diff options
Diffstat (limited to 'drivers/net/chelsio/espi.c')
-rw-r--r-- | drivers/net/chelsio/espi.c | 386 |
1 files changed, 386 insertions, 0 deletions
diff --git a/drivers/net/chelsio/espi.c b/drivers/net/chelsio/espi.c new file mode 100644 index 000000000000..7ec2dc7bafac --- /dev/null +++ b/drivers/net/chelsio/espi.c | |||
@@ -0,0 +1,386 @@ | |||
1 | /***************************************************************************** | ||
2 | * * | ||
3 | * File: espi.c * | ||
4 | * $Revision: 1.9 $ * | ||
5 | * $Date: 2005/03/23 07:41:27 $ * | ||
6 | * Description: * | ||
7 | * Ethernet SPI functionality. * | ||
8 | * part of the Chelsio 10Gb Ethernet Driver. * | ||
9 | * * | ||
10 | * This program is free software; you can redistribute it and/or modify * | ||
11 | * it under the terms of the GNU General Public License, version 2, as * | ||
12 | * published by the Free Software Foundation. * | ||
13 | * * | ||
14 | * You should have received a copy of the GNU General Public License along * | ||
15 | * with this program; if not, write to the Free Software Foundation, Inc., * | ||
16 | * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * | ||
17 | * * | ||
18 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * | ||
19 | * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * | ||
20 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * | ||
21 | * * | ||
22 | * http://www.chelsio.com * | ||
23 | * * | ||
24 | * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * | ||
25 | * All rights reserved. * | ||
26 | * * | ||
27 | * Maintainers: maintainers@chelsio.com * | ||
28 | * * | ||
29 | * Authors: Dimitrios Michailidis <dm@chelsio.com> * | ||
30 | * Tina Yang <tainay@chelsio.com> * | ||
31 | * Felix Marti <felix@chelsio.com> * | ||
32 | * Scott Bardone <sbardone@chelsio.com> * | ||
33 | * Kurt Ottaway <kottaway@chelsio.com> * | ||
34 | * Frank DiMambro <frank@chelsio.com> * | ||
35 | * * | ||
36 | * History: * | ||
37 | * * | ||
38 | ****************************************************************************/ | ||
39 | |||
40 | #include "common.h" | ||
41 | #include "regs.h" | ||
42 | #include "espi.h" | ||
43 | |||
44 | struct peespi { | ||
45 | adapter_t *adapter; | ||
46 | struct espi_intr_counts intr_cnt; | ||
47 | u32 misc_ctrl; | ||
48 | spinlock_t lock; | ||
49 | }; | ||
50 | |||
51 | #define ESPI_INTR_MASK (F_DIP4ERR | F_RXDROP | F_TXDROP | F_RXOVERFLOW | \ | ||
52 | F_RAMPARITYERR | F_DIP2PARITYERR) | ||
53 | #define MON_MASK (V_MONITORED_PORT_NUM(3) | F_MONITORED_DIRECTION \ | ||
54 | | F_MONITORED_INTERFACE) | ||
55 | |||
56 | #define TRICN_CNFG 14 | ||
57 | #define TRICN_CMD_READ 0x11 | ||
58 | #define TRICN_CMD_WRITE 0x21 | ||
59 | #define TRICN_CMD_ATTEMPTS 10 | ||
60 | |||
61 | static int tricn_write(adapter_t *adapter, int bundle_addr, int module_addr, | ||
62 | int ch_addr, int reg_offset, u32 wr_data) | ||
63 | { | ||
64 | int busy, attempts = TRICN_CMD_ATTEMPTS; | ||
65 | |||
66 | t1_write_reg_4(adapter, A_ESPI_CMD_ADDR, V_WRITE_DATA(wr_data) | | ||
67 | V_REGISTER_OFFSET(reg_offset) | | ||
68 | V_CHANNEL_ADDR(ch_addr) | V_MODULE_ADDR(module_addr) | | ||
69 | V_BUNDLE_ADDR(bundle_addr) | | ||
70 | V_SPI4_COMMAND(TRICN_CMD_WRITE)); | ||
71 | t1_write_reg_4(adapter, A_ESPI_GOSTAT, 0); | ||
72 | |||
73 | do { | ||
74 | busy = t1_read_reg_4(adapter, A_ESPI_GOSTAT) & F_ESPI_CMD_BUSY; | ||
75 | } while (busy && --attempts); | ||
76 | |||
77 | if (busy) | ||
78 | CH_ERR("%s: TRICN write timed out\n", adapter->name); | ||
79 | |||
80 | return busy; | ||
81 | } | ||
82 | |||
83 | /* 1. Deassert rx_reset_core. */ | ||
84 | /* 2. Program TRICN_CNFG registers. */ | ||
85 | /* 3. Deassert rx_reset_link */ | ||
86 | static int tricn_init(adapter_t *adapter) | ||
87 | { | ||
88 | int i = 0; | ||
89 | int sme = 1; | ||
90 | int stat = 0; | ||
91 | int timeout = 0; | ||
92 | int is_ready = 0; | ||
93 | int dynamic_deskew = 0; | ||
94 | |||
95 | if (dynamic_deskew) | ||
96 | sme = 0; | ||
97 | |||
98 | |||
99 | /* 1 */ | ||
100 | timeout=1000; | ||
101 | do { | ||
102 | stat = t1_read_reg_4(adapter, A_ESPI_RX_RESET); | ||
103 | is_ready = (stat & 0x4); | ||
104 | timeout--; | ||
105 | udelay(5); | ||
106 | } while (!is_ready || (timeout==0)); | ||
107 | t1_write_reg_4(adapter, A_ESPI_RX_RESET, 0x2); | ||
108 | if (timeout==0) | ||
109 | { | ||
110 | CH_ERR("ESPI : ERROR : Timeout tricn_init() \n"); | ||
111 | t1_fatal_err(adapter); | ||
112 | } | ||
113 | |||
114 | /* 2 */ | ||
115 | if (sme) { | ||
116 | tricn_write(adapter, 0, 0, 0, TRICN_CNFG, 0x81); | ||
117 | tricn_write(adapter, 0, 1, 0, TRICN_CNFG, 0x81); | ||
118 | tricn_write(adapter, 0, 2, 0, TRICN_CNFG, 0x81); | ||
119 | } | ||
120 | for (i=1; i<= 8; i++) tricn_write(adapter, 0, 0, i, TRICN_CNFG, 0xf1); | ||
121 | for (i=1; i<= 2; i++) tricn_write(adapter, 0, 1, i, TRICN_CNFG, 0xf1); | ||
122 | for (i=1; i<= 3; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xe1); | ||
123 | for (i=4; i<= 4; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xf1); | ||
124 | for (i=5; i<= 5; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xe1); | ||
125 | for (i=6; i<= 6; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xf1); | ||
126 | for (i=7; i<= 7; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0x80); | ||
127 | for (i=8; i<= 8; i++) tricn_write(adapter, 0, 2, i, TRICN_CNFG, 0xf1); | ||
128 | |||
129 | /* 3 */ | ||
130 | t1_write_reg_4(adapter, A_ESPI_RX_RESET, 0x3); | ||
131 | |||
132 | return 0; | ||
133 | } | ||
134 | |||
135 | void t1_espi_intr_enable(struct peespi *espi) | ||
136 | { | ||
137 | u32 enable, pl_intr = t1_read_reg_4(espi->adapter, A_PL_ENABLE); | ||
138 | |||
139 | /* | ||
140 | * Cannot enable ESPI interrupts on T1B because HW asserts the | ||
141 | * interrupt incorrectly, namely the driver gets ESPI interrupts | ||
142 | * but no data is actually dropped (can verify this reading the ESPI | ||
143 | * drop registers). Also, once the ESPI interrupt is asserted it | ||
144 | * cannot be cleared (HW bug). | ||
145 | */ | ||
146 | enable = t1_is_T1B(espi->adapter) ? 0 : ESPI_INTR_MASK; | ||
147 | t1_write_reg_4(espi->adapter, A_ESPI_INTR_ENABLE, enable); | ||
148 | t1_write_reg_4(espi->adapter, A_PL_ENABLE, pl_intr | F_PL_INTR_ESPI); | ||
149 | } | ||
150 | |||
151 | void t1_espi_intr_clear(struct peespi *espi) | ||
152 | { | ||
153 | t1_write_reg_4(espi->adapter, A_ESPI_INTR_STATUS, 0xffffffff); | ||
154 | t1_write_reg_4(espi->adapter, A_PL_CAUSE, F_PL_INTR_ESPI); | ||
155 | } | ||
156 | |||
157 | void t1_espi_intr_disable(struct peespi *espi) | ||
158 | { | ||
159 | u32 pl_intr = t1_read_reg_4(espi->adapter, A_PL_ENABLE); | ||
160 | |||
161 | t1_write_reg_4(espi->adapter, A_ESPI_INTR_ENABLE, 0); | ||
162 | t1_write_reg_4(espi->adapter, A_PL_ENABLE, pl_intr & ~F_PL_INTR_ESPI); | ||
163 | } | ||
164 | |||
165 | int t1_espi_intr_handler(struct peespi *espi) | ||
166 | { | ||
167 | u32 cnt; | ||
168 | u32 status = t1_read_reg_4(espi->adapter, A_ESPI_INTR_STATUS); | ||
169 | |||
170 | if (status & F_DIP4ERR) | ||
171 | espi->intr_cnt.DIP4_err++; | ||
172 | if (status & F_RXDROP) | ||
173 | espi->intr_cnt.rx_drops++; | ||
174 | if (status & F_TXDROP) | ||
175 | espi->intr_cnt.tx_drops++; | ||
176 | if (status & F_RXOVERFLOW) | ||
177 | espi->intr_cnt.rx_ovflw++; | ||
178 | if (status & F_RAMPARITYERR) | ||
179 | espi->intr_cnt.parity_err++; | ||
180 | if (status & F_DIP2PARITYERR) { | ||
181 | espi->intr_cnt.DIP2_parity_err++; | ||
182 | |||
183 | /* | ||
184 | * Must read the error count to clear the interrupt | ||
185 | * that it causes. | ||
186 | */ | ||
187 | cnt = t1_read_reg_4(espi->adapter, A_ESPI_DIP2_ERR_COUNT); | ||
188 | } | ||
189 | |||
190 | /* | ||
191 | * For T1B we need to write 1 to clear ESPI interrupts. For T2+ we | ||
192 | * write the status as is. | ||
193 | */ | ||
194 | if (status && t1_is_T1B(espi->adapter)) | ||
195 | status = 1; | ||
196 | t1_write_reg_4(espi->adapter, A_ESPI_INTR_STATUS, status); | ||
197 | return 0; | ||
198 | } | ||
199 | |||
200 | static void espi_setup_for_pm3393(adapter_t *adapter) | ||
201 | { | ||
202 | u32 wmark = t1_is_T1B(adapter) ? 0x4000 : 0x3200; | ||
203 | |||
204 | t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN0, 0x1f4); | ||
205 | t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN1, 0x1f4); | ||
206 | t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN2, 0x1f4); | ||
207 | t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN3, 0x1f4); | ||
208 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK, 0x100); | ||
209 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK, wmark); | ||
210 | t1_write_reg_4(adapter, A_ESPI_CALENDAR_LENGTH, 3); | ||
211 | t1_write_reg_4(adapter, A_ESPI_TRAIN, 0x08000008); | ||
212 | t1_write_reg_4(adapter, A_PORT_CONFIG, | ||
213 | V_RX_NPORTS(1) | V_TX_NPORTS(1)); | ||
214 | } | ||
215 | |||
216 | static void espi_setup_for_vsc7321(adapter_t *adapter) | ||
217 | { | ||
218 | u32 wmark = t1_is_T1B(adapter) ? 0x4000 : 0x3200; | ||
219 | |||
220 | t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN0, 0x1f4); | ||
221 | t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN1, 0x1f4); | ||
222 | t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN2, 0x1f4); | ||
223 | t1_write_reg_4(adapter, A_ESPI_SCH_TOKEN3, 0x1f4); | ||
224 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK, 0x100); | ||
225 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK, wmark); | ||
226 | t1_write_reg_4(adapter, A_ESPI_CALENDAR_LENGTH, 3); | ||
227 | t1_write_reg_4(adapter, A_ESPI_TRAIN, 0x08000008); | ||
228 | t1_write_reg_4(adapter, A_PORT_CONFIG, | ||
229 | V_RX_NPORTS(1) | V_TX_NPORTS(1)); | ||
230 | } | ||
231 | |||
232 | /* | ||
233 | * Note that T1B requires at least 2 ports for IXF1010 due to a HW bug. | ||
234 | */ | ||
235 | static void espi_setup_for_ixf1010(adapter_t *adapter, int nports) | ||
236 | { | ||
237 | t1_write_reg_4(adapter, A_ESPI_CALENDAR_LENGTH, 1); | ||
238 | if (nports == 4) { | ||
239 | if (is_T2(adapter)) { | ||
240 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK, | ||
241 | 0xf00); | ||
242 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK, | ||
243 | 0x3c0); | ||
244 | } else { | ||
245 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK, | ||
246 | 0x7ff); | ||
247 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK, | ||
248 | 0x1ff); | ||
249 | } | ||
250 | } else { | ||
251 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_FULL_WATERMARK, | ||
252 | 0x1fff); | ||
253 | t1_write_reg_4(adapter, A_ESPI_RX_FIFO_ALMOST_EMPTY_WATERMARK, | ||
254 | 0x7ff); | ||
255 | } | ||
256 | t1_write_reg_4(adapter, A_PORT_CONFIG, | ||
257 | V_RX_NPORTS(nports) | V_TX_NPORTS(nports)); | ||
258 | } | ||
259 | |||
260 | /* T2 Init part -- */ | ||
261 | /* 1. Set T_ESPI_MISCCTRL_ADDR */ | ||
262 | /* 2. Init ESPI registers. */ | ||
263 | /* 3. Init TriCN Hard Macro */ | ||
264 | int t1_espi_init(struct peespi *espi, int mac_type, int nports) | ||
265 | { | ||
266 | u32 status_enable_extra = 0; | ||
267 | adapter_t *adapter = espi->adapter; | ||
268 | u32 cnt; | ||
269 | u32 status, burstval = 0x800100; | ||
270 | |||
271 | /* Disable ESPI training. MACs that can handle it enable it below. */ | ||
272 | t1_write_reg_4(adapter, A_ESPI_TRAIN, 0); | ||
273 | |||
274 | if (is_T2(adapter)) { | ||
275 | t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL, | ||
276 | V_OUT_OF_SYNC_COUNT(4) | | ||
277 | V_DIP2_PARITY_ERR_THRES(3) | V_DIP4_THRES(1)); | ||
278 | if (nports == 4) { | ||
279 | /* T204: maxburst1 = 0x40, maxburst2 = 0x20 */ | ||
280 | burstval = 0x200040; | ||
281 | } | ||
282 | } | ||
283 | t1_write_reg_4(adapter, A_ESPI_MAXBURST1_MAXBURST2, burstval); | ||
284 | |||
285 | if (mac_type == CHBT_MAC_PM3393) | ||
286 | espi_setup_for_pm3393(adapter); | ||
287 | else if (mac_type == CHBT_MAC_VSC7321) | ||
288 | espi_setup_for_vsc7321(adapter); | ||
289 | else if (mac_type == CHBT_MAC_IXF1010) { | ||
290 | status_enable_extra = F_INTEL1010MODE; | ||
291 | espi_setup_for_ixf1010(adapter, nports); | ||
292 | } else | ||
293 | return -1; | ||
294 | |||
295 | /* | ||
296 | * Make sure any pending interrupts from the SPI are | ||
297 | * Cleared before enabling the interrupt. | ||
298 | */ | ||
299 | t1_write_reg_4(espi->adapter, A_ESPI_INTR_ENABLE, ESPI_INTR_MASK); | ||
300 | status = t1_read_reg_4(espi->adapter, A_ESPI_INTR_STATUS); | ||
301 | if (status & F_DIP2PARITYERR) { | ||
302 | cnt = t1_read_reg_4(espi->adapter, A_ESPI_DIP2_ERR_COUNT); | ||
303 | } | ||
304 | |||
305 | /* | ||
306 | * For T1B we need to write 1 to clear ESPI interrupts. For T2+ we | ||
307 | * write the status as is. | ||
308 | */ | ||
309 | if (status && t1_is_T1B(espi->adapter)) | ||
310 | status = 1; | ||
311 | t1_write_reg_4(espi->adapter, A_ESPI_INTR_STATUS, status); | ||
312 | |||
313 | t1_write_reg_4(adapter, A_ESPI_FIFO_STATUS_ENABLE, | ||
314 | status_enable_extra | F_RXSTATUSENABLE); | ||
315 | |||
316 | if (is_T2(adapter)) { | ||
317 | tricn_init(adapter); | ||
318 | /* | ||
319 | * Always position the control at the 1st port egress IN | ||
320 | * (sop,eop) counter to reduce PIOs for T/N210 workaround. | ||
321 | */ | ||
322 | espi->misc_ctrl = (t1_read_reg_4(adapter, A_ESPI_MISC_CONTROL) | ||
323 | & ~MON_MASK) | (F_MONITORED_DIRECTION | ||
324 | | F_MONITORED_INTERFACE); | ||
325 | t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL, espi->misc_ctrl); | ||
326 | spin_lock_init(&espi->lock); | ||
327 | } | ||
328 | |||
329 | return 0; | ||
330 | } | ||
331 | |||
332 | void t1_espi_destroy(struct peespi *espi) | ||
333 | { | ||
334 | kfree(espi); | ||
335 | } | ||
336 | |||
337 | struct peespi *t1_espi_create(adapter_t *adapter) | ||
338 | { | ||
339 | struct peespi *espi = kmalloc(sizeof(*espi), GFP_KERNEL); | ||
340 | |||
341 | memset(espi, 0, sizeof(*espi)); | ||
342 | |||
343 | if (espi) | ||
344 | espi->adapter = adapter; | ||
345 | return espi; | ||
346 | } | ||
347 | |||
348 | void t1_espi_set_misc_ctrl(adapter_t *adapter, u32 val) | ||
349 | { | ||
350 | struct peespi *espi = adapter->espi; | ||
351 | |||
352 | if (!is_T2(adapter)) | ||
353 | return; | ||
354 | spin_lock(&espi->lock); | ||
355 | espi->misc_ctrl = (val & ~MON_MASK) | | ||
356 | (espi->misc_ctrl & MON_MASK); | ||
357 | t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL, espi->misc_ctrl); | ||
358 | spin_unlock(&espi->lock); | ||
359 | } | ||
360 | |||
361 | u32 t1_espi_get_mon(adapter_t *adapter, u32 addr, u8 wait) | ||
362 | { | ||
363 | struct peespi *espi = adapter->espi; | ||
364 | u32 sel; | ||
365 | |||
366 | if (!is_T2(adapter)) | ||
367 | return 0; | ||
368 | sel = V_MONITORED_PORT_NUM((addr & 0x3c) >> 2); | ||
369 | if (!wait) { | ||
370 | if (!spin_trylock(&espi->lock)) | ||
371 | return 0; | ||
372 | } | ||
373 | else | ||
374 | spin_lock(&espi->lock); | ||
375 | if ((sel != (espi->misc_ctrl & MON_MASK))) { | ||
376 | t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL, | ||
377 | ((espi->misc_ctrl & ~MON_MASK) | sel)); | ||
378 | sel = t1_read_reg_4(adapter, A_ESPI_SCH_TOKEN3); | ||
379 | t1_write_reg_4(adapter, A_ESPI_MISC_CONTROL, | ||
380 | espi->misc_ctrl); | ||
381 | } | ||
382 | else | ||
383 | sel = t1_read_reg_4(adapter, A_ESPI_SCH_TOKEN3); | ||
384 | spin_unlock(&espi->lock); | ||
385 | return sel; | ||
386 | } | ||