34 | |||
35 | extern char e1000_driver_name[]; | ||
36 | extern char e1000_driver_version[]; | ||
37 | |||
38 | extern int e1000_up(struct e1000_adapter *adapter); | ||
39 | extern void e1000_down(struct e1000_adapter *adapter); | ||
40 | extern void e1000_reset(struct e1000_adapter *adapter); | ||
41 | extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); | ||
42 | extern int e1000_setup_rx_resources(struct e1000_adapter *adapter); | ||
43 | extern int e1000_setup_tx_resources(struct e1000_adapter *adapter); | ||
44 | extern void e1000_free_rx_resources(struct e1000_adapter *adapter); | ||
45 | extern void e1000_free_tx_resources(struct e1000_adapter *adapter); | ||
46 | extern void e1000_update_stats(struct e1000_adapter *adapter); | ||
47 | |||
48 | struct e1000_stats { | ||
49 | char stat_string[ETH_GSTRING_LEN]; | ||
50 | int sizeof_stat; | ||
51 | int stat_offset; | ||
52 | }; | ||
53 | |||
54 | #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ | ||
55 | offsetof(struct e1000_adapter, m) | ||
56 | static const struct e1000_stats e1000_gstrings_stats[] = { | ||
57 | { "rx_packets", E1000_STAT(net_stats.rx_packets) }, | ||
58 | { "tx_packets", E1000_STAT(net_stats.tx_packets) }, | ||
59 | { "rx_bytes", E1000_STAT(net_stats.rx_bytes) }, | ||
60 | { "tx_bytes", E1000_STAT(net_stats.tx_bytes) }, | ||
61 | { "rx_errors", E1000_STAT(net_stats.rx_errors) }, | ||
62 | { "tx_errors", E1000_STAT(net_stats.tx_errors) }, | ||
63 | { "rx_dropped", E1000_STAT(net_stats.rx_dropped) }, | ||
64 | { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, | ||
65 | { "multicast", E1000_STAT(net_stats.multicast) }, | ||
66 | { "collisions", E1000_STAT(net_stats.collisions) }, | ||
67 | { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, | ||
68 | { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, | ||
69 | { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, | ||
70 | { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, | ||
71 | { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, | ||
72 | { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, | ||
73 | { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, | ||
74 | { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, | ||
75 | { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, | ||
76 | { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, | ||
77 | { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) }, | ||
78 | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, | ||
79 | { "tx_deferred_ok", E1000_STAT(stats.dc) }, | ||
80 | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, | ||
81 | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, | ||
82 | { "rx_long_length_errors", E1000_STAT(stats.roc) }, | ||
83 | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, | ||
84 | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, | ||
85 | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, | ||
86 | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, | ||
87 | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, | ||
88 | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, | ||
89 | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, | ||
90 | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, | ||
91 | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, | ||
92 | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, | ||
93 | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) } | ||
94 | }; | ||
95 | #define E1000_STATS_LEN \ | ||
96 | sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) | ||
97 | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { | ||
98 | "Register test (offline)", "Eeprom test (offline)", | ||
99 | "Interrupt test (offline)", "Loopback test (offline)", | ||
100 | "Link test (on/offline)" | ||
101 | }; | ||
102 | #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN | ||
103 | |||
104 | static int | ||
105 | e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | ||
106 | { | ||
107 | struct e1000_adapter *adapter = netdev->priv; | ||
108 | struct e1000_hw *hw = &adapter->hw; | ||
109 | |||
110 | if(hw->media_type == e1000_media_type_copper) { | ||
111 | |||
112 | ecmd->supported = (SUPPORTED_10baseT_Half | | ||
113 | SUPPORTED_10baseT_Full | | ||
114 | SUPPORTED_100baseT_Half | | ||
115 | SUPPORTED_100baseT_Full | | ||
116 | SUPPORTED_1000baseT_Full| | ||
117 | SUPPORTED_Autoneg | | ||
118 | SUPPORTED_TP); | ||
119 | |||
120 | ecmd->advertising = ADVERTISED_TP; | ||
121 | |||
122 | if(hw->autoneg == 1) { | ||
123 | ecmd->advertising |= ADVERTISED_Autoneg; | ||
124 | |||
125 | /* the e1000 autoneg seems to match ethtool nicely */ | ||
126 | |||
127 | ecmd->advertising |= hw->autoneg_advertised; | ||
128 | } | ||
129 | |||
130 | ecmd->port = PORT_TP; | ||
131 | ecmd->phy_address = hw->phy_addr; | ||
132 | |||
133 | if(hw->mac_type == e1000_82543) | ||
134 | ecmd->transceiver = XCVR_EXTERNAL; | ||
135 | else | ||
136 | ecmd->transceiver = XCVR_INTERNAL; | ||
137 | |||
138 | } else { | ||
139 | ecmd->supported = (SUPPORTED_1000baseT_Full | | ||
140 | SUPPORTED_FIBRE | | ||
141 | SUPPORTED_Autoneg); | ||
142 | |||
143 | ecmd->advertising = (SUPPORTED_1000baseT_Full | | ||
144 | SUPPORTED_FIBRE | | ||
145 | SUPPORTED_Autoneg); | ||
146 | |||
147 | ecmd->port = PORT_FIBRE; | ||
148 | |||
149 | if(hw->mac_type >= e1000_82545) | ||
150 | ecmd->transceiver = XCVR_INTERNAL; | ||
151 | else | ||
152 | ecmd->transceiver = XCVR_EXTERNAL; | ||
153 | } | ||
154 | |||
155 | if(netif_carrier_ok(adapter->netdev)) { | ||
156 | |||
157 | e1000_get_speed_and_duplex(hw, &adapter->link_speed, | ||
158 | &adapter->link_duplex); | ||
159 | ecmd->speed = adapter->link_speed; | ||
160 | |||
161 | /* unfortunatly FULL_DUPLEX != DUPLEX_FULL | ||
162 | * and HALF_DUPLEX != DUPLEX_HALF */ | ||
163 | |||
164 | if(adapter->link_duplex == FULL_DUPLEX) | ||
165 | ecmd->duplex = DUPLEX_FULL; | ||
166 | else | ||
167 | ecmd->duplex = DUPLEX_HALF; | ||
168 | } else { | ||
169 | ecmd->speed = -1; | ||
170 | ecmd->duplex = -1; | ||
171 | } | ||
172 | |||
173 | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || | ||
174 | hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; | ||
175 | return 0; | ||
176 | } | ||
177 | |||
178 | static int | ||
179 | e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | ||
180 | { | ||
181 | struct e1000_adapter *adapter = netdev->priv; | ||
182 | struct e1000_hw *hw = &adapter->hw; | ||
183 | |||
184 | if(ecmd->autoneg == AUTONEG_ENABLE) { | ||
185 | hw->autoneg = 1; | ||
186 | hw->autoneg_advertised = 0x002F; | ||
187 | ecmd->advertising = 0x002F; | ||
188 | } else | ||
189 | if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) | ||
190 | return -EINVAL; | ||
191 | |||
192 | /* reset the link */ | ||
193 | |||
194 | if(netif_running(adapter->netdev)) { | ||
195 | e1000_down(adapter); | ||
196 | e1000_reset(adapter); | ||
197 | e1000_up(adapter); | ||
198 | } else | ||
199 | e1000_reset(adapter); | ||
200 | |||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | static void | ||
205 | e1000_get_pauseparam(struct net_device *netdev, | ||
206 | struct ethtool_pauseparam *pause) | ||
207 | { | ||
208 | struct e1000_adapter *adapter = netdev->priv; | ||
209 | struct e1000_hw *hw = &adapter->hw; | ||
210 | |||
211 | pause->autoneg = | ||
212 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | ||
213 | |||
214 | if(hw->fc == e1000_fc_rx_pause) | ||
215 | pause->rx_pause = 1; | ||
216 | else if(hw->fc == e1000_fc_tx_pause) | ||
217 | pause->tx_pause = 1; | ||
218 | else if(hw->fc == e1000_fc_full) { | ||
219 | pause->rx_pause = 1; | ||
220 | pause->tx_pause = 1; | ||
221 | } | ||
222 | } | ||
223 | |||
224 | static int | ||
225 | e1000_set_pauseparam(struct net_device *netdev, | ||
226 | struct ethtool_pauseparam *pause) | ||
227 | { | ||
228 | struct e1000_adapter *adapter = netdev->priv; | ||
229 | struct e1000_hw *hw = &adapter->hw; | ||
230 | |||
231 | adapter->fc_autoneg = pause->autoneg; | ||
232 | |||
233 | if(pause->rx_pause && pause->tx_pause) | ||
234 | hw->fc = e1000_fc_full; | ||
235 | else if(pause->rx_pause && !pause->tx_pause) | ||
236 | hw->fc = e1000_fc_rx_pause; | ||
237 | else if(!pause->rx_pause && pause->tx_pause) | ||
238 | hw->fc = e1000_fc_tx_pause; | ||
239 | else if(!pause->rx_pause && !pause->tx_pause) | ||
240 | hw->fc = e1000_fc_none; | ||
241 | |||
242 | hw->original_fc = hw->fc; | ||
243 | |||
244 | if(adapter->fc_autoneg == AUTONEG_ENABLE) { | ||
245 | if(netif_running(adapter->netdev)) { | ||
246 | e1000_down(adapter); | ||
247 | e1000_up(adapter); | ||
248 | } else | ||
249 | e1000_reset(adapter); | ||
250 | } | ||
251 | else | ||
252 | return ((hw->media_type == e1000_media_type_fiber) ? | ||
253 | e1000_setup_link(hw) : e1000_force_mac_fc(hw)); | ||
254 | |||
255 | return 0; | ||
256 | } | ||
257 | |||
258 | static uint32_t | ||
259 | e1000_get_rx_csum(struct net_device *netdev) | ||
260 | { | ||
261 | struct e1000_adapter *adapter = netdev->priv; | ||
262 | return adapter->rx_csum; | ||
263 | } | ||
264 | |||
265 | static int | ||
266 | e1000_set_rx_csum(struct net_device *netdev, uint32_t data) | ||
267 | { | ||
268 | struct e1000_adapter *adapter = netdev->priv; | ||
269 | adapter->rx_csum = data; | ||
270 | |||
271 | if(netif_running(netdev)) { | ||
272 | e1000_down(adapter); | ||
273 | e1000_up(adapter); | ||
274 | } else | ||
275 | e1000_reset(adapter); | ||
276 | return 0; | ||
277 | } | ||
278 | |||
279 | static uint32_t | ||
280 | e1000_get_tx_csum(struct net_device *netdev) | ||
281 | { | ||
282 | return (netdev->features & NETIF_F_HW_CSUM) != 0; | ||
283 | } | ||
284 | |||
285 | static int | ||
286 | e1000_set_tx_csum(struct net_device *netdev, uint32_t data) | ||
287 | { | ||
288 | struct e1000_adapter *adapter = netdev->priv; | ||
289 | |||
290 | if(adapter->hw.mac_type < e1000_82543) { | ||
291 | if (!data) | ||
292 | return -EINVAL; | ||
293 | return 0; | ||
294 | } | ||
295 | |||
296 | if (data) | ||
297 | netdev->features |= NETIF_F_HW_CSUM; | ||
298 | else | ||
299 | netdev->features &= ~NETIF_F_HW_CSUM; | ||
300 | |||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | #ifdef NETIF_F_TSO | ||
305 | static int | ||
306 | e1000_set_tso(struct net_device *netdev, uint32_t data) | ||
307 | { | ||
308 | struct e1000_adapter *adapter = netdev->priv; | ||
309 | if ((adapter->hw.mac_type < e1000_82544) || | ||
310 | (adapter->hw.mac_type == e1000_82547)) | ||
311 | return data ? -EINVAL : 0; | ||
312 | |||
313 | if (data) | ||
314 | netdev->features |= NETIF_F_TSO; | ||
315 | else | ||
316 | netdev->features &= ~NETIF_F_TSO; | ||
317 | return 0; | ||
318 | } | ||
319 | #endif /* NETIF_F_TSO */ | ||
320 | |||
321 | static uint32_t | ||
322 | e1000_get_msglevel(struct net_device *netdev) | ||
323 | { | ||
324 | struct e1000_adapter *adapter = netdev->priv; | ||
325 | return adapter->msg_enable; | ||
326 | } | ||
327 | |||
328 | static void | ||
329 | e1000_set_msglevel(struct net_device *netdev, uint32_t data) | ||
330 | { | ||
331 | struct e1000_adapter *adapter = netdev->priv; | ||
332 | adapter->msg_enable = data; | ||
333 | } | ||
334 | |||
335 | static int | ||
336 | e1000_get_regs_len(struct net_device *netdev) | ||
337 | { | ||
338 | #define E1000_REGS_LEN 32 | ||
339 | return E1000_REGS_LEN * sizeof(uint32_t); | ||
340 | } | ||
341 | |||
342 | static void | ||
343 | e1000_get_regs(struct net_device *netdev, | ||
344 | struct ethtool_regs *regs, void *p) | ||
345 | { | ||
346 | struct e1000_adapter *adapter = netdev->priv; | ||
347 | struct e1000_hw *hw = &adapter->hw; | ||
348 | uint32_t *regs_buff = p; | ||
349 | uint16_t phy_data; | ||
350 | |||
351 | memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t)); | ||
352 | |||
353 | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; | ||
354 | |||
355 | regs_buff[0] = E1000_READ_REG(hw, CTRL); | ||
356 | regs_buff[1] = E1000_READ_REG(hw, STATUS); | ||
357 | |||
358 | regs_buff[2] = E1000_READ_REG(hw, RCTL); | ||
359 | regs_buff[3] = E1000_READ_REG(hw, RDLEN); | ||
360 | regs_buff[4] = E1000_READ_REG(hw, RDH); | ||
361 | regs_buff[5] = E1000_READ_REG(hw, RDT); | ||
362 | regs_buff[6] = E1000_READ_REG(hw, RDTR); | ||
363 | |||
364 | regs_buff[7] = E1000_READ_REG(hw, TCTL); | ||
365 | regs_buff[8] = E1000_READ_REG(hw, TDLEN); | ||
366 | regs_buff[9] = E1000_READ_REG(hw, TDH); | ||
367 | regs_buff[10] = E1000_READ_REG(hw, TDT); | ||
368 | regs_buff[11] = E1000_READ_REG(hw, TIDV); | ||
369 | |||
370 | regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ | ||
371 | if(hw->phy_type == e1000_phy_igp) { | ||
372 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
373 | IGP01E1000_PHY_AGC_A); | ||
374 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & | ||
375 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
376 | regs_buff[13] = (uint32_t)phy_data; /* cable length */ | ||
377 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
378 | IGP01E1000_PHY_AGC_B); | ||
379 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & | ||
380 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
381 | regs_buff[14] = (uint32_t)phy_data; /* cable length */ | ||
382 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
383 | IGP01E1000_PHY_AGC_C); | ||
384 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & | ||
385 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
386 | regs_buff[15] = (uint32_t)phy_data; /* cable length */ | ||
387 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
388 | IGP01E1000_PHY_AGC_D); | ||
389 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & | ||
390 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
391 | regs_buff[16] = (uint32_t)phy_data; /* cable length */ | ||
392 | regs_buff[17] = 0; /* extended 10bt distance (not needed) */ | ||
393 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | ||
394 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & | ||
395 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
396 | regs_buff[18] = (uint32_t)phy_data; /* cable polarity */ | ||
397 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
398 | IGP01E1000_PHY_PCS_INIT_REG); | ||
399 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & | ||
400 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | ||
401 | regs_buff[19] = (uint32_t)phy_data; /* cable polarity */ | ||
402 | regs_buff[20] = 0; /* polarity correction enabled (always) */ | ||
403 | regs_buff[22] = 0; /* phy receive errors (unavailable) */ | ||
404 | regs_buff[23] = regs_buff[18]; /* mdix mode */ | ||
405 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | ||
406 | } else { | ||
407 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
408 | regs_buff[13] = (uint32_t)phy_data; /* cable length */ | ||
409 | regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
410 | regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
411 | regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
412 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
413 | regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */ | ||
414 | regs_buff[18] = regs_buff[13]; /* cable polarity */ | ||
415 | regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
416 | regs_buff[20] = regs_buff[17]; /* polarity correction */ | ||
417 | /* phy receive errors */ | ||
418 | regs_buff[22] = adapter->phy_stats.receive_errors; | ||
419 | regs_buff[23] = regs_buff[13]; /* mdix mode */ | ||
420 | } | ||
421 | regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ | ||
422 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
423 | regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */ | ||
424 | regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ | ||
425 | if(hw->mac_type >= e1000_82540 && | ||
426 | hw->media_type == e1000_media_type_copper) { | ||
427 | regs_buff[26] = E1000_READ_REG(hw, MANC); | ||
428 | } | ||
429 | } | ||
430 | |||
431 | static int | ||
432 | e1000_get_eeprom_len(struct net_device *netdev) | ||
433 | { | ||
434 | struct e1000_adapter *adapter = netdev->priv; | ||
435 | return adapter->hw.eeprom.word_size * 2; | ||
436 | } | ||
437 | |||
438 | static int | ||
439 | e1000_get_eeprom(struct net_device *netdev, | ||
440 | struct ethtool_eeprom *eeprom, uint8_t *bytes) | ||
441 | { | ||
442 | struct e1000_adapter *adapter = netdev->priv; | ||
443 | struct e1000_hw *hw = &adapter->hw; | ||
444 | uint16_t *eeprom_buff; | ||
445 | int first_word, last_word; | ||
446 | int ret_val = 0; | ||
447 | uint16_t i; | ||
448 | |||
449 | if(eeprom->len == 0) | ||
450 | return -EINVAL; | ||
451 | |||
452 | eeprom->magic = hw->vendor_id | (hw->device_id << 16); | ||
453 | |||
454 | first_word = eeprom->offset >> 1; | ||
455 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
456 | |||
457 | eeprom_buff = kmalloc(sizeof(uint16_t) * | ||
458 | (last_word - first_word + 1), GFP_KERNEL); | ||
459 | if(!eeprom_buff) | ||
460 | return -ENOMEM; | ||
461 | |||
462 | if(hw->eeprom.type == e1000_eeprom_spi) | ||
463 | ret_val = e1000_read_eeprom(hw, first_word, | ||
464 | last_word - first_word + 1, | ||
465 | eeprom_buff); | ||
466 | else { | ||
467 | for (i = 0; i < last_word - first_word + 1; i++) | ||
468 | if((ret_val = e1000_read_eeprom(hw, first_word + i, 1, | ||
469 | &eeprom_buff[i]))) | ||
470 | break; | ||
471 | } | ||
472 | |||
473 | /* Device's eeprom is always little-endian, word addressable */ | ||
474 | for (i = 0; i < last_word - first_word + 1; i++) | ||
475 | le16_to_cpus(&eeprom_buff[i]); | ||
476 | |||
477 | memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1), | ||
478 | eeprom->len); | ||
479 | kfree(eeprom_buff); | ||
480 | |||
481 | return ret_val; | ||
482 | } | ||
483 | |||
484 | static int | ||
485 | e1000_set_eeprom(struct net_device *netdev, | ||
486 | struct ethtool_eeprom *eeprom, uint8_t *bytes) | ||
487 | { | ||
488 | struct e1000_adapter *adapter = netdev->priv; | ||
489 | struct e1000_hw *hw = &adapter->hw; | ||
490 | uint16_t *eeprom_buff; | ||
491 | void *ptr; | ||
492 | int max_len, first_word, last_word, ret_val = 0; | ||
493 | uint16_t i; | ||
494 | |||
495 | if(eeprom->len == 0) | ||
496 | return -EOPNOTSUPP; | ||
497 | |||
498 | if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) | ||
499 | return -EFAULT; | ||
500 | |||
501 | max_len = hw->eeprom.word_size * 2; | ||
502 | |||
503 | first_word = eeprom->offset >> 1; | ||
504 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
505 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | ||
506 | if(!eeprom_buff) | ||
507 | return -ENOMEM; | ||
508 | |||
509 | ptr = (void *)eeprom_buff; | ||
510 | |||
511 | if(eeprom->offset & 1) { | ||
512 | /* need read/modify/write of first changed EEPROM word */ | ||
513 | /* only the second byte of the word is being modified */ | ||
514 | ret_val = e1000_read_eeprom(hw, first_word, 1, | ||
515 | &eeprom_buff[0]); | ||
516 | ptr++; | ||
517 | } | ||
518 | if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { | ||
519 | /* need read/modify/write of last changed EEPROM word */ | ||
520 | /* only the first byte of the word is being modified */ | ||
521 | ret_val = e1000_read_eeprom(hw, last_word, 1, | ||
522 | &eeprom_buff[last_word - first_word]); | ||
523 | } | ||
524 | |||
525 | /* Device's eeprom is always little-endian, word addressable */ | ||
526 | for (i = 0; i < last_word - first_word + 1; i++) | ||
527 | le16_to_cpus(&eeprom_buff[i]); | ||
528 | |||
529 | memcpy(ptr, bytes, eeprom->len); | ||
530 | |||
531 | for (i = 0; i < last_word - first_word + 1; i++) | ||
532 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | ||
533 | |||
534 | ret_val = e1000_write_eeprom(hw, first_word, | ||
535 | last_word - first_word + 1, eeprom_buff); | ||
536 | |||
537 | /* Update the checksum over the first part of the EEPROM if needed */ | ||
538 | if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG) | ||
539 | e1000_update_eeprom_checksum(hw); | ||
540 | |||
541 | kfree(eeprom_buff); | ||
542 | return ret_val; | ||
543 | } | ||
544 | |||
545 | static void | ||
546 | e1000_get_drvinfo(struct net_device *netdev, | ||
547 | struct ethtool_drvinfo *drvinfo) | ||
548 | { | ||
549 | struct e1000_adapter *adapter = netdev->priv; | ||
550 | |||
551 | strncpy(drvinfo->driver, e1000_driver_name, 32); | ||
552 | strncpy(drvinfo->version, e1000_driver_version, 32); | ||
553 | strncpy(drvinfo->fw_version, "N/A", 32); | ||
554 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); | ||
555 | drvinfo->n_stats = E1000_STATS_LEN; | ||
556 | drvinfo->testinfo_len = E1000_TEST_LEN; | ||
557 | drvinfo->regdump_len = e1000_get_regs_len(netdev); | ||
558 | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); | ||
559 | } | ||
560 | |||
561 | static void | ||
562 | e1000_get_ringparam(struct net_device *netdev, | ||
563 | struct ethtool_ringparam *ring) | ||
564 | { | ||
565 | struct e1000_adapter *adapter = netdev->priv; | ||
566 | e1000_mac_type mac_type = adapter->hw.mac_type; | ||
567 | struct e1000_desc_ring *txdr = &adapter->tx_ring; | ||
568 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; | ||
569 | |||
570 | ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : | ||
571 | E1000_MAX_82544_RXD; | ||
572 | ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : | ||
573 | E1000_MAX_82544_TXD; | ||
574 | ring->rx_mini_max_pending = 0; | ||
575 | ring->rx_jumbo_max_pending = 0; | ||
576 | ring->rx_pending = rxdr->count; | ||
577 | ring->tx_pending = txdr->count; | ||
578 | ring->rx_mini_pending = 0; | ||
579 | ring->rx_jumbo_pending = 0; | ||
580 | } | ||
581 | |||
582 | static int | ||
583 | e1000_set_ringparam(struct net_device *netdev, | ||
584 | struct ethtool_ringparam *ring) | ||
585 | { | ||
586 | struct e1000_adapter *adapter = netdev->priv; | ||
587 | e1000_mac_type mac_type = adapter->hw.mac_type; | ||
588 | struct e1000_desc_ring *txdr = &adapter->tx_ring; | ||
589 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; | ||
590 | struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new; | ||
591 | int err; | ||
592 | |||
593 | tx_old = adapter->tx_ring; | ||
594 | rx_old = adapter->rx_ring; | ||
595 | |||
596 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | ||
597 | return -EINVAL; | ||
598 | |||
599 | if(netif_running(adapter->netdev)) | ||
600 | e1000_down(adapter); | ||
601 | |||
602 | rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); | ||
603 | rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? | ||
604 | E1000_MAX_RXD : E1000_MAX_82544_RXD)); | ||
605 | E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); | ||
606 | |||
607 | txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); | ||
608 | txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? | ||
609 | E1000_MAX_TXD : E1000_MAX_82544_TXD)); | ||
610 | E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); | ||
611 | |||
612 | if(netif_running(adapter->netdev)) { | ||
613 | /* Try to get new resources before deleting old */ | ||
614 | if((err = e1000_setup_rx_resources(adapter))) | ||
615 | goto err_setup_rx; | ||
616 | if((err = e1000_setup_tx_resources(adapter))) | ||
617 | goto err_setup_tx; | ||
618 | |||
619 | /* save the new, restore the old in order to free it, | ||
620 | * then restore the new back again */ | ||
621 | |||
622 | rx_new = adapter->rx_ring; | ||
623 | tx_new = adapter->tx_ring; | ||
624 | adapter->rx_ring = rx_old; | ||
625 | adapter->tx_ring = tx_old; | ||
626 | e1000_free_rx_resources(adapter); | ||
627 | e1000_free_tx_resources(adapter); | ||
628 | adapter->rx_ring = rx_new; | ||
629 | adapter->tx_ring = tx_new; | ||
630 | if((err = e1000_up(adapter))) | ||
631 | return err; | ||
632 | } | ||
633 | |||
634 | return 0; | ||
635 | err_setup_tx: | ||
636 | e1000_free_rx_resources(adapter); | ||
637 | err_setup_rx: | ||
638 | adapter->rx_ring = rx_old; | ||
639 | adapter->tx_ring = tx_old; | ||
640 | e1000_up(adapter); | ||
641 | return err; | ||
642 | } | ||
643 | |||
644 | #define REG_PATTERN_TEST(R, M, W) \ | ||
645 | { \ | ||
646 | uint32_t pat, value; \ | ||
647 | uint32_t test[] = \ | ||
648 | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ | ||
649 | for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \ | ||
650 | E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \ | ||
651 | value = E1000_READ_REG(&adapter->hw, R); \ | ||
652 | if(value != (test[pat] & W & M)) { \ | ||
653 | *data = (adapter->hw.mac_type < e1000_82543) ? \ | ||
654 | E1000_82542_##R : E1000_##R; \ | ||
655 | return 1; \ | ||
656 | } \ | ||
657 | } \ | ||
658 | } | ||
659 | |||
660 | #define REG_SET_AND_CHECK(R, M, W) \ | ||
661 | { \ | ||
662 | uint32_t value; \ | ||
663 | E1000_WRITE_REG(&adapter->hw, R, W & M); \ | ||
664 | value = E1000_READ_REG(&adapter->hw, R); \ | ||
665 | if ((W & M) != (value & M)) { \ | ||
666 | *data = (adapter->hw.mac_type < e1000_82543) ? \ | ||
667 | E1000_82542_##R : E1000_##R; \ | ||
668 | return 1; \ | ||
669 | } \ | ||
670 | } | ||
671 | |||
672 | static int | ||
673 | e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | ||
674 | { | ||
675 | uint32_t value; | ||
676 | uint32_t i; | ||
677 | |||
678 | /* The status register is Read Only, so a write should fail. | ||
679 | * Some bits that get toggled are ignored. | ||
680 | */ | ||
681 | value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833)); | ||
682 | E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF)); | ||
683 | if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) { | ||
684 | *data = 1; | ||
685 | return 1; | ||
686 | } | ||
687 | |||
688 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | ||
689 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); | ||
690 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); | ||
691 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); | ||
692 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); | ||
693 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
694 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); | ||
695 | REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); | ||
696 | REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); | ||
697 | REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); | ||
698 | REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); | ||
699 | REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); | ||
700 | REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
701 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); | ||
702 | |||
703 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); | ||
704 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); | ||
705 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); | ||
706 | |||
707 | if(adapter->hw.mac_type >= e1000_82543) { | ||
708 | |||
709 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); | ||
710 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | ||
711 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | ||
712 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | ||
713 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); | ||
714 | |||
715 | for(i = 0; i < E1000_RAR_ENTRIES; i++) { | ||
716 | REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, | ||
717 | 0xFFFFFFFF); | ||
718 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, | ||
719 | 0xFFFFFFFF); | ||
720 | } | ||
721 | |||
722 | } else { | ||
723 | |||
724 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); | ||
725 | REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
726 | REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); | ||
727 | REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
728 | |||
729 | } | ||
730 | |||
731 | for(i = 0; i < E1000_MC_TBL_SIZE; i++) | ||
732 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); | ||
733 | |||
734 | *data = 0; | ||
735 | return 0; | ||
736 | } | ||
737 | |||
738 | static int | ||
739 | e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data) | ||
740 | { | ||
741 | uint16_t temp; | ||
742 | uint16_t checksum = 0; | ||
743 | uint16_t i; | ||
744 | |||
745 | *data = 0; | ||
746 | /* Read and add up the contents of the EEPROM */ | ||
747 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
748 | if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { | ||
749 | *data = 1; | ||
750 | break; | ||
751 | } | ||
752 | checksum += temp; | ||
753 | } | ||
754 | |||
755 | /* If Checksum is not Correct return error else test passed */ | ||
756 | if((checksum != (uint16_t) EEPROM_SUM) && !(*data)) | ||
757 | *data = 2; | ||
758 | |||
759 | return *data; | ||
760 | } | ||
761 | |||
762 | static irqreturn_t | ||
763 | e1000_test_intr(int irq, | ||
764 | void *data, | ||
765 | struct pt_regs *regs) | ||
766 | { | ||
767 | struct net_device *netdev = (struct net_device *) data; | ||
768 | struct e1000_adapter *adapter = netdev->priv; | ||
769 | |||
770 | adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); | ||
771 | |||
772 | return IRQ_HANDLED; | ||
773 | } | ||
774 | |||
775 | static int | ||
776 | e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) | ||
777 | { | ||
778 | struct net_device *netdev = adapter->netdev; | ||
779 | uint32_t mask, i=0, shared_int = TRUE; | ||
780 | uint32_t irq = adapter->pdev->irq; | ||
781 | |||
782 | *data = 0; | ||
783 | |||
784 | /* Hook up test interrupt handler just for this test */ | ||
785 | if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { | ||
786 | shared_int = FALSE; | ||
787 | } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, | ||
788 | netdev->name, netdev)){ | ||
789 | *data = 1; | ||
790 | return -1; | ||
791 | } | ||
792 | |||
793 | /* Disable all the interrupts */ | ||
794 | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); | ||
795 | msec_delay(10); | ||
796 | |||
797 | /* Test each interrupt */ | ||
798 | for(; i < 10; i++) { | ||
799 | |||
800 | /* Interrupt to test */ | ||
801 | mask = 1 << i; | ||
802 | |||
803 | if(!shared_int) { | ||
804 | /* Disable the interrupt to be reported in | ||
805 | * the cause register and then force the same | ||
806 | * interrupt and see if one gets posted. If | ||
807 | * an interrupt was posted to the bus, the | ||
808 | * test failed. | ||
809 | */ | ||
810 | adapter->test_icr = 0; | ||
811 | E1000_WRITE_REG(&adapter->hw, IMC, mask); | ||
812 | E1000_WRITE_REG(&adapter->hw, ICS, mask); | ||
813 | msec_delay(10); | ||
814 | |||
815 | if(adapter->test_icr & mask) { | ||
816 | *data = 3; | ||
817 | break; | ||
818 | } | ||
819 | } | ||
820 | |||
821 | /* Enable the interrupt to be reported in | ||
822 | * the cause register and then force the same | ||
823 | * interrupt and see if one gets posted. If | ||
824 | * an interrupt was not posted to the bus, the | ||
825 | * test failed. | ||
826 | */ | ||
827 | adapter->test_icr = 0; | ||
828 | E1000_WRITE_REG(&adapter->hw, IMS, mask); | ||
829 | E1000_WRITE_REG(&adapter->hw, ICS, mask); | ||
830 | msec_delay(10); | ||
831 | |||
832 | if(!(adapter->test_icr & mask)) { | ||
833 | *data = 4; | ||
834 | break; | ||
835 | } | ||
836 | |||
837 | if(!shared_int) { | ||
838 | /* Disable the other interrupts to be reported in | ||
839 | * the cause register and then force the other | ||
840 | * interrupts and see if any get posted. If | ||
841 | * an interrupt was posted to the bus, the | ||
842 | * test failed. | ||
843 | */ | ||
844 | adapter->test_icr = 0; | ||
845 | E1000_WRITE_REG(&adapter->hw, IMC, | ||
846 | (~mask & 0x00007FFF)); | ||
847 | E1000_WRITE_REG(&adapter->hw, ICS, | ||
848 | (~mask & 0x00007FFF)); | ||
849 | msec_delay(10); | ||
850 | |||
851 | if(adapter->test_icr) { | ||
852 | *data = 5; | ||
853 | break; | ||
854 | } | ||
855 | } | ||
856 | } | ||
857 | |||
858 | /* Disable all the interrupts */ | ||
859 | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); | ||
860 | msec_delay(10); | ||
861 | |||
862 | /* Unhook test interrupt handler */ | ||
863 | free_irq(irq, netdev); | ||
864 | |||
865 | return *data; | ||
866 | } | ||
867 | |||
868 | static void | ||
869 | e1000_free_desc_rings(struct e1000_adapter *adapter) | ||
870 | { | ||
871 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | ||
872 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | ||
873 | struct pci_dev *pdev = adapter->pdev; | ||
874 | int i; | ||
875 | |||
876 | if(txdr->desc && txdr->buffer_info) { | ||
877 | for(i = 0; i < txdr->count; i++) { | ||
878 | if(txdr->buffer_info[i].dma) | ||
879 | pci_unmap_single(pdev, txdr->buffer_info[i].dma, | ||
880 | txdr->buffer_info[i].length, | ||
881 | PCI_DMA_TODEVICE); | ||
882 | if(txdr->buffer_info[i].skb) | ||
883 | dev_kfree_skb(txdr->buffer_info[i].skb); | ||
884 | } | ||
885 | } | ||
886 | |||
887 | if(rxdr->desc && rxdr->buffer_info) { | ||
888 | for(i = 0; i < rxdr->count; i++) { | ||
889 | if(rxdr->buffer_info[i].dma) | ||
890 | pci_unmap_single(pdev, rxdr->buffer_info[i].dma, | ||
891 | rxdr->buffer_info[i].length, | ||
892 | PCI_DMA_FROMDEVICE); | ||
893 | if(rxdr->buffer_info[i].skb) | ||
894 | dev_kfree_skb(rxdr->buffer_info[i].skb); | ||
895 | } | ||
896 | } | ||
897 | |||
898 | if(txdr->desc) | ||
899 | pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); | ||
900 | if(rxdr->desc) | ||
901 | pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); | ||
902 | |||
903 | if(txdr->buffer_info) | ||
904 | kfree(txdr->buffer_info); | ||
905 | if(rxdr->buffer_info) | ||
906 | kfree(rxdr->buffer_info); | ||
907 | |||
908 | return; | ||
909 | } | ||
910 | |||
911 | static int | ||
912 | e1000_setup_desc_rings(struct e1000_adapter *adapter) | ||
913 | { | ||
914 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | ||
915 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | ||
916 | struct pci_dev *pdev = adapter->pdev; | ||
917 | uint32_t rctl; | ||
918 | int size, i, ret_val; | ||
919 | |||
920 | /* Setup Tx descriptor ring and Tx buffers */ | ||
921 | |||
922 | txdr->count = 80; | ||
923 | |||
924 | size = txdr->count * sizeof(struct e1000_buffer); | ||
925 | if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | ||
926 | ret_val = 1; | ||
927 | goto err_nomem; | ||
928 | } | ||
929 | memset(txdr->buffer_info, 0, size); | ||
930 | |||
931 | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | ||
932 | E1000_ROUNDUP(txdr->size, 4096); | ||
933 | if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { | ||
934 | ret_val = 2; | ||
935 | goto err_nomem; | ||
936 | } | ||
937 | memset(txdr->desc, 0, txdr->size); | ||
938 | txdr->next_to_use = txdr->next_to_clean = 0; | ||
939 | |||
940 | E1000_WRITE_REG(&adapter->hw, TDBAL, | ||
941 | ((uint64_t) txdr->dma & 0x00000000FFFFFFFF)); | ||
942 | E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32)); | ||
943 | E1000_WRITE_REG(&adapter->hw, TDLEN, | ||
944 | txdr->count * sizeof(struct e1000_tx_desc)); | ||
945 | E1000_WRITE_REG(&adapter->hw, TDH, 0); | ||
946 | E1000_WRITE_REG(&adapter->hw, TDT, 0); | ||
947 | E1000_WRITE_REG(&adapter->hw, TCTL, | ||
948 | E1000_TCTL_PSP | E1000_TCTL_EN | | ||
949 | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | | ||
950 | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); | ||
951 | |||
952 | for(i = 0; i < txdr->count; i++) { | ||
953 | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); | ||
954 | struct sk_buff *skb; | ||
955 | unsigned int size = 1024; | ||
956 | |||
957 | if(!(skb = alloc_skb(size, GFP_KERNEL))) { | ||
958 | ret_val = 3; | ||
959 | goto err_nomem; | ||
960 | } | ||
961 | skb_put(skb, size); | ||
962 | txdr->buffer_info[i].skb = skb; | ||
963 | txdr->buffer_info[i].length = skb->len; | ||
964 | txdr->buffer_info[i].dma = | ||
965 | pci_map_single(pdev, skb->data, skb->len, | ||
966 | PCI_DMA_TODEVICE); | ||
967 | tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); | ||
968 | tx_desc->lower.data = cpu_to_le32(skb->len); | ||
969 | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | | ||
970 | E1000_TXD_CMD_IFCS | | ||
971 | E1000_TXD_CMD_RPS); | ||
972 | tx_desc->upper.data = 0; | ||
973 | } | ||
974 | |||
975 | /* Setup Rx descriptor ring and Rx buffers */ | ||
976 | |||
977 | rxdr->count = 80; | ||
978 | |||
979 | size = rxdr->count * sizeof(struct e1000_buffer); | ||
980 | if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | ||
981 | ret_val = 4; | ||
982 | goto err_nomem; | ||
983 | } | ||
984 | memset(rxdr->buffer_info, 0, size); | ||
985 | |||
986 | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | ||
987 | if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { | ||
988 | ret_val = 5; | ||
989 | goto err_nomem; | ||
990 | } | ||
991 | memset(rxdr->desc, 0, rxdr->size); | ||
992 | rxdr->next_to_use = rxdr->next_to_clean = 0; | ||
993 | |||
994 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
995 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); | ||
996 | E1000_WRITE_REG(&adapter->hw, RDBAL, | ||
997 | ((uint64_t) rxdr->dma & 0xFFFFFFFF)); | ||
998 | E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32)); | ||
999 | E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); | ||
1000 | E1000_WRITE_REG(&adapter->hw, RDH, 0); | ||
1001 | E1000_WRITE_REG(&adapter->hw, RDT, 0); | ||
1002 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | | ||
1003 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1004 | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1005 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1006 | |||
1007 | for(i = 0; i < rxdr->count; i++) { | ||
1008 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); | ||
1009 | struct sk_buff *skb; | ||
1010 | |||
1011 | if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, | ||
1012 | GFP_KERNEL))) { | ||
1013 | ret_val = 6; | ||
1014 | goto err_nomem; | ||
1015 | } | ||
1016 | skb_reserve(skb, NET_IP_ALIGN); | ||
1017 | rxdr->buffer_info[i].skb = skb; | ||
1018 | rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; | ||
1019 | rxdr->buffer_info[i].dma = | ||
1020 | pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, | ||
1021 | PCI_DMA_FROMDEVICE); | ||
1022 | rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); | ||
1023 | memset(skb->data, 0x00, skb->len); | ||
1024 | } | ||
1025 | |||
1026 | return 0; | ||
1027 | |||
1028 | err_nomem: | ||
1029 | e1000_free_desc_rings(adapter); | ||
1030 | return ret_val; | ||
1031 | } | ||
1032 | |||
1033 | static void | ||
1034 | e1000_phy_disable_receiver(struct e1000_adapter *adapter) | ||
1035 | { | ||
1036 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
1037 | e1000_write_phy_reg(&adapter->hw, 29, 0x001F); | ||
1038 | e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); | ||
1039 | e1000_write_phy_reg(&adapter->hw, 29, 0x001A); | ||
1040 | e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); | ||
1041 | } | ||
1042 | |||
1043 | static void | ||
1044 | e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) | ||
1045 | { | ||
1046 | uint16_t phy_reg; | ||
1047 | |||
1048 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | ||
1049 | * Extended PHY Specific Control Register to 25MHz clock. This | ||
1050 | * value defaults back to a 2.5MHz clock when the PHY is reset. | ||
1051 | */ | ||
1052 | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | ||
1053 | phy_reg |= M88E1000_EPSCR_TX_CLK_25; | ||
1054 | e1000_write_phy_reg(&adapter->hw, | ||
1055 | M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); | ||
1056 | |||
1057 | /* In addition, because of the s/w reset above, we need to enable | ||
1058 | * CRS on TX. This must be set for both full and half duplex | ||
1059 | * operation. | ||
1060 | */ | ||
1061 | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | ||
1062 | phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1063 | e1000_write_phy_reg(&adapter->hw, | ||
1064 | M88E1000_PHY_SPEC_CTRL, phy_reg); | ||
1065 | } | ||
1066 | |||
1067 | static int | ||
1068 | e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) | ||
1069 | { | ||
1070 | uint32_t ctrl_reg; | ||
1071 | uint16_t phy_reg; | ||
1072 | |||
1073 | /* Setup the Device Control Register for PHY loopback test. */ | ||
1074 | |||
1075 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | ||
1076 | ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ | ||
1077 | E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1078 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1079 | E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ | ||
1080 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1081 | |||
1082 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); | ||
1083 | |||
1084 | /* Read the PHY Specific Control Register (0x10) */ | ||
1085 | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | ||
1086 | |||
1087 | /* Clear Auto-Crossover bits in PHY Specific Control Register | ||
1088 | * (bits 6:5). | ||
1089 | */ | ||
1090 | phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1091 | e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); | ||
1092 | |||
1093 | /* Perform software reset on the PHY */ | ||
1094 | e1000_phy_reset(&adapter->hw); | ||
1095 | |||
1096 | /* Have to setup TX_CLK and TX_CRS after software reset */ | ||
1097 | e1000_phy_reset_clk_and_crs(adapter); | ||
1098 | |||
1099 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); | ||
1100 | |||
1101 | /* Wait for reset to complete. */ | ||
1102 | udelay(500); | ||
1103 | |||
1104 | /* Have to setup TX_CLK and TX_CRS after software reset */ | ||
1105 | e1000_phy_reset_clk_and_crs(adapter); | ||
1106 | |||
1107 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
1108 | e1000_phy_disable_receiver(adapter); | ||
1109 | |||
1110 | /* Set the loopback bit in the PHY control register. */ | ||
1111 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | ||
1112 | phy_reg |= MII_CR_LOOPBACK; | ||
1113 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | ||
1114 | |||
1115 | /* Setup TX_CLK and TX_CRS one more time. */ | ||
1116 | e1000_phy_reset_clk_and_crs(adapter); | ||
1117 | |||
1118 | /* Check Phy Configuration */ | ||
1119 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | ||
1120 | if(phy_reg != 0x4100) | ||
1121 | return 9; | ||
1122 | |||
1123 | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | ||
1124 | if(phy_reg != 0x0070) | ||
1125 | return 10; | ||
1126 | |||
1127 | e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); | ||
1128 | if(phy_reg != 0x001A) | ||
1129 | return 11; | ||
1130 | |||
1131 | return 0; | ||
1132 | } | ||
1133 | |||
1134 | static int | ||
1135 | e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | ||
1136 | { | ||
1137 | uint32_t ctrl_reg = 0; | ||
1138 | uint32_t stat_reg = 0; | ||
1139 | |||
1140 | adapter->hw.autoneg = FALSE; | ||
1141 | |||
1142 | if(adapter->hw.phy_type == e1000_phy_m88) { | ||
1143 | /* Auto-MDI/MDIX Off */ | ||
1144 | e1000_write_phy_reg(&adapter->hw, | ||
1145 | M88E1000_PHY_SPEC_CTRL, 0x0808); | ||
1146 | /* reset to update Auto-MDI/MDIX */ | ||
1147 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); | ||
1148 | /* autoneg off */ | ||
1149 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); | ||
1150 | } | ||
1151 | /* force 1000, set loopback */ | ||
1152 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); | ||
1153 | |||
1154 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1155 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | ||
1156 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
1157 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1158 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1159 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | ||
1160 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1161 | |||
1162 | if(adapter->hw.media_type == e1000_media_type_copper && | ||
1163 | adapter->hw.phy_type == e1000_phy_m88) { | ||
1164 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | ||
1165 | } else { | ||
1166 | /* Set the ILOS bit on the fiber Nic is half | ||
1167 | * duplex link is detected. */ | ||
1168 | stat_reg = E1000_READ_REG(&adapter->hw, STATUS); | ||
1169 | if((stat_reg & E1000_STATUS_FD) == 0) | ||
1170 | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); | ||
1171 | } | ||
1172 | |||
1173 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); | ||
1174 | |||
1175 | /* Disable the receiver on the PHY so when a cable is plugged in, the | ||
1176 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | ||
1177 | */ | ||
1178 | if(adapter->hw.phy_type == e1000_phy_m88) | ||
1179 | e1000_phy_disable_receiver(adapter); | ||
1180 | |||
1181 | udelay(500); | ||
1182 | |||
1183 | return 0; | ||
1184 | } | ||
1185 | |||
1186 | static int | ||
1187 | e1000_set_phy_loopback(struct e1000_adapter *adapter) | ||
1188 | { | ||
1189 | uint16_t phy_reg = 0; | ||
1190 | uint16_t count = 0; | ||
1191 | |||
1192 | switch (adapter->hw.mac_type) { | ||
1193 | case e1000_82543: | ||
1194 | if(adapter->hw.media_type == e1000_media_type_copper) { | ||
1195 | /* Attempt to setup Loopback mode on Non-integrated PHY. | ||
1196 | * Some PHY registers get corrupted at random, so | ||
1197 | * attempt this 10 times. | ||
1198 | */ | ||
1199 | while(e1000_nonintegrated_phy_loopback(adapter) && | ||
1200 | count++ < 10); | ||
1201 | if(count < 11) | ||
1202 | return 0; | ||
1203 | } | ||
1204 | break; | ||
1205 | |||
1206 | case e1000_82544: | ||
1207 | case e1000_82540: | ||
1208 | case e1000_82545: | ||
1209 | case e1000_82545_rev_3: | ||
1210 | case e1000_82546: | ||
1211 | case e1000_82546_rev_3: | ||
1212 | case e1000_82541: | ||
1213 | case e1000_82541_rev_2: | ||
1214 | case e1000_82547: | ||
1215 | case e1000_82547_rev_2: | ||
1216 | return e1000_integrated_phy_loopback(adapter); | ||
1217 | break; | ||
1218 | |||
1219 | default: | ||
1220 | /* Default PHY loopback work is to read the MII | ||
1221 | * control register and assert bit 14 (loopback mode). | ||
1222 | */ | ||
1223 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | ||
1224 | phy_reg |= MII_CR_LOOPBACK; | ||
1225 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | ||
1226 | return 0; | ||
1227 | break; | ||
1228 | } | ||
1229 | |||
1230 | return 8; | ||
1231 | } | ||
1232 | |||
1233 | static int | ||
1234 | e1000_setup_loopback_test(struct e1000_adapter *adapter) | ||
1235 | { | ||
1236 | uint32_t rctl; | ||
1237 | |||
1238 | if(adapter->hw.media_type == e1000_media_type_fiber || | ||
1239 | adapter->hw.media_type == e1000_media_type_internal_serdes) { | ||
1240 | if(adapter->hw.mac_type == e1000_82545 || | ||
1241 | adapter->hw.mac_type == e1000_82546 || | ||
1242 | adapter->hw.mac_type == e1000_82545_rev_3 || | ||
1243 | adapter->hw.mac_type == e1000_82546_rev_3) | ||
1244 | return e1000_set_phy_loopback(adapter); | ||
1245 | else { | ||
1246 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
1247 | rctl |= E1000_RCTL_LBM_TCVR; | ||
1248 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1249 | return 0; | ||
1250 | } | ||
1251 | } else if(adapter->hw.media_type == e1000_media_type_copper) | ||
1252 | return e1000_set_phy_loopback(adapter); | ||
1253 | |||
1254 | return 7; | ||
1255 | } | ||
1256 | |||
1257 | static void | ||
1258 | e1000_loopback_cleanup(struct e1000_adapter *adapter) | ||
1259 | { | ||
1260 | uint32_t rctl; | ||
1261 | uint16_t phy_reg; | ||
1262 | |||
1263 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | ||
1264 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
1265 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | ||
1266 | |||
1267 | if(adapter->hw.media_type == e1000_media_type_copper || | ||
1268 | ((adapter->hw.media_type == e1000_media_type_fiber || | ||
1269 | adapter->hw.media_type == e1000_media_type_internal_serdes) && | ||
1270 | (adapter->hw.mac_type == e1000_82545 || | ||
1271 | adapter->hw.mac_type == e1000_82546 || | ||
1272 | adapter->hw.mac_type == e1000_82545_rev_3 || | ||
1273 | adapter->hw.mac_type == e1000_82546_rev_3))) { | ||
1274 | adapter->hw.autoneg = TRUE; | ||
1275 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | ||
1276 | if(phy_reg & MII_CR_LOOPBACK) { | ||
1277 | phy_reg &= ~MII_CR_LOOPBACK; | ||
1278 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | ||
1279 | e1000_phy_reset(&adapter->hw); | ||
1280 | } | ||
1281 | } | ||
1282 | } | ||
1283 | |||
1284 | static void | ||
1285 | e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | ||
1286 | { | ||
1287 | memset(skb->data, 0xFF, frame_size); | ||
1288 | frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; | ||
1289 | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); | ||
1290 | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); | ||
1291 | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); | ||
1292 | } | ||
1293 | |||
1294 | static int | ||
1295 | e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | ||
1296 | { | ||
1297 | frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; | ||
1298 | if(*(skb->data + 3) == 0xFF) { | ||
1299 | if((*(skb->data + frame_size / 2 + 10) == 0xBE) && | ||
1300 | (*(skb->data + frame_size / 2 + 12) == 0xAF)) { | ||
1301 | return 0; | ||
1302 | } | ||
1303 | } | ||
1304 | return 13; | ||
1305 | } | ||
1306 | |||
1307 | static int | ||
1308 | e1000_run_loopback_test(struct e1000_adapter *adapter) | ||
1309 | { | ||
1310 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | ||
1311 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | ||
1312 | struct pci_dev *pdev = adapter->pdev; | ||
1313 | int i, ret_val; | ||
1314 | |||
1315 | E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); | ||
1316 | |||
1317 | for(i = 0; i < 64; i++) { | ||
1318 | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024); | ||
1319 | pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma, | ||
1320 | txdr->buffer_info[i].length, | ||
1321 | PCI_DMA_TODEVICE); | ||
1322 | } | ||
1323 | E1000_WRITE_REG(&adapter->hw, TDT, i); | ||
1324 | |||
1325 | msec_delay(200); | ||
1326 | |||
1327 | i = 0; | ||
1328 | do { | ||
1329 | pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[i].dma, | ||
1330 | rxdr->buffer_info[i].length, | ||
1331 | PCI_DMA_FROMDEVICE); | ||
1332 | |||
1333 | ret_val = e1000_check_lbtest_frame(rxdr->buffer_info[i].skb, | ||
1334 | 1024); | ||
1335 | i++; | ||
1336 | } while (ret_val != 0 && i < 64); | ||
1337 | |||
1338 | return ret_val; | ||
1339 | } | ||
1340 | |||
1341 | static int | ||
1342 | e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data) | ||
1343 | { | ||
1344 | if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback; | ||
1345 | if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback; | ||
1346 | *data = e1000_run_loopback_test(adapter); | ||
1347 | e1000_loopback_cleanup(adapter); | ||
1348 | e1000_free_desc_rings(adapter); | ||
1349 | err_loopback: | ||
1350 | return *data; | ||
1351 | } | ||
1352 | |||
1353 | static int | ||
1354 | e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) | ||
1355 | { | ||
1356 | *data = 0; | ||
1357 | |||
1358 | if (adapter->hw.media_type == e1000_media_type_internal_serdes) { | ||
1359 | int i = 0; | ||
1360 | adapter->hw.serdes_link_down = TRUE; | ||
1361 | |||
1362 | /* on some blade server designs link establishment */ | ||
1363 | /* could take as long as 2-3 minutes. */ | ||
1364 | do { | ||
1365 | e1000_check_for_link(&adapter->hw); | ||
1366 | if (adapter->hw.serdes_link_down == FALSE) | ||
1367 | return *data; | ||
1368 | msec_delay(20); | ||
1369 | } while (i++ < 3750); | ||
1370 | |||
1371 | *data = 1; | ||
1372 | } else { | ||
1373 | e1000_check_for_link(&adapter->hw); | ||
1374 | |||
1375 | if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { | ||
1376 | *data = 1; | ||
1377 | } | ||
1378 | } | ||
1379 | return *data; | ||
1380 | } | ||
1381 | |||
1382 | static int | ||
1383 | e1000_diag_test_count(struct net_device *netdev) | ||
1384 | { | ||
1385 | return E1000_TEST_LEN; | ||
1386 | } | ||
1387 | |||
1388 | static void | ||
1389 | e1000_diag_test(struct net_device *netdev, | ||
1390 | struct ethtool_test *eth_test, uint64_t *data) | ||
1391 | { | ||
1392 | struct e1000_adapter *adapter = netdev->priv; | ||
1393 | boolean_t if_running = netif_running(netdev); | ||
1394 | |||
1395 | if(eth_test->flags == ETH_TEST_FL_OFFLINE) { | ||
1396 | /* Offline tests */ | ||
1397 | |||
1398 | /* save speed, duplex, autoneg settings */ | ||
1399 | uint16_t autoneg_advertised = adapter->hw.autoneg_advertised; | ||
1400 | uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex; | ||
1401 | uint8_t autoneg = adapter->hw.autoneg; | ||
1402 | |||
1403 | /* Link test performed before hardware reset so autoneg doesn't | ||
1404 | * interfere with test result */ | ||
1405 | if(e1000_link_test(adapter, &data[4])) | ||
1406 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1407 | |||
1408 | if(if_running) | ||
1409 | e1000_down(adapter); | ||
1410 | else | ||
1411 | e1000_reset(adapter); | ||
1412 | |||
1413 | if(e1000_reg_test(adapter, &data[0])) | ||
1414 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1415 | |||
1416 | e1000_reset(adapter); | ||
1417 | if(e1000_eeprom_test(adapter, &data[1])) | ||
1418 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1419 | |||
1420 | e1000_reset(adapter); | ||
1421 | if(e1000_intr_test(adapter, &data[2])) | ||
1422 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1423 | |||
1424 | e1000_reset(adapter); | ||
1425 | if(e1000_loopback_test(adapter, &data[3])) | ||
1426 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1427 | |||
1428 | /* restore speed, duplex, autoneg settings */ | ||
1429 | adapter->hw.autoneg_advertised = autoneg_advertised; | ||
1430 | adapter->hw.forced_speed_duplex = forced_speed_duplex; | ||
1431 | adapter->hw.autoneg = autoneg; | ||
1432 | |||
1433 | e1000_reset(adapter); | ||
1434 | if(if_running) | ||
1435 | e1000_up(adapter); | ||
1436 | } else { | ||
1437 | /* Online tests */ | ||
1438 | if(e1000_link_test(adapter, &data[4])) | ||
1439 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1440 | |||
1441 | /* Offline tests aren't run; pass by default */ | ||
1442 | data[0] = 0; | ||
1443 | data[1] = 0; | ||
1444 | data[2] = 0; | ||
1445 | data[3] = 0; | ||
1446 | } | ||
1447 | } | ||
1448 | |||
1449 | static void | ||
1450 | e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
1451 | { | ||
1452 | struct e1000_adapter *adapter = netdev->priv; | ||
1453 | struct e1000_hw *hw = &adapter->hw; | ||
1454 | |||
1455 | switch(adapter->hw.device_id) { | ||
1456 | case E1000_DEV_ID_82542: | ||
1457 | case E1000_DEV_ID_82543GC_FIBER: | ||
1458 | case E1000_DEV_ID_82543GC_COPPER: | ||
1459 | case E1000_DEV_ID_82544EI_FIBER: | ||
1460 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
1461 | case E1000_DEV_ID_82545EM_FIBER: | ||
1462 | case E1000_DEV_ID_82545EM_COPPER: | ||
1463 | wol->supported = 0; | ||
1464 | wol->wolopts = 0; | ||
1465 | return; | ||
1466 | |||
1467 | case E1000_DEV_ID_82546EB_FIBER: | ||
1468 | case E1000_DEV_ID_82546GB_FIBER: | ||
1469 | /* Wake events only supported on port A for dual fiber */ | ||
1470 | if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { | ||
1471 | wol->supported = 0; | ||
1472 | wol->wolopts = 0; | ||
1473 | return; | ||
1474 | } | ||
1475 | /* Fall Through */ | ||
1476 | |||
1477 | default: | ||
1478 | wol->supported = WAKE_UCAST | WAKE_MCAST | | ||
1479 | WAKE_BCAST | WAKE_MAGIC; | ||
1480 | |||
1481 | wol->wolopts = 0; | ||
1482 | if(adapter->wol & E1000_WUFC_EX) | ||
1483 | wol->wolopts |= WAKE_UCAST; | ||
1484 | if(adapter->wol & E1000_WUFC_MC) | ||
1485 | wol->wolopts |= WAKE_MCAST; | ||
1486 | if(adapter->wol & E1000_WUFC_BC) | ||
1487 | wol->wolopts |= WAKE_BCAST; | ||
1488 | if(adapter->wol & E1000_WUFC_MAG) | ||
1489 | wol->wolopts |= WAKE_MAGIC; | ||
1490 | return; | ||
1491 | } | ||
1492 | } | ||
1493 | |||
1494 | static int | ||
1495 | e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
1496 | { | ||
1497 | struct e1000_adapter *adapter = netdev->priv; | ||
1498 | struct e1000_hw *hw = &adapter->hw; | ||
1499 | |||
1500 | switch(adapter->hw.device_id) { | ||
1501 | case E1000_DEV_ID_82542: | ||
1502 | case E1000_DEV_ID_82543GC_FIBER: | ||
1503 | case E1000_DEV_ID_82543GC_COPPER: | ||
1504 | case E1000_DEV_ID_82544EI_FIBER: | ||
1505 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
1506 | case E1000_DEV_ID_82545EM_FIBER: | ||
1507 | case E1000_DEV_ID_82545EM_COPPER: | ||
1508 | return wol->wolopts ? -EOPNOTSUPP : 0; | ||
1509 | |||
1510 | case E1000_DEV_ID_82546EB_FIBER: | ||
1511 | case E1000_DEV_ID_82546GB_FIBER: | ||
1512 | /* Wake events only supported on port A for dual fiber */ | ||
1513 | if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) | ||
1514 | return wol->wolopts ? -EOPNOTSUPP : 0; | ||
1515 | /* Fall Through */ | ||
1516 | |||
1517 | default: | ||
1518 | if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) | ||
1519 | return -EOPNOTSUPP; | ||
1520 | |||
1521 | adapter->wol = 0; | ||
1522 | |||
1523 | if(wol->wolopts & WAKE_UCAST) | ||
1524 | adapter->wol |= E1000_WUFC_EX; | ||
1525 | if(wol->wolopts & WAKE_MCAST) | ||
1526 | adapter->wol |= E1000_WUFC_MC; | ||
1527 | if(wol->wolopts & WAKE_BCAST) | ||
1528 | adapter->wol |= E1000_WUFC_BC; | ||
1529 | if(wol->wolopts & WAKE_MAGIC) | ||
1530 | adapter->wol |= E1000_WUFC_MAG; | ||
1531 | } | ||
1532 | |||
1533 | return 0; | ||
1534 | } | ||
1535 | |||
1536 | /* toggle LED 4 times per second = 2 "blinks" per second */ | ||
1537 | #define E1000_ID_INTERVAL (HZ/4) | ||
1538 | |||
1539 | /* bit defines for adapter->led_status */ | ||
1540 | #define E1000_LED_ON 0 | ||
1541 | |||
1542 | static void | ||
1543 | e1000_led_blink_callback(unsigned long data) | ||
1544 | { | ||
1545 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
1546 | |||
1547 | if(test_and_change_bit(E1000_LED_ON, &adapter->led_status)) | ||
1548 | e1000_led_off(&adapter->hw); | ||
1549 | else | ||
1550 | e1000_led_on(&adapter->hw); | ||
1551 | |||
1552 | mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); | ||
1553 | } | ||
1554 | |||
1555 | static int | ||
1556 | e1000_phys_id(struct net_device *netdev, uint32_t data) | ||
1557 | { | ||
1558 | struct e1000_adapter *adapter = netdev->priv; | ||
1559 | |||
1560 | if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) | ||
1561 | data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); | ||
1562 | |||
1563 | if(!adapter->blink_timer.function) { | ||
1564 | init_timer(&adapter->blink_timer); | ||
1565 | adapter->blink_timer.function = e1000_led_blink_callback; | ||
1566 | adapter->blink_timer.data = (unsigned long) adapter; | ||
1567 | } | ||
1568 | |||
1569 | e1000_setup_led(&adapter->hw); | ||
1570 | mod_timer(&adapter->blink_timer, jiffies); | ||
1571 | |||
1572 | msleep_interruptible(data * 1000); | ||
1573 | del_timer_sync(&adapter->blink_timer); | ||
1574 | e1000_led_off(&adapter->hw); | ||
1575 | clear_bit(E1000_LED_ON, &adapter->led_status); | ||
1576 | e1000_cleanup_led(&adapter->hw); | ||
1577 | |||
1578 | return 0; | ||
1579 | } | ||
1580 | |||
1581 | static int | ||
1582 | e1000_nway_reset(struct net_device *netdev) | ||
1583 | { | ||
1584 | struct e1000_adapter *adapter = netdev->priv; | ||
1585 | if(netif_running(netdev)) { | ||
1586 | e1000_down(adapter); | ||
1587 | e1000_up(adapter); | ||
1588 | } | ||
1589 | return 0; | ||
1590 | } | ||
1591 | |||
1592 | static int | ||
1593 | e1000_get_stats_count(struct net_device *netdev) | ||
1594 | { | ||
1595 | return E1000_STATS_LEN; | ||
1596 | } | ||
1597 | |||
1598 | static void | ||
1599 | e1000_get_ethtool_stats(struct net_device *netdev, | ||
1600 | struct ethtool_stats *stats, uint64_t *data) | ||
1601 | { | ||
1602 | struct e1000_adapter *adapter = netdev->priv; | ||
1603 | int i; | ||
1604 | |||
1605 | e1000_update_stats(adapter); | ||
1606 | for(i = 0; i < E1000_STATS_LEN; i++) { | ||
1607 | char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; | ||
1608 | data[i] = (e1000_gstrings_stats[i].sizeof_stat == | ||
1609 | sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; | ||
1610 | } | ||
1611 | } | ||
1612 | |||
1613 | static void | ||
1614 | e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) | ||
1615 | { | ||
1616 | int i; | ||
1617 | |||
1618 | switch(stringset) { | ||
1619 | case ETH_SS_TEST: | ||
1620 | memcpy(data, *e1000_gstrings_test, | ||
1621 | E1000_TEST_LEN*ETH_GSTRING_LEN); | ||
1622 | break; | ||
1623 | case ETH_SS_STATS: | ||
1624 | for (i=0; i < E1000_STATS_LEN; i++) { | ||
1625 | memcpy(data + i * ETH_GSTRING_LEN, | ||
1626 | e1000_gstrings_stats[i].stat_string, | ||
1627 | ETH_GSTRING_LEN); | ||
1628 | } | ||
1629 | break; | ||
1630 | } | ||
1631 | } | ||
1632 | |||
1633 | struct ethtool_ops e1000_ethtool_ops = { | ||
1634 | .get_settings = e1000_get_settings, | ||
1635 | .set_settings = e1000_set_settings, | ||
1636 | .get_drvinfo = e1000_get_drvinfo, | ||
1637 | .get_regs_len = e1000_get_regs_len, | ||
1638 | .get_regs = e1000_get_regs, | ||
1639 | .get_wol = e1000_get_wol, | ||
1640 | .set_wol = e1000_set_wol, | ||
1641 | .get_msglevel = e1000_get_msglevel, | ||
1642 | .set_msglevel = e1000_set_msglevel, | ||
1643 | .nway_reset = e1000_nway_reset, | ||
1644 | .get_link = ethtool_op_get_link, | ||
1645 | .get_eeprom_len = e1000_get_eeprom_len, | ||
1646 | .get_eeprom = e1000_get_eeprom, | ||
1647 | .set_eeprom = e1000_set_eeprom, | ||
1648 | .get_ringparam = e1000_get_ringparam, | ||
1649 | .set_ringparam = e1000_set_ringparam, | ||
1650 | .get_pauseparam = e1000_get_pauseparam, | ||
1651 | .set_pauseparam = e1000_set_pauseparam, | ||
1652 | .get_rx_csum = e1000_get_rx_csum, | ||
1653 | .set_rx_csum = e1000_set_rx_csum, | ||
1654 | .get_tx_csum = e1000_get_tx_csum, | ||
1655 | .set_tx_csum = e1000_set_tx_csum, | ||
1656 | .get_sg = ethtool_op_get_sg, | ||
1657 | .set_sg = ethtool_op_set_sg, | ||
1658 | #ifdef NETIF_F_TSO | ||
1659 | .get_tso = ethtool_op_get_tso, | ||
1660 | .set_tso = e1000_set_tso, | ||
1661 | #endif | ||
1662 | .self_test_count = e1000_diag_test_count, | ||
1663 | .self_test = e1000_diag_test, | ||
1664 | .get_strings = e1000_get_strings, | ||
1665 | .phys_id = e1000_phys_id, | ||
1666 | .get_stats_count = e1000_get_stats_count, | ||
1667 | .get_ethtool_stats = e1000_get_ethtool_stats, | ||
1668 | }; | ||
1669 | |||
1670 | void e1000_set_ethtool_ops(struct net_device *netdev) | ||
1671 | { | ||
1672 | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); | ||
1673 | } | ||