aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/bnx2x_init.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/bnx2x_init.h')
-rw-r--r--drivers/net/bnx2x_init.h605
1 files changed, 69 insertions, 536 deletions
diff --git a/drivers/net/bnx2x_init.h b/drivers/net/bnx2x_init.h
index 39ba2936c0c2..3ba4d888068f 100644
--- a/drivers/net/bnx2x_init.h
+++ b/drivers/net/bnx2x_init.h
@@ -1,4 +1,5 @@
1/* bnx2x_init.h: Broadcom Everest network driver. 1/* bnx2x_init.h: Broadcom Everest network driver.
2 * Structures and macroes needed during the initialization.
2 * 3 *
3 * Copyright (c) 2007-2009 Broadcom Corporation 4 * Copyright (c) 2007-2009 Broadcom Corporation
4 * 5 *
@@ -8,6 +9,7 @@
8 * 9 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com> 10 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir 11 * Written by: Eliezer Tamir
12 * Modified by: Vladislav Zolotarov <vladz@broadcom.com>
11 */ 13 */
12 14
13#ifndef BNX2X_INIT_H 15#ifndef BNX2X_INIT_H
@@ -45,33 +47,71 @@
45#define OP_WR_64 0x8 /* write 64 bit pattern */ 47#define OP_WR_64 0x8 /* write 64 bit pattern */
46#define OP_WB 0x9 /* copy a string using DMAE */ 48#define OP_WB 0x9 /* copy a string using DMAE */
47 49
48/* Operation specific for E1 */
49#define OP_RD_E1 0xa /* read single register */
50#define OP_WR_E1 0xb /* write single register */
51#define OP_IW_E1 0xc /* write single register using mailbox */
52#define OP_SW_E1 0xd /* copy a string to the device */
53#define OP_SI_E1 0xe /* copy a string using mailbox */
54#define OP_ZR_E1 0xf /* clear memory */
55#define OP_ZP_E1 0x10 /* unzip then copy with DMAE */
56#define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */
57#define OP_WB_E1 0x12 /* copy a string using DMAE */
58
59/* Operation specific for E1H */
60#define OP_RD_E1H 0x13 /* read single register */
61#define OP_WR_E1H 0x14 /* write single register */
62#define OP_IW_E1H 0x15 /* write single register using mailbox */
63#define OP_SW_E1H 0x16 /* copy a string to the device */
64#define OP_SI_E1H 0x17 /* copy a string using mailbox */
65#define OP_ZR_E1H 0x18 /* clear memory */
66#define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */
67#define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */
68#define OP_WB_E1H 0x1b /* copy a string using DMAE */
69
70/* FPGA and EMUL specific operations */ 50/* FPGA and EMUL specific operations */
71#define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */ 51#define OP_WR_EMUL 0xa /* write single register on Emulation */
72#define OP_WR_EMUL 0x1d /* write single register on Emulation */ 52#define OP_WR_FPGA 0xb /* write single register on FPGA */
73#define OP_WR_FPGA 0x1e /* write single register on FPGA */ 53#define OP_WR_ASIC 0xc /* write single register on ASIC */
74#define OP_WR_ASIC 0x1f /* write single register on ASIC */ 54
55/* Init stages */
56#define COMMON_STAGE 0
57#define PORT0_STAGE 1
58#define PORT1_STAGE 2
59/* Never reorder FUNCx stages !!! */
60#define FUNC0_STAGE 3
61#define FUNC1_STAGE 4
62#define FUNC2_STAGE 5
63#define FUNC3_STAGE 6
64#define FUNC4_STAGE 7
65#define FUNC5_STAGE 8
66#define FUNC6_STAGE 9
67#define FUNC7_STAGE 10
68#define STAGE_IDX_MAX 11
69
70#define STAGE_START 0
71#define STAGE_END 1
72
73
74/* Indices of blocks */
75#define PRS_BLOCK 0
76#define SRCH_BLOCK 1
77#define TSDM_BLOCK 2
78#define TCM_BLOCK 3
79#define BRB1_BLOCK 4
80#define TSEM_BLOCK 5
81#define PXPCS_BLOCK 6
82#define EMAC0_BLOCK 7
83#define EMAC1_BLOCK 8
84#define DBU_BLOCK 9
85#define MISC_BLOCK 10
86#define DBG_BLOCK 11
87#define NIG_BLOCK 12
88#define MCP_BLOCK 13
89#define UPB_BLOCK 14
90#define CSDM_BLOCK 15
91#define USDM_BLOCK 16
92#define CCM_BLOCK 17
93#define UCM_BLOCK 18
94#define USEM_BLOCK 19
95#define CSEM_BLOCK 20
96#define XPB_BLOCK 21
97#define DQ_BLOCK 22
98#define TIMERS_BLOCK 23
99#define XSDM_BLOCK 24
100#define QM_BLOCK 25
101#define PBF_BLOCK 26
102#define XCM_BLOCK 27
103#define XSEM_BLOCK 28
104#define CDU_BLOCK 29
105#define DMAE_BLOCK 30
106#define PXP_BLOCK 31
107#define CFC_BLOCK 32
108#define HC_BLOCK 33
109#define PXP2_BLOCK 34
110#define MISC_AEU_BLOCK 35
111
112/* Returns the index of start or end of a specific block stage in ops array*/
113#define BLOCK_OPS_IDX(block, stage, end) \
114 (2*(((block)*STAGE_IDX_MAX) + (stage)) + (end))
75 115
76 116
77struct raw_op { 117struct raw_op {
@@ -118,292 +158,6 @@ union init_op {
118 struct raw_op raw; 158 struct raw_op raw;
119}; 159};
120 160
121#include "bnx2x_init_values.h"
122
123static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
124static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
125
126static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
127 u32 len)
128{
129 int i;
130
131 for (i = 0; i < len; i++) {
132 REG_WR(bp, addr + i*4, data[i]);
133 if (!(i % 10000)) {
134 touch_softlockup_watchdog();
135 cpu_relax();
136 }
137 }
138}
139
140static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
141 u16 len)
142{
143 int i;
144
145 for (i = 0; i < len; i++) {
146 REG_WR_IND(bp, addr + i*4, data[i]);
147 if (!(i % 10000)) {
148 touch_softlockup_watchdog();
149 cpu_relax();
150 }
151 }
152}
153
154static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
155{
156 int offset = 0;
157
158 if (bp->dmae_ready) {
159 while (len > DMAE_LEN32_WR_MAX) {
160 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
161 addr + offset, DMAE_LEN32_WR_MAX);
162 offset += DMAE_LEN32_WR_MAX * 4;
163 len -= DMAE_LEN32_WR_MAX;
164 }
165 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
166 addr + offset, len);
167 } else
168 bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
169}
170
171static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
172{
173 u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4));
174 u32 buf_len32 = buf_len / 4;
175 int i;
176
177 memset(bp->gunzip_buf, fill, buf_len);
178
179 for (i = 0; i < len; i += buf_len32) {
180 u32 cur_len = min(buf_len32, len - i);
181
182 bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
183 }
184}
185
186static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
187 u32 len64)
188{
189 u32 buf_len32 = FW_BUF_SIZE / 4;
190 u32 len = len64 * 2;
191 u64 data64 = 0;
192 int i;
193
194 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
195 data64 = HILO_U64((*(data + 1)), (*data));
196 len64 = min((u32)(FW_BUF_SIZE/8), len64);
197 for (i = 0; i < len64; i++) {
198 u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
199
200 *pdata = data64;
201 }
202
203 for (i = 0; i < len; i += buf_len32) {
204 u32 cur_len = min(buf_len32, len - i);
205
206 bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
207 }
208}
209
210/*********************************************************
211 There are different blobs for each PRAM section.
212 In addition, each blob write operation is divided into a few operations
213 in order to decrease the amount of phys. contiguous buffer needed.
214 Thus, when we select a blob the address may be with some offset
215 from the beginning of PRAM section.
216 The same holds for the INT_TABLE sections.
217**********************************************************/
218#define IF_IS_INT_TABLE_ADDR(base, addr) \
219 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
220
221#define IF_IS_PRAM_ADDR(base, addr) \
222 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
223
224static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1)
225{
226 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
227 data = is_e1 ? tsem_int_table_data_e1 :
228 tsem_int_table_data_e1h;
229 else
230 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
231 data = is_e1 ? csem_int_table_data_e1 :
232 csem_int_table_data_e1h;
233 else
234 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
235 data = is_e1 ? usem_int_table_data_e1 :
236 usem_int_table_data_e1h;
237 else
238 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
239 data = is_e1 ? xsem_int_table_data_e1 :
240 xsem_int_table_data_e1h;
241 else
242 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
243 data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h;
244 else
245 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
246 data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h;
247 else
248 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
249 data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h;
250 else
251 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
252 data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h;
253
254 return data;
255}
256
257static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
258 u32 len, int gunzip, int is_e1, u32 blob_off)
259{
260 int offset = 0;
261
262 data = bnx2x_sel_blob(addr, data, is_e1) + blob_off;
263
264 if (gunzip) {
265 int rc;
266#ifdef __BIG_ENDIAN
267 int i, size;
268 u32 *temp;
269
270 temp = kmalloc(len, GFP_KERNEL);
271 size = (len / 4) + ((len % 4) ? 1 : 0);
272 for (i = 0; i < size; i++)
273 temp[i] = swab32(data[i]);
274 data = temp;
275#endif
276 rc = bnx2x_gunzip(bp, (u8 *)data, len);
277 if (rc) {
278 BNX2X_ERR("gunzip failed ! rc %d\n", rc);
279#ifdef __BIG_ENDIAN
280 kfree(temp);
281#endif
282 return;
283 }
284 len = bp->gunzip_outlen;
285#ifdef __BIG_ENDIAN
286 kfree(temp);
287 for (i = 0; i < len; i++)
288 ((u32 *)bp->gunzip_buf)[i] =
289 swab32(((u32 *)bp->gunzip_buf)[i]);
290#endif
291 } else {
292 if ((len * 4) > FW_BUF_SIZE) {
293 BNX2X_ERR("LARGE DMAE OPERATION ! "
294 "addr 0x%x len 0x%x\n", addr, len*4);
295 return;
296 }
297 memcpy(bp->gunzip_buf, data, len * 4);
298 }
299
300 if (bp->dmae_ready) {
301 while (len > DMAE_LEN32_WR_MAX) {
302 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
303 addr + offset, DMAE_LEN32_WR_MAX);
304 offset += DMAE_LEN32_WR_MAX * 4;
305 len -= DMAE_LEN32_WR_MAX;
306 }
307 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
308 addr + offset, len);
309 } else
310 bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
311}
312
313static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
314{
315 int is_e1 = CHIP_IS_E1(bp);
316 int is_e1h = CHIP_IS_E1H(bp);
317 int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h);
318 int hw_wr, i;
319 union init_op *op;
320 u32 op_type, addr, len;
321 const u32 *data, *data_base;
322
323 if (CHIP_REV_IS_FPGA(bp))
324 hw_wr = OP_WR_FPGA;
325 else if (CHIP_REV_IS_EMUL(bp))
326 hw_wr = OP_WR_EMUL;
327 else
328 hw_wr = OP_WR_ASIC;
329
330 if (is_e1)
331 data_base = init_data_e1;
332 else /* CHIP_IS_E1H(bp) */
333 data_base = init_data_e1h;
334
335 for (i = op_start; i < op_end; i++) {
336
337 op = (union init_op *)&(init_ops[i]);
338
339 op_type = op->str_wr.op;
340 addr = op->str_wr.offset;
341 len = op->str_wr.data_len;
342 data = data_base + op->str_wr.data_off;
343
344 /* careful! it must be in order */
345 if (unlikely(op_type > OP_WB)) {
346
347 /* If E1 only */
348 if (op_type <= OP_WB_E1) {
349 if (is_e1)
350 op_type -= (OP_RD_E1 - OP_RD);
351
352 /* If E1H only */
353 } else if (op_type <= OP_WB_E1H) {
354 if (is_e1h)
355 op_type -= (OP_RD_E1H - OP_RD);
356 }
357
358 /* HW/EMUL specific */
359 if (op_type == hw_wr)
360 op_type = OP_WR;
361
362 /* EMUL on E1H is special */
363 if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h)
364 op_type = OP_WR;
365 }
366
367 switch (op_type) {
368 case OP_RD:
369 REG_RD(bp, addr);
370 break;
371 case OP_WR:
372 REG_WR(bp, addr, op->write.val);
373 break;
374 case OP_SW:
375 bnx2x_init_str_wr(bp, addr, data, len);
376 break;
377 case OP_WB:
378 bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0);
379 break;
380 case OP_SI:
381 bnx2x_init_ind_wr(bp, addr, data, len);
382 break;
383 case OP_ZR:
384 bnx2x_init_fill(bp, addr, 0, op->zero.len);
385 break;
386 case OP_ZP:
387 bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1,
388 op->str_wr.data_off);
389 break;
390 case OP_WR_64:
391 bnx2x_init_wr_64(bp, addr, data, len);
392 break;
393 default:
394 /* happens whenever an op is of a diff HW */
395#if 0
396 DP(NETIF_MSG_HW, "skipping init operation "
397 "index %d[%d:%d]: type %d addr 0x%x "
398 "len %d(0x%x)\n",
399 i, op_start, op_end, op_type, addr, len, len);
400#endif
401 break;
402 }
403 }
404}
405
406
407/**************************************************************************** 161/****************************************************************************
408* PXP 162* PXP
409****************************************************************************/ 163****************************************************************************/
@@ -567,111 +321,6 @@ static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
567 PXP2_REG_RQ_BW_WR_UBOUND30} 321 PXP2_REG_RQ_BW_WR_UBOUND30}
568}; 322};
569 323
570static void bnx2x_init_pxp(struct bnx2x *bp)
571{
572 u16 devctl;
573 int r_order, w_order;
574 u32 val, i;
575
576 pci_read_config_word(bp->pdev,
577 bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
578 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
579 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
580 if (bp->mrrs == -1)
581 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
582 else {
583 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
584 r_order = bp->mrrs;
585 }
586
587 if (r_order > MAX_RD_ORD) {
588 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
589 r_order, MAX_RD_ORD);
590 r_order = MAX_RD_ORD;
591 }
592 if (w_order > MAX_WR_ORD) {
593 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
594 w_order, MAX_WR_ORD);
595 w_order = MAX_WR_ORD;
596 }
597 if (CHIP_REV_IS_FPGA(bp)) {
598 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
599 w_order = 0;
600 }
601 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
602
603 for (i = 0; i < NUM_RD_Q-1; i++) {
604 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
605 REG_WR(bp, read_arb_addr[i].add,
606 read_arb_data[i][r_order].add);
607 REG_WR(bp, read_arb_addr[i].ubound,
608 read_arb_data[i][r_order].ubound);
609 }
610
611 for (i = 0; i < NUM_WR_Q-1; i++) {
612 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
613 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
614
615 REG_WR(bp, write_arb_addr[i].l,
616 write_arb_data[i][w_order].l);
617
618 REG_WR(bp, write_arb_addr[i].add,
619 write_arb_data[i][w_order].add);
620
621 REG_WR(bp, write_arb_addr[i].ubound,
622 write_arb_data[i][w_order].ubound);
623 } else {
624
625 val = REG_RD(bp, write_arb_addr[i].l);
626 REG_WR(bp, write_arb_addr[i].l,
627 val | (write_arb_data[i][w_order].l << 10));
628
629 val = REG_RD(bp, write_arb_addr[i].add);
630 REG_WR(bp, write_arb_addr[i].add,
631 val | (write_arb_data[i][w_order].add << 10));
632
633 val = REG_RD(bp, write_arb_addr[i].ubound);
634 REG_WR(bp, write_arb_addr[i].ubound,
635 val | (write_arb_data[i][w_order].ubound << 7));
636 }
637 }
638
639 val = write_arb_data[NUM_WR_Q-1][w_order].add;
640 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
641 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
642 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
643
644 val = read_arb_data[NUM_RD_Q-1][r_order].add;
645 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
646 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
647 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
648
649 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
650 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
651 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
652 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
653
654 if (r_order == MAX_RD_ORD)
655 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
656
657 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
658
659 if (CHIP_IS_E1H(bp)) {
660 val = ((w_order == 0) ? 2 : 3);
661 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
662 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
663 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
664 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
665 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
666 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
667 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
668 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
669 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
670 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
671 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
672 }
673}
674
675 324
676/**************************************************************************** 325/****************************************************************************
677* CDU 326* CDU
@@ -695,128 +344,12 @@ static void bnx2x_init_pxp(struct bnx2x *bp)
695 (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7)) 344 (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
696#define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80) 345#define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
697 346
698/*****************************************************************************
699 * Description:
700 * Calculates crc 8 on a word value: polynomial 0-1-2-8
701 * Code was translated from Verilog.
702 ****************************************************************************/
703static u8 calc_crc8(u32 data, u8 crc)
704{
705 u8 D[32];
706 u8 NewCRC[8];
707 u8 C[8];
708 u8 crc_res;
709 u8 i;
710
711 /* split the data into 31 bits */
712 for (i = 0; i < 32; i++) {
713 D[i] = data & 1;
714 data = data >> 1;
715 }
716
717 /* split the crc into 8 bits */
718 for (i = 0; i < 8; i++) {
719 C[i] = crc & 1;
720 crc = crc >> 1;
721 }
722
723 NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
724 D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
725 C[6] ^ C[7];
726 NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
727 D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
728 D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
729 NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
730 D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
731 C[0] ^ C[1] ^ C[4] ^ C[5];
732 NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
733 D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
734 C[1] ^ C[2] ^ C[5] ^ C[6];
735 NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
736 D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
737 C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
738 NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
739 D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
740 C[3] ^ C[4] ^ C[7];
741 NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
742 D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
743 C[5];
744 NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
745 D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
746 C[6];
747
748 crc_res = 0;
749 for (i = 0; i < 8; i++)
750 crc_res |= (NewCRC[i] << i);
751
752 return crc_res;
753}
754 347
755/* registers addresses are not in order 348/* registers addresses are not in order
756 so these arrays help simplify the code */ 349 so these arrays help simplify the code */
757static const int cm_start[E1H_FUNC_MAX][9] = { 350static const int cm_blocks[9] = {
758 {MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START, 351 MISC_BLOCK, TCM_BLOCK, UCM_BLOCK, CCM_BLOCK, XCM_BLOCK,
759 XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START, 352 TSEM_BLOCK, USEM_BLOCK, CSEM_BLOCK, XSEM_BLOCK
760 XSEM_FUNC0_START},
761 {MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START,
762 XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START,
763 XSEM_FUNC1_START},
764 {MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START,
765 XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START,
766 XSEM_FUNC2_START},
767 {MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START,
768 XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START,
769 XSEM_FUNC3_START},
770 {MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START,
771 XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START,
772 XSEM_FUNC4_START},
773 {MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START,
774 XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START,
775 XSEM_FUNC5_START},
776 {MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START,
777 XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START,
778 XSEM_FUNC6_START},
779 {MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START,
780 XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START,
781 XSEM_FUNC7_START}
782};
783
784static const int cm_end[E1H_FUNC_MAX][9] = {
785 {MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END,
786 XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END,
787 XSEM_FUNC0_END},
788 {MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END,
789 XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END,
790 XSEM_FUNC1_END},
791 {MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END,
792 XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END,
793 XSEM_FUNC2_END},
794 {MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END,
795 XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END,
796 XSEM_FUNC3_END},
797 {MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END,
798 XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END,
799 XSEM_FUNC4_END},
800 {MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END,
801 XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END,
802 XSEM_FUNC5_END},
803 {MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END,
804 XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END,
805 XSEM_FUNC6_END},
806 {MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END,
807 XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END,
808 XSEM_FUNC7_END},
809};
810
811static const int hc_limits[E1H_FUNC_MAX][2] = {
812 {HC_FUNC0_START, HC_FUNC0_END},
813 {HC_FUNC1_START, HC_FUNC1_END},
814 {HC_FUNC2_START, HC_FUNC2_END},
815 {HC_FUNC3_START, HC_FUNC3_END},
816 {HC_FUNC4_START, HC_FUNC4_END},
817 {HC_FUNC5_START, HC_FUNC5_END},
818 {HC_FUNC6_START, HC_FUNC6_END},
819 {HC_FUNC7_START, HC_FUNC7_END}
820}; 353};
821 354
822#endif /* BNX2X_INIT_H */ 355#endif /* BNX2X_INIT_H */