diff options
Diffstat (limited to 'drivers/net/cxgb4/l2t.c')
-rw-r--r-- | drivers/net/cxgb4/l2t.c | 624 |
1 files changed, 624 insertions, 0 deletions
diff --git a/drivers/net/cxgb4/l2t.c b/drivers/net/cxgb4/l2t.c new file mode 100644 index 000000000000..9f96724a133a --- /dev/null +++ b/drivers/net/cxgb4/l2t.c | |||
@@ -0,0 +1,624 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T4 Ethernet driver for Linux. | ||
3 | * | ||
4 | * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. | ||
5 | * | ||
6 | * This software is available to you under a choice of one of two | ||
7 | * licenses. You may choose to be licensed under the terms of the GNU | ||
8 | * General Public License (GPL) Version 2, available from the file | ||
9 | * COPYING in the main directory of this source tree, or the | ||
10 | * OpenIB.org BSD license below: | ||
11 | * | ||
12 | * Redistribution and use in source and binary forms, with or | ||
13 | * without modification, are permitted provided that the following | ||
14 | * conditions are met: | ||
15 | * | ||
16 | * - Redistributions of source code must retain the above | ||
17 | * copyright notice, this list of conditions and the following | ||
18 | * disclaimer. | ||
19 | * | ||
20 | * - Redistributions in binary form must reproduce the above | ||
21 | * copyright notice, this list of conditions and the following | ||
22 | * disclaimer in the documentation and/or other materials | ||
23 | * provided with the distribution. | ||
24 | * | ||
25 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
26 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
27 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
28 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
29 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
30 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
31 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
32 | * SOFTWARE. | ||
33 | */ | ||
34 | |||
35 | #include <linux/skbuff.h> | ||
36 | #include <linux/netdevice.h> | ||
37 | #include <linux/if.h> | ||
38 | #include <linux/if_vlan.h> | ||
39 | #include <linux/jhash.h> | ||
40 | #include <net/neighbour.h> | ||
41 | #include "cxgb4.h" | ||
42 | #include "l2t.h" | ||
43 | #include "t4_msg.h" | ||
44 | #include "t4fw_api.h" | ||
45 | |||
46 | #define VLAN_NONE 0xfff | ||
47 | |||
48 | /* identifies sync vs async L2T_WRITE_REQs */ | ||
49 | #define F_SYNC_WR (1 << 12) | ||
50 | |||
51 | enum { | ||
52 | L2T_STATE_VALID, /* entry is up to date */ | ||
53 | L2T_STATE_STALE, /* entry may be used but needs revalidation */ | ||
54 | L2T_STATE_RESOLVING, /* entry needs address resolution */ | ||
55 | L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */ | ||
56 | |||
57 | /* when state is one of the below the entry is not hashed */ | ||
58 | L2T_STATE_SWITCHING, /* entry is being used by a switching filter */ | ||
59 | L2T_STATE_UNUSED /* entry not in use */ | ||
60 | }; | ||
61 | |||
62 | struct l2t_data { | ||
63 | rwlock_t lock; | ||
64 | atomic_t nfree; /* number of free entries */ | ||
65 | struct l2t_entry *rover; /* starting point for next allocation */ | ||
66 | struct l2t_entry l2tab[L2T_SIZE]; | ||
67 | }; | ||
68 | |||
69 | static inline unsigned int vlan_prio(const struct l2t_entry *e) | ||
70 | { | ||
71 | return e->vlan >> 13; | ||
72 | } | ||
73 | |||
74 | static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) | ||
75 | { | ||
76 | if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ | ||
77 | atomic_dec(&d->nfree); | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * To avoid having to check address families we do not allow v4 and v6 | ||
82 | * neighbors to be on the same hash chain. We keep v4 entries in the first | ||
83 | * half of available hash buckets and v6 in the second. | ||
84 | */ | ||
85 | enum { | ||
86 | L2T_SZ_HALF = L2T_SIZE / 2, | ||
87 | L2T_HASH_MASK = L2T_SZ_HALF - 1 | ||
88 | }; | ||
89 | |||
90 | static inline unsigned int arp_hash(const u32 *key, int ifindex) | ||
91 | { | ||
92 | return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK; | ||
93 | } | ||
94 | |||
95 | static inline unsigned int ipv6_hash(const u32 *key, int ifindex) | ||
96 | { | ||
97 | u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; | ||
98 | |||
99 | return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK); | ||
100 | } | ||
101 | |||
102 | static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex) | ||
103 | { | ||
104 | return addr_len == 4 ? arp_hash(addr, ifindex) : | ||
105 | ipv6_hash(addr, ifindex); | ||
106 | } | ||
107 | |||
108 | /* | ||
109 | * Checks if an L2T entry is for the given IP/IPv6 address. It does not check | ||
110 | * whether the L2T entry and the address are of the same address family. | ||
111 | * Callers ensure an address is only checked against L2T entries of the same | ||
112 | * family, something made trivial by the separation of IP and IPv6 hash chains | ||
113 | * mentioned above. Returns 0 if there's a match, | ||
114 | */ | ||
115 | static int addreq(const struct l2t_entry *e, const u32 *addr) | ||
116 | { | ||
117 | if (e->v6) | ||
118 | return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | | ||
119 | (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); | ||
120 | return e->addr[0] ^ addr[0]; | ||
121 | } | ||
122 | |||
123 | static void neigh_replace(struct l2t_entry *e, struct neighbour *n) | ||
124 | { | ||
125 | neigh_hold(n); | ||
126 | if (e->neigh) | ||
127 | neigh_release(e->neigh); | ||
128 | e->neigh = n; | ||
129 | } | ||
130 | |||
131 | /* | ||
132 | * Write an L2T entry. Must be called with the entry locked. | ||
133 | * The write may be synchronous or asynchronous. | ||
134 | */ | ||
135 | static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) | ||
136 | { | ||
137 | struct sk_buff *skb; | ||
138 | struct cpl_l2t_write_req *req; | ||
139 | |||
140 | skb = alloc_skb(sizeof(*req), GFP_ATOMIC); | ||
141 | if (!skb) | ||
142 | return -ENOMEM; | ||
143 | |||
144 | req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); | ||
145 | INIT_TP_WR(req, 0); | ||
146 | |||
147 | OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, | ||
148 | e->idx | (sync ? F_SYNC_WR : 0) | | ||
149 | TID_QID(adap->sge.fw_evtq.abs_id))); | ||
150 | req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync)); | ||
151 | req->l2t_idx = htons(e->idx); | ||
152 | req->vlan = htons(e->vlan); | ||
153 | if (e->neigh) | ||
154 | memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); | ||
155 | memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); | ||
156 | |||
157 | set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); | ||
158 | t4_ofld_send(adap, skb); | ||
159 | |||
160 | if (sync && e->state != L2T_STATE_SWITCHING) | ||
161 | e->state = L2T_STATE_SYNC_WRITE; | ||
162 | return 0; | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * Send packets waiting in an L2T entry's ARP queue. Must be called with the | ||
167 | * entry locked. | ||
168 | */ | ||
169 | static void send_pending(struct adapter *adap, struct l2t_entry *e) | ||
170 | { | ||
171 | while (e->arpq_head) { | ||
172 | struct sk_buff *skb = e->arpq_head; | ||
173 | |||
174 | e->arpq_head = skb->next; | ||
175 | skb->next = NULL; | ||
176 | t4_ofld_send(adap, skb); | ||
177 | } | ||
178 | e->arpq_tail = NULL; | ||
179 | } | ||
180 | |||
181 | /* | ||
182 | * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a | ||
183 | * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T | ||
184 | * index it refers to. | ||
185 | */ | ||
186 | void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) | ||
187 | { | ||
188 | unsigned int tid = GET_TID(rpl); | ||
189 | unsigned int idx = tid & (L2T_SIZE - 1); | ||
190 | |||
191 | if (unlikely(rpl->status != CPL_ERR_NONE)) { | ||
192 | dev_err(adap->pdev_dev, | ||
193 | "Unexpected L2T_WRITE_RPL status %u for entry %u\n", | ||
194 | rpl->status, idx); | ||
195 | return; | ||
196 | } | ||
197 | |||
198 | if (tid & F_SYNC_WR) { | ||
199 | struct l2t_entry *e = &adap->l2t->l2tab[idx]; | ||
200 | |||
201 | spin_lock(&e->lock); | ||
202 | if (e->state != L2T_STATE_SWITCHING) { | ||
203 | send_pending(adap, e); | ||
204 | e->state = (e->neigh->nud_state & NUD_STALE) ? | ||
205 | L2T_STATE_STALE : L2T_STATE_VALID; | ||
206 | } | ||
207 | spin_unlock(&e->lock); | ||
208 | } | ||
209 | } | ||
210 | |||
211 | /* | ||
212 | * Add a packet to an L2T entry's queue of packets awaiting resolution. | ||
213 | * Must be called with the entry's lock held. | ||
214 | */ | ||
215 | static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) | ||
216 | { | ||
217 | skb->next = NULL; | ||
218 | if (e->arpq_head) | ||
219 | e->arpq_tail->next = skb; | ||
220 | else | ||
221 | e->arpq_head = skb; | ||
222 | e->arpq_tail = skb; | ||
223 | } | ||
224 | |||
225 | int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, | ||
226 | struct l2t_entry *e) | ||
227 | { | ||
228 | struct adapter *adap = netdev2adap(dev); | ||
229 | |||
230 | again: | ||
231 | switch (e->state) { | ||
232 | case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ | ||
233 | neigh_event_send(e->neigh, NULL); | ||
234 | spin_lock_bh(&e->lock); | ||
235 | if (e->state == L2T_STATE_STALE) | ||
236 | e->state = L2T_STATE_VALID; | ||
237 | spin_unlock_bh(&e->lock); | ||
238 | case L2T_STATE_VALID: /* fast-path, send the packet on */ | ||
239 | return t4_ofld_send(adap, skb); | ||
240 | case L2T_STATE_RESOLVING: | ||
241 | case L2T_STATE_SYNC_WRITE: | ||
242 | spin_lock_bh(&e->lock); | ||
243 | if (e->state != L2T_STATE_SYNC_WRITE && | ||
244 | e->state != L2T_STATE_RESOLVING) { | ||
245 | spin_unlock_bh(&e->lock); | ||
246 | goto again; | ||
247 | } | ||
248 | arpq_enqueue(e, skb); | ||
249 | spin_unlock_bh(&e->lock); | ||
250 | |||
251 | if (e->state == L2T_STATE_RESOLVING && | ||
252 | !neigh_event_send(e->neigh, NULL)) { | ||
253 | spin_lock_bh(&e->lock); | ||
254 | if (e->state == L2T_STATE_RESOLVING && e->arpq_head) | ||
255 | write_l2e(adap, e, 1); | ||
256 | spin_unlock_bh(&e->lock); | ||
257 | } | ||
258 | } | ||
259 | return 0; | ||
260 | } | ||
261 | EXPORT_SYMBOL(cxgb4_l2t_send); | ||
262 | |||
263 | /* | ||
264 | * Allocate a free L2T entry. Must be called with l2t_data.lock held. | ||
265 | */ | ||
266 | static struct l2t_entry *alloc_l2e(struct l2t_data *d) | ||
267 | { | ||
268 | struct l2t_entry *end, *e, **p; | ||
269 | |||
270 | if (!atomic_read(&d->nfree)) | ||
271 | return NULL; | ||
272 | |||
273 | /* there's definitely a free entry */ | ||
274 | for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e) | ||
275 | if (atomic_read(&e->refcnt) == 0) | ||
276 | goto found; | ||
277 | |||
278 | for (e = d->l2tab; atomic_read(&e->refcnt); ++e) | ||
279 | ; | ||
280 | found: | ||
281 | d->rover = e + 1; | ||
282 | atomic_dec(&d->nfree); | ||
283 | |||
284 | /* | ||
285 | * The entry we found may be an inactive entry that is | ||
286 | * presently in the hash table. We need to remove it. | ||
287 | */ | ||
288 | if (e->state < L2T_STATE_SWITCHING) | ||
289 | for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) | ||
290 | if (*p == e) { | ||
291 | *p = e->next; | ||
292 | e->next = NULL; | ||
293 | break; | ||
294 | } | ||
295 | |||
296 | e->state = L2T_STATE_UNUSED; | ||
297 | return e; | ||
298 | } | ||
299 | |||
300 | /* | ||
301 | * Called when an L2T entry has no more users. | ||
302 | */ | ||
303 | static void t4_l2e_free(struct l2t_entry *e) | ||
304 | { | ||
305 | struct l2t_data *d; | ||
306 | |||
307 | spin_lock_bh(&e->lock); | ||
308 | if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ | ||
309 | if (e->neigh) { | ||
310 | neigh_release(e->neigh); | ||
311 | e->neigh = NULL; | ||
312 | } | ||
313 | } | ||
314 | spin_unlock_bh(&e->lock); | ||
315 | |||
316 | d = container_of(e, struct l2t_data, l2tab[e->idx]); | ||
317 | atomic_inc(&d->nfree); | ||
318 | } | ||
319 | |||
320 | void cxgb4_l2t_release(struct l2t_entry *e) | ||
321 | { | ||
322 | if (atomic_dec_and_test(&e->refcnt)) | ||
323 | t4_l2e_free(e); | ||
324 | } | ||
325 | EXPORT_SYMBOL(cxgb4_l2t_release); | ||
326 | |||
327 | /* | ||
328 | * Update an L2T entry that was previously used for the same next hop as neigh. | ||
329 | * Must be called with softirqs disabled. | ||
330 | */ | ||
331 | static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) | ||
332 | { | ||
333 | unsigned int nud_state; | ||
334 | |||
335 | spin_lock(&e->lock); /* avoid race with t4_l2t_free */ | ||
336 | if (neigh != e->neigh) | ||
337 | neigh_replace(e, neigh); | ||
338 | nud_state = neigh->nud_state; | ||
339 | if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || | ||
340 | !(nud_state & NUD_VALID)) | ||
341 | e->state = L2T_STATE_RESOLVING; | ||
342 | else if (nud_state & NUD_CONNECTED) | ||
343 | e->state = L2T_STATE_VALID; | ||
344 | else | ||
345 | e->state = L2T_STATE_STALE; | ||
346 | spin_unlock(&e->lock); | ||
347 | } | ||
348 | |||
349 | struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, | ||
350 | const struct net_device *physdev, | ||
351 | unsigned int priority) | ||
352 | { | ||
353 | u8 lport; | ||
354 | u16 vlan; | ||
355 | struct l2t_entry *e; | ||
356 | int addr_len = neigh->tbl->key_len; | ||
357 | u32 *addr = (u32 *)neigh->primary_key; | ||
358 | int ifidx = neigh->dev->ifindex; | ||
359 | int hash = addr_hash(addr, addr_len, ifidx); | ||
360 | |||
361 | if (neigh->dev->flags & IFF_LOOPBACK) | ||
362 | lport = netdev2pinfo(physdev)->tx_chan + 4; | ||
363 | else | ||
364 | lport = netdev2pinfo(physdev)->lport; | ||
365 | |||
366 | if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) | ||
367 | vlan = vlan_dev_vlan_id(neigh->dev); | ||
368 | else | ||
369 | vlan = VLAN_NONE; | ||
370 | |||
371 | write_lock_bh(&d->lock); | ||
372 | for (e = d->l2tab[hash].first; e; e = e->next) | ||
373 | if (!addreq(e, addr) && e->ifindex == ifidx && | ||
374 | e->vlan == vlan && e->lport == lport) { | ||
375 | l2t_hold(d, e); | ||
376 | if (atomic_read(&e->refcnt) == 1) | ||
377 | reuse_entry(e, neigh); | ||
378 | goto done; | ||
379 | } | ||
380 | |||
381 | /* Need to allocate a new entry */ | ||
382 | e = alloc_l2e(d); | ||
383 | if (e) { | ||
384 | spin_lock(&e->lock); /* avoid race with t4_l2t_free */ | ||
385 | e->state = L2T_STATE_RESOLVING; | ||
386 | memcpy(e->addr, addr, addr_len); | ||
387 | e->ifindex = ifidx; | ||
388 | e->hash = hash; | ||
389 | e->lport = lport; | ||
390 | e->v6 = addr_len == 16; | ||
391 | atomic_set(&e->refcnt, 1); | ||
392 | neigh_replace(e, neigh); | ||
393 | e->vlan = vlan; | ||
394 | e->next = d->l2tab[hash].first; | ||
395 | d->l2tab[hash].first = e; | ||
396 | spin_unlock(&e->lock); | ||
397 | } | ||
398 | done: | ||
399 | write_unlock_bh(&d->lock); | ||
400 | return e; | ||
401 | } | ||
402 | EXPORT_SYMBOL(cxgb4_l2t_get); | ||
403 | |||
404 | /* | ||
405 | * Called when address resolution fails for an L2T entry to handle packets | ||
406 | * on the arpq head. If a packet specifies a failure handler it is invoked, | ||
407 | * otherwise the packet is sent to the device. | ||
408 | */ | ||
409 | static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq) | ||
410 | { | ||
411 | while (arpq) { | ||
412 | struct sk_buff *skb = arpq; | ||
413 | const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); | ||
414 | |||
415 | arpq = skb->next; | ||
416 | skb->next = NULL; | ||
417 | if (cb->arp_err_handler) | ||
418 | cb->arp_err_handler(cb->handle, skb); | ||
419 | else | ||
420 | t4_ofld_send(adap, skb); | ||
421 | } | ||
422 | } | ||
423 | |||
424 | /* | ||
425 | * Called when the host's neighbor layer makes a change to some entry that is | ||
426 | * loaded into the HW L2 table. | ||
427 | */ | ||
428 | void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) | ||
429 | { | ||
430 | struct l2t_entry *e; | ||
431 | struct sk_buff *arpq = NULL; | ||
432 | struct l2t_data *d = adap->l2t; | ||
433 | int addr_len = neigh->tbl->key_len; | ||
434 | u32 *addr = (u32 *) neigh->primary_key; | ||
435 | int ifidx = neigh->dev->ifindex; | ||
436 | int hash = addr_hash(addr, addr_len, ifidx); | ||
437 | |||
438 | read_lock_bh(&d->lock); | ||
439 | for (e = d->l2tab[hash].first; e; e = e->next) | ||
440 | if (!addreq(e, addr) && e->ifindex == ifidx) { | ||
441 | spin_lock(&e->lock); | ||
442 | if (atomic_read(&e->refcnt)) | ||
443 | goto found; | ||
444 | spin_unlock(&e->lock); | ||
445 | break; | ||
446 | } | ||
447 | read_unlock_bh(&d->lock); | ||
448 | return; | ||
449 | |||
450 | found: | ||
451 | read_unlock(&d->lock); | ||
452 | |||
453 | if (neigh != e->neigh) | ||
454 | neigh_replace(e, neigh); | ||
455 | |||
456 | if (e->state == L2T_STATE_RESOLVING) { | ||
457 | if (neigh->nud_state & NUD_FAILED) { | ||
458 | arpq = e->arpq_head; | ||
459 | e->arpq_head = e->arpq_tail = NULL; | ||
460 | } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && | ||
461 | e->arpq_head) { | ||
462 | write_l2e(adap, e, 1); | ||
463 | } | ||
464 | } else { | ||
465 | e->state = neigh->nud_state & NUD_CONNECTED ? | ||
466 | L2T_STATE_VALID : L2T_STATE_STALE; | ||
467 | if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) | ||
468 | write_l2e(adap, e, 0); | ||
469 | } | ||
470 | |||
471 | spin_unlock_bh(&e->lock); | ||
472 | |||
473 | if (arpq) | ||
474 | handle_failed_resolution(adap, arpq); | ||
475 | } | ||
476 | |||
477 | /* | ||
478 | * Allocate an L2T entry for use by a switching rule. Such entries need to be | ||
479 | * explicitly freed and while busy they are not on any hash chain, so normal | ||
480 | * address resolution updates do not see them. | ||
481 | */ | ||
482 | struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d) | ||
483 | { | ||
484 | struct l2t_entry *e; | ||
485 | |||
486 | write_lock_bh(&d->lock); | ||
487 | e = alloc_l2e(d); | ||
488 | if (e) { | ||
489 | spin_lock(&e->lock); /* avoid race with t4_l2t_free */ | ||
490 | e->state = L2T_STATE_SWITCHING; | ||
491 | atomic_set(&e->refcnt, 1); | ||
492 | spin_unlock(&e->lock); | ||
493 | } | ||
494 | write_unlock_bh(&d->lock); | ||
495 | return e; | ||
496 | } | ||
497 | |||
498 | /* | ||
499 | * Sets/updates the contents of a switching L2T entry that has been allocated | ||
500 | * with an earlier call to @t4_l2t_alloc_switching. | ||
501 | */ | ||
502 | int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan, | ||
503 | u8 port, u8 *eth_addr) | ||
504 | { | ||
505 | e->vlan = vlan; | ||
506 | e->lport = port; | ||
507 | memcpy(e->dmac, eth_addr, ETH_ALEN); | ||
508 | return write_l2e(adap, e, 0); | ||
509 | } | ||
510 | |||
511 | struct l2t_data *t4_init_l2t(void) | ||
512 | { | ||
513 | int i; | ||
514 | struct l2t_data *d; | ||
515 | |||
516 | d = t4_alloc_mem(sizeof(*d)); | ||
517 | if (!d) | ||
518 | return NULL; | ||
519 | |||
520 | d->rover = d->l2tab; | ||
521 | atomic_set(&d->nfree, L2T_SIZE); | ||
522 | rwlock_init(&d->lock); | ||
523 | |||
524 | for (i = 0; i < L2T_SIZE; ++i) { | ||
525 | d->l2tab[i].idx = i; | ||
526 | d->l2tab[i].state = L2T_STATE_UNUSED; | ||
527 | spin_lock_init(&d->l2tab[i].lock); | ||
528 | atomic_set(&d->l2tab[i].refcnt, 0); | ||
529 | } | ||
530 | return d; | ||
531 | } | ||
532 | |||
533 | #include <linux/module.h> | ||
534 | #include <linux/debugfs.h> | ||
535 | #include <linux/seq_file.h> | ||
536 | |||
537 | static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) | ||
538 | { | ||
539 | struct l2t_entry *l2tab = seq->private; | ||
540 | |||
541 | return pos >= L2T_SIZE ? NULL : &l2tab[pos]; | ||
542 | } | ||
543 | |||
544 | static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) | ||
545 | { | ||
546 | return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; | ||
547 | } | ||
548 | |||
549 | static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) | ||
550 | { | ||
551 | v = l2t_get_idx(seq, *pos); | ||
552 | if (v) | ||
553 | ++*pos; | ||
554 | return v; | ||
555 | } | ||
556 | |||
557 | static void l2t_seq_stop(struct seq_file *seq, void *v) | ||
558 | { | ||
559 | } | ||
560 | |||
561 | static char l2e_state(const struct l2t_entry *e) | ||
562 | { | ||
563 | switch (e->state) { | ||
564 | case L2T_STATE_VALID: return 'V'; | ||
565 | case L2T_STATE_STALE: return 'S'; | ||
566 | case L2T_STATE_SYNC_WRITE: return 'W'; | ||
567 | case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R'; | ||
568 | case L2T_STATE_SWITCHING: return 'X'; | ||
569 | default: | ||
570 | return 'U'; | ||
571 | } | ||
572 | } | ||
573 | |||
574 | static int l2t_seq_show(struct seq_file *seq, void *v) | ||
575 | { | ||
576 | if (v == SEQ_START_TOKEN) | ||
577 | seq_puts(seq, " Idx IP address " | ||
578 | "Ethernet address VLAN/P LP State Users Port\n"); | ||
579 | else { | ||
580 | char ip[60]; | ||
581 | struct l2t_entry *e = v; | ||
582 | |||
583 | spin_lock_bh(&e->lock); | ||
584 | if (e->state == L2T_STATE_SWITCHING) | ||
585 | ip[0] = '\0'; | ||
586 | else | ||
587 | sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); | ||
588 | seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n", | ||
589 | e->idx, ip, e->dmac, | ||
590 | e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, | ||
591 | l2e_state(e), atomic_read(&e->refcnt), | ||
592 | e->neigh ? e->neigh->dev->name : ""); | ||
593 | spin_unlock_bh(&e->lock); | ||
594 | } | ||
595 | return 0; | ||
596 | } | ||
597 | |||
598 | static const struct seq_operations l2t_seq_ops = { | ||
599 | .start = l2t_seq_start, | ||
600 | .next = l2t_seq_next, | ||
601 | .stop = l2t_seq_stop, | ||
602 | .show = l2t_seq_show | ||
603 | }; | ||
604 | |||
605 | static int l2t_seq_open(struct inode *inode, struct file *file) | ||
606 | { | ||
607 | int rc = seq_open(file, &l2t_seq_ops); | ||
608 | |||
609 | if (!rc) { | ||
610 | struct adapter *adap = inode->i_private; | ||
611 | struct seq_file *seq = file->private_data; | ||
612 | |||
613 | seq->private = adap->l2t->l2tab; | ||
614 | } | ||
615 | return rc; | ||
616 | } | ||
617 | |||
618 | const struct file_operations t4_l2t_fops = { | ||
619 | .owner = THIS_MODULE, | ||
620 | .open = l2t_seq_open, | ||
621 | .read = seq_read, | ||
622 | .llseek = seq_lseek, | ||
623 | .release = seq_release, | ||
624 | }; | ||