aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/atlx/atl1.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/atlx/atl1.c')
-rw-r--r--drivers/net/atlx/atl1.c3417
1 files changed, 3417 insertions, 0 deletions
diff --git a/drivers/net/atlx/atl1.c b/drivers/net/atlx/atl1.c
new file mode 100644
index 000000000000..a84c97c75c75
--- /dev/null
+++ b/drivers/net/atlx/atl1.c
@@ -0,0 +1,3417 @@
1/*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 Jay Cliburn <jcliburn@gmail.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 *
26 * Contact Information:
27 * Xiong Huang <xiong_huang@attansic.com>
28 * Attansic Technology Corp. 3F 147, Xianzheng 9th Road, Zhubei,
29 * Xinzhu 302, TAIWAN, REPUBLIC OF CHINA
30 *
31 * Chris Snook <csnook@redhat.com>
32 * Jay Cliburn <jcliburn@gmail.com>
33 *
34 * This version is adapted from the Attansic reference driver for
35 * inclusion in the Linux kernel. It is currently under heavy development.
36 * A very incomplete list of things that need to be dealt with:
37 *
38 * TODO:
39 * Fix TSO; tx performance is horrible with TSO enabled.
40 * Wake on LAN.
41 * Add more ethtool functions.
42 * Fix abstruse irq enable/disable condition described here:
43 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
44 *
45 * NEEDS TESTING:
46 * VLAN
47 * multicast
48 * promiscuous mode
49 * interrupt coalescing
50 * SMP torture testing
51 */
52
53#include <asm/atomic.h>
54#include <asm/byteorder.h>
55
56#include <linux/compiler.h>
57#include <linux/crc32.h>
58#include <linux/delay.h>
59#include <linux/dma-mapping.h>
60#include <linux/etherdevice.h>
61#include <linux/hardirq.h>
62#include <linux/if_ether.h>
63#include <linux/if_vlan.h>
64#include <linux/in.h>
65#include <linux/interrupt.h>
66#include <linux/ip.h>
67#include <linux/irqflags.h>
68#include <linux/irqreturn.h>
69#include <linux/jiffies.h>
70#include <linux/mii.h>
71#include <linux/module.h>
72#include <linux/moduleparam.h>
73#include <linux/net.h>
74#include <linux/netdevice.h>
75#include <linux/pci.h>
76#include <linux/pci_ids.h>
77#include <linux/pm.h>
78#include <linux/skbuff.h>
79#include <linux/slab.h>
80#include <linux/spinlock.h>
81#include <linux/string.h>
82#include <linux/tcp.h>
83#include <linux/timer.h>
84#include <linux/types.h>
85#include <linux/workqueue.h>
86
87#include <net/checksum.h>
88
89#include "atl1.h"
90
91/* Temporary hack for merging atl1 and atl2 */
92#include "atlx.c"
93
94/*
95 * atl1_pci_tbl - PCI Device ID Table
96 */
97static const struct pci_device_id atl1_pci_tbl[] = {
98 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
99 /* required last entry */
100 {0,}
101};
102MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
103
104/*
105 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
106 * @adapter: board private structure to initialize
107 *
108 * atl1_sw_init initializes the Adapter private data structure.
109 * Fields are initialized based on PCI device information and
110 * OS network device settings (MTU size).
111 */
112static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
113{
114 struct atl1_hw *hw = &adapter->hw;
115 struct net_device *netdev = adapter->netdev;
116
117 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
118 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
119
120 adapter->wol = 0;
121 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
122 adapter->ict = 50000; /* 100ms */
123 adapter->link_speed = SPEED_0; /* hardware init */
124 adapter->link_duplex = FULL_DUPLEX;
125
126 hw->phy_configured = false;
127 hw->preamble_len = 7;
128 hw->ipgt = 0x60;
129 hw->min_ifg = 0x50;
130 hw->ipgr1 = 0x40;
131 hw->ipgr2 = 0x60;
132 hw->max_retry = 0xf;
133 hw->lcol = 0x37;
134 hw->jam_ipg = 7;
135 hw->rfd_burst = 8;
136 hw->rrd_burst = 8;
137 hw->rfd_fetch_gap = 1;
138 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
139 hw->rx_jumbo_lkah = 1;
140 hw->rrd_ret_timer = 16;
141 hw->tpd_burst = 4;
142 hw->tpd_fetch_th = 16;
143 hw->txf_burst = 0x100;
144 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
145 hw->tpd_fetch_gap = 1;
146 hw->rcb_value = atl1_rcb_64;
147 hw->dma_ord = atl1_dma_ord_enh;
148 hw->dmar_block = atl1_dma_req_256;
149 hw->dmaw_block = atl1_dma_req_256;
150 hw->cmb_rrd = 4;
151 hw->cmb_tpd = 4;
152 hw->cmb_rx_timer = 1; /* about 2us */
153 hw->cmb_tx_timer = 1; /* about 2us */
154 hw->smb_timer = 100000; /* about 200ms */
155
156 spin_lock_init(&adapter->lock);
157 spin_lock_init(&adapter->mb_lock);
158
159 return 0;
160}
161
162static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
163{
164 struct atl1_adapter *adapter = netdev_priv(netdev);
165 u16 result;
166
167 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
168
169 return result;
170}
171
172static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
173 int val)
174{
175 struct atl1_adapter *adapter = netdev_priv(netdev);
176
177 atl1_write_phy_reg(&adapter->hw, reg_num, val);
178}
179
180/*
181 * atl1_mii_ioctl -
182 * @netdev:
183 * @ifreq:
184 * @cmd:
185 */
186static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
187{
188 struct atl1_adapter *adapter = netdev_priv(netdev);
189 unsigned long flags;
190 int retval;
191
192 if (!netif_running(netdev))
193 return -EINVAL;
194
195 spin_lock_irqsave(&adapter->lock, flags);
196 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
197 spin_unlock_irqrestore(&adapter->lock, flags);
198
199 return retval;
200}
201
202/*
203 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
204 * @adapter: board private structure
205 *
206 * Return 0 on success, negative on failure
207 */
208s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
209{
210 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
211 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
212 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
213 struct atl1_ring_header *ring_header = &adapter->ring_header;
214 struct pci_dev *pdev = adapter->pdev;
215 int size;
216 u8 offset = 0;
217
218 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
219 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
220 if (unlikely(!tpd_ring->buffer_info)) {
221 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n", size);
222 goto err_nomem;
223 }
224 rfd_ring->buffer_info =
225 (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
226
227 /*
228 * real ring DMA buffer
229 * each ring/block may need up to 8 bytes for alignment, hence the
230 * additional 40 bytes tacked onto the end.
231 */
232 ring_header->size = size =
233 sizeof(struct tx_packet_desc) * tpd_ring->count
234 + sizeof(struct rx_free_desc) * rfd_ring->count
235 + sizeof(struct rx_return_desc) * rrd_ring->count
236 + sizeof(struct coals_msg_block)
237 + sizeof(struct stats_msg_block)
238 + 40;
239
240 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
241 &ring_header->dma);
242 if (unlikely(!ring_header->desc)) {
243 dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
244 goto err_nomem;
245 }
246
247 memset(ring_header->desc, 0, ring_header->size);
248
249 /* init TPD ring */
250 tpd_ring->dma = ring_header->dma;
251 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
252 tpd_ring->dma += offset;
253 tpd_ring->desc = (u8 *) ring_header->desc + offset;
254 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
255
256 /* init RFD ring */
257 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
258 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
259 rfd_ring->dma += offset;
260 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
261 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
262
263
264 /* init RRD ring */
265 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
266 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
267 rrd_ring->dma += offset;
268 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
269 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
270
271
272 /* init CMB */
273 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
274 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
275 adapter->cmb.dma += offset;
276 adapter->cmb.cmb = (struct coals_msg_block *)
277 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
278
279 /* init SMB */
280 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
281 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
282 adapter->smb.dma += offset;
283 adapter->smb.smb = (struct stats_msg_block *)
284 ((u8 *) adapter->cmb.cmb +
285 (sizeof(struct coals_msg_block) + offset));
286
287 return 0;
288
289err_nomem:
290 kfree(tpd_ring->buffer_info);
291 return -ENOMEM;
292}
293
294static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
295{
296 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
297 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
298 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
299
300 atomic_set(&tpd_ring->next_to_use, 0);
301 atomic_set(&tpd_ring->next_to_clean, 0);
302
303 rfd_ring->next_to_clean = 0;
304 atomic_set(&rfd_ring->next_to_use, 0);
305
306 rrd_ring->next_to_use = 0;
307 atomic_set(&rrd_ring->next_to_clean, 0);
308}
309
310/*
311 * atl1_clean_rx_ring - Free RFD Buffers
312 * @adapter: board private structure
313 */
314static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
315{
316 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
317 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
318 struct atl1_buffer *buffer_info;
319 struct pci_dev *pdev = adapter->pdev;
320 unsigned long size;
321 unsigned int i;
322
323 /* Free all the Rx ring sk_buffs */
324 for (i = 0; i < rfd_ring->count; i++) {
325 buffer_info = &rfd_ring->buffer_info[i];
326 if (buffer_info->dma) {
327 pci_unmap_page(pdev, buffer_info->dma,
328 buffer_info->length, PCI_DMA_FROMDEVICE);
329 buffer_info->dma = 0;
330 }
331 if (buffer_info->skb) {
332 dev_kfree_skb(buffer_info->skb);
333 buffer_info->skb = NULL;
334 }
335 }
336
337 size = sizeof(struct atl1_buffer) * rfd_ring->count;
338 memset(rfd_ring->buffer_info, 0, size);
339
340 /* Zero out the descriptor ring */
341 memset(rfd_ring->desc, 0, rfd_ring->size);
342
343 rfd_ring->next_to_clean = 0;
344 atomic_set(&rfd_ring->next_to_use, 0);
345
346 rrd_ring->next_to_use = 0;
347 atomic_set(&rrd_ring->next_to_clean, 0);
348}
349
350/*
351 * atl1_clean_tx_ring - Free Tx Buffers
352 * @adapter: board private structure
353 */
354static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
355{
356 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
357 struct atl1_buffer *buffer_info;
358 struct pci_dev *pdev = adapter->pdev;
359 unsigned long size;
360 unsigned int i;
361
362 /* Free all the Tx ring sk_buffs */
363 for (i = 0; i < tpd_ring->count; i++) {
364 buffer_info = &tpd_ring->buffer_info[i];
365 if (buffer_info->dma) {
366 pci_unmap_page(pdev, buffer_info->dma,
367 buffer_info->length, PCI_DMA_TODEVICE);
368 buffer_info->dma = 0;
369 }
370 }
371
372 for (i = 0; i < tpd_ring->count; i++) {
373 buffer_info = &tpd_ring->buffer_info[i];
374 if (buffer_info->skb) {
375 dev_kfree_skb_any(buffer_info->skb);
376 buffer_info->skb = NULL;
377 }
378 }
379
380 size = sizeof(struct atl1_buffer) * tpd_ring->count;
381 memset(tpd_ring->buffer_info, 0, size);
382
383 /* Zero out the descriptor ring */
384 memset(tpd_ring->desc, 0, tpd_ring->size);
385
386 atomic_set(&tpd_ring->next_to_use, 0);
387 atomic_set(&tpd_ring->next_to_clean, 0);
388}
389
390/*
391 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
392 * @adapter: board private structure
393 *
394 * Free all transmit software resources
395 */
396void atl1_free_ring_resources(struct atl1_adapter *adapter)
397{
398 struct pci_dev *pdev = adapter->pdev;
399 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
400 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
401 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
402 struct atl1_ring_header *ring_header = &adapter->ring_header;
403
404 atl1_clean_tx_ring(adapter);
405 atl1_clean_rx_ring(adapter);
406
407 kfree(tpd_ring->buffer_info);
408 pci_free_consistent(pdev, ring_header->size, ring_header->desc,
409 ring_header->dma);
410
411 tpd_ring->buffer_info = NULL;
412 tpd_ring->desc = NULL;
413 tpd_ring->dma = 0;
414
415 rfd_ring->buffer_info = NULL;
416 rfd_ring->desc = NULL;
417 rfd_ring->dma = 0;
418
419 rrd_ring->desc = NULL;
420 rrd_ring->dma = 0;
421}
422
423static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
424{
425 u32 value;
426 struct atl1_hw *hw = &adapter->hw;
427 struct net_device *netdev = adapter->netdev;
428 /* Config MAC CTRL Register */
429 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
430 /* duplex */
431 if (FULL_DUPLEX == adapter->link_duplex)
432 value |= MAC_CTRL_DUPLX;
433 /* speed */
434 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
435 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
436 MAC_CTRL_SPEED_SHIFT);
437 /* flow control */
438 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
439 /* PAD & CRC */
440 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
441 /* preamble length */
442 value |= (((u32) adapter->hw.preamble_len
443 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
444 /* vlan */
445 if (adapter->vlgrp)
446 value |= MAC_CTRL_RMV_VLAN;
447 /* rx checksum
448 if (adapter->rx_csum)
449 value |= MAC_CTRL_RX_CHKSUM_EN;
450 */
451 /* filter mode */
452 value |= MAC_CTRL_BC_EN;
453 if (netdev->flags & IFF_PROMISC)
454 value |= MAC_CTRL_PROMIS_EN;
455 else if (netdev->flags & IFF_ALLMULTI)
456 value |= MAC_CTRL_MC_ALL_EN;
457 /* value |= MAC_CTRL_LOOPBACK; */
458 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
459}
460
461static u32 atl1_check_link(struct atl1_adapter *adapter)
462{
463 struct atl1_hw *hw = &adapter->hw;
464 struct net_device *netdev = adapter->netdev;
465 u32 ret_val;
466 u16 speed, duplex, phy_data;
467 int reconfig = 0;
468
469 /* MII_BMSR must read twice */
470 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
471 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
472 if (!(phy_data & BMSR_LSTATUS)) {
473 /* link down */
474 if (netif_carrier_ok(netdev)) {
475 /* old link state: Up */
476 dev_info(&adapter->pdev->dev, "link is down\n");
477 adapter->link_speed = SPEED_0;
478 netif_carrier_off(netdev);
479 netif_stop_queue(netdev);
480 }
481 return 0;
482 }
483
484 /* Link Up */
485 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
486 if (ret_val)
487 return ret_val;
488
489 switch (hw->media_type) {
490 case MEDIA_TYPE_1000M_FULL:
491 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
492 reconfig = 1;
493 break;
494 case MEDIA_TYPE_100M_FULL:
495 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
496 reconfig = 1;
497 break;
498 case MEDIA_TYPE_100M_HALF:
499 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
500 reconfig = 1;
501 break;
502 case MEDIA_TYPE_10M_FULL:
503 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
504 reconfig = 1;
505 break;
506 case MEDIA_TYPE_10M_HALF:
507 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
508 reconfig = 1;
509 break;
510 }
511
512 /* link result is our setting */
513 if (!reconfig) {
514 if (adapter->link_speed != speed
515 || adapter->link_duplex != duplex) {
516 adapter->link_speed = speed;
517 adapter->link_duplex = duplex;
518 atl1_setup_mac_ctrl(adapter);
519 dev_info(&adapter->pdev->dev,
520 "%s link is up %d Mbps %s\n",
521 netdev->name, adapter->link_speed,
522 adapter->link_duplex == FULL_DUPLEX ?
523 "full duplex" : "half duplex");
524 }
525 if (!netif_carrier_ok(netdev)) {
526 /* Link down -> Up */
527 netif_carrier_on(netdev);
528 netif_wake_queue(netdev);
529 }
530 return 0;
531 }
532
533 /* change original link status */
534 if (netif_carrier_ok(netdev)) {
535 adapter->link_speed = SPEED_0;
536 netif_carrier_off(netdev);
537 netif_stop_queue(netdev);
538 }
539
540 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
541 hw->media_type != MEDIA_TYPE_1000M_FULL) {
542 switch (hw->media_type) {
543 case MEDIA_TYPE_100M_FULL:
544 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
545 MII_CR_RESET;
546 break;
547 case MEDIA_TYPE_100M_HALF:
548 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
549 break;
550 case MEDIA_TYPE_10M_FULL:
551 phy_data =
552 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
553 break;
554 default:
555 /* MEDIA_TYPE_10M_HALF: */
556 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
557 break;
558 }
559 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
560 return 0;
561 }
562
563 /* auto-neg, insert timer to re-config phy */
564 if (!adapter->phy_timer_pending) {
565 adapter->phy_timer_pending = true;
566 mod_timer(&adapter->phy_config_timer, jiffies + 3 * HZ);
567 }
568
569 return 0;
570}
571
572/*
573 * atl1_change_mtu - Change the Maximum Transfer Unit
574 * @netdev: network interface device structure
575 * @new_mtu: new value for maximum frame size
576 *
577 * Returns 0 on success, negative on failure
578 */
579static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
580{
581 struct atl1_adapter *adapter = netdev_priv(netdev);
582 int old_mtu = netdev->mtu;
583 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
584
585 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
586 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
587 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
588 return -EINVAL;
589 }
590
591 adapter->hw.max_frame_size = max_frame;
592 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
593 adapter->rx_buffer_len = (max_frame + 7) & ~7;
594 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
595
596 netdev->mtu = new_mtu;
597 if ((old_mtu != new_mtu) && netif_running(netdev)) {
598 atl1_down(adapter);
599 atl1_up(adapter);
600 }
601
602 return 0;
603}
604
605static void set_flow_ctrl_old(struct atl1_adapter *adapter)
606{
607 u32 hi, lo, value;
608
609 /* RFD Flow Control */
610 value = adapter->rfd_ring.count;
611 hi = value / 16;
612 if (hi < 2)
613 hi = 2;
614 lo = value * 7 / 8;
615
616 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
617 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
618 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
619
620 /* RRD Flow Control */
621 value = adapter->rrd_ring.count;
622 lo = value / 16;
623 hi = value * 7 / 8;
624 if (lo < 2)
625 lo = 2;
626 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
627 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
628 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
629}
630
631static void set_flow_ctrl_new(struct atl1_hw *hw)
632{
633 u32 hi, lo, value;
634
635 /* RXF Flow Control */
636 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
637 lo = value / 16;
638 if (lo < 192)
639 lo = 192;
640 hi = value * 7 / 8;
641 if (hi < lo)
642 hi = lo + 16;
643 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
644 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
645 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
646
647 /* RRD Flow Control */
648 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
649 lo = value / 8;
650 hi = value * 7 / 8;
651 if (lo < 2)
652 lo = 2;
653 if (hi < lo)
654 hi = lo + 3;
655 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
656 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
657 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
658}
659
660/*
661 * atl1_configure - Configure Transmit&Receive Unit after Reset
662 * @adapter: board private structure
663 *
664 * Configure the Tx /Rx unit of the MAC after a reset.
665 */
666static u32 atl1_configure(struct atl1_adapter *adapter)
667{
668 struct atl1_hw *hw = &adapter->hw;
669 u32 value;
670
671 /* clear interrupt status */
672 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
673
674 /* set MAC Address */
675 value = (((u32) hw->mac_addr[2]) << 24) |
676 (((u32) hw->mac_addr[3]) << 16) |
677 (((u32) hw->mac_addr[4]) << 8) |
678 (((u32) hw->mac_addr[5]));
679 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
680 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
681 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
682
683 /* tx / rx ring */
684
685 /* HI base address */
686 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
687 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
688 /* LO base address */
689 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
690 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
691 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
692 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
693 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
694 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
695 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
696 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
697 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
698 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
699
700 /* element count */
701 value = adapter->rrd_ring.count;
702 value <<= 16;
703 value += adapter->rfd_ring.count;
704 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
705 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
706 REG_DESC_TPD_RING_SIZE);
707
708 /* Load Ptr */
709 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
710
711 /* config Mailbox */
712 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
713 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
714 ((atomic_read(&adapter->rrd_ring.next_to_clean)
715 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
716 ((atomic_read(&adapter->rfd_ring.next_to_use)
717 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
718 iowrite32(value, hw->hw_addr + REG_MAILBOX);
719
720 /* config IPG/IFG */
721 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
722 << MAC_IPG_IFG_IPGT_SHIFT) |
723 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
724 << MAC_IPG_IFG_MIFG_SHIFT) |
725 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
726 << MAC_IPG_IFG_IPGR1_SHIFT) |
727 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
728 << MAC_IPG_IFG_IPGR2_SHIFT);
729 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
730
731 /* config Half-Duplex Control */
732 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
733 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
734 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
735 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
736 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
737 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
738 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
739 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
740
741 /* set Interrupt Moderator Timer */
742 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
743 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
744
745 /* set Interrupt Clear Timer */
746 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
747
748 /* set max frame size hw will accept */
749 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
750
751 /* jumbo size & rrd retirement timer */
752 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
753 << RXQ_JMBOSZ_TH_SHIFT) |
754 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
755 << RXQ_JMBO_LKAH_SHIFT) |
756 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
757 << RXQ_RRD_TIMER_SHIFT);
758 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
759
760 /* Flow Control */
761 switch (hw->dev_rev) {
762 case 0x8001:
763 case 0x9001:
764 case 0x9002:
765 case 0x9003:
766 set_flow_ctrl_old(adapter);
767 break;
768 default:
769 set_flow_ctrl_new(hw);
770 break;
771 }
772
773 /* config TXQ */
774 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
775 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
776 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
777 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
778 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
779 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
780 TXQ_CTRL_EN;
781 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
782
783 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
784 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
785 << TX_JUMBO_TASK_TH_SHIFT) |
786 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
787 << TX_TPD_MIN_IPG_SHIFT);
788 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
789
790 /* config RXQ */
791 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
792 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
793 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
794 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
795 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
796 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
797 RXQ_CTRL_EN;
798 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
799
800 /* config DMA Engine */
801 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
802 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
803 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
804 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
805 DMA_CTRL_DMAW_EN;
806 value |= (u32) hw->dma_ord;
807 if (atl1_rcb_128 == hw->rcb_value)
808 value |= DMA_CTRL_RCB_VALUE;
809 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
810
811 /* config CMB / SMB */
812 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
813 hw->cmb_tpd : adapter->tpd_ring.count;
814 value <<= 16;
815 value |= hw->cmb_rrd;
816 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
817 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
818 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
819 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
820
821 /* --- enable CMB / SMB */
822 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
823 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
824
825 value = ioread32(adapter->hw.hw_addr + REG_ISR);
826 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
827 value = 1; /* config failed */
828 else
829 value = 0;
830
831 /* clear all interrupt status */
832 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
833 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
834 return value;
835}
836
837/*
838 * atl1_pcie_patch - Patch for PCIE module
839 */
840static void atl1_pcie_patch(struct atl1_adapter *adapter)
841{
842 u32 value;
843
844 /* much vendor magic here */
845 value = 0x6500;
846 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
847 /* pcie flow control mode change */
848 value = ioread32(adapter->hw.hw_addr + 0x1008);
849 value |= 0x8000;
850 iowrite32(value, adapter->hw.hw_addr + 0x1008);
851}
852
853/*
854 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
855 * on PCI Command register is disable.
856 * The function enable this bit.
857 * Brackett, 2006/03/15
858 */
859static void atl1_via_workaround(struct atl1_adapter *adapter)
860{
861 unsigned long value;
862
863 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
864 if (value & PCI_COMMAND_INTX_DISABLE)
865 value &= ~PCI_COMMAND_INTX_DISABLE;
866 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
867}
868
869static void atl1_inc_smb(struct atl1_adapter *adapter)
870{
871 struct stats_msg_block *smb = adapter->smb.smb;
872
873 /* Fill out the OS statistics structure */
874 adapter->soft_stats.rx_packets += smb->rx_ok;
875 adapter->soft_stats.tx_packets += smb->tx_ok;
876 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
877 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
878 adapter->soft_stats.multicast += smb->rx_mcast;
879 adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
880 smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
881
882 /* Rx Errors */
883 adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
884 smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
885 smb->rx_rrd_ov + smb->rx_align_err);
886 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
887 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
888 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
889 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
890 adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
891 smb->rx_rxf_ov);
892
893 adapter->soft_stats.rx_pause += smb->rx_pause;
894 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
895 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
896
897 /* Tx Errors */
898 adapter->soft_stats.tx_errors += (smb->tx_late_col +
899 smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
900 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
901 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
902 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
903
904 adapter->soft_stats.excecol += smb->tx_abort_col;
905 adapter->soft_stats.deffer += smb->tx_defer;
906 adapter->soft_stats.scc += smb->tx_1_col;
907 adapter->soft_stats.mcc += smb->tx_2_col;
908 adapter->soft_stats.latecol += smb->tx_late_col;
909 adapter->soft_stats.tx_underun += smb->tx_underrun;
910 adapter->soft_stats.tx_trunc += smb->tx_trunc;
911 adapter->soft_stats.tx_pause += smb->tx_pause;
912
913 adapter->net_stats.rx_packets = adapter->soft_stats.rx_packets;
914 adapter->net_stats.tx_packets = adapter->soft_stats.tx_packets;
915 adapter->net_stats.rx_bytes = adapter->soft_stats.rx_bytes;
916 adapter->net_stats.tx_bytes = adapter->soft_stats.tx_bytes;
917 adapter->net_stats.multicast = adapter->soft_stats.multicast;
918 adapter->net_stats.collisions = adapter->soft_stats.collisions;
919 adapter->net_stats.rx_errors = adapter->soft_stats.rx_errors;
920 adapter->net_stats.rx_over_errors =
921 adapter->soft_stats.rx_missed_errors;
922 adapter->net_stats.rx_length_errors =
923 adapter->soft_stats.rx_length_errors;
924 adapter->net_stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
925 adapter->net_stats.rx_frame_errors =
926 adapter->soft_stats.rx_frame_errors;
927 adapter->net_stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
928 adapter->net_stats.rx_missed_errors =
929 adapter->soft_stats.rx_missed_errors;
930 adapter->net_stats.tx_errors = adapter->soft_stats.tx_errors;
931 adapter->net_stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
932 adapter->net_stats.tx_aborted_errors =
933 adapter->soft_stats.tx_aborted_errors;
934 adapter->net_stats.tx_window_errors =
935 adapter->soft_stats.tx_window_errors;
936 adapter->net_stats.tx_carrier_errors =
937 adapter->soft_stats.tx_carrier_errors;
938}
939
940static void atl1_update_mailbox(struct atl1_adapter *adapter)
941{
942 unsigned long flags;
943 u32 tpd_next_to_use;
944 u32 rfd_next_to_use;
945 u32 rrd_next_to_clean;
946 u32 value;
947
948 spin_lock_irqsave(&adapter->mb_lock, flags);
949
950 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
951 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
952 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
953
954 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
955 MB_RFD_PROD_INDX_SHIFT) |
956 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
957 MB_RRD_CONS_INDX_SHIFT) |
958 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
959 MB_TPD_PROD_INDX_SHIFT);
960 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
961
962 spin_unlock_irqrestore(&adapter->mb_lock, flags);
963}
964
965static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
966 struct rx_return_desc *rrd, u16 offset)
967{
968 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
969
970 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
971 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
972 if (++rfd_ring->next_to_clean == rfd_ring->count) {
973 rfd_ring->next_to_clean = 0;
974 }
975 }
976}
977
978static void atl1_update_rfd_index(struct atl1_adapter *adapter,
979 struct rx_return_desc *rrd)
980{
981 u16 num_buf;
982
983 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
984 adapter->rx_buffer_len;
985 if (rrd->num_buf == num_buf)
986 /* clean alloc flag for bad rrd */
987 atl1_clean_alloc_flag(adapter, rrd, num_buf);
988}
989
990static void atl1_rx_checksum(struct atl1_adapter *adapter,
991 struct rx_return_desc *rrd, struct sk_buff *skb)
992{
993 struct pci_dev *pdev = adapter->pdev;
994
995 skb->ip_summed = CHECKSUM_NONE;
996
997 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
998 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
999 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1000 adapter->hw_csum_err++;
1001 dev_printk(KERN_DEBUG, &pdev->dev,
1002 "rx checksum error\n");
1003 return;
1004 }
1005 }
1006
1007 /* not IPv4 */
1008 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1009 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1010 return;
1011
1012 /* IPv4 packet */
1013 if (likely(!(rrd->err_flg &
1014 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1015 skb->ip_summed = CHECKSUM_UNNECESSARY;
1016 adapter->hw_csum_good++;
1017 return;
1018 }
1019
1020 /* IPv4, but hardware thinks its checksum is wrong */
1021 dev_printk(KERN_DEBUG, &pdev->dev,
1022 "hw csum wrong, pkt_flag:%x, err_flag:%x\n",
1023 rrd->pkt_flg, rrd->err_flg);
1024 skb->ip_summed = CHECKSUM_COMPLETE;
1025 skb->csum = htons(rrd->xsz.xsum_sz.rx_chksum);
1026 adapter->hw_csum_err++;
1027 return;
1028}
1029
1030/*
1031 * atl1_alloc_rx_buffers - Replace used receive buffers
1032 * @adapter: address of board private structure
1033 */
1034static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1035{
1036 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1037 struct pci_dev *pdev = adapter->pdev;
1038 struct page *page;
1039 unsigned long offset;
1040 struct atl1_buffer *buffer_info, *next_info;
1041 struct sk_buff *skb;
1042 u16 num_alloc = 0;
1043 u16 rfd_next_to_use, next_next;
1044 struct rx_free_desc *rfd_desc;
1045
1046 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1047 if (++next_next == rfd_ring->count)
1048 next_next = 0;
1049 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1050 next_info = &rfd_ring->buffer_info[next_next];
1051
1052 while (!buffer_info->alloced && !next_info->alloced) {
1053 if (buffer_info->skb) {
1054 buffer_info->alloced = 1;
1055 goto next;
1056 }
1057
1058 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1059
1060 skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN);
1061 if (unlikely(!skb)) {
1062 /* Better luck next round */
1063 adapter->net_stats.rx_dropped++;
1064 break;
1065 }
1066
1067 /*
1068 * Make buffer alignment 2 beyond a 16 byte boundary
1069 * this will result in a 16 byte aligned IP header after
1070 * the 14 byte MAC header is removed
1071 */
1072 skb_reserve(skb, NET_IP_ALIGN);
1073
1074 buffer_info->alloced = 1;
1075 buffer_info->skb = skb;
1076 buffer_info->length = (u16) adapter->rx_buffer_len;
1077 page = virt_to_page(skb->data);
1078 offset = (unsigned long)skb->data & ~PAGE_MASK;
1079 buffer_info->dma = pci_map_page(pdev, page, offset,
1080 adapter->rx_buffer_len,
1081 PCI_DMA_FROMDEVICE);
1082 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1083 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1084 rfd_desc->coalese = 0;
1085
1086next:
1087 rfd_next_to_use = next_next;
1088 if (unlikely(++next_next == rfd_ring->count))
1089 next_next = 0;
1090
1091 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1092 next_info = &rfd_ring->buffer_info[next_next];
1093 num_alloc++;
1094 }
1095
1096 if (num_alloc) {
1097 /*
1098 * Force memory writes to complete before letting h/w
1099 * know there are new descriptors to fetch. (Only
1100 * applicable for weak-ordered memory model archs,
1101 * such as IA-64).
1102 */
1103 wmb();
1104 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1105 }
1106 return num_alloc;
1107}
1108
1109static void atl1_intr_rx(struct atl1_adapter *adapter)
1110{
1111 int i, count;
1112 u16 length;
1113 u16 rrd_next_to_clean;
1114 u32 value;
1115 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1116 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1117 struct atl1_buffer *buffer_info;
1118 struct rx_return_desc *rrd;
1119 struct sk_buff *skb;
1120
1121 count = 0;
1122
1123 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1124
1125 while (1) {
1126 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1127 i = 1;
1128 if (likely(rrd->xsz.valid)) { /* packet valid */
1129chk_rrd:
1130 /* check rrd status */
1131 if (likely(rrd->num_buf == 1))
1132 goto rrd_ok;
1133
1134 /* rrd seems to be bad */
1135 if (unlikely(i-- > 0)) {
1136 /* rrd may not be DMAed completely */
1137 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1138 "incomplete RRD DMA transfer\n");
1139 udelay(1);
1140 goto chk_rrd;
1141 }
1142 /* bad rrd */
1143 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1144 "bad RRD\n");
1145 /* see if update RFD index */
1146 if (rrd->num_buf > 1)
1147 atl1_update_rfd_index(adapter, rrd);
1148
1149 /* update rrd */
1150 rrd->xsz.valid = 0;
1151 if (++rrd_next_to_clean == rrd_ring->count)
1152 rrd_next_to_clean = 0;
1153 count++;
1154 continue;
1155 } else { /* current rrd still not be updated */
1156
1157 break;
1158 }
1159rrd_ok:
1160 /* clean alloc flag for bad rrd */
1161 atl1_clean_alloc_flag(adapter, rrd, 0);
1162
1163 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1164 if (++rfd_ring->next_to_clean == rfd_ring->count)
1165 rfd_ring->next_to_clean = 0;
1166
1167 /* update rrd next to clean */
1168 if (++rrd_next_to_clean == rrd_ring->count)
1169 rrd_next_to_clean = 0;
1170 count++;
1171
1172 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1173 if (!(rrd->err_flg &
1174 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
1175 | ERR_FLAG_LEN))) {
1176 /* packet error, don't need upstream */
1177 buffer_info->alloced = 0;
1178 rrd->xsz.valid = 0;
1179 continue;
1180 }
1181 }
1182
1183 /* Good Receive */
1184 pci_unmap_page(adapter->pdev, buffer_info->dma,
1185 buffer_info->length, PCI_DMA_FROMDEVICE);
1186 skb = buffer_info->skb;
1187 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
1188
1189 skb_put(skb, length - ETH_FCS_LEN);
1190
1191 /* Receive Checksum Offload */
1192 atl1_rx_checksum(adapter, rrd, skb);
1193 skb->protocol = eth_type_trans(skb, adapter->netdev);
1194
1195 if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
1196 u16 vlan_tag = (rrd->vlan_tag >> 4) |
1197 ((rrd->vlan_tag & 7) << 13) |
1198 ((rrd->vlan_tag & 8) << 9);
1199 vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
1200 } else
1201 netif_rx(skb);
1202
1203 /* let protocol layer free skb */
1204 buffer_info->skb = NULL;
1205 buffer_info->alloced = 0;
1206 rrd->xsz.valid = 0;
1207
1208 adapter->netdev->last_rx = jiffies;
1209 }
1210
1211 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
1212
1213 atl1_alloc_rx_buffers(adapter);
1214
1215 /* update mailbox ? */
1216 if (count) {
1217 u32 tpd_next_to_use;
1218 u32 rfd_next_to_use;
1219
1220 spin_lock(&adapter->mb_lock);
1221
1222 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1223 rfd_next_to_use =
1224 atomic_read(&adapter->rfd_ring.next_to_use);
1225 rrd_next_to_clean =
1226 atomic_read(&adapter->rrd_ring.next_to_clean);
1227 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1228 MB_RFD_PROD_INDX_SHIFT) |
1229 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1230 MB_RRD_CONS_INDX_SHIFT) |
1231 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1232 MB_TPD_PROD_INDX_SHIFT);
1233 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1234 spin_unlock(&adapter->mb_lock);
1235 }
1236}
1237
1238static void atl1_intr_tx(struct atl1_adapter *adapter)
1239{
1240 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1241 struct atl1_buffer *buffer_info;
1242 u16 sw_tpd_next_to_clean;
1243 u16 cmb_tpd_next_to_clean;
1244
1245 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
1246 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
1247
1248 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
1249 struct tx_packet_desc *tpd;
1250
1251 tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
1252 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
1253 if (buffer_info->dma) {
1254 pci_unmap_page(adapter->pdev, buffer_info->dma,
1255 buffer_info->length, PCI_DMA_TODEVICE);
1256 buffer_info->dma = 0;
1257 }
1258
1259 if (buffer_info->skb) {
1260 dev_kfree_skb_irq(buffer_info->skb);
1261 buffer_info->skb = NULL;
1262 }
1263 tpd->buffer_addr = 0;
1264 tpd->desc.data = 0;
1265
1266 if (++sw_tpd_next_to_clean == tpd_ring->count)
1267 sw_tpd_next_to_clean = 0;
1268 }
1269 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
1270
1271 if (netif_queue_stopped(adapter->netdev)
1272 && netif_carrier_ok(adapter->netdev))
1273 netif_wake_queue(adapter->netdev);
1274}
1275
1276static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
1277{
1278 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
1279 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
1280 return ((next_to_clean > next_to_use) ?
1281 next_to_clean - next_to_use - 1 :
1282 tpd_ring->count + next_to_clean - next_to_use - 1);
1283}
1284
1285static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
1286 struct tso_param *tso)
1287{
1288 /* We enter this function holding a spinlock. */
1289 u8 ipofst;
1290 int err;
1291
1292 if (skb_shinfo(skb)->gso_size) {
1293 if (skb_header_cloned(skb)) {
1294 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1295 if (unlikely(err))
1296 return err;
1297 }
1298
1299 if (skb->protocol == ntohs(ETH_P_IP)) {
1300 struct iphdr *iph = ip_hdr(skb);
1301
1302 iph->tot_len = 0;
1303 iph->check = 0;
1304 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1305 iph->daddr, 0, IPPROTO_TCP, 0);
1306 ipofst = skb_network_offset(skb);
1307 if (ipofst != ETH_HLEN) /* 802.3 frame */
1308 tso->tsopl |= 1 << TSO_PARAM_ETHTYPE_SHIFT;
1309
1310 tso->tsopl |= (iph->ihl &
1311 CSUM_PARAM_IPHL_MASK) << CSUM_PARAM_IPHL_SHIFT;
1312 tso->tsopl |= (tcp_hdrlen(skb) &
1313 TSO_PARAM_TCPHDRLEN_MASK) <<
1314 TSO_PARAM_TCPHDRLEN_SHIFT;
1315 tso->tsopl |= (skb_shinfo(skb)->gso_size &
1316 TSO_PARAM_MSS_MASK) << TSO_PARAM_MSS_SHIFT;
1317 tso->tsopl |= 1 << TSO_PARAM_IPCKSUM_SHIFT;
1318 tso->tsopl |= 1 << TSO_PARAM_TCPCKSUM_SHIFT;
1319 tso->tsopl |= 1 << TSO_PARAM_SEGMENT_SHIFT;
1320 return true;
1321 }
1322 }
1323 return false;
1324}
1325
1326static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
1327 struct csum_param *csum)
1328{
1329 u8 css, cso;
1330
1331 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1332 cso = skb_transport_offset(skb);
1333 css = cso + skb->csum_offset;
1334 if (unlikely(cso & 0x1)) {
1335 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1336 "payload offset not an even number\n");
1337 return -1;
1338 }
1339 csum->csumpl |= (cso & CSUM_PARAM_PLOADOFFSET_MASK) <<
1340 CSUM_PARAM_PLOADOFFSET_SHIFT;
1341 csum->csumpl |= (css & CSUM_PARAM_XSUMOFFSET_MASK) <<
1342 CSUM_PARAM_XSUMOFFSET_SHIFT;
1343 csum->csumpl |= 1 << CSUM_PARAM_CUSTOMCKSUM_SHIFT;
1344 return true;
1345 }
1346
1347 return true;
1348}
1349
1350static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
1351 bool tcp_seg)
1352{
1353 /* We enter this function holding a spinlock. */
1354 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1355 struct atl1_buffer *buffer_info;
1356 struct page *page;
1357 int first_buf_len = skb->len;
1358 unsigned long offset;
1359 unsigned int nr_frags;
1360 unsigned int f;
1361 u16 tpd_next_to_use;
1362 u16 proto_hdr_len;
1363 u16 len12;
1364
1365 first_buf_len -= skb->data_len;
1366 nr_frags = skb_shinfo(skb)->nr_frags;
1367 tpd_next_to_use = atomic_read(&tpd_ring->next_to_use);
1368 buffer_info = &tpd_ring->buffer_info[tpd_next_to_use];
1369 if (unlikely(buffer_info->skb))
1370 BUG();
1371 /* put skb in last TPD */
1372 buffer_info->skb = NULL;
1373
1374 if (tcp_seg) {
1375 /* TSO/GSO */
1376 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1377 buffer_info->length = proto_hdr_len;
1378 page = virt_to_page(skb->data);
1379 offset = (unsigned long)skb->data & ~PAGE_MASK;
1380 buffer_info->dma = pci_map_page(adapter->pdev, page,
1381 offset, proto_hdr_len,
1382 PCI_DMA_TODEVICE);
1383
1384 if (++tpd_next_to_use == tpd_ring->count)
1385 tpd_next_to_use = 0;
1386
1387 if (first_buf_len > proto_hdr_len) {
1388 int i, m;
1389
1390 len12 = first_buf_len - proto_hdr_len;
1391 m = (len12 + ATL1_MAX_TX_BUF_LEN - 1) /
1392 ATL1_MAX_TX_BUF_LEN;
1393 for (i = 0; i < m; i++) {
1394 buffer_info =
1395 &tpd_ring->buffer_info[tpd_next_to_use];
1396 buffer_info->skb = NULL;
1397 buffer_info->length =
1398 (ATL1_MAX_TX_BUF_LEN >=
1399 len12) ? ATL1_MAX_TX_BUF_LEN : len12;
1400 len12 -= buffer_info->length;
1401 page = virt_to_page(skb->data +
1402 (proto_hdr_len +
1403 i * ATL1_MAX_TX_BUF_LEN));
1404 offset = (unsigned long)(skb->data +
1405 (proto_hdr_len +
1406 i * ATL1_MAX_TX_BUF_LEN)) & ~PAGE_MASK;
1407 buffer_info->dma = pci_map_page(adapter->pdev,
1408 page, offset, buffer_info->length,
1409 PCI_DMA_TODEVICE);
1410 if (++tpd_next_to_use == tpd_ring->count)
1411 tpd_next_to_use = 0;
1412 }
1413 }
1414 } else {
1415 /* not TSO/GSO */
1416 buffer_info->length = first_buf_len;
1417 page = virt_to_page(skb->data);
1418 offset = (unsigned long)skb->data & ~PAGE_MASK;
1419 buffer_info->dma = pci_map_page(adapter->pdev, page,
1420 offset, first_buf_len, PCI_DMA_TODEVICE);
1421 if (++tpd_next_to_use == tpd_ring->count)
1422 tpd_next_to_use = 0;
1423 }
1424
1425 for (f = 0; f < nr_frags; f++) {
1426 struct skb_frag_struct *frag;
1427 u16 lenf, i, m;
1428
1429 frag = &skb_shinfo(skb)->frags[f];
1430 lenf = frag->size;
1431
1432 m = (lenf + ATL1_MAX_TX_BUF_LEN - 1) / ATL1_MAX_TX_BUF_LEN;
1433 for (i = 0; i < m; i++) {
1434 buffer_info = &tpd_ring->buffer_info[tpd_next_to_use];
1435 if (unlikely(buffer_info->skb))
1436 BUG();
1437 buffer_info->skb = NULL;
1438 buffer_info->length = (lenf > ATL1_MAX_TX_BUF_LEN) ?
1439 ATL1_MAX_TX_BUF_LEN : lenf;
1440 lenf -= buffer_info->length;
1441 buffer_info->dma = pci_map_page(adapter->pdev,
1442 frag->page,
1443 frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
1444 buffer_info->length, PCI_DMA_TODEVICE);
1445
1446 if (++tpd_next_to_use == tpd_ring->count)
1447 tpd_next_to_use = 0;
1448 }
1449 }
1450
1451 /* last tpd's buffer-info */
1452 buffer_info->skb = skb;
1453}
1454
1455static void atl1_tx_queue(struct atl1_adapter *adapter, int count,
1456 union tpd_descr *descr)
1457{
1458 /* We enter this function holding a spinlock. */
1459 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1460 int j;
1461 u32 val;
1462 struct atl1_buffer *buffer_info;
1463 struct tx_packet_desc *tpd;
1464 u16 tpd_next_to_use = atomic_read(&tpd_ring->next_to_use);
1465
1466 for (j = 0; j < count; j++) {
1467 buffer_info = &tpd_ring->buffer_info[tpd_next_to_use];
1468 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, tpd_next_to_use);
1469 tpd->desc.csum.csumpu = descr->csum.csumpu;
1470 tpd->desc.csum.csumpl = descr->csum.csumpl;
1471 tpd->desc.tso.tsopu = descr->tso.tsopu;
1472 tpd->desc.tso.tsopl = descr->tso.tsopl;
1473 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
1474 tpd->desc.data = descr->data;
1475 tpd->desc.csum.csumpu |= (cpu_to_le16(buffer_info->length) &
1476 CSUM_PARAM_BUFLEN_MASK) << CSUM_PARAM_BUFLEN_SHIFT;
1477
1478 val = (descr->tso.tsopl >> TSO_PARAM_SEGMENT_SHIFT) &
1479 TSO_PARAM_SEGMENT_MASK;
1480 if (val && !j)
1481 tpd->desc.tso.tsopl |= 1 << TSO_PARAM_HDRFLAG_SHIFT;
1482
1483 if (j == (count - 1))
1484 tpd->desc.csum.csumpl |= 1 << CSUM_PARAM_EOP_SHIFT;
1485
1486 if (++tpd_next_to_use == tpd_ring->count)
1487 tpd_next_to_use = 0;
1488 }
1489 /*
1490 * Force memory writes to complete before letting h/w
1491 * know there are new descriptors to fetch. (Only
1492 * applicable for weak-ordered memory model archs,
1493 * such as IA-64).
1494 */
1495 wmb();
1496
1497 atomic_set(&tpd_ring->next_to_use, (int)tpd_next_to_use);
1498}
1499
1500static int atl1_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1501{
1502 struct atl1_adapter *adapter = netdev_priv(netdev);
1503 int len = skb->len;
1504 int tso;
1505 int count = 1;
1506 int ret_val;
1507 u32 val;
1508 union tpd_descr param;
1509 u16 frag_size;
1510 u16 vlan_tag;
1511 unsigned long flags;
1512 unsigned int nr_frags = 0;
1513 unsigned int mss = 0;
1514 unsigned int f;
1515 unsigned int proto_hdr_len;
1516
1517 len -= skb->data_len;
1518
1519 if (unlikely(skb->len == 0)) {
1520 dev_kfree_skb_any(skb);
1521 return NETDEV_TX_OK;
1522 }
1523
1524 param.data = 0;
1525 param.tso.tsopu = 0;
1526 param.tso.tsopl = 0;
1527 param.csum.csumpu = 0;
1528 param.csum.csumpl = 0;
1529
1530 /* nr_frags will be nonzero if we're doing scatter/gather (SG) */
1531 nr_frags = skb_shinfo(skb)->nr_frags;
1532 for (f = 0; f < nr_frags; f++) {
1533 frag_size = skb_shinfo(skb)->frags[f].size;
1534 if (frag_size)
1535 count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
1536 ATL1_MAX_TX_BUF_LEN;
1537 }
1538
1539 /* mss will be nonzero if we're doing segment offload (TSO/GSO) */
1540 mss = skb_shinfo(skb)->gso_size;
1541 if (mss) {
1542 if (skb->protocol == htons(ETH_P_IP)) {
1543 proto_hdr_len = (skb_transport_offset(skb) +
1544 tcp_hdrlen(skb));
1545 if (unlikely(proto_hdr_len > len)) {
1546 dev_kfree_skb_any(skb);
1547 return NETDEV_TX_OK;
1548 }
1549 /* need additional TPD ? */
1550 if (proto_hdr_len != len)
1551 count += (len - proto_hdr_len +
1552 ATL1_MAX_TX_BUF_LEN - 1) /
1553 ATL1_MAX_TX_BUF_LEN;
1554 }
1555 }
1556
1557 if (!spin_trylock_irqsave(&adapter->lock, flags)) {
1558 /* Can't get lock - tell upper layer to requeue */
1559 dev_printk(KERN_DEBUG, &adapter->pdev->dev, "tx locked\n");
1560 return NETDEV_TX_LOCKED;
1561 }
1562
1563 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
1564 /* not enough descriptors */
1565 netif_stop_queue(netdev);
1566 spin_unlock_irqrestore(&adapter->lock, flags);
1567 dev_printk(KERN_DEBUG, &adapter->pdev->dev, "tx busy\n");
1568 return NETDEV_TX_BUSY;
1569 }
1570
1571 param.data = 0;
1572
1573 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
1574 vlan_tag = vlan_tx_tag_get(skb);
1575 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
1576 ((vlan_tag >> 9) & 0x8);
1577 param.csum.csumpl |= 1 << CSUM_PARAM_INSVLAG_SHIFT;
1578 param.csum.csumpu |= (vlan_tag & CSUM_PARAM_VALANTAG_MASK) <<
1579 CSUM_PARAM_VALAN_SHIFT;
1580 }
1581
1582 tso = atl1_tso(adapter, skb, &param.tso);
1583 if (tso < 0) {
1584 spin_unlock_irqrestore(&adapter->lock, flags);
1585 dev_kfree_skb_any(skb);
1586 return NETDEV_TX_OK;
1587 }
1588
1589 if (!tso) {
1590 ret_val = atl1_tx_csum(adapter, skb, &param.csum);
1591 if (ret_val < 0) {
1592 spin_unlock_irqrestore(&adapter->lock, flags);
1593 dev_kfree_skb_any(skb);
1594 return NETDEV_TX_OK;
1595 }
1596 }
1597
1598 val = (param.csum.csumpl >> CSUM_PARAM_SEGMENT_SHIFT) &
1599 CSUM_PARAM_SEGMENT_MASK;
1600 atl1_tx_map(adapter, skb, 1 == val);
1601 atl1_tx_queue(adapter, count, &param);
1602 netdev->trans_start = jiffies;
1603 spin_unlock_irqrestore(&adapter->lock, flags);
1604 atl1_update_mailbox(adapter);
1605 return NETDEV_TX_OK;
1606}
1607
1608/*
1609 * atl1_intr - Interrupt Handler
1610 * @irq: interrupt number
1611 * @data: pointer to a network interface device structure
1612 * @pt_regs: CPU registers structure
1613 */
1614static irqreturn_t atl1_intr(int irq, void *data)
1615{
1616 struct atl1_adapter *adapter = netdev_priv(data);
1617 u32 status;
1618 u8 update_rx;
1619 int max_ints = 10;
1620
1621 status = adapter->cmb.cmb->int_stats;
1622 if (!status)
1623 return IRQ_NONE;
1624
1625 update_rx = 0;
1626
1627 do {
1628 /* clear CMB interrupt status at once */
1629 adapter->cmb.cmb->int_stats = 0;
1630
1631 if (status & ISR_GPHY) /* clear phy status */
1632 atlx_clear_phy_int(adapter);
1633
1634 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
1635 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
1636
1637 /* check if SMB intr */
1638 if (status & ISR_SMB)
1639 atl1_inc_smb(adapter);
1640
1641 /* check if PCIE PHY Link down */
1642 if (status & ISR_PHY_LINKDOWN) {
1643 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1644 "pcie phy link down %x\n", status);
1645 if (netif_running(adapter->netdev)) { /* reset MAC */
1646 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
1647 schedule_work(&adapter->pcie_dma_to_rst_task);
1648 return IRQ_HANDLED;
1649 }
1650 }
1651
1652 /* check if DMA read/write error ? */
1653 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
1654 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1655 "pcie DMA r/w error (status = 0x%x)\n",
1656 status);
1657 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
1658 schedule_work(&adapter->pcie_dma_to_rst_task);
1659 return IRQ_HANDLED;
1660 }
1661
1662 /* link event */
1663 if (status & ISR_GPHY) {
1664 adapter->soft_stats.tx_carrier_errors++;
1665 atl1_check_for_link(adapter);
1666 }
1667
1668 /* transmit event */
1669 if (status & ISR_CMB_TX)
1670 atl1_intr_tx(adapter);
1671
1672 /* rx exception */
1673 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
1674 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
1675 ISR_HOST_RRD_OV | ISR_CMB_RX))) {
1676 if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
1677 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
1678 ISR_HOST_RRD_OV))
1679 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1680 "rx exception, ISR = 0x%x\n", status);
1681 atl1_intr_rx(adapter);
1682 }
1683
1684 if (--max_ints < 0)
1685 break;
1686
1687 } while ((status = adapter->cmb.cmb->int_stats));
1688
1689 /* re-enable Interrupt */
1690 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
1691 return IRQ_HANDLED;
1692}
1693
1694/*
1695 * atl1_watchdog - Timer Call-back
1696 * @data: pointer to netdev cast into an unsigned long
1697 */
1698static void atl1_watchdog(unsigned long data)
1699{
1700 struct atl1_adapter *adapter = (struct atl1_adapter *)data;
1701
1702 /* Reset the timer */
1703 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1704}
1705
1706/*
1707 * atl1_phy_config - Timer Call-back
1708 * @data: pointer to netdev cast into an unsigned long
1709 */
1710static void atl1_phy_config(unsigned long data)
1711{
1712 struct atl1_adapter *adapter = (struct atl1_adapter *)data;
1713 struct atl1_hw *hw = &adapter->hw;
1714 unsigned long flags;
1715
1716 spin_lock_irqsave(&adapter->lock, flags);
1717 adapter->phy_timer_pending = false;
1718 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1719 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
1720 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
1721 spin_unlock_irqrestore(&adapter->lock, flags);
1722}
1723
1724/*
1725 * Orphaned vendor comment left intact here:
1726 * <vendor comment>
1727 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
1728 * will assert. We do soft reset <0x1400=1> according
1729 * with the SPEC. BUT, it seemes that PCIE or DMA
1730 * state-machine will not be reset. DMAR_TO_INT will
1731 * assert again and again.
1732 * </vendor comment>
1733 */
1734static void atl1_tx_timeout_task(struct work_struct *work)
1735{
1736 struct atl1_adapter *adapter =
1737 container_of(work, struct atl1_adapter, tx_timeout_task);
1738 struct net_device *netdev = adapter->netdev;
1739
1740 netif_device_detach(netdev);
1741 atl1_down(adapter);
1742 atl1_up(adapter);
1743 netif_device_attach(netdev);
1744}
1745
1746int atl1_reset(struct atl1_adapter *adapter)
1747{
1748 int ret;
1749 ret = atl1_reset_hw(&adapter->hw);
1750 if (ret)
1751 return ret;
1752 return atl1_init_hw(&adapter->hw);
1753}
1754
1755s32 atl1_up(struct atl1_adapter *adapter)
1756{
1757 struct net_device *netdev = adapter->netdev;
1758 int err;
1759 int irq_flags = IRQF_SAMPLE_RANDOM;
1760
1761 /* hardware has been reset, we need to reload some things */
1762 atlx_set_multi(netdev);
1763 atl1_init_ring_ptrs(adapter);
1764 atlx_restore_vlan(adapter);
1765 err = atl1_alloc_rx_buffers(adapter);
1766 if (unlikely(!err))
1767 /* no RX BUFFER allocated */
1768 return -ENOMEM;
1769
1770 if (unlikely(atl1_configure(adapter))) {
1771 err = -EIO;
1772 goto err_up;
1773 }
1774
1775 err = pci_enable_msi(adapter->pdev);
1776 if (err) {
1777 dev_info(&adapter->pdev->dev,
1778 "Unable to enable MSI: %d\n", err);
1779 irq_flags |= IRQF_SHARED;
1780 }
1781
1782 err = request_irq(adapter->pdev->irq, &atl1_intr, irq_flags,
1783 netdev->name, netdev);
1784 if (unlikely(err))
1785 goto err_up;
1786
1787 mod_timer(&adapter->watchdog_timer, jiffies);
1788 atlx_irq_enable(adapter);
1789 atl1_check_link(adapter);
1790 return 0;
1791
1792err_up:
1793 pci_disable_msi(adapter->pdev);
1794 /* free rx_buffers */
1795 atl1_clean_rx_ring(adapter);
1796 return err;
1797}
1798
1799void atl1_down(struct atl1_adapter *adapter)
1800{
1801 struct net_device *netdev = adapter->netdev;
1802
1803 del_timer_sync(&adapter->watchdog_timer);
1804 del_timer_sync(&adapter->phy_config_timer);
1805 adapter->phy_timer_pending = false;
1806
1807 atlx_irq_disable(adapter);
1808 free_irq(adapter->pdev->irq, netdev);
1809 pci_disable_msi(adapter->pdev);
1810 atl1_reset_hw(&adapter->hw);
1811 adapter->cmb.cmb->int_stats = 0;
1812
1813 adapter->link_speed = SPEED_0;
1814 adapter->link_duplex = -1;
1815 netif_carrier_off(netdev);
1816 netif_stop_queue(netdev);
1817
1818 atl1_clean_tx_ring(adapter);
1819 atl1_clean_rx_ring(adapter);
1820}
1821
1822/*
1823 * atl1_open - Called when a network interface is made active
1824 * @netdev: network interface device structure
1825 *
1826 * Returns 0 on success, negative value on failure
1827 *
1828 * The open entry point is called when a network interface is made
1829 * active by the system (IFF_UP). At this point all resources needed
1830 * for transmit and receive operations are allocated, the interrupt
1831 * handler is registered with the OS, the watchdog timer is started,
1832 * and the stack is notified that the interface is ready.
1833 */
1834static int atl1_open(struct net_device *netdev)
1835{
1836 struct atl1_adapter *adapter = netdev_priv(netdev);
1837 int err;
1838
1839 /* allocate transmit descriptors */
1840 err = atl1_setup_ring_resources(adapter);
1841 if (err)
1842 return err;
1843
1844 err = atl1_up(adapter);
1845 if (err)
1846 goto err_up;
1847
1848 return 0;
1849
1850err_up:
1851 atl1_reset(adapter);
1852 return err;
1853}
1854
1855/*
1856 * atl1_close - Disables a network interface
1857 * @netdev: network interface device structure
1858 *
1859 * Returns 0, this is not allowed to fail
1860 *
1861 * The close entry point is called when an interface is de-activated
1862 * by the OS. The hardware is still under the drivers control, but
1863 * needs to be disabled. A global MAC reset is issued to stop the
1864 * hardware, and all transmit and receive resources are freed.
1865 */
1866static int atl1_close(struct net_device *netdev)
1867{
1868 struct atl1_adapter *adapter = netdev_priv(netdev);
1869 atl1_down(adapter);
1870 atl1_free_ring_resources(adapter);
1871 return 0;
1872}
1873
1874#ifdef CONFIG_PM
1875static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
1876{
1877 struct net_device *netdev = pci_get_drvdata(pdev);
1878 struct atl1_adapter *adapter = netdev_priv(netdev);
1879 struct atl1_hw *hw = &adapter->hw;
1880 u32 ctrl = 0;
1881 u32 wufc = adapter->wol;
1882
1883 netif_device_detach(netdev);
1884 if (netif_running(netdev))
1885 atl1_down(adapter);
1886
1887 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
1888 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
1889 if (ctrl & BMSR_LSTATUS)
1890 wufc &= ~ATLX_WUFC_LNKC;
1891
1892 /* reduce speed to 10/100M */
1893 if (wufc) {
1894 atl1_phy_enter_power_saving(hw);
1895 /* if resume, let driver to re- setup link */
1896 hw->phy_configured = false;
1897 atl1_set_mac_addr(hw);
1898 atlx_set_multi(netdev);
1899
1900 ctrl = 0;
1901 /* turn on magic packet wol */
1902 if (wufc & ATLX_WUFC_MAG)
1903 ctrl = WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
1904
1905 /* turn on Link change WOL */
1906 if (wufc & ATLX_WUFC_LNKC)
1907 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
1908 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
1909
1910 /* turn on all-multi mode if wake on multicast is enabled */
1911 ctrl = ioread32(hw->hw_addr + REG_MAC_CTRL);
1912 ctrl &= ~MAC_CTRL_DBG;
1913 ctrl &= ~MAC_CTRL_PROMIS_EN;
1914 if (wufc & ATLX_WUFC_MC)
1915 ctrl |= MAC_CTRL_MC_ALL_EN;
1916 else
1917 ctrl &= ~MAC_CTRL_MC_ALL_EN;
1918
1919 /* turn on broadcast mode if wake on-BC is enabled */
1920 if (wufc & ATLX_WUFC_BC)
1921 ctrl |= MAC_CTRL_BC_EN;
1922 else
1923 ctrl &= ~MAC_CTRL_BC_EN;
1924
1925 /* enable RX */
1926 ctrl |= MAC_CTRL_RX_EN;
1927 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
1928 pci_enable_wake(pdev, PCI_D3hot, 1);
1929 pci_enable_wake(pdev, PCI_D3cold, 1);
1930 } else {
1931 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
1932 pci_enable_wake(pdev, PCI_D3hot, 0);
1933 pci_enable_wake(pdev, PCI_D3cold, 0);
1934 }
1935
1936 pci_save_state(pdev);
1937 pci_disable_device(pdev);
1938
1939 pci_set_power_state(pdev, PCI_D3hot);
1940
1941 return 0;
1942}
1943
1944static int atl1_resume(struct pci_dev *pdev)
1945{
1946 struct net_device *netdev = pci_get_drvdata(pdev);
1947 struct atl1_adapter *adapter = netdev_priv(netdev);
1948 u32 err;
1949
1950 pci_set_power_state(pdev, PCI_D0);
1951 pci_restore_state(pdev);
1952
1953 /* FIXME: check and handle */
1954 err = pci_enable_device(pdev);
1955 pci_enable_wake(pdev, PCI_D3hot, 0);
1956 pci_enable_wake(pdev, PCI_D3cold, 0);
1957
1958 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
1959 atl1_reset(adapter);
1960
1961 if (netif_running(netdev))
1962 atl1_up(adapter);
1963 netif_device_attach(netdev);
1964
1965 atl1_via_workaround(adapter);
1966
1967 return 0;
1968}
1969#else
1970#define atl1_suspend NULL
1971#define atl1_resume NULL
1972#endif
1973
1974#ifdef CONFIG_NET_POLL_CONTROLLER
1975static void atl1_poll_controller(struct net_device *netdev)
1976{
1977 disable_irq(netdev->irq);
1978 atl1_intr(netdev->irq, netdev);
1979 enable_irq(netdev->irq);
1980}
1981#endif
1982
1983/*
1984 * atl1_probe - Device Initialization Routine
1985 * @pdev: PCI device information struct
1986 * @ent: entry in atl1_pci_tbl
1987 *
1988 * Returns 0 on success, negative on failure
1989 *
1990 * atl1_probe initializes an adapter identified by a pci_dev structure.
1991 * The OS initialization, configuring of the adapter private structure,
1992 * and a hardware reset occur.
1993 */
1994static int __devinit atl1_probe(struct pci_dev *pdev,
1995 const struct pci_device_id *ent)
1996{
1997 struct net_device *netdev;
1998 struct atl1_adapter *adapter;
1999 static int cards_found = 0;
2000 int err;
2001
2002 err = pci_enable_device(pdev);
2003 if (err)
2004 return err;
2005
2006 /*
2007 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2008 * shared register for the high 32 bits, so only a single, aligned,
2009 * 4 GB physical address range can be used at a time.
2010 *
2011 * Supporting 64-bit DMA on this hardware is more trouble than it's
2012 * worth. It is far easier to limit to 32-bit DMA than update
2013 * various kernel subsystems to support the mechanics required by a
2014 * fixed-high-32-bit system.
2015 */
2016 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2017 if (err) {
2018 dev_err(&pdev->dev, "no usable DMA configuration\n");
2019 goto err_dma;
2020 }
2021 /*
2022 * Mark all PCI regions associated with PCI device
2023 * pdev as being reserved by owner atl1_driver_name
2024 */
2025 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2026 if (err)
2027 goto err_request_regions;
2028
2029 /*
2030 * Enables bus-mastering on the device and calls
2031 * pcibios_set_master to do the needed arch specific settings
2032 */
2033 pci_set_master(pdev);
2034
2035 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2036 if (!netdev) {
2037 err = -ENOMEM;
2038 goto err_alloc_etherdev;
2039 }
2040 SET_NETDEV_DEV(netdev, &pdev->dev);
2041
2042 pci_set_drvdata(pdev, netdev);
2043 adapter = netdev_priv(netdev);
2044 adapter->netdev = netdev;
2045 adapter->pdev = pdev;
2046 adapter->hw.back = adapter;
2047
2048 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2049 if (!adapter->hw.hw_addr) {
2050 err = -EIO;
2051 goto err_pci_iomap;
2052 }
2053 /* get device revision number */
2054 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2055 (REG_MASTER_CTRL + 2));
2056 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2057
2058 /* set default ring resource counts */
2059 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2060 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2061
2062 adapter->mii.dev = netdev;
2063 adapter->mii.mdio_read = mdio_read;
2064 adapter->mii.mdio_write = mdio_write;
2065 adapter->mii.phy_id_mask = 0x1f;
2066 adapter->mii.reg_num_mask = 0x1f;
2067
2068 netdev->open = &atl1_open;
2069 netdev->stop = &atl1_close;
2070 netdev->hard_start_xmit = &atl1_xmit_frame;
2071 netdev->get_stats = &atlx_get_stats;
2072 netdev->set_multicast_list = &atlx_set_multi;
2073 netdev->set_mac_address = &atl1_set_mac;
2074 netdev->change_mtu = &atl1_change_mtu;
2075 netdev->do_ioctl = &atlx_ioctl;
2076 netdev->tx_timeout = &atlx_tx_timeout;
2077 netdev->watchdog_timeo = 5 * HZ;
2078#ifdef CONFIG_NET_POLL_CONTROLLER
2079 netdev->poll_controller = atl1_poll_controller;
2080#endif
2081 netdev->vlan_rx_register = atlx_vlan_rx_register;
2082
2083 netdev->ethtool_ops = &atl1_ethtool_ops;
2084 adapter->bd_number = cards_found;
2085
2086 /* setup the private structure */
2087 err = atl1_sw_init(adapter);
2088 if (err)
2089 goto err_common;
2090
2091 netdev->features = NETIF_F_HW_CSUM;
2092 netdev->features |= NETIF_F_SG;
2093 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
2094
2095 /*
2096 * FIXME - Until tso performance gets fixed, disable the feature.
2097 * Enable it with ethtool -K if desired.
2098 */
2099 /* netdev->features |= NETIF_F_TSO; */
2100
2101 netdev->features |= NETIF_F_LLTX;
2102
2103 /*
2104 * patch for some L1 of old version,
2105 * the final version of L1 may not need these
2106 * patches
2107 */
2108 /* atl1_pcie_patch(adapter); */
2109
2110 /* really reset GPHY core */
2111 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
2112
2113 /*
2114 * reset the controller to
2115 * put the device in a known good starting state
2116 */
2117 if (atl1_reset_hw(&adapter->hw)) {
2118 err = -EIO;
2119 goto err_common;
2120 }
2121
2122 /* copy the MAC address out of the EEPROM */
2123 atl1_read_mac_addr(&adapter->hw);
2124 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
2125
2126 if (!is_valid_ether_addr(netdev->dev_addr)) {
2127 err = -EIO;
2128 goto err_common;
2129 }
2130
2131 atl1_check_options(adapter);
2132
2133 /* pre-init the MAC, and setup link */
2134 err = atl1_init_hw(&adapter->hw);
2135 if (err) {
2136 err = -EIO;
2137 goto err_common;
2138 }
2139
2140 atl1_pcie_patch(adapter);
2141 /* assume we have no link for now */
2142 netif_carrier_off(netdev);
2143 netif_stop_queue(netdev);
2144
2145 init_timer(&adapter->watchdog_timer);
2146 adapter->watchdog_timer.function = &atl1_watchdog;
2147 adapter->watchdog_timer.data = (unsigned long)adapter;
2148
2149 init_timer(&adapter->phy_config_timer);
2150 adapter->phy_config_timer.function = &atl1_phy_config;
2151 adapter->phy_config_timer.data = (unsigned long)adapter;
2152 adapter->phy_timer_pending = false;
2153
2154 INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
2155
2156 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
2157
2158 INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
2159
2160 err = register_netdev(netdev);
2161 if (err)
2162 goto err_common;
2163
2164 cards_found++;
2165 atl1_via_workaround(adapter);
2166 return 0;
2167
2168err_common:
2169 pci_iounmap(pdev, adapter->hw.hw_addr);
2170err_pci_iomap:
2171 free_netdev(netdev);
2172err_alloc_etherdev:
2173 pci_release_regions(pdev);
2174err_dma:
2175err_request_regions:
2176 pci_disable_device(pdev);
2177 return err;
2178}
2179
2180/*
2181 * atl1_remove - Device Removal Routine
2182 * @pdev: PCI device information struct
2183 *
2184 * atl1_remove is called by the PCI subsystem to alert the driver
2185 * that it should release a PCI device. The could be caused by a
2186 * Hot-Plug event, or because the driver is going to be removed from
2187 * memory.
2188 */
2189static void __devexit atl1_remove(struct pci_dev *pdev)
2190{
2191 struct net_device *netdev = pci_get_drvdata(pdev);
2192 struct atl1_adapter *adapter;
2193 /* Device not available. Return. */
2194 if (!netdev)
2195 return;
2196
2197 adapter = netdev_priv(netdev);
2198
2199 /*
2200 * Some atl1 boards lack persistent storage for their MAC, and get it
2201 * from the BIOS during POST. If we've been messing with the MAC
2202 * address, we need to save the permanent one.
2203 */
2204 if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
2205 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
2206 ETH_ALEN);
2207 atl1_set_mac_addr(&adapter->hw);
2208 }
2209
2210 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
2211 unregister_netdev(netdev);
2212 pci_iounmap(pdev, adapter->hw.hw_addr);
2213 pci_release_regions(pdev);
2214 free_netdev(netdev);
2215 pci_disable_device(pdev);
2216}
2217
2218static struct pci_driver atl1_driver = {
2219 .name = ATLX_DRIVER_NAME,
2220 .id_table = atl1_pci_tbl,
2221 .probe = atl1_probe,
2222 .remove = __devexit_p(atl1_remove),
2223 .suspend = atl1_suspend,
2224 .resume = atl1_resume
2225};
2226
2227/*
2228 * atl1_exit_module - Driver Exit Cleanup Routine
2229 *
2230 * atl1_exit_module is called just before the driver is removed
2231 * from memory.
2232 */
2233static void __exit atl1_exit_module(void)
2234{
2235 pci_unregister_driver(&atl1_driver);
2236}
2237
2238/*
2239 * atl1_init_module - Driver Registration Routine
2240 *
2241 * atl1_init_module is the first routine called when the driver is
2242 * loaded. All it does is register with the PCI subsystem.
2243 */
2244static int __init atl1_init_module(void)
2245{
2246 return pci_register_driver(&atl1_driver);
2247}
2248
2249module_init(atl1_init_module);
2250module_exit(atl1_exit_module);
2251
2252struct atl1_stats {
2253 char stat_string[ETH_GSTRING_LEN];
2254 int sizeof_stat;
2255 int stat_offset;
2256};
2257
2258#define ATL1_STAT(m) \
2259 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
2260
2261static struct atl1_stats atl1_gstrings_stats[] = {
2262 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
2263 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
2264 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
2265 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
2266 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
2267 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
2268 {"rx_dropped", ATL1_STAT(net_stats.rx_dropped)},
2269 {"tx_dropped", ATL1_STAT(net_stats.tx_dropped)},
2270 {"multicast", ATL1_STAT(soft_stats.multicast)},
2271 {"collisions", ATL1_STAT(soft_stats.collisions)},
2272 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
2273 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
2274 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
2275 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
2276 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
2277 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
2278 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
2279 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
2280 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
2281 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
2282 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
2283 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
2284 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
2285 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
2286 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
2287 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
2288 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
2289 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
2290 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
2291 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
2292 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
2293};
2294
2295static void atl1_get_ethtool_stats(struct net_device *netdev,
2296 struct ethtool_stats *stats, u64 *data)
2297{
2298 struct atl1_adapter *adapter = netdev_priv(netdev);
2299 int i;
2300 char *p;
2301
2302 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
2303 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
2304 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
2305 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2306 }
2307
2308}
2309
2310static int atl1_get_sset_count(struct net_device *netdev, int sset)
2311{
2312 switch (sset) {
2313 case ETH_SS_STATS:
2314 return ARRAY_SIZE(atl1_gstrings_stats);
2315 default:
2316 return -EOPNOTSUPP;
2317 }
2318}
2319
2320static int atl1_get_settings(struct net_device *netdev,
2321 struct ethtool_cmd *ecmd)
2322{
2323 struct atl1_adapter *adapter = netdev_priv(netdev);
2324 struct atl1_hw *hw = &adapter->hw;
2325
2326 ecmd->supported = (SUPPORTED_10baseT_Half |
2327 SUPPORTED_10baseT_Full |
2328 SUPPORTED_100baseT_Half |
2329 SUPPORTED_100baseT_Full |
2330 SUPPORTED_1000baseT_Full |
2331 SUPPORTED_Autoneg | SUPPORTED_TP);
2332 ecmd->advertising = ADVERTISED_TP;
2333 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
2334 hw->media_type == MEDIA_TYPE_1000M_FULL) {
2335 ecmd->advertising |= ADVERTISED_Autoneg;
2336 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
2337 ecmd->advertising |= ADVERTISED_Autoneg;
2338 ecmd->advertising |=
2339 (ADVERTISED_10baseT_Half |
2340 ADVERTISED_10baseT_Full |
2341 ADVERTISED_100baseT_Half |
2342 ADVERTISED_100baseT_Full |
2343 ADVERTISED_1000baseT_Full);
2344 } else
2345 ecmd->advertising |= (ADVERTISED_1000baseT_Full);
2346 }
2347 ecmd->port = PORT_TP;
2348 ecmd->phy_address = 0;
2349 ecmd->transceiver = XCVR_INTERNAL;
2350
2351 if (netif_carrier_ok(adapter->netdev)) {
2352 u16 link_speed, link_duplex;
2353 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
2354 ecmd->speed = link_speed;
2355 if (link_duplex == FULL_DUPLEX)
2356 ecmd->duplex = DUPLEX_FULL;
2357 else
2358 ecmd->duplex = DUPLEX_HALF;
2359 } else {
2360 ecmd->speed = -1;
2361 ecmd->duplex = -1;
2362 }
2363 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
2364 hw->media_type == MEDIA_TYPE_1000M_FULL)
2365 ecmd->autoneg = AUTONEG_ENABLE;
2366 else
2367 ecmd->autoneg = AUTONEG_DISABLE;
2368
2369 return 0;
2370}
2371
2372static int atl1_set_settings(struct net_device *netdev,
2373 struct ethtool_cmd *ecmd)
2374{
2375 struct atl1_adapter *adapter = netdev_priv(netdev);
2376 struct atl1_hw *hw = &adapter->hw;
2377 u16 phy_data;
2378 int ret_val = 0;
2379 u16 old_media_type = hw->media_type;
2380
2381 if (netif_running(adapter->netdev)) {
2382 dev_dbg(&adapter->pdev->dev, "ethtool shutting down adapter\n");
2383 atl1_down(adapter);
2384 }
2385
2386 if (ecmd->autoneg == AUTONEG_ENABLE)
2387 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
2388 else {
2389 if (ecmd->speed == SPEED_1000) {
2390 if (ecmd->duplex != DUPLEX_FULL) {
2391 dev_warn(&adapter->pdev->dev,
2392 "can't force to 1000M half duplex\n");
2393 ret_val = -EINVAL;
2394 goto exit_sset;
2395 }
2396 hw->media_type = MEDIA_TYPE_1000M_FULL;
2397 } else if (ecmd->speed == SPEED_100) {
2398 if (ecmd->duplex == DUPLEX_FULL)
2399 hw->media_type = MEDIA_TYPE_100M_FULL;
2400 else
2401 hw->media_type = MEDIA_TYPE_100M_HALF;
2402 } else {
2403 if (ecmd->duplex == DUPLEX_FULL)
2404 hw->media_type = MEDIA_TYPE_10M_FULL;
2405 else
2406 hw->media_type = MEDIA_TYPE_10M_HALF;
2407 }
2408 }
2409 switch (hw->media_type) {
2410 case MEDIA_TYPE_AUTO_SENSOR:
2411 ecmd->advertising =
2412 ADVERTISED_10baseT_Half |
2413 ADVERTISED_10baseT_Full |
2414 ADVERTISED_100baseT_Half |
2415 ADVERTISED_100baseT_Full |
2416 ADVERTISED_1000baseT_Full |
2417 ADVERTISED_Autoneg | ADVERTISED_TP;
2418 break;
2419 case MEDIA_TYPE_1000M_FULL:
2420 ecmd->advertising =
2421 ADVERTISED_1000baseT_Full |
2422 ADVERTISED_Autoneg | ADVERTISED_TP;
2423 break;
2424 default:
2425 ecmd->advertising = 0;
2426 break;
2427 }
2428 if (atl1_phy_setup_autoneg_adv(hw)) {
2429 ret_val = -EINVAL;
2430 dev_warn(&adapter->pdev->dev,
2431 "invalid ethtool speed/duplex setting\n");
2432 goto exit_sset;
2433 }
2434 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
2435 hw->media_type == MEDIA_TYPE_1000M_FULL)
2436 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
2437 else {
2438 switch (hw->media_type) {
2439 case MEDIA_TYPE_100M_FULL:
2440 phy_data =
2441 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
2442 MII_CR_RESET;
2443 break;
2444 case MEDIA_TYPE_100M_HALF:
2445 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
2446 break;
2447 case MEDIA_TYPE_10M_FULL:
2448 phy_data =
2449 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
2450 break;
2451 default:
2452 /* MEDIA_TYPE_10M_HALF: */
2453 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
2454 break;
2455 }
2456 }
2457 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
2458exit_sset:
2459 if (ret_val)
2460 hw->media_type = old_media_type;
2461
2462 if (netif_running(adapter->netdev)) {
2463 dev_dbg(&adapter->pdev->dev, "ethtool starting adapter\n");
2464 atl1_up(adapter);
2465 } else if (!ret_val) {
2466 dev_dbg(&adapter->pdev->dev, "ethtool resetting adapter\n");
2467 atl1_reset(adapter);
2468 }
2469 return ret_val;
2470}
2471
2472static void atl1_get_drvinfo(struct net_device *netdev,
2473 struct ethtool_drvinfo *drvinfo)
2474{
2475 struct atl1_adapter *adapter = netdev_priv(netdev);
2476
2477 strncpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
2478 strncpy(drvinfo->version, ATLX_DRIVER_VERSION,
2479 sizeof(drvinfo->version));
2480 strncpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2481 strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
2482 sizeof(drvinfo->bus_info));
2483 drvinfo->eedump_len = ATL1_EEDUMP_LEN;
2484}
2485
2486static void atl1_get_wol(struct net_device *netdev,
2487 struct ethtool_wolinfo *wol)
2488{
2489 struct atl1_adapter *adapter = netdev_priv(netdev);
2490
2491 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
2492 wol->wolopts = 0;
2493 if (adapter->wol & ATLX_WUFC_EX)
2494 wol->wolopts |= WAKE_UCAST;
2495 if (adapter->wol & ATLX_WUFC_MC)
2496 wol->wolopts |= WAKE_MCAST;
2497 if (adapter->wol & ATLX_WUFC_BC)
2498 wol->wolopts |= WAKE_BCAST;
2499 if (adapter->wol & ATLX_WUFC_MAG)
2500 wol->wolopts |= WAKE_MAGIC;
2501 return;
2502}
2503
2504static int atl1_set_wol(struct net_device *netdev,
2505 struct ethtool_wolinfo *wol)
2506{
2507 struct atl1_adapter *adapter = netdev_priv(netdev);
2508
2509 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
2510 return -EOPNOTSUPP;
2511 adapter->wol = 0;
2512 if (wol->wolopts & WAKE_UCAST)
2513 adapter->wol |= ATLX_WUFC_EX;
2514 if (wol->wolopts & WAKE_MCAST)
2515 adapter->wol |= ATLX_WUFC_MC;
2516 if (wol->wolopts & WAKE_BCAST)
2517 adapter->wol |= ATLX_WUFC_BC;
2518 if (wol->wolopts & WAKE_MAGIC)
2519 adapter->wol |= ATLX_WUFC_MAG;
2520 return 0;
2521}
2522
2523static void atl1_get_ringparam(struct net_device *netdev,
2524 struct ethtool_ringparam *ring)
2525{
2526 struct atl1_adapter *adapter = netdev_priv(netdev);
2527 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
2528 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
2529
2530 ring->rx_max_pending = ATL1_MAX_RFD;
2531 ring->tx_max_pending = ATL1_MAX_TPD;
2532 ring->rx_mini_max_pending = 0;
2533 ring->rx_jumbo_max_pending = 0;
2534 ring->rx_pending = rxdr->count;
2535 ring->tx_pending = txdr->count;
2536 ring->rx_mini_pending = 0;
2537 ring->rx_jumbo_pending = 0;
2538}
2539
2540static int atl1_set_ringparam(struct net_device *netdev,
2541 struct ethtool_ringparam *ring)
2542{
2543 struct atl1_adapter *adapter = netdev_priv(netdev);
2544 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
2545 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
2546 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
2547
2548 struct atl1_tpd_ring tpd_old, tpd_new;
2549 struct atl1_rfd_ring rfd_old, rfd_new;
2550 struct atl1_rrd_ring rrd_old, rrd_new;
2551 struct atl1_ring_header rhdr_old, rhdr_new;
2552 int err;
2553
2554 tpd_old = adapter->tpd_ring;
2555 rfd_old = adapter->rfd_ring;
2556 rrd_old = adapter->rrd_ring;
2557 rhdr_old = adapter->ring_header;
2558
2559 if (netif_running(adapter->netdev))
2560 atl1_down(adapter);
2561
2562 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
2563 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
2564 rfdr->count;
2565 rfdr->count = (rfdr->count + 3) & ~3;
2566 rrdr->count = rfdr->count;
2567
2568 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
2569 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
2570 tpdr->count;
2571 tpdr->count = (tpdr->count + 3) & ~3;
2572
2573 if (netif_running(adapter->netdev)) {
2574 /* try to get new resources before deleting old */
2575 err = atl1_setup_ring_resources(adapter);
2576 if (err)
2577 goto err_setup_ring;
2578
2579 /*
2580 * save the new, restore the old in order to free it,
2581 * then restore the new back again
2582 */
2583
2584 rfd_new = adapter->rfd_ring;
2585 rrd_new = adapter->rrd_ring;
2586 tpd_new = adapter->tpd_ring;
2587 rhdr_new = adapter->ring_header;
2588 adapter->rfd_ring = rfd_old;
2589 adapter->rrd_ring = rrd_old;
2590 adapter->tpd_ring = tpd_old;
2591 adapter->ring_header = rhdr_old;
2592 atl1_free_ring_resources(adapter);
2593 adapter->rfd_ring = rfd_new;
2594 adapter->rrd_ring = rrd_new;
2595 adapter->tpd_ring = tpd_new;
2596 adapter->ring_header = rhdr_new;
2597
2598 err = atl1_up(adapter);
2599 if (err)
2600 return err;
2601 }
2602 return 0;
2603
2604err_setup_ring:
2605 adapter->rfd_ring = rfd_old;
2606 adapter->rrd_ring = rrd_old;
2607 adapter->tpd_ring = tpd_old;
2608 adapter->ring_header = rhdr_old;
2609 atl1_up(adapter);
2610 return err;
2611}
2612
2613static void atl1_get_pauseparam(struct net_device *netdev,
2614 struct ethtool_pauseparam *epause)
2615{
2616 struct atl1_adapter *adapter = netdev_priv(netdev);
2617 struct atl1_hw *hw = &adapter->hw;
2618
2619 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
2620 hw->media_type == MEDIA_TYPE_1000M_FULL) {
2621 epause->autoneg = AUTONEG_ENABLE;
2622 } else {
2623 epause->autoneg = AUTONEG_DISABLE;
2624 }
2625 epause->rx_pause = 1;
2626 epause->tx_pause = 1;
2627}
2628
2629static int atl1_set_pauseparam(struct net_device *netdev,
2630 struct ethtool_pauseparam *epause)
2631{
2632 struct atl1_adapter *adapter = netdev_priv(netdev);
2633 struct atl1_hw *hw = &adapter->hw;
2634
2635 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
2636 hw->media_type == MEDIA_TYPE_1000M_FULL) {
2637 epause->autoneg = AUTONEG_ENABLE;
2638 } else {
2639 epause->autoneg = AUTONEG_DISABLE;
2640 }
2641
2642 epause->rx_pause = 1;
2643 epause->tx_pause = 1;
2644
2645 return 0;
2646}
2647
2648/* FIXME: is this right? -- CHS */
2649static u32 atl1_get_rx_csum(struct net_device *netdev)
2650{
2651 return 1;
2652}
2653
2654static void atl1_get_strings(struct net_device *netdev, u32 stringset,
2655 u8 *data)
2656{
2657 u8 *p = data;
2658 int i;
2659
2660 switch (stringset) {
2661 case ETH_SS_STATS:
2662 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
2663 memcpy(p, atl1_gstrings_stats[i].stat_string,
2664 ETH_GSTRING_LEN);
2665 p += ETH_GSTRING_LEN;
2666 }
2667 break;
2668 }
2669}
2670
2671static int atl1_nway_reset(struct net_device *netdev)
2672{
2673 struct atl1_adapter *adapter = netdev_priv(netdev);
2674 struct atl1_hw *hw = &adapter->hw;
2675
2676 if (netif_running(netdev)) {
2677 u16 phy_data;
2678 atl1_down(adapter);
2679
2680 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
2681 hw->media_type == MEDIA_TYPE_1000M_FULL) {
2682 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
2683 } else {
2684 switch (hw->media_type) {
2685 case MEDIA_TYPE_100M_FULL:
2686 phy_data = MII_CR_FULL_DUPLEX |
2687 MII_CR_SPEED_100 | MII_CR_RESET;
2688 break;
2689 case MEDIA_TYPE_100M_HALF:
2690 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
2691 break;
2692 case MEDIA_TYPE_10M_FULL:
2693 phy_data = MII_CR_FULL_DUPLEX |
2694 MII_CR_SPEED_10 | MII_CR_RESET;
2695 break;
2696 default:
2697 /* MEDIA_TYPE_10M_HALF */
2698 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
2699 }
2700 }
2701 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
2702 atl1_up(adapter);
2703 }
2704 return 0;
2705}
2706
2707const struct ethtool_ops atl1_ethtool_ops = {
2708 .get_settings = atl1_get_settings,
2709 .set_settings = atl1_set_settings,
2710 .get_drvinfo = atl1_get_drvinfo,
2711 .get_wol = atl1_get_wol,
2712 .set_wol = atl1_set_wol,
2713 .get_ringparam = atl1_get_ringparam,
2714 .set_ringparam = atl1_set_ringparam,
2715 .get_pauseparam = atl1_get_pauseparam,
2716 .set_pauseparam = atl1_set_pauseparam,
2717 .get_rx_csum = atl1_get_rx_csum,
2718 .set_tx_csum = ethtool_op_set_tx_hw_csum,
2719 .get_link = ethtool_op_get_link,
2720 .set_sg = ethtool_op_set_sg,
2721 .get_strings = atl1_get_strings,
2722 .nway_reset = atl1_nway_reset,
2723 .get_ethtool_stats = atl1_get_ethtool_stats,
2724 .get_sset_count = atl1_get_sset_count,
2725 .set_tso = ethtool_op_set_tso,
2726};
2727
2728/*
2729 * Reset the transmit and receive units; mask and clear all interrupts.
2730 * hw - Struct containing variables accessed by shared code
2731 * return : 0 or idle status (if error)
2732 */
2733s32 atl1_reset_hw(struct atl1_hw *hw)
2734{
2735 struct pci_dev *pdev = hw->back->pdev;
2736 u32 icr;
2737 int i;
2738
2739 /*
2740 * Clear Interrupt mask to stop board from generating
2741 * interrupts & Clear any pending interrupt events
2742 */
2743 /*
2744 * iowrite32(0, hw->hw_addr + REG_IMR);
2745 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
2746 */
2747
2748 /*
2749 * Issue Soft Reset to the MAC. This will reset the chip's
2750 * transmit, receive, DMA. It will not effect
2751 * the current PCI configuration. The global reset bit is self-
2752 * clearing, and should clear within a microsecond.
2753 */
2754 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
2755 ioread32(hw->hw_addr + REG_MASTER_CTRL);
2756
2757 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
2758 ioread16(hw->hw_addr + REG_PHY_ENABLE);
2759
2760 /* delay about 1ms */
2761 msleep(1);
2762
2763 /* Wait at least 10ms for All module to be Idle */
2764 for (i = 0; i < 10; i++) {
2765 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
2766 if (!icr)
2767 break;
2768 /* delay 1 ms */
2769 msleep(1);
2770 /* FIXME: still the right way to do this? */
2771 cpu_relax();
2772 }
2773
2774 if (icr) {
2775 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
2776 return icr;
2777 }
2778
2779 return 0;
2780}
2781
2782/* function about EEPROM
2783 *
2784 * check_eeprom_exist
2785 * return 0 if eeprom exist
2786 */
2787static int atl1_check_eeprom_exist(struct atl1_hw *hw)
2788{
2789 u32 value;
2790 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
2791 if (value & SPI_FLASH_CTRL_EN_VPD) {
2792 value &= ~SPI_FLASH_CTRL_EN_VPD;
2793 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
2794 }
2795
2796 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
2797 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
2798}
2799
2800static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
2801{
2802 int i;
2803 u32 control;
2804
2805 if (offset & 3)
2806 /* address do not align */
2807 return false;
2808
2809 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
2810 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
2811 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
2812 ioread32(hw->hw_addr + REG_VPD_CAP);
2813
2814 for (i = 0; i < 10; i++) {
2815 msleep(2);
2816 control = ioread32(hw->hw_addr + REG_VPD_CAP);
2817 if (control & VPD_CAP_VPD_FLAG)
2818 break;
2819 }
2820 if (control & VPD_CAP_VPD_FLAG) {
2821 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
2822 return true;
2823 }
2824 /* timeout */
2825 return false;
2826}
2827
2828/*
2829 * Reads the value from a PHY register
2830 * hw - Struct containing variables accessed by shared code
2831 * reg_addr - address of the PHY register to read
2832 */
2833s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
2834{
2835 u32 val;
2836 int i;
2837
2838 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
2839 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
2840 MDIO_CLK_SEL_SHIFT;
2841 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
2842 ioread32(hw->hw_addr + REG_MDIO_CTRL);
2843
2844 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2845 udelay(2);
2846 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
2847 if (!(val & (MDIO_START | MDIO_BUSY)))
2848 break;
2849 }
2850 if (!(val & (MDIO_START | MDIO_BUSY))) {
2851 *phy_data = (u16) val;
2852 return 0;
2853 }
2854 return ATLX_ERR_PHY;
2855}
2856
2857#define CUSTOM_SPI_CS_SETUP 2
2858#define CUSTOM_SPI_CLK_HI 2
2859#define CUSTOM_SPI_CLK_LO 2
2860#define CUSTOM_SPI_CS_HOLD 2
2861#define CUSTOM_SPI_CS_HI 3
2862
2863static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
2864{
2865 int i;
2866 u32 value;
2867
2868 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
2869 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
2870
2871 value = SPI_FLASH_CTRL_WAIT_READY |
2872 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
2873 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
2874 SPI_FLASH_CTRL_CLK_HI_MASK) <<
2875 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
2876 SPI_FLASH_CTRL_CLK_LO_MASK) <<
2877 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
2878 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
2879 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
2880 SPI_FLASH_CTRL_CS_HI_MASK) <<
2881 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
2882 SPI_FLASH_CTRL_INS_SHIFT;
2883
2884 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
2885
2886 value |= SPI_FLASH_CTRL_START;
2887 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
2888 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
2889
2890 for (i = 0; i < 10; i++) {
2891 msleep(1);
2892 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
2893 if (!(value & SPI_FLASH_CTRL_START))
2894 break;
2895 }
2896
2897 if (value & SPI_FLASH_CTRL_START)
2898 return false;
2899
2900 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
2901
2902 return true;
2903}
2904
2905/*
2906 * get_permanent_address
2907 * return 0 if get valid mac address,
2908 */
2909static int atl1_get_permanent_address(struct atl1_hw *hw)
2910{
2911 u32 addr[2];
2912 u32 i, control;
2913 u16 reg;
2914 u8 eth_addr[ETH_ALEN];
2915 bool key_valid;
2916
2917 if (is_valid_ether_addr(hw->perm_mac_addr))
2918 return 0;
2919
2920 /* init */
2921 addr[0] = addr[1] = 0;
2922
2923 if (!atl1_check_eeprom_exist(hw)) {
2924 reg = 0;
2925 key_valid = false;
2926 /* Read out all EEPROM content */
2927 i = 0;
2928 while (1) {
2929 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
2930 if (key_valid) {
2931 if (reg == REG_MAC_STA_ADDR)
2932 addr[0] = control;
2933 else if (reg == (REG_MAC_STA_ADDR + 4))
2934 addr[1] = control;
2935 key_valid = false;
2936 } else if ((control & 0xff) == 0x5A) {
2937 key_valid = true;
2938 reg = (u16) (control >> 16);
2939 } else
2940 break;
2941 } else
2942 /* read error */
2943 break;
2944 i += 4;
2945 }
2946
2947 *(u32 *) &eth_addr[2] = swab32(addr[0]);
2948 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
2949 if (is_valid_ether_addr(eth_addr)) {
2950 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
2951 return 0;
2952 }
2953 return 1;
2954 }
2955
2956 /* see if SPI FLAGS exist ? */
2957 addr[0] = addr[1] = 0;
2958 reg = 0;
2959 key_valid = false;
2960 i = 0;
2961 while (1) {
2962 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
2963 if (key_valid) {
2964 if (reg == REG_MAC_STA_ADDR)
2965 addr[0] = control;
2966 else if (reg == (REG_MAC_STA_ADDR + 4))
2967 addr[1] = control;
2968 key_valid = false;
2969 } else if ((control & 0xff) == 0x5A) {
2970 key_valid = true;
2971 reg = (u16) (control >> 16);
2972 } else
2973 /* data end */
2974 break;
2975 } else
2976 /* read error */
2977 break;
2978 i += 4;
2979 }
2980
2981 *(u32 *) &eth_addr[2] = swab32(addr[0]);
2982 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
2983 if (is_valid_ether_addr(eth_addr)) {
2984 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
2985 return 0;
2986 }
2987
2988 /*
2989 * On some motherboards, the MAC address is written by the
2990 * BIOS directly to the MAC register during POST, and is
2991 * not stored in eeprom. If all else thus far has failed
2992 * to fetch the permanent MAC address, try reading it directly.
2993 */
2994 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
2995 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
2996 *(u32 *) &eth_addr[2] = swab32(addr[0]);
2997 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
2998 if (is_valid_ether_addr(eth_addr)) {
2999 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
3000 return 0;
3001 }
3002
3003 return 1;
3004}
3005
3006/*
3007 * Reads the adapter's MAC address from the EEPROM
3008 * hw - Struct containing variables accessed by shared code
3009 */
3010s32 atl1_read_mac_addr(struct atl1_hw *hw)
3011{
3012 u16 i;
3013
3014 if (atl1_get_permanent_address(hw))
3015 random_ether_addr(hw->perm_mac_addr);
3016
3017 for (i = 0; i < ETH_ALEN; i++)
3018 hw->mac_addr[i] = hw->perm_mac_addr[i];
3019 return 0;
3020}
3021
3022/*
3023 * Hashes an address to determine its location in the multicast table
3024 * hw - Struct containing variables accessed by shared code
3025 * mc_addr - the multicast address to hash
3026 *
3027 * atl1_hash_mc_addr
3028 * purpose
3029 * set hash value for a multicast address
3030 * hash calcu processing :
3031 * 1. calcu 32bit CRC for multicast address
3032 * 2. reverse crc with MSB to LSB
3033 */
3034u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
3035{
3036 u32 crc32, value = 0;
3037 int i;
3038
3039 crc32 = ether_crc_le(6, mc_addr);
3040 for (i = 0; i < 32; i++)
3041 value |= (((crc32 >> i) & 1) << (31 - i));
3042
3043 return value;
3044}
3045
3046/*
3047 * Sets the bit in the multicast table corresponding to the hash value.
3048 * hw - Struct containing variables accessed by shared code
3049 * hash_value - Multicast address hash value
3050 */
3051void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
3052{
3053 u32 hash_bit, hash_reg;
3054 u32 mta;
3055
3056 /*
3057 * The HASH Table is a register array of 2 32-bit registers.
3058 * It is treated like an array of 64 bits. We want to set
3059 * bit BitArray[hash_value]. So we figure out what register
3060 * the bit is in, read it, OR in the new bit, then write
3061 * back the new value. The register is determined by the
3062 * upper 7 bits of the hash value and the bit within that
3063 * register are determined by the lower 5 bits of the value.
3064 */
3065 hash_reg = (hash_value >> 31) & 0x1;
3066 hash_bit = (hash_value >> 26) & 0x1F;
3067 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
3068 mta |= (1 << hash_bit);
3069 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
3070}
3071
3072/*
3073 * Writes a value to a PHY register
3074 * hw - Struct containing variables accessed by shared code
3075 * reg_addr - address of the PHY register to write
3076 * data - data to write to the PHY
3077 */
3078s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
3079{
3080 int i;
3081 u32 val;
3082
3083 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
3084 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
3085 MDIO_SUP_PREAMBLE |
3086 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
3087 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
3088 ioread32(hw->hw_addr + REG_MDIO_CTRL);
3089
3090 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
3091 udelay(2);
3092 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
3093 if (!(val & (MDIO_START | MDIO_BUSY)))
3094 break;
3095 }
3096
3097 if (!(val & (MDIO_START | MDIO_BUSY)))
3098 return 0;
3099
3100 return ATLX_ERR_PHY;
3101}
3102
3103/*
3104 * Make L001's PHY out of Power Saving State (bug)
3105 * hw - Struct containing variables accessed by shared code
3106 * when power on, L001's PHY always on Power saving State
3107 * (Gigabit Link forbidden)
3108 */
3109static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
3110{
3111 s32 ret;
3112 ret = atl1_write_phy_reg(hw, 29, 0x0029);
3113 if (ret)
3114 return ret;
3115 return atl1_write_phy_reg(hw, 30, 0);
3116}
3117
3118/*
3119 *TODO: do something or get rid of this
3120 */
3121s32 atl1_phy_enter_power_saving(struct atl1_hw *hw)
3122{
3123/* s32 ret_val;
3124 * u16 phy_data;
3125 */
3126
3127/*
3128 ret_val = atl1_write_phy_reg(hw, ...);
3129 ret_val = atl1_write_phy_reg(hw, ...);
3130 ....
3131*/
3132 return 0;
3133}
3134
3135/*
3136 * Resets the PHY and make all config validate
3137 * hw - Struct containing variables accessed by shared code
3138 *
3139 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
3140 */
3141static s32 atl1_phy_reset(struct atl1_hw *hw)
3142{
3143 struct pci_dev *pdev = hw->back->pdev;
3144 s32 ret_val;
3145 u16 phy_data;
3146
3147 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3148 hw->media_type == MEDIA_TYPE_1000M_FULL)
3149 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3150 else {
3151 switch (hw->media_type) {
3152 case MEDIA_TYPE_100M_FULL:
3153 phy_data =
3154 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3155 MII_CR_RESET;
3156 break;
3157 case MEDIA_TYPE_100M_HALF:
3158 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3159 break;
3160 case MEDIA_TYPE_10M_FULL:
3161 phy_data =
3162 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3163 break;
3164 default:
3165 /* MEDIA_TYPE_10M_HALF: */
3166 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3167 break;
3168 }
3169 }
3170
3171 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3172 if (ret_val) {
3173 u32 val;
3174 int i;
3175 /* pcie serdes link may be down! */
3176 dev_dbg(&pdev->dev, "pcie phy link down\n");
3177
3178 for (i = 0; i < 25; i++) {
3179 msleep(1);
3180 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
3181 if (!(val & (MDIO_START | MDIO_BUSY)))
3182 break;
3183 }
3184
3185 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
3186 dev_warn(&pdev->dev, "pcie link down at least 25ms\n");
3187 return ret_val;
3188 }
3189 }
3190 return 0;
3191}
3192
3193/*
3194 * Configures PHY autoneg and flow control advertisement settings
3195 * hw - Struct containing variables accessed by shared code
3196 */
3197s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
3198{
3199 s32 ret_val;
3200 s16 mii_autoneg_adv_reg;
3201 s16 mii_1000t_ctrl_reg;
3202
3203 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3204 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
3205
3206 /* Read the MII 1000Base-T Control Register (Address 9). */
3207 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
3208
3209 /*
3210 * First we clear all the 10/100 mb speed bits in the Auto-Neg
3211 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3212 * the 1000Base-T Control Register (Address 9).
3213 */
3214 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
3215 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
3216
3217 /*
3218 * Need to parse media_type and set up
3219 * the appropriate PHY registers.
3220 */
3221 switch (hw->media_type) {
3222 case MEDIA_TYPE_AUTO_SENSOR:
3223 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
3224 MII_AR_10T_FD_CAPS |
3225 MII_AR_100TX_HD_CAPS |
3226 MII_AR_100TX_FD_CAPS);
3227 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
3228 break;
3229
3230 case MEDIA_TYPE_1000M_FULL:
3231 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
3232 break;
3233
3234 case MEDIA_TYPE_100M_FULL:
3235 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
3236 break;
3237
3238 case MEDIA_TYPE_100M_HALF:
3239 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
3240 break;
3241
3242 case MEDIA_TYPE_10M_FULL:
3243 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
3244 break;
3245
3246 default:
3247 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
3248 break;
3249 }
3250
3251 /* flow control fixed to enable all */
3252 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
3253
3254 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
3255 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
3256
3257 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
3258 if (ret_val)
3259 return ret_val;
3260
3261 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
3262 if (ret_val)
3263 return ret_val;
3264
3265 return 0;
3266}
3267
3268/*
3269 * Configures link settings.
3270 * hw - Struct containing variables accessed by shared code
3271 * Assumes the hardware has previously been reset and the
3272 * transmitter and receiver are not enabled.
3273 */
3274static s32 atl1_setup_link(struct atl1_hw *hw)
3275{
3276 struct pci_dev *pdev = hw->back->pdev;
3277 s32 ret_val;
3278
3279 /*
3280 * Options:
3281 * PHY will advertise value(s) parsed from
3282 * autoneg_advertised and fc
3283 * no matter what autoneg is , We will not wait link result.
3284 */
3285 ret_val = atl1_phy_setup_autoneg_adv(hw);
3286 if (ret_val) {
3287 dev_dbg(&pdev->dev, "error setting up autonegotiation\n");
3288 return ret_val;
3289 }
3290 /* SW.Reset , En-Auto-Neg if needed */
3291 ret_val = atl1_phy_reset(hw);
3292 if (ret_val) {
3293 dev_dbg(&pdev->dev, "error resetting phy\n");
3294 return ret_val;
3295 }
3296 hw->phy_configured = true;
3297 return ret_val;
3298}
3299
3300static void atl1_init_flash_opcode(struct atl1_hw *hw)
3301{
3302 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
3303 /* Atmel */
3304 hw->flash_vendor = 0;
3305
3306 /* Init OP table */
3307 iowrite8(flash_table[hw->flash_vendor].cmd_program,
3308 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
3309 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
3310 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
3311 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
3312 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
3313 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
3314 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
3315 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
3316 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
3317 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
3318 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
3319 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
3320 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
3321 iowrite8(flash_table[hw->flash_vendor].cmd_read,
3322 hw->hw_addr + REG_SPI_FLASH_OP_READ);
3323}
3324
3325/*
3326 * Performs basic configuration of the adapter.
3327 * hw - Struct containing variables accessed by shared code
3328 * Assumes that the controller has previously been reset and is in a
3329 * post-reset uninitialized state. Initializes multicast table,
3330 * and Calls routines to setup link
3331 * Leaves the transmit and receive units disabled and uninitialized.
3332 */
3333s32 atl1_init_hw(struct atl1_hw *hw)
3334{
3335 u32 ret_val = 0;
3336
3337 /* Zero out the Multicast HASH table */
3338 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
3339 /* clear the old settings from the multicast hash table */
3340 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
3341
3342 atl1_init_flash_opcode(hw);
3343
3344 if (!hw->phy_configured) {
3345 /* enable GPHY LinkChange Interrrupt */
3346 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
3347 if (ret_val)
3348 return ret_val;
3349 /* make PHY out of power-saving state */
3350 ret_val = atl1_phy_leave_power_saving(hw);
3351 if (ret_val)
3352 return ret_val;
3353 /* Call a subroutine to configure the link */
3354 ret_val = atl1_setup_link(hw);
3355 }
3356 return ret_val;
3357}
3358
3359/*
3360 * Detects the current speed and duplex settings of the hardware.
3361 * hw - Struct containing variables accessed by shared code
3362 * speed - Speed of the connection
3363 * duplex - Duplex setting of the connection
3364 */
3365s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
3366{
3367 struct pci_dev *pdev = hw->back->pdev;
3368 s32 ret_val;
3369 u16 phy_data;
3370
3371 /* ; --- Read PHY Specific Status Register (17) */
3372 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
3373 if (ret_val)
3374 return ret_val;
3375
3376 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
3377 return ATLX_ERR_PHY_RES;
3378
3379 switch (phy_data & MII_ATLX_PSSR_SPEED) {
3380 case MII_ATLX_PSSR_1000MBS:
3381 *speed = SPEED_1000;
3382 break;
3383 case MII_ATLX_PSSR_100MBS:
3384 *speed = SPEED_100;
3385 break;
3386 case MII_ATLX_PSSR_10MBS:
3387 *speed = SPEED_10;
3388 break;
3389 default:
3390 dev_dbg(&pdev->dev, "error getting speed\n");
3391 return ATLX_ERR_PHY_SPEED;
3392 break;
3393 }
3394 if (phy_data & MII_ATLX_PSSR_DPLX)
3395 *duplex = FULL_DUPLEX;
3396 else
3397 *duplex = HALF_DUPLEX;
3398
3399 return 0;
3400}
3401
3402void atl1_set_mac_addr(struct atl1_hw *hw)
3403{
3404 u32 value;
3405 /*
3406 * 00-0B-6A-F6-00-DC
3407 * 0: 6AF600DC 1: 000B
3408 * low dword
3409 */
3410 value = (((u32) hw->mac_addr[2]) << 24) |
3411 (((u32) hw->mac_addr[3]) << 16) |
3412 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
3413 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
3414 /* high dword */
3415 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
3416 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
3417}