diff options
Diffstat (limited to 'drivers/net/cassini.c')
-rw-r--r-- | drivers/net/cassini.c | 5237 |
1 files changed, 5237 insertions, 0 deletions
diff --git a/drivers/net/cassini.c b/drivers/net/cassini.c new file mode 100644 index 000000000000..2e617424d3fb --- /dev/null +++ b/drivers/net/cassini.c | |||
@@ -0,0 +1,5237 @@ | |||
1 | /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. | ||
2 | * | ||
3 | * Copyright (C) 2004 Sun Microsystems Inc. | ||
4 | * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public License as | ||
8 | * published by the Free Software Foundation; either version 2 of the | ||
9 | * License, or (at your option) any later version. | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | * GNU General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU General Public License | ||
17 | * along with this program; if not, write to the Free Software | ||
18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | ||
19 | * 02111-1307, USA. | ||
20 | * | ||
21 | * This driver uses the sungem driver (c) David Miller | ||
22 | * (davem@redhat.com) as its basis. | ||
23 | * | ||
24 | * The cassini chip has a number of features that distinguish it from | ||
25 | * the gem chip: | ||
26 | * 4 transmit descriptor rings that are used for either QoS (VLAN) or | ||
27 | * load balancing (non-VLAN mode) | ||
28 | * batching of multiple packets | ||
29 | * multiple CPU dispatching | ||
30 | * page-based RX descriptor engine with separate completion rings | ||
31 | * Gigabit support (GMII and PCS interface) | ||
32 | * MIF link up/down detection works | ||
33 | * | ||
34 | * RX is handled by page sized buffers that are attached as fragments to | ||
35 | * the skb. here's what's done: | ||
36 | * -- driver allocates pages at a time and keeps reference counts | ||
37 | * on them. | ||
38 | * -- the upper protocol layers assume that the header is in the skb | ||
39 | * itself. as a result, cassini will copy a small amount (64 bytes) | ||
40 | * to make them happy. | ||
41 | * -- driver appends the rest of the data pages as frags to skbuffs | ||
42 | * and increments the reference count | ||
43 | * -- on page reclamation, the driver swaps the page with a spare page. | ||
44 | * if that page is still in use, it frees its reference to that page, | ||
45 | * and allocates a new page for use. otherwise, it just recycles the | ||
46 | * the page. | ||
47 | * | ||
48 | * NOTE: cassini can parse the header. however, it's not worth it | ||
49 | * as long as the network stack requires a header copy. | ||
50 | * | ||
51 | * TX has 4 queues. currently these queues are used in a round-robin | ||
52 | * fashion for load balancing. They can also be used for QoS. for that | ||
53 | * to work, however, QoS information needs to be exposed down to the driver | ||
54 | * level so that subqueues get targetted to particular transmit rings. | ||
55 | * alternatively, the queues can be configured via use of the all-purpose | ||
56 | * ioctl. | ||
57 | * | ||
58 | * RX DATA: the rx completion ring has all the info, but the rx desc | ||
59 | * ring has all of the data. RX can conceivably come in under multiple | ||
60 | * interrupts, but the INT# assignment needs to be set up properly by | ||
61 | * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do | ||
62 | * that. also, the two descriptor rings are designed to distinguish between | ||
63 | * encrypted and non-encrypted packets, but we use them for buffering | ||
64 | * instead. | ||
65 | * | ||
66 | * by default, the selective clear mask is set up to process rx packets. | ||
67 | */ | ||
68 | |||
69 | #include <linux/config.h> | ||
70 | #include <linux/version.h> | ||
71 | |||
72 | #include <linux/module.h> | ||
73 | #include <linux/kernel.h> | ||
74 | #include <linux/types.h> | ||
75 | #include <linux/compiler.h> | ||
76 | #include <linux/slab.h> | ||
77 | #include <linux/delay.h> | ||
78 | #include <linux/init.h> | ||
79 | #include <linux/ioport.h> | ||
80 | #include <linux/pci.h> | ||
81 | #include <linux/mm.h> | ||
82 | #include <linux/highmem.h> | ||
83 | #include <linux/list.h> | ||
84 | #include <linux/dma-mapping.h> | ||
85 | |||
86 | #include <linux/netdevice.h> | ||
87 | #include <linux/etherdevice.h> | ||
88 | #include <linux/skbuff.h> | ||
89 | #include <linux/ethtool.h> | ||
90 | #include <linux/crc32.h> | ||
91 | #include <linux/random.h> | ||
92 | #include <linux/mii.h> | ||
93 | #include <linux/ip.h> | ||
94 | #include <linux/tcp.h> | ||
95 | |||
96 | #include <net/checksum.h> | ||
97 | |||
98 | #include <asm/atomic.h> | ||
99 | #include <asm/system.h> | ||
100 | #include <asm/io.h> | ||
101 | #include <asm/byteorder.h> | ||
102 | #include <asm/uaccess.h> | ||
103 | |||
104 | #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ) | ||
105 | #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ) | ||
106 | #define CAS_NCPUS num_online_cpus() | ||
107 | |||
108 | #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL) | ||
109 | #define USE_NAPI | ||
110 | #define cas_skb_release(x) netif_receive_skb(x) | ||
111 | #else | ||
112 | #define cas_skb_release(x) netif_rx(x) | ||
113 | #endif | ||
114 | |||
115 | /* select which firmware to use */ | ||
116 | #define USE_HP_WORKAROUND | ||
117 | #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ | ||
118 | #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ | ||
119 | |||
120 | #include "cassini.h" | ||
121 | |||
122 | #define USE_TX_COMPWB /* use completion writeback registers */ | ||
123 | #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ | ||
124 | #define USE_RX_BLANK /* hw interrupt mitigation */ | ||
125 | #undef USE_ENTROPY_DEV /* don't test for entropy device */ | ||
126 | |||
127 | /* NOTE: these aren't useable unless PCI interrupts can be assigned. | ||
128 | * also, we need to make cp->lock finer-grained. | ||
129 | */ | ||
130 | #undef USE_PCI_INTB | ||
131 | #undef USE_PCI_INTC | ||
132 | #undef USE_PCI_INTD | ||
133 | #undef USE_QOS | ||
134 | |||
135 | #undef USE_VPD_DEBUG /* debug vpd information if defined */ | ||
136 | |||
137 | /* rx processing options */ | ||
138 | #define USE_PAGE_ORDER /* specify to allocate large rx pages */ | ||
139 | #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ | ||
140 | #define RX_COPY_ALWAYS 0 /* if 0, use frags */ | ||
141 | #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ | ||
142 | #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ | ||
143 | |||
144 | #define DRV_MODULE_NAME "cassini" | ||
145 | #define PFX DRV_MODULE_NAME ": " | ||
146 | #define DRV_MODULE_VERSION "1.4" | ||
147 | #define DRV_MODULE_RELDATE "1 July 2004" | ||
148 | |||
149 | #define CAS_DEF_MSG_ENABLE \ | ||
150 | (NETIF_MSG_DRV | \ | ||
151 | NETIF_MSG_PROBE | \ | ||
152 | NETIF_MSG_LINK | \ | ||
153 | NETIF_MSG_TIMER | \ | ||
154 | NETIF_MSG_IFDOWN | \ | ||
155 | NETIF_MSG_IFUP | \ | ||
156 | NETIF_MSG_RX_ERR | \ | ||
157 | NETIF_MSG_TX_ERR) | ||
158 | |||
159 | /* length of time before we decide the hardware is borked, | ||
160 | * and dev->tx_timeout() should be called to fix the problem | ||
161 | */ | ||
162 | #define CAS_TX_TIMEOUT (HZ) | ||
163 | #define CAS_LINK_TIMEOUT (22*HZ/10) | ||
164 | #define CAS_LINK_FAST_TIMEOUT (1) | ||
165 | |||
166 | /* timeout values for state changing. these specify the number | ||
167 | * of 10us delays to be used before giving up. | ||
168 | */ | ||
169 | #define STOP_TRIES_PHY 1000 | ||
170 | #define STOP_TRIES 5000 | ||
171 | |||
172 | /* specify a minimum frame size to deal with some fifo issues | ||
173 | * max mtu == 2 * page size - ethernet header - 64 - swivel = | ||
174 | * 2 * page_size - 0x50 | ||
175 | */ | ||
176 | #define CAS_MIN_FRAME 97 | ||
177 | #define CAS_1000MB_MIN_FRAME 255 | ||
178 | #define CAS_MIN_MTU 60 | ||
179 | #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) | ||
180 | |||
181 | #if 1 | ||
182 | /* | ||
183 | * Eliminate these and use separate atomic counters for each, to | ||
184 | * avoid a race condition. | ||
185 | */ | ||
186 | #else | ||
187 | #define CAS_RESET_MTU 1 | ||
188 | #define CAS_RESET_ALL 2 | ||
189 | #define CAS_RESET_SPARE 3 | ||
190 | #endif | ||
191 | |||
192 | static char version[] __devinitdata = | ||
193 | DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; | ||
194 | |||
195 | MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); | ||
196 | MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); | ||
197 | MODULE_LICENSE("GPL"); | ||
198 | MODULE_PARM(cassini_debug, "i"); | ||
199 | MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); | ||
200 | MODULE_PARM(link_mode, "i"); | ||
201 | MODULE_PARM_DESC(link_mode, "default link mode"); | ||
202 | |||
203 | /* | ||
204 | * Work around for a PCS bug in which the link goes down due to the chip | ||
205 | * being confused and never showing a link status of "up." | ||
206 | */ | ||
207 | #define DEFAULT_LINKDOWN_TIMEOUT 5 | ||
208 | /* | ||
209 | * Value in seconds, for user input. | ||
210 | */ | ||
211 | static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; | ||
212 | MODULE_PARM(linkdown_timeout, "i"); | ||
213 | MODULE_PARM_DESC(linkdown_timeout, | ||
214 | "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); | ||
215 | |||
216 | /* | ||
217 | * value in 'ticks' (units used by jiffies). Set when we init the | ||
218 | * module because 'HZ' in actually a function call on some flavors of | ||
219 | * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. | ||
220 | */ | ||
221 | static int link_transition_timeout; | ||
222 | |||
223 | |||
224 | static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ | ||
225 | static int link_mode; | ||
226 | |||
227 | static u16 link_modes[] __devinitdata = { | ||
228 | BMCR_ANENABLE, /* 0 : autoneg */ | ||
229 | 0, /* 1 : 10bt half duplex */ | ||
230 | BMCR_SPEED100, /* 2 : 100bt half duplex */ | ||
231 | BMCR_FULLDPLX, /* 3 : 10bt full duplex */ | ||
232 | BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ | ||
233 | CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ | ||
234 | }; | ||
235 | |||
236 | static struct pci_device_id cas_pci_tbl[] __devinitdata = { | ||
237 | { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, | ||
238 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
239 | { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, | ||
240 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
241 | { 0, } | ||
242 | }; | ||
243 | |||
244 | MODULE_DEVICE_TABLE(pci, cas_pci_tbl); | ||
245 | |||
246 | static void cas_set_link_modes(struct cas *cp); | ||
247 | |||
248 | static inline void cas_lock_tx(struct cas *cp) | ||
249 | { | ||
250 | int i; | ||
251 | |||
252 | for (i = 0; i < N_TX_RINGS; i++) | ||
253 | spin_lock(&cp->tx_lock[i]); | ||
254 | } | ||
255 | |||
256 | static inline void cas_lock_all(struct cas *cp) | ||
257 | { | ||
258 | spin_lock_irq(&cp->lock); | ||
259 | cas_lock_tx(cp); | ||
260 | } | ||
261 | |||
262 | /* WTZ: QA was finding deadlock problems with the previous | ||
263 | * versions after long test runs with multiple cards per machine. | ||
264 | * See if replacing cas_lock_all with safer versions helps. The | ||
265 | * symptoms QA is reporting match those we'd expect if interrupts | ||
266 | * aren't being properly restored, and we fixed a previous deadlock | ||
267 | * with similar symptoms by using save/restore versions in other | ||
268 | * places. | ||
269 | */ | ||
270 | #define cas_lock_all_save(cp, flags) \ | ||
271 | do { \ | ||
272 | struct cas *xxxcp = (cp); \ | ||
273 | spin_lock_irqsave(&xxxcp->lock, flags); \ | ||
274 | cas_lock_tx(xxxcp); \ | ||
275 | } while (0) | ||
276 | |||
277 | static inline void cas_unlock_tx(struct cas *cp) | ||
278 | { | ||
279 | int i; | ||
280 | |||
281 | for (i = N_TX_RINGS; i > 0; i--) | ||
282 | spin_unlock(&cp->tx_lock[i - 1]); | ||
283 | } | ||
284 | |||
285 | static inline void cas_unlock_all(struct cas *cp) | ||
286 | { | ||
287 | cas_unlock_tx(cp); | ||
288 | spin_unlock_irq(&cp->lock); | ||
289 | } | ||
290 | |||
291 | #define cas_unlock_all_restore(cp, flags) \ | ||
292 | do { \ | ||
293 | struct cas *xxxcp = (cp); \ | ||
294 | cas_unlock_tx(xxxcp); \ | ||
295 | spin_unlock_irqrestore(&xxxcp->lock, flags); \ | ||
296 | } while (0) | ||
297 | |||
298 | static void cas_disable_irq(struct cas *cp, const int ring) | ||
299 | { | ||
300 | /* Make sure we won't get any more interrupts */ | ||
301 | if (ring == 0) { | ||
302 | writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); | ||
303 | return; | ||
304 | } | ||
305 | |||
306 | /* disable completion interrupts and selectively mask */ | ||
307 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | ||
308 | switch (ring) { | ||
309 | #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) | ||
310 | #ifdef USE_PCI_INTB | ||
311 | case 1: | ||
312 | #endif | ||
313 | #ifdef USE_PCI_INTC | ||
314 | case 2: | ||
315 | #endif | ||
316 | #ifdef USE_PCI_INTD | ||
317 | case 3: | ||
318 | #endif | ||
319 | writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, | ||
320 | cp->regs + REG_PLUS_INTRN_MASK(ring)); | ||
321 | break; | ||
322 | #endif | ||
323 | default: | ||
324 | writel(INTRN_MASK_CLEAR_ALL, cp->regs + | ||
325 | REG_PLUS_INTRN_MASK(ring)); | ||
326 | break; | ||
327 | } | ||
328 | } | ||
329 | } | ||
330 | |||
331 | static inline void cas_mask_intr(struct cas *cp) | ||
332 | { | ||
333 | int i; | ||
334 | |||
335 | for (i = 0; i < N_RX_COMP_RINGS; i++) | ||
336 | cas_disable_irq(cp, i); | ||
337 | } | ||
338 | |||
339 | static void cas_enable_irq(struct cas *cp, const int ring) | ||
340 | { | ||
341 | if (ring == 0) { /* all but TX_DONE */ | ||
342 | writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); | ||
343 | return; | ||
344 | } | ||
345 | |||
346 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | ||
347 | switch (ring) { | ||
348 | #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) | ||
349 | #ifdef USE_PCI_INTB | ||
350 | case 1: | ||
351 | #endif | ||
352 | #ifdef USE_PCI_INTC | ||
353 | case 2: | ||
354 | #endif | ||
355 | #ifdef USE_PCI_INTD | ||
356 | case 3: | ||
357 | #endif | ||
358 | writel(INTRN_MASK_RX_EN, cp->regs + | ||
359 | REG_PLUS_INTRN_MASK(ring)); | ||
360 | break; | ||
361 | #endif | ||
362 | default: | ||
363 | break; | ||
364 | } | ||
365 | } | ||
366 | } | ||
367 | |||
368 | static inline void cas_unmask_intr(struct cas *cp) | ||
369 | { | ||
370 | int i; | ||
371 | |||
372 | for (i = 0; i < N_RX_COMP_RINGS; i++) | ||
373 | cas_enable_irq(cp, i); | ||
374 | } | ||
375 | |||
376 | static inline void cas_entropy_gather(struct cas *cp) | ||
377 | { | ||
378 | #ifdef USE_ENTROPY_DEV | ||
379 | if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) | ||
380 | return; | ||
381 | |||
382 | batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), | ||
383 | readl(cp->regs + REG_ENTROPY_IV), | ||
384 | sizeof(uint64_t)*8); | ||
385 | #endif | ||
386 | } | ||
387 | |||
388 | static inline void cas_entropy_reset(struct cas *cp) | ||
389 | { | ||
390 | #ifdef USE_ENTROPY_DEV | ||
391 | if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) | ||
392 | return; | ||
393 | |||
394 | writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, | ||
395 | cp->regs + REG_BIM_LOCAL_DEV_EN); | ||
396 | writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); | ||
397 | writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); | ||
398 | |||
399 | /* if we read back 0x0, we don't have an entropy device */ | ||
400 | if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) | ||
401 | cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; | ||
402 | #endif | ||
403 | } | ||
404 | |||
405 | /* access to the phy. the following assumes that we've initialized the MIF to | ||
406 | * be in frame rather than bit-bang mode | ||
407 | */ | ||
408 | static u16 cas_phy_read(struct cas *cp, int reg) | ||
409 | { | ||
410 | u32 cmd; | ||
411 | int limit = STOP_TRIES_PHY; | ||
412 | |||
413 | cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; | ||
414 | cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); | ||
415 | cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); | ||
416 | cmd |= MIF_FRAME_TURN_AROUND_MSB; | ||
417 | writel(cmd, cp->regs + REG_MIF_FRAME); | ||
418 | |||
419 | /* poll for completion */ | ||
420 | while (limit-- > 0) { | ||
421 | udelay(10); | ||
422 | cmd = readl(cp->regs + REG_MIF_FRAME); | ||
423 | if (cmd & MIF_FRAME_TURN_AROUND_LSB) | ||
424 | return (cmd & MIF_FRAME_DATA_MASK); | ||
425 | } | ||
426 | return 0xFFFF; /* -1 */ | ||
427 | } | ||
428 | |||
429 | static int cas_phy_write(struct cas *cp, int reg, u16 val) | ||
430 | { | ||
431 | int limit = STOP_TRIES_PHY; | ||
432 | u32 cmd; | ||
433 | |||
434 | cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; | ||
435 | cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); | ||
436 | cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); | ||
437 | cmd |= MIF_FRAME_TURN_AROUND_MSB; | ||
438 | cmd |= val & MIF_FRAME_DATA_MASK; | ||
439 | writel(cmd, cp->regs + REG_MIF_FRAME); | ||
440 | |||
441 | /* poll for completion */ | ||
442 | while (limit-- > 0) { | ||
443 | udelay(10); | ||
444 | cmd = readl(cp->regs + REG_MIF_FRAME); | ||
445 | if (cmd & MIF_FRAME_TURN_AROUND_LSB) | ||
446 | return 0; | ||
447 | } | ||
448 | return -1; | ||
449 | } | ||
450 | |||
451 | static void cas_phy_powerup(struct cas *cp) | ||
452 | { | ||
453 | u16 ctl = cas_phy_read(cp, MII_BMCR); | ||
454 | |||
455 | if ((ctl & BMCR_PDOWN) == 0) | ||
456 | return; | ||
457 | ctl &= ~BMCR_PDOWN; | ||
458 | cas_phy_write(cp, MII_BMCR, ctl); | ||
459 | } | ||
460 | |||
461 | static void cas_phy_powerdown(struct cas *cp) | ||
462 | { | ||
463 | u16 ctl = cas_phy_read(cp, MII_BMCR); | ||
464 | |||
465 | if (ctl & BMCR_PDOWN) | ||
466 | return; | ||
467 | ctl |= BMCR_PDOWN; | ||
468 | cas_phy_write(cp, MII_BMCR, ctl); | ||
469 | } | ||
470 | |||
471 | /* cp->lock held. note: the last put_page will free the buffer */ | ||
472 | static int cas_page_free(struct cas *cp, cas_page_t *page) | ||
473 | { | ||
474 | pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, | ||
475 | PCI_DMA_FROMDEVICE); | ||
476 | __free_pages(page->buffer, cp->page_order); | ||
477 | kfree(page); | ||
478 | return 0; | ||
479 | } | ||
480 | |||
481 | #ifdef RX_COUNT_BUFFERS | ||
482 | #define RX_USED_ADD(x, y) ((x)->used += (y)) | ||
483 | #define RX_USED_SET(x, y) ((x)->used = (y)) | ||
484 | #else | ||
485 | #define RX_USED_ADD(x, y) | ||
486 | #define RX_USED_SET(x, y) | ||
487 | #endif | ||
488 | |||
489 | /* local page allocation routines for the receive buffers. jumbo pages | ||
490 | * require at least 8K contiguous and 8K aligned buffers. | ||
491 | */ | ||
492 | static cas_page_t *cas_page_alloc(struct cas *cp, const int flags) | ||
493 | { | ||
494 | cas_page_t *page; | ||
495 | |||
496 | page = kmalloc(sizeof(cas_page_t), flags); | ||
497 | if (!page) | ||
498 | return NULL; | ||
499 | |||
500 | INIT_LIST_HEAD(&page->list); | ||
501 | RX_USED_SET(page, 0); | ||
502 | page->buffer = alloc_pages(flags, cp->page_order); | ||
503 | if (!page->buffer) | ||
504 | goto page_err; | ||
505 | page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, | ||
506 | cp->page_size, PCI_DMA_FROMDEVICE); | ||
507 | return page; | ||
508 | |||
509 | page_err: | ||
510 | kfree(page); | ||
511 | return NULL; | ||
512 | } | ||
513 | |||
514 | /* initialize spare pool of rx buffers, but allocate during the open */ | ||
515 | static void cas_spare_init(struct cas *cp) | ||
516 | { | ||
517 | spin_lock(&cp->rx_inuse_lock); | ||
518 | INIT_LIST_HEAD(&cp->rx_inuse_list); | ||
519 | spin_unlock(&cp->rx_inuse_lock); | ||
520 | |||
521 | spin_lock(&cp->rx_spare_lock); | ||
522 | INIT_LIST_HEAD(&cp->rx_spare_list); | ||
523 | cp->rx_spares_needed = RX_SPARE_COUNT; | ||
524 | spin_unlock(&cp->rx_spare_lock); | ||
525 | } | ||
526 | |||
527 | /* used on close. free all the spare buffers. */ | ||
528 | static void cas_spare_free(struct cas *cp) | ||
529 | { | ||
530 | struct list_head list, *elem, *tmp; | ||
531 | |||
532 | /* free spare buffers */ | ||
533 | INIT_LIST_HEAD(&list); | ||
534 | spin_lock(&cp->rx_spare_lock); | ||
535 | list_splice(&cp->rx_spare_list, &list); | ||
536 | INIT_LIST_HEAD(&cp->rx_spare_list); | ||
537 | spin_unlock(&cp->rx_spare_lock); | ||
538 | list_for_each_safe(elem, tmp, &list) { | ||
539 | cas_page_free(cp, list_entry(elem, cas_page_t, list)); | ||
540 | } | ||
541 | |||
542 | INIT_LIST_HEAD(&list); | ||
543 | #if 1 | ||
544 | /* | ||
545 | * Looks like Adrian had protected this with a different | ||
546 | * lock than used everywhere else to manipulate this list. | ||
547 | */ | ||
548 | spin_lock(&cp->rx_inuse_lock); | ||
549 | list_splice(&cp->rx_inuse_list, &list); | ||
550 | INIT_LIST_HEAD(&cp->rx_inuse_list); | ||
551 | spin_unlock(&cp->rx_inuse_lock); | ||
552 | #else | ||
553 | spin_lock(&cp->rx_spare_lock); | ||
554 | list_splice(&cp->rx_inuse_list, &list); | ||
555 | INIT_LIST_HEAD(&cp->rx_inuse_list); | ||
556 | spin_unlock(&cp->rx_spare_lock); | ||
557 | #endif | ||
558 | list_for_each_safe(elem, tmp, &list) { | ||
559 | cas_page_free(cp, list_entry(elem, cas_page_t, list)); | ||
560 | } | ||
561 | } | ||
562 | |||
563 | /* replenish spares if needed */ | ||
564 | static void cas_spare_recover(struct cas *cp, const int flags) | ||
565 | { | ||
566 | struct list_head list, *elem, *tmp; | ||
567 | int needed, i; | ||
568 | |||
569 | /* check inuse list. if we don't need any more free buffers, | ||
570 | * just free it | ||
571 | */ | ||
572 | |||
573 | /* make a local copy of the list */ | ||
574 | INIT_LIST_HEAD(&list); | ||
575 | spin_lock(&cp->rx_inuse_lock); | ||
576 | list_splice(&cp->rx_inuse_list, &list); | ||
577 | INIT_LIST_HEAD(&cp->rx_inuse_list); | ||
578 | spin_unlock(&cp->rx_inuse_lock); | ||
579 | |||
580 | list_for_each_safe(elem, tmp, &list) { | ||
581 | cas_page_t *page = list_entry(elem, cas_page_t, list); | ||
582 | |||
583 | if (page_count(page->buffer) > 1) | ||
584 | continue; | ||
585 | |||
586 | list_del(elem); | ||
587 | spin_lock(&cp->rx_spare_lock); | ||
588 | if (cp->rx_spares_needed > 0) { | ||
589 | list_add(elem, &cp->rx_spare_list); | ||
590 | cp->rx_spares_needed--; | ||
591 | spin_unlock(&cp->rx_spare_lock); | ||
592 | } else { | ||
593 | spin_unlock(&cp->rx_spare_lock); | ||
594 | cas_page_free(cp, page); | ||
595 | } | ||
596 | } | ||
597 | |||
598 | /* put any inuse buffers back on the list */ | ||
599 | if (!list_empty(&list)) { | ||
600 | spin_lock(&cp->rx_inuse_lock); | ||
601 | list_splice(&list, &cp->rx_inuse_list); | ||
602 | spin_unlock(&cp->rx_inuse_lock); | ||
603 | } | ||
604 | |||
605 | spin_lock(&cp->rx_spare_lock); | ||
606 | needed = cp->rx_spares_needed; | ||
607 | spin_unlock(&cp->rx_spare_lock); | ||
608 | if (!needed) | ||
609 | return; | ||
610 | |||
611 | /* we still need spares, so try to allocate some */ | ||
612 | INIT_LIST_HEAD(&list); | ||
613 | i = 0; | ||
614 | while (i < needed) { | ||
615 | cas_page_t *spare = cas_page_alloc(cp, flags); | ||
616 | if (!spare) | ||
617 | break; | ||
618 | list_add(&spare->list, &list); | ||
619 | i++; | ||
620 | } | ||
621 | |||
622 | spin_lock(&cp->rx_spare_lock); | ||
623 | list_splice(&list, &cp->rx_spare_list); | ||
624 | cp->rx_spares_needed -= i; | ||
625 | spin_unlock(&cp->rx_spare_lock); | ||
626 | } | ||
627 | |||
628 | /* pull a page from the list. */ | ||
629 | static cas_page_t *cas_page_dequeue(struct cas *cp) | ||
630 | { | ||
631 | struct list_head *entry; | ||
632 | int recover; | ||
633 | |||
634 | spin_lock(&cp->rx_spare_lock); | ||
635 | if (list_empty(&cp->rx_spare_list)) { | ||
636 | /* try to do a quick recovery */ | ||
637 | spin_unlock(&cp->rx_spare_lock); | ||
638 | cas_spare_recover(cp, GFP_ATOMIC); | ||
639 | spin_lock(&cp->rx_spare_lock); | ||
640 | if (list_empty(&cp->rx_spare_list)) { | ||
641 | if (netif_msg_rx_err(cp)) | ||
642 | printk(KERN_ERR "%s: no spare buffers " | ||
643 | "available.\n", cp->dev->name); | ||
644 | spin_unlock(&cp->rx_spare_lock); | ||
645 | return NULL; | ||
646 | } | ||
647 | } | ||
648 | |||
649 | entry = cp->rx_spare_list.next; | ||
650 | list_del(entry); | ||
651 | recover = ++cp->rx_spares_needed; | ||
652 | spin_unlock(&cp->rx_spare_lock); | ||
653 | |||
654 | /* trigger the timer to do the recovery */ | ||
655 | if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { | ||
656 | #if 1 | ||
657 | atomic_inc(&cp->reset_task_pending); | ||
658 | atomic_inc(&cp->reset_task_pending_spare); | ||
659 | schedule_work(&cp->reset_task); | ||
660 | #else | ||
661 | atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); | ||
662 | schedule_work(&cp->reset_task); | ||
663 | #endif | ||
664 | } | ||
665 | return list_entry(entry, cas_page_t, list); | ||
666 | } | ||
667 | |||
668 | |||
669 | static void cas_mif_poll(struct cas *cp, const int enable) | ||
670 | { | ||
671 | u32 cfg; | ||
672 | |||
673 | cfg = readl(cp->regs + REG_MIF_CFG); | ||
674 | cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); | ||
675 | |||
676 | if (cp->phy_type & CAS_PHY_MII_MDIO1) | ||
677 | cfg |= MIF_CFG_PHY_SELECT; | ||
678 | |||
679 | /* poll and interrupt on link status change. */ | ||
680 | if (enable) { | ||
681 | cfg |= MIF_CFG_POLL_EN; | ||
682 | cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); | ||
683 | cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); | ||
684 | } | ||
685 | writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, | ||
686 | cp->regs + REG_MIF_MASK); | ||
687 | writel(cfg, cp->regs + REG_MIF_CFG); | ||
688 | } | ||
689 | |||
690 | /* Must be invoked under cp->lock */ | ||
691 | static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) | ||
692 | { | ||
693 | u16 ctl; | ||
694 | #if 1 | ||
695 | int lcntl; | ||
696 | int changed = 0; | ||
697 | int oldstate = cp->lstate; | ||
698 | int link_was_not_down = !(oldstate == link_down); | ||
699 | #endif | ||
700 | /* Setup link parameters */ | ||
701 | if (!ep) | ||
702 | goto start_aneg; | ||
703 | lcntl = cp->link_cntl; | ||
704 | if (ep->autoneg == AUTONEG_ENABLE) | ||
705 | cp->link_cntl = BMCR_ANENABLE; | ||
706 | else { | ||
707 | cp->link_cntl = 0; | ||
708 | if (ep->speed == SPEED_100) | ||
709 | cp->link_cntl |= BMCR_SPEED100; | ||
710 | else if (ep->speed == SPEED_1000) | ||
711 | cp->link_cntl |= CAS_BMCR_SPEED1000; | ||
712 | if (ep->duplex == DUPLEX_FULL) | ||
713 | cp->link_cntl |= BMCR_FULLDPLX; | ||
714 | } | ||
715 | #if 1 | ||
716 | changed = (lcntl != cp->link_cntl); | ||
717 | #endif | ||
718 | start_aneg: | ||
719 | if (cp->lstate == link_up) { | ||
720 | printk(KERN_INFO "%s: PCS link down.\n", | ||
721 | cp->dev->name); | ||
722 | } else { | ||
723 | if (changed) { | ||
724 | printk(KERN_INFO "%s: link configuration changed\n", | ||
725 | cp->dev->name); | ||
726 | } | ||
727 | } | ||
728 | cp->lstate = link_down; | ||
729 | cp->link_transition = LINK_TRANSITION_LINK_DOWN; | ||
730 | if (!cp->hw_running) | ||
731 | return; | ||
732 | #if 1 | ||
733 | /* | ||
734 | * WTZ: If the old state was link_up, we turn off the carrier | ||
735 | * to replicate everything we do elsewhere on a link-down | ||
736 | * event when we were already in a link-up state.. | ||
737 | */ | ||
738 | if (oldstate == link_up) | ||
739 | netif_carrier_off(cp->dev); | ||
740 | if (changed && link_was_not_down) { | ||
741 | /* | ||
742 | * WTZ: This branch will simply schedule a full reset after | ||
743 | * we explicitly changed link modes in an ioctl. See if this | ||
744 | * fixes the link-problems we were having for forced mode. | ||
745 | */ | ||
746 | atomic_inc(&cp->reset_task_pending); | ||
747 | atomic_inc(&cp->reset_task_pending_all); | ||
748 | schedule_work(&cp->reset_task); | ||
749 | cp->timer_ticks = 0; | ||
750 | mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); | ||
751 | return; | ||
752 | } | ||
753 | #endif | ||
754 | if (cp->phy_type & CAS_PHY_SERDES) { | ||
755 | u32 val = readl(cp->regs + REG_PCS_MII_CTRL); | ||
756 | |||
757 | if (cp->link_cntl & BMCR_ANENABLE) { | ||
758 | val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); | ||
759 | cp->lstate = link_aneg; | ||
760 | } else { | ||
761 | if (cp->link_cntl & BMCR_FULLDPLX) | ||
762 | val |= PCS_MII_CTRL_DUPLEX; | ||
763 | val &= ~PCS_MII_AUTONEG_EN; | ||
764 | cp->lstate = link_force_ok; | ||
765 | } | ||
766 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | ||
767 | writel(val, cp->regs + REG_PCS_MII_CTRL); | ||
768 | |||
769 | } else { | ||
770 | cas_mif_poll(cp, 0); | ||
771 | ctl = cas_phy_read(cp, MII_BMCR); | ||
772 | ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | | ||
773 | CAS_BMCR_SPEED1000 | BMCR_ANENABLE); | ||
774 | ctl |= cp->link_cntl; | ||
775 | if (ctl & BMCR_ANENABLE) { | ||
776 | ctl |= BMCR_ANRESTART; | ||
777 | cp->lstate = link_aneg; | ||
778 | } else { | ||
779 | cp->lstate = link_force_ok; | ||
780 | } | ||
781 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | ||
782 | cas_phy_write(cp, MII_BMCR, ctl); | ||
783 | cas_mif_poll(cp, 1); | ||
784 | } | ||
785 | |||
786 | cp->timer_ticks = 0; | ||
787 | mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); | ||
788 | } | ||
789 | |||
790 | /* Must be invoked under cp->lock. */ | ||
791 | static int cas_reset_mii_phy(struct cas *cp) | ||
792 | { | ||
793 | int limit = STOP_TRIES_PHY; | ||
794 | u16 val; | ||
795 | |||
796 | cas_phy_write(cp, MII_BMCR, BMCR_RESET); | ||
797 | udelay(100); | ||
798 | while (limit--) { | ||
799 | val = cas_phy_read(cp, MII_BMCR); | ||
800 | if ((val & BMCR_RESET) == 0) | ||
801 | break; | ||
802 | udelay(10); | ||
803 | } | ||
804 | return (limit <= 0); | ||
805 | } | ||
806 | |||
807 | static void cas_saturn_firmware_load(struct cas *cp) | ||
808 | { | ||
809 | cas_saturn_patch_t *patch = cas_saturn_patch; | ||
810 | |||
811 | cas_phy_powerdown(cp); | ||
812 | |||
813 | /* expanded memory access mode */ | ||
814 | cas_phy_write(cp, DP83065_MII_MEM, 0x0); | ||
815 | |||
816 | /* pointer configuration for new firmware */ | ||
817 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); | ||
818 | cas_phy_write(cp, DP83065_MII_REGD, 0xbd); | ||
819 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); | ||
820 | cas_phy_write(cp, DP83065_MII_REGD, 0x82); | ||
821 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); | ||
822 | cas_phy_write(cp, DP83065_MII_REGD, 0x0); | ||
823 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); | ||
824 | cas_phy_write(cp, DP83065_MII_REGD, 0x39); | ||
825 | |||
826 | /* download new firmware */ | ||
827 | cas_phy_write(cp, DP83065_MII_MEM, 0x1); | ||
828 | cas_phy_write(cp, DP83065_MII_REGE, patch->addr); | ||
829 | while (patch->addr) { | ||
830 | cas_phy_write(cp, DP83065_MII_REGD, patch->val); | ||
831 | patch++; | ||
832 | } | ||
833 | |||
834 | /* enable firmware */ | ||
835 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); | ||
836 | cas_phy_write(cp, DP83065_MII_REGD, 0x1); | ||
837 | } | ||
838 | |||
839 | |||
840 | /* phy initialization */ | ||
841 | static void cas_phy_init(struct cas *cp) | ||
842 | { | ||
843 | u16 val; | ||
844 | |||
845 | /* if we're in MII/GMII mode, set up phy */ | ||
846 | if (CAS_PHY_MII(cp->phy_type)) { | ||
847 | writel(PCS_DATAPATH_MODE_MII, | ||
848 | cp->regs + REG_PCS_DATAPATH_MODE); | ||
849 | |||
850 | cas_mif_poll(cp, 0); | ||
851 | cas_reset_mii_phy(cp); /* take out of isolate mode */ | ||
852 | |||
853 | if (PHY_LUCENT_B0 == cp->phy_id) { | ||
854 | /* workaround link up/down issue with lucent */ | ||
855 | cas_phy_write(cp, LUCENT_MII_REG, 0x8000); | ||
856 | cas_phy_write(cp, MII_BMCR, 0x00f1); | ||
857 | cas_phy_write(cp, LUCENT_MII_REG, 0x0); | ||
858 | |||
859 | } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { | ||
860 | /* workarounds for broadcom phy */ | ||
861 | cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); | ||
862 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); | ||
863 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); | ||
864 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); | ||
865 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); | ||
866 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); | ||
867 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); | ||
868 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); | ||
869 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); | ||
870 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); | ||
871 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); | ||
872 | |||
873 | } else if (PHY_BROADCOM_5411 == cp->phy_id) { | ||
874 | val = cas_phy_read(cp, BROADCOM_MII_REG4); | ||
875 | val = cas_phy_read(cp, BROADCOM_MII_REG4); | ||
876 | if (val & 0x0080) { | ||
877 | /* link workaround */ | ||
878 | cas_phy_write(cp, BROADCOM_MII_REG4, | ||
879 | val & ~0x0080); | ||
880 | } | ||
881 | |||
882 | } else if (cp->cas_flags & CAS_FLAG_SATURN) { | ||
883 | writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? | ||
884 | SATURN_PCFG_FSI : 0x0, | ||
885 | cp->regs + REG_SATURN_PCFG); | ||
886 | |||
887 | /* load firmware to address 10Mbps auto-negotiation | ||
888 | * issue. NOTE: this will need to be changed if the | ||
889 | * default firmware gets fixed. | ||
890 | */ | ||
891 | if (PHY_NS_DP83065 == cp->phy_id) { | ||
892 | cas_saturn_firmware_load(cp); | ||
893 | } | ||
894 | cas_phy_powerup(cp); | ||
895 | } | ||
896 | |||
897 | /* advertise capabilities */ | ||
898 | val = cas_phy_read(cp, MII_BMCR); | ||
899 | val &= ~BMCR_ANENABLE; | ||
900 | cas_phy_write(cp, MII_BMCR, val); | ||
901 | udelay(10); | ||
902 | |||
903 | cas_phy_write(cp, MII_ADVERTISE, | ||
904 | cas_phy_read(cp, MII_ADVERTISE) | | ||
905 | (ADVERTISE_10HALF | ADVERTISE_10FULL | | ||
906 | ADVERTISE_100HALF | ADVERTISE_100FULL | | ||
907 | CAS_ADVERTISE_PAUSE | | ||
908 | CAS_ADVERTISE_ASYM_PAUSE)); | ||
909 | |||
910 | if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { | ||
911 | /* make sure that we don't advertise half | ||
912 | * duplex to avoid a chip issue | ||
913 | */ | ||
914 | val = cas_phy_read(cp, CAS_MII_1000_CTRL); | ||
915 | val &= ~CAS_ADVERTISE_1000HALF; | ||
916 | val |= CAS_ADVERTISE_1000FULL; | ||
917 | cas_phy_write(cp, CAS_MII_1000_CTRL, val); | ||
918 | } | ||
919 | |||
920 | } else { | ||
921 | /* reset pcs for serdes */ | ||
922 | u32 val; | ||
923 | int limit; | ||
924 | |||
925 | writel(PCS_DATAPATH_MODE_SERDES, | ||
926 | cp->regs + REG_PCS_DATAPATH_MODE); | ||
927 | |||
928 | /* enable serdes pins on saturn */ | ||
929 | if (cp->cas_flags & CAS_FLAG_SATURN) | ||
930 | writel(0, cp->regs + REG_SATURN_PCFG); | ||
931 | |||
932 | /* Reset PCS unit. */ | ||
933 | val = readl(cp->regs + REG_PCS_MII_CTRL); | ||
934 | val |= PCS_MII_RESET; | ||
935 | writel(val, cp->regs + REG_PCS_MII_CTRL); | ||
936 | |||
937 | limit = STOP_TRIES; | ||
938 | while (limit-- > 0) { | ||
939 | udelay(10); | ||
940 | if ((readl(cp->regs + REG_PCS_MII_CTRL) & | ||
941 | PCS_MII_RESET) == 0) | ||
942 | break; | ||
943 | } | ||
944 | if (limit <= 0) | ||
945 | printk(KERN_WARNING "%s: PCS reset bit would not " | ||
946 | "clear [%08x].\n", cp->dev->name, | ||
947 | readl(cp->regs + REG_PCS_STATE_MACHINE)); | ||
948 | |||
949 | /* Make sure PCS is disabled while changing advertisement | ||
950 | * configuration. | ||
951 | */ | ||
952 | writel(0x0, cp->regs + REG_PCS_CFG); | ||
953 | |||
954 | /* Advertise all capabilities except half-duplex. */ | ||
955 | val = readl(cp->regs + REG_PCS_MII_ADVERT); | ||
956 | val &= ~PCS_MII_ADVERT_HD; | ||
957 | val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | | ||
958 | PCS_MII_ADVERT_ASYM_PAUSE); | ||
959 | writel(val, cp->regs + REG_PCS_MII_ADVERT); | ||
960 | |||
961 | /* enable PCS */ | ||
962 | writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); | ||
963 | |||
964 | /* pcs workaround: enable sync detect */ | ||
965 | writel(PCS_SERDES_CTRL_SYNCD_EN, | ||
966 | cp->regs + REG_PCS_SERDES_CTRL); | ||
967 | } | ||
968 | } | ||
969 | |||
970 | |||
971 | static int cas_pcs_link_check(struct cas *cp) | ||
972 | { | ||
973 | u32 stat, state_machine; | ||
974 | int retval = 0; | ||
975 | |||
976 | /* The link status bit latches on zero, so you must | ||
977 | * read it twice in such a case to see a transition | ||
978 | * to the link being up. | ||
979 | */ | ||
980 | stat = readl(cp->regs + REG_PCS_MII_STATUS); | ||
981 | if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) | ||
982 | stat = readl(cp->regs + REG_PCS_MII_STATUS); | ||
983 | |||
984 | /* The remote-fault indication is only valid | ||
985 | * when autoneg has completed. | ||
986 | */ | ||
987 | if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | | ||
988 | PCS_MII_STATUS_REMOTE_FAULT)) == | ||
989 | (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) { | ||
990 | if (netif_msg_link(cp)) | ||
991 | printk(KERN_INFO "%s: PCS RemoteFault\n", | ||
992 | cp->dev->name); | ||
993 | } | ||
994 | |||
995 | /* work around link detection issue by querying the PCS state | ||
996 | * machine directly. | ||
997 | */ | ||
998 | state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); | ||
999 | if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { | ||
1000 | stat &= ~PCS_MII_STATUS_LINK_STATUS; | ||
1001 | } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { | ||
1002 | stat |= PCS_MII_STATUS_LINK_STATUS; | ||
1003 | } | ||
1004 | |||
1005 | if (stat & PCS_MII_STATUS_LINK_STATUS) { | ||
1006 | if (cp->lstate != link_up) { | ||
1007 | if (cp->opened) { | ||
1008 | cp->lstate = link_up; | ||
1009 | cp->link_transition = LINK_TRANSITION_LINK_UP; | ||
1010 | |||
1011 | cas_set_link_modes(cp); | ||
1012 | netif_carrier_on(cp->dev); | ||
1013 | } | ||
1014 | } | ||
1015 | } else if (cp->lstate == link_up) { | ||
1016 | cp->lstate = link_down; | ||
1017 | if (link_transition_timeout != 0 && | ||
1018 | cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && | ||
1019 | !cp->link_transition_jiffies_valid) { | ||
1020 | /* | ||
1021 | * force a reset, as a workaround for the | ||
1022 | * link-failure problem. May want to move this to a | ||
1023 | * point a bit earlier in the sequence. If we had | ||
1024 | * generated a reset a short time ago, we'll wait for | ||
1025 | * the link timer to check the status until a | ||
1026 | * timer expires (link_transistion_jiffies_valid is | ||
1027 | * true when the timer is running.) Instead of using | ||
1028 | * a system timer, we just do a check whenever the | ||
1029 | * link timer is running - this clears the flag after | ||
1030 | * a suitable delay. | ||
1031 | */ | ||
1032 | retval = 1; | ||
1033 | cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; | ||
1034 | cp->link_transition_jiffies = jiffies; | ||
1035 | cp->link_transition_jiffies_valid = 1; | ||
1036 | } else { | ||
1037 | cp->link_transition = LINK_TRANSITION_ON_FAILURE; | ||
1038 | } | ||
1039 | netif_carrier_off(cp->dev); | ||
1040 | if (cp->opened && netif_msg_link(cp)) { | ||
1041 | printk(KERN_INFO "%s: PCS link down.\n", | ||
1042 | cp->dev->name); | ||
1043 | } | ||
1044 | |||
1045 | /* Cassini only: if you force a mode, there can be | ||
1046 | * sync problems on link down. to fix that, the following | ||
1047 | * things need to be checked: | ||
1048 | * 1) read serialink state register | ||
1049 | * 2) read pcs status register to verify link down. | ||
1050 | * 3) if link down and serial link == 0x03, then you need | ||
1051 | * to global reset the chip. | ||
1052 | */ | ||
1053 | if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { | ||
1054 | /* should check to see if we're in a forced mode */ | ||
1055 | stat = readl(cp->regs + REG_PCS_SERDES_STATE); | ||
1056 | if (stat == 0x03) | ||
1057 | return 1; | ||
1058 | } | ||
1059 | } else if (cp->lstate == link_down) { | ||
1060 | if (link_transition_timeout != 0 && | ||
1061 | cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && | ||
1062 | !cp->link_transition_jiffies_valid) { | ||
1063 | /* force a reset, as a workaround for the | ||
1064 | * link-failure problem. May want to move | ||
1065 | * this to a point a bit earlier in the | ||
1066 | * sequence. | ||
1067 | */ | ||
1068 | retval = 1; | ||
1069 | cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; | ||
1070 | cp->link_transition_jiffies = jiffies; | ||
1071 | cp->link_transition_jiffies_valid = 1; | ||
1072 | } else { | ||
1073 | cp->link_transition = LINK_TRANSITION_STILL_FAILED; | ||
1074 | } | ||
1075 | } | ||
1076 | |||
1077 | return retval; | ||
1078 | } | ||
1079 | |||
1080 | static int cas_pcs_interrupt(struct net_device *dev, | ||
1081 | struct cas *cp, u32 status) | ||
1082 | { | ||
1083 | u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); | ||
1084 | |||
1085 | if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) | ||
1086 | return 0; | ||
1087 | return cas_pcs_link_check(cp); | ||
1088 | } | ||
1089 | |||
1090 | static int cas_txmac_interrupt(struct net_device *dev, | ||
1091 | struct cas *cp, u32 status) | ||
1092 | { | ||
1093 | u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); | ||
1094 | |||
1095 | if (!txmac_stat) | ||
1096 | return 0; | ||
1097 | |||
1098 | if (netif_msg_intr(cp)) | ||
1099 | printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", | ||
1100 | cp->dev->name, txmac_stat); | ||
1101 | |||
1102 | /* Defer timer expiration is quite normal, | ||
1103 | * don't even log the event. | ||
1104 | */ | ||
1105 | if ((txmac_stat & MAC_TX_DEFER_TIMER) && | ||
1106 | !(txmac_stat & ~MAC_TX_DEFER_TIMER)) | ||
1107 | return 0; | ||
1108 | |||
1109 | spin_lock(&cp->stat_lock[0]); | ||
1110 | if (txmac_stat & MAC_TX_UNDERRUN) { | ||
1111 | printk(KERN_ERR "%s: TX MAC xmit underrun.\n", | ||
1112 | dev->name); | ||
1113 | cp->net_stats[0].tx_fifo_errors++; | ||
1114 | } | ||
1115 | |||
1116 | if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { | ||
1117 | printk(KERN_ERR "%s: TX MAC max packet size error.\n", | ||
1118 | dev->name); | ||
1119 | cp->net_stats[0].tx_errors++; | ||
1120 | } | ||
1121 | |||
1122 | /* The rest are all cases of one of the 16-bit TX | ||
1123 | * counters expiring. | ||
1124 | */ | ||
1125 | if (txmac_stat & MAC_TX_COLL_NORMAL) | ||
1126 | cp->net_stats[0].collisions += 0x10000; | ||
1127 | |||
1128 | if (txmac_stat & MAC_TX_COLL_EXCESS) { | ||
1129 | cp->net_stats[0].tx_aborted_errors += 0x10000; | ||
1130 | cp->net_stats[0].collisions += 0x10000; | ||
1131 | } | ||
1132 | |||
1133 | if (txmac_stat & MAC_TX_COLL_LATE) { | ||
1134 | cp->net_stats[0].tx_aborted_errors += 0x10000; | ||
1135 | cp->net_stats[0].collisions += 0x10000; | ||
1136 | } | ||
1137 | spin_unlock(&cp->stat_lock[0]); | ||
1138 | |||
1139 | /* We do not keep track of MAC_TX_COLL_FIRST and | ||
1140 | * MAC_TX_PEAK_ATTEMPTS events. | ||
1141 | */ | ||
1142 | return 0; | ||
1143 | } | ||
1144 | |||
1145 | static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) | ||
1146 | { | ||
1147 | cas_hp_inst_t *inst; | ||
1148 | u32 val; | ||
1149 | int i; | ||
1150 | |||
1151 | i = 0; | ||
1152 | while ((inst = firmware) && inst->note) { | ||
1153 | writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); | ||
1154 | |||
1155 | val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); | ||
1156 | val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); | ||
1157 | writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); | ||
1158 | |||
1159 | val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); | ||
1160 | val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); | ||
1161 | val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); | ||
1162 | val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); | ||
1163 | val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); | ||
1164 | val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); | ||
1165 | val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); | ||
1166 | writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); | ||
1167 | |||
1168 | val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); | ||
1169 | val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); | ||
1170 | val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); | ||
1171 | val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); | ||
1172 | writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); | ||
1173 | ++firmware; | ||
1174 | ++i; | ||
1175 | } | ||
1176 | } | ||
1177 | |||
1178 | static void cas_init_rx_dma(struct cas *cp) | ||
1179 | { | ||
1180 | u64 desc_dma = cp->block_dvma; | ||
1181 | u32 val; | ||
1182 | int i, size; | ||
1183 | |||
1184 | /* rx free descriptors */ | ||
1185 | val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); | ||
1186 | val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); | ||
1187 | val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); | ||
1188 | if ((N_RX_DESC_RINGS > 1) && | ||
1189 | (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ | ||
1190 | val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); | ||
1191 | writel(val, cp->regs + REG_RX_CFG); | ||
1192 | |||
1193 | val = (unsigned long) cp->init_rxds[0] - | ||
1194 | (unsigned long) cp->init_block; | ||
1195 | writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); | ||
1196 | writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); | ||
1197 | writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); | ||
1198 | |||
1199 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | ||
1200 | /* rx desc 2 is for IPSEC packets. however, | ||
1201 | * we don't it that for that purpose. | ||
1202 | */ | ||
1203 | val = (unsigned long) cp->init_rxds[1] - | ||
1204 | (unsigned long) cp->init_block; | ||
1205 | writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); | ||
1206 | writel((desc_dma + val) & 0xffffffff, cp->regs + | ||
1207 | REG_PLUS_RX_DB1_LOW); | ||
1208 | writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + | ||
1209 | REG_PLUS_RX_KICK1); | ||
1210 | } | ||
1211 | |||
1212 | /* rx completion registers */ | ||
1213 | val = (unsigned long) cp->init_rxcs[0] - | ||
1214 | (unsigned long) cp->init_block; | ||
1215 | writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); | ||
1216 | writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); | ||
1217 | |||
1218 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | ||
1219 | /* rx comp 2-4 */ | ||
1220 | for (i = 1; i < MAX_RX_COMP_RINGS; i++) { | ||
1221 | val = (unsigned long) cp->init_rxcs[i] - | ||
1222 | (unsigned long) cp->init_block; | ||
1223 | writel((desc_dma + val) >> 32, cp->regs + | ||
1224 | REG_PLUS_RX_CBN_HI(i)); | ||
1225 | writel((desc_dma + val) & 0xffffffff, cp->regs + | ||
1226 | REG_PLUS_RX_CBN_LOW(i)); | ||
1227 | } | ||
1228 | } | ||
1229 | |||
1230 | /* read selective clear regs to prevent spurious interrupts | ||
1231 | * on reset because complete == kick. | ||
1232 | * selective clear set up to prevent interrupts on resets | ||
1233 | */ | ||
1234 | readl(cp->regs + REG_INTR_STATUS_ALIAS); | ||
1235 | writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); | ||
1236 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | ||
1237 | for (i = 1; i < N_RX_COMP_RINGS; i++) | ||
1238 | readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); | ||
1239 | |||
1240 | /* 2 is different from 3 and 4 */ | ||
1241 | if (N_RX_COMP_RINGS > 1) | ||
1242 | writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, | ||
1243 | cp->regs + REG_PLUS_ALIASN_CLEAR(1)); | ||
1244 | |||
1245 | for (i = 2; i < N_RX_COMP_RINGS; i++) | ||
1246 | writel(INTR_RX_DONE_ALT, | ||
1247 | cp->regs + REG_PLUS_ALIASN_CLEAR(i)); | ||
1248 | } | ||
1249 | |||
1250 | /* set up pause thresholds */ | ||
1251 | val = CAS_BASE(RX_PAUSE_THRESH_OFF, | ||
1252 | cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); | ||
1253 | val |= CAS_BASE(RX_PAUSE_THRESH_ON, | ||
1254 | cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); | ||
1255 | writel(val, cp->regs + REG_RX_PAUSE_THRESH); | ||
1256 | |||
1257 | /* zero out dma reassembly buffers */ | ||
1258 | for (i = 0; i < 64; i++) { | ||
1259 | writel(i, cp->regs + REG_RX_TABLE_ADDR); | ||
1260 | writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); | ||
1261 | writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); | ||
1262 | writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); | ||
1263 | } | ||
1264 | |||
1265 | /* make sure address register is 0 for normal operation */ | ||
1266 | writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); | ||
1267 | writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); | ||
1268 | |||
1269 | /* interrupt mitigation */ | ||
1270 | #ifdef USE_RX_BLANK | ||
1271 | val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); | ||
1272 | val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); | ||
1273 | writel(val, cp->regs + REG_RX_BLANK); | ||
1274 | #else | ||
1275 | writel(0x0, cp->regs + REG_RX_BLANK); | ||
1276 | #endif | ||
1277 | |||
1278 | /* interrupt generation as a function of low water marks for | ||
1279 | * free desc and completion entries. these are used to trigger | ||
1280 | * housekeeping for rx descs. we don't use the free interrupt | ||
1281 | * as it's not very useful | ||
1282 | */ | ||
1283 | /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ | ||
1284 | val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); | ||
1285 | writel(val, cp->regs + REG_RX_AE_THRESH); | ||
1286 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | ||
1287 | val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); | ||
1288 | writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); | ||
1289 | } | ||
1290 | |||
1291 | /* Random early detect registers. useful for congestion avoidance. | ||
1292 | * this should be tunable. | ||
1293 | */ | ||
1294 | writel(0x0, cp->regs + REG_RX_RED); | ||
1295 | |||
1296 | /* receive page sizes. default == 2K (0x800) */ | ||
1297 | val = 0; | ||
1298 | if (cp->page_size == 0x1000) | ||
1299 | val = 0x1; | ||
1300 | else if (cp->page_size == 0x2000) | ||
1301 | val = 0x2; | ||
1302 | else if (cp->page_size == 0x4000) | ||
1303 | val = 0x3; | ||
1304 | |||
1305 | /* round mtu + offset. constrain to page size. */ | ||
1306 | size = cp->dev->mtu + 64; | ||
1307 | if (size > cp->page_size) | ||
1308 | size = cp->page_size; | ||
1309 | |||
1310 | if (size <= 0x400) | ||
1311 | i = 0x0; | ||
1312 | else if (size <= 0x800) | ||
1313 | i = 0x1; | ||
1314 | else if (size <= 0x1000) | ||
1315 | i = 0x2; | ||
1316 | else | ||
1317 | i = 0x3; | ||
1318 | |||
1319 | cp->mtu_stride = 1 << (i + 10); | ||
1320 | val = CAS_BASE(RX_PAGE_SIZE, val); | ||
1321 | val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); | ||
1322 | val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); | ||
1323 | val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); | ||
1324 | writel(val, cp->regs + REG_RX_PAGE_SIZE); | ||
1325 | |||
1326 | /* enable the header parser if desired */ | ||
1327 | if (CAS_HP_FIRMWARE == cas_prog_null) | ||
1328 | return; | ||
1329 | |||
1330 | val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); | ||
1331 | val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; | ||
1332 | val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); | ||
1333 | writel(val, cp->regs + REG_HP_CFG); | ||
1334 | } | ||
1335 | |||
1336 | static inline void cas_rxc_init(struct cas_rx_comp *rxc) | ||
1337 | { | ||
1338 | memset(rxc, 0, sizeof(*rxc)); | ||
1339 | rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); | ||
1340 | } | ||
1341 | |||
1342 | /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] | ||
1343 | * flipping is protected by the fact that the chip will not | ||
1344 | * hand back the same page index while it's being processed. | ||
1345 | */ | ||
1346 | static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) | ||
1347 | { | ||
1348 | cas_page_t *page = cp->rx_pages[1][index]; | ||
1349 | cas_page_t *new; | ||
1350 | |||
1351 | if (page_count(page->buffer) == 1) | ||
1352 | return page; | ||
1353 | |||
1354 | new = cas_page_dequeue(cp); | ||
1355 | if (new) { | ||
1356 | spin_lock(&cp->rx_inuse_lock); | ||
1357 | list_add(&page->list, &cp->rx_inuse_list); | ||
1358 | spin_unlock(&cp->rx_inuse_lock); | ||
1359 | } | ||
1360 | return new; | ||
1361 | } | ||
1362 | |||
1363 | /* this needs to be changed if we actually use the ENC RX DESC ring */ | ||
1364 | static cas_page_t *cas_page_swap(struct cas *cp, const int ring, | ||
1365 | const int index) | ||
1366 | { | ||
1367 | cas_page_t **page0 = cp->rx_pages[0]; | ||
1368 | cas_page_t **page1 = cp->rx_pages[1]; | ||
1369 | |||
1370 | /* swap if buffer is in use */ | ||
1371 | if (page_count(page0[index]->buffer) > 1) { | ||
1372 | cas_page_t *new = cas_page_spare(cp, index); | ||
1373 | if (new) { | ||
1374 | page1[index] = page0[index]; | ||
1375 | page0[index] = new; | ||
1376 | } | ||
1377 | } | ||
1378 | RX_USED_SET(page0[index], 0); | ||
1379 | return page0[index]; | ||
1380 | } | ||
1381 | |||
1382 | static void cas_clean_rxds(struct cas *cp) | ||
1383 | { | ||
1384 | /* only clean ring 0 as ring 1 is used for spare buffers */ | ||
1385 | struct cas_rx_desc *rxd = cp->init_rxds[0]; | ||
1386 | int i, size; | ||
1387 | |||
1388 | /* release all rx flows */ | ||
1389 | for (i = 0; i < N_RX_FLOWS; i++) { | ||
1390 | struct sk_buff *skb; | ||
1391 | while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { | ||
1392 | cas_skb_release(skb); | ||
1393 | } | ||
1394 | } | ||
1395 | |||
1396 | /* initialize descriptors */ | ||
1397 | size = RX_DESC_RINGN_SIZE(0); | ||
1398 | for (i = 0; i < size; i++) { | ||
1399 | cas_page_t *page = cas_page_swap(cp, 0, i); | ||
1400 | rxd[i].buffer = cpu_to_le64(page->dma_addr); | ||
1401 | rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | | ||
1402 | CAS_BASE(RX_INDEX_RING, 0)); | ||
1403 | } | ||
1404 | |||
1405 | cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; | ||
1406 | cp->rx_last[0] = 0; | ||
1407 | cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); | ||
1408 | } | ||
1409 | |||
1410 | static void cas_clean_rxcs(struct cas *cp) | ||
1411 | { | ||
1412 | int i, j; | ||
1413 | |||
1414 | /* take ownership of rx comp descriptors */ | ||
1415 | memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); | ||
1416 | memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); | ||
1417 | for (i = 0; i < N_RX_COMP_RINGS; i++) { | ||
1418 | struct cas_rx_comp *rxc = cp->init_rxcs[i]; | ||
1419 | for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { | ||
1420 | cas_rxc_init(rxc + j); | ||
1421 | } | ||
1422 | } | ||
1423 | } | ||
1424 | |||
1425 | #if 0 | ||
1426 | /* When we get a RX fifo overflow, the RX unit is probably hung | ||
1427 | * so we do the following. | ||
1428 | * | ||
1429 | * If any part of the reset goes wrong, we return 1 and that causes the | ||
1430 | * whole chip to be reset. | ||
1431 | */ | ||
1432 | static int cas_rxmac_reset(struct cas *cp) | ||
1433 | { | ||
1434 | struct net_device *dev = cp->dev; | ||
1435 | int limit; | ||
1436 | u32 val; | ||
1437 | |||
1438 | /* First, reset MAC RX. */ | ||
1439 | writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | ||
1440 | for (limit = 0; limit < STOP_TRIES; limit++) { | ||
1441 | if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) | ||
1442 | break; | ||
1443 | udelay(10); | ||
1444 | } | ||
1445 | if (limit == STOP_TRIES) { | ||
1446 | printk(KERN_ERR "%s: RX MAC will not disable, resetting whole " | ||
1447 | "chip.\n", dev->name); | ||
1448 | return 1; | ||
1449 | } | ||
1450 | |||
1451 | /* Second, disable RX DMA. */ | ||
1452 | writel(0, cp->regs + REG_RX_CFG); | ||
1453 | for (limit = 0; limit < STOP_TRIES; limit++) { | ||
1454 | if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) | ||
1455 | break; | ||
1456 | udelay(10); | ||
1457 | } | ||
1458 | if (limit == STOP_TRIES) { | ||
1459 | printk(KERN_ERR "%s: RX DMA will not disable, resetting whole " | ||
1460 | "chip.\n", dev->name); | ||
1461 | return 1; | ||
1462 | } | ||
1463 | |||
1464 | mdelay(5); | ||
1465 | |||
1466 | /* Execute RX reset command. */ | ||
1467 | writel(SW_RESET_RX, cp->regs + REG_SW_RESET); | ||
1468 | for (limit = 0; limit < STOP_TRIES; limit++) { | ||
1469 | if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) | ||
1470 | break; | ||
1471 | udelay(10); | ||
1472 | } | ||
1473 | if (limit == STOP_TRIES) { | ||
1474 | printk(KERN_ERR "%s: RX reset command will not execute, " | ||
1475 | "resetting whole chip.\n", dev->name); | ||
1476 | return 1; | ||
1477 | } | ||
1478 | |||
1479 | /* reset driver rx state */ | ||
1480 | cas_clean_rxds(cp); | ||
1481 | cas_clean_rxcs(cp); | ||
1482 | |||
1483 | /* Now, reprogram the rest of RX unit. */ | ||
1484 | cas_init_rx_dma(cp); | ||
1485 | |||
1486 | /* re-enable */ | ||
1487 | val = readl(cp->regs + REG_RX_CFG); | ||
1488 | writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); | ||
1489 | writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); | ||
1490 | val = readl(cp->regs + REG_MAC_RX_CFG); | ||
1491 | writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | ||
1492 | return 0; | ||
1493 | } | ||
1494 | #endif | ||
1495 | |||
1496 | static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, | ||
1497 | u32 status) | ||
1498 | { | ||
1499 | u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); | ||
1500 | |||
1501 | if (!stat) | ||
1502 | return 0; | ||
1503 | |||
1504 | if (netif_msg_intr(cp)) | ||
1505 | printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n", | ||
1506 | cp->dev->name, stat); | ||
1507 | |||
1508 | /* these are all rollovers */ | ||
1509 | spin_lock(&cp->stat_lock[0]); | ||
1510 | if (stat & MAC_RX_ALIGN_ERR) | ||
1511 | cp->net_stats[0].rx_frame_errors += 0x10000; | ||
1512 | |||
1513 | if (stat & MAC_RX_CRC_ERR) | ||
1514 | cp->net_stats[0].rx_crc_errors += 0x10000; | ||
1515 | |||
1516 | if (stat & MAC_RX_LEN_ERR) | ||
1517 | cp->net_stats[0].rx_length_errors += 0x10000; | ||
1518 | |||
1519 | if (stat & MAC_RX_OVERFLOW) { | ||
1520 | cp->net_stats[0].rx_over_errors++; | ||
1521 | cp->net_stats[0].rx_fifo_errors++; | ||
1522 | } | ||
1523 | |||
1524 | /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR | ||
1525 | * events. | ||
1526 | */ | ||
1527 | spin_unlock(&cp->stat_lock[0]); | ||
1528 | return 0; | ||
1529 | } | ||
1530 | |||
1531 | static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, | ||
1532 | u32 status) | ||
1533 | { | ||
1534 | u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); | ||
1535 | |||
1536 | if (!stat) | ||
1537 | return 0; | ||
1538 | |||
1539 | if (netif_msg_intr(cp)) | ||
1540 | printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n", | ||
1541 | cp->dev->name, stat); | ||
1542 | |||
1543 | /* This interrupt is just for pause frame and pause | ||
1544 | * tracking. It is useful for diagnostics and debug | ||
1545 | * but probably by default we will mask these events. | ||
1546 | */ | ||
1547 | if (stat & MAC_CTRL_PAUSE_STATE) | ||
1548 | cp->pause_entered++; | ||
1549 | |||
1550 | if (stat & MAC_CTRL_PAUSE_RECEIVED) | ||
1551 | cp->pause_last_time_recvd = (stat >> 16); | ||
1552 | |||
1553 | return 0; | ||
1554 | } | ||
1555 | |||
1556 | |||
1557 | /* Must be invoked under cp->lock. */ | ||
1558 | static inline int cas_mdio_link_not_up(struct cas *cp) | ||
1559 | { | ||
1560 | u16 val; | ||
1561 | |||
1562 | switch (cp->lstate) { | ||
1563 | case link_force_ret: | ||
1564 | if (netif_msg_link(cp)) | ||
1565 | printk(KERN_INFO "%s: Autoneg failed again, keeping" | ||
1566 | " forced mode\n", cp->dev->name); | ||
1567 | cas_phy_write(cp, MII_BMCR, cp->link_fcntl); | ||
1568 | cp->timer_ticks = 5; | ||
1569 | cp->lstate = link_force_ok; | ||
1570 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | ||
1571 | break; | ||
1572 | |||
1573 | case link_aneg: | ||
1574 | val = cas_phy_read(cp, MII_BMCR); | ||
1575 | |||
1576 | /* Try forced modes. we try things in the following order: | ||
1577 | * 1000 full -> 100 full/half -> 10 half | ||
1578 | */ | ||
1579 | val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); | ||
1580 | val |= BMCR_FULLDPLX; | ||
1581 | val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? | ||
1582 | CAS_BMCR_SPEED1000 : BMCR_SPEED100; | ||
1583 | cas_phy_write(cp, MII_BMCR, val); | ||
1584 | cp->timer_ticks = 5; | ||
1585 | cp->lstate = link_force_try; | ||
1586 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | ||
1587 | break; | ||
1588 | |||
1589 | case link_force_try: | ||
1590 | /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ | ||
1591 | val = cas_phy_read(cp, MII_BMCR); | ||
1592 | cp->timer_ticks = 5; | ||
1593 | if (val & CAS_BMCR_SPEED1000) { /* gigabit */ | ||
1594 | val &= ~CAS_BMCR_SPEED1000; | ||
1595 | val |= (BMCR_SPEED100 | BMCR_FULLDPLX); | ||
1596 | cas_phy_write(cp, MII_BMCR, val); | ||
1597 | break; | ||
1598 | } | ||
1599 | |||
1600 | if (val & BMCR_SPEED100) { | ||
1601 | if (val & BMCR_FULLDPLX) /* fd failed */ | ||
1602 | val &= ~BMCR_FULLDPLX; | ||
1603 | else { /* 100Mbps failed */ | ||
1604 | val &= ~BMCR_SPEED100; | ||
1605 | } | ||
1606 | cas_phy_write(cp, MII_BMCR, val); | ||
1607 | break; | ||
1608 | } | ||
1609 | default: | ||
1610 | break; | ||
1611 | } | ||
1612 | return 0; | ||
1613 | } | ||
1614 | |||
1615 | |||
1616 | /* must be invoked with cp->lock held */ | ||
1617 | static int cas_mii_link_check(struct cas *cp, const u16 bmsr) | ||
1618 | { | ||
1619 | int restart; | ||
1620 | |||
1621 | if (bmsr & BMSR_LSTATUS) { | ||
1622 | /* Ok, here we got a link. If we had it due to a forced | ||
1623 | * fallback, and we were configured for autoneg, we | ||
1624 | * retry a short autoneg pass. If you know your hub is | ||
1625 | * broken, use ethtool ;) | ||
1626 | */ | ||
1627 | if ((cp->lstate == link_force_try) && | ||
1628 | (cp->link_cntl & BMCR_ANENABLE)) { | ||
1629 | cp->lstate = link_force_ret; | ||
1630 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | ||
1631 | cas_mif_poll(cp, 0); | ||
1632 | cp->link_fcntl = cas_phy_read(cp, MII_BMCR); | ||
1633 | cp->timer_ticks = 5; | ||
1634 | if (cp->opened && netif_msg_link(cp)) | ||
1635 | printk(KERN_INFO "%s: Got link after fallback, retrying" | ||
1636 | " autoneg once...\n", cp->dev->name); | ||
1637 | cas_phy_write(cp, MII_BMCR, | ||
1638 | cp->link_fcntl | BMCR_ANENABLE | | ||
1639 | BMCR_ANRESTART); | ||
1640 | cas_mif_poll(cp, 1); | ||
1641 | |||
1642 | } else if (cp->lstate != link_up) { | ||
1643 | cp->lstate = link_up; | ||
1644 | cp->link_transition = LINK_TRANSITION_LINK_UP; | ||
1645 | |||
1646 | if (cp->opened) { | ||
1647 | cas_set_link_modes(cp); | ||
1648 | netif_carrier_on(cp->dev); | ||
1649 | } | ||
1650 | } | ||
1651 | return 0; | ||
1652 | } | ||
1653 | |||
1654 | /* link not up. if the link was previously up, we restart the | ||
1655 | * whole process | ||
1656 | */ | ||
1657 | restart = 0; | ||
1658 | if (cp->lstate == link_up) { | ||
1659 | cp->lstate = link_down; | ||
1660 | cp->link_transition = LINK_TRANSITION_LINK_DOWN; | ||
1661 | |||
1662 | netif_carrier_off(cp->dev); | ||
1663 | if (cp->opened && netif_msg_link(cp)) | ||
1664 | printk(KERN_INFO "%s: Link down\n", | ||
1665 | cp->dev->name); | ||
1666 | restart = 1; | ||
1667 | |||
1668 | } else if (++cp->timer_ticks > 10) | ||
1669 | cas_mdio_link_not_up(cp); | ||
1670 | |||
1671 | return restart; | ||
1672 | } | ||
1673 | |||
1674 | static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, | ||
1675 | u32 status) | ||
1676 | { | ||
1677 | u32 stat = readl(cp->regs + REG_MIF_STATUS); | ||
1678 | u16 bmsr; | ||
1679 | |||
1680 | /* check for a link change */ | ||
1681 | if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) | ||
1682 | return 0; | ||
1683 | |||
1684 | bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); | ||
1685 | return cas_mii_link_check(cp, bmsr); | ||
1686 | } | ||
1687 | |||
1688 | static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, | ||
1689 | u32 status) | ||
1690 | { | ||
1691 | u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); | ||
1692 | |||
1693 | if (!stat) | ||
1694 | return 0; | ||
1695 | |||
1696 | printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat, | ||
1697 | readl(cp->regs + REG_BIM_DIAG)); | ||
1698 | |||
1699 | /* cassini+ has this reserved */ | ||
1700 | if ((stat & PCI_ERR_BADACK) && | ||
1701 | ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) | ||
1702 | printk("<No ACK64# during ABS64 cycle> "); | ||
1703 | |||
1704 | if (stat & PCI_ERR_DTRTO) | ||
1705 | printk("<Delayed transaction timeout> "); | ||
1706 | if (stat & PCI_ERR_OTHER) | ||
1707 | printk("<other> "); | ||
1708 | if (stat & PCI_ERR_BIM_DMA_WRITE) | ||
1709 | printk("<BIM DMA 0 write req> "); | ||
1710 | if (stat & PCI_ERR_BIM_DMA_READ) | ||
1711 | printk("<BIM DMA 0 read req> "); | ||
1712 | printk("\n"); | ||
1713 | |||
1714 | if (stat & PCI_ERR_OTHER) { | ||
1715 | u16 cfg; | ||
1716 | |||
1717 | /* Interrogate PCI config space for the | ||
1718 | * true cause. | ||
1719 | */ | ||
1720 | pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); | ||
1721 | printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n", | ||
1722 | dev->name, cfg); | ||
1723 | if (cfg & PCI_STATUS_PARITY) | ||
1724 | printk(KERN_ERR "%s: PCI parity error detected.\n", | ||
1725 | dev->name); | ||
1726 | if (cfg & PCI_STATUS_SIG_TARGET_ABORT) | ||
1727 | printk(KERN_ERR "%s: PCI target abort.\n", | ||
1728 | dev->name); | ||
1729 | if (cfg & PCI_STATUS_REC_TARGET_ABORT) | ||
1730 | printk(KERN_ERR "%s: PCI master acks target abort.\n", | ||
1731 | dev->name); | ||
1732 | if (cfg & PCI_STATUS_REC_MASTER_ABORT) | ||
1733 | printk(KERN_ERR "%s: PCI master abort.\n", dev->name); | ||
1734 | if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) | ||
1735 | printk(KERN_ERR "%s: PCI system error SERR#.\n", | ||
1736 | dev->name); | ||
1737 | if (cfg & PCI_STATUS_DETECTED_PARITY) | ||
1738 | printk(KERN_ERR "%s: PCI parity error.\n", | ||
1739 | dev->name); | ||
1740 | |||
1741 | /* Write the error bits back to clear them. */ | ||
1742 | cfg &= (PCI_STATUS_PARITY | | ||
1743 | PCI_STATUS_SIG_TARGET_ABORT | | ||
1744 | PCI_STATUS_REC_TARGET_ABORT | | ||
1745 | PCI_STATUS_REC_MASTER_ABORT | | ||
1746 | PCI_STATUS_SIG_SYSTEM_ERROR | | ||
1747 | PCI_STATUS_DETECTED_PARITY); | ||
1748 | pci_write_config_word(cp->pdev, PCI_STATUS, cfg); | ||
1749 | } | ||
1750 | |||
1751 | /* For all PCI errors, we should reset the chip. */ | ||
1752 | return 1; | ||
1753 | } | ||
1754 | |||
1755 | /* All non-normal interrupt conditions get serviced here. | ||
1756 | * Returns non-zero if we should just exit the interrupt | ||
1757 | * handler right now (ie. if we reset the card which invalidates | ||
1758 | * all of the other original irq status bits). | ||
1759 | */ | ||
1760 | static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, | ||
1761 | u32 status) | ||
1762 | { | ||
1763 | if (status & INTR_RX_TAG_ERROR) { | ||
1764 | /* corrupt RX tag framing */ | ||
1765 | if (netif_msg_rx_err(cp)) | ||
1766 | printk(KERN_DEBUG "%s: corrupt rx tag framing\n", | ||
1767 | cp->dev->name); | ||
1768 | spin_lock(&cp->stat_lock[0]); | ||
1769 | cp->net_stats[0].rx_errors++; | ||
1770 | spin_unlock(&cp->stat_lock[0]); | ||
1771 | goto do_reset; | ||
1772 | } | ||
1773 | |||
1774 | if (status & INTR_RX_LEN_MISMATCH) { | ||
1775 | /* length mismatch. */ | ||
1776 | if (netif_msg_rx_err(cp)) | ||
1777 | printk(KERN_DEBUG "%s: length mismatch for rx frame\n", | ||
1778 | cp->dev->name); | ||
1779 | spin_lock(&cp->stat_lock[0]); | ||
1780 | cp->net_stats[0].rx_errors++; | ||
1781 | spin_unlock(&cp->stat_lock[0]); | ||
1782 | goto do_reset; | ||
1783 | } | ||
1784 | |||
1785 | if (status & INTR_PCS_STATUS) { | ||
1786 | if (cas_pcs_interrupt(dev, cp, status)) | ||
1787 | goto do_reset; | ||
1788 | } | ||
1789 | |||
1790 | if (status & INTR_TX_MAC_STATUS) { | ||
1791 | if (cas_txmac_interrupt(dev, cp, status)) | ||
1792 | goto do_reset; | ||
1793 | } | ||
1794 | |||
1795 | if (status & INTR_RX_MAC_STATUS) { | ||
1796 | if (cas_rxmac_interrupt(dev, cp, status)) | ||
1797 | goto do_reset; | ||
1798 | } | ||
1799 | |||
1800 | if (status & INTR_MAC_CTRL_STATUS) { | ||
1801 | if (cas_mac_interrupt(dev, cp, status)) | ||
1802 | goto do_reset; | ||
1803 | } | ||
1804 | |||
1805 | if (status & INTR_MIF_STATUS) { | ||
1806 | if (cas_mif_interrupt(dev, cp, status)) | ||
1807 | goto do_reset; | ||
1808 | } | ||
1809 | |||
1810 | if (status & INTR_PCI_ERROR_STATUS) { | ||
1811 | if (cas_pci_interrupt(dev, cp, status)) | ||
1812 | goto do_reset; | ||
1813 | } | ||
1814 | return 0; | ||
1815 | |||
1816 | do_reset: | ||
1817 | #if 1 | ||
1818 | atomic_inc(&cp->reset_task_pending); | ||
1819 | atomic_inc(&cp->reset_task_pending_all); | ||
1820 | printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n", | ||
1821 | dev->name, status); | ||
1822 | schedule_work(&cp->reset_task); | ||
1823 | #else | ||
1824 | atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); | ||
1825 | printk(KERN_ERR "reset called in cas_abnormal_irq\n"); | ||
1826 | schedule_work(&cp->reset_task); | ||
1827 | #endif | ||
1828 | return 1; | ||
1829 | } | ||
1830 | |||
1831 | /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when | ||
1832 | * determining whether to do a netif_stop/wakeup | ||
1833 | */ | ||
1834 | #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) | ||
1835 | #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) | ||
1836 | static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, | ||
1837 | const int len) | ||
1838 | { | ||
1839 | unsigned long off = addr + len; | ||
1840 | |||
1841 | if (CAS_TABORT(cp) == 1) | ||
1842 | return 0; | ||
1843 | if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) | ||
1844 | return 0; | ||
1845 | return TX_TARGET_ABORT_LEN; | ||
1846 | } | ||
1847 | |||
1848 | static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) | ||
1849 | { | ||
1850 | struct cas_tx_desc *txds; | ||
1851 | struct sk_buff **skbs; | ||
1852 | struct net_device *dev = cp->dev; | ||
1853 | int entry, count; | ||
1854 | |||
1855 | spin_lock(&cp->tx_lock[ring]); | ||
1856 | txds = cp->init_txds[ring]; | ||
1857 | skbs = cp->tx_skbs[ring]; | ||
1858 | entry = cp->tx_old[ring]; | ||
1859 | |||
1860 | count = TX_BUFF_COUNT(ring, entry, limit); | ||
1861 | while (entry != limit) { | ||
1862 | struct sk_buff *skb = skbs[entry]; | ||
1863 | dma_addr_t daddr; | ||
1864 | u32 dlen; | ||
1865 | int frag; | ||
1866 | |||
1867 | if (!skb) { | ||
1868 | /* this should never occur */ | ||
1869 | entry = TX_DESC_NEXT(ring, entry); | ||
1870 | continue; | ||
1871 | } | ||
1872 | |||
1873 | /* however, we might get only a partial skb release. */ | ||
1874 | count -= skb_shinfo(skb)->nr_frags + | ||
1875 | + cp->tx_tiny_use[ring][entry].nbufs + 1; | ||
1876 | if (count < 0) | ||
1877 | break; | ||
1878 | |||
1879 | if (netif_msg_tx_done(cp)) | ||
1880 | printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n", | ||
1881 | cp->dev->name, ring, entry); | ||
1882 | |||
1883 | skbs[entry] = NULL; | ||
1884 | cp->tx_tiny_use[ring][entry].nbufs = 0; | ||
1885 | |||
1886 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { | ||
1887 | struct cas_tx_desc *txd = txds + entry; | ||
1888 | |||
1889 | daddr = le64_to_cpu(txd->buffer); | ||
1890 | dlen = CAS_VAL(TX_DESC_BUFLEN, | ||
1891 | le64_to_cpu(txd->control)); | ||
1892 | pci_unmap_page(cp->pdev, daddr, dlen, | ||
1893 | PCI_DMA_TODEVICE); | ||
1894 | entry = TX_DESC_NEXT(ring, entry); | ||
1895 | |||
1896 | /* tiny buffer may follow */ | ||
1897 | if (cp->tx_tiny_use[ring][entry].used) { | ||
1898 | cp->tx_tiny_use[ring][entry].used = 0; | ||
1899 | entry = TX_DESC_NEXT(ring, entry); | ||
1900 | } | ||
1901 | } | ||
1902 | |||
1903 | spin_lock(&cp->stat_lock[ring]); | ||
1904 | cp->net_stats[ring].tx_packets++; | ||
1905 | cp->net_stats[ring].tx_bytes += skb->len; | ||
1906 | spin_unlock(&cp->stat_lock[ring]); | ||
1907 | dev_kfree_skb_irq(skb); | ||
1908 | } | ||
1909 | cp->tx_old[ring] = entry; | ||
1910 | |||
1911 | /* this is wrong for multiple tx rings. the net device needs | ||
1912 | * multiple queues for this to do the right thing. we wait | ||
1913 | * for 2*packets to be available when using tiny buffers | ||
1914 | */ | ||
1915 | if (netif_queue_stopped(dev) && | ||
1916 | (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) | ||
1917 | netif_wake_queue(dev); | ||
1918 | spin_unlock(&cp->tx_lock[ring]); | ||
1919 | } | ||
1920 | |||
1921 | static void cas_tx(struct net_device *dev, struct cas *cp, | ||
1922 | u32 status) | ||
1923 | { | ||
1924 | int limit, ring; | ||
1925 | #ifdef USE_TX_COMPWB | ||
1926 | u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); | ||
1927 | #endif | ||
1928 | if (netif_msg_intr(cp)) | ||
1929 | printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %lx\n", | ||
1930 | cp->dev->name, status, compwb); | ||
1931 | /* process all the rings */ | ||
1932 | for (ring = 0; ring < N_TX_RINGS; ring++) { | ||
1933 | #ifdef USE_TX_COMPWB | ||
1934 | /* use the completion writeback registers */ | ||
1935 | limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | | ||
1936 | CAS_VAL(TX_COMPWB_LSB, compwb); | ||
1937 | compwb = TX_COMPWB_NEXT(compwb); | ||
1938 | #else | ||
1939 | limit = readl(cp->regs + REG_TX_COMPN(ring)); | ||
1940 | #endif | ||
1941 | if (cp->tx_old[ring] != limit) | ||
1942 | cas_tx_ringN(cp, ring, limit); | ||
1943 | } | ||
1944 | } | ||
1945 | |||
1946 | |||
1947 | static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, | ||
1948 | int entry, const u64 *words, | ||
1949 | struct sk_buff **skbref) | ||
1950 | { | ||
1951 | int dlen, hlen, len, i, alloclen; | ||
1952 | int off, swivel = RX_SWIVEL_OFF_VAL; | ||
1953 | struct cas_page *page; | ||
1954 | struct sk_buff *skb; | ||
1955 | void *addr, *crcaddr; | ||
1956 | char *p; | ||
1957 | |||
1958 | hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); | ||
1959 | dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); | ||
1960 | len = hlen + dlen; | ||
1961 | |||
1962 | if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) | ||
1963 | alloclen = len; | ||
1964 | else | ||
1965 | alloclen = max(hlen, RX_COPY_MIN); | ||
1966 | |||
1967 | skb = dev_alloc_skb(alloclen + swivel + cp->crc_size); | ||
1968 | if (skb == NULL) | ||
1969 | return -1; | ||
1970 | |||
1971 | *skbref = skb; | ||
1972 | skb->dev = cp->dev; | ||
1973 | skb_reserve(skb, swivel); | ||
1974 | |||
1975 | p = skb->data; | ||
1976 | addr = crcaddr = NULL; | ||
1977 | if (hlen) { /* always copy header pages */ | ||
1978 | i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); | ||
1979 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | ||
1980 | off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + | ||
1981 | swivel; | ||
1982 | |||
1983 | i = hlen; | ||
1984 | if (!dlen) /* attach FCS */ | ||
1985 | i += cp->crc_size; | ||
1986 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, | ||
1987 | PCI_DMA_FROMDEVICE); | ||
1988 | addr = cas_page_map(page->buffer); | ||
1989 | memcpy(p, addr + off, i); | ||
1990 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, | ||
1991 | PCI_DMA_FROMDEVICE); | ||
1992 | cas_page_unmap(addr); | ||
1993 | RX_USED_ADD(page, 0x100); | ||
1994 | p += hlen; | ||
1995 | swivel = 0; | ||
1996 | } | ||
1997 | |||
1998 | |||
1999 | if (alloclen < (hlen + dlen)) { | ||
2000 | skb_frag_t *frag = skb_shinfo(skb)->frags; | ||
2001 | |||
2002 | /* normal or jumbo packets. we use frags */ | ||
2003 | i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); | ||
2004 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | ||
2005 | off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; | ||
2006 | |||
2007 | hlen = min(cp->page_size - off, dlen); | ||
2008 | if (hlen < 0) { | ||
2009 | if (netif_msg_rx_err(cp)) { | ||
2010 | printk(KERN_DEBUG "%s: rx page overflow: " | ||
2011 | "%d\n", cp->dev->name, hlen); | ||
2012 | } | ||
2013 | dev_kfree_skb_irq(skb); | ||
2014 | return -1; | ||
2015 | } | ||
2016 | i = hlen; | ||
2017 | if (i == dlen) /* attach FCS */ | ||
2018 | i += cp->crc_size; | ||
2019 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, | ||
2020 | PCI_DMA_FROMDEVICE); | ||
2021 | |||
2022 | /* make sure we always copy a header */ | ||
2023 | swivel = 0; | ||
2024 | if (p == (char *) skb->data) { /* not split */ | ||
2025 | addr = cas_page_map(page->buffer); | ||
2026 | memcpy(p, addr + off, RX_COPY_MIN); | ||
2027 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, | ||
2028 | PCI_DMA_FROMDEVICE); | ||
2029 | cas_page_unmap(addr); | ||
2030 | off += RX_COPY_MIN; | ||
2031 | swivel = RX_COPY_MIN; | ||
2032 | RX_USED_ADD(page, cp->mtu_stride); | ||
2033 | } else { | ||
2034 | RX_USED_ADD(page, hlen); | ||
2035 | } | ||
2036 | skb_put(skb, alloclen); | ||
2037 | |||
2038 | skb_shinfo(skb)->nr_frags++; | ||
2039 | skb->data_len += hlen - swivel; | ||
2040 | skb->len += hlen - swivel; | ||
2041 | |||
2042 | get_page(page->buffer); | ||
2043 | frag->page = page->buffer; | ||
2044 | frag->page_offset = off; | ||
2045 | frag->size = hlen - swivel; | ||
2046 | |||
2047 | /* any more data? */ | ||
2048 | if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { | ||
2049 | hlen = dlen; | ||
2050 | off = 0; | ||
2051 | |||
2052 | i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); | ||
2053 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | ||
2054 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, | ||
2055 | hlen + cp->crc_size, | ||
2056 | PCI_DMA_FROMDEVICE); | ||
2057 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, | ||
2058 | hlen + cp->crc_size, | ||
2059 | PCI_DMA_FROMDEVICE); | ||
2060 | |||
2061 | skb_shinfo(skb)->nr_frags++; | ||
2062 | skb->data_len += hlen; | ||
2063 | skb->len += hlen; | ||
2064 | frag++; | ||
2065 | |||
2066 | get_page(page->buffer); | ||
2067 | frag->page = page->buffer; | ||
2068 | frag->page_offset = 0; | ||
2069 | frag->size = hlen; | ||
2070 | RX_USED_ADD(page, hlen + cp->crc_size); | ||
2071 | } | ||
2072 | |||
2073 | if (cp->crc_size) { | ||
2074 | addr = cas_page_map(page->buffer); | ||
2075 | crcaddr = addr + off + hlen; | ||
2076 | } | ||
2077 | |||
2078 | } else { | ||
2079 | /* copying packet */ | ||
2080 | if (!dlen) | ||
2081 | goto end_copy_pkt; | ||
2082 | |||
2083 | i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); | ||
2084 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | ||
2085 | off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; | ||
2086 | hlen = min(cp->page_size - off, dlen); | ||
2087 | if (hlen < 0) { | ||
2088 | if (netif_msg_rx_err(cp)) { | ||
2089 | printk(KERN_DEBUG "%s: rx page overflow: " | ||
2090 | "%d\n", cp->dev->name, hlen); | ||
2091 | } | ||
2092 | dev_kfree_skb_irq(skb); | ||
2093 | return -1; | ||
2094 | } | ||
2095 | i = hlen; | ||
2096 | if (i == dlen) /* attach FCS */ | ||
2097 | i += cp->crc_size; | ||
2098 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, | ||
2099 | PCI_DMA_FROMDEVICE); | ||
2100 | addr = cas_page_map(page->buffer); | ||
2101 | memcpy(p, addr + off, i); | ||
2102 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, | ||
2103 | PCI_DMA_FROMDEVICE); | ||
2104 | cas_page_unmap(addr); | ||
2105 | if (p == (char *) skb->data) /* not split */ | ||
2106 | RX_USED_ADD(page, cp->mtu_stride); | ||
2107 | else | ||
2108 | RX_USED_ADD(page, i); | ||
2109 | |||
2110 | /* any more data? */ | ||
2111 | if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { | ||
2112 | p += hlen; | ||
2113 | i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); | ||
2114 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | ||
2115 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, | ||
2116 | dlen + cp->crc_size, | ||
2117 | PCI_DMA_FROMDEVICE); | ||
2118 | addr = cas_page_map(page->buffer); | ||
2119 | memcpy(p, addr, dlen + cp->crc_size); | ||
2120 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, | ||
2121 | dlen + cp->crc_size, | ||
2122 | PCI_DMA_FROMDEVICE); | ||
2123 | cas_page_unmap(addr); | ||
2124 | RX_USED_ADD(page, dlen + cp->crc_size); | ||
2125 | } | ||
2126 | end_copy_pkt: | ||
2127 | if (cp->crc_size) { | ||
2128 | addr = NULL; | ||
2129 | crcaddr = skb->data + alloclen; | ||
2130 | } | ||
2131 | skb_put(skb, alloclen); | ||
2132 | } | ||
2133 | |||
2134 | i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]); | ||
2135 | if (cp->crc_size) { | ||
2136 | /* checksum includes FCS. strip it out. */ | ||
2137 | i = csum_fold(csum_partial(crcaddr, cp->crc_size, i)); | ||
2138 | if (addr) | ||
2139 | cas_page_unmap(addr); | ||
2140 | } | ||
2141 | skb->csum = ntohs(i ^ 0xffff); | ||
2142 | skb->ip_summed = CHECKSUM_HW; | ||
2143 | skb->protocol = eth_type_trans(skb, cp->dev); | ||
2144 | return len; | ||
2145 | } | ||
2146 | |||
2147 | |||
2148 | /* we can handle up to 64 rx flows at a time. we do the same thing | ||
2149 | * as nonreassm except that we batch up the buffers. | ||
2150 | * NOTE: we currently just treat each flow as a bunch of packets that | ||
2151 | * we pass up. a better way would be to coalesce the packets | ||
2152 | * into a jumbo packet. to do that, we need to do the following: | ||
2153 | * 1) the first packet will have a clean split between header and | ||
2154 | * data. save both. | ||
2155 | * 2) each time the next flow packet comes in, extend the | ||
2156 | * data length and merge the checksums. | ||
2157 | * 3) on flow release, fix up the header. | ||
2158 | * 4) make sure the higher layer doesn't care. | ||
2159 | * because packets get coalesced, we shouldn't run into fragment count | ||
2160 | * issues. | ||
2161 | */ | ||
2162 | static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, | ||
2163 | struct sk_buff *skb) | ||
2164 | { | ||
2165 | int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); | ||
2166 | struct sk_buff_head *flow = &cp->rx_flows[flowid]; | ||
2167 | |||
2168 | /* this is protected at a higher layer, so no need to | ||
2169 | * do any additional locking here. stick the buffer | ||
2170 | * at the end. | ||
2171 | */ | ||
2172 | __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow); | ||
2173 | if (words[0] & RX_COMP1_RELEASE_FLOW) { | ||
2174 | while ((skb = __skb_dequeue(flow))) { | ||
2175 | cas_skb_release(skb); | ||
2176 | } | ||
2177 | } | ||
2178 | } | ||
2179 | |||
2180 | /* put rx descriptor back on ring. if a buffer is in use by a higher | ||
2181 | * layer, this will need to put in a replacement. | ||
2182 | */ | ||
2183 | static void cas_post_page(struct cas *cp, const int ring, const int index) | ||
2184 | { | ||
2185 | cas_page_t *new; | ||
2186 | int entry; | ||
2187 | |||
2188 | entry = cp->rx_old[ring]; | ||
2189 | |||
2190 | new = cas_page_swap(cp, ring, index); | ||
2191 | cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); | ||
2192 | cp->init_rxds[ring][entry].index = | ||
2193 | cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | | ||
2194 | CAS_BASE(RX_INDEX_RING, ring)); | ||
2195 | |||
2196 | entry = RX_DESC_ENTRY(ring, entry + 1); | ||
2197 | cp->rx_old[ring] = entry; | ||
2198 | |||
2199 | if (entry % 4) | ||
2200 | return; | ||
2201 | |||
2202 | if (ring == 0) | ||
2203 | writel(entry, cp->regs + REG_RX_KICK); | ||
2204 | else if ((N_RX_DESC_RINGS > 1) && | ||
2205 | (cp->cas_flags & CAS_FLAG_REG_PLUS)) | ||
2206 | writel(entry, cp->regs + REG_PLUS_RX_KICK1); | ||
2207 | } | ||
2208 | |||
2209 | |||
2210 | /* only when things are bad */ | ||
2211 | static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) | ||
2212 | { | ||
2213 | unsigned int entry, last, count, released; | ||
2214 | int cluster; | ||
2215 | cas_page_t **page = cp->rx_pages[ring]; | ||
2216 | |||
2217 | entry = cp->rx_old[ring]; | ||
2218 | |||
2219 | if (netif_msg_intr(cp)) | ||
2220 | printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n", | ||
2221 | cp->dev->name, ring, entry); | ||
2222 | |||
2223 | cluster = -1; | ||
2224 | count = entry & 0x3; | ||
2225 | last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); | ||
2226 | released = 0; | ||
2227 | while (entry != last) { | ||
2228 | /* make a new buffer if it's still in use */ | ||
2229 | if (page_count(page[entry]->buffer) > 1) { | ||
2230 | cas_page_t *new = cas_page_dequeue(cp); | ||
2231 | if (!new) { | ||
2232 | /* let the timer know that we need to | ||
2233 | * do this again | ||
2234 | */ | ||
2235 | cp->cas_flags |= CAS_FLAG_RXD_POST(ring); | ||
2236 | if (!timer_pending(&cp->link_timer)) | ||
2237 | mod_timer(&cp->link_timer, jiffies + | ||
2238 | CAS_LINK_FAST_TIMEOUT); | ||
2239 | cp->rx_old[ring] = entry; | ||
2240 | cp->rx_last[ring] = num ? num - released : 0; | ||
2241 | return -ENOMEM; | ||
2242 | } | ||
2243 | spin_lock(&cp->rx_inuse_lock); | ||
2244 | list_add(&page[entry]->list, &cp->rx_inuse_list); | ||
2245 | spin_unlock(&cp->rx_inuse_lock); | ||
2246 | cp->init_rxds[ring][entry].buffer = | ||
2247 | cpu_to_le64(new->dma_addr); | ||
2248 | page[entry] = new; | ||
2249 | |||
2250 | } | ||
2251 | |||
2252 | if (++count == 4) { | ||
2253 | cluster = entry; | ||
2254 | count = 0; | ||
2255 | } | ||
2256 | released++; | ||
2257 | entry = RX_DESC_ENTRY(ring, entry + 1); | ||
2258 | } | ||
2259 | cp->rx_old[ring] = entry; | ||
2260 | |||
2261 | if (cluster < 0) | ||
2262 | return 0; | ||
2263 | |||
2264 | if (ring == 0) | ||
2265 | writel(cluster, cp->regs + REG_RX_KICK); | ||
2266 | else if ((N_RX_DESC_RINGS > 1) && | ||
2267 | (cp->cas_flags & CAS_FLAG_REG_PLUS)) | ||
2268 | writel(cluster, cp->regs + REG_PLUS_RX_KICK1); | ||
2269 | return 0; | ||
2270 | } | ||
2271 | |||
2272 | |||
2273 | /* process a completion ring. packets are set up in three basic ways: | ||
2274 | * small packets: should be copied header + data in single buffer. | ||
2275 | * large packets: header and data in a single buffer. | ||
2276 | * split packets: header in a separate buffer from data. | ||
2277 | * data may be in multiple pages. data may be > 256 | ||
2278 | * bytes but in a single page. | ||
2279 | * | ||
2280 | * NOTE: RX page posting is done in this routine as well. while there's | ||
2281 | * the capability of using multiple RX completion rings, it isn't | ||
2282 | * really worthwhile due to the fact that the page posting will | ||
2283 | * force serialization on the single descriptor ring. | ||
2284 | */ | ||
2285 | static int cas_rx_ringN(struct cas *cp, int ring, int budget) | ||
2286 | { | ||
2287 | struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; | ||
2288 | int entry, drops; | ||
2289 | int npackets = 0; | ||
2290 | |||
2291 | if (netif_msg_intr(cp)) | ||
2292 | printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n", | ||
2293 | cp->dev->name, ring, | ||
2294 | readl(cp->regs + REG_RX_COMP_HEAD), | ||
2295 | cp->rx_new[ring]); | ||
2296 | |||
2297 | entry = cp->rx_new[ring]; | ||
2298 | drops = 0; | ||
2299 | while (1) { | ||
2300 | struct cas_rx_comp *rxc = rxcs + entry; | ||
2301 | struct sk_buff *skb; | ||
2302 | int type, len; | ||
2303 | u64 words[4]; | ||
2304 | int i, dring; | ||
2305 | |||
2306 | words[0] = le64_to_cpu(rxc->word1); | ||
2307 | words[1] = le64_to_cpu(rxc->word2); | ||
2308 | words[2] = le64_to_cpu(rxc->word3); | ||
2309 | words[3] = le64_to_cpu(rxc->word4); | ||
2310 | |||
2311 | /* don't touch if still owned by hw */ | ||
2312 | type = CAS_VAL(RX_COMP1_TYPE, words[0]); | ||
2313 | if (type == 0) | ||
2314 | break; | ||
2315 | |||
2316 | /* hw hasn't cleared the zero bit yet */ | ||
2317 | if (words[3] & RX_COMP4_ZERO) { | ||
2318 | break; | ||
2319 | } | ||
2320 | |||
2321 | /* get info on the packet */ | ||
2322 | if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { | ||
2323 | spin_lock(&cp->stat_lock[ring]); | ||
2324 | cp->net_stats[ring].rx_errors++; | ||
2325 | if (words[3] & RX_COMP4_LEN_MISMATCH) | ||
2326 | cp->net_stats[ring].rx_length_errors++; | ||
2327 | if (words[3] & RX_COMP4_BAD) | ||
2328 | cp->net_stats[ring].rx_crc_errors++; | ||
2329 | spin_unlock(&cp->stat_lock[ring]); | ||
2330 | |||
2331 | /* We'll just return it to Cassini. */ | ||
2332 | drop_it: | ||
2333 | spin_lock(&cp->stat_lock[ring]); | ||
2334 | ++cp->net_stats[ring].rx_dropped; | ||
2335 | spin_unlock(&cp->stat_lock[ring]); | ||
2336 | goto next; | ||
2337 | } | ||
2338 | |||
2339 | len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); | ||
2340 | if (len < 0) { | ||
2341 | ++drops; | ||
2342 | goto drop_it; | ||
2343 | } | ||
2344 | |||
2345 | /* see if it's a flow re-assembly or not. the driver | ||
2346 | * itself handles release back up. | ||
2347 | */ | ||
2348 | if (RX_DONT_BATCH || (type == 0x2)) { | ||
2349 | /* non-reassm: these always get released */ | ||
2350 | cas_skb_release(skb); | ||
2351 | } else { | ||
2352 | cas_rx_flow_pkt(cp, words, skb); | ||
2353 | } | ||
2354 | |||
2355 | spin_lock(&cp->stat_lock[ring]); | ||
2356 | cp->net_stats[ring].rx_packets++; | ||
2357 | cp->net_stats[ring].rx_bytes += len; | ||
2358 | spin_unlock(&cp->stat_lock[ring]); | ||
2359 | cp->dev->last_rx = jiffies; | ||
2360 | |||
2361 | next: | ||
2362 | npackets++; | ||
2363 | |||
2364 | /* should it be released? */ | ||
2365 | if (words[0] & RX_COMP1_RELEASE_HDR) { | ||
2366 | i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); | ||
2367 | dring = CAS_VAL(RX_INDEX_RING, i); | ||
2368 | i = CAS_VAL(RX_INDEX_NUM, i); | ||
2369 | cas_post_page(cp, dring, i); | ||
2370 | } | ||
2371 | |||
2372 | if (words[0] & RX_COMP1_RELEASE_DATA) { | ||
2373 | i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); | ||
2374 | dring = CAS_VAL(RX_INDEX_RING, i); | ||
2375 | i = CAS_VAL(RX_INDEX_NUM, i); | ||
2376 | cas_post_page(cp, dring, i); | ||
2377 | } | ||
2378 | |||
2379 | if (words[0] & RX_COMP1_RELEASE_NEXT) { | ||
2380 | i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); | ||
2381 | dring = CAS_VAL(RX_INDEX_RING, i); | ||
2382 | i = CAS_VAL(RX_INDEX_NUM, i); | ||
2383 | cas_post_page(cp, dring, i); | ||
2384 | } | ||
2385 | |||
2386 | /* skip to the next entry */ | ||
2387 | entry = RX_COMP_ENTRY(ring, entry + 1 + | ||
2388 | CAS_VAL(RX_COMP1_SKIP, words[0])); | ||
2389 | #ifdef USE_NAPI | ||
2390 | if (budget && (npackets >= budget)) | ||
2391 | break; | ||
2392 | #endif | ||
2393 | } | ||
2394 | cp->rx_new[ring] = entry; | ||
2395 | |||
2396 | if (drops) | ||
2397 | printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", | ||
2398 | cp->dev->name); | ||
2399 | return npackets; | ||
2400 | } | ||
2401 | |||
2402 | |||
2403 | /* put completion entries back on the ring */ | ||
2404 | static void cas_post_rxcs_ringN(struct net_device *dev, | ||
2405 | struct cas *cp, int ring) | ||
2406 | { | ||
2407 | struct cas_rx_comp *rxc = cp->init_rxcs[ring]; | ||
2408 | int last, entry; | ||
2409 | |||
2410 | last = cp->rx_cur[ring]; | ||
2411 | entry = cp->rx_new[ring]; | ||
2412 | if (netif_msg_intr(cp)) | ||
2413 | printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n", | ||
2414 | dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD), | ||
2415 | entry); | ||
2416 | |||
2417 | /* zero and re-mark descriptors */ | ||
2418 | while (last != entry) { | ||
2419 | cas_rxc_init(rxc + last); | ||
2420 | last = RX_COMP_ENTRY(ring, last + 1); | ||
2421 | } | ||
2422 | cp->rx_cur[ring] = last; | ||
2423 | |||
2424 | if (ring == 0) | ||
2425 | writel(last, cp->regs + REG_RX_COMP_TAIL); | ||
2426 | else if (cp->cas_flags & CAS_FLAG_REG_PLUS) | ||
2427 | writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); | ||
2428 | } | ||
2429 | |||
2430 | |||
2431 | |||
2432 | /* cassini can use all four PCI interrupts for the completion ring. | ||
2433 | * rings 3 and 4 are identical | ||
2434 | */ | ||
2435 | #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) | ||
2436 | static inline void cas_handle_irqN(struct net_device *dev, | ||
2437 | struct cas *cp, const u32 status, | ||
2438 | const int ring) | ||
2439 | { | ||
2440 | if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) | ||
2441 | cas_post_rxcs_ringN(dev, cp, ring); | ||
2442 | } | ||
2443 | |||
2444 | static irqreturn_t cas_interruptN(int irq, void *dev_id, struct pt_regs *regs) | ||
2445 | { | ||
2446 | struct net_device *dev = dev_id; | ||
2447 | struct cas *cp = netdev_priv(dev); | ||
2448 | unsigned long flags; | ||
2449 | int ring; | ||
2450 | u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); | ||
2451 | |||
2452 | /* check for shared irq */ | ||
2453 | if (status == 0) | ||
2454 | return IRQ_NONE; | ||
2455 | |||
2456 | ring = (irq == cp->pci_irq_INTC) ? 2 : 3; | ||
2457 | spin_lock_irqsave(&cp->lock, flags); | ||
2458 | if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ | ||
2459 | #ifdef USE_NAPI | ||
2460 | cas_mask_intr(cp); | ||
2461 | netif_rx_schedule(dev); | ||
2462 | #else | ||
2463 | cas_rx_ringN(cp, ring, 0); | ||
2464 | #endif | ||
2465 | status &= ~INTR_RX_DONE_ALT; | ||
2466 | } | ||
2467 | |||
2468 | if (status) | ||
2469 | cas_handle_irqN(dev, cp, status, ring); | ||
2470 | spin_unlock_irqrestore(&cp->lock, flags); | ||
2471 | return IRQ_HANDLED; | ||
2472 | } | ||
2473 | #endif | ||
2474 | |||
2475 | #ifdef USE_PCI_INTB | ||
2476 | /* everything but rx packets */ | ||
2477 | static inline void cas_handle_irq1(struct cas *cp, const u32 status) | ||
2478 | { | ||
2479 | if (status & INTR_RX_BUF_UNAVAIL_1) { | ||
2480 | /* Frame arrived, no free RX buffers available. | ||
2481 | * NOTE: we can get this on a link transition. */ | ||
2482 | cas_post_rxds_ringN(cp, 1, 0); | ||
2483 | spin_lock(&cp->stat_lock[1]); | ||
2484 | cp->net_stats[1].rx_dropped++; | ||
2485 | spin_unlock(&cp->stat_lock[1]); | ||
2486 | } | ||
2487 | |||
2488 | if (status & INTR_RX_BUF_AE_1) | ||
2489 | cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - | ||
2490 | RX_AE_FREEN_VAL(1)); | ||
2491 | |||
2492 | if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) | ||
2493 | cas_post_rxcs_ringN(cp, 1); | ||
2494 | } | ||
2495 | |||
2496 | /* ring 2 handles a few more events than 3 and 4 */ | ||
2497 | static irqreturn_t cas_interrupt1(int irq, void *dev_id, struct pt_regs *regs) | ||
2498 | { | ||
2499 | struct net_device *dev = dev_id; | ||
2500 | struct cas *cp = netdev_priv(dev); | ||
2501 | unsigned long flags; | ||
2502 | u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); | ||
2503 | |||
2504 | /* check for shared interrupt */ | ||
2505 | if (status == 0) | ||
2506 | return IRQ_NONE; | ||
2507 | |||
2508 | spin_lock_irqsave(&cp->lock, flags); | ||
2509 | if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ | ||
2510 | #ifdef USE_NAPI | ||
2511 | cas_mask_intr(cp); | ||
2512 | netif_rx_schedule(dev); | ||
2513 | #else | ||
2514 | cas_rx_ringN(cp, 1, 0); | ||
2515 | #endif | ||
2516 | status &= ~INTR_RX_DONE_ALT; | ||
2517 | } | ||
2518 | if (status) | ||
2519 | cas_handle_irq1(cp, status); | ||
2520 | spin_unlock_irqrestore(&cp->lock, flags); | ||
2521 | return IRQ_HANDLED; | ||
2522 | } | ||
2523 | #endif | ||
2524 | |||
2525 | static inline void cas_handle_irq(struct net_device *dev, | ||
2526 | struct cas *cp, const u32 status) | ||
2527 | { | ||
2528 | /* housekeeping interrupts */ | ||
2529 | if (status & INTR_ERROR_MASK) | ||
2530 | cas_abnormal_irq(dev, cp, status); | ||
2531 | |||
2532 | if (status & INTR_RX_BUF_UNAVAIL) { | ||
2533 | /* Frame arrived, no free RX buffers available. | ||
2534 | * NOTE: we can get this on a link transition. | ||
2535 | */ | ||
2536 | cas_post_rxds_ringN(cp, 0, 0); | ||
2537 | spin_lock(&cp->stat_lock[0]); | ||
2538 | cp->net_stats[0].rx_dropped++; | ||
2539 | spin_unlock(&cp->stat_lock[0]); | ||
2540 | } else if (status & INTR_RX_BUF_AE) { | ||
2541 | cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - | ||
2542 | RX_AE_FREEN_VAL(0)); | ||
2543 | } | ||
2544 | |||
2545 | if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) | ||
2546 | cas_post_rxcs_ringN(dev, cp, 0); | ||
2547 | } | ||
2548 | |||
2549 | static irqreturn_t cas_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
2550 | { | ||
2551 | struct net_device *dev = dev_id; | ||
2552 | struct cas *cp = netdev_priv(dev); | ||
2553 | unsigned long flags; | ||
2554 | u32 status = readl(cp->regs + REG_INTR_STATUS); | ||
2555 | |||
2556 | if (status == 0) | ||
2557 | return IRQ_NONE; | ||
2558 | |||
2559 | spin_lock_irqsave(&cp->lock, flags); | ||
2560 | if (status & (INTR_TX_ALL | INTR_TX_INTME)) { | ||
2561 | cas_tx(dev, cp, status); | ||
2562 | status &= ~(INTR_TX_ALL | INTR_TX_INTME); | ||
2563 | } | ||
2564 | |||
2565 | if (status & INTR_RX_DONE) { | ||
2566 | #ifdef USE_NAPI | ||
2567 | cas_mask_intr(cp); | ||
2568 | netif_rx_schedule(dev); | ||
2569 | #else | ||
2570 | cas_rx_ringN(cp, 0, 0); | ||
2571 | #endif | ||
2572 | status &= ~INTR_RX_DONE; | ||
2573 | } | ||
2574 | |||
2575 | if (status) | ||
2576 | cas_handle_irq(dev, cp, status); | ||
2577 | spin_unlock_irqrestore(&cp->lock, flags); | ||
2578 | return IRQ_HANDLED; | ||
2579 | } | ||
2580 | |||
2581 | |||
2582 | #ifdef USE_NAPI | ||
2583 | static int cas_poll(struct net_device *dev, int *budget) | ||
2584 | { | ||
2585 | struct cas *cp = netdev_priv(dev); | ||
2586 | int i, enable_intr, todo, credits; | ||
2587 | u32 status = readl(cp->regs + REG_INTR_STATUS); | ||
2588 | unsigned long flags; | ||
2589 | |||
2590 | spin_lock_irqsave(&cp->lock, flags); | ||
2591 | cas_tx(dev, cp, status); | ||
2592 | spin_unlock_irqrestore(&cp->lock, flags); | ||
2593 | |||
2594 | /* NAPI rx packets. we spread the credits across all of the | ||
2595 | * rxc rings | ||
2596 | */ | ||
2597 | todo = min(*budget, dev->quota); | ||
2598 | |||
2599 | /* to make sure we're fair with the work we loop through each | ||
2600 | * ring N_RX_COMP_RING times with a request of | ||
2601 | * todo / N_RX_COMP_RINGS | ||
2602 | */ | ||
2603 | enable_intr = 1; | ||
2604 | credits = 0; | ||
2605 | for (i = 0; i < N_RX_COMP_RINGS; i++) { | ||
2606 | int j; | ||
2607 | for (j = 0; j < N_RX_COMP_RINGS; j++) { | ||
2608 | credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS); | ||
2609 | if (credits >= todo) { | ||
2610 | enable_intr = 0; | ||
2611 | goto rx_comp; | ||
2612 | } | ||
2613 | } | ||
2614 | } | ||
2615 | |||
2616 | rx_comp: | ||
2617 | *budget -= credits; | ||
2618 | dev->quota -= credits; | ||
2619 | |||
2620 | /* final rx completion */ | ||
2621 | spin_lock_irqsave(&cp->lock, flags); | ||
2622 | if (status) | ||
2623 | cas_handle_irq(dev, cp, status); | ||
2624 | |||
2625 | #ifdef USE_PCI_INTB | ||
2626 | if (N_RX_COMP_RINGS > 1) { | ||
2627 | status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); | ||
2628 | if (status) | ||
2629 | cas_handle_irq1(dev, cp, status); | ||
2630 | } | ||
2631 | #endif | ||
2632 | |||
2633 | #ifdef USE_PCI_INTC | ||
2634 | if (N_RX_COMP_RINGS > 2) { | ||
2635 | status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); | ||
2636 | if (status) | ||
2637 | cas_handle_irqN(dev, cp, status, 2); | ||
2638 | } | ||
2639 | #endif | ||
2640 | |||
2641 | #ifdef USE_PCI_INTD | ||
2642 | if (N_RX_COMP_RINGS > 3) { | ||
2643 | status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); | ||
2644 | if (status) | ||
2645 | cas_handle_irqN(dev, cp, status, 3); | ||
2646 | } | ||
2647 | #endif | ||
2648 | spin_unlock_irqrestore(&cp->lock, flags); | ||
2649 | if (enable_intr) { | ||
2650 | netif_rx_complete(dev); | ||
2651 | cas_unmask_intr(cp); | ||
2652 | return 0; | ||
2653 | } | ||
2654 | return 1; | ||
2655 | } | ||
2656 | #endif | ||
2657 | |||
2658 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2659 | static void cas_netpoll(struct net_device *dev) | ||
2660 | { | ||
2661 | struct cas *cp = netdev_priv(dev); | ||
2662 | |||
2663 | cas_disable_irq(cp, 0); | ||
2664 | cas_interrupt(cp->pdev->irq, dev, NULL); | ||
2665 | cas_enable_irq(cp, 0); | ||
2666 | |||
2667 | #ifdef USE_PCI_INTB | ||
2668 | if (N_RX_COMP_RINGS > 1) { | ||
2669 | /* cas_interrupt1(); */ | ||
2670 | } | ||
2671 | #endif | ||
2672 | #ifdef USE_PCI_INTC | ||
2673 | if (N_RX_COMP_RINGS > 2) { | ||
2674 | /* cas_interruptN(); */ | ||
2675 | } | ||
2676 | #endif | ||
2677 | #ifdef USE_PCI_INTD | ||
2678 | if (N_RX_COMP_RINGS > 3) { | ||
2679 | /* cas_interruptN(); */ | ||
2680 | } | ||
2681 | #endif | ||
2682 | } | ||
2683 | #endif | ||
2684 | |||
2685 | static void cas_tx_timeout(struct net_device *dev) | ||
2686 | { | ||
2687 | struct cas *cp = netdev_priv(dev); | ||
2688 | |||
2689 | printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); | ||
2690 | if (!cp->hw_running) { | ||
2691 | printk("%s: hrm.. hw not running!\n", dev->name); | ||
2692 | return; | ||
2693 | } | ||
2694 | |||
2695 | printk(KERN_ERR "%s: MIF_STATE[%08x]\n", | ||
2696 | dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE)); | ||
2697 | |||
2698 | printk(KERN_ERR "%s: MAC_STATE[%08x]\n", | ||
2699 | dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE)); | ||
2700 | |||
2701 | printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] " | ||
2702 | "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", | ||
2703 | dev->name, | ||
2704 | readl(cp->regs + REG_TX_CFG), | ||
2705 | readl(cp->regs + REG_MAC_TX_STATUS), | ||
2706 | readl(cp->regs + REG_MAC_TX_CFG), | ||
2707 | readl(cp->regs + REG_TX_FIFO_PKT_CNT), | ||
2708 | readl(cp->regs + REG_TX_FIFO_WRITE_PTR), | ||
2709 | readl(cp->regs + REG_TX_FIFO_READ_PTR), | ||
2710 | readl(cp->regs + REG_TX_SM_1), | ||
2711 | readl(cp->regs + REG_TX_SM_2)); | ||
2712 | |||
2713 | printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n", | ||
2714 | dev->name, | ||
2715 | readl(cp->regs + REG_RX_CFG), | ||
2716 | readl(cp->regs + REG_MAC_RX_STATUS), | ||
2717 | readl(cp->regs + REG_MAC_RX_CFG)); | ||
2718 | |||
2719 | printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n", | ||
2720 | dev->name, | ||
2721 | readl(cp->regs + REG_HP_STATE_MACHINE), | ||
2722 | readl(cp->regs + REG_HP_STATUS0), | ||
2723 | readl(cp->regs + REG_HP_STATUS1), | ||
2724 | readl(cp->regs + REG_HP_STATUS2)); | ||
2725 | |||
2726 | #if 1 | ||
2727 | atomic_inc(&cp->reset_task_pending); | ||
2728 | atomic_inc(&cp->reset_task_pending_all); | ||
2729 | schedule_work(&cp->reset_task); | ||
2730 | #else | ||
2731 | atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); | ||
2732 | schedule_work(&cp->reset_task); | ||
2733 | #endif | ||
2734 | } | ||
2735 | |||
2736 | static inline int cas_intme(int ring, int entry) | ||
2737 | { | ||
2738 | /* Algorithm: IRQ every 1/2 of descriptors. */ | ||
2739 | if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) | ||
2740 | return 1; | ||
2741 | return 0; | ||
2742 | } | ||
2743 | |||
2744 | |||
2745 | static void cas_write_txd(struct cas *cp, int ring, int entry, | ||
2746 | dma_addr_t mapping, int len, u64 ctrl, int last) | ||
2747 | { | ||
2748 | struct cas_tx_desc *txd = cp->init_txds[ring] + entry; | ||
2749 | |||
2750 | ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); | ||
2751 | if (cas_intme(ring, entry)) | ||
2752 | ctrl |= TX_DESC_INTME; | ||
2753 | if (last) | ||
2754 | ctrl |= TX_DESC_EOF; | ||
2755 | txd->control = cpu_to_le64(ctrl); | ||
2756 | txd->buffer = cpu_to_le64(mapping); | ||
2757 | } | ||
2758 | |||
2759 | static inline void *tx_tiny_buf(struct cas *cp, const int ring, | ||
2760 | const int entry) | ||
2761 | { | ||
2762 | return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; | ||
2763 | } | ||
2764 | |||
2765 | static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, | ||
2766 | const int entry, const int tentry) | ||
2767 | { | ||
2768 | cp->tx_tiny_use[ring][tentry].nbufs++; | ||
2769 | cp->tx_tiny_use[ring][entry].used = 1; | ||
2770 | return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; | ||
2771 | } | ||
2772 | |||
2773 | static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, | ||
2774 | struct sk_buff *skb) | ||
2775 | { | ||
2776 | struct net_device *dev = cp->dev; | ||
2777 | int entry, nr_frags, frag, tabort, tentry; | ||
2778 | dma_addr_t mapping; | ||
2779 | unsigned long flags; | ||
2780 | u64 ctrl; | ||
2781 | u32 len; | ||
2782 | |||
2783 | spin_lock_irqsave(&cp->tx_lock[ring], flags); | ||
2784 | |||
2785 | /* This is a hard error, log it. */ | ||
2786 | if (TX_BUFFS_AVAIL(cp, ring) <= | ||
2787 | CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { | ||
2788 | netif_stop_queue(dev); | ||
2789 | spin_unlock_irqrestore(&cp->tx_lock[ring], flags); | ||
2790 | printk(KERN_ERR PFX "%s: BUG! Tx Ring full when " | ||
2791 | "queue awake!\n", dev->name); | ||
2792 | return 1; | ||
2793 | } | ||
2794 | |||
2795 | ctrl = 0; | ||
2796 | if (skb->ip_summed == CHECKSUM_HW) { | ||
2797 | u64 csum_start_off, csum_stuff_off; | ||
2798 | |||
2799 | csum_start_off = (u64) (skb->h.raw - skb->data); | ||
2800 | csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data); | ||
2801 | |||
2802 | ctrl = TX_DESC_CSUM_EN | | ||
2803 | CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | | ||
2804 | CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); | ||
2805 | } | ||
2806 | |||
2807 | entry = cp->tx_new[ring]; | ||
2808 | cp->tx_skbs[ring][entry] = skb; | ||
2809 | |||
2810 | nr_frags = skb_shinfo(skb)->nr_frags; | ||
2811 | len = skb_headlen(skb); | ||
2812 | mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), | ||
2813 | offset_in_page(skb->data), len, | ||
2814 | PCI_DMA_TODEVICE); | ||
2815 | |||
2816 | tentry = entry; | ||
2817 | tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); | ||
2818 | if (unlikely(tabort)) { | ||
2819 | /* NOTE: len is always > tabort */ | ||
2820 | cas_write_txd(cp, ring, entry, mapping, len - tabort, | ||
2821 | ctrl | TX_DESC_SOF, 0); | ||
2822 | entry = TX_DESC_NEXT(ring, entry); | ||
2823 | |||
2824 | memcpy(tx_tiny_buf(cp, ring, entry), skb->data + | ||
2825 | len - tabort, tabort); | ||
2826 | mapping = tx_tiny_map(cp, ring, entry, tentry); | ||
2827 | cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, | ||
2828 | (nr_frags == 0)); | ||
2829 | } else { | ||
2830 | cas_write_txd(cp, ring, entry, mapping, len, ctrl | | ||
2831 | TX_DESC_SOF, (nr_frags == 0)); | ||
2832 | } | ||
2833 | entry = TX_DESC_NEXT(ring, entry); | ||
2834 | |||
2835 | for (frag = 0; frag < nr_frags; frag++) { | ||
2836 | skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; | ||
2837 | |||
2838 | len = fragp->size; | ||
2839 | mapping = pci_map_page(cp->pdev, fragp->page, | ||
2840 | fragp->page_offset, len, | ||
2841 | PCI_DMA_TODEVICE); | ||
2842 | |||
2843 | tabort = cas_calc_tabort(cp, fragp->page_offset, len); | ||
2844 | if (unlikely(tabort)) { | ||
2845 | void *addr; | ||
2846 | |||
2847 | /* NOTE: len is always > tabort */ | ||
2848 | cas_write_txd(cp, ring, entry, mapping, len - tabort, | ||
2849 | ctrl, 0); | ||
2850 | entry = TX_DESC_NEXT(ring, entry); | ||
2851 | |||
2852 | addr = cas_page_map(fragp->page); | ||
2853 | memcpy(tx_tiny_buf(cp, ring, entry), | ||
2854 | addr + fragp->page_offset + len - tabort, | ||
2855 | tabort); | ||
2856 | cas_page_unmap(addr); | ||
2857 | mapping = tx_tiny_map(cp, ring, entry, tentry); | ||
2858 | len = tabort; | ||
2859 | } | ||
2860 | |||
2861 | cas_write_txd(cp, ring, entry, mapping, len, ctrl, | ||
2862 | (frag + 1 == nr_frags)); | ||
2863 | entry = TX_DESC_NEXT(ring, entry); | ||
2864 | } | ||
2865 | |||
2866 | cp->tx_new[ring] = entry; | ||
2867 | if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) | ||
2868 | netif_stop_queue(dev); | ||
2869 | |||
2870 | if (netif_msg_tx_queued(cp)) | ||
2871 | printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, " | ||
2872 | "avail %d\n", | ||
2873 | dev->name, ring, entry, skb->len, | ||
2874 | TX_BUFFS_AVAIL(cp, ring)); | ||
2875 | writel(entry, cp->regs + REG_TX_KICKN(ring)); | ||
2876 | spin_unlock_irqrestore(&cp->tx_lock[ring], flags); | ||
2877 | return 0; | ||
2878 | } | ||
2879 | |||
2880 | static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev) | ||
2881 | { | ||
2882 | struct cas *cp = netdev_priv(dev); | ||
2883 | |||
2884 | /* this is only used as a load-balancing hint, so it doesn't | ||
2885 | * need to be SMP safe | ||
2886 | */ | ||
2887 | static int ring; | ||
2888 | |||
2889 | skb = skb_padto(skb, cp->min_frame_size); | ||
2890 | if (!skb) | ||
2891 | return 0; | ||
2892 | |||
2893 | /* XXX: we need some higher-level QoS hooks to steer packets to | ||
2894 | * individual queues. | ||
2895 | */ | ||
2896 | if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) | ||
2897 | return 1; | ||
2898 | dev->trans_start = jiffies; | ||
2899 | return 0; | ||
2900 | } | ||
2901 | |||
2902 | static void cas_init_tx_dma(struct cas *cp) | ||
2903 | { | ||
2904 | u64 desc_dma = cp->block_dvma; | ||
2905 | unsigned long off; | ||
2906 | u32 val; | ||
2907 | int i; | ||
2908 | |||
2909 | /* set up tx completion writeback registers. must be 8-byte aligned */ | ||
2910 | #ifdef USE_TX_COMPWB | ||
2911 | off = offsetof(struct cas_init_block, tx_compwb); | ||
2912 | writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); | ||
2913 | writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); | ||
2914 | #endif | ||
2915 | |||
2916 | /* enable completion writebacks, enable paced mode, | ||
2917 | * disable read pipe, and disable pre-interrupt compwbs | ||
2918 | */ | ||
2919 | val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | | ||
2920 | TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | | ||
2921 | TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | | ||
2922 | TX_CFG_INTR_COMPWB_DIS; | ||
2923 | |||
2924 | /* write out tx ring info and tx desc bases */ | ||
2925 | for (i = 0; i < MAX_TX_RINGS; i++) { | ||
2926 | off = (unsigned long) cp->init_txds[i] - | ||
2927 | (unsigned long) cp->init_block; | ||
2928 | |||
2929 | val |= CAS_TX_RINGN_BASE(i); | ||
2930 | writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); | ||
2931 | writel((desc_dma + off) & 0xffffffff, cp->regs + | ||
2932 | REG_TX_DBN_LOW(i)); | ||
2933 | /* don't zero out the kick register here as the system | ||
2934 | * will wedge | ||
2935 | */ | ||
2936 | } | ||
2937 | writel(val, cp->regs + REG_TX_CFG); | ||
2938 | |||
2939 | /* program max burst sizes. these numbers should be different | ||
2940 | * if doing QoS. | ||
2941 | */ | ||
2942 | #ifdef USE_QOS | ||
2943 | writel(0x800, cp->regs + REG_TX_MAXBURST_0); | ||
2944 | writel(0x1600, cp->regs + REG_TX_MAXBURST_1); | ||
2945 | writel(0x2400, cp->regs + REG_TX_MAXBURST_2); | ||
2946 | writel(0x4800, cp->regs + REG_TX_MAXBURST_3); | ||
2947 | #else | ||
2948 | writel(0x800, cp->regs + REG_TX_MAXBURST_0); | ||
2949 | writel(0x800, cp->regs + REG_TX_MAXBURST_1); | ||
2950 | writel(0x800, cp->regs + REG_TX_MAXBURST_2); | ||
2951 | writel(0x800, cp->regs + REG_TX_MAXBURST_3); | ||
2952 | #endif | ||
2953 | } | ||
2954 | |||
2955 | /* Must be invoked under cp->lock. */ | ||
2956 | static inline void cas_init_dma(struct cas *cp) | ||
2957 | { | ||
2958 | cas_init_tx_dma(cp); | ||
2959 | cas_init_rx_dma(cp); | ||
2960 | } | ||
2961 | |||
2962 | /* Must be invoked under cp->lock. */ | ||
2963 | static u32 cas_setup_multicast(struct cas *cp) | ||
2964 | { | ||
2965 | u32 rxcfg = 0; | ||
2966 | int i; | ||
2967 | |||
2968 | if (cp->dev->flags & IFF_PROMISC) { | ||
2969 | rxcfg |= MAC_RX_CFG_PROMISC_EN; | ||
2970 | |||
2971 | } else if (cp->dev->flags & IFF_ALLMULTI) { | ||
2972 | for (i=0; i < 16; i++) | ||
2973 | writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); | ||
2974 | rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; | ||
2975 | |||
2976 | } else { | ||
2977 | u16 hash_table[16]; | ||
2978 | u32 crc; | ||
2979 | struct dev_mc_list *dmi = cp->dev->mc_list; | ||
2980 | int i; | ||
2981 | |||
2982 | /* use the alternate mac address registers for the | ||
2983 | * first 15 multicast addresses | ||
2984 | */ | ||
2985 | for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) { | ||
2986 | if (!dmi) { | ||
2987 | writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0)); | ||
2988 | writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1)); | ||
2989 | writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2)); | ||
2990 | continue; | ||
2991 | } | ||
2992 | writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5], | ||
2993 | cp->regs + REG_MAC_ADDRN(i*3 + 0)); | ||
2994 | writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3], | ||
2995 | cp->regs + REG_MAC_ADDRN(i*3 + 1)); | ||
2996 | writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1], | ||
2997 | cp->regs + REG_MAC_ADDRN(i*3 + 2)); | ||
2998 | dmi = dmi->next; | ||
2999 | } | ||
3000 | |||
3001 | /* use hw hash table for the next series of | ||
3002 | * multicast addresses | ||
3003 | */ | ||
3004 | memset(hash_table, 0, sizeof(hash_table)); | ||
3005 | while (dmi) { | ||
3006 | crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr); | ||
3007 | crc >>= 24; | ||
3008 | hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); | ||
3009 | dmi = dmi->next; | ||
3010 | } | ||
3011 | for (i=0; i < 16; i++) | ||
3012 | writel(hash_table[i], cp->regs + | ||
3013 | REG_MAC_HASH_TABLEN(i)); | ||
3014 | rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; | ||
3015 | } | ||
3016 | |||
3017 | return rxcfg; | ||
3018 | } | ||
3019 | |||
3020 | /* must be invoked under cp->stat_lock[N_TX_RINGS] */ | ||
3021 | static void cas_clear_mac_err(struct cas *cp) | ||
3022 | { | ||
3023 | writel(0, cp->regs + REG_MAC_COLL_NORMAL); | ||
3024 | writel(0, cp->regs + REG_MAC_COLL_FIRST); | ||
3025 | writel(0, cp->regs + REG_MAC_COLL_EXCESS); | ||
3026 | writel(0, cp->regs + REG_MAC_COLL_LATE); | ||
3027 | writel(0, cp->regs + REG_MAC_TIMER_DEFER); | ||
3028 | writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); | ||
3029 | writel(0, cp->regs + REG_MAC_RECV_FRAME); | ||
3030 | writel(0, cp->regs + REG_MAC_LEN_ERR); | ||
3031 | writel(0, cp->regs + REG_MAC_ALIGN_ERR); | ||
3032 | writel(0, cp->regs + REG_MAC_FCS_ERR); | ||
3033 | writel(0, cp->regs + REG_MAC_RX_CODE_ERR); | ||
3034 | } | ||
3035 | |||
3036 | |||
3037 | static void cas_mac_reset(struct cas *cp) | ||
3038 | { | ||
3039 | int i; | ||
3040 | |||
3041 | /* do both TX and RX reset */ | ||
3042 | writel(0x1, cp->regs + REG_MAC_TX_RESET); | ||
3043 | writel(0x1, cp->regs + REG_MAC_RX_RESET); | ||
3044 | |||
3045 | /* wait for TX */ | ||
3046 | i = STOP_TRIES; | ||
3047 | while (i-- > 0) { | ||
3048 | if (readl(cp->regs + REG_MAC_TX_RESET) == 0) | ||
3049 | break; | ||
3050 | udelay(10); | ||
3051 | } | ||
3052 | |||
3053 | /* wait for RX */ | ||
3054 | i = STOP_TRIES; | ||
3055 | while (i-- > 0) { | ||
3056 | if (readl(cp->regs + REG_MAC_RX_RESET) == 0) | ||
3057 | break; | ||
3058 | udelay(10); | ||
3059 | } | ||
3060 | |||
3061 | if (readl(cp->regs + REG_MAC_TX_RESET) | | ||
3062 | readl(cp->regs + REG_MAC_RX_RESET)) | ||
3063 | printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n", | ||
3064 | cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET), | ||
3065 | readl(cp->regs + REG_MAC_RX_RESET), | ||
3066 | readl(cp->regs + REG_MAC_STATE_MACHINE)); | ||
3067 | } | ||
3068 | |||
3069 | |||
3070 | /* Must be invoked under cp->lock. */ | ||
3071 | static void cas_init_mac(struct cas *cp) | ||
3072 | { | ||
3073 | unsigned char *e = &cp->dev->dev_addr[0]; | ||
3074 | int i; | ||
3075 | #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE | ||
3076 | u32 rxcfg; | ||
3077 | #endif | ||
3078 | cas_mac_reset(cp); | ||
3079 | |||
3080 | /* setup core arbitration weight register */ | ||
3081 | writel(CAWR_RR_DIS, cp->regs + REG_CAWR); | ||
3082 | |||
3083 | /* XXX Use pci_dma_burst_advice() */ | ||
3084 | #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) | ||
3085 | /* set the infinite burst register for chips that don't have | ||
3086 | * pci issues. | ||
3087 | */ | ||
3088 | if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) | ||
3089 | writel(INF_BURST_EN, cp->regs + REG_INF_BURST); | ||
3090 | #endif | ||
3091 | |||
3092 | writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); | ||
3093 | |||
3094 | writel(0x00, cp->regs + REG_MAC_IPG0); | ||
3095 | writel(0x08, cp->regs + REG_MAC_IPG1); | ||
3096 | writel(0x04, cp->regs + REG_MAC_IPG2); | ||
3097 | |||
3098 | /* change later for 802.3z */ | ||
3099 | writel(0x40, cp->regs + REG_MAC_SLOT_TIME); | ||
3100 | |||
3101 | /* min frame + FCS */ | ||
3102 | writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); | ||
3103 | |||
3104 | /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we | ||
3105 | * specify the maximum frame size to prevent RX tag errors on | ||
3106 | * oversized frames. | ||
3107 | */ | ||
3108 | writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | | ||
3109 | CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, | ||
3110 | (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), | ||
3111 | cp->regs + REG_MAC_FRAMESIZE_MAX); | ||
3112 | |||
3113 | /* NOTE: crc_size is used as a surrogate for half-duplex. | ||
3114 | * workaround saturn half-duplex issue by increasing preamble | ||
3115 | * size to 65 bytes. | ||
3116 | */ | ||
3117 | if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) | ||
3118 | writel(0x41, cp->regs + REG_MAC_PA_SIZE); | ||
3119 | else | ||
3120 | writel(0x07, cp->regs + REG_MAC_PA_SIZE); | ||
3121 | writel(0x04, cp->regs + REG_MAC_JAM_SIZE); | ||
3122 | writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); | ||
3123 | writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); | ||
3124 | |||
3125 | writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); | ||
3126 | |||
3127 | writel(0, cp->regs + REG_MAC_ADDR_FILTER0); | ||
3128 | writel(0, cp->regs + REG_MAC_ADDR_FILTER1); | ||
3129 | writel(0, cp->regs + REG_MAC_ADDR_FILTER2); | ||
3130 | writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); | ||
3131 | writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); | ||
3132 | |||
3133 | /* setup mac address in perfect filter array */ | ||
3134 | for (i = 0; i < 45; i++) | ||
3135 | writel(0x0, cp->regs + REG_MAC_ADDRN(i)); | ||
3136 | |||
3137 | writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); | ||
3138 | writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); | ||
3139 | writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); | ||
3140 | |||
3141 | writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); | ||
3142 | writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); | ||
3143 | writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); | ||
3144 | |||
3145 | #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE | ||
3146 | cp->mac_rx_cfg = cas_setup_multicast(cp); | ||
3147 | #else | ||
3148 | /* WTZ: Do what Adrian did in cas_set_multicast. Doing | ||
3149 | * a writel does not seem to be necessary because Cassini | ||
3150 | * seems to preserve the configuration when we do the reset. | ||
3151 | * If the chip is in trouble, though, it is not clear if we | ||
3152 | * can really count on this behavior. cas_set_multicast uses | ||
3153 | * spin_lock_irqsave, but we are called only in cas_init_hw and | ||
3154 | * cas_init_hw is protected by cas_lock_all, which calls | ||
3155 | * spin_lock_irq (so it doesn't need to save the flags, and | ||
3156 | * we should be OK for the writel, as that is the only | ||
3157 | * difference). | ||
3158 | */ | ||
3159 | cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp); | ||
3160 | writel(rxcfg, cp->regs + REG_MAC_RX_CFG); | ||
3161 | #endif | ||
3162 | spin_lock(&cp->stat_lock[N_TX_RINGS]); | ||
3163 | cas_clear_mac_err(cp); | ||
3164 | spin_unlock(&cp->stat_lock[N_TX_RINGS]); | ||
3165 | |||
3166 | /* Setup MAC interrupts. We want to get all of the interesting | ||
3167 | * counter expiration events, but we do not want to hear about | ||
3168 | * normal rx/tx as the DMA engine tells us that. | ||
3169 | */ | ||
3170 | writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); | ||
3171 | writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); | ||
3172 | |||
3173 | /* Don't enable even the PAUSE interrupts for now, we | ||
3174 | * make no use of those events other than to record them. | ||
3175 | */ | ||
3176 | writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); | ||
3177 | } | ||
3178 | |||
3179 | /* Must be invoked under cp->lock. */ | ||
3180 | static void cas_init_pause_thresholds(struct cas *cp) | ||
3181 | { | ||
3182 | /* Calculate pause thresholds. Setting the OFF threshold to the | ||
3183 | * full RX fifo size effectively disables PAUSE generation | ||
3184 | */ | ||
3185 | if (cp->rx_fifo_size <= (2 * 1024)) { | ||
3186 | cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; | ||
3187 | } else { | ||
3188 | int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; | ||
3189 | if (max_frame * 3 > cp->rx_fifo_size) { | ||
3190 | cp->rx_pause_off = 7104; | ||
3191 | cp->rx_pause_on = 960; | ||
3192 | } else { | ||
3193 | int off = (cp->rx_fifo_size - (max_frame * 2)); | ||
3194 | int on = off - max_frame; | ||
3195 | cp->rx_pause_off = off; | ||
3196 | cp->rx_pause_on = on; | ||
3197 | } | ||
3198 | } | ||
3199 | } | ||
3200 | |||
3201 | static int cas_vpd_match(const void __iomem *p, const char *str) | ||
3202 | { | ||
3203 | int len = strlen(str) + 1; | ||
3204 | int i; | ||
3205 | |||
3206 | for (i = 0; i < len; i++) { | ||
3207 | if (readb(p + i) != str[i]) | ||
3208 | return 0; | ||
3209 | } | ||
3210 | return 1; | ||
3211 | } | ||
3212 | |||
3213 | |||
3214 | /* get the mac address by reading the vpd information in the rom. | ||
3215 | * also get the phy type and determine if there's an entropy generator. | ||
3216 | * NOTE: this is a bit convoluted for the following reasons: | ||
3217 | * 1) vpd info has order-dependent mac addresses for multinic cards | ||
3218 | * 2) the only way to determine the nic order is to use the slot | ||
3219 | * number. | ||
3220 | * 3) fiber cards don't have bridges, so their slot numbers don't | ||
3221 | * mean anything. | ||
3222 | * 4) we don't actually know we have a fiber card until after | ||
3223 | * the mac addresses are parsed. | ||
3224 | */ | ||
3225 | static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, | ||
3226 | const int offset) | ||
3227 | { | ||
3228 | void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; | ||
3229 | void __iomem *base, *kstart; | ||
3230 | int i, len; | ||
3231 | int found = 0; | ||
3232 | #define VPD_FOUND_MAC 0x01 | ||
3233 | #define VPD_FOUND_PHY 0x02 | ||
3234 | |||
3235 | int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ | ||
3236 | int mac_off = 0; | ||
3237 | |||
3238 | /* give us access to the PROM */ | ||
3239 | writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, | ||
3240 | cp->regs + REG_BIM_LOCAL_DEV_EN); | ||
3241 | |||
3242 | /* check for an expansion rom */ | ||
3243 | if (readb(p) != 0x55 || readb(p + 1) != 0xaa) | ||
3244 | goto use_random_mac_addr; | ||
3245 | |||
3246 | /* search for beginning of vpd */ | ||
3247 | base = NULL; | ||
3248 | for (i = 2; i < EXPANSION_ROM_SIZE; i++) { | ||
3249 | /* check for PCIR */ | ||
3250 | if ((readb(p + i + 0) == 0x50) && | ||
3251 | (readb(p + i + 1) == 0x43) && | ||
3252 | (readb(p + i + 2) == 0x49) && | ||
3253 | (readb(p + i + 3) == 0x52)) { | ||
3254 | base = p + (readb(p + i + 8) | | ||
3255 | (readb(p + i + 9) << 8)); | ||
3256 | break; | ||
3257 | } | ||
3258 | } | ||
3259 | |||
3260 | if (!base || (readb(base) != 0x82)) | ||
3261 | goto use_random_mac_addr; | ||
3262 | |||
3263 | i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; | ||
3264 | while (i < EXPANSION_ROM_SIZE) { | ||
3265 | if (readb(base + i) != 0x90) /* no vpd found */ | ||
3266 | goto use_random_mac_addr; | ||
3267 | |||
3268 | /* found a vpd field */ | ||
3269 | len = readb(base + i + 1) | (readb(base + i + 2) << 8); | ||
3270 | |||
3271 | /* extract keywords */ | ||
3272 | kstart = base + i + 3; | ||
3273 | p = kstart; | ||
3274 | while ((p - kstart) < len) { | ||
3275 | int klen = readb(p + 2); | ||
3276 | int j; | ||
3277 | char type; | ||
3278 | |||
3279 | p += 3; | ||
3280 | |||
3281 | /* look for the following things: | ||
3282 | * -- correct length == 29 | ||
3283 | * 3 (type) + 2 (size) + | ||
3284 | * 18 (strlen("local-mac-address") + 1) + | ||
3285 | * 6 (mac addr) | ||
3286 | * -- VPD Instance 'I' | ||
3287 | * -- VPD Type Bytes 'B' | ||
3288 | * -- VPD data length == 6 | ||
3289 | * -- property string == local-mac-address | ||
3290 | * | ||
3291 | * -- correct length == 24 | ||
3292 | * 3 (type) + 2 (size) + | ||
3293 | * 12 (strlen("entropy-dev") + 1) + | ||
3294 | * 7 (strlen("vms110") + 1) | ||
3295 | * -- VPD Instance 'I' | ||
3296 | * -- VPD Type String 'B' | ||
3297 | * -- VPD data length == 7 | ||
3298 | * -- property string == entropy-dev | ||
3299 | * | ||
3300 | * -- correct length == 18 | ||
3301 | * 3 (type) + 2 (size) + | ||
3302 | * 9 (strlen("phy-type") + 1) + | ||
3303 | * 4 (strlen("pcs") + 1) | ||
3304 | * -- VPD Instance 'I' | ||
3305 | * -- VPD Type String 'S' | ||
3306 | * -- VPD data length == 4 | ||
3307 | * -- property string == phy-type | ||
3308 | * | ||
3309 | * -- correct length == 23 | ||
3310 | * 3 (type) + 2 (size) + | ||
3311 | * 14 (strlen("phy-interface") + 1) + | ||
3312 | * 4 (strlen("pcs") + 1) | ||
3313 | * -- VPD Instance 'I' | ||
3314 | * -- VPD Type String 'S' | ||
3315 | * -- VPD data length == 4 | ||
3316 | * -- property string == phy-interface | ||
3317 | */ | ||
3318 | if (readb(p) != 'I') | ||
3319 | goto next; | ||
3320 | |||
3321 | /* finally, check string and length */ | ||
3322 | type = readb(p + 3); | ||
3323 | if (type == 'B') { | ||
3324 | if ((klen == 29) && readb(p + 4) == 6 && | ||
3325 | cas_vpd_match(p + 5, | ||
3326 | "local-mac-address")) { | ||
3327 | if (mac_off++ > offset) | ||
3328 | goto next; | ||
3329 | |||
3330 | /* set mac address */ | ||
3331 | for (j = 0; j < 6; j++) | ||
3332 | dev_addr[j] = | ||
3333 | readb(p + 23 + j); | ||
3334 | goto found_mac; | ||
3335 | } | ||
3336 | } | ||
3337 | |||
3338 | if (type != 'S') | ||
3339 | goto next; | ||
3340 | |||
3341 | #ifdef USE_ENTROPY_DEV | ||
3342 | if ((klen == 24) && | ||
3343 | cas_vpd_match(p + 5, "entropy-dev") && | ||
3344 | cas_vpd_match(p + 17, "vms110")) { | ||
3345 | cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; | ||
3346 | goto next; | ||
3347 | } | ||
3348 | #endif | ||
3349 | |||
3350 | if (found & VPD_FOUND_PHY) | ||
3351 | goto next; | ||
3352 | |||
3353 | if ((klen == 18) && readb(p + 4) == 4 && | ||
3354 | cas_vpd_match(p + 5, "phy-type")) { | ||
3355 | if (cas_vpd_match(p + 14, "pcs")) { | ||
3356 | phy_type = CAS_PHY_SERDES; | ||
3357 | goto found_phy; | ||
3358 | } | ||
3359 | } | ||
3360 | |||
3361 | if ((klen == 23) && readb(p + 4) == 4 && | ||
3362 | cas_vpd_match(p + 5, "phy-interface")) { | ||
3363 | if (cas_vpd_match(p + 19, "pcs")) { | ||
3364 | phy_type = CAS_PHY_SERDES; | ||
3365 | goto found_phy; | ||
3366 | } | ||
3367 | } | ||
3368 | found_mac: | ||
3369 | found |= VPD_FOUND_MAC; | ||
3370 | goto next; | ||
3371 | |||
3372 | found_phy: | ||
3373 | found |= VPD_FOUND_PHY; | ||
3374 | |||
3375 | next: | ||
3376 | p += klen; | ||
3377 | } | ||
3378 | i += len + 3; | ||
3379 | } | ||
3380 | |||
3381 | use_random_mac_addr: | ||
3382 | if (found & VPD_FOUND_MAC) | ||
3383 | goto done; | ||
3384 | |||
3385 | /* Sun MAC prefix then 3 random bytes. */ | ||
3386 | printk(PFX "MAC address not found in ROM VPD\n"); | ||
3387 | dev_addr[0] = 0x08; | ||
3388 | dev_addr[1] = 0x00; | ||
3389 | dev_addr[2] = 0x20; | ||
3390 | get_random_bytes(dev_addr + 3, 3); | ||
3391 | |||
3392 | done: | ||
3393 | writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); | ||
3394 | return phy_type; | ||
3395 | } | ||
3396 | |||
3397 | /* check pci invariants */ | ||
3398 | static void cas_check_pci_invariants(struct cas *cp) | ||
3399 | { | ||
3400 | struct pci_dev *pdev = cp->pdev; | ||
3401 | u8 rev; | ||
3402 | |||
3403 | cp->cas_flags = 0; | ||
3404 | pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); | ||
3405 | if ((pdev->vendor == PCI_VENDOR_ID_SUN) && | ||
3406 | (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { | ||
3407 | if (rev >= CAS_ID_REVPLUS) | ||
3408 | cp->cas_flags |= CAS_FLAG_REG_PLUS; | ||
3409 | if (rev < CAS_ID_REVPLUS02u) | ||
3410 | cp->cas_flags |= CAS_FLAG_TARGET_ABORT; | ||
3411 | |||
3412 | /* Original Cassini supports HW CSUM, but it's not | ||
3413 | * enabled by default as it can trigger TX hangs. | ||
3414 | */ | ||
3415 | if (rev < CAS_ID_REV2) | ||
3416 | cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; | ||
3417 | } else { | ||
3418 | /* Only sun has original cassini chips. */ | ||
3419 | cp->cas_flags |= CAS_FLAG_REG_PLUS; | ||
3420 | |||
3421 | /* We use a flag because the same phy might be externally | ||
3422 | * connected. | ||
3423 | */ | ||
3424 | if ((pdev->vendor == PCI_VENDOR_ID_NS) && | ||
3425 | (pdev->device == PCI_DEVICE_ID_NS_SATURN)) | ||
3426 | cp->cas_flags |= CAS_FLAG_SATURN; | ||
3427 | } | ||
3428 | } | ||
3429 | |||
3430 | |||
3431 | static int cas_check_invariants(struct cas *cp) | ||
3432 | { | ||
3433 | struct pci_dev *pdev = cp->pdev; | ||
3434 | u32 cfg; | ||
3435 | int i; | ||
3436 | |||
3437 | /* get page size for rx buffers. */ | ||
3438 | cp->page_order = 0; | ||
3439 | #ifdef USE_PAGE_ORDER | ||
3440 | if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { | ||
3441 | /* see if we can allocate larger pages */ | ||
3442 | struct page *page = alloc_pages(GFP_ATOMIC, | ||
3443 | CAS_JUMBO_PAGE_SHIFT - | ||
3444 | PAGE_SHIFT); | ||
3445 | if (page) { | ||
3446 | __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); | ||
3447 | cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; | ||
3448 | } else { | ||
3449 | printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU); | ||
3450 | } | ||
3451 | } | ||
3452 | #endif | ||
3453 | cp->page_size = (PAGE_SIZE << cp->page_order); | ||
3454 | |||
3455 | /* Fetch the FIFO configurations. */ | ||
3456 | cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; | ||
3457 | cp->rx_fifo_size = RX_FIFO_SIZE; | ||
3458 | |||
3459 | /* finish phy determination. MDIO1 takes precedence over MDIO0 if | ||
3460 | * they're both connected. | ||
3461 | */ | ||
3462 | cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, | ||
3463 | PCI_SLOT(pdev->devfn)); | ||
3464 | if (cp->phy_type & CAS_PHY_SERDES) { | ||
3465 | cp->cas_flags |= CAS_FLAG_1000MB_CAP; | ||
3466 | return 0; /* no more checking needed */ | ||
3467 | } | ||
3468 | |||
3469 | /* MII */ | ||
3470 | cfg = readl(cp->regs + REG_MIF_CFG); | ||
3471 | if (cfg & MIF_CFG_MDIO_1) { | ||
3472 | cp->phy_type = CAS_PHY_MII_MDIO1; | ||
3473 | } else if (cfg & MIF_CFG_MDIO_0) { | ||
3474 | cp->phy_type = CAS_PHY_MII_MDIO0; | ||
3475 | } | ||
3476 | |||
3477 | cas_mif_poll(cp, 0); | ||
3478 | writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); | ||
3479 | |||
3480 | for (i = 0; i < 32; i++) { | ||
3481 | u32 phy_id; | ||
3482 | int j; | ||
3483 | |||
3484 | for (j = 0; j < 3; j++) { | ||
3485 | cp->phy_addr = i; | ||
3486 | phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; | ||
3487 | phy_id |= cas_phy_read(cp, MII_PHYSID2); | ||
3488 | if (phy_id && (phy_id != 0xFFFFFFFF)) { | ||
3489 | cp->phy_id = phy_id; | ||
3490 | goto done; | ||
3491 | } | ||
3492 | } | ||
3493 | } | ||
3494 | printk(KERN_ERR PFX "MII phy did not respond [%08x]\n", | ||
3495 | readl(cp->regs + REG_MIF_STATE_MACHINE)); | ||
3496 | return -1; | ||
3497 | |||
3498 | done: | ||
3499 | /* see if we can do gigabit */ | ||
3500 | cfg = cas_phy_read(cp, MII_BMSR); | ||
3501 | if ((cfg & CAS_BMSR_1000_EXTEND) && | ||
3502 | cas_phy_read(cp, CAS_MII_1000_EXTEND)) | ||
3503 | cp->cas_flags |= CAS_FLAG_1000MB_CAP; | ||
3504 | return 0; | ||
3505 | } | ||
3506 | |||
3507 | /* Must be invoked under cp->lock. */ | ||
3508 | static inline void cas_start_dma(struct cas *cp) | ||
3509 | { | ||
3510 | int i; | ||
3511 | u32 val; | ||
3512 | int txfailed = 0; | ||
3513 | |||
3514 | /* enable dma */ | ||
3515 | val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; | ||
3516 | writel(val, cp->regs + REG_TX_CFG); | ||
3517 | val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; | ||
3518 | writel(val, cp->regs + REG_RX_CFG); | ||
3519 | |||
3520 | /* enable the mac */ | ||
3521 | val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; | ||
3522 | writel(val, cp->regs + REG_MAC_TX_CFG); | ||
3523 | val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; | ||
3524 | writel(val, cp->regs + REG_MAC_RX_CFG); | ||
3525 | |||
3526 | i = STOP_TRIES; | ||
3527 | while (i-- > 0) { | ||
3528 | val = readl(cp->regs + REG_MAC_TX_CFG); | ||
3529 | if ((val & MAC_TX_CFG_EN)) | ||
3530 | break; | ||
3531 | udelay(10); | ||
3532 | } | ||
3533 | if (i < 0) txfailed = 1; | ||
3534 | i = STOP_TRIES; | ||
3535 | while (i-- > 0) { | ||
3536 | val = readl(cp->regs + REG_MAC_RX_CFG); | ||
3537 | if ((val & MAC_RX_CFG_EN)) { | ||
3538 | if (txfailed) { | ||
3539 | printk(KERN_ERR | ||
3540 | "%s: enabling mac failed [tx:%08x:%08x].\n", | ||
3541 | cp->dev->name, | ||
3542 | readl(cp->regs + REG_MIF_STATE_MACHINE), | ||
3543 | readl(cp->regs + REG_MAC_STATE_MACHINE)); | ||
3544 | } | ||
3545 | goto enable_rx_done; | ||
3546 | } | ||
3547 | udelay(10); | ||
3548 | } | ||
3549 | printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n", | ||
3550 | cp->dev->name, | ||
3551 | (txfailed? "tx,rx":"rx"), | ||
3552 | readl(cp->regs + REG_MIF_STATE_MACHINE), | ||
3553 | readl(cp->regs + REG_MAC_STATE_MACHINE)); | ||
3554 | |||
3555 | enable_rx_done: | ||
3556 | cas_unmask_intr(cp); /* enable interrupts */ | ||
3557 | writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); | ||
3558 | writel(0, cp->regs + REG_RX_COMP_TAIL); | ||
3559 | |||
3560 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | ||
3561 | if (N_RX_DESC_RINGS > 1) | ||
3562 | writel(RX_DESC_RINGN_SIZE(1) - 4, | ||
3563 | cp->regs + REG_PLUS_RX_KICK1); | ||
3564 | |||
3565 | for (i = 1; i < N_RX_COMP_RINGS; i++) | ||
3566 | writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); | ||
3567 | } | ||
3568 | } | ||
3569 | |||
3570 | /* Must be invoked under cp->lock. */ | ||
3571 | static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, | ||
3572 | int *pause) | ||
3573 | { | ||
3574 | u32 val = readl(cp->regs + REG_PCS_MII_LPA); | ||
3575 | *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; | ||
3576 | *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; | ||
3577 | if (val & PCS_MII_LPA_ASYM_PAUSE) | ||
3578 | *pause |= 0x10; | ||
3579 | *spd = 1000; | ||
3580 | } | ||
3581 | |||
3582 | /* Must be invoked under cp->lock. */ | ||
3583 | static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, | ||
3584 | int *pause) | ||
3585 | { | ||
3586 | u32 val; | ||
3587 | |||
3588 | *fd = 0; | ||
3589 | *spd = 10; | ||
3590 | *pause = 0; | ||
3591 | |||
3592 | /* use GMII registers */ | ||
3593 | val = cas_phy_read(cp, MII_LPA); | ||
3594 | if (val & CAS_LPA_PAUSE) | ||
3595 | *pause = 0x01; | ||
3596 | |||
3597 | if (val & CAS_LPA_ASYM_PAUSE) | ||
3598 | *pause |= 0x10; | ||
3599 | |||
3600 | if (val & LPA_DUPLEX) | ||
3601 | *fd = 1; | ||
3602 | if (val & LPA_100) | ||
3603 | *spd = 100; | ||
3604 | |||
3605 | if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { | ||
3606 | val = cas_phy_read(cp, CAS_MII_1000_STATUS); | ||
3607 | if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) | ||
3608 | *spd = 1000; | ||
3609 | if (val & CAS_LPA_1000FULL) | ||
3610 | *fd = 1; | ||
3611 | } | ||
3612 | } | ||
3613 | |||
3614 | /* A link-up condition has occurred, initialize and enable the | ||
3615 | * rest of the chip. | ||
3616 | * | ||
3617 | * Must be invoked under cp->lock. | ||
3618 | */ | ||
3619 | static void cas_set_link_modes(struct cas *cp) | ||
3620 | { | ||
3621 | u32 val; | ||
3622 | int full_duplex, speed, pause; | ||
3623 | |||
3624 | full_duplex = 0; | ||
3625 | speed = 10; | ||
3626 | pause = 0; | ||
3627 | |||
3628 | if (CAS_PHY_MII(cp->phy_type)) { | ||
3629 | cas_mif_poll(cp, 0); | ||
3630 | val = cas_phy_read(cp, MII_BMCR); | ||
3631 | if (val & BMCR_ANENABLE) { | ||
3632 | cas_read_mii_link_mode(cp, &full_duplex, &speed, | ||
3633 | &pause); | ||
3634 | } else { | ||
3635 | if (val & BMCR_FULLDPLX) | ||
3636 | full_duplex = 1; | ||
3637 | |||
3638 | if (val & BMCR_SPEED100) | ||
3639 | speed = 100; | ||
3640 | else if (val & CAS_BMCR_SPEED1000) | ||
3641 | speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? | ||
3642 | 1000 : 100; | ||
3643 | } | ||
3644 | cas_mif_poll(cp, 1); | ||
3645 | |||
3646 | } else { | ||
3647 | val = readl(cp->regs + REG_PCS_MII_CTRL); | ||
3648 | cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); | ||
3649 | if ((val & PCS_MII_AUTONEG_EN) == 0) { | ||
3650 | if (val & PCS_MII_CTRL_DUPLEX) | ||
3651 | full_duplex = 1; | ||
3652 | } | ||
3653 | } | ||
3654 | |||
3655 | if (netif_msg_link(cp)) | ||
3656 | printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n", | ||
3657 | cp->dev->name, speed, (full_duplex ? "full" : "half")); | ||
3658 | |||
3659 | val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; | ||
3660 | if (CAS_PHY_MII(cp->phy_type)) { | ||
3661 | val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; | ||
3662 | if (!full_duplex) | ||
3663 | val |= MAC_XIF_DISABLE_ECHO; | ||
3664 | } | ||
3665 | if (full_duplex) | ||
3666 | val |= MAC_XIF_FDPLX_LED; | ||
3667 | if (speed == 1000) | ||
3668 | val |= MAC_XIF_GMII_MODE; | ||
3669 | writel(val, cp->regs + REG_MAC_XIF_CFG); | ||
3670 | |||
3671 | /* deal with carrier and collision detect. */ | ||
3672 | val = MAC_TX_CFG_IPG_EN; | ||
3673 | if (full_duplex) { | ||
3674 | val |= MAC_TX_CFG_IGNORE_CARRIER; | ||
3675 | val |= MAC_TX_CFG_IGNORE_COLL; | ||
3676 | } else { | ||
3677 | #ifndef USE_CSMA_CD_PROTO | ||
3678 | val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; | ||
3679 | val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; | ||
3680 | #endif | ||
3681 | } | ||
3682 | /* val now set up for REG_MAC_TX_CFG */ | ||
3683 | |||
3684 | /* If gigabit and half-duplex, enable carrier extension | ||
3685 | * mode. increase slot time to 512 bytes as well. | ||
3686 | * else, disable it and make sure slot time is 64 bytes. | ||
3687 | * also activate checksum bug workaround | ||
3688 | */ | ||
3689 | if ((speed == 1000) && !full_duplex) { | ||
3690 | writel(val | MAC_TX_CFG_CARRIER_EXTEND, | ||
3691 | cp->regs + REG_MAC_TX_CFG); | ||
3692 | |||
3693 | val = readl(cp->regs + REG_MAC_RX_CFG); | ||
3694 | val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ | ||
3695 | writel(val | MAC_RX_CFG_CARRIER_EXTEND, | ||
3696 | cp->regs + REG_MAC_RX_CFG); | ||
3697 | |||
3698 | writel(0x200, cp->regs + REG_MAC_SLOT_TIME); | ||
3699 | |||
3700 | cp->crc_size = 4; | ||
3701 | /* minimum size gigabit frame at half duplex */ | ||
3702 | cp->min_frame_size = CAS_1000MB_MIN_FRAME; | ||
3703 | |||
3704 | } else { | ||
3705 | writel(val, cp->regs + REG_MAC_TX_CFG); | ||
3706 | |||
3707 | /* checksum bug workaround. don't strip FCS when in | ||
3708 | * half-duplex mode | ||
3709 | */ | ||
3710 | val = readl(cp->regs + REG_MAC_RX_CFG); | ||
3711 | if (full_duplex) { | ||
3712 | val |= MAC_RX_CFG_STRIP_FCS; | ||
3713 | cp->crc_size = 0; | ||
3714 | cp->min_frame_size = CAS_MIN_MTU; | ||
3715 | } else { | ||
3716 | val &= ~MAC_RX_CFG_STRIP_FCS; | ||
3717 | cp->crc_size = 4; | ||
3718 | cp->min_frame_size = CAS_MIN_FRAME; | ||
3719 | } | ||
3720 | writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, | ||
3721 | cp->regs + REG_MAC_RX_CFG); | ||
3722 | writel(0x40, cp->regs + REG_MAC_SLOT_TIME); | ||
3723 | } | ||
3724 | |||
3725 | if (netif_msg_link(cp)) { | ||
3726 | if (pause & 0x01) { | ||
3727 | printk(KERN_INFO "%s: Pause is enabled " | ||
3728 | "(rxfifo: %d off: %d on: %d)\n", | ||
3729 | cp->dev->name, | ||
3730 | cp->rx_fifo_size, | ||
3731 | cp->rx_pause_off, | ||
3732 | cp->rx_pause_on); | ||
3733 | } else if (pause & 0x10) { | ||
3734 | printk(KERN_INFO "%s: TX pause enabled\n", | ||
3735 | cp->dev->name); | ||
3736 | } else { | ||
3737 | printk(KERN_INFO "%s: Pause is disabled\n", | ||
3738 | cp->dev->name); | ||
3739 | } | ||
3740 | } | ||
3741 | |||
3742 | val = readl(cp->regs + REG_MAC_CTRL_CFG); | ||
3743 | val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); | ||
3744 | if (pause) { /* symmetric or asymmetric pause */ | ||
3745 | val |= MAC_CTRL_CFG_SEND_PAUSE_EN; | ||
3746 | if (pause & 0x01) { /* symmetric pause */ | ||
3747 | val |= MAC_CTRL_CFG_RECV_PAUSE_EN; | ||
3748 | } | ||
3749 | } | ||
3750 | writel(val, cp->regs + REG_MAC_CTRL_CFG); | ||
3751 | cas_start_dma(cp); | ||
3752 | } | ||
3753 | |||
3754 | /* Must be invoked under cp->lock. */ | ||
3755 | static void cas_init_hw(struct cas *cp, int restart_link) | ||
3756 | { | ||
3757 | if (restart_link) | ||
3758 | cas_phy_init(cp); | ||
3759 | |||
3760 | cas_init_pause_thresholds(cp); | ||
3761 | cas_init_mac(cp); | ||
3762 | cas_init_dma(cp); | ||
3763 | |||
3764 | if (restart_link) { | ||
3765 | /* Default aneg parameters */ | ||
3766 | cp->timer_ticks = 0; | ||
3767 | cas_begin_auto_negotiation(cp, NULL); | ||
3768 | } else if (cp->lstate == link_up) { | ||
3769 | cas_set_link_modes(cp); | ||
3770 | netif_carrier_on(cp->dev); | ||
3771 | } | ||
3772 | } | ||
3773 | |||
3774 | /* Must be invoked under cp->lock. on earlier cassini boards, | ||
3775 | * SOFT_0 is tied to PCI reset. we use this to force a pci reset, | ||
3776 | * let it settle out, and then restore pci state. | ||
3777 | */ | ||
3778 | static void cas_hard_reset(struct cas *cp) | ||
3779 | { | ||
3780 | writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); | ||
3781 | udelay(20); | ||
3782 | pci_restore_state(cp->pdev); | ||
3783 | } | ||
3784 | |||
3785 | |||
3786 | static void cas_global_reset(struct cas *cp, int blkflag) | ||
3787 | { | ||
3788 | int limit; | ||
3789 | |||
3790 | /* issue a global reset. don't use RSTOUT. */ | ||
3791 | if (blkflag && !CAS_PHY_MII(cp->phy_type)) { | ||
3792 | /* For PCS, when the blkflag is set, we should set the | ||
3793 | * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of | ||
3794 | * the last autonegotiation from being cleared. We'll | ||
3795 | * need some special handling if the chip is set into a | ||
3796 | * loopback mode. | ||
3797 | */ | ||
3798 | writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), | ||
3799 | cp->regs + REG_SW_RESET); | ||
3800 | } else { | ||
3801 | writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); | ||
3802 | } | ||
3803 | |||
3804 | /* need to wait at least 3ms before polling register */ | ||
3805 | mdelay(3); | ||
3806 | |||
3807 | limit = STOP_TRIES; | ||
3808 | while (limit-- > 0) { | ||
3809 | u32 val = readl(cp->regs + REG_SW_RESET); | ||
3810 | if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) | ||
3811 | goto done; | ||
3812 | udelay(10); | ||
3813 | } | ||
3814 | printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name); | ||
3815 | |||
3816 | done: | ||
3817 | /* enable various BIM interrupts */ | ||
3818 | writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | | ||
3819 | BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); | ||
3820 | |||
3821 | /* clear out pci error status mask for handled errors. | ||
3822 | * we don't deal with DMA counter overflows as they happen | ||
3823 | * all the time. | ||
3824 | */ | ||
3825 | writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | | ||
3826 | PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | | ||
3827 | PCI_ERR_BIM_DMA_READ), cp->regs + | ||
3828 | REG_PCI_ERR_STATUS_MASK); | ||
3829 | |||
3830 | /* set up for MII by default to address mac rx reset timeout | ||
3831 | * issue | ||
3832 | */ | ||
3833 | writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); | ||
3834 | } | ||
3835 | |||
3836 | static void cas_reset(struct cas *cp, int blkflag) | ||
3837 | { | ||
3838 | u32 val; | ||
3839 | |||
3840 | cas_mask_intr(cp); | ||
3841 | cas_global_reset(cp, blkflag); | ||
3842 | cas_mac_reset(cp); | ||
3843 | cas_entropy_reset(cp); | ||
3844 | |||
3845 | /* disable dma engines. */ | ||
3846 | val = readl(cp->regs + REG_TX_CFG); | ||
3847 | val &= ~TX_CFG_DMA_EN; | ||
3848 | writel(val, cp->regs + REG_TX_CFG); | ||
3849 | |||
3850 | val = readl(cp->regs + REG_RX_CFG); | ||
3851 | val &= ~RX_CFG_DMA_EN; | ||
3852 | writel(val, cp->regs + REG_RX_CFG); | ||
3853 | |||
3854 | /* program header parser */ | ||
3855 | if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || | ||
3856 | (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { | ||
3857 | cas_load_firmware(cp, CAS_HP_FIRMWARE); | ||
3858 | } else { | ||
3859 | cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); | ||
3860 | } | ||
3861 | |||
3862 | /* clear out error registers */ | ||
3863 | spin_lock(&cp->stat_lock[N_TX_RINGS]); | ||
3864 | cas_clear_mac_err(cp); | ||
3865 | spin_unlock(&cp->stat_lock[N_TX_RINGS]); | ||
3866 | } | ||
3867 | |||
3868 | /* Shut down the chip, must be called with pm_sem held. */ | ||
3869 | static void cas_shutdown(struct cas *cp) | ||
3870 | { | ||
3871 | unsigned long flags; | ||
3872 | |||
3873 | /* Make us not-running to avoid timers respawning */ | ||
3874 | cp->hw_running = 0; | ||
3875 | |||
3876 | del_timer_sync(&cp->link_timer); | ||
3877 | |||
3878 | /* Stop the reset task */ | ||
3879 | #if 0 | ||
3880 | while (atomic_read(&cp->reset_task_pending_mtu) || | ||
3881 | atomic_read(&cp->reset_task_pending_spare) || | ||
3882 | atomic_read(&cp->reset_task_pending_all)) | ||
3883 | schedule(); | ||
3884 | |||
3885 | #else | ||
3886 | while (atomic_read(&cp->reset_task_pending)) | ||
3887 | schedule(); | ||
3888 | #endif | ||
3889 | /* Actually stop the chip */ | ||
3890 | cas_lock_all_save(cp, flags); | ||
3891 | cas_reset(cp, 0); | ||
3892 | if (cp->cas_flags & CAS_FLAG_SATURN) | ||
3893 | cas_phy_powerdown(cp); | ||
3894 | cas_unlock_all_restore(cp, flags); | ||
3895 | } | ||
3896 | |||
3897 | static int cas_change_mtu(struct net_device *dev, int new_mtu) | ||
3898 | { | ||
3899 | struct cas *cp = netdev_priv(dev); | ||
3900 | |||
3901 | if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU) | ||
3902 | return -EINVAL; | ||
3903 | |||
3904 | dev->mtu = new_mtu; | ||
3905 | if (!netif_running(dev) || !netif_device_present(dev)) | ||
3906 | return 0; | ||
3907 | |||
3908 | /* let the reset task handle it */ | ||
3909 | #if 1 | ||
3910 | atomic_inc(&cp->reset_task_pending); | ||
3911 | if ((cp->phy_type & CAS_PHY_SERDES)) { | ||
3912 | atomic_inc(&cp->reset_task_pending_all); | ||
3913 | } else { | ||
3914 | atomic_inc(&cp->reset_task_pending_mtu); | ||
3915 | } | ||
3916 | schedule_work(&cp->reset_task); | ||
3917 | #else | ||
3918 | atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? | ||
3919 | CAS_RESET_ALL : CAS_RESET_MTU); | ||
3920 | printk(KERN_ERR "reset called in cas_change_mtu\n"); | ||
3921 | schedule_work(&cp->reset_task); | ||
3922 | #endif | ||
3923 | |||
3924 | flush_scheduled_work(); | ||
3925 | return 0; | ||
3926 | } | ||
3927 | |||
3928 | static void cas_clean_txd(struct cas *cp, int ring) | ||
3929 | { | ||
3930 | struct cas_tx_desc *txd = cp->init_txds[ring]; | ||
3931 | struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; | ||
3932 | u64 daddr, dlen; | ||
3933 | int i, size; | ||
3934 | |||
3935 | size = TX_DESC_RINGN_SIZE(ring); | ||
3936 | for (i = 0; i < size; i++) { | ||
3937 | int frag; | ||
3938 | |||
3939 | if (skbs[i] == NULL) | ||
3940 | continue; | ||
3941 | |||
3942 | skb = skbs[i]; | ||
3943 | skbs[i] = NULL; | ||
3944 | |||
3945 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { | ||
3946 | int ent = i & (size - 1); | ||
3947 | |||
3948 | /* first buffer is never a tiny buffer and so | ||
3949 | * needs to be unmapped. | ||
3950 | */ | ||
3951 | daddr = le64_to_cpu(txd[ent].buffer); | ||
3952 | dlen = CAS_VAL(TX_DESC_BUFLEN, | ||
3953 | le64_to_cpu(txd[ent].control)); | ||
3954 | pci_unmap_page(cp->pdev, daddr, dlen, | ||
3955 | PCI_DMA_TODEVICE); | ||
3956 | |||
3957 | if (frag != skb_shinfo(skb)->nr_frags) { | ||
3958 | i++; | ||
3959 | |||
3960 | /* next buffer might by a tiny buffer. | ||
3961 | * skip past it. | ||
3962 | */ | ||
3963 | ent = i & (size - 1); | ||
3964 | if (cp->tx_tiny_use[ring][ent].used) | ||
3965 | i++; | ||
3966 | } | ||
3967 | } | ||
3968 | dev_kfree_skb_any(skb); | ||
3969 | } | ||
3970 | |||
3971 | /* zero out tiny buf usage */ | ||
3972 | memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); | ||
3973 | } | ||
3974 | |||
3975 | /* freed on close */ | ||
3976 | static inline void cas_free_rx_desc(struct cas *cp, int ring) | ||
3977 | { | ||
3978 | cas_page_t **page = cp->rx_pages[ring]; | ||
3979 | int i, size; | ||
3980 | |||
3981 | size = RX_DESC_RINGN_SIZE(ring); | ||
3982 | for (i = 0; i < size; i++) { | ||
3983 | if (page[i]) { | ||
3984 | cas_page_free(cp, page[i]); | ||
3985 | page[i] = NULL; | ||
3986 | } | ||
3987 | } | ||
3988 | } | ||
3989 | |||
3990 | static void cas_free_rxds(struct cas *cp) | ||
3991 | { | ||
3992 | int i; | ||
3993 | |||
3994 | for (i = 0; i < N_RX_DESC_RINGS; i++) | ||
3995 | cas_free_rx_desc(cp, i); | ||
3996 | } | ||
3997 | |||
3998 | /* Must be invoked under cp->lock. */ | ||
3999 | static void cas_clean_rings(struct cas *cp) | ||
4000 | { | ||
4001 | int i; | ||
4002 | |||
4003 | /* need to clean all tx rings */ | ||
4004 | memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); | ||
4005 | memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); | ||
4006 | for (i = 0; i < N_TX_RINGS; i++) | ||
4007 | cas_clean_txd(cp, i); | ||
4008 | |||
4009 | /* zero out init block */ | ||
4010 | memset(cp->init_block, 0, sizeof(struct cas_init_block)); | ||
4011 | cas_clean_rxds(cp); | ||
4012 | cas_clean_rxcs(cp); | ||
4013 | } | ||
4014 | |||
4015 | /* allocated on open */ | ||
4016 | static inline int cas_alloc_rx_desc(struct cas *cp, int ring) | ||
4017 | { | ||
4018 | cas_page_t **page = cp->rx_pages[ring]; | ||
4019 | int size, i = 0; | ||
4020 | |||
4021 | size = RX_DESC_RINGN_SIZE(ring); | ||
4022 | for (i = 0; i < size; i++) { | ||
4023 | if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) | ||
4024 | return -1; | ||
4025 | } | ||
4026 | return 0; | ||
4027 | } | ||
4028 | |||
4029 | static int cas_alloc_rxds(struct cas *cp) | ||
4030 | { | ||
4031 | int i; | ||
4032 | |||
4033 | for (i = 0; i < N_RX_DESC_RINGS; i++) { | ||
4034 | if (cas_alloc_rx_desc(cp, i) < 0) { | ||
4035 | cas_free_rxds(cp); | ||
4036 | return -1; | ||
4037 | } | ||
4038 | } | ||
4039 | return 0; | ||
4040 | } | ||
4041 | |||
4042 | static void cas_reset_task(void *data) | ||
4043 | { | ||
4044 | struct cas *cp = (struct cas *) data; | ||
4045 | #if 0 | ||
4046 | int pending = atomic_read(&cp->reset_task_pending); | ||
4047 | #else | ||
4048 | int pending_all = atomic_read(&cp->reset_task_pending_all); | ||
4049 | int pending_spare = atomic_read(&cp->reset_task_pending_spare); | ||
4050 | int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); | ||
4051 | |||
4052 | if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { | ||
4053 | /* We can have more tasks scheduled than actually | ||
4054 | * needed. | ||
4055 | */ | ||
4056 | atomic_dec(&cp->reset_task_pending); | ||
4057 | return; | ||
4058 | } | ||
4059 | #endif | ||
4060 | /* The link went down, we reset the ring, but keep | ||
4061 | * DMA stopped. Use this function for reset | ||
4062 | * on error as well. | ||
4063 | */ | ||
4064 | if (cp->hw_running) { | ||
4065 | unsigned long flags; | ||
4066 | |||
4067 | /* Make sure we don't get interrupts or tx packets */ | ||
4068 | netif_device_detach(cp->dev); | ||
4069 | cas_lock_all_save(cp, flags); | ||
4070 | |||
4071 | if (cp->opened) { | ||
4072 | /* We call cas_spare_recover when we call cas_open. | ||
4073 | * but we do not initialize the lists cas_spare_recover | ||
4074 | * uses until cas_open is called. | ||
4075 | */ | ||
4076 | cas_spare_recover(cp, GFP_ATOMIC); | ||
4077 | } | ||
4078 | #if 1 | ||
4079 | /* test => only pending_spare set */ | ||
4080 | if (!pending_all && !pending_mtu) | ||
4081 | goto done; | ||
4082 | #else | ||
4083 | if (pending == CAS_RESET_SPARE) | ||
4084 | goto done; | ||
4085 | #endif | ||
4086 | /* when pending == CAS_RESET_ALL, the following | ||
4087 | * call to cas_init_hw will restart auto negotiation. | ||
4088 | * Setting the second argument of cas_reset to | ||
4089 | * !(pending == CAS_RESET_ALL) will set this argument | ||
4090 | * to 1 (avoiding reinitializing the PHY for the normal | ||
4091 | * PCS case) when auto negotiation is not restarted. | ||
4092 | */ | ||
4093 | #if 1 | ||
4094 | cas_reset(cp, !(pending_all > 0)); | ||
4095 | if (cp->opened) | ||
4096 | cas_clean_rings(cp); | ||
4097 | cas_init_hw(cp, (pending_all > 0)); | ||
4098 | #else | ||
4099 | cas_reset(cp, !(pending == CAS_RESET_ALL)); | ||
4100 | if (cp->opened) | ||
4101 | cas_clean_rings(cp); | ||
4102 | cas_init_hw(cp, pending == CAS_RESET_ALL); | ||
4103 | #endif | ||
4104 | |||
4105 | done: | ||
4106 | cas_unlock_all_restore(cp, flags); | ||
4107 | netif_device_attach(cp->dev); | ||
4108 | } | ||
4109 | #if 1 | ||
4110 | atomic_sub(pending_all, &cp->reset_task_pending_all); | ||
4111 | atomic_sub(pending_spare, &cp->reset_task_pending_spare); | ||
4112 | atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); | ||
4113 | atomic_dec(&cp->reset_task_pending); | ||
4114 | #else | ||
4115 | atomic_set(&cp->reset_task_pending, 0); | ||
4116 | #endif | ||
4117 | } | ||
4118 | |||
4119 | static void cas_link_timer(unsigned long data) | ||
4120 | { | ||
4121 | struct cas *cp = (struct cas *) data; | ||
4122 | int mask, pending = 0, reset = 0; | ||
4123 | unsigned long flags; | ||
4124 | |||
4125 | if (link_transition_timeout != 0 && | ||
4126 | cp->link_transition_jiffies_valid && | ||
4127 | ((jiffies - cp->link_transition_jiffies) > | ||
4128 | (link_transition_timeout))) { | ||
4129 | /* One-second counter so link-down workaround doesn't | ||
4130 | * cause resets to occur so fast as to fool the switch | ||
4131 | * into thinking the link is down. | ||
4132 | */ | ||
4133 | cp->link_transition_jiffies_valid = 0; | ||
4134 | } | ||
4135 | |||
4136 | if (!cp->hw_running) | ||
4137 | return; | ||
4138 | |||
4139 | spin_lock_irqsave(&cp->lock, flags); | ||
4140 | cas_lock_tx(cp); | ||
4141 | cas_entropy_gather(cp); | ||
4142 | |||
4143 | /* If the link task is still pending, we just | ||
4144 | * reschedule the link timer | ||
4145 | */ | ||
4146 | #if 1 | ||
4147 | if (atomic_read(&cp->reset_task_pending_all) || | ||
4148 | atomic_read(&cp->reset_task_pending_spare) || | ||
4149 | atomic_read(&cp->reset_task_pending_mtu)) | ||
4150 | goto done; | ||
4151 | #else | ||
4152 | if (atomic_read(&cp->reset_task_pending)) | ||
4153 | goto done; | ||
4154 | #endif | ||
4155 | |||
4156 | /* check for rx cleaning */ | ||
4157 | if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { | ||
4158 | int i, rmask; | ||
4159 | |||
4160 | for (i = 0; i < MAX_RX_DESC_RINGS; i++) { | ||
4161 | rmask = CAS_FLAG_RXD_POST(i); | ||
4162 | if ((mask & rmask) == 0) | ||
4163 | continue; | ||
4164 | |||
4165 | /* post_rxds will do a mod_timer */ | ||
4166 | if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { | ||
4167 | pending = 1; | ||
4168 | continue; | ||
4169 | } | ||
4170 | cp->cas_flags &= ~rmask; | ||
4171 | } | ||
4172 | } | ||
4173 | |||
4174 | if (CAS_PHY_MII(cp->phy_type)) { | ||
4175 | u16 bmsr; | ||
4176 | cas_mif_poll(cp, 0); | ||
4177 | bmsr = cas_phy_read(cp, MII_BMSR); | ||
4178 | /* WTZ: Solaris driver reads this twice, but that | ||
4179 | * may be due to the PCS case and the use of a | ||
4180 | * common implementation. Read it twice here to be | ||
4181 | * safe. | ||
4182 | */ | ||
4183 | bmsr = cas_phy_read(cp, MII_BMSR); | ||
4184 | cas_mif_poll(cp, 1); | ||
4185 | readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ | ||
4186 | reset = cas_mii_link_check(cp, bmsr); | ||
4187 | } else { | ||
4188 | reset = cas_pcs_link_check(cp); | ||
4189 | } | ||
4190 | |||
4191 | if (reset) | ||
4192 | goto done; | ||
4193 | |||
4194 | /* check for tx state machine confusion */ | ||
4195 | if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { | ||
4196 | u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); | ||
4197 | u32 wptr, rptr; | ||
4198 | int tlm = CAS_VAL(MAC_SM_TLM, val); | ||
4199 | |||
4200 | if (((tlm == 0x5) || (tlm == 0x3)) && | ||
4201 | (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { | ||
4202 | if (netif_msg_tx_err(cp)) | ||
4203 | printk(KERN_DEBUG "%s: tx err: " | ||
4204 | "MAC_STATE[%08x]\n", | ||
4205 | cp->dev->name, val); | ||
4206 | reset = 1; | ||
4207 | goto done; | ||
4208 | } | ||
4209 | |||
4210 | val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); | ||
4211 | wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); | ||
4212 | rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); | ||
4213 | if ((val == 0) && (wptr != rptr)) { | ||
4214 | if (netif_msg_tx_err(cp)) | ||
4215 | printk(KERN_DEBUG "%s: tx err: " | ||
4216 | "TX_FIFO[%08x:%08x:%08x]\n", | ||
4217 | cp->dev->name, val, wptr, rptr); | ||
4218 | reset = 1; | ||
4219 | } | ||
4220 | |||
4221 | if (reset) | ||
4222 | cas_hard_reset(cp); | ||
4223 | } | ||
4224 | |||
4225 | done: | ||
4226 | if (reset) { | ||
4227 | #if 1 | ||
4228 | atomic_inc(&cp->reset_task_pending); | ||
4229 | atomic_inc(&cp->reset_task_pending_all); | ||
4230 | schedule_work(&cp->reset_task); | ||
4231 | #else | ||
4232 | atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); | ||
4233 | printk(KERN_ERR "reset called in cas_link_timer\n"); | ||
4234 | schedule_work(&cp->reset_task); | ||
4235 | #endif | ||
4236 | } | ||
4237 | |||
4238 | if (!pending) | ||
4239 | mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); | ||
4240 | cas_unlock_tx(cp); | ||
4241 | spin_unlock_irqrestore(&cp->lock, flags); | ||
4242 | } | ||
4243 | |||
4244 | /* tiny buffers are used to avoid target abort issues with | ||
4245 | * older cassini's | ||
4246 | */ | ||
4247 | static void cas_tx_tiny_free(struct cas *cp) | ||
4248 | { | ||
4249 | struct pci_dev *pdev = cp->pdev; | ||
4250 | int i; | ||
4251 | |||
4252 | for (i = 0; i < N_TX_RINGS; i++) { | ||
4253 | if (!cp->tx_tiny_bufs[i]) | ||
4254 | continue; | ||
4255 | |||
4256 | pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, | ||
4257 | cp->tx_tiny_bufs[i], | ||
4258 | cp->tx_tiny_dvma[i]); | ||
4259 | cp->tx_tiny_bufs[i] = NULL; | ||
4260 | } | ||
4261 | } | ||
4262 | |||
4263 | static int cas_tx_tiny_alloc(struct cas *cp) | ||
4264 | { | ||
4265 | struct pci_dev *pdev = cp->pdev; | ||
4266 | int i; | ||
4267 | |||
4268 | for (i = 0; i < N_TX_RINGS; i++) { | ||
4269 | cp->tx_tiny_bufs[i] = | ||
4270 | pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, | ||
4271 | &cp->tx_tiny_dvma[i]); | ||
4272 | if (!cp->tx_tiny_bufs[i]) { | ||
4273 | cas_tx_tiny_free(cp); | ||
4274 | return -1; | ||
4275 | } | ||
4276 | } | ||
4277 | return 0; | ||
4278 | } | ||
4279 | |||
4280 | |||
4281 | static int cas_open(struct net_device *dev) | ||
4282 | { | ||
4283 | struct cas *cp = netdev_priv(dev); | ||
4284 | int hw_was_up, err; | ||
4285 | unsigned long flags; | ||
4286 | |||
4287 | down(&cp->pm_sem); | ||
4288 | |||
4289 | hw_was_up = cp->hw_running; | ||
4290 | |||
4291 | /* The power-management semaphore protects the hw_running | ||
4292 | * etc. state so it is safe to do this bit without cp->lock | ||
4293 | */ | ||
4294 | if (!cp->hw_running) { | ||
4295 | /* Reset the chip */ | ||
4296 | cas_lock_all_save(cp, flags); | ||
4297 | /* We set the second arg to cas_reset to zero | ||
4298 | * because cas_init_hw below will have its second | ||
4299 | * argument set to non-zero, which will force | ||
4300 | * autonegotiation to start. | ||
4301 | */ | ||
4302 | cas_reset(cp, 0); | ||
4303 | cp->hw_running = 1; | ||
4304 | cas_unlock_all_restore(cp, flags); | ||
4305 | } | ||
4306 | |||
4307 | if (cas_tx_tiny_alloc(cp) < 0) | ||
4308 | return -ENOMEM; | ||
4309 | |||
4310 | /* alloc rx descriptors */ | ||
4311 | err = -ENOMEM; | ||
4312 | if (cas_alloc_rxds(cp) < 0) | ||
4313 | goto err_tx_tiny; | ||
4314 | |||
4315 | /* allocate spares */ | ||
4316 | cas_spare_init(cp); | ||
4317 | cas_spare_recover(cp, GFP_KERNEL); | ||
4318 | |||
4319 | /* We can now request the interrupt as we know it's masked | ||
4320 | * on the controller. cassini+ has up to 4 interrupts | ||
4321 | * that can be used, but you need to do explicit pci interrupt | ||
4322 | * mapping to expose them | ||
4323 | */ | ||
4324 | if (request_irq(cp->pdev->irq, cas_interrupt, | ||
4325 | SA_SHIRQ, dev->name, (void *) dev)) { | ||
4326 | printk(KERN_ERR "%s: failed to request irq !\n", | ||
4327 | cp->dev->name); | ||
4328 | err = -EAGAIN; | ||
4329 | goto err_spare; | ||
4330 | } | ||
4331 | |||
4332 | /* init hw */ | ||
4333 | cas_lock_all_save(cp, flags); | ||
4334 | cas_clean_rings(cp); | ||
4335 | cas_init_hw(cp, !hw_was_up); | ||
4336 | cp->opened = 1; | ||
4337 | cas_unlock_all_restore(cp, flags); | ||
4338 | |||
4339 | netif_start_queue(dev); | ||
4340 | up(&cp->pm_sem); | ||
4341 | return 0; | ||
4342 | |||
4343 | err_spare: | ||
4344 | cas_spare_free(cp); | ||
4345 | cas_free_rxds(cp); | ||
4346 | err_tx_tiny: | ||
4347 | cas_tx_tiny_free(cp); | ||
4348 | up(&cp->pm_sem); | ||
4349 | return err; | ||
4350 | } | ||
4351 | |||
4352 | static int cas_close(struct net_device *dev) | ||
4353 | { | ||
4354 | unsigned long flags; | ||
4355 | struct cas *cp = netdev_priv(dev); | ||
4356 | |||
4357 | /* Make sure we don't get distracted by suspend/resume */ | ||
4358 | down(&cp->pm_sem); | ||
4359 | |||
4360 | netif_stop_queue(dev); | ||
4361 | |||
4362 | /* Stop traffic, mark us closed */ | ||
4363 | cas_lock_all_save(cp, flags); | ||
4364 | cp->opened = 0; | ||
4365 | cas_reset(cp, 0); | ||
4366 | cas_phy_init(cp); | ||
4367 | cas_begin_auto_negotiation(cp, NULL); | ||
4368 | cas_clean_rings(cp); | ||
4369 | cas_unlock_all_restore(cp, flags); | ||
4370 | |||
4371 | free_irq(cp->pdev->irq, (void *) dev); | ||
4372 | cas_spare_free(cp); | ||
4373 | cas_free_rxds(cp); | ||
4374 | cas_tx_tiny_free(cp); | ||
4375 | up(&cp->pm_sem); | ||
4376 | return 0; | ||
4377 | } | ||
4378 | |||
4379 | static struct { | ||
4380 | const char name[ETH_GSTRING_LEN]; | ||
4381 | } ethtool_cassini_statnames[] = { | ||
4382 | {"collisions"}, | ||
4383 | {"rx_bytes"}, | ||
4384 | {"rx_crc_errors"}, | ||
4385 | {"rx_dropped"}, | ||
4386 | {"rx_errors"}, | ||
4387 | {"rx_fifo_errors"}, | ||
4388 | {"rx_frame_errors"}, | ||
4389 | {"rx_length_errors"}, | ||
4390 | {"rx_over_errors"}, | ||
4391 | {"rx_packets"}, | ||
4392 | {"tx_aborted_errors"}, | ||
4393 | {"tx_bytes"}, | ||
4394 | {"tx_dropped"}, | ||
4395 | {"tx_errors"}, | ||
4396 | {"tx_fifo_errors"}, | ||
4397 | {"tx_packets"} | ||
4398 | }; | ||
4399 | #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN) | ||
4400 | |||
4401 | static struct { | ||
4402 | const int offsets; /* neg. values for 2nd arg to cas_read_phy */ | ||
4403 | } ethtool_register_table[] = { | ||
4404 | {-MII_BMSR}, | ||
4405 | {-MII_BMCR}, | ||
4406 | {REG_CAWR}, | ||
4407 | {REG_INF_BURST}, | ||
4408 | {REG_BIM_CFG}, | ||
4409 | {REG_RX_CFG}, | ||
4410 | {REG_HP_CFG}, | ||
4411 | {REG_MAC_TX_CFG}, | ||
4412 | {REG_MAC_RX_CFG}, | ||
4413 | {REG_MAC_CTRL_CFG}, | ||
4414 | {REG_MAC_XIF_CFG}, | ||
4415 | {REG_MIF_CFG}, | ||
4416 | {REG_PCS_CFG}, | ||
4417 | {REG_SATURN_PCFG}, | ||
4418 | {REG_PCS_MII_STATUS}, | ||
4419 | {REG_PCS_STATE_MACHINE}, | ||
4420 | {REG_MAC_COLL_EXCESS}, | ||
4421 | {REG_MAC_COLL_LATE} | ||
4422 | }; | ||
4423 | #define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int)) | ||
4424 | #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) | ||
4425 | |||
4426 | static void cas_read_regs(struct cas *cp, u8 *ptr, int len) | ||
4427 | { | ||
4428 | u8 *p; | ||
4429 | int i; | ||
4430 | unsigned long flags; | ||
4431 | |||
4432 | spin_lock_irqsave(&cp->lock, flags); | ||
4433 | for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { | ||
4434 | u16 hval; | ||
4435 | u32 val; | ||
4436 | if (ethtool_register_table[i].offsets < 0) { | ||
4437 | hval = cas_phy_read(cp, | ||
4438 | -ethtool_register_table[i].offsets); | ||
4439 | val = hval; | ||
4440 | } else { | ||
4441 | val= readl(cp->regs+ethtool_register_table[i].offsets); | ||
4442 | } | ||
4443 | memcpy(p, (u8 *)&val, sizeof(u32)); | ||
4444 | } | ||
4445 | spin_unlock_irqrestore(&cp->lock, flags); | ||
4446 | } | ||
4447 | |||
4448 | static struct net_device_stats *cas_get_stats(struct net_device *dev) | ||
4449 | { | ||
4450 | struct cas *cp = netdev_priv(dev); | ||
4451 | struct net_device_stats *stats = cp->net_stats; | ||
4452 | unsigned long flags; | ||
4453 | int i; | ||
4454 | unsigned long tmp; | ||
4455 | |||
4456 | /* we collate all of the stats into net_stats[N_TX_RING] */ | ||
4457 | if (!cp->hw_running) | ||
4458 | return stats + N_TX_RINGS; | ||
4459 | |||
4460 | /* collect outstanding stats */ | ||
4461 | /* WTZ: the Cassini spec gives these as 16 bit counters but | ||
4462 | * stored in 32-bit words. Added a mask of 0xffff to be safe, | ||
4463 | * in case the chip somehow puts any garbage in the other bits. | ||
4464 | * Also, counter usage didn't seem to mach what Adrian did | ||
4465 | * in the parts of the code that set these quantities. Made | ||
4466 | * that consistent. | ||
4467 | */ | ||
4468 | spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); | ||
4469 | stats[N_TX_RINGS].rx_crc_errors += | ||
4470 | readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; | ||
4471 | stats[N_TX_RINGS].rx_frame_errors += | ||
4472 | readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; | ||
4473 | stats[N_TX_RINGS].rx_length_errors += | ||
4474 | readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; | ||
4475 | #if 1 | ||
4476 | tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + | ||
4477 | (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); | ||
4478 | stats[N_TX_RINGS].tx_aborted_errors += tmp; | ||
4479 | stats[N_TX_RINGS].collisions += | ||
4480 | tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); | ||
4481 | #else | ||
4482 | stats[N_TX_RINGS].tx_aborted_errors += | ||
4483 | readl(cp->regs + REG_MAC_COLL_EXCESS); | ||
4484 | stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + | ||
4485 | readl(cp->regs + REG_MAC_COLL_LATE); | ||
4486 | #endif | ||
4487 | cas_clear_mac_err(cp); | ||
4488 | |||
4489 | /* saved bits that are unique to ring 0 */ | ||
4490 | spin_lock(&cp->stat_lock[0]); | ||
4491 | stats[N_TX_RINGS].collisions += stats[0].collisions; | ||
4492 | stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; | ||
4493 | stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; | ||
4494 | stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; | ||
4495 | stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; | ||
4496 | stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; | ||
4497 | spin_unlock(&cp->stat_lock[0]); | ||
4498 | |||
4499 | for (i = 0; i < N_TX_RINGS; i++) { | ||
4500 | spin_lock(&cp->stat_lock[i]); | ||
4501 | stats[N_TX_RINGS].rx_length_errors += | ||
4502 | stats[i].rx_length_errors; | ||
4503 | stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; | ||
4504 | stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; | ||
4505 | stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; | ||
4506 | stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; | ||
4507 | stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; | ||
4508 | stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; | ||
4509 | stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; | ||
4510 | stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; | ||
4511 | stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; | ||
4512 | memset(stats + i, 0, sizeof(struct net_device_stats)); | ||
4513 | spin_unlock(&cp->stat_lock[i]); | ||
4514 | } | ||
4515 | spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); | ||
4516 | return stats + N_TX_RINGS; | ||
4517 | } | ||
4518 | |||
4519 | |||
4520 | static void cas_set_multicast(struct net_device *dev) | ||
4521 | { | ||
4522 | struct cas *cp = netdev_priv(dev); | ||
4523 | u32 rxcfg, rxcfg_new; | ||
4524 | unsigned long flags; | ||
4525 | int limit = STOP_TRIES; | ||
4526 | |||
4527 | if (!cp->hw_running) | ||
4528 | return; | ||
4529 | |||
4530 | spin_lock_irqsave(&cp->lock, flags); | ||
4531 | rxcfg = readl(cp->regs + REG_MAC_RX_CFG); | ||
4532 | |||
4533 | /* disable RX MAC and wait for completion */ | ||
4534 | writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | ||
4535 | while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { | ||
4536 | if (!limit--) | ||
4537 | break; | ||
4538 | udelay(10); | ||
4539 | } | ||
4540 | |||
4541 | /* disable hash filter and wait for completion */ | ||
4542 | limit = STOP_TRIES; | ||
4543 | rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); | ||
4544 | writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | ||
4545 | while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { | ||
4546 | if (!limit--) | ||
4547 | break; | ||
4548 | udelay(10); | ||
4549 | } | ||
4550 | |||
4551 | /* program hash filters */ | ||
4552 | cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); | ||
4553 | rxcfg |= rxcfg_new; | ||
4554 | writel(rxcfg, cp->regs + REG_MAC_RX_CFG); | ||
4555 | spin_unlock_irqrestore(&cp->lock, flags); | ||
4556 | } | ||
4557 | |||
4558 | static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | ||
4559 | { | ||
4560 | struct cas *cp = netdev_priv(dev); | ||
4561 | strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN); | ||
4562 | strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN); | ||
4563 | info->fw_version[0] = '\0'; | ||
4564 | strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN); | ||
4565 | info->regdump_len = cp->casreg_len < CAS_MAX_REGS ? | ||
4566 | cp->casreg_len : CAS_MAX_REGS; | ||
4567 | info->n_stats = CAS_NUM_STAT_KEYS; | ||
4568 | } | ||
4569 | |||
4570 | static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | ||
4571 | { | ||
4572 | struct cas *cp = netdev_priv(dev); | ||
4573 | u16 bmcr; | ||
4574 | int full_duplex, speed, pause; | ||
4575 | unsigned long flags; | ||
4576 | enum link_state linkstate = link_up; | ||
4577 | |||
4578 | cmd->advertising = 0; | ||
4579 | cmd->supported = SUPPORTED_Autoneg; | ||
4580 | if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { | ||
4581 | cmd->supported |= SUPPORTED_1000baseT_Full; | ||
4582 | cmd->advertising |= ADVERTISED_1000baseT_Full; | ||
4583 | } | ||
4584 | |||
4585 | /* Record PHY settings if HW is on. */ | ||
4586 | spin_lock_irqsave(&cp->lock, flags); | ||
4587 | bmcr = 0; | ||
4588 | linkstate = cp->lstate; | ||
4589 | if (CAS_PHY_MII(cp->phy_type)) { | ||
4590 | cmd->port = PORT_MII; | ||
4591 | cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ? | ||
4592 | XCVR_INTERNAL : XCVR_EXTERNAL; | ||
4593 | cmd->phy_address = cp->phy_addr; | ||
4594 | cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII | | ||
4595 | ADVERTISED_10baseT_Half | | ||
4596 | ADVERTISED_10baseT_Full | | ||
4597 | ADVERTISED_100baseT_Half | | ||
4598 | ADVERTISED_100baseT_Full; | ||
4599 | |||
4600 | cmd->supported |= | ||
4601 | (SUPPORTED_10baseT_Half | | ||
4602 | SUPPORTED_10baseT_Full | | ||
4603 | SUPPORTED_100baseT_Half | | ||
4604 | SUPPORTED_100baseT_Full | | ||
4605 | SUPPORTED_TP | SUPPORTED_MII); | ||
4606 | |||
4607 | if (cp->hw_running) { | ||
4608 | cas_mif_poll(cp, 0); | ||
4609 | bmcr = cas_phy_read(cp, MII_BMCR); | ||
4610 | cas_read_mii_link_mode(cp, &full_duplex, | ||
4611 | &speed, &pause); | ||
4612 | cas_mif_poll(cp, 1); | ||
4613 | } | ||
4614 | |||
4615 | } else { | ||
4616 | cmd->port = PORT_FIBRE; | ||
4617 | cmd->transceiver = XCVR_INTERNAL; | ||
4618 | cmd->phy_address = 0; | ||
4619 | cmd->supported |= SUPPORTED_FIBRE; | ||
4620 | cmd->advertising |= ADVERTISED_FIBRE; | ||
4621 | |||
4622 | if (cp->hw_running) { | ||
4623 | /* pcs uses the same bits as mii */ | ||
4624 | bmcr = readl(cp->regs + REG_PCS_MII_CTRL); | ||
4625 | cas_read_pcs_link_mode(cp, &full_duplex, | ||
4626 | &speed, &pause); | ||
4627 | } | ||
4628 | } | ||
4629 | spin_unlock_irqrestore(&cp->lock, flags); | ||
4630 | |||
4631 | if (bmcr & BMCR_ANENABLE) { | ||
4632 | cmd->advertising |= ADVERTISED_Autoneg; | ||
4633 | cmd->autoneg = AUTONEG_ENABLE; | ||
4634 | cmd->speed = ((speed == 10) ? | ||
4635 | SPEED_10 : | ||
4636 | ((speed == 1000) ? | ||
4637 | SPEED_1000 : SPEED_100)); | ||
4638 | cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; | ||
4639 | } else { | ||
4640 | cmd->autoneg = AUTONEG_DISABLE; | ||
4641 | cmd->speed = | ||
4642 | (bmcr & CAS_BMCR_SPEED1000) ? | ||
4643 | SPEED_1000 : | ||
4644 | ((bmcr & BMCR_SPEED100) ? SPEED_100: | ||
4645 | SPEED_10); | ||
4646 | cmd->duplex = | ||
4647 | (bmcr & BMCR_FULLDPLX) ? | ||
4648 | DUPLEX_FULL : DUPLEX_HALF; | ||
4649 | } | ||
4650 | if (linkstate != link_up) { | ||
4651 | /* Force these to "unknown" if the link is not up and | ||
4652 | * autonogotiation in enabled. We can set the link | ||
4653 | * speed to 0, but not cmd->duplex, | ||
4654 | * because its legal values are 0 and 1. Ethtool will | ||
4655 | * print the value reported in parentheses after the | ||
4656 | * word "Unknown" for unrecognized values. | ||
4657 | * | ||
4658 | * If in forced mode, we report the speed and duplex | ||
4659 | * settings that we configured. | ||
4660 | */ | ||
4661 | if (cp->link_cntl & BMCR_ANENABLE) { | ||
4662 | cmd->speed = 0; | ||
4663 | cmd->duplex = 0xff; | ||
4664 | } else { | ||
4665 | cmd->speed = SPEED_10; | ||
4666 | if (cp->link_cntl & BMCR_SPEED100) { | ||
4667 | cmd->speed = SPEED_100; | ||
4668 | } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { | ||
4669 | cmd->speed = SPEED_1000; | ||
4670 | } | ||
4671 | cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)? | ||
4672 | DUPLEX_FULL : DUPLEX_HALF; | ||
4673 | } | ||
4674 | } | ||
4675 | return 0; | ||
4676 | } | ||
4677 | |||
4678 | static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | ||
4679 | { | ||
4680 | struct cas *cp = netdev_priv(dev); | ||
4681 | unsigned long flags; | ||
4682 | |||
4683 | /* Verify the settings we care about. */ | ||
4684 | if (cmd->autoneg != AUTONEG_ENABLE && | ||
4685 | cmd->autoneg != AUTONEG_DISABLE) | ||
4686 | return -EINVAL; | ||
4687 | |||
4688 | if (cmd->autoneg == AUTONEG_DISABLE && | ||
4689 | ((cmd->speed != SPEED_1000 && | ||
4690 | cmd->speed != SPEED_100 && | ||
4691 | cmd->speed != SPEED_10) || | ||
4692 | (cmd->duplex != DUPLEX_HALF && | ||
4693 | cmd->duplex != DUPLEX_FULL))) | ||
4694 | return -EINVAL; | ||
4695 | |||
4696 | /* Apply settings and restart link process. */ | ||
4697 | spin_lock_irqsave(&cp->lock, flags); | ||
4698 | cas_begin_auto_negotiation(cp, cmd); | ||
4699 | spin_unlock_irqrestore(&cp->lock, flags); | ||
4700 | return 0; | ||
4701 | } | ||
4702 | |||
4703 | static int cas_nway_reset(struct net_device *dev) | ||
4704 | { | ||
4705 | struct cas *cp = netdev_priv(dev); | ||
4706 | unsigned long flags; | ||
4707 | |||
4708 | if ((cp->link_cntl & BMCR_ANENABLE) == 0) | ||
4709 | return -EINVAL; | ||
4710 | |||
4711 | /* Restart link process. */ | ||
4712 | spin_lock_irqsave(&cp->lock, flags); | ||
4713 | cas_begin_auto_negotiation(cp, NULL); | ||
4714 | spin_unlock_irqrestore(&cp->lock, flags); | ||
4715 | |||
4716 | return 0; | ||
4717 | } | ||
4718 | |||
4719 | static u32 cas_get_link(struct net_device *dev) | ||
4720 | { | ||
4721 | struct cas *cp = netdev_priv(dev); | ||
4722 | return cp->lstate == link_up; | ||
4723 | } | ||
4724 | |||
4725 | static u32 cas_get_msglevel(struct net_device *dev) | ||
4726 | { | ||
4727 | struct cas *cp = netdev_priv(dev); | ||
4728 | return cp->msg_enable; | ||
4729 | } | ||
4730 | |||
4731 | static void cas_set_msglevel(struct net_device *dev, u32 value) | ||
4732 | { | ||
4733 | struct cas *cp = netdev_priv(dev); | ||
4734 | cp->msg_enable = value; | ||
4735 | } | ||
4736 | |||
4737 | static int cas_get_regs_len(struct net_device *dev) | ||
4738 | { | ||
4739 | struct cas *cp = netdev_priv(dev); | ||
4740 | return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; | ||
4741 | } | ||
4742 | |||
4743 | static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, | ||
4744 | void *p) | ||
4745 | { | ||
4746 | struct cas *cp = netdev_priv(dev); | ||
4747 | regs->version = 0; | ||
4748 | /* cas_read_regs handles locks (cp->lock). */ | ||
4749 | cas_read_regs(cp, p, regs->len / sizeof(u32)); | ||
4750 | } | ||
4751 | |||
4752 | static int cas_get_stats_count(struct net_device *dev) | ||
4753 | { | ||
4754 | return CAS_NUM_STAT_KEYS; | ||
4755 | } | ||
4756 | |||
4757 | static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) | ||
4758 | { | ||
4759 | memcpy(data, ðtool_cassini_statnames, | ||
4760 | CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); | ||
4761 | } | ||
4762 | |||
4763 | static void cas_get_ethtool_stats(struct net_device *dev, | ||
4764 | struct ethtool_stats *estats, u64 *data) | ||
4765 | { | ||
4766 | struct cas *cp = netdev_priv(dev); | ||
4767 | struct net_device_stats *stats = cas_get_stats(cp->dev); | ||
4768 | int i = 0; | ||
4769 | data[i++] = stats->collisions; | ||
4770 | data[i++] = stats->rx_bytes; | ||
4771 | data[i++] = stats->rx_crc_errors; | ||
4772 | data[i++] = stats->rx_dropped; | ||
4773 | data[i++] = stats->rx_errors; | ||
4774 | data[i++] = stats->rx_fifo_errors; | ||
4775 | data[i++] = stats->rx_frame_errors; | ||
4776 | data[i++] = stats->rx_length_errors; | ||
4777 | data[i++] = stats->rx_over_errors; | ||
4778 | data[i++] = stats->rx_packets; | ||
4779 | data[i++] = stats->tx_aborted_errors; | ||
4780 | data[i++] = stats->tx_bytes; | ||
4781 | data[i++] = stats->tx_dropped; | ||
4782 | data[i++] = stats->tx_errors; | ||
4783 | data[i++] = stats->tx_fifo_errors; | ||
4784 | data[i++] = stats->tx_packets; | ||
4785 | BUG_ON(i != CAS_NUM_STAT_KEYS); | ||
4786 | } | ||
4787 | |||
4788 | static struct ethtool_ops cas_ethtool_ops = { | ||
4789 | .get_drvinfo = cas_get_drvinfo, | ||
4790 | .get_settings = cas_get_settings, | ||
4791 | .set_settings = cas_set_settings, | ||
4792 | .nway_reset = cas_nway_reset, | ||
4793 | .get_link = cas_get_link, | ||
4794 | .get_msglevel = cas_get_msglevel, | ||
4795 | .set_msglevel = cas_set_msglevel, | ||
4796 | .get_regs_len = cas_get_regs_len, | ||
4797 | .get_regs = cas_get_regs, | ||
4798 | .get_stats_count = cas_get_stats_count, | ||
4799 | .get_strings = cas_get_strings, | ||
4800 | .get_ethtool_stats = cas_get_ethtool_stats, | ||
4801 | }; | ||
4802 | |||
4803 | static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | ||
4804 | { | ||
4805 | struct cas *cp = netdev_priv(dev); | ||
4806 | struct mii_ioctl_data *data = if_mii(ifr); | ||
4807 | unsigned long flags; | ||
4808 | int rc = -EOPNOTSUPP; | ||
4809 | |||
4810 | /* Hold the PM semaphore while doing ioctl's or we may collide | ||
4811 | * with open/close and power management and oops. | ||
4812 | */ | ||
4813 | down(&cp->pm_sem); | ||
4814 | switch (cmd) { | ||
4815 | case SIOCGMIIPHY: /* Get address of MII PHY in use. */ | ||
4816 | data->phy_id = cp->phy_addr; | ||
4817 | /* Fallthrough... */ | ||
4818 | |||
4819 | case SIOCGMIIREG: /* Read MII PHY register. */ | ||
4820 | spin_lock_irqsave(&cp->lock, flags); | ||
4821 | cas_mif_poll(cp, 0); | ||
4822 | data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); | ||
4823 | cas_mif_poll(cp, 1); | ||
4824 | spin_unlock_irqrestore(&cp->lock, flags); | ||
4825 | rc = 0; | ||
4826 | break; | ||
4827 | |||
4828 | case SIOCSMIIREG: /* Write MII PHY register. */ | ||
4829 | if (!capable(CAP_NET_ADMIN)) { | ||
4830 | rc = -EPERM; | ||
4831 | break; | ||
4832 | } | ||
4833 | spin_lock_irqsave(&cp->lock, flags); | ||
4834 | cas_mif_poll(cp, 0); | ||
4835 | rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); | ||
4836 | cas_mif_poll(cp, 1); | ||
4837 | spin_unlock_irqrestore(&cp->lock, flags); | ||
4838 | break; | ||
4839 | default: | ||
4840 | break; | ||
4841 | }; | ||
4842 | |||
4843 | up(&cp->pm_sem); | ||
4844 | return rc; | ||
4845 | } | ||
4846 | |||
4847 | static int __devinit cas_init_one(struct pci_dev *pdev, | ||
4848 | const struct pci_device_id *ent) | ||
4849 | { | ||
4850 | static int cas_version_printed = 0; | ||
4851 | unsigned long casreg_base, casreg_len; | ||
4852 | struct net_device *dev; | ||
4853 | struct cas *cp; | ||
4854 | int i, err, pci_using_dac; | ||
4855 | u16 pci_cmd; | ||
4856 | u8 orig_cacheline_size = 0, cas_cacheline_size = 0; | ||
4857 | |||
4858 | if (cas_version_printed++ == 0) | ||
4859 | printk(KERN_INFO "%s", version); | ||
4860 | |||
4861 | err = pci_enable_device(pdev); | ||
4862 | if (err) { | ||
4863 | printk(KERN_ERR PFX "Cannot enable PCI device, " | ||
4864 | "aborting.\n"); | ||
4865 | return err; | ||
4866 | } | ||
4867 | |||
4868 | if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { | ||
4869 | printk(KERN_ERR PFX "Cannot find proper PCI device " | ||
4870 | "base address, aborting.\n"); | ||
4871 | err = -ENODEV; | ||
4872 | goto err_out_disable_pdev; | ||
4873 | } | ||
4874 | |||
4875 | dev = alloc_etherdev(sizeof(*cp)); | ||
4876 | if (!dev) { | ||
4877 | printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n"); | ||
4878 | err = -ENOMEM; | ||
4879 | goto err_out_disable_pdev; | ||
4880 | } | ||
4881 | SET_MODULE_OWNER(dev); | ||
4882 | SET_NETDEV_DEV(dev, &pdev->dev); | ||
4883 | |||
4884 | err = pci_request_regions(pdev, dev->name); | ||
4885 | if (err) { | ||
4886 | printk(KERN_ERR PFX "Cannot obtain PCI resources, " | ||
4887 | "aborting.\n"); | ||
4888 | goto err_out_free_netdev; | ||
4889 | } | ||
4890 | pci_set_master(pdev); | ||
4891 | |||
4892 | /* we must always turn on parity response or else parity | ||
4893 | * doesn't get generated properly. disable SERR/PERR as well. | ||
4894 | * in addition, we want to turn MWI on. | ||
4895 | */ | ||
4896 | pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); | ||
4897 | pci_cmd &= ~PCI_COMMAND_SERR; | ||
4898 | pci_cmd |= PCI_COMMAND_PARITY; | ||
4899 | pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); | ||
4900 | pci_set_mwi(pdev); | ||
4901 | /* | ||
4902 | * On some architectures, the default cache line size set | ||
4903 | * by pci_set_mwi reduces perforamnce. We have to increase | ||
4904 | * it for this case. To start, we'll print some configuration | ||
4905 | * data. | ||
4906 | */ | ||
4907 | #if 1 | ||
4908 | pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, | ||
4909 | &orig_cacheline_size); | ||
4910 | if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { | ||
4911 | cas_cacheline_size = | ||
4912 | (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? | ||
4913 | CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; | ||
4914 | if (pci_write_config_byte(pdev, | ||
4915 | PCI_CACHE_LINE_SIZE, | ||
4916 | cas_cacheline_size)) { | ||
4917 | printk(KERN_ERR PFX "Could not set PCI cache " | ||
4918 | "line size\n"); | ||
4919 | goto err_write_cacheline; | ||
4920 | } | ||
4921 | } | ||
4922 | #endif | ||
4923 | |||
4924 | |||
4925 | /* Configure DMA attributes. */ | ||
4926 | if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { | ||
4927 | pci_using_dac = 1; | ||
4928 | err = pci_set_consistent_dma_mask(pdev, | ||
4929 | DMA_64BIT_MASK); | ||
4930 | if (err < 0) { | ||
4931 | printk(KERN_ERR PFX "Unable to obtain 64-bit DMA " | ||
4932 | "for consistent allocations\n"); | ||
4933 | goto err_out_free_res; | ||
4934 | } | ||
4935 | |||
4936 | } else { | ||
4937 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | ||
4938 | if (err) { | ||
4939 | printk(KERN_ERR PFX "No usable DMA configuration, " | ||
4940 | "aborting.\n"); | ||
4941 | goto err_out_free_res; | ||
4942 | } | ||
4943 | pci_using_dac = 0; | ||
4944 | } | ||
4945 | |||
4946 | casreg_base = pci_resource_start(pdev, 0); | ||
4947 | casreg_len = pci_resource_len(pdev, 0); | ||
4948 | |||
4949 | cp = netdev_priv(dev); | ||
4950 | cp->pdev = pdev; | ||
4951 | #if 1 | ||
4952 | /* A value of 0 indicates we never explicitly set it */ | ||
4953 | cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; | ||
4954 | #endif | ||
4955 | cp->dev = dev; | ||
4956 | cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : | ||
4957 | cassini_debug; | ||
4958 | |||
4959 | cp->link_transition = LINK_TRANSITION_UNKNOWN; | ||
4960 | cp->link_transition_jiffies_valid = 0; | ||
4961 | |||
4962 | spin_lock_init(&cp->lock); | ||
4963 | spin_lock_init(&cp->rx_inuse_lock); | ||
4964 | spin_lock_init(&cp->rx_spare_lock); | ||
4965 | for (i = 0; i < N_TX_RINGS; i++) { | ||
4966 | spin_lock_init(&cp->stat_lock[i]); | ||
4967 | spin_lock_init(&cp->tx_lock[i]); | ||
4968 | } | ||
4969 | spin_lock_init(&cp->stat_lock[N_TX_RINGS]); | ||
4970 | init_MUTEX(&cp->pm_sem); | ||
4971 | |||
4972 | init_timer(&cp->link_timer); | ||
4973 | cp->link_timer.function = cas_link_timer; | ||
4974 | cp->link_timer.data = (unsigned long) cp; | ||
4975 | |||
4976 | #if 1 | ||
4977 | /* Just in case the implementation of atomic operations | ||
4978 | * change so that an explicit initialization is necessary. | ||
4979 | */ | ||
4980 | atomic_set(&cp->reset_task_pending, 0); | ||
4981 | atomic_set(&cp->reset_task_pending_all, 0); | ||
4982 | atomic_set(&cp->reset_task_pending_spare, 0); | ||
4983 | atomic_set(&cp->reset_task_pending_mtu, 0); | ||
4984 | #endif | ||
4985 | INIT_WORK(&cp->reset_task, cas_reset_task, cp); | ||
4986 | |||
4987 | /* Default link parameters */ | ||
4988 | if (link_mode >= 0 && link_mode <= 6) | ||
4989 | cp->link_cntl = link_modes[link_mode]; | ||
4990 | else | ||
4991 | cp->link_cntl = BMCR_ANENABLE; | ||
4992 | cp->lstate = link_down; | ||
4993 | cp->link_transition = LINK_TRANSITION_LINK_DOWN; | ||
4994 | netif_carrier_off(cp->dev); | ||
4995 | cp->timer_ticks = 0; | ||
4996 | |||
4997 | /* give us access to cassini registers */ | ||
4998 | cp->regs = ioremap(casreg_base, casreg_len); | ||
4999 | if (cp->regs == 0UL) { | ||
5000 | printk(KERN_ERR PFX "Cannot map device registers, " | ||
5001 | "aborting.\n"); | ||
5002 | goto err_out_free_res; | ||
5003 | } | ||
5004 | cp->casreg_len = casreg_len; | ||
5005 | |||
5006 | pci_save_state(pdev); | ||
5007 | cas_check_pci_invariants(cp); | ||
5008 | cas_hard_reset(cp); | ||
5009 | cas_reset(cp, 0); | ||
5010 | if (cas_check_invariants(cp)) | ||
5011 | goto err_out_iounmap; | ||
5012 | |||
5013 | cp->init_block = (struct cas_init_block *) | ||
5014 | pci_alloc_consistent(pdev, sizeof(struct cas_init_block), | ||
5015 | &cp->block_dvma); | ||
5016 | if (!cp->init_block) { | ||
5017 | printk(KERN_ERR PFX "Cannot allocate init block, " | ||
5018 | "aborting.\n"); | ||
5019 | goto err_out_iounmap; | ||
5020 | } | ||
5021 | |||
5022 | for (i = 0; i < N_TX_RINGS; i++) | ||
5023 | cp->init_txds[i] = cp->init_block->txds[i]; | ||
5024 | |||
5025 | for (i = 0; i < N_RX_DESC_RINGS; i++) | ||
5026 | cp->init_rxds[i] = cp->init_block->rxds[i]; | ||
5027 | |||
5028 | for (i = 0; i < N_RX_COMP_RINGS; i++) | ||
5029 | cp->init_rxcs[i] = cp->init_block->rxcs[i]; | ||
5030 | |||
5031 | for (i = 0; i < N_RX_FLOWS; i++) | ||
5032 | skb_queue_head_init(&cp->rx_flows[i]); | ||
5033 | |||
5034 | dev->open = cas_open; | ||
5035 | dev->stop = cas_close; | ||
5036 | dev->hard_start_xmit = cas_start_xmit; | ||
5037 | dev->get_stats = cas_get_stats; | ||
5038 | dev->set_multicast_list = cas_set_multicast; | ||
5039 | dev->do_ioctl = cas_ioctl; | ||
5040 | dev->ethtool_ops = &cas_ethtool_ops; | ||
5041 | dev->tx_timeout = cas_tx_timeout; | ||
5042 | dev->watchdog_timeo = CAS_TX_TIMEOUT; | ||
5043 | dev->change_mtu = cas_change_mtu; | ||
5044 | #ifdef USE_NAPI | ||
5045 | dev->poll = cas_poll; | ||
5046 | dev->weight = 64; | ||
5047 | #endif | ||
5048 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
5049 | dev->poll_controller = cas_netpoll; | ||
5050 | #endif | ||
5051 | dev->irq = pdev->irq; | ||
5052 | dev->dma = 0; | ||
5053 | |||
5054 | /* Cassini features. */ | ||
5055 | if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) | ||
5056 | dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; | ||
5057 | |||
5058 | if (pci_using_dac) | ||
5059 | dev->features |= NETIF_F_HIGHDMA; | ||
5060 | |||
5061 | if (register_netdev(dev)) { | ||
5062 | printk(KERN_ERR PFX "Cannot register net device, " | ||
5063 | "aborting.\n"); | ||
5064 | goto err_out_free_consistent; | ||
5065 | } | ||
5066 | |||
5067 | i = readl(cp->regs + REG_BIM_CFG); | ||
5068 | printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) " | ||
5069 | "Ethernet[%d] ", dev->name, | ||
5070 | (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", | ||
5071 | (i & BIM_CFG_32BIT) ? "32" : "64", | ||
5072 | (i & BIM_CFG_66MHZ) ? "66" : "33", | ||
5073 | (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq); | ||
5074 | |||
5075 | for (i = 0; i < 6; i++) | ||
5076 | printk("%2.2x%c", dev->dev_addr[i], | ||
5077 | i == 5 ? ' ' : ':'); | ||
5078 | printk("\n"); | ||
5079 | |||
5080 | pci_set_drvdata(pdev, dev); | ||
5081 | cp->hw_running = 1; | ||
5082 | cas_entropy_reset(cp); | ||
5083 | cas_phy_init(cp); | ||
5084 | cas_begin_auto_negotiation(cp, NULL); | ||
5085 | return 0; | ||
5086 | |||
5087 | err_out_free_consistent: | ||
5088 | pci_free_consistent(pdev, sizeof(struct cas_init_block), | ||
5089 | cp->init_block, cp->block_dvma); | ||
5090 | |||
5091 | err_out_iounmap: | ||
5092 | down(&cp->pm_sem); | ||
5093 | if (cp->hw_running) | ||
5094 | cas_shutdown(cp); | ||
5095 | up(&cp->pm_sem); | ||
5096 | |||
5097 | iounmap(cp->regs); | ||
5098 | |||
5099 | |||
5100 | err_out_free_res: | ||
5101 | pci_release_regions(pdev); | ||
5102 | |||
5103 | err_write_cacheline: | ||
5104 | /* Try to restore it in case the error occured after we | ||
5105 | * set it. | ||
5106 | */ | ||
5107 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); | ||
5108 | |||
5109 | err_out_free_netdev: | ||
5110 | free_netdev(dev); | ||
5111 | |||
5112 | err_out_disable_pdev: | ||
5113 | pci_disable_device(pdev); | ||
5114 | pci_set_drvdata(pdev, NULL); | ||
5115 | return -ENODEV; | ||
5116 | } | ||
5117 | |||
5118 | static void __devexit cas_remove_one(struct pci_dev *pdev) | ||
5119 | { | ||
5120 | struct net_device *dev = pci_get_drvdata(pdev); | ||
5121 | struct cas *cp; | ||
5122 | if (!dev) | ||
5123 | return; | ||
5124 | |||
5125 | cp = netdev_priv(dev); | ||
5126 | unregister_netdev(dev); | ||
5127 | |||
5128 | down(&cp->pm_sem); | ||
5129 | flush_scheduled_work(); | ||
5130 | if (cp->hw_running) | ||
5131 | cas_shutdown(cp); | ||
5132 | up(&cp->pm_sem); | ||
5133 | |||
5134 | #if 1 | ||
5135 | if (cp->orig_cacheline_size) { | ||
5136 | /* Restore the cache line size if we had modified | ||
5137 | * it. | ||
5138 | */ | ||
5139 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, | ||
5140 | cp->orig_cacheline_size); | ||
5141 | } | ||
5142 | #endif | ||
5143 | pci_free_consistent(pdev, sizeof(struct cas_init_block), | ||
5144 | cp->init_block, cp->block_dvma); | ||
5145 | iounmap(cp->regs); | ||
5146 | free_netdev(dev); | ||
5147 | pci_release_regions(pdev); | ||
5148 | pci_disable_device(pdev); | ||
5149 | pci_set_drvdata(pdev, NULL); | ||
5150 | } | ||
5151 | |||
5152 | #ifdef CONFIG_PM | ||
5153 | static int cas_suspend(struct pci_dev *pdev, pm_message_t state) | ||
5154 | { | ||
5155 | struct net_device *dev = pci_get_drvdata(pdev); | ||
5156 | struct cas *cp = netdev_priv(dev); | ||
5157 | unsigned long flags; | ||
5158 | |||
5159 | /* We hold the PM semaphore during entire driver | ||
5160 | * sleep time | ||
5161 | */ | ||
5162 | down(&cp->pm_sem); | ||
5163 | |||
5164 | /* If the driver is opened, we stop the DMA */ | ||
5165 | if (cp->opened) { | ||
5166 | netif_device_detach(dev); | ||
5167 | |||
5168 | cas_lock_all_save(cp, flags); | ||
5169 | |||
5170 | /* We can set the second arg of cas_reset to 0 | ||
5171 | * because on resume, we'll call cas_init_hw with | ||
5172 | * its second arg set so that autonegotiation is | ||
5173 | * restarted. | ||
5174 | */ | ||
5175 | cas_reset(cp, 0); | ||
5176 | cas_clean_rings(cp); | ||
5177 | cas_unlock_all_restore(cp, flags); | ||
5178 | } | ||
5179 | |||
5180 | if (cp->hw_running) | ||
5181 | cas_shutdown(cp); | ||
5182 | |||
5183 | return 0; | ||
5184 | } | ||
5185 | |||
5186 | static int cas_resume(struct pci_dev *pdev) | ||
5187 | { | ||
5188 | struct net_device *dev = pci_get_drvdata(pdev); | ||
5189 | struct cas *cp = netdev_priv(dev); | ||
5190 | |||
5191 | printk(KERN_INFO "%s: resuming\n", dev->name); | ||
5192 | |||
5193 | cas_hard_reset(cp); | ||
5194 | if (cp->opened) { | ||
5195 | unsigned long flags; | ||
5196 | cas_lock_all_save(cp, flags); | ||
5197 | cas_reset(cp, 0); | ||
5198 | cp->hw_running = 1; | ||
5199 | cas_clean_rings(cp); | ||
5200 | cas_init_hw(cp, 1); | ||
5201 | cas_unlock_all_restore(cp, flags); | ||
5202 | |||
5203 | netif_device_attach(dev); | ||
5204 | } | ||
5205 | up(&cp->pm_sem); | ||
5206 | return 0; | ||
5207 | } | ||
5208 | #endif /* CONFIG_PM */ | ||
5209 | |||
5210 | static struct pci_driver cas_driver = { | ||
5211 | .name = DRV_MODULE_NAME, | ||
5212 | .id_table = cas_pci_tbl, | ||
5213 | .probe = cas_init_one, | ||
5214 | .remove = __devexit_p(cas_remove_one), | ||
5215 | #ifdef CONFIG_PM | ||
5216 | .suspend = cas_suspend, | ||
5217 | .resume = cas_resume | ||
5218 | #endif | ||
5219 | }; | ||
5220 | |||
5221 | static int __init cas_init(void) | ||
5222 | { | ||
5223 | if (linkdown_timeout > 0) | ||
5224 | link_transition_timeout = linkdown_timeout * HZ; | ||
5225 | else | ||
5226 | link_transition_timeout = 0; | ||
5227 | |||
5228 | return pci_module_init(&cas_driver); | ||
5229 | } | ||
5230 | |||
5231 | static void __exit cas_cleanup(void) | ||
5232 | { | ||
5233 | pci_unregister_driver(&cas_driver); | ||
5234 | } | ||
5235 | |||
5236 | module_init(cas_init); | ||
5237 | module_exit(cas_cleanup); | ||