diff options
Diffstat (limited to 'drivers/mtd')
77 files changed, 5990 insertions, 3169 deletions
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig index 27143e042af5..73fcbbeb78d0 100644 --- a/drivers/mtd/Kconfig +++ b/drivers/mtd/Kconfig | |||
@@ -148,6 +148,13 @@ config MTD_BCM63XX_PARTS | |||
148 | This provides partions parsing for BCM63xx devices with CFE | 148 | This provides partions parsing for BCM63xx devices with CFE |
149 | bootloaders. | 149 | bootloaders. |
150 | 150 | ||
151 | config MTD_BCM47XX_PARTS | ||
152 | tristate "BCM47XX partitioning support" | ||
153 | depends on BCM47XX | ||
154 | help | ||
155 | This provides partitions parser for devices based on BCM47xx | ||
156 | boards. | ||
157 | |||
151 | comment "User Modules And Translation Layers" | 158 | comment "User Modules And Translation Layers" |
152 | 159 | ||
153 | config MTD_CHAR | 160 | config MTD_CHAR |
diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile index f90135429dc7..18a38e55b2f0 100644 --- a/drivers/mtd/Makefile +++ b/drivers/mtd/Makefile | |||
@@ -12,6 +12,7 @@ obj-$(CONFIG_MTD_CMDLINE_PARTS) += cmdlinepart.o | |||
12 | obj-$(CONFIG_MTD_AFS_PARTS) += afs.o | 12 | obj-$(CONFIG_MTD_AFS_PARTS) += afs.o |
13 | obj-$(CONFIG_MTD_AR7_PARTS) += ar7part.o | 13 | obj-$(CONFIG_MTD_AR7_PARTS) += ar7part.o |
14 | obj-$(CONFIG_MTD_BCM63XX_PARTS) += bcm63xxpart.o | 14 | obj-$(CONFIG_MTD_BCM63XX_PARTS) += bcm63xxpart.o |
15 | obj-$(CONFIG_MTD_BCM47XX_PARTS) += bcm47xxpart.o | ||
15 | 16 | ||
16 | # 'Users' - code which presents functionality to userspace. | 17 | # 'Users' - code which presents functionality to userspace. |
17 | obj-$(CONFIG_MTD_CHAR) += mtdchar.o | 18 | obj-$(CONFIG_MTD_CHAR) += mtdchar.o |
diff --git a/drivers/mtd/bcm47xxpart.c b/drivers/mtd/bcm47xxpart.c new file mode 100644 index 000000000000..e06d782489a6 --- /dev/null +++ b/drivers/mtd/bcm47xxpart.c | |||
@@ -0,0 +1,202 @@ | |||
1 | /* | ||
2 | * BCM47XX MTD partitioning | ||
3 | * | ||
4 | * Copyright © 2012 Rafał Miłecki <zajec5@gmail.com> | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License version 2 as | ||
8 | * published by the Free Software Foundation. | ||
9 | * | ||
10 | */ | ||
11 | |||
12 | #include <linux/module.h> | ||
13 | #include <linux/kernel.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <linux/mtd/mtd.h> | ||
16 | #include <linux/mtd/partitions.h> | ||
17 | #include <asm/mach-bcm47xx/nvram.h> | ||
18 | |||
19 | /* 10 parts were found on sflash on Netgear WNDR4500 */ | ||
20 | #define BCM47XXPART_MAX_PARTS 12 | ||
21 | |||
22 | /* | ||
23 | * Amount of bytes we read when analyzing each block of flash memory. | ||
24 | * Set it big enough to allow detecting partition and reading important data. | ||
25 | */ | ||
26 | #define BCM47XXPART_BYTES_TO_READ 0x404 | ||
27 | |||
28 | /* Magics */ | ||
29 | #define BOARD_DATA_MAGIC 0x5246504D /* MPFR */ | ||
30 | #define POT_MAGIC1 0x54544f50 /* POTT */ | ||
31 | #define POT_MAGIC2 0x504f /* OP */ | ||
32 | #define ML_MAGIC1 0x39685a42 | ||
33 | #define ML_MAGIC2 0x26594131 | ||
34 | #define TRX_MAGIC 0x30524448 | ||
35 | |||
36 | struct trx_header { | ||
37 | uint32_t magic; | ||
38 | uint32_t length; | ||
39 | uint32_t crc32; | ||
40 | uint16_t flags; | ||
41 | uint16_t version; | ||
42 | uint32_t offset[3]; | ||
43 | } __packed; | ||
44 | |||
45 | static void bcm47xxpart_add_part(struct mtd_partition *part, char *name, | ||
46 | u64 offset, uint32_t mask_flags) | ||
47 | { | ||
48 | part->name = name; | ||
49 | part->offset = offset; | ||
50 | part->mask_flags = mask_flags; | ||
51 | } | ||
52 | |||
53 | static int bcm47xxpart_parse(struct mtd_info *master, | ||
54 | struct mtd_partition **pparts, | ||
55 | struct mtd_part_parser_data *data) | ||
56 | { | ||
57 | struct mtd_partition *parts; | ||
58 | uint8_t i, curr_part = 0; | ||
59 | uint32_t *buf; | ||
60 | size_t bytes_read; | ||
61 | uint32_t offset; | ||
62 | uint32_t blocksize = 0x10000; | ||
63 | struct trx_header *trx; | ||
64 | |||
65 | /* Alloc */ | ||
66 | parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS, | ||
67 | GFP_KERNEL); | ||
68 | buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL); | ||
69 | |||
70 | /* Parse block by block looking for magics */ | ||
71 | for (offset = 0; offset <= master->size - blocksize; | ||
72 | offset += blocksize) { | ||
73 | /* Nothing more in higher memory */ | ||
74 | if (offset >= 0x2000000) | ||
75 | break; | ||
76 | |||
77 | if (curr_part > BCM47XXPART_MAX_PARTS) { | ||
78 | pr_warn("Reached maximum number of partitions, scanning stopped!\n"); | ||
79 | break; | ||
80 | } | ||
81 | |||
82 | /* Read beginning of the block */ | ||
83 | if (mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ, | ||
84 | &bytes_read, (uint8_t *)buf) < 0) { | ||
85 | pr_err("mtd_read error while parsing (offset: 0x%X)!\n", | ||
86 | offset); | ||
87 | continue; | ||
88 | } | ||
89 | |||
90 | /* CFE has small NVRAM at 0x400 */ | ||
91 | if (buf[0x400 / 4] == NVRAM_HEADER) { | ||
92 | bcm47xxpart_add_part(&parts[curr_part++], "boot", | ||
93 | offset, MTD_WRITEABLE); | ||
94 | continue; | ||
95 | } | ||
96 | |||
97 | /* Standard NVRAM */ | ||
98 | if (buf[0x000 / 4] == NVRAM_HEADER) { | ||
99 | bcm47xxpart_add_part(&parts[curr_part++], "nvram", | ||
100 | offset, 0); | ||
101 | continue; | ||
102 | } | ||
103 | |||
104 | /* | ||
105 | * board_data starts with board_id which differs across boards, | ||
106 | * but we can use 'MPFR' (hopefully) magic at 0x100 | ||
107 | */ | ||
108 | if (buf[0x100 / 4] == BOARD_DATA_MAGIC) { | ||
109 | bcm47xxpart_add_part(&parts[curr_part++], "board_data", | ||
110 | offset, MTD_WRITEABLE); | ||
111 | continue; | ||
112 | } | ||
113 | |||
114 | /* POT(TOP) */ | ||
115 | if (buf[0x000 / 4] == POT_MAGIC1 && | ||
116 | (buf[0x004 / 4] & 0xFFFF) == POT_MAGIC2) { | ||
117 | bcm47xxpart_add_part(&parts[curr_part++], "POT", offset, | ||
118 | MTD_WRITEABLE); | ||
119 | continue; | ||
120 | } | ||
121 | |||
122 | /* ML */ | ||
123 | if (buf[0x010 / 4] == ML_MAGIC1 && | ||
124 | buf[0x014 / 4] == ML_MAGIC2) { | ||
125 | bcm47xxpart_add_part(&parts[curr_part++], "ML", offset, | ||
126 | MTD_WRITEABLE); | ||
127 | continue; | ||
128 | } | ||
129 | |||
130 | /* TRX */ | ||
131 | if (buf[0x000 / 4] == TRX_MAGIC) { | ||
132 | trx = (struct trx_header *)buf; | ||
133 | |||
134 | i = 0; | ||
135 | /* We have LZMA loader if offset[2] points to sth */ | ||
136 | if (trx->offset[2]) { | ||
137 | bcm47xxpart_add_part(&parts[curr_part++], | ||
138 | "loader", | ||
139 | offset + trx->offset[i], | ||
140 | 0); | ||
141 | i++; | ||
142 | } | ||
143 | |||
144 | bcm47xxpart_add_part(&parts[curr_part++], "linux", | ||
145 | offset + trx->offset[i], 0); | ||
146 | i++; | ||
147 | |||
148 | /* | ||
149 | * Pure rootfs size is known and can be calculated as: | ||
150 | * trx->length - trx->offset[i]. We don't fill it as | ||
151 | * we want to have jffs2 (overlay) in the same mtd. | ||
152 | */ | ||
153 | bcm47xxpart_add_part(&parts[curr_part++], "rootfs", | ||
154 | offset + trx->offset[i], 0); | ||
155 | i++; | ||
156 | |||
157 | /* | ||
158 | * We have whole TRX scanned, skip to the next part. Use | ||
159 | * roundown (not roundup), as the loop will increase | ||
160 | * offset in next step. | ||
161 | */ | ||
162 | offset = rounddown(offset + trx->length, blocksize); | ||
163 | continue; | ||
164 | } | ||
165 | } | ||
166 | kfree(buf); | ||
167 | |||
168 | /* | ||
169 | * Assume that partitions end at the beginning of the one they are | ||
170 | * followed by. | ||
171 | */ | ||
172 | for (i = 0; i < curr_part - 1; i++) | ||
173 | parts[i].size = parts[i + 1].offset - parts[i].offset; | ||
174 | if (curr_part > 0) | ||
175 | parts[curr_part - 1].size = | ||
176 | master->size - parts[curr_part - 1].offset; | ||
177 | |||
178 | *pparts = parts; | ||
179 | return curr_part; | ||
180 | }; | ||
181 | |||
182 | static struct mtd_part_parser bcm47xxpart_mtd_parser = { | ||
183 | .owner = THIS_MODULE, | ||
184 | .parse_fn = bcm47xxpart_parse, | ||
185 | .name = "bcm47xxpart", | ||
186 | }; | ||
187 | |||
188 | static int __init bcm47xxpart_init(void) | ||
189 | { | ||
190 | return register_mtd_parser(&bcm47xxpart_mtd_parser); | ||
191 | } | ||
192 | |||
193 | static void __exit bcm47xxpart_exit(void) | ||
194 | { | ||
195 | deregister_mtd_parser(&bcm47xxpart_mtd_parser); | ||
196 | } | ||
197 | |||
198 | module_init(bcm47xxpart_init); | ||
199 | module_exit(bcm47xxpart_exit); | ||
200 | |||
201 | MODULE_LICENSE("GPL"); | ||
202 | MODULE_DESCRIPTION("MTD partitioning for BCM47XX flash memories"); | ||
diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig index b1e3c26edd6d..e469b01d40d2 100644 --- a/drivers/mtd/chips/Kconfig +++ b/drivers/mtd/chips/Kconfig | |||
@@ -43,9 +43,6 @@ choice | |||
43 | prompt "Flash cmd/query data swapping" | 43 | prompt "Flash cmd/query data swapping" |
44 | depends on MTD_CFI_ADV_OPTIONS | 44 | depends on MTD_CFI_ADV_OPTIONS |
45 | default MTD_CFI_NOSWAP | 45 | default MTD_CFI_NOSWAP |
46 | |||
47 | config MTD_CFI_NOSWAP | ||
48 | bool "NO" | ||
49 | ---help--- | 46 | ---help--- |
50 | This option defines the way in which the CPU attempts to arrange | 47 | This option defines the way in which the CPU attempts to arrange |
51 | data bits when writing the 'magic' commands to the chips. Saying | 48 | data bits when writing the 'magic' commands to the chips. Saying |
@@ -55,12 +52,8 @@ config MTD_CFI_NOSWAP | |||
55 | Specific arrangements are possible with the BIG_ENDIAN_BYTE and | 52 | Specific arrangements are possible with the BIG_ENDIAN_BYTE and |
56 | LITTLE_ENDIAN_BYTE, if the bytes are reversed. | 53 | LITTLE_ENDIAN_BYTE, if the bytes are reversed. |
57 | 54 | ||
58 | If you have a LART, on which the data (and address) lines were | 55 | config MTD_CFI_NOSWAP |
59 | connected in a fashion which ensured that the nets were as short | 56 | bool "NO" |
60 | as possible, resulting in a bit-shuffling which seems utterly | ||
61 | random to the untrained eye, you need the LART_ENDIAN_BYTE option. | ||
62 | |||
63 | Yes, there really exists something sicker than PDP-endian :) | ||
64 | 57 | ||
65 | config MTD_CFI_BE_BYTE_SWAP | 58 | config MTD_CFI_BE_BYTE_SWAP |
66 | bool "BIG_ENDIAN_BYTE" | 59 | bool "BIG_ENDIAN_BYTE" |
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c index dbbd2edfb812..77514430f1fe 100644 --- a/drivers/mtd/chips/cfi_cmdset_0001.c +++ b/drivers/mtd/chips/cfi_cmdset_0001.c | |||
@@ -2043,7 +2043,7 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip | |||
2043 | { | 2043 | { |
2044 | struct cfi_private *cfi = map->fldrv_priv; | 2044 | struct cfi_private *cfi = map->fldrv_priv; |
2045 | struct cfi_pri_intelext *extp = cfi->cmdset_priv; | 2045 | struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
2046 | int udelay; | 2046 | int mdelay; |
2047 | int ret; | 2047 | int ret; |
2048 | 2048 | ||
2049 | adr += chip->start; | 2049 | adr += chip->start; |
@@ -2072,9 +2072,17 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip | |||
2072 | * If Instant Individual Block Locking supported then no need | 2072 | * If Instant Individual Block Locking supported then no need |
2073 | * to delay. | 2073 | * to delay. |
2074 | */ | 2074 | */ |
2075 | udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0; | 2075 | /* |
2076 | * Unlocking may take up to 1.4 seconds on some Intel flashes. So | ||
2077 | * lets use a max of 1.5 seconds (1500ms) as timeout. | ||
2078 | * | ||
2079 | * See "Clear Block Lock-Bits Time" on page 40 in | ||
2080 | * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual | ||
2081 | * from February 2003 | ||
2082 | */ | ||
2083 | mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0; | ||
2076 | 2084 | ||
2077 | ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100); | 2085 | ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000); |
2078 | if (ret) { | 2086 | if (ret) { |
2079 | map_write(map, CMD(0x70), adr); | 2087 | map_write(map, CMD(0x70), adr); |
2080 | chip->state = FL_STATUS; | 2088 | chip->state = FL_STATUS; |
diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c index 22d0493a026f..5ff5c4a16943 100644 --- a/drivers/mtd/chips/cfi_cmdset_0002.c +++ b/drivers/mtd/chips/cfi_cmdset_0002.c | |||
@@ -431,6 +431,68 @@ static void cfi_fixup_major_minor(struct cfi_private *cfi, | |||
431 | } | 431 | } |
432 | } | 432 | } |
433 | 433 | ||
434 | static int is_m29ew(struct cfi_private *cfi) | ||
435 | { | ||
436 | if (cfi->mfr == CFI_MFR_INTEL && | ||
437 | ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) || | ||
438 | (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e))) | ||
439 | return 1; | ||
440 | return 0; | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20: | ||
445 | * Some revisions of the M29EW suffer from erase suspend hang ups. In | ||
446 | * particular, it can occur when the sequence | ||
447 | * Erase Confirm -> Suspend -> Program -> Resume | ||
448 | * causes a lockup due to internal timing issues. The consequence is that the | ||
449 | * erase cannot be resumed without inserting a dummy command after programming | ||
450 | * and prior to resuming. [...] The work-around is to issue a dummy write cycle | ||
451 | * that writes an F0 command code before the RESUME command. | ||
452 | */ | ||
453 | static void cfi_fixup_m29ew_erase_suspend(struct map_info *map, | ||
454 | unsigned long adr) | ||
455 | { | ||
456 | struct cfi_private *cfi = map->fldrv_priv; | ||
457 | /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */ | ||
458 | if (is_m29ew(cfi)) | ||
459 | map_write(map, CMD(0xF0), adr); | ||
460 | } | ||
461 | |||
462 | /* | ||
463 | * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22: | ||
464 | * | ||
465 | * Some revisions of the M29EW (for example, A1 and A2 step revisions) | ||
466 | * are affected by a problem that could cause a hang up when an ERASE SUSPEND | ||
467 | * command is issued after an ERASE RESUME operation without waiting for a | ||
468 | * minimum delay. The result is that once the ERASE seems to be completed | ||
469 | * (no bits are toggling), the contents of the Flash memory block on which | ||
470 | * the erase was ongoing could be inconsistent with the expected values | ||
471 | * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 | ||
472 | * values), causing a consequent failure of the ERASE operation. | ||
473 | * The occurrence of this issue could be high, especially when file system | ||
474 | * operations on the Flash are intensive. As a result, it is recommended | ||
475 | * that a patch be applied. Intensive file system operations can cause many | ||
476 | * calls to the garbage routine to free Flash space (also by erasing physical | ||
477 | * Flash blocks) and as a result, many consecutive SUSPEND and RESUME | ||
478 | * commands can occur. The problem disappears when a delay is inserted after | ||
479 | * the RESUME command by using the udelay() function available in Linux. | ||
480 | * The DELAY value must be tuned based on the customer's platform. | ||
481 | * The maximum value that fixes the problem in all cases is 500us. | ||
482 | * But, in our experience, a delay of 30 µs to 50 µs is sufficient | ||
483 | * in most cases. | ||
484 | * We have chosen 500µs because this latency is acceptable. | ||
485 | */ | ||
486 | static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi) | ||
487 | { | ||
488 | /* | ||
489 | * Resolving the Delay After Resume Issue see Micron TN-13-07 | ||
490 | * Worst case delay must be 500µs but 30-50µs should be ok as well | ||
491 | */ | ||
492 | if (is_m29ew(cfi)) | ||
493 | cfi_udelay(500); | ||
494 | } | ||
495 | |||
434 | struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) | 496 | struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) |
435 | { | 497 | { |
436 | struct cfi_private *cfi = map->fldrv_priv; | 498 | struct cfi_private *cfi = map->fldrv_priv; |
@@ -776,7 +838,10 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad | |||
776 | 838 | ||
777 | switch(chip->oldstate) { | 839 | switch(chip->oldstate) { |
778 | case FL_ERASING: | 840 | case FL_ERASING: |
841 | cfi_fixup_m29ew_erase_suspend(map, | ||
842 | chip->in_progress_block_addr); | ||
779 | map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); | 843 | map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); |
844 | cfi_fixup_m29ew_delay_after_resume(cfi); | ||
780 | chip->oldstate = FL_READY; | 845 | chip->oldstate = FL_READY; |
781 | chip->state = FL_ERASING; | 846 | chip->state = FL_ERASING; |
782 | break; | 847 | break; |
@@ -916,6 +981,8 @@ static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, | |||
916 | /* Disallow XIP again */ | 981 | /* Disallow XIP again */ |
917 | local_irq_disable(); | 982 | local_irq_disable(); |
918 | 983 | ||
984 | /* Correct Erase Suspend Hangups for M29EW */ | ||
985 | cfi_fixup_m29ew_erase_suspend(map, adr); | ||
919 | /* Resume the write or erase operation */ | 986 | /* Resume the write or erase operation */ |
920 | map_write(map, cfi->sector_erase_cmd, adr); | 987 | map_write(map, cfi->sector_erase_cmd, adr); |
921 | chip->state = oldstate; | 988 | chip->state = oldstate; |
diff --git a/drivers/mtd/cmdlinepart.c b/drivers/mtd/cmdlinepart.c index 4558e0f4d07f..aed1b8a63c9f 100644 --- a/drivers/mtd/cmdlinepart.c +++ b/drivers/mtd/cmdlinepart.c | |||
@@ -39,11 +39,10 @@ | |||
39 | 39 | ||
40 | #include <linux/kernel.h> | 40 | #include <linux/kernel.h> |
41 | #include <linux/slab.h> | 41 | #include <linux/slab.h> |
42 | |||
43 | #include <linux/mtd/mtd.h> | 42 | #include <linux/mtd/mtd.h> |
44 | #include <linux/mtd/partitions.h> | 43 | #include <linux/mtd/partitions.h> |
45 | #include <linux/bootmem.h> | ||
46 | #include <linux/module.h> | 44 | #include <linux/module.h> |
45 | #include <linux/err.h> | ||
47 | 46 | ||
48 | /* error message prefix */ | 47 | /* error message prefix */ |
49 | #define ERRP "mtd: " | 48 | #define ERRP "mtd: " |
@@ -72,7 +71,7 @@ static struct cmdline_mtd_partition *partitions; | |||
72 | 71 | ||
73 | /* the command line passed to mtdpart_setup() */ | 72 | /* the command line passed to mtdpart_setup() */ |
74 | static char *cmdline; | 73 | static char *cmdline; |
75 | static int cmdline_parsed = 0; | 74 | static int cmdline_parsed; |
76 | 75 | ||
77 | /* | 76 | /* |
78 | * Parse one partition definition for an MTD. Since there can be many | 77 | * Parse one partition definition for an MTD. Since there can be many |
@@ -83,15 +82,14 @@ static int cmdline_parsed = 0; | |||
83 | * syntax has been verified ok. | 82 | * syntax has been verified ok. |
84 | */ | 83 | */ |
85 | static struct mtd_partition * newpart(char *s, | 84 | static struct mtd_partition * newpart(char *s, |
86 | char **retptr, | 85 | char **retptr, |
87 | int *num_parts, | 86 | int *num_parts, |
88 | int this_part, | 87 | int this_part, |
89 | unsigned char **extra_mem_ptr, | 88 | unsigned char **extra_mem_ptr, |
90 | int extra_mem_size) | 89 | int extra_mem_size) |
91 | { | 90 | { |
92 | struct mtd_partition *parts; | 91 | struct mtd_partition *parts; |
93 | unsigned long size; | 92 | unsigned long size, offset = OFFSET_CONTINUOUS; |
94 | unsigned long offset = OFFSET_CONTINUOUS; | ||
95 | char *name; | 93 | char *name; |
96 | int name_len; | 94 | int name_len; |
97 | unsigned char *extra_mem; | 95 | unsigned char *extra_mem; |
@@ -99,124 +97,106 @@ static struct mtd_partition * newpart(char *s, | |||
99 | unsigned int mask_flags; | 97 | unsigned int mask_flags; |
100 | 98 | ||
101 | /* fetch the partition size */ | 99 | /* fetch the partition size */ |
102 | if (*s == '-') | 100 | if (*s == '-') { |
103 | { /* assign all remaining space to this partition */ | 101 | /* assign all remaining space to this partition */ |
104 | size = SIZE_REMAINING; | 102 | size = SIZE_REMAINING; |
105 | s++; | 103 | s++; |
106 | } | 104 | } else { |
107 | else | ||
108 | { | ||
109 | size = memparse(s, &s); | 105 | size = memparse(s, &s); |
110 | if (size < PAGE_SIZE) | 106 | if (size < PAGE_SIZE) { |
111 | { | ||
112 | printk(KERN_ERR ERRP "partition size too small (%lx)\n", size); | 107 | printk(KERN_ERR ERRP "partition size too small (%lx)\n", size); |
113 | return NULL; | 108 | return ERR_PTR(-EINVAL); |
114 | } | 109 | } |
115 | } | 110 | } |
116 | 111 | ||
117 | /* fetch partition name and flags */ | 112 | /* fetch partition name and flags */ |
118 | mask_flags = 0; /* this is going to be a regular partition */ | 113 | mask_flags = 0; /* this is going to be a regular partition */ |
119 | delim = 0; | 114 | delim = 0; |
120 | /* check for offset */ | 115 | |
121 | if (*s == '@') | 116 | /* check for offset */ |
122 | { | 117 | if (*s == '@') { |
123 | s++; | 118 | s++; |
124 | offset = memparse(s, &s); | 119 | offset = memparse(s, &s); |
125 | } | 120 | } |
126 | /* now look for name */ | 121 | |
122 | /* now look for name */ | ||
127 | if (*s == '(') | 123 | if (*s == '(') |
128 | { | ||
129 | delim = ')'; | 124 | delim = ')'; |
130 | } | ||
131 | 125 | ||
132 | if (delim) | 126 | if (delim) { |
133 | { | ||
134 | char *p; | 127 | char *p; |
135 | 128 | ||
136 | name = ++s; | 129 | name = ++s; |
137 | p = strchr(name, delim); | 130 | p = strchr(name, delim); |
138 | if (!p) | 131 | if (!p) { |
139 | { | ||
140 | printk(KERN_ERR ERRP "no closing %c found in partition name\n", delim); | 132 | printk(KERN_ERR ERRP "no closing %c found in partition name\n", delim); |
141 | return NULL; | 133 | return ERR_PTR(-EINVAL); |
142 | } | 134 | } |
143 | name_len = p - name; | 135 | name_len = p - name; |
144 | s = p + 1; | 136 | s = p + 1; |
145 | } | 137 | } else { |
146 | else | 138 | name = NULL; |
147 | { | ||
148 | name = NULL; | ||
149 | name_len = 13; /* Partition_000 */ | 139 | name_len = 13; /* Partition_000 */ |
150 | } | 140 | } |
151 | 141 | ||
152 | /* record name length for memory allocation later */ | 142 | /* record name length for memory allocation later */ |
153 | extra_mem_size += name_len + 1; | 143 | extra_mem_size += name_len + 1; |
154 | 144 | ||
155 | /* test for options */ | 145 | /* test for options */ |
156 | if (strncmp(s, "ro", 2) == 0) | 146 | if (strncmp(s, "ro", 2) == 0) { |
157 | { | ||
158 | mask_flags |= MTD_WRITEABLE; | 147 | mask_flags |= MTD_WRITEABLE; |
159 | s += 2; | 148 | s += 2; |
160 | } | 149 | } |
161 | 150 | ||
162 | /* if lk is found do NOT unlock the MTD partition*/ | 151 | /* if lk is found do NOT unlock the MTD partition*/ |
163 | if (strncmp(s, "lk", 2) == 0) | 152 | if (strncmp(s, "lk", 2) == 0) { |
164 | { | ||
165 | mask_flags |= MTD_POWERUP_LOCK; | 153 | mask_flags |= MTD_POWERUP_LOCK; |
166 | s += 2; | 154 | s += 2; |
167 | } | 155 | } |
168 | 156 | ||
169 | /* test if more partitions are following */ | 157 | /* test if more partitions are following */ |
170 | if (*s == ',') | 158 | if (*s == ',') { |
171 | { | 159 | if (size == SIZE_REMAINING) { |
172 | if (size == SIZE_REMAINING) | ||
173 | { | ||
174 | printk(KERN_ERR ERRP "no partitions allowed after a fill-up partition\n"); | 160 | printk(KERN_ERR ERRP "no partitions allowed after a fill-up partition\n"); |
175 | return NULL; | 161 | return ERR_PTR(-EINVAL); |
176 | } | 162 | } |
177 | /* more partitions follow, parse them */ | 163 | /* more partitions follow, parse them */ |
178 | parts = newpart(s + 1, &s, num_parts, this_part + 1, | 164 | parts = newpart(s + 1, &s, num_parts, this_part + 1, |
179 | &extra_mem, extra_mem_size); | 165 | &extra_mem, extra_mem_size); |
180 | if (!parts) | 166 | if (IS_ERR(parts)) |
181 | return NULL; | 167 | return parts; |
182 | } | 168 | } else { |
183 | else | 169 | /* this is the last partition: allocate space for all */ |
184 | { /* this is the last partition: allocate space for all */ | ||
185 | int alloc_size; | 170 | int alloc_size; |
186 | 171 | ||
187 | *num_parts = this_part + 1; | 172 | *num_parts = this_part + 1; |
188 | alloc_size = *num_parts * sizeof(struct mtd_partition) + | 173 | alloc_size = *num_parts * sizeof(struct mtd_partition) + |
189 | extra_mem_size; | 174 | extra_mem_size; |
175 | |||
190 | parts = kzalloc(alloc_size, GFP_KERNEL); | 176 | parts = kzalloc(alloc_size, GFP_KERNEL); |
191 | if (!parts) | 177 | if (!parts) |
192 | return NULL; | 178 | return ERR_PTR(-ENOMEM); |
193 | extra_mem = (unsigned char *)(parts + *num_parts); | 179 | extra_mem = (unsigned char *)(parts + *num_parts); |
194 | } | 180 | } |
181 | |||
195 | /* enter this partition (offset will be calculated later if it is zero at this point) */ | 182 | /* enter this partition (offset will be calculated later if it is zero at this point) */ |
196 | parts[this_part].size = size; | 183 | parts[this_part].size = size; |
197 | parts[this_part].offset = offset; | 184 | parts[this_part].offset = offset; |
198 | parts[this_part].mask_flags = mask_flags; | 185 | parts[this_part].mask_flags = mask_flags; |
199 | if (name) | 186 | if (name) |
200 | { | ||
201 | strlcpy(extra_mem, name, name_len + 1); | 187 | strlcpy(extra_mem, name, name_len + 1); |
202 | } | ||
203 | else | 188 | else |
204 | { | ||
205 | sprintf(extra_mem, "Partition_%03d", this_part); | 189 | sprintf(extra_mem, "Partition_%03d", this_part); |
206 | } | ||
207 | parts[this_part].name = extra_mem; | 190 | parts[this_part].name = extra_mem; |
208 | extra_mem += name_len + 1; | 191 | extra_mem += name_len + 1; |
209 | 192 | ||
210 | dbg(("partition %d: name <%s>, offset %llx, size %llx, mask flags %x\n", | 193 | dbg(("partition %d: name <%s>, offset %llx, size %llx, mask flags %x\n", |
211 | this_part, | 194 | this_part, parts[this_part].name, parts[this_part].offset, |
212 | parts[this_part].name, | 195 | parts[this_part].size, parts[this_part].mask_flags)); |
213 | parts[this_part].offset, | ||
214 | parts[this_part].size, | ||
215 | parts[this_part].mask_flags)); | ||
216 | 196 | ||
217 | /* return (updated) pointer to extra_mem memory */ | 197 | /* return (updated) pointer to extra_mem memory */ |
218 | if (extra_mem_ptr) | 198 | if (extra_mem_ptr) |
219 | *extra_mem_ptr = extra_mem; | 199 | *extra_mem_ptr = extra_mem; |
220 | 200 | ||
221 | /* return (updated) pointer command line string */ | 201 | /* return (updated) pointer command line string */ |
222 | *retptr = s; | 202 | *retptr = s; |
@@ -236,16 +216,16 @@ static int mtdpart_setup_real(char *s) | |||
236 | { | 216 | { |
237 | struct cmdline_mtd_partition *this_mtd; | 217 | struct cmdline_mtd_partition *this_mtd; |
238 | struct mtd_partition *parts; | 218 | struct mtd_partition *parts; |
239 | int mtd_id_len; | 219 | int mtd_id_len, num_parts; |
240 | int num_parts; | ||
241 | char *p, *mtd_id; | 220 | char *p, *mtd_id; |
242 | 221 | ||
243 | mtd_id = s; | 222 | mtd_id = s; |
223 | |||
244 | /* fetch <mtd-id> */ | 224 | /* fetch <mtd-id> */ |
245 | if (!(p = strchr(s, ':'))) | 225 | p = strchr(s, ':'); |
246 | { | 226 | if (!p) { |
247 | printk(KERN_ERR ERRP "no mtd-id\n"); | 227 | printk(KERN_ERR ERRP "no mtd-id\n"); |
248 | return 0; | 228 | return -EINVAL; |
249 | } | 229 | } |
250 | mtd_id_len = p - mtd_id; | 230 | mtd_id_len = p - mtd_id; |
251 | 231 | ||
@@ -262,8 +242,7 @@ static int mtdpart_setup_real(char *s) | |||
262 | (unsigned char**)&this_mtd, /* out: extra mem */ | 242 | (unsigned char**)&this_mtd, /* out: extra mem */ |
263 | mtd_id_len + 1 + sizeof(*this_mtd) + | 243 | mtd_id_len + 1 + sizeof(*this_mtd) + |
264 | sizeof(void*)-1 /*alignment*/); | 244 | sizeof(void*)-1 /*alignment*/); |
265 | if(!parts) | 245 | if (IS_ERR(parts)) { |
266 | { | ||
267 | /* | 246 | /* |
268 | * An error occurred. We're either: | 247 | * An error occurred. We're either: |
269 | * a) out of memory, or | 248 | * a) out of memory, or |
@@ -271,12 +250,12 @@ static int mtdpart_setup_real(char *s) | |||
271 | * Either way, this mtd is hosed and we're | 250 | * Either way, this mtd is hosed and we're |
272 | * unlikely to succeed in parsing any more | 251 | * unlikely to succeed in parsing any more |
273 | */ | 252 | */ |
274 | return 0; | 253 | return PTR_ERR(parts); |
275 | } | 254 | } |
276 | 255 | ||
277 | /* align this_mtd */ | 256 | /* align this_mtd */ |
278 | this_mtd = (struct cmdline_mtd_partition *) | 257 | this_mtd = (struct cmdline_mtd_partition *) |
279 | ALIGN((unsigned long)this_mtd, sizeof(void*)); | 258 | ALIGN((unsigned long)this_mtd, sizeof(void *)); |
280 | /* enter results */ | 259 | /* enter results */ |
281 | this_mtd->parts = parts; | 260 | this_mtd->parts = parts; |
282 | this_mtd->num_parts = num_parts; | 261 | this_mtd->num_parts = num_parts; |
@@ -296,14 +275,14 @@ static int mtdpart_setup_real(char *s) | |||
296 | break; | 275 | break; |
297 | 276 | ||
298 | /* does another spec follow? */ | 277 | /* does another spec follow? */ |
299 | if (*s != ';') | 278 | if (*s != ';') { |
300 | { | ||
301 | printk(KERN_ERR ERRP "bad character after partition (%c)\n", *s); | 279 | printk(KERN_ERR ERRP "bad character after partition (%c)\n", *s); |
302 | return 0; | 280 | return -EINVAL; |
303 | } | 281 | } |
304 | s++; | 282 | s++; |
305 | } | 283 | } |
306 | return 1; | 284 | |
285 | return 0; | ||
307 | } | 286 | } |
308 | 287 | ||
309 | /* | 288 | /* |
@@ -318,44 +297,58 @@ static int parse_cmdline_partitions(struct mtd_info *master, | |||
318 | struct mtd_part_parser_data *data) | 297 | struct mtd_part_parser_data *data) |
319 | { | 298 | { |
320 | unsigned long offset; | 299 | unsigned long offset; |
321 | int i; | 300 | int i, err; |
322 | struct cmdline_mtd_partition *part; | 301 | struct cmdline_mtd_partition *part; |
323 | const char *mtd_id = master->name; | 302 | const char *mtd_id = master->name; |
324 | 303 | ||
325 | /* parse command line */ | 304 | /* parse command line */ |
326 | if (!cmdline_parsed) | 305 | if (!cmdline_parsed) { |
327 | mtdpart_setup_real(cmdline); | 306 | err = mtdpart_setup_real(cmdline); |
307 | if (err) | ||
308 | return err; | ||
309 | } | ||
328 | 310 | ||
329 | for(part = partitions; part; part = part->next) | 311 | for (part = partitions; part; part = part->next) { |
330 | { | 312 | if ((!mtd_id) || (!strcmp(part->mtd_id, mtd_id))) { |
331 | if ((!mtd_id) || (!strcmp(part->mtd_id, mtd_id))) | 313 | for (i = 0, offset = 0; i < part->num_parts; i++) { |
332 | { | ||
333 | for(i = 0, offset = 0; i < part->num_parts; i++) | ||
334 | { | ||
335 | if (part->parts[i].offset == OFFSET_CONTINUOUS) | 314 | if (part->parts[i].offset == OFFSET_CONTINUOUS) |
336 | part->parts[i].offset = offset; | 315 | part->parts[i].offset = offset; |
337 | else | 316 | else |
338 | offset = part->parts[i].offset; | 317 | offset = part->parts[i].offset; |
318 | |||
339 | if (part->parts[i].size == SIZE_REMAINING) | 319 | if (part->parts[i].size == SIZE_REMAINING) |
340 | part->parts[i].size = master->size - offset; | 320 | part->parts[i].size = master->size - offset; |
341 | if (offset + part->parts[i].size > master->size) | 321 | |
342 | { | 322 | if (part->parts[i].size == 0) { |
323 | printk(KERN_WARNING ERRP | ||
324 | "%s: skipping zero sized partition\n", | ||
325 | part->mtd_id); | ||
326 | part->num_parts--; | ||
327 | memmove(&part->parts[i], | ||
328 | &part->parts[i + 1], | ||
329 | sizeof(*part->parts) * (part->num_parts - i)); | ||
330 | continue; | ||
331 | } | ||
332 | |||
333 | if (offset + part->parts[i].size > master->size) { | ||
343 | printk(KERN_WARNING ERRP | 334 | printk(KERN_WARNING ERRP |
344 | "%s: partitioning exceeds flash size, truncating\n", | 335 | "%s: partitioning exceeds flash size, truncating\n", |
345 | part->mtd_id); | 336 | part->mtd_id); |
346 | part->parts[i].size = master->size - offset; | 337 | part->parts[i].size = master->size - offset; |
347 | part->num_parts = i; | ||
348 | } | 338 | } |
349 | offset += part->parts[i].size; | 339 | offset += part->parts[i].size; |
350 | } | 340 | } |
341 | |||
351 | *pparts = kmemdup(part->parts, | 342 | *pparts = kmemdup(part->parts, |
352 | sizeof(*part->parts) * part->num_parts, | 343 | sizeof(*part->parts) * part->num_parts, |
353 | GFP_KERNEL); | 344 | GFP_KERNEL); |
354 | if (!*pparts) | 345 | if (!*pparts) |
355 | return -ENOMEM; | 346 | return -ENOMEM; |
347 | |||
356 | return part->num_parts; | 348 | return part->num_parts; |
357 | } | 349 | } |
358 | } | 350 | } |
351 | |||
359 | return 0; | 352 | return 0; |
360 | } | 353 | } |
361 | 354 | ||
diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig index 4cdb2af7bf44..27f80cd8aef3 100644 --- a/drivers/mtd/devices/Kconfig +++ b/drivers/mtd/devices/Kconfig | |||
@@ -97,7 +97,7 @@ config MTD_M25P80 | |||
97 | doesn't support the JEDEC ID instruction. | 97 | doesn't support the JEDEC ID instruction. |
98 | 98 | ||
99 | config M25PXX_USE_FAST_READ | 99 | config M25PXX_USE_FAST_READ |
100 | bool "Use FAST_READ OPCode allowing SPI CLK <= 50MHz" | 100 | bool "Use FAST_READ OPCode allowing SPI CLK >= 50MHz" |
101 | depends on MTD_M25P80 | 101 | depends on MTD_M25P80 |
102 | default y | 102 | default y |
103 | help | 103 | help |
@@ -120,6 +120,14 @@ config MTD_SST25L | |||
120 | Set up your spi devices with the right board-specific platform data, | 120 | Set up your spi devices with the right board-specific platform data, |
121 | if you want to specify device partitioning. | 121 | if you want to specify device partitioning. |
122 | 122 | ||
123 | config MTD_BCM47XXSFLASH | ||
124 | tristate "R/O support for serial flash on BCMA bus" | ||
125 | depends on BCMA_SFLASH | ||
126 | help | ||
127 | BCMA bus can have various flash memories attached, they are | ||
128 | registered by bcma as platform devices. This enables driver for | ||
129 | serial flash memories (only read-only mode is implemented). | ||
130 | |||
123 | config MTD_SLRAM | 131 | config MTD_SLRAM |
124 | tristate "Uncached system RAM" | 132 | tristate "Uncached system RAM" |
125 | help | 133 | help |
diff --git a/drivers/mtd/devices/Makefile b/drivers/mtd/devices/Makefile index a4dd1d822b6c..395733a30ef4 100644 --- a/drivers/mtd/devices/Makefile +++ b/drivers/mtd/devices/Makefile | |||
@@ -19,5 +19,6 @@ obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o | |||
19 | obj-$(CONFIG_MTD_M25P80) += m25p80.o | 19 | obj-$(CONFIG_MTD_M25P80) += m25p80.o |
20 | obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o | 20 | obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o |
21 | obj-$(CONFIG_MTD_SST25L) += sst25l.o | 21 | obj-$(CONFIG_MTD_SST25L) += sst25l.o |
22 | obj-$(CONFIG_MTD_BCM47XXSFLASH) += bcm47xxsflash.o | ||
22 | 23 | ||
23 | CFLAGS_docg3.o += -I$(src) \ No newline at end of file | 24 | CFLAGS_docg3.o += -I$(src) \ No newline at end of file |
diff --git a/drivers/mtd/devices/bcm47xxsflash.c b/drivers/mtd/devices/bcm47xxsflash.c new file mode 100644 index 000000000000..2dc5a6f3fd57 --- /dev/null +++ b/drivers/mtd/devices/bcm47xxsflash.c | |||
@@ -0,0 +1,105 @@ | |||
1 | #include <linux/kernel.h> | ||
2 | #include <linux/module.h> | ||
3 | #include <linux/slab.h> | ||
4 | #include <linux/mtd/mtd.h> | ||
5 | #include <linux/platform_device.h> | ||
6 | #include <linux/bcma/bcma.h> | ||
7 | |||
8 | MODULE_LICENSE("GPL"); | ||
9 | MODULE_DESCRIPTION("Serial flash driver for BCMA bus"); | ||
10 | |||
11 | static const char *probes[] = { "bcm47xxpart", NULL }; | ||
12 | |||
13 | static int bcm47xxsflash_read(struct mtd_info *mtd, loff_t from, size_t len, | ||
14 | size_t *retlen, u_char *buf) | ||
15 | { | ||
16 | struct bcma_sflash *sflash = mtd->priv; | ||
17 | |||
18 | /* Check address range */ | ||
19 | if ((from + len) > mtd->size) | ||
20 | return -EINVAL; | ||
21 | |||
22 | memcpy_fromio(buf, (void __iomem *)KSEG0ADDR(sflash->window + from), | ||
23 | len); | ||
24 | |||
25 | return len; | ||
26 | } | ||
27 | |||
28 | static void bcm47xxsflash_fill_mtd(struct bcma_sflash *sflash, | ||
29 | struct mtd_info *mtd) | ||
30 | { | ||
31 | mtd->priv = sflash; | ||
32 | mtd->name = "bcm47xxsflash"; | ||
33 | mtd->owner = THIS_MODULE; | ||
34 | mtd->type = MTD_ROM; | ||
35 | mtd->size = sflash->size; | ||
36 | mtd->_read = bcm47xxsflash_read; | ||
37 | |||
38 | /* TODO: implement writing support and verify/change following code */ | ||
39 | mtd->flags = MTD_CAP_ROM; | ||
40 | mtd->writebufsize = mtd->writesize = 1; | ||
41 | } | ||
42 | |||
43 | static int bcm47xxsflash_probe(struct platform_device *pdev) | ||
44 | { | ||
45 | struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev); | ||
46 | int err; | ||
47 | |||
48 | sflash->mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); | ||
49 | if (!sflash->mtd) { | ||
50 | err = -ENOMEM; | ||
51 | goto out; | ||
52 | } | ||
53 | bcm47xxsflash_fill_mtd(sflash, sflash->mtd); | ||
54 | |||
55 | err = mtd_device_parse_register(sflash->mtd, probes, NULL, NULL, 0); | ||
56 | if (err) { | ||
57 | pr_err("Failed to register MTD device: %d\n", err); | ||
58 | goto err_dev_reg; | ||
59 | } | ||
60 | |||
61 | return 0; | ||
62 | |||
63 | err_dev_reg: | ||
64 | kfree(sflash->mtd); | ||
65 | out: | ||
66 | return err; | ||
67 | } | ||
68 | |||
69 | static int __devexit bcm47xxsflash_remove(struct platform_device *pdev) | ||
70 | { | ||
71 | struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev); | ||
72 | |||
73 | mtd_device_unregister(sflash->mtd); | ||
74 | kfree(sflash->mtd); | ||
75 | |||
76 | return 0; | ||
77 | } | ||
78 | |||
79 | static struct platform_driver bcma_sflash_driver = { | ||
80 | .remove = __devexit_p(bcm47xxsflash_remove), | ||
81 | .driver = { | ||
82 | .name = "bcma_sflash", | ||
83 | .owner = THIS_MODULE, | ||
84 | }, | ||
85 | }; | ||
86 | |||
87 | static int __init bcm47xxsflash_init(void) | ||
88 | { | ||
89 | int err; | ||
90 | |||
91 | err = platform_driver_probe(&bcma_sflash_driver, bcm47xxsflash_probe); | ||
92 | if (err) | ||
93 | pr_err("Failed to register BCMA serial flash driver: %d\n", | ||
94 | err); | ||
95 | |||
96 | return err; | ||
97 | } | ||
98 | |||
99 | static void __exit bcm47xxsflash_exit(void) | ||
100 | { | ||
101 | platform_driver_unregister(&bcma_sflash_driver); | ||
102 | } | ||
103 | |||
104 | module_init(bcm47xxsflash_init); | ||
105 | module_exit(bcm47xxsflash_exit); | ||
diff --git a/drivers/mtd/devices/doc2001plus.c b/drivers/mtd/devices/doc2001plus.c index 04eb2e4aa50f..4f2220ad8924 100644 --- a/drivers/mtd/devices/doc2001plus.c +++ b/drivers/mtd/devices/doc2001plus.c | |||
@@ -659,23 +659,15 @@ static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, | |||
659 | #ifdef ECC_DEBUG | 659 | #ifdef ECC_DEBUG |
660 | printk("%s(%d): Millennium Plus ECC error (from=0x%x:\n", | 660 | printk("%s(%d): Millennium Plus ECC error (from=0x%x:\n", |
661 | __FILE__, __LINE__, (int)from); | 661 | __FILE__, __LINE__, (int)from); |
662 | printk(" syndrome= %02x:%02x:%02x:%02x:%02x:" | 662 | printk(" syndrome= %*phC\n", 6, syndrome); |
663 | "%02x\n", | 663 | printk(" eccbuf= %*phC\n", 6, eccbuf); |
664 | syndrome[0], syndrome[1], syndrome[2], | ||
665 | syndrome[3], syndrome[4], syndrome[5]); | ||
666 | printk(" eccbuf= %02x:%02x:%02x:%02x:%02x:" | ||
667 | "%02x\n", | ||
668 | eccbuf[0], eccbuf[1], eccbuf[2], | ||
669 | eccbuf[3], eccbuf[4], eccbuf[5]); | ||
670 | #endif | 664 | #endif |
671 | ret = -EIO; | 665 | ret = -EIO; |
672 | } | 666 | } |
673 | } | 667 | } |
674 | 668 | ||
675 | #ifdef PSYCHO_DEBUG | 669 | #ifdef PSYCHO_DEBUG |
676 | printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", | 670 | printk("ECC DATA at %lx: %*ph\n", (long)from, 6, eccbuf); |
677 | (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], | ||
678 | eccbuf[4], eccbuf[5]); | ||
679 | #endif | 671 | #endif |
680 | /* disable the ECC engine */ | 672 | /* disable the ECC engine */ |
681 | WriteDOC(DOC_ECC_DIS, docptr , Mplus_ECCConf); | 673 | WriteDOC(DOC_ECC_DIS, docptr , Mplus_ECCConf); |
diff --git a/drivers/mtd/devices/docg3.c b/drivers/mtd/devices/docg3.c index f70854d728fe..d34d83b8f9c2 100644 --- a/drivers/mtd/devices/docg3.c +++ b/drivers/mtd/devices/docg3.c | |||
@@ -919,19 +919,13 @@ static int doc_read_oob(struct mtd_info *mtd, loff_t from, | |||
919 | eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); | 919 | eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); |
920 | 920 | ||
921 | if (nboob >= DOC_LAYOUT_OOB_SIZE) { | 921 | if (nboob >= DOC_LAYOUT_OOB_SIZE) { |
922 | doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", | 922 | doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); |
923 | oobbuf[0], oobbuf[1], oobbuf[2], oobbuf[3], | ||
924 | oobbuf[4], oobbuf[5], oobbuf[6]); | ||
925 | doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); | 923 | doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); |
926 | doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", | 924 | doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); |
927 | oobbuf[8], oobbuf[9], oobbuf[10], oobbuf[11], | ||
928 | oobbuf[12], oobbuf[13], oobbuf[14]); | ||
929 | doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); | 925 | doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); |
930 | } | 926 | } |
931 | doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); | 927 | doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); |
932 | doc_dbg("ECC HW_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", | 928 | doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); |
933 | hwecc[0], hwecc[1], hwecc[2], hwecc[3], hwecc[4], | ||
934 | hwecc[5], hwecc[6]); | ||
935 | 929 | ||
936 | ret = -EIO; | 930 | ret = -EIO; |
937 | if (is_prot_seq_error(docg3)) | 931 | if (is_prot_seq_error(docg3)) |
diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c index 5d0d68c3fe27..03838bab1f59 100644 --- a/drivers/mtd/devices/m25p80.c +++ b/drivers/mtd/devices/m25p80.c | |||
@@ -633,11 +633,14 @@ static const struct spi_device_id m25p_ids[] = { | |||
633 | { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, | 633 | { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, |
634 | { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, | 634 | { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, |
635 | 635 | ||
636 | { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, | ||
637 | |||
636 | /* EON -- en25xxx */ | 638 | /* EON -- en25xxx */ |
637 | { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, | 639 | { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, |
638 | { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, | 640 | { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, |
639 | { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, | 641 | { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, |
640 | { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, | 642 | { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, |
643 | { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, | ||
641 | 644 | ||
642 | /* Everspin */ | 645 | /* Everspin */ |
643 | { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2) }, | 646 | { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2) }, |
@@ -646,6 +649,7 @@ static const struct spi_device_id m25p_ids[] = { | |||
646 | { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, | 649 | { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, |
647 | { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, | 650 | { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, |
648 | { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, | 651 | { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, |
652 | { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) }, | ||
649 | 653 | ||
650 | /* Macronix */ | 654 | /* Macronix */ |
651 | { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, | 655 | { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, |
@@ -659,15 +663,15 @@ static const struct spi_device_id m25p_ids[] = { | |||
659 | { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, | 663 | { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, |
660 | { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, | 664 | { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, |
661 | 665 | ||
666 | /* Micron */ | ||
667 | { "n25q128", INFO(0x20ba18, 0, 64 * 1024, 256, 0) }, | ||
668 | { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) }, | ||
669 | |||
662 | /* Spansion -- single (large) sector size only, at least | 670 | /* Spansion -- single (large) sector size only, at least |
663 | * for the chips listed here (without boot sectors). | 671 | * for the chips listed here (without boot sectors). |
664 | */ | 672 | */ |
665 | { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, | 673 | { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) }, |
666 | { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, | 674 | { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) }, |
667 | { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, | ||
668 | { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, | ||
669 | { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) }, | ||
670 | { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, | ||
671 | { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, | 675 | { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, |
672 | { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) }, | 676 | { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) }, |
673 | { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) }, | 677 | { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) }, |
@@ -676,6 +680,11 @@ static const struct spi_device_id m25p_ids[] = { | |||
676 | { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, | 680 | { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, |
677 | { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, | 681 | { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, |
678 | { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, | 682 | { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, |
683 | { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, | ||
684 | { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, | ||
685 | { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, | ||
686 | { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, | ||
687 | { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, | ||
679 | { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, | 688 | { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, |
680 | { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, | 689 | { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, |
681 | 690 | ||
@@ -699,6 +708,7 @@ static const struct spi_device_id m25p_ids[] = { | |||
699 | { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, | 708 | { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, |
700 | { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, | 709 | { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, |
701 | { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, | 710 | { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, |
711 | { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) }, | ||
702 | 712 | ||
703 | { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, | 713 | { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, |
704 | { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, | 714 | { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, |
@@ -714,6 +724,7 @@ static const struct spi_device_id m25p_ids[] = { | |||
714 | { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, | 724 | { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, |
715 | { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, | 725 | { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, |
716 | 726 | ||
727 | { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, | ||
717 | { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, | 728 | { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, |
718 | { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, | 729 | { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, |
719 | 730 | ||
@@ -730,6 +741,7 @@ static const struct spi_device_id m25p_ids[] = { | |||
730 | { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, | 741 | { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, |
731 | { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, | 742 | { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, |
732 | { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, | 743 | { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, |
744 | { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) }, | ||
733 | { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, | 745 | { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, |
734 | { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, | 746 | { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, |
735 | { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, | 747 | { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, |
diff --git a/drivers/mtd/devices/spear_smi.c b/drivers/mtd/devices/spear_smi.c index 67960362681e..dcc3c9511530 100644 --- a/drivers/mtd/devices/spear_smi.c +++ b/drivers/mtd/devices/spear_smi.c | |||
@@ -26,6 +26,7 @@ | |||
26 | #include <linux/module.h> | 26 | #include <linux/module.h> |
27 | #include <linux/param.h> | 27 | #include <linux/param.h> |
28 | #include <linux/platform_device.h> | 28 | #include <linux/platform_device.h> |
29 | #include <linux/pm.h> | ||
29 | #include <linux/mtd/mtd.h> | 30 | #include <linux/mtd/mtd.h> |
30 | #include <linux/mtd/partitions.h> | 31 | #include <linux/mtd/partitions.h> |
31 | #include <linux/mtd/spear_smi.h> | 32 | #include <linux/mtd/spear_smi.h> |
@@ -240,8 +241,8 @@ static int spear_smi_read_sr(struct spear_smi *dev, u32 bank) | |||
240 | /* copy dev->status (lower 16 bits) in order to release lock */ | 241 | /* copy dev->status (lower 16 bits) in order to release lock */ |
241 | if (ret > 0) | 242 | if (ret > 0) |
242 | ret = dev->status & 0xffff; | 243 | ret = dev->status & 0xffff; |
243 | else | 244 | else if (ret == 0) |
244 | ret = -EIO; | 245 | ret = -ETIMEDOUT; |
245 | 246 | ||
246 | /* restore the ctrl regs state */ | 247 | /* restore the ctrl regs state */ |
247 | writel(ctrlreg1, dev->io_base + SMI_CR1); | 248 | writel(ctrlreg1, dev->io_base + SMI_CR1); |
@@ -269,16 +270,19 @@ static int spear_smi_wait_till_ready(struct spear_smi *dev, u32 bank, | |||
269 | finish = jiffies + timeout; | 270 | finish = jiffies + timeout; |
270 | do { | 271 | do { |
271 | status = spear_smi_read_sr(dev, bank); | 272 | status = spear_smi_read_sr(dev, bank); |
272 | if (status < 0) | 273 | if (status < 0) { |
273 | continue; /* try till timeout */ | 274 | if (status == -ETIMEDOUT) |
274 | else if (!(status & SR_WIP)) | 275 | continue; /* try till finish */ |
276 | return status; | ||
277 | } else if (!(status & SR_WIP)) { | ||
275 | return 0; | 278 | return 0; |
279 | } | ||
276 | 280 | ||
277 | cond_resched(); | 281 | cond_resched(); |
278 | } while (!time_after_eq(jiffies, finish)); | 282 | } while (!time_after_eq(jiffies, finish)); |
279 | 283 | ||
280 | dev_err(&dev->pdev->dev, "smi controller is busy, timeout\n"); | 284 | dev_err(&dev->pdev->dev, "smi controller is busy, timeout\n"); |
281 | return status; | 285 | return -EBUSY; |
282 | } | 286 | } |
283 | 287 | ||
284 | /** | 288 | /** |
@@ -335,6 +339,9 @@ static void spear_smi_hw_init(struct spear_smi *dev) | |||
335 | val = HOLD1 | BANK_EN | DSEL_TIME | (prescale << 8); | 339 | val = HOLD1 | BANK_EN | DSEL_TIME | (prescale << 8); |
336 | 340 | ||
337 | mutex_lock(&dev->lock); | 341 | mutex_lock(&dev->lock); |
342 | /* clear all interrupt conditions */ | ||
343 | writel(0, dev->io_base + SMI_SR); | ||
344 | |||
338 | writel(val, dev->io_base + SMI_CR1); | 345 | writel(val, dev->io_base + SMI_CR1); |
339 | mutex_unlock(&dev->lock); | 346 | mutex_unlock(&dev->lock); |
340 | } | 347 | } |
@@ -391,11 +398,11 @@ static int spear_smi_write_enable(struct spear_smi *dev, u32 bank) | |||
391 | writel(ctrlreg1, dev->io_base + SMI_CR1); | 398 | writel(ctrlreg1, dev->io_base + SMI_CR1); |
392 | writel(0, dev->io_base + SMI_CR2); | 399 | writel(0, dev->io_base + SMI_CR2); |
393 | 400 | ||
394 | if (ret <= 0) { | 401 | if (ret == 0) { |
395 | ret = -EIO; | 402 | ret = -EIO; |
396 | dev_err(&dev->pdev->dev, | 403 | dev_err(&dev->pdev->dev, |
397 | "smi controller failed on write enable\n"); | 404 | "smi controller failed on write enable\n"); |
398 | } else { | 405 | } else if (ret > 0) { |
399 | /* check whether write mode status is set for required bank */ | 406 | /* check whether write mode status is set for required bank */ |
400 | if (dev->status & (1 << (bank + WM_SHIFT))) | 407 | if (dev->status & (1 << (bank + WM_SHIFT))) |
401 | ret = 0; | 408 | ret = 0; |
@@ -462,10 +469,10 @@ static int spear_smi_erase_sector(struct spear_smi *dev, | |||
462 | ret = wait_event_interruptible_timeout(dev->cmd_complete, | 469 | ret = wait_event_interruptible_timeout(dev->cmd_complete, |
463 | dev->status & TFF, SMI_CMD_TIMEOUT); | 470 | dev->status & TFF, SMI_CMD_TIMEOUT); |
464 | 471 | ||
465 | if (ret <= 0) { | 472 | if (ret == 0) { |
466 | ret = -EIO; | 473 | ret = -EIO; |
467 | dev_err(&dev->pdev->dev, "sector erase failed\n"); | 474 | dev_err(&dev->pdev->dev, "sector erase failed\n"); |
468 | } else | 475 | } else if (ret > 0) |
469 | ret = 0; /* success */ | 476 | ret = 0; /* success */ |
470 | 477 | ||
471 | /* restore ctrl regs */ | 478 | /* restore ctrl regs */ |
@@ -820,7 +827,7 @@ static int spear_smi_setup_banks(struct platform_device *pdev, | |||
820 | if (!flash_info) | 827 | if (!flash_info) |
821 | return -ENODEV; | 828 | return -ENODEV; |
822 | 829 | ||
823 | flash = kzalloc(sizeof(*flash), GFP_ATOMIC); | 830 | flash = devm_kzalloc(&pdev->dev, sizeof(*flash), GFP_ATOMIC); |
824 | if (!flash) | 831 | if (!flash) |
825 | return -ENOMEM; | 832 | return -ENOMEM; |
826 | flash->bank = bank; | 833 | flash->bank = bank; |
@@ -831,15 +838,13 @@ static int spear_smi_setup_banks(struct platform_device *pdev, | |||
831 | flash_index = spear_smi_probe_flash(dev, bank); | 838 | flash_index = spear_smi_probe_flash(dev, bank); |
832 | if (flash_index < 0) { | 839 | if (flash_index < 0) { |
833 | dev_info(&dev->pdev->dev, "smi-nor%d not found\n", bank); | 840 | dev_info(&dev->pdev->dev, "smi-nor%d not found\n", bank); |
834 | ret = flash_index; | 841 | return flash_index; |
835 | goto err_probe; | ||
836 | } | 842 | } |
837 | /* map the memory for nor flash chip */ | 843 | /* map the memory for nor flash chip */ |
838 | flash->base_addr = ioremap(flash_info->mem_base, flash_info->size); | 844 | flash->base_addr = devm_ioremap(&pdev->dev, flash_info->mem_base, |
839 | if (!flash->base_addr) { | 845 | flash_info->size); |
840 | ret = -EIO; | 846 | if (!flash->base_addr) |
841 | goto err_probe; | 847 | return -EIO; |
842 | } | ||
843 | 848 | ||
844 | dev->flash[bank] = flash; | 849 | dev->flash[bank] = flash; |
845 | flash->mtd.priv = dev; | 850 | flash->mtd.priv = dev; |
@@ -881,17 +886,10 @@ static int spear_smi_setup_banks(struct platform_device *pdev, | |||
881 | count); | 886 | count); |
882 | if (ret) { | 887 | if (ret) { |
883 | dev_err(&dev->pdev->dev, "Err MTD partition=%d\n", ret); | 888 | dev_err(&dev->pdev->dev, "Err MTD partition=%d\n", ret); |
884 | goto err_map; | 889 | return ret; |
885 | } | 890 | } |
886 | 891 | ||
887 | return 0; | 892 | return 0; |
888 | |||
889 | err_map: | ||
890 | iounmap(flash->base_addr); | ||
891 | |||
892 | err_probe: | ||
893 | kfree(flash); | ||
894 | return ret; | ||
895 | } | 893 | } |
896 | 894 | ||
897 | /** | 895 | /** |
@@ -928,20 +926,13 @@ static int __devinit spear_smi_probe(struct platform_device *pdev) | |||
928 | } | 926 | } |
929 | } else { | 927 | } else { |
930 | pdata = dev_get_platdata(&pdev->dev); | 928 | pdata = dev_get_platdata(&pdev->dev); |
931 | if (pdata < 0) { | 929 | if (!pdata) { |
932 | ret = -ENODEV; | 930 | ret = -ENODEV; |
933 | dev_err(&pdev->dev, "no platform data\n"); | 931 | dev_err(&pdev->dev, "no platform data\n"); |
934 | goto err; | 932 | goto err; |
935 | } | 933 | } |
936 | } | 934 | } |
937 | 935 | ||
938 | smi_base = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
939 | if (!smi_base) { | ||
940 | ret = -ENODEV; | ||
941 | dev_err(&pdev->dev, "invalid smi base address\n"); | ||
942 | goto err; | ||
943 | } | ||
944 | |||
945 | irq = platform_get_irq(pdev, 0); | 936 | irq = platform_get_irq(pdev, 0); |
946 | if (irq < 0) { | 937 | if (irq < 0) { |
947 | ret = -ENODEV; | 938 | ret = -ENODEV; |
@@ -949,32 +940,26 @@ static int __devinit spear_smi_probe(struct platform_device *pdev) | |||
949 | goto err; | 940 | goto err; |
950 | } | 941 | } |
951 | 942 | ||
952 | dev = kzalloc(sizeof(*dev), GFP_ATOMIC); | 943 | dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_ATOMIC); |
953 | if (!dev) { | 944 | if (!dev) { |
954 | ret = -ENOMEM; | 945 | ret = -ENOMEM; |
955 | dev_err(&pdev->dev, "mem alloc fail\n"); | 946 | dev_err(&pdev->dev, "mem alloc fail\n"); |
956 | goto err; | 947 | goto err; |
957 | } | 948 | } |
958 | 949 | ||
959 | smi_base = request_mem_region(smi_base->start, resource_size(smi_base), | 950 | smi_base = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
960 | pdev->name); | ||
961 | if (!smi_base) { | ||
962 | ret = -EBUSY; | ||
963 | dev_err(&pdev->dev, "request mem region fail\n"); | ||
964 | goto err_mem; | ||
965 | } | ||
966 | 951 | ||
967 | dev->io_base = ioremap(smi_base->start, resource_size(smi_base)); | 952 | dev->io_base = devm_request_and_ioremap(&pdev->dev, smi_base); |
968 | if (!dev->io_base) { | 953 | if (!dev->io_base) { |
969 | ret = -EIO; | 954 | ret = -EIO; |
970 | dev_err(&pdev->dev, "ioremap fail\n"); | 955 | dev_err(&pdev->dev, "devm_request_and_ioremap fail\n"); |
971 | goto err_ioremap; | 956 | goto err; |
972 | } | 957 | } |
973 | 958 | ||
974 | dev->pdev = pdev; | 959 | dev->pdev = pdev; |
975 | dev->clk_rate = pdata->clk_rate; | 960 | dev->clk_rate = pdata->clk_rate; |
976 | 961 | ||
977 | if (dev->clk_rate < 0 || dev->clk_rate > SMI_MAX_CLOCK_FREQ) | 962 | if (dev->clk_rate > SMI_MAX_CLOCK_FREQ) |
978 | dev->clk_rate = SMI_MAX_CLOCK_FREQ; | 963 | dev->clk_rate = SMI_MAX_CLOCK_FREQ; |
979 | 964 | ||
980 | dev->num_flashes = pdata->num_flashes; | 965 | dev->num_flashes = pdata->num_flashes; |
@@ -984,17 +969,18 @@ static int __devinit spear_smi_probe(struct platform_device *pdev) | |||
984 | dev->num_flashes = MAX_NUM_FLASH_CHIP; | 969 | dev->num_flashes = MAX_NUM_FLASH_CHIP; |
985 | } | 970 | } |
986 | 971 | ||
987 | dev->clk = clk_get(&pdev->dev, NULL); | 972 | dev->clk = devm_clk_get(&pdev->dev, NULL); |
988 | if (IS_ERR(dev->clk)) { | 973 | if (IS_ERR(dev->clk)) { |
989 | ret = PTR_ERR(dev->clk); | 974 | ret = PTR_ERR(dev->clk); |
990 | goto err_clk; | 975 | goto err; |
991 | } | 976 | } |
992 | 977 | ||
993 | ret = clk_prepare_enable(dev->clk); | 978 | ret = clk_prepare_enable(dev->clk); |
994 | if (ret) | 979 | if (ret) |
995 | goto err_clk_prepare_enable; | 980 | goto err; |
996 | 981 | ||
997 | ret = request_irq(irq, spear_smi_int_handler, 0, pdev->name, dev); | 982 | ret = devm_request_irq(&pdev->dev, irq, spear_smi_int_handler, 0, |
983 | pdev->name, dev); | ||
998 | if (ret) { | 984 | if (ret) { |
999 | dev_err(&dev->pdev->dev, "SMI IRQ allocation failed\n"); | 985 | dev_err(&dev->pdev->dev, "SMI IRQ allocation failed\n"); |
1000 | goto err_irq; | 986 | goto err_irq; |
@@ -1017,18 +1003,9 @@ static int __devinit spear_smi_probe(struct platform_device *pdev) | |||
1017 | return 0; | 1003 | return 0; |
1018 | 1004 | ||
1019 | err_bank_setup: | 1005 | err_bank_setup: |
1020 | free_irq(irq, dev); | ||
1021 | platform_set_drvdata(pdev, NULL); | 1006 | platform_set_drvdata(pdev, NULL); |
1022 | err_irq: | 1007 | err_irq: |
1023 | clk_disable_unprepare(dev->clk); | 1008 | clk_disable_unprepare(dev->clk); |
1024 | err_clk_prepare_enable: | ||
1025 | clk_put(dev->clk); | ||
1026 | err_clk: | ||
1027 | iounmap(dev->io_base); | ||
1028 | err_ioremap: | ||
1029 | release_mem_region(smi_base->start, resource_size(smi_base)); | ||
1030 | err_mem: | ||
1031 | kfree(dev); | ||
1032 | err: | 1009 | err: |
1033 | return ret; | 1010 | return ret; |
1034 | } | 1011 | } |
@@ -1042,11 +1019,8 @@ err: | |||
1042 | static int __devexit spear_smi_remove(struct platform_device *pdev) | 1019 | static int __devexit spear_smi_remove(struct platform_device *pdev) |
1043 | { | 1020 | { |
1044 | struct spear_smi *dev; | 1021 | struct spear_smi *dev; |
1045 | struct spear_smi_plat_data *pdata; | ||
1046 | struct spear_snor_flash *flash; | 1022 | struct spear_snor_flash *flash; |
1047 | struct resource *smi_base; | 1023 | int ret, i; |
1048 | int ret; | ||
1049 | int i, irq; | ||
1050 | 1024 | ||
1051 | dev = platform_get_drvdata(pdev); | 1025 | dev = platform_get_drvdata(pdev); |
1052 | if (!dev) { | 1026 | if (!dev) { |
@@ -1054,8 +1028,6 @@ static int __devexit spear_smi_remove(struct platform_device *pdev) | |||
1054 | return -ENODEV; | 1028 | return -ENODEV; |
1055 | } | 1029 | } |
1056 | 1030 | ||
1057 | pdata = dev_get_platdata(&pdev->dev); | ||
1058 | |||
1059 | /* clean up for all nor flash */ | 1031 | /* clean up for all nor flash */ |
1060 | for (i = 0; i < dev->num_flashes; i++) { | 1032 | for (i = 0; i < dev->num_flashes; i++) { |
1061 | flash = dev->flash[i]; | 1033 | flash = dev->flash[i]; |
@@ -1066,49 +1038,41 @@ static int __devexit spear_smi_remove(struct platform_device *pdev) | |||
1066 | ret = mtd_device_unregister(&flash->mtd); | 1038 | ret = mtd_device_unregister(&flash->mtd); |
1067 | if (ret) | 1039 | if (ret) |
1068 | dev_err(&pdev->dev, "error removing mtd\n"); | 1040 | dev_err(&pdev->dev, "error removing mtd\n"); |
1069 | |||
1070 | iounmap(flash->base_addr); | ||
1071 | kfree(flash); | ||
1072 | } | 1041 | } |
1073 | 1042 | ||
1074 | irq = platform_get_irq(pdev, 0); | ||
1075 | free_irq(irq, dev); | ||
1076 | |||
1077 | clk_disable_unprepare(dev->clk); | 1043 | clk_disable_unprepare(dev->clk); |
1078 | clk_put(dev->clk); | ||
1079 | iounmap(dev->io_base); | ||
1080 | kfree(dev); | ||
1081 | |||
1082 | smi_base = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
1083 | release_mem_region(smi_base->start, resource_size(smi_base)); | ||
1084 | platform_set_drvdata(pdev, NULL); | 1044 | platform_set_drvdata(pdev, NULL); |
1085 | 1045 | ||
1086 | return 0; | 1046 | return 0; |
1087 | } | 1047 | } |
1088 | 1048 | ||
1089 | int spear_smi_suspend(struct platform_device *pdev, pm_message_t state) | 1049 | #ifdef CONFIG_PM |
1050 | static int spear_smi_suspend(struct device *dev) | ||
1090 | { | 1051 | { |
1091 | struct spear_smi *dev = platform_get_drvdata(pdev); | 1052 | struct spear_smi *sdev = dev_get_drvdata(dev); |
1092 | 1053 | ||
1093 | if (dev && dev->clk) | 1054 | if (sdev && sdev->clk) |
1094 | clk_disable_unprepare(dev->clk); | 1055 | clk_disable_unprepare(sdev->clk); |
1095 | 1056 | ||
1096 | return 0; | 1057 | return 0; |
1097 | } | 1058 | } |
1098 | 1059 | ||
1099 | int spear_smi_resume(struct platform_device *pdev) | 1060 | static int spear_smi_resume(struct device *dev) |
1100 | { | 1061 | { |
1101 | struct spear_smi *dev = platform_get_drvdata(pdev); | 1062 | struct spear_smi *sdev = dev_get_drvdata(dev); |
1102 | int ret = -EPERM; | 1063 | int ret = -EPERM; |
1103 | 1064 | ||
1104 | if (dev && dev->clk) | 1065 | if (sdev && sdev->clk) |
1105 | ret = clk_prepare_enable(dev->clk); | 1066 | ret = clk_prepare_enable(sdev->clk); |
1106 | 1067 | ||
1107 | if (!ret) | 1068 | if (!ret) |
1108 | spear_smi_hw_init(dev); | 1069 | spear_smi_hw_init(sdev); |
1109 | return ret; | 1070 | return ret; |
1110 | } | 1071 | } |
1111 | 1072 | ||
1073 | static SIMPLE_DEV_PM_OPS(spear_smi_pm_ops, spear_smi_suspend, spear_smi_resume); | ||
1074 | #endif | ||
1075 | |||
1112 | #ifdef CONFIG_OF | 1076 | #ifdef CONFIG_OF |
1113 | static const struct of_device_id spear_smi_id_table[] = { | 1077 | static const struct of_device_id spear_smi_id_table[] = { |
1114 | { .compatible = "st,spear600-smi" }, | 1078 | { .compatible = "st,spear600-smi" }, |
@@ -1123,11 +1087,12 @@ static struct platform_driver spear_smi_driver = { | |||
1123 | .bus = &platform_bus_type, | 1087 | .bus = &platform_bus_type, |
1124 | .owner = THIS_MODULE, | 1088 | .owner = THIS_MODULE, |
1125 | .of_match_table = of_match_ptr(spear_smi_id_table), | 1089 | .of_match_table = of_match_ptr(spear_smi_id_table), |
1090 | #ifdef CONFIG_PM | ||
1091 | .pm = &spear_smi_pm_ops, | ||
1092 | #endif | ||
1126 | }, | 1093 | }, |
1127 | .probe = spear_smi_probe, | 1094 | .probe = spear_smi_probe, |
1128 | .remove = __devexit_p(spear_smi_remove), | 1095 | .remove = __devexit_p(spear_smi_remove), |
1129 | .suspend = spear_smi_suspend, | ||
1130 | .resume = spear_smi_resume, | ||
1131 | }; | 1096 | }; |
1132 | 1097 | ||
1133 | static int spear_smi_init(void) | 1098 | static int spear_smi_init(void) |
diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig index 5ba2458e799a..2e47c2ed0a2d 100644 --- a/drivers/mtd/maps/Kconfig +++ b/drivers/mtd/maps/Kconfig | |||
@@ -373,7 +373,7 @@ config MTD_FORTUNET | |||
373 | have such a board, say 'Y'. | 373 | have such a board, say 'Y'. |
374 | 374 | ||
375 | config MTD_AUTCPU12 | 375 | config MTD_AUTCPU12 |
376 | tristate "NV-RAM mapping AUTCPU12 board" | 376 | bool "NV-RAM mapping AUTCPU12 board" |
377 | depends on ARCH_AUTCPU12 | 377 | depends on ARCH_AUTCPU12 |
378 | help | 378 | help |
379 | This enables access to the NV-RAM on autronix autcpu12 board. | 379 | This enables access to the NV-RAM on autronix autcpu12 board. |
@@ -443,22 +443,10 @@ config MTD_GPIO_ADDR | |||
443 | 443 | ||
444 | config MTD_UCLINUX | 444 | config MTD_UCLINUX |
445 | bool "Generic uClinux RAM/ROM filesystem support" | 445 | bool "Generic uClinux RAM/ROM filesystem support" |
446 | depends on MTD_RAM=y && !MMU | 446 | depends on MTD_RAM=y && (!MMU || COLDFIRE) |
447 | help | 447 | help |
448 | Map driver to support image based filesystems for uClinux. | 448 | Map driver to support image based filesystems for uClinux. |
449 | 449 | ||
450 | config MTD_WRSBC8260 | ||
451 | tristate "Map driver for WindRiver PowerQUICC II MPC82xx board" | ||
452 | depends on (SBC82xx || SBC8560) | ||
453 | select MTD_MAP_BANK_WIDTH_4 | ||
454 | select MTD_MAP_BANK_WIDTH_1 | ||
455 | select MTD_CFI_I1 | ||
456 | select MTD_CFI_I4 | ||
457 | help | ||
458 | Map driver for WindRiver PowerQUICC II MPC82xx board. Drives | ||
459 | all three flash regions on CS0, CS1 and CS6 if they are configured | ||
460 | correctly by the boot loader. | ||
461 | |||
462 | config MTD_DMV182 | 450 | config MTD_DMV182 |
463 | tristate "Map driver for Dy-4 SVME/DMV-182 board." | 451 | tristate "Map driver for Dy-4 SVME/DMV-182 board." |
464 | depends on DMV182 | 452 | depends on DMV182 |
diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile index 68a9a91d344f..deb43e9a1e7f 100644 --- a/drivers/mtd/maps/Makefile +++ b/drivers/mtd/maps/Makefile | |||
@@ -47,7 +47,6 @@ obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o | |||
47 | obj-$(CONFIG_MTD_H720X) += h720x-flash.o | 47 | obj-$(CONFIG_MTD_H720X) += h720x-flash.o |
48 | obj-$(CONFIG_MTD_IXP4XX) += ixp4xx.o | 48 | obj-$(CONFIG_MTD_IXP4XX) += ixp4xx.o |
49 | obj-$(CONFIG_MTD_IXP2000) += ixp2000.o | 49 | obj-$(CONFIG_MTD_IXP2000) += ixp2000.o |
50 | obj-$(CONFIG_MTD_WRSBC8260) += wr_sbc82xx_flash.o | ||
51 | obj-$(CONFIG_MTD_DMV182) += dmv182.o | 50 | obj-$(CONFIG_MTD_DMV182) += dmv182.o |
52 | obj-$(CONFIG_MTD_PLATRAM) += plat-ram.o | 51 | obj-$(CONFIG_MTD_PLATRAM) += plat-ram.o |
53 | obj-$(CONFIG_MTD_INTEL_VR_NOR) += intel_vr_nor.o | 52 | obj-$(CONFIG_MTD_INTEL_VR_NOR) += intel_vr_nor.o |
diff --git a/drivers/mtd/maps/autcpu12-nvram.c b/drivers/mtd/maps/autcpu12-nvram.c index e5bfd0e093bb..76fb594bb1d9 100644 --- a/drivers/mtd/maps/autcpu12-nvram.c +++ b/drivers/mtd/maps/autcpu12-nvram.c | |||
@@ -15,43 +15,54 @@ | |||
15 | * You should have received a copy of the GNU General Public License | 15 | * You should have received a copy of the GNU General Public License |
16 | * along with this program; if not, write to the Free Software | 16 | * along with this program; if not, write to the Free Software |
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
18 | * | ||
19 | */ | 18 | */ |
19 | #include <linux/sizes.h> | ||
20 | 20 | ||
21 | #include <linux/module.h> | ||
22 | #include <linux/types.h> | 21 | #include <linux/types.h> |
23 | #include <linux/kernel.h> | 22 | #include <linux/kernel.h> |
24 | #include <linux/ioport.h> | ||
25 | #include <linux/init.h> | 23 | #include <linux/init.h> |
26 | #include <asm/io.h> | 24 | #include <linux/device.h> |
27 | #include <asm/sizes.h> | 25 | #include <linux/module.h> |
28 | #include <mach/hardware.h> | 26 | #include <linux/platform_device.h> |
29 | #include <mach/autcpu12.h> | 27 | |
30 | #include <linux/mtd/mtd.h> | 28 | #include <linux/mtd/mtd.h> |
31 | #include <linux/mtd/map.h> | 29 | #include <linux/mtd/map.h> |
32 | #include <linux/mtd/partitions.h> | ||
33 | |||
34 | |||
35 | static struct mtd_info *sram_mtd; | ||
36 | 30 | ||
37 | struct map_info autcpu12_sram_map = { | 31 | struct autcpu12_nvram_priv { |
38 | .name = "SRAM", | 32 | struct mtd_info *mtd; |
39 | .size = 32768, | 33 | struct map_info map; |
40 | .bankwidth = 4, | ||
41 | .phys = 0x12000000, | ||
42 | }; | 34 | }; |
43 | 35 | ||
44 | static int __init init_autcpu12_sram (void) | 36 | static int __devinit autcpu12_nvram_probe(struct platform_device *pdev) |
45 | { | 37 | { |
46 | int err, save0, save1; | 38 | map_word tmp, save0, save1; |
39 | struct resource *res; | ||
40 | struct autcpu12_nvram_priv *priv; | ||
47 | 41 | ||
48 | autcpu12_sram_map.virt = ioremap(0x12000000, SZ_128K); | 42 | priv = devm_kzalloc(&pdev->dev, |
49 | if (!autcpu12_sram_map.virt) { | 43 | sizeof(struct autcpu12_nvram_priv), GFP_KERNEL); |
50 | printk("Failed to ioremap autcpu12 NV-RAM space\n"); | 44 | if (!priv) |
51 | err = -EIO; | 45 | return -ENOMEM; |
52 | goto out; | 46 | |
47 | platform_set_drvdata(pdev, priv); | ||
48 | |||
49 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
50 | if (!res) { | ||
51 | dev_err(&pdev->dev, "failed to get memory resource\n"); | ||
52 | return -ENOENT; | ||
53 | } | ||
54 | |||
55 | priv->map.bankwidth = 4; | ||
56 | priv->map.phys = res->start; | ||
57 | priv->map.size = resource_size(res); | ||
58 | priv->map.virt = devm_request_and_ioremap(&pdev->dev, res); | ||
59 | strcpy((char *)priv->map.name, res->name); | ||
60 | if (!priv->map.virt) { | ||
61 | dev_err(&pdev->dev, "failed to remap mem resource\n"); | ||
62 | return -EBUSY; | ||
53 | } | 63 | } |
54 | simple_map_init(&autcpu_sram_map); | 64 | |
65 | simple_map_init(&priv->map); | ||
55 | 66 | ||
56 | /* | 67 | /* |
57 | * Check for 32K/128K | 68 | * Check for 32K/128K |
@@ -61,65 +72,59 @@ static int __init init_autcpu12_sram (void) | |||
61 | * Read and check result on ofs 0x0 | 72 | * Read and check result on ofs 0x0 |
62 | * Restore contents | 73 | * Restore contents |
63 | */ | 74 | */ |
64 | save0 = map_read32(&autcpu12_sram_map,0); | 75 | save0 = map_read(&priv->map, 0); |
65 | save1 = map_read32(&autcpu12_sram_map,0x10000); | 76 | save1 = map_read(&priv->map, 0x10000); |
66 | map_write32(&autcpu12_sram_map,~save0,0x10000); | 77 | tmp.x[0] = ~save0.x[0]; |
67 | /* if we find this pattern on 0x0, we have 32K size | 78 | map_write(&priv->map, tmp, 0x10000); |
68 | * restore contents and exit | 79 | tmp = map_read(&priv->map, 0); |
69 | */ | 80 | /* if we find this pattern on 0x0, we have 32K size */ |
70 | if ( map_read32(&autcpu12_sram_map,0) != save0) { | 81 | if (!map_word_equal(&priv->map, tmp, save0)) { |
71 | map_write32(&autcpu12_sram_map,save0,0x0); | 82 | map_write(&priv->map, save0, 0x0); |
72 | goto map; | 83 | priv->map.size = SZ_32K; |
84 | } else | ||
85 | map_write(&priv->map, save1, 0x10000); | ||
86 | |||
87 | priv->mtd = do_map_probe("map_ram", &priv->map); | ||
88 | if (!priv->mtd) { | ||
89 | dev_err(&pdev->dev, "probing failed\n"); | ||
90 | return -ENXIO; | ||
73 | } | 91 | } |
74 | /* We have a 128K found, restore 0x10000 and set size | ||
75 | * to 128K | ||
76 | */ | ||
77 | map_write32(&autcpu12_sram_map,save1,0x10000); | ||
78 | autcpu12_sram_map.size = SZ_128K; | ||
79 | |||
80 | map: | ||
81 | sram_mtd = do_map_probe("map_ram", &autcpu12_sram_map); | ||
82 | if (!sram_mtd) { | ||
83 | printk("NV-RAM probe failed\n"); | ||
84 | err = -ENXIO; | ||
85 | goto out_ioremap; | ||
86 | } | ||
87 | |||
88 | sram_mtd->owner = THIS_MODULE; | ||
89 | sram_mtd->erasesize = 16; | ||
90 | 92 | ||
91 | if (mtd_device_register(sram_mtd, NULL, 0)) { | 93 | priv->mtd->owner = THIS_MODULE; |
92 | printk("NV-RAM device addition failed\n"); | 94 | priv->mtd->erasesize = 16; |
93 | err = -ENOMEM; | 95 | priv->mtd->dev.parent = &pdev->dev; |
94 | goto out_probe; | 96 | if (!mtd_device_register(priv->mtd, NULL, 0)) { |
97 | dev_info(&pdev->dev, | ||
98 | "NV-RAM device size %ldKiB registered on AUTCPU12\n", | ||
99 | priv->map.size / SZ_1K); | ||
100 | return 0; | ||
95 | } | 101 | } |
96 | 102 | ||
97 | printk("NV-RAM device size %ldKiB registered on AUTCPU12\n",autcpu12_sram_map.size/SZ_1K); | 103 | map_destroy(priv->mtd); |
98 | 104 | dev_err(&pdev->dev, "NV-RAM device addition failed\n"); | |
99 | return 0; | 105 | return -ENOMEM; |
100 | |||
101 | out_probe: | ||
102 | map_destroy(sram_mtd); | ||
103 | sram_mtd = 0; | ||
104 | |||
105 | out_ioremap: | ||
106 | iounmap((void *)autcpu12_sram_map.virt); | ||
107 | out: | ||
108 | return err; | ||
109 | } | 106 | } |
110 | 107 | ||
111 | static void __exit cleanup_autcpu12_maps(void) | 108 | static int __devexit autcpu12_nvram_remove(struct platform_device *pdev) |
112 | { | 109 | { |
113 | if (sram_mtd) { | 110 | struct autcpu12_nvram_priv *priv = platform_get_drvdata(pdev); |
114 | mtd_device_unregister(sram_mtd); | 111 | |
115 | map_destroy(sram_mtd); | 112 | mtd_device_unregister(priv->mtd); |
116 | iounmap((void *)autcpu12_sram_map.virt); | 113 | map_destroy(priv->mtd); |
117 | } | 114 | |
115 | return 0; | ||
118 | } | 116 | } |
119 | 117 | ||
120 | module_init(init_autcpu12_sram); | 118 | static struct platform_driver autcpu12_nvram_driver = { |
121 | module_exit(cleanup_autcpu12_maps); | 119 | .driver = { |
120 | .name = "autcpu12_nvram", | ||
121 | .owner = THIS_MODULE, | ||
122 | }, | ||
123 | .probe = autcpu12_nvram_probe, | ||
124 | .remove = __devexit_p(autcpu12_nvram_remove), | ||
125 | }; | ||
126 | module_platform_driver(autcpu12_nvram_driver); | ||
122 | 127 | ||
123 | MODULE_AUTHOR("Thomas Gleixner"); | 128 | MODULE_AUTHOR("Thomas Gleixner"); |
124 | MODULE_DESCRIPTION("autcpu12 NV-RAM map driver"); | 129 | MODULE_DESCRIPTION("autcpu12 NVRAM map driver"); |
125 | MODULE_LICENSE("GPL"); | 130 | MODULE_LICENSE("GPL"); |
diff --git a/drivers/mtd/maps/pci.c b/drivers/mtd/maps/pci.c index f14ce0af763f..1c30c1a307f4 100644 --- a/drivers/mtd/maps/pci.c +++ b/drivers/mtd/maps/pci.c | |||
@@ -43,26 +43,14 @@ static map_word mtd_pci_read8(struct map_info *_map, unsigned long ofs) | |||
43 | struct map_pci_info *map = (struct map_pci_info *)_map; | 43 | struct map_pci_info *map = (struct map_pci_info *)_map; |
44 | map_word val; | 44 | map_word val; |
45 | val.x[0]= readb(map->base + map->translate(map, ofs)); | 45 | val.x[0]= readb(map->base + map->translate(map, ofs)); |
46 | // printk("read8 : %08lx => %02x\n", ofs, val.x[0]); | ||
47 | return val; | 46 | return val; |
48 | } | 47 | } |
49 | 48 | ||
50 | #if 0 | ||
51 | static map_word mtd_pci_read16(struct map_info *_map, unsigned long ofs) | ||
52 | { | ||
53 | struct map_pci_info *map = (struct map_pci_info *)_map; | ||
54 | map_word val; | ||
55 | val.x[0] = readw(map->base + map->translate(map, ofs)); | ||
56 | // printk("read16: %08lx => %04x\n", ofs, val.x[0]); | ||
57 | return val; | ||
58 | } | ||
59 | #endif | ||
60 | static map_word mtd_pci_read32(struct map_info *_map, unsigned long ofs) | 49 | static map_word mtd_pci_read32(struct map_info *_map, unsigned long ofs) |
61 | { | 50 | { |
62 | struct map_pci_info *map = (struct map_pci_info *)_map; | 51 | struct map_pci_info *map = (struct map_pci_info *)_map; |
63 | map_word val; | 52 | map_word val; |
64 | val.x[0] = readl(map->base + map->translate(map, ofs)); | 53 | val.x[0] = readl(map->base + map->translate(map, ofs)); |
65 | // printk("read32: %08lx => %08x\n", ofs, val.x[0]); | ||
66 | return val; | 54 | return val; |
67 | } | 55 | } |
68 | 56 | ||
@@ -75,22 +63,12 @@ static void mtd_pci_copyfrom(struct map_info *_map, void *to, unsigned long from | |||
75 | static void mtd_pci_write8(struct map_info *_map, map_word val, unsigned long ofs) | 63 | static void mtd_pci_write8(struct map_info *_map, map_word val, unsigned long ofs) |
76 | { | 64 | { |
77 | struct map_pci_info *map = (struct map_pci_info *)_map; | 65 | struct map_pci_info *map = (struct map_pci_info *)_map; |
78 | // printk("write8 : %08lx <= %02x\n", ofs, val.x[0]); | ||
79 | writeb(val.x[0], map->base + map->translate(map, ofs)); | 66 | writeb(val.x[0], map->base + map->translate(map, ofs)); |
80 | } | 67 | } |
81 | 68 | ||
82 | #if 0 | ||
83 | static void mtd_pci_write16(struct map_info *_map, map_word val, unsigned long ofs) | ||
84 | { | ||
85 | struct map_pci_info *map = (struct map_pci_info *)_map; | ||
86 | // printk("write16: %08lx <= %04x\n", ofs, val.x[0]); | ||
87 | writew(val.x[0], map->base + map->translate(map, ofs)); | ||
88 | } | ||
89 | #endif | ||
90 | static void mtd_pci_write32(struct map_info *_map, map_word val, unsigned long ofs) | 69 | static void mtd_pci_write32(struct map_info *_map, map_word val, unsigned long ofs) |
91 | { | 70 | { |
92 | struct map_pci_info *map = (struct map_pci_info *)_map; | 71 | struct map_pci_info *map = (struct map_pci_info *)_map; |
93 | // printk("write32: %08lx <= %08x\n", ofs, val.x[0]); | ||
94 | writel(val.x[0], map->base + map->translate(map, ofs)); | 72 | writel(val.x[0], map->base + map->translate(map, ofs)); |
95 | } | 73 | } |
96 | 74 | ||
@@ -358,4 +336,3 @@ MODULE_LICENSE("GPL"); | |||
358 | MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>"); | 336 | MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>"); |
359 | MODULE_DESCRIPTION("Generic PCI map driver"); | 337 | MODULE_DESCRIPTION("Generic PCI map driver"); |
360 | MODULE_DEVICE_TABLE(pci, mtd_pci_ids); | 338 | MODULE_DEVICE_TABLE(pci, mtd_pci_ids); |
361 | |||
diff --git a/drivers/mtd/maps/physmap_of.c b/drivers/mtd/maps/physmap_of.c index 2e6fb6831d55..6f19acadb06c 100644 --- a/drivers/mtd/maps/physmap_of.c +++ b/drivers/mtd/maps/physmap_of.c | |||
@@ -169,6 +169,7 @@ static int __devinit of_flash_probe(struct platform_device *dev) | |||
169 | struct mtd_info **mtd_list = NULL; | 169 | struct mtd_info **mtd_list = NULL; |
170 | resource_size_t res_size; | 170 | resource_size_t res_size; |
171 | struct mtd_part_parser_data ppdata; | 171 | struct mtd_part_parser_data ppdata; |
172 | bool map_indirect; | ||
172 | 173 | ||
173 | match = of_match_device(of_flash_match, &dev->dev); | 174 | match = of_match_device(of_flash_match, &dev->dev); |
174 | if (!match) | 175 | if (!match) |
@@ -192,6 +193,8 @@ static int __devinit of_flash_probe(struct platform_device *dev) | |||
192 | } | 193 | } |
193 | count /= reg_tuple_size; | 194 | count /= reg_tuple_size; |
194 | 195 | ||
196 | map_indirect = of_property_read_bool(dp, "no-unaligned-direct-access"); | ||
197 | |||
195 | err = -ENOMEM; | 198 | err = -ENOMEM; |
196 | info = kzalloc(sizeof(struct of_flash) + | 199 | info = kzalloc(sizeof(struct of_flash) + |
197 | sizeof(struct of_flash_list) * count, GFP_KERNEL); | 200 | sizeof(struct of_flash_list) * count, GFP_KERNEL); |
@@ -247,6 +250,17 @@ static int __devinit of_flash_probe(struct platform_device *dev) | |||
247 | 250 | ||
248 | simple_map_init(&info->list[i].map); | 251 | simple_map_init(&info->list[i].map); |
249 | 252 | ||
253 | /* | ||
254 | * On some platforms (e.g. MPC5200) a direct 1:1 mapping | ||
255 | * may cause problems with JFFS2 usage, as the local bus (LPB) | ||
256 | * doesn't support unaligned accesses as implemented in the | ||
257 | * JFFS2 code via memcpy(). By setting NO_XIP, the | ||
258 | * flash will not be exposed directly to the MTD users | ||
259 | * (e.g. JFFS2) any more. | ||
260 | */ | ||
261 | if (map_indirect) | ||
262 | info->list[i].map.phys = NO_XIP; | ||
263 | |||
250 | if (probe_type) { | 264 | if (probe_type) { |
251 | info->list[i].mtd = do_map_probe(probe_type, | 265 | info->list[i].mtd = do_map_probe(probe_type, |
252 | &info->list[i].map); | 266 | &info->list[i].map); |
diff --git a/drivers/mtd/maps/rbtx4939-flash.c b/drivers/mtd/maps/rbtx4939-flash.c index 6f52e1f288b6..49c3fe715eee 100644 --- a/drivers/mtd/maps/rbtx4939-flash.c +++ b/drivers/mtd/maps/rbtx4939-flash.c | |||
@@ -100,8 +100,6 @@ static int rbtx4939_flash_probe(struct platform_device *dev) | |||
100 | goto err_out; | 100 | goto err_out; |
101 | } | 101 | } |
102 | info->mtd->owner = THIS_MODULE; | 102 | info->mtd->owner = THIS_MODULE; |
103 | if (err) | ||
104 | goto err_out; | ||
105 | err = mtd_device_parse_register(info->mtd, NULL, NULL, pdata->parts, | 103 | err = mtd_device_parse_register(info->mtd, NULL, NULL, pdata->parts, |
106 | pdata->nr_parts); | 104 | pdata->nr_parts); |
107 | 105 | ||
diff --git a/drivers/mtd/maps/uclinux.c b/drivers/mtd/maps/uclinux.c index c3bb304eca07..299bf88a6f41 100644 --- a/drivers/mtd/maps/uclinux.c +++ b/drivers/mtd/maps/uclinux.c | |||
@@ -67,10 +67,16 @@ static int __init uclinux_mtd_init(void) | |||
67 | printk("uclinux[mtd]: RAM probe address=0x%x size=0x%x\n", | 67 | printk("uclinux[mtd]: RAM probe address=0x%x size=0x%x\n", |
68 | (int) mapp->phys, (int) mapp->size); | 68 | (int) mapp->phys, (int) mapp->size); |
69 | 69 | ||
70 | mapp->virt = ioremap_nocache(mapp->phys, mapp->size); | 70 | /* |
71 | * The filesystem is guaranteed to be in direct mapped memory. It is | ||
72 | * directly following the kernels own bss region. Following the same | ||
73 | * mechanism used by architectures setting up traditional initrds we | ||
74 | * use phys_to_virt to get the virtual address of its start. | ||
75 | */ | ||
76 | mapp->virt = phys_to_virt(mapp->phys); | ||
71 | 77 | ||
72 | if (mapp->virt == 0) { | 78 | if (mapp->virt == 0) { |
73 | printk("uclinux[mtd]: ioremap_nocache() failed\n"); | 79 | printk("uclinux[mtd]: no virtual mapping?\n"); |
74 | return(-EIO); | 80 | return(-EIO); |
75 | } | 81 | } |
76 | 82 | ||
@@ -79,7 +85,6 @@ static int __init uclinux_mtd_init(void) | |||
79 | mtd = do_map_probe("map_ram", mapp); | 85 | mtd = do_map_probe("map_ram", mapp); |
80 | if (!mtd) { | 86 | if (!mtd) { |
81 | printk("uclinux[mtd]: failed to find a mapping?\n"); | 87 | printk("uclinux[mtd]: failed to find a mapping?\n"); |
82 | iounmap(mapp->virt); | ||
83 | return(-ENXIO); | 88 | return(-ENXIO); |
84 | } | 89 | } |
85 | 90 | ||
@@ -102,10 +107,8 @@ static void __exit uclinux_mtd_cleanup(void) | |||
102 | map_destroy(uclinux_ram_mtdinfo); | 107 | map_destroy(uclinux_ram_mtdinfo); |
103 | uclinux_ram_mtdinfo = NULL; | 108 | uclinux_ram_mtdinfo = NULL; |
104 | } | 109 | } |
105 | if (uclinux_ram_map.virt) { | 110 | if (uclinux_ram_map.virt) |
106 | iounmap((void *) uclinux_ram_map.virt); | ||
107 | uclinux_ram_map.virt = 0; | 111 | uclinux_ram_map.virt = 0; |
108 | } | ||
109 | } | 112 | } |
110 | 113 | ||
111 | /****************************************************************************/ | 114 | /****************************************************************************/ |
diff --git a/drivers/mtd/maps/wr_sbc82xx_flash.c b/drivers/mtd/maps/wr_sbc82xx_flash.c deleted file mode 100644 index e7534c82f93a..000000000000 --- a/drivers/mtd/maps/wr_sbc82xx_flash.c +++ /dev/null | |||
@@ -1,174 +0,0 @@ | |||
1 | /* | ||
2 | * Map for flash chips on Wind River PowerQUICC II SBC82xx board. | ||
3 | * | ||
4 | * Copyright (C) 2004 Red Hat, Inc. | ||
5 | * | ||
6 | * Author: David Woodhouse <dwmw2@infradead.org> | ||
7 | * | ||
8 | */ | ||
9 | |||
10 | #include <linux/module.h> | ||
11 | #include <linux/types.h> | ||
12 | #include <linux/kernel.h> | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <asm/io.h> | ||
16 | #include <linux/mtd/mtd.h> | ||
17 | #include <linux/mtd/map.h> | ||
18 | #include <linux/mtd/partitions.h> | ||
19 | |||
20 | #include <asm/immap_cpm2.h> | ||
21 | |||
22 | static struct mtd_info *sbcmtd[3]; | ||
23 | |||
24 | struct map_info sbc82xx_flash_map[3] = { | ||
25 | {.name = "Boot flash"}, | ||
26 | {.name = "Alternate boot flash"}, | ||
27 | {.name = "User flash"} | ||
28 | }; | ||
29 | |||
30 | static struct mtd_partition smallflash_parts[] = { | ||
31 | { | ||
32 | .name = "space", | ||
33 | .size = 0x100000, | ||
34 | .offset = 0, | ||
35 | }, { | ||
36 | .name = "bootloader", | ||
37 | .size = MTDPART_SIZ_FULL, | ||
38 | .offset = MTDPART_OFS_APPEND, | ||
39 | } | ||
40 | }; | ||
41 | |||
42 | static struct mtd_partition bigflash_parts[] = { | ||
43 | { | ||
44 | .name = "bootloader", | ||
45 | .size = 0x00100000, | ||
46 | .offset = 0, | ||
47 | }, { | ||
48 | .name = "file system", | ||
49 | .size = 0x01f00000, | ||
50 | .offset = MTDPART_OFS_APPEND, | ||
51 | }, { | ||
52 | .name = "boot config", | ||
53 | .size = 0x00100000, | ||
54 | .offset = MTDPART_OFS_APPEND, | ||
55 | }, { | ||
56 | .name = "space", | ||
57 | .size = 0x01f00000, | ||
58 | .offset = MTDPART_OFS_APPEND, | ||
59 | } | ||
60 | }; | ||
61 | |||
62 | static const char *part_probes[] __initconst = {"cmdlinepart", "RedBoot", NULL}; | ||
63 | |||
64 | #define init_sbc82xx_one_flash(map, br, or) \ | ||
65 | do { \ | ||
66 | (map).phys = (br & 1) ? (br & 0xffff8000) : 0; \ | ||
67 | (map).size = (br & 1) ? (~(or & 0xffff8000) + 1) : 0; \ | ||
68 | switch (br & 0x00001800) { \ | ||
69 | case 0x00000000: \ | ||
70 | case 0x00000800: (map).bankwidth = 1; break; \ | ||
71 | case 0x00001000: (map).bankwidth = 2; break; \ | ||
72 | case 0x00001800: (map).bankwidth = 4; break; \ | ||
73 | } \ | ||
74 | } while (0); | ||
75 | |||
76 | static int __init init_sbc82xx_flash(void) | ||
77 | { | ||
78 | volatile memctl_cpm2_t *mc = &cpm2_immr->im_memctl; | ||
79 | int bigflash; | ||
80 | int i; | ||
81 | |||
82 | #ifdef CONFIG_SBC8560 | ||
83 | mc = ioremap(0xff700000 + 0x5000, sizeof(memctl_cpm2_t)); | ||
84 | #else | ||
85 | mc = &cpm2_immr->im_memctl; | ||
86 | #endif | ||
87 | |||
88 | bigflash = 1; | ||
89 | if ((mc->memc_br0 & 0x00001800) == 0x00001800) | ||
90 | bigflash = 0; | ||
91 | |||
92 | init_sbc82xx_one_flash(sbc82xx_flash_map[0], mc->memc_br0, mc->memc_or0); | ||
93 | init_sbc82xx_one_flash(sbc82xx_flash_map[1], mc->memc_br6, mc->memc_or6); | ||
94 | init_sbc82xx_one_flash(sbc82xx_flash_map[2], mc->memc_br1, mc->memc_or1); | ||
95 | |||
96 | #ifdef CONFIG_SBC8560 | ||
97 | iounmap((void *) mc); | ||
98 | #endif | ||
99 | |||
100 | for (i=0; i<3; i++) { | ||
101 | int8_t flashcs[3] = { 0, 6, 1 }; | ||
102 | int nr_parts; | ||
103 | struct mtd_partition *defparts; | ||
104 | |||
105 | printk(KERN_NOTICE "PowerQUICC II %s (%ld MiB on CS%d", | ||
106 | sbc82xx_flash_map[i].name, | ||
107 | (sbc82xx_flash_map[i].size >> 20), | ||
108 | flashcs[i]); | ||
109 | if (!sbc82xx_flash_map[i].phys) { | ||
110 | /* We know it can't be at zero. */ | ||
111 | printk("): disabled by bootloader.\n"); | ||
112 | continue; | ||
113 | } | ||
114 | printk(" at %08lx)\n", sbc82xx_flash_map[i].phys); | ||
115 | |||
116 | sbc82xx_flash_map[i].virt = ioremap(sbc82xx_flash_map[i].phys, | ||
117 | sbc82xx_flash_map[i].size); | ||
118 | |||
119 | if (!sbc82xx_flash_map[i].virt) { | ||
120 | printk("Failed to ioremap\n"); | ||
121 | continue; | ||
122 | } | ||
123 | |||
124 | simple_map_init(&sbc82xx_flash_map[i]); | ||
125 | |||
126 | sbcmtd[i] = do_map_probe("cfi_probe", &sbc82xx_flash_map[i]); | ||
127 | |||
128 | if (!sbcmtd[i]) | ||
129 | continue; | ||
130 | |||
131 | sbcmtd[i]->owner = THIS_MODULE; | ||
132 | |||
133 | /* No partitioning detected. Use default */ | ||
134 | if (i == 2) { | ||
135 | defparts = NULL; | ||
136 | nr_parts = 0; | ||
137 | } else if (i == bigflash) { | ||
138 | defparts = bigflash_parts; | ||
139 | nr_parts = ARRAY_SIZE(bigflash_parts); | ||
140 | } else { | ||
141 | defparts = smallflash_parts; | ||
142 | nr_parts = ARRAY_SIZE(smallflash_parts); | ||
143 | } | ||
144 | |||
145 | mtd_device_parse_register(sbcmtd[i], part_probes, NULL, | ||
146 | defparts, nr_parts); | ||
147 | } | ||
148 | return 0; | ||
149 | } | ||
150 | |||
151 | static void __exit cleanup_sbc82xx_flash(void) | ||
152 | { | ||
153 | int i; | ||
154 | |||
155 | for (i=0; i<3; i++) { | ||
156 | if (!sbcmtd[i]) | ||
157 | continue; | ||
158 | |||
159 | mtd_device_unregister(sbcmtd[i]); | ||
160 | |||
161 | map_destroy(sbcmtd[i]); | ||
162 | |||
163 | iounmap((void *)sbc82xx_flash_map[i].virt); | ||
164 | sbc82xx_flash_map[i].virt = 0; | ||
165 | } | ||
166 | } | ||
167 | |||
168 | module_init(init_sbc82xx_flash); | ||
169 | module_exit(cleanup_sbc82xx_flash); | ||
170 | |||
171 | |||
172 | MODULE_LICENSE("GPL"); | ||
173 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); | ||
174 | MODULE_DESCRIPTION("Flash map driver for WindRiver PowerQUICC II"); | ||
diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c index 73ae81a629f2..82c06165d3d2 100644 --- a/drivers/mtd/mtdchar.c +++ b/drivers/mtd/mtdchar.c | |||
@@ -1162,7 +1162,11 @@ static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma) | |||
1162 | resource_size_t start, off; | 1162 | resource_size_t start, off; |
1163 | unsigned long len, vma_len; | 1163 | unsigned long len, vma_len; |
1164 | 1164 | ||
1165 | if (mtd->type == MTD_RAM || mtd->type == MTD_ROM) { | 1165 | /* This is broken because it assumes the MTD device is map-based |
1166 | and that mtd->priv is a valid struct map_info. It should be | ||
1167 | replaced with something that uses the mtd_get_unmapped_area() | ||
1168 | operation properly. */ | ||
1169 | if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) { | ||
1166 | off = get_vm_offset(vma); | 1170 | off = get_vm_offset(vma); |
1167 | start = map->phys; | 1171 | start = map->phys; |
1168 | len = PAGE_ALIGN((start & ~PAGE_MASK) + map->size); | 1172 | len = PAGE_ALIGN((start & ~PAGE_MASK) + map->size); |
diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index b9adff543f5f..374c46dff7dd 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c | |||
@@ -858,6 +858,27 @@ int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, | |||
858 | } | 858 | } |
859 | EXPORT_SYMBOL_GPL(mtd_panic_write); | 859 | EXPORT_SYMBOL_GPL(mtd_panic_write); |
860 | 860 | ||
861 | int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) | ||
862 | { | ||
863 | int ret_code; | ||
864 | ops->retlen = ops->oobretlen = 0; | ||
865 | if (!mtd->_read_oob) | ||
866 | return -EOPNOTSUPP; | ||
867 | /* | ||
868 | * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics | ||
869 | * similar to mtd->_read(), returning a non-negative integer | ||
870 | * representing max bitflips. In other cases, mtd->_read_oob() may | ||
871 | * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). | ||
872 | */ | ||
873 | ret_code = mtd->_read_oob(mtd, from, ops); | ||
874 | if (unlikely(ret_code < 0)) | ||
875 | return ret_code; | ||
876 | if (mtd->ecc_strength == 0) | ||
877 | return 0; /* device lacks ecc */ | ||
878 | return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; | ||
879 | } | ||
880 | EXPORT_SYMBOL_GPL(mtd_read_oob); | ||
881 | |||
861 | /* | 882 | /* |
862 | * Method to access the protection register area, present in some flash | 883 | * Method to access the protection register area, present in some flash |
863 | * devices. The user data is one time programmable but the factory data is read | 884 | * devices. The user data is one time programmable but the factory data is read |
diff --git a/drivers/mtd/mtdoops.c b/drivers/mtd/mtdoops.c index 438737a1f59a..f5b3f91fa1cc 100644 --- a/drivers/mtd/mtdoops.c +++ b/drivers/mtd/mtdoops.c | |||
@@ -169,14 +169,7 @@ static void mtdoops_workfunc_erase(struct work_struct *work) | |||
169 | cxt->nextpage = 0; | 169 | cxt->nextpage = 0; |
170 | } | 170 | } |
171 | 171 | ||
172 | while (1) { | 172 | while ((ret = mtd_block_isbad(mtd, cxt->nextpage * record_size)) > 0) { |
173 | ret = mtd_block_isbad(mtd, cxt->nextpage * record_size); | ||
174 | if (!ret) | ||
175 | break; | ||
176 | if (ret < 0) { | ||
177 | printk(KERN_ERR "mtdoops: block_isbad failed, aborting\n"); | ||
178 | return; | ||
179 | } | ||
180 | badblock: | 173 | badblock: |
181 | printk(KERN_WARNING "mtdoops: bad block at %08lx\n", | 174 | printk(KERN_WARNING "mtdoops: bad block at %08lx\n", |
182 | cxt->nextpage * record_size); | 175 | cxt->nextpage * record_size); |
@@ -190,6 +183,11 @@ badblock: | |||
190 | } | 183 | } |
191 | } | 184 | } |
192 | 185 | ||
186 | if (ret < 0) { | ||
187 | printk(KERN_ERR "mtdoops: mtd_block_isbad failed, aborting\n"); | ||
188 | return; | ||
189 | } | ||
190 | |||
193 | for (j = 0, ret = -1; (j < 3) && (ret < 0); j++) | 191 | for (j = 0, ret = -1; (j < 3) && (ret < 0); j++) |
194 | ret = mtdoops_erase_block(cxt, cxt->nextpage * record_size); | 192 | ret = mtdoops_erase_block(cxt, cxt->nextpage * record_size); |
195 | 193 | ||
diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index 3a49e6de5e60..70fa70a8318f 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c | |||
@@ -711,6 +711,8 @@ static const char *default_mtd_part_types[] = { | |||
711 | * partition parsers, specified in @types. However, if @types is %NULL, then | 711 | * partition parsers, specified in @types. However, if @types is %NULL, then |
712 | * the default list of parsers is used. The default list contains only the | 712 | * the default list of parsers is used. The default list contains only the |
713 | * "cmdlinepart" and "ofpart" parsers ATM. | 713 | * "cmdlinepart" and "ofpart" parsers ATM. |
714 | * Note: If there are more then one parser in @types, the kernel only takes the | ||
715 | * partitions parsed out by the first parser. | ||
714 | * | 716 | * |
715 | * This function may return: | 717 | * This function may return: |
716 | * o a negative error code in case of failure | 718 | * o a negative error code in case of failure |
@@ -735,11 +737,12 @@ int parse_mtd_partitions(struct mtd_info *master, const char **types, | |||
735 | if (!parser) | 737 | if (!parser) |
736 | continue; | 738 | continue; |
737 | ret = (*parser->parse_fn)(master, pparts, data); | 739 | ret = (*parser->parse_fn)(master, pparts, data); |
740 | put_partition_parser(parser); | ||
738 | if (ret > 0) { | 741 | if (ret > 0) { |
739 | printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", | 742 | printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", |
740 | ret, parser->name, master->name); | 743 | ret, parser->name, master->name); |
744 | break; | ||
741 | } | 745 | } |
742 | put_partition_parser(parser); | ||
743 | } | 746 | } |
744 | return ret; | 747 | return ret; |
745 | } | 748 | } |
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 598cd0a3adee..4883139460be 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig | |||
@@ -22,15 +22,6 @@ menuconfig MTD_NAND | |||
22 | 22 | ||
23 | if MTD_NAND | 23 | if MTD_NAND |
24 | 24 | ||
25 | config MTD_NAND_VERIFY_WRITE | ||
26 | bool "Verify NAND page writes" | ||
27 | help | ||
28 | This adds an extra check when data is written to the flash. The | ||
29 | NAND flash device internally checks only bits transitioning | ||
30 | from 1 to 0. There is a rare possibility that even though the | ||
31 | device thinks the write was successful, a bit could have been | ||
32 | flipped accidentally due to device wear or something else. | ||
33 | |||
34 | config MTD_NAND_BCH | 25 | config MTD_NAND_BCH |
35 | tristate | 26 | tristate |
36 | select BCH | 27 | select BCH |
@@ -267,22 +258,6 @@ config MTD_NAND_S3C2410_CLKSTOP | |||
267 | when the is NAND chip selected or released, but will save | 258 | when the is NAND chip selected or released, but will save |
268 | approximately 5mA of power when there is nothing happening. | 259 | approximately 5mA of power when there is nothing happening. |
269 | 260 | ||
270 | config MTD_NAND_BCM_UMI | ||
271 | tristate "NAND Flash support for BCM Reference Boards" | ||
272 | depends on ARCH_BCMRING | ||
273 | help | ||
274 | This enables the NAND flash controller on the BCM UMI block. | ||
275 | |||
276 | No board specific support is done by this driver, each board | ||
277 | must advertise a platform_device for the driver to attach. | ||
278 | |||
279 | config MTD_NAND_BCM_UMI_HWCS | ||
280 | bool "BCM UMI NAND Hardware CS" | ||
281 | depends on MTD_NAND_BCM_UMI | ||
282 | help | ||
283 | Enable the use of the BCM UMI block's internal CS using NAND. | ||
284 | This should only be used if you know the external NAND CS can toggle. | ||
285 | |||
286 | config MTD_NAND_DISKONCHIP | 261 | config MTD_NAND_DISKONCHIP |
287 | tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)" | 262 | tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)" |
288 | depends on EXPERIMENTAL | 263 | depends on EXPERIMENTAL |
@@ -356,7 +331,7 @@ config MTD_NAND_DISKONCHIP_BBTWRITE | |||
356 | 331 | ||
357 | config MTD_NAND_DOCG4 | 332 | config MTD_NAND_DOCG4 |
358 | tristate "Support for DiskOnChip G4 (EXPERIMENTAL)" | 333 | tristate "Support for DiskOnChip G4 (EXPERIMENTAL)" |
359 | depends on EXPERIMENTAL | 334 | depends on EXPERIMENTAL && HAS_IOMEM |
360 | select BCH | 335 | select BCH |
361 | select BITREVERSE | 336 | select BITREVERSE |
362 | help | 337 | help |
@@ -414,6 +389,28 @@ config MTD_NAND_PXA3xx | |||
414 | This enables the driver for the NAND flash device found on | 389 | This enables the driver for the NAND flash device found on |
415 | PXA3xx processors | 390 | PXA3xx processors |
416 | 391 | ||
392 | config MTD_NAND_SLC_LPC32XX | ||
393 | tristate "NXP LPC32xx SLC Controller" | ||
394 | depends on ARCH_LPC32XX | ||
395 | help | ||
396 | Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell | ||
397 | chips) NAND controller. This is the default for the PHYTEC 3250 | ||
398 | reference board which contains a NAND256R3A2CZA6 chip. | ||
399 | |||
400 | Please check the actual NAND chip connected and its support | ||
401 | by the SLC NAND controller. | ||
402 | |||
403 | config MTD_NAND_MLC_LPC32XX | ||
404 | tristate "NXP LPC32xx MLC Controller" | ||
405 | depends on ARCH_LPC32XX | ||
406 | help | ||
407 | Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND | ||
408 | controller. This is the default for the WORK92105 controller | ||
409 | board. | ||
410 | |||
411 | Please check the actual NAND chip connected and its support | ||
412 | by the MLC NAND controller. | ||
413 | |||
417 | config MTD_NAND_CM_X270 | 414 | config MTD_NAND_CM_X270 |
418 | tristate "Support for NAND Flash on CM-X270 modules" | 415 | tristate "Support for NAND Flash on CM-X270 modules" |
419 | depends on MACH_ARMCORE | 416 | depends on MACH_ARMCORE |
@@ -439,10 +436,10 @@ config MTD_NAND_NANDSIM | |||
439 | MTD nand layer. | 436 | MTD nand layer. |
440 | 437 | ||
441 | config MTD_NAND_GPMI_NAND | 438 | config MTD_NAND_GPMI_NAND |
442 | bool "GPMI NAND Flash Controller driver" | 439 | tristate "GPMI NAND Flash Controller driver" |
443 | depends on MTD_NAND && MXS_DMA | 440 | depends on MTD_NAND && MXS_DMA |
444 | help | 441 | help |
445 | Enables NAND Flash support for IMX23 or IMX28. | 442 | Enables NAND Flash support for IMX23, IMX28 or IMX6. |
446 | The GPMI controller is very powerful, with the help of BCH | 443 | The GPMI controller is very powerful, with the help of BCH |
447 | module, it can do the hardware ECC. The GPMI supports several | 444 | module, it can do the hardware ECC. The GPMI supports several |
448 | NAND flashs at the same time. The GPMI may conflicts with other | 445 | NAND flashs at the same time. The GPMI may conflicts with other |
@@ -510,7 +507,7 @@ config MTD_NAND_MPC5121_NFC | |||
510 | 507 | ||
511 | config MTD_NAND_MXC | 508 | config MTD_NAND_MXC |
512 | tristate "MXC NAND support" | 509 | tristate "MXC NAND support" |
513 | depends on IMX_HAVE_PLATFORM_MXC_NAND | 510 | depends on ARCH_MXC |
514 | help | 511 | help |
515 | This enables the driver for the NAND flash controller on the | 512 | This enables the driver for the NAND flash controller on the |
516 | MXC processors. | 513 | MXC processors. |
@@ -567,4 +564,12 @@ config MTD_NAND_FSMC | |||
567 | Enables support for NAND Flash chips on the ST Microelectronics | 564 | Enables support for NAND Flash chips on the ST Microelectronics |
568 | Flexible Static Memory Controller (FSMC) | 565 | Flexible Static Memory Controller (FSMC) |
569 | 566 | ||
567 | config MTD_NAND_XWAY | ||
568 | tristate "Support for NAND on Lantiq XWAY SoC" | ||
569 | depends on LANTIQ && SOC_TYPE_XWAY | ||
570 | select MTD_NAND_PLATFORM | ||
571 | help | ||
572 | Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached | ||
573 | to the External Bus Unit (EBU). | ||
574 | |||
570 | endif # MTD_NAND | 575 | endif # MTD_NAND |
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index d4b4d8739bd8..2cbd0916b733 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile | |||
@@ -40,16 +40,18 @@ obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o | |||
40 | obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o | 40 | obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o |
41 | obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o | 41 | obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o |
42 | obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o | 42 | obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o |
43 | obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o | ||
44 | obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o | ||
43 | obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o | 45 | obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o |
44 | obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o | 46 | obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o |
45 | obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o | 47 | obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o |
46 | obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o | 48 | obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o |
47 | obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o | 49 | obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o |
48 | obj-$(CONFIG_MTD_NAND_NOMADIK) += nomadik_nand.o | 50 | obj-$(CONFIG_MTD_NAND_NOMADIK) += nomadik_nand.o |
49 | obj-$(CONFIG_MTD_NAND_BCM_UMI) += bcm_umi_nand.o nand_bcm_umi.o | ||
50 | obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o | 51 | obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o |
51 | obj-$(CONFIG_MTD_NAND_RICOH) += r852.o | 52 | obj-$(CONFIG_MTD_NAND_RICOH) += r852.o |
52 | obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o | 53 | obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o |
53 | obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ | 54 | obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ |
55 | obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o | ||
54 | 56 | ||
55 | nand-objs := nand_base.o nand_bbt.o | 57 | nand-objs := nand_base.o nand_bbt.o |
diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/ams-delta.c index a7040af08536..9e7723aa7acc 100644 --- a/drivers/mtd/nand/ams-delta.c +++ b/drivers/mtd/nand/ams-delta.c | |||
@@ -107,18 +107,6 @@ static void ams_delta_read_buf(struct mtd_info *mtd, u_char *buf, int len) | |||
107 | buf[i] = ams_delta_read_byte(mtd); | 107 | buf[i] = ams_delta_read_byte(mtd); |
108 | } | 108 | } |
109 | 109 | ||
110 | static int ams_delta_verify_buf(struct mtd_info *mtd, const u_char *buf, | ||
111 | int len) | ||
112 | { | ||
113 | int i; | ||
114 | |||
115 | for (i=0; i<len; i++) | ||
116 | if (buf[i] != ams_delta_read_byte(mtd)) | ||
117 | return -EFAULT; | ||
118 | |||
119 | return 0; | ||
120 | } | ||
121 | |||
122 | /* | 110 | /* |
123 | * Command control function | 111 | * Command control function |
124 | * | 112 | * |
@@ -237,7 +225,6 @@ static int __devinit ams_delta_init(struct platform_device *pdev) | |||
237 | this->read_byte = ams_delta_read_byte; | 225 | this->read_byte = ams_delta_read_byte; |
238 | this->write_buf = ams_delta_write_buf; | 226 | this->write_buf = ams_delta_write_buf; |
239 | this->read_buf = ams_delta_read_buf; | 227 | this->read_buf = ams_delta_read_buf; |
240 | this->verify_buf = ams_delta_verify_buf; | ||
241 | this->cmd_ctrl = ams_delta_hwcontrol; | 228 | this->cmd_ctrl = ams_delta_hwcontrol; |
242 | if (gpio_request(AMS_DELTA_GPIO_PIN_NAND_RB, "nand_rdy") == 0) { | 229 | if (gpio_request(AMS_DELTA_GPIO_PIN_NAND_RB, "nand_rdy") == 0) { |
243 | this->dev_ready = ams_delta_nand_ready; | 230 | this->dev_ready = ams_delta_nand_ready; |
diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c index 97ac6712bb19..914455783302 100644 --- a/drivers/mtd/nand/atmel_nand.c +++ b/drivers/mtd/nand/atmel_nand.c | |||
@@ -1,20 +1,22 @@ | |||
1 | /* | 1 | /* |
2 | * Copyright (C) 2003 Rick Bronson | 2 | * Copyright © 2003 Rick Bronson |
3 | * | 3 | * |
4 | * Derived from drivers/mtd/nand/autcpu12.c | 4 | * Derived from drivers/mtd/nand/autcpu12.c |
5 | * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) | 5 | * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) |
6 | * | 6 | * |
7 | * Derived from drivers/mtd/spia.c | 7 | * Derived from drivers/mtd/spia.c |
8 | * Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com) | 8 | * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) |
9 | * | 9 | * |
10 | * | 10 | * |
11 | * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 | 11 | * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 |
12 | * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007 | 12 | * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 |
13 | * | 13 | * |
14 | * Derived from Das U-Boot source code | 14 | * Derived from Das U-Boot source code |
15 | * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) | 15 | * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) |
16 | * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas | 16 | * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas |
17 | * | 17 | * |
18 | * Add Programmable Multibit ECC support for various AT91 SoC | ||
19 | * © Copyright 2012 ATMEL, Hong Xu | ||
18 | * | 20 | * |
19 | * This program is free software; you can redistribute it and/or modify | 21 | * This program is free software; you can redistribute it and/or modify |
20 | * it under the terms of the GNU General Public License version 2 as | 22 | * it under the terms of the GNU General Public License version 2 as |
@@ -93,8 +95,36 @@ struct atmel_nand_host { | |||
93 | 95 | ||
94 | struct completion comp; | 96 | struct completion comp; |
95 | struct dma_chan *dma_chan; | 97 | struct dma_chan *dma_chan; |
98 | |||
99 | bool has_pmecc; | ||
100 | u8 pmecc_corr_cap; | ||
101 | u16 pmecc_sector_size; | ||
102 | u32 pmecc_lookup_table_offset; | ||
103 | |||
104 | int pmecc_bytes_per_sector; | ||
105 | int pmecc_sector_number; | ||
106 | int pmecc_degree; /* Degree of remainders */ | ||
107 | int pmecc_cw_len; /* Length of codeword */ | ||
108 | |||
109 | void __iomem *pmerrloc_base; | ||
110 | void __iomem *pmecc_rom_base; | ||
111 | |||
112 | /* lookup table for alpha_to and index_of */ | ||
113 | void __iomem *pmecc_alpha_to; | ||
114 | void __iomem *pmecc_index_of; | ||
115 | |||
116 | /* data for pmecc computation */ | ||
117 | int16_t *pmecc_partial_syn; | ||
118 | int16_t *pmecc_si; | ||
119 | int16_t *pmecc_smu; /* Sigma table */ | ||
120 | int16_t *pmecc_lmu; /* polynomal order */ | ||
121 | int *pmecc_mu; | ||
122 | int *pmecc_dmu; | ||
123 | int *pmecc_delta; | ||
96 | }; | 124 | }; |
97 | 125 | ||
126 | static struct nand_ecclayout atmel_pmecc_oobinfo; | ||
127 | |||
98 | static int cpu_has_dma(void) | 128 | static int cpu_has_dma(void) |
99 | { | 129 | { |
100 | return cpu_is_at91sam9rl() || cpu_is_at91sam9g45(); | 130 | return cpu_is_at91sam9rl() || cpu_is_at91sam9g45(); |
@@ -288,6 +318,703 @@ static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) | |||
288 | } | 318 | } |
289 | 319 | ||
290 | /* | 320 | /* |
321 | * Return number of ecc bytes per sector according to sector size and | ||
322 | * correction capability | ||
323 | * | ||
324 | * Following table shows what at91 PMECC supported: | ||
325 | * Correction Capability Sector_512_bytes Sector_1024_bytes | ||
326 | * ===================== ================ ================= | ||
327 | * 2-bits 4-bytes 4-bytes | ||
328 | * 4-bits 7-bytes 7-bytes | ||
329 | * 8-bits 13-bytes 14-bytes | ||
330 | * 12-bits 20-bytes 21-bytes | ||
331 | * 24-bits 39-bytes 42-bytes | ||
332 | */ | ||
333 | static int __devinit pmecc_get_ecc_bytes(int cap, int sector_size) | ||
334 | { | ||
335 | int m = 12 + sector_size / 512; | ||
336 | return (m * cap + 7) / 8; | ||
337 | } | ||
338 | |||
339 | static void __devinit pmecc_config_ecc_layout(struct nand_ecclayout *layout, | ||
340 | int oobsize, int ecc_len) | ||
341 | { | ||
342 | int i; | ||
343 | |||
344 | layout->eccbytes = ecc_len; | ||
345 | |||
346 | /* ECC will occupy the last ecc_len bytes continuously */ | ||
347 | for (i = 0; i < ecc_len; i++) | ||
348 | layout->eccpos[i] = oobsize - ecc_len + i; | ||
349 | |||
350 | layout->oobfree[0].offset = 2; | ||
351 | layout->oobfree[0].length = | ||
352 | oobsize - ecc_len - layout->oobfree[0].offset; | ||
353 | } | ||
354 | |||
355 | static void __devinit __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) | ||
356 | { | ||
357 | int table_size; | ||
358 | |||
359 | table_size = host->pmecc_sector_size == 512 ? | ||
360 | PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024; | ||
361 | |||
362 | return host->pmecc_rom_base + host->pmecc_lookup_table_offset + | ||
363 | table_size * sizeof(int16_t); | ||
364 | } | ||
365 | |||
366 | static void pmecc_data_free(struct atmel_nand_host *host) | ||
367 | { | ||
368 | kfree(host->pmecc_partial_syn); | ||
369 | kfree(host->pmecc_si); | ||
370 | kfree(host->pmecc_lmu); | ||
371 | kfree(host->pmecc_smu); | ||
372 | kfree(host->pmecc_mu); | ||
373 | kfree(host->pmecc_dmu); | ||
374 | kfree(host->pmecc_delta); | ||
375 | } | ||
376 | |||
377 | static int __devinit pmecc_data_alloc(struct atmel_nand_host *host) | ||
378 | { | ||
379 | const int cap = host->pmecc_corr_cap; | ||
380 | |||
381 | host->pmecc_partial_syn = kzalloc((2 * cap + 1) * sizeof(int16_t), | ||
382 | GFP_KERNEL); | ||
383 | host->pmecc_si = kzalloc((2 * cap + 1) * sizeof(int16_t), GFP_KERNEL); | ||
384 | host->pmecc_lmu = kzalloc((cap + 1) * sizeof(int16_t), GFP_KERNEL); | ||
385 | host->pmecc_smu = kzalloc((cap + 2) * (2 * cap + 1) * sizeof(int16_t), | ||
386 | GFP_KERNEL); | ||
387 | host->pmecc_mu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL); | ||
388 | host->pmecc_dmu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL); | ||
389 | host->pmecc_delta = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL); | ||
390 | |||
391 | if (host->pmecc_partial_syn && | ||
392 | host->pmecc_si && | ||
393 | host->pmecc_lmu && | ||
394 | host->pmecc_smu && | ||
395 | host->pmecc_mu && | ||
396 | host->pmecc_dmu && | ||
397 | host->pmecc_delta) | ||
398 | return 0; | ||
399 | |||
400 | /* error happened */ | ||
401 | pmecc_data_free(host); | ||
402 | return -ENOMEM; | ||
403 | } | ||
404 | |||
405 | static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) | ||
406 | { | ||
407 | struct nand_chip *nand_chip = mtd->priv; | ||
408 | struct atmel_nand_host *host = nand_chip->priv; | ||
409 | int i; | ||
410 | uint32_t value; | ||
411 | |||
412 | /* Fill odd syndromes */ | ||
413 | for (i = 0; i < host->pmecc_corr_cap; i++) { | ||
414 | value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2); | ||
415 | if (i & 1) | ||
416 | value >>= 16; | ||
417 | value &= 0xffff; | ||
418 | host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; | ||
419 | } | ||
420 | } | ||
421 | |||
422 | static void pmecc_substitute(struct mtd_info *mtd) | ||
423 | { | ||
424 | struct nand_chip *nand_chip = mtd->priv; | ||
425 | struct atmel_nand_host *host = nand_chip->priv; | ||
426 | int16_t __iomem *alpha_to = host->pmecc_alpha_to; | ||
427 | int16_t __iomem *index_of = host->pmecc_index_of; | ||
428 | int16_t *partial_syn = host->pmecc_partial_syn; | ||
429 | const int cap = host->pmecc_corr_cap; | ||
430 | int16_t *si; | ||
431 | int i, j; | ||
432 | |||
433 | /* si[] is a table that holds the current syndrome value, | ||
434 | * an element of that table belongs to the field | ||
435 | */ | ||
436 | si = host->pmecc_si; | ||
437 | |||
438 | memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); | ||
439 | |||
440 | /* Computation 2t syndromes based on S(x) */ | ||
441 | /* Odd syndromes */ | ||
442 | for (i = 1; i < 2 * cap; i += 2) { | ||
443 | for (j = 0; j < host->pmecc_degree; j++) { | ||
444 | if (partial_syn[i] & ((unsigned short)0x1 << j)) | ||
445 | si[i] = readw_relaxed(alpha_to + i * j) ^ si[i]; | ||
446 | } | ||
447 | } | ||
448 | /* Even syndrome = (Odd syndrome) ** 2 */ | ||
449 | for (i = 2, j = 1; j <= cap; i = ++j << 1) { | ||
450 | if (si[j] == 0) { | ||
451 | si[i] = 0; | ||
452 | } else { | ||
453 | int16_t tmp; | ||
454 | |||
455 | tmp = readw_relaxed(index_of + si[j]); | ||
456 | tmp = (tmp * 2) % host->pmecc_cw_len; | ||
457 | si[i] = readw_relaxed(alpha_to + tmp); | ||
458 | } | ||
459 | } | ||
460 | |||
461 | return; | ||
462 | } | ||
463 | |||
464 | static void pmecc_get_sigma(struct mtd_info *mtd) | ||
465 | { | ||
466 | struct nand_chip *nand_chip = mtd->priv; | ||
467 | struct atmel_nand_host *host = nand_chip->priv; | ||
468 | |||
469 | int16_t *lmu = host->pmecc_lmu; | ||
470 | int16_t *si = host->pmecc_si; | ||
471 | int *mu = host->pmecc_mu; | ||
472 | int *dmu = host->pmecc_dmu; /* Discrepancy */ | ||
473 | int *delta = host->pmecc_delta; /* Delta order */ | ||
474 | int cw_len = host->pmecc_cw_len; | ||
475 | const int16_t cap = host->pmecc_corr_cap; | ||
476 | const int num = 2 * cap + 1; | ||
477 | int16_t __iomem *index_of = host->pmecc_index_of; | ||
478 | int16_t __iomem *alpha_to = host->pmecc_alpha_to; | ||
479 | int i, j, k; | ||
480 | uint32_t dmu_0_count, tmp; | ||
481 | int16_t *smu = host->pmecc_smu; | ||
482 | |||
483 | /* index of largest delta */ | ||
484 | int ro; | ||
485 | int largest; | ||
486 | int diff; | ||
487 | |||
488 | dmu_0_count = 0; | ||
489 | |||
490 | /* First Row */ | ||
491 | |||
492 | /* Mu */ | ||
493 | mu[0] = -1; | ||
494 | |||
495 | memset(smu, 0, sizeof(int16_t) * num); | ||
496 | smu[0] = 1; | ||
497 | |||
498 | /* discrepancy set to 1 */ | ||
499 | dmu[0] = 1; | ||
500 | /* polynom order set to 0 */ | ||
501 | lmu[0] = 0; | ||
502 | delta[0] = (mu[0] * 2 - lmu[0]) >> 1; | ||
503 | |||
504 | /* Second Row */ | ||
505 | |||
506 | /* Mu */ | ||
507 | mu[1] = 0; | ||
508 | /* Sigma(x) set to 1 */ | ||
509 | memset(&smu[num], 0, sizeof(int16_t) * num); | ||
510 | smu[num] = 1; | ||
511 | |||
512 | /* discrepancy set to S1 */ | ||
513 | dmu[1] = si[1]; | ||
514 | |||
515 | /* polynom order set to 0 */ | ||
516 | lmu[1] = 0; | ||
517 | |||
518 | delta[1] = (mu[1] * 2 - lmu[1]) >> 1; | ||
519 | |||
520 | /* Init the Sigma(x) last row */ | ||
521 | memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num); | ||
522 | |||
523 | for (i = 1; i <= cap; i++) { | ||
524 | mu[i + 1] = i << 1; | ||
525 | /* Begin Computing Sigma (Mu+1) and L(mu) */ | ||
526 | /* check if discrepancy is set to 0 */ | ||
527 | if (dmu[i] == 0) { | ||
528 | dmu_0_count++; | ||
529 | |||
530 | tmp = ((cap - (lmu[i] >> 1) - 1) / 2); | ||
531 | if ((cap - (lmu[i] >> 1) - 1) & 0x1) | ||
532 | tmp += 2; | ||
533 | else | ||
534 | tmp += 1; | ||
535 | |||
536 | if (dmu_0_count == tmp) { | ||
537 | for (j = 0; j <= (lmu[i] >> 1) + 1; j++) | ||
538 | smu[(cap + 1) * num + j] = | ||
539 | smu[i * num + j]; | ||
540 | |||
541 | lmu[cap + 1] = lmu[i]; | ||
542 | return; | ||
543 | } | ||
544 | |||
545 | /* copy polynom */ | ||
546 | for (j = 0; j <= lmu[i] >> 1; j++) | ||
547 | smu[(i + 1) * num + j] = smu[i * num + j]; | ||
548 | |||
549 | /* copy previous polynom order to the next */ | ||
550 | lmu[i + 1] = lmu[i]; | ||
551 | } else { | ||
552 | ro = 0; | ||
553 | largest = -1; | ||
554 | /* find largest delta with dmu != 0 */ | ||
555 | for (j = 0; j < i; j++) { | ||
556 | if ((dmu[j]) && (delta[j] > largest)) { | ||
557 | largest = delta[j]; | ||
558 | ro = j; | ||
559 | } | ||
560 | } | ||
561 | |||
562 | /* compute difference */ | ||
563 | diff = (mu[i] - mu[ro]); | ||
564 | |||
565 | /* Compute degree of the new smu polynomial */ | ||
566 | if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) | ||
567 | lmu[i + 1] = lmu[i]; | ||
568 | else | ||
569 | lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; | ||
570 | |||
571 | /* Init smu[i+1] with 0 */ | ||
572 | for (k = 0; k < num; k++) | ||
573 | smu[(i + 1) * num + k] = 0; | ||
574 | |||
575 | /* Compute smu[i+1] */ | ||
576 | for (k = 0; k <= lmu[ro] >> 1; k++) { | ||
577 | int16_t a, b, c; | ||
578 | |||
579 | if (!(smu[ro * num + k] && dmu[i])) | ||
580 | continue; | ||
581 | a = readw_relaxed(index_of + dmu[i]); | ||
582 | b = readw_relaxed(index_of + dmu[ro]); | ||
583 | c = readw_relaxed(index_of + smu[ro * num + k]); | ||
584 | tmp = a + (cw_len - b) + c; | ||
585 | a = readw_relaxed(alpha_to + tmp % cw_len); | ||
586 | smu[(i + 1) * num + (k + diff)] = a; | ||
587 | } | ||
588 | |||
589 | for (k = 0; k <= lmu[i] >> 1; k++) | ||
590 | smu[(i + 1) * num + k] ^= smu[i * num + k]; | ||
591 | } | ||
592 | |||
593 | /* End Computing Sigma (Mu+1) and L(mu) */ | ||
594 | /* In either case compute delta */ | ||
595 | delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; | ||
596 | |||
597 | /* Do not compute discrepancy for the last iteration */ | ||
598 | if (i >= cap) | ||
599 | continue; | ||
600 | |||
601 | for (k = 0; k <= (lmu[i + 1] >> 1); k++) { | ||
602 | tmp = 2 * (i - 1); | ||
603 | if (k == 0) { | ||
604 | dmu[i + 1] = si[tmp + 3]; | ||
605 | } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { | ||
606 | int16_t a, b, c; | ||
607 | a = readw_relaxed(index_of + | ||
608 | smu[(i + 1) * num + k]); | ||
609 | b = si[2 * (i - 1) + 3 - k]; | ||
610 | c = readw_relaxed(index_of + b); | ||
611 | tmp = a + c; | ||
612 | tmp %= cw_len; | ||
613 | dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^ | ||
614 | dmu[i + 1]; | ||
615 | } | ||
616 | } | ||
617 | } | ||
618 | |||
619 | return; | ||
620 | } | ||
621 | |||
622 | static int pmecc_err_location(struct mtd_info *mtd) | ||
623 | { | ||
624 | struct nand_chip *nand_chip = mtd->priv; | ||
625 | struct atmel_nand_host *host = nand_chip->priv; | ||
626 | unsigned long end_time; | ||
627 | const int cap = host->pmecc_corr_cap; | ||
628 | const int num = 2 * cap + 1; | ||
629 | int sector_size = host->pmecc_sector_size; | ||
630 | int err_nbr = 0; /* number of error */ | ||
631 | int roots_nbr; /* number of roots */ | ||
632 | int i; | ||
633 | uint32_t val; | ||
634 | int16_t *smu = host->pmecc_smu; | ||
635 | |||
636 | pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE); | ||
637 | |||
638 | for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { | ||
639 | pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i, | ||
640 | smu[(cap + 1) * num + i]); | ||
641 | err_nbr++; | ||
642 | } | ||
643 | |||
644 | val = (err_nbr - 1) << 16; | ||
645 | if (sector_size == 1024) | ||
646 | val |= 1; | ||
647 | |||
648 | pmerrloc_writel(host->pmerrloc_base, ELCFG, val); | ||
649 | pmerrloc_writel(host->pmerrloc_base, ELEN, | ||
650 | sector_size * 8 + host->pmecc_degree * cap); | ||
651 | |||
652 | end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); | ||
653 | while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) | ||
654 | & PMERRLOC_CALC_DONE)) { | ||
655 | if (unlikely(time_after(jiffies, end_time))) { | ||
656 | dev_err(host->dev, "PMECC: Timeout to calculate error location.\n"); | ||
657 | return -1; | ||
658 | } | ||
659 | cpu_relax(); | ||
660 | } | ||
661 | |||
662 | roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) | ||
663 | & PMERRLOC_ERR_NUM_MASK) >> 8; | ||
664 | /* Number of roots == degree of smu hence <= cap */ | ||
665 | if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) | ||
666 | return err_nbr - 1; | ||
667 | |||
668 | /* Number of roots does not match the degree of smu | ||
669 | * unable to correct error */ | ||
670 | return -1; | ||
671 | } | ||
672 | |||
673 | static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, | ||
674 | int sector_num, int extra_bytes, int err_nbr) | ||
675 | { | ||
676 | struct nand_chip *nand_chip = mtd->priv; | ||
677 | struct atmel_nand_host *host = nand_chip->priv; | ||
678 | int i = 0; | ||
679 | int byte_pos, bit_pos, sector_size, pos; | ||
680 | uint32_t tmp; | ||
681 | uint8_t err_byte; | ||
682 | |||
683 | sector_size = host->pmecc_sector_size; | ||
684 | |||
685 | while (err_nbr) { | ||
686 | tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1; | ||
687 | byte_pos = tmp / 8; | ||
688 | bit_pos = tmp % 8; | ||
689 | |||
690 | if (byte_pos >= (sector_size + extra_bytes)) | ||
691 | BUG(); /* should never happen */ | ||
692 | |||
693 | if (byte_pos < sector_size) { | ||
694 | err_byte = *(buf + byte_pos); | ||
695 | *(buf + byte_pos) ^= (1 << bit_pos); | ||
696 | |||
697 | pos = sector_num * host->pmecc_sector_size + byte_pos; | ||
698 | dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", | ||
699 | pos, bit_pos, err_byte, *(buf + byte_pos)); | ||
700 | } else { | ||
701 | /* Bit flip in OOB area */ | ||
702 | tmp = sector_num * host->pmecc_bytes_per_sector | ||
703 | + (byte_pos - sector_size); | ||
704 | err_byte = ecc[tmp]; | ||
705 | ecc[tmp] ^= (1 << bit_pos); | ||
706 | |||
707 | pos = tmp + nand_chip->ecc.layout->eccpos[0]; | ||
708 | dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", | ||
709 | pos, bit_pos, err_byte, ecc[tmp]); | ||
710 | } | ||
711 | |||
712 | i++; | ||
713 | err_nbr--; | ||
714 | } | ||
715 | |||
716 | return; | ||
717 | } | ||
718 | |||
719 | static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, | ||
720 | u8 *ecc) | ||
721 | { | ||
722 | struct nand_chip *nand_chip = mtd->priv; | ||
723 | struct atmel_nand_host *host = nand_chip->priv; | ||
724 | int i, err_nbr, eccbytes; | ||
725 | uint8_t *buf_pos; | ||
726 | |||
727 | eccbytes = nand_chip->ecc.bytes; | ||
728 | for (i = 0; i < eccbytes; i++) | ||
729 | if (ecc[i] != 0xff) | ||
730 | goto normal_check; | ||
731 | /* Erased page, return OK */ | ||
732 | return 0; | ||
733 | |||
734 | normal_check: | ||
735 | for (i = 0; i < host->pmecc_sector_number; i++) { | ||
736 | err_nbr = 0; | ||
737 | if (pmecc_stat & 0x1) { | ||
738 | buf_pos = buf + i * host->pmecc_sector_size; | ||
739 | |||
740 | pmecc_gen_syndrome(mtd, i); | ||
741 | pmecc_substitute(mtd); | ||
742 | pmecc_get_sigma(mtd); | ||
743 | |||
744 | err_nbr = pmecc_err_location(mtd); | ||
745 | if (err_nbr == -1) { | ||
746 | dev_err(host->dev, "PMECC: Too many errors\n"); | ||
747 | mtd->ecc_stats.failed++; | ||
748 | return -EIO; | ||
749 | } else { | ||
750 | pmecc_correct_data(mtd, buf_pos, ecc, i, | ||
751 | host->pmecc_bytes_per_sector, err_nbr); | ||
752 | mtd->ecc_stats.corrected += err_nbr; | ||
753 | } | ||
754 | } | ||
755 | pmecc_stat >>= 1; | ||
756 | } | ||
757 | |||
758 | return 0; | ||
759 | } | ||
760 | |||
761 | static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, | ||
762 | struct nand_chip *chip, uint8_t *buf, int oob_required, int page) | ||
763 | { | ||
764 | struct atmel_nand_host *host = chip->priv; | ||
765 | int eccsize = chip->ecc.size; | ||
766 | uint8_t *oob = chip->oob_poi; | ||
767 | uint32_t *eccpos = chip->ecc.layout->eccpos; | ||
768 | uint32_t stat; | ||
769 | unsigned long end_time; | ||
770 | |||
771 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); | ||
772 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); | ||
773 | pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG) | ||
774 | & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE); | ||
775 | |||
776 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); | ||
777 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA); | ||
778 | |||
779 | chip->read_buf(mtd, buf, eccsize); | ||
780 | chip->read_buf(mtd, oob, mtd->oobsize); | ||
781 | |||
782 | end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); | ||
783 | while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { | ||
784 | if (unlikely(time_after(jiffies, end_time))) { | ||
785 | dev_err(host->dev, "PMECC: Timeout to get error status.\n"); | ||
786 | return -EIO; | ||
787 | } | ||
788 | cpu_relax(); | ||
789 | } | ||
790 | |||
791 | stat = pmecc_readl_relaxed(host->ecc, ISR); | ||
792 | if (stat != 0) | ||
793 | if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0) | ||
794 | return -EIO; | ||
795 | |||
796 | return 0; | ||
797 | } | ||
798 | |||
799 | static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, | ||
800 | struct nand_chip *chip, const uint8_t *buf, int oob_required) | ||
801 | { | ||
802 | struct atmel_nand_host *host = chip->priv; | ||
803 | uint32_t *eccpos = chip->ecc.layout->eccpos; | ||
804 | int i, j; | ||
805 | unsigned long end_time; | ||
806 | |||
807 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); | ||
808 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); | ||
809 | |||
810 | pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG) | | ||
811 | PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE); | ||
812 | |||
813 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); | ||
814 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA); | ||
815 | |||
816 | chip->write_buf(mtd, (u8 *)buf, mtd->writesize); | ||
817 | |||
818 | end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); | ||
819 | while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { | ||
820 | if (unlikely(time_after(jiffies, end_time))) { | ||
821 | dev_err(host->dev, "PMECC: Timeout to get ECC value.\n"); | ||
822 | return -EIO; | ||
823 | } | ||
824 | cpu_relax(); | ||
825 | } | ||
826 | |||
827 | for (i = 0; i < host->pmecc_sector_number; i++) { | ||
828 | for (j = 0; j < host->pmecc_bytes_per_sector; j++) { | ||
829 | int pos; | ||
830 | |||
831 | pos = i * host->pmecc_bytes_per_sector + j; | ||
832 | chip->oob_poi[eccpos[pos]] = | ||
833 | pmecc_readb_ecc_relaxed(host->ecc, i, j); | ||
834 | } | ||
835 | } | ||
836 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
837 | |||
838 | return 0; | ||
839 | } | ||
840 | |||
841 | static void atmel_pmecc_core_init(struct mtd_info *mtd) | ||
842 | { | ||
843 | struct nand_chip *nand_chip = mtd->priv; | ||
844 | struct atmel_nand_host *host = nand_chip->priv; | ||
845 | uint32_t val = 0; | ||
846 | struct nand_ecclayout *ecc_layout; | ||
847 | |||
848 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); | ||
849 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); | ||
850 | |||
851 | switch (host->pmecc_corr_cap) { | ||
852 | case 2: | ||
853 | val = PMECC_CFG_BCH_ERR2; | ||
854 | break; | ||
855 | case 4: | ||
856 | val = PMECC_CFG_BCH_ERR4; | ||
857 | break; | ||
858 | case 8: | ||
859 | val = PMECC_CFG_BCH_ERR8; | ||
860 | break; | ||
861 | case 12: | ||
862 | val = PMECC_CFG_BCH_ERR12; | ||
863 | break; | ||
864 | case 24: | ||
865 | val = PMECC_CFG_BCH_ERR24; | ||
866 | break; | ||
867 | } | ||
868 | |||
869 | if (host->pmecc_sector_size == 512) | ||
870 | val |= PMECC_CFG_SECTOR512; | ||
871 | else if (host->pmecc_sector_size == 1024) | ||
872 | val |= PMECC_CFG_SECTOR1024; | ||
873 | |||
874 | switch (host->pmecc_sector_number) { | ||
875 | case 1: | ||
876 | val |= PMECC_CFG_PAGE_1SECTOR; | ||
877 | break; | ||
878 | case 2: | ||
879 | val |= PMECC_CFG_PAGE_2SECTORS; | ||
880 | break; | ||
881 | case 4: | ||
882 | val |= PMECC_CFG_PAGE_4SECTORS; | ||
883 | break; | ||
884 | case 8: | ||
885 | val |= PMECC_CFG_PAGE_8SECTORS; | ||
886 | break; | ||
887 | } | ||
888 | |||
889 | val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE | ||
890 | | PMECC_CFG_AUTO_DISABLE); | ||
891 | pmecc_writel(host->ecc, CFG, val); | ||
892 | |||
893 | ecc_layout = nand_chip->ecc.layout; | ||
894 | pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1); | ||
895 | pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]); | ||
896 | pmecc_writel(host->ecc, EADDR, | ||
897 | ecc_layout->eccpos[ecc_layout->eccbytes - 1]); | ||
898 | /* See datasheet about PMECC Clock Control Register */ | ||
899 | pmecc_writel(host->ecc, CLK, 2); | ||
900 | pmecc_writel(host->ecc, IDR, 0xff); | ||
901 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); | ||
902 | } | ||
903 | |||
904 | static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev, | ||
905 | struct atmel_nand_host *host) | ||
906 | { | ||
907 | struct mtd_info *mtd = &host->mtd; | ||
908 | struct nand_chip *nand_chip = &host->nand_chip; | ||
909 | struct resource *regs, *regs_pmerr, *regs_rom; | ||
910 | int cap, sector_size, err_no; | ||
911 | |||
912 | cap = host->pmecc_corr_cap; | ||
913 | sector_size = host->pmecc_sector_size; | ||
914 | dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n", | ||
915 | cap, sector_size); | ||
916 | |||
917 | regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); | ||
918 | if (!regs) { | ||
919 | dev_warn(host->dev, | ||
920 | "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n"); | ||
921 | nand_chip->ecc.mode = NAND_ECC_SOFT; | ||
922 | return 0; | ||
923 | } | ||
924 | |||
925 | host->ecc = ioremap(regs->start, resource_size(regs)); | ||
926 | if (host->ecc == NULL) { | ||
927 | dev_err(host->dev, "ioremap failed\n"); | ||
928 | err_no = -EIO; | ||
929 | goto err_pmecc_ioremap; | ||
930 | } | ||
931 | |||
932 | regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2); | ||
933 | regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3); | ||
934 | if (regs_pmerr && regs_rom) { | ||
935 | host->pmerrloc_base = ioremap(regs_pmerr->start, | ||
936 | resource_size(regs_pmerr)); | ||
937 | host->pmecc_rom_base = ioremap(regs_rom->start, | ||
938 | resource_size(regs_rom)); | ||
939 | } | ||
940 | |||
941 | if (!host->pmerrloc_base || !host->pmecc_rom_base) { | ||
942 | dev_err(host->dev, | ||
943 | "Can not get I/O resource for PMECC ERRLOC controller or ROM!\n"); | ||
944 | err_no = -EIO; | ||
945 | goto err_pmloc_ioremap; | ||
946 | } | ||
947 | |||
948 | /* ECC is calculated for the whole page (1 step) */ | ||
949 | nand_chip->ecc.size = mtd->writesize; | ||
950 | |||
951 | /* set ECC page size and oob layout */ | ||
952 | switch (mtd->writesize) { | ||
953 | case 2048: | ||
954 | host->pmecc_degree = PMECC_GF_DIMENSION_13; | ||
955 | host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; | ||
956 | host->pmecc_sector_number = mtd->writesize / sector_size; | ||
957 | host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( | ||
958 | cap, sector_size); | ||
959 | host->pmecc_alpha_to = pmecc_get_alpha_to(host); | ||
960 | host->pmecc_index_of = host->pmecc_rom_base + | ||
961 | host->pmecc_lookup_table_offset; | ||
962 | |||
963 | nand_chip->ecc.steps = 1; | ||
964 | nand_chip->ecc.strength = cap; | ||
965 | nand_chip->ecc.bytes = host->pmecc_bytes_per_sector * | ||
966 | host->pmecc_sector_number; | ||
967 | if (nand_chip->ecc.bytes > mtd->oobsize - 2) { | ||
968 | dev_err(host->dev, "No room for ECC bytes\n"); | ||
969 | err_no = -EINVAL; | ||
970 | goto err_no_ecc_room; | ||
971 | } | ||
972 | pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, | ||
973 | mtd->oobsize, | ||
974 | nand_chip->ecc.bytes); | ||
975 | nand_chip->ecc.layout = &atmel_pmecc_oobinfo; | ||
976 | break; | ||
977 | case 512: | ||
978 | case 1024: | ||
979 | case 4096: | ||
980 | /* TODO */ | ||
981 | dev_warn(host->dev, | ||
982 | "Unsupported page size for PMECC, use Software ECC\n"); | ||
983 | default: | ||
984 | /* page size not handled by HW ECC */ | ||
985 | /* switching back to soft ECC */ | ||
986 | nand_chip->ecc.mode = NAND_ECC_SOFT; | ||
987 | return 0; | ||
988 | } | ||
989 | |||
990 | /* Allocate data for PMECC computation */ | ||
991 | err_no = pmecc_data_alloc(host); | ||
992 | if (err_no) { | ||
993 | dev_err(host->dev, | ||
994 | "Cannot allocate memory for PMECC computation!\n"); | ||
995 | goto err_pmecc_data_alloc; | ||
996 | } | ||
997 | |||
998 | nand_chip->ecc.read_page = atmel_nand_pmecc_read_page; | ||
999 | nand_chip->ecc.write_page = atmel_nand_pmecc_write_page; | ||
1000 | |||
1001 | atmel_pmecc_core_init(mtd); | ||
1002 | |||
1003 | return 0; | ||
1004 | |||
1005 | err_pmecc_data_alloc: | ||
1006 | err_no_ecc_room: | ||
1007 | err_pmloc_ioremap: | ||
1008 | iounmap(host->ecc); | ||
1009 | if (host->pmerrloc_base) | ||
1010 | iounmap(host->pmerrloc_base); | ||
1011 | if (host->pmecc_rom_base) | ||
1012 | iounmap(host->pmecc_rom_base); | ||
1013 | err_pmecc_ioremap: | ||
1014 | return err_no; | ||
1015 | } | ||
1016 | |||
1017 | /* | ||
291 | * Calculate HW ECC | 1018 | * Calculate HW ECC |
292 | * | 1019 | * |
293 | * function called after a write | 1020 | * function called after a write |
@@ -481,7 +1208,8 @@ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) | |||
481 | static int __devinit atmel_of_init_port(struct atmel_nand_host *host, | 1208 | static int __devinit atmel_of_init_port(struct atmel_nand_host *host, |
482 | struct device_node *np) | 1209 | struct device_node *np) |
483 | { | 1210 | { |
484 | u32 val; | 1211 | u32 val, table_offset; |
1212 | u32 offset[2]; | ||
485 | int ecc_mode; | 1213 | int ecc_mode; |
486 | struct atmel_nand_data *board = &host->board; | 1214 | struct atmel_nand_data *board = &host->board; |
487 | enum of_gpio_flags flags; | 1215 | enum of_gpio_flags flags; |
@@ -517,6 +1245,50 @@ static int __devinit atmel_of_init_port(struct atmel_nand_host *host, | |||
517 | board->enable_pin = of_get_gpio(np, 1); | 1245 | board->enable_pin = of_get_gpio(np, 1); |
518 | board->det_pin = of_get_gpio(np, 2); | 1246 | board->det_pin = of_get_gpio(np, 2); |
519 | 1247 | ||
1248 | host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc"); | ||
1249 | |||
1250 | if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc) | ||
1251 | return 0; /* Not using PMECC */ | ||
1252 | |||
1253 | /* use PMECC, get correction capability, sector size and lookup | ||
1254 | * table offset. | ||
1255 | */ | ||
1256 | if (of_property_read_u32(np, "atmel,pmecc-cap", &val) != 0) { | ||
1257 | dev_err(host->dev, "Cannot decide PMECC Capability\n"); | ||
1258 | return -EINVAL; | ||
1259 | } else if ((val != 2) && (val != 4) && (val != 8) && (val != 12) && | ||
1260 | (val != 24)) { | ||
1261 | dev_err(host->dev, | ||
1262 | "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n", | ||
1263 | val); | ||
1264 | return -EINVAL; | ||
1265 | } | ||
1266 | host->pmecc_corr_cap = (u8)val; | ||
1267 | |||
1268 | if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) != 0) { | ||
1269 | dev_err(host->dev, "Cannot decide PMECC Sector Size\n"); | ||
1270 | return -EINVAL; | ||
1271 | } else if ((val != 512) && (val != 1024)) { | ||
1272 | dev_err(host->dev, | ||
1273 | "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n", | ||
1274 | val); | ||
1275 | return -EINVAL; | ||
1276 | } | ||
1277 | host->pmecc_sector_size = (u16)val; | ||
1278 | |||
1279 | if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset", | ||
1280 | offset, 2) != 0) { | ||
1281 | dev_err(host->dev, "Cannot get PMECC lookup table offset\n"); | ||
1282 | return -EINVAL; | ||
1283 | } | ||
1284 | table_offset = host->pmecc_sector_size == 512 ? offset[0] : offset[1]; | ||
1285 | |||
1286 | if (!table_offset) { | ||
1287 | dev_err(host->dev, "Invalid PMECC lookup table offset\n"); | ||
1288 | return -EINVAL; | ||
1289 | } | ||
1290 | host->pmecc_lookup_table_offset = table_offset; | ||
1291 | |||
520 | return 0; | 1292 | return 0; |
521 | } | 1293 | } |
522 | #else | 1294 | #else |
@@ -527,6 +1299,66 @@ static int __devinit atmel_of_init_port(struct atmel_nand_host *host, | |||
527 | } | 1299 | } |
528 | #endif | 1300 | #endif |
529 | 1301 | ||
1302 | static int __init atmel_hw_nand_init_params(struct platform_device *pdev, | ||
1303 | struct atmel_nand_host *host) | ||
1304 | { | ||
1305 | struct mtd_info *mtd = &host->mtd; | ||
1306 | struct nand_chip *nand_chip = &host->nand_chip; | ||
1307 | struct resource *regs; | ||
1308 | |||
1309 | regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); | ||
1310 | if (!regs) { | ||
1311 | dev_err(host->dev, | ||
1312 | "Can't get I/O resource regs, use software ECC\n"); | ||
1313 | nand_chip->ecc.mode = NAND_ECC_SOFT; | ||
1314 | return 0; | ||
1315 | } | ||
1316 | |||
1317 | host->ecc = ioremap(regs->start, resource_size(regs)); | ||
1318 | if (host->ecc == NULL) { | ||
1319 | dev_err(host->dev, "ioremap failed\n"); | ||
1320 | return -EIO; | ||
1321 | } | ||
1322 | |||
1323 | /* ECC is calculated for the whole page (1 step) */ | ||
1324 | nand_chip->ecc.size = mtd->writesize; | ||
1325 | |||
1326 | /* set ECC page size and oob layout */ | ||
1327 | switch (mtd->writesize) { | ||
1328 | case 512: | ||
1329 | nand_chip->ecc.layout = &atmel_oobinfo_small; | ||
1330 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); | ||
1331 | break; | ||
1332 | case 1024: | ||
1333 | nand_chip->ecc.layout = &atmel_oobinfo_large; | ||
1334 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); | ||
1335 | break; | ||
1336 | case 2048: | ||
1337 | nand_chip->ecc.layout = &atmel_oobinfo_large; | ||
1338 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); | ||
1339 | break; | ||
1340 | case 4096: | ||
1341 | nand_chip->ecc.layout = &atmel_oobinfo_large; | ||
1342 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); | ||
1343 | break; | ||
1344 | default: | ||
1345 | /* page size not handled by HW ECC */ | ||
1346 | /* switching back to soft ECC */ | ||
1347 | nand_chip->ecc.mode = NAND_ECC_SOFT; | ||
1348 | return 0; | ||
1349 | } | ||
1350 | |||
1351 | /* set up for HW ECC */ | ||
1352 | nand_chip->ecc.calculate = atmel_nand_calculate; | ||
1353 | nand_chip->ecc.correct = atmel_nand_correct; | ||
1354 | nand_chip->ecc.hwctl = atmel_nand_hwctl; | ||
1355 | nand_chip->ecc.read_page = atmel_nand_read_page; | ||
1356 | nand_chip->ecc.bytes = 4; | ||
1357 | nand_chip->ecc.strength = 1; | ||
1358 | |||
1359 | return 0; | ||
1360 | } | ||
1361 | |||
530 | /* | 1362 | /* |
531 | * Probe for the NAND device. | 1363 | * Probe for the NAND device. |
532 | */ | 1364 | */ |
@@ -535,7 +1367,6 @@ static int __init atmel_nand_probe(struct platform_device *pdev) | |||
535 | struct atmel_nand_host *host; | 1367 | struct atmel_nand_host *host; |
536 | struct mtd_info *mtd; | 1368 | struct mtd_info *mtd; |
537 | struct nand_chip *nand_chip; | 1369 | struct nand_chip *nand_chip; |
538 | struct resource *regs; | ||
539 | struct resource *mem; | 1370 | struct resource *mem; |
540 | struct mtd_part_parser_data ppdata = {}; | 1371 | struct mtd_part_parser_data ppdata = {}; |
541 | int res; | 1372 | int res; |
@@ -568,7 +1399,7 @@ static int __init atmel_nand_probe(struct platform_device *pdev) | |||
568 | if (pdev->dev.of_node) { | 1399 | if (pdev->dev.of_node) { |
569 | res = atmel_of_init_port(host, pdev->dev.of_node); | 1400 | res = atmel_of_init_port(host, pdev->dev.of_node); |
570 | if (res) | 1401 | if (res) |
571 | goto err_nand_ioremap; | 1402 | goto err_ecc_ioremap; |
572 | } else { | 1403 | } else { |
573 | memcpy(&host->board, pdev->dev.platform_data, | 1404 | memcpy(&host->board, pdev->dev.platform_data, |
574 | sizeof(struct atmel_nand_data)); | 1405 | sizeof(struct atmel_nand_data)); |
@@ -583,33 +1414,45 @@ static int __init atmel_nand_probe(struct platform_device *pdev) | |||
583 | nand_chip->IO_ADDR_W = host->io_base; | 1414 | nand_chip->IO_ADDR_W = host->io_base; |
584 | nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; | 1415 | nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; |
585 | 1416 | ||
586 | if (gpio_is_valid(host->board.rdy_pin)) | 1417 | if (gpio_is_valid(host->board.rdy_pin)) { |
587 | nand_chip->dev_ready = atmel_nand_device_ready; | 1418 | res = gpio_request(host->board.rdy_pin, "nand_rdy"); |
1419 | if (res < 0) { | ||
1420 | dev_err(&pdev->dev, | ||
1421 | "can't request rdy gpio %d\n", | ||
1422 | host->board.rdy_pin); | ||
1423 | goto err_ecc_ioremap; | ||
1424 | } | ||
588 | 1425 | ||
589 | nand_chip->ecc.mode = host->board.ecc_mode; | 1426 | res = gpio_direction_input(host->board.rdy_pin); |
1427 | if (res < 0) { | ||
1428 | dev_err(&pdev->dev, | ||
1429 | "can't request input direction rdy gpio %d\n", | ||
1430 | host->board.rdy_pin); | ||
1431 | goto err_ecc_ioremap; | ||
1432 | } | ||
590 | 1433 | ||
591 | regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); | 1434 | nand_chip->dev_ready = atmel_nand_device_ready; |
592 | if (!regs && nand_chip->ecc.mode == NAND_ECC_HW) { | ||
593 | printk(KERN_ERR "atmel_nand: can't get I/O resource " | ||
594 | "regs\nFalling back on software ECC\n"); | ||
595 | nand_chip->ecc.mode = NAND_ECC_SOFT; | ||
596 | } | 1435 | } |
597 | 1436 | ||
598 | if (nand_chip->ecc.mode == NAND_ECC_HW) { | 1437 | if (gpio_is_valid(host->board.enable_pin)) { |
599 | host->ecc = ioremap(regs->start, resource_size(regs)); | 1438 | res = gpio_request(host->board.enable_pin, "nand_enable"); |
600 | if (host->ecc == NULL) { | 1439 | if (res < 0) { |
601 | printk(KERN_ERR "atmel_nand: ioremap failed\n"); | 1440 | dev_err(&pdev->dev, |
602 | res = -EIO; | 1441 | "can't request enable gpio %d\n", |
1442 | host->board.enable_pin); | ||
1443 | goto err_ecc_ioremap; | ||
1444 | } | ||
1445 | |||
1446 | res = gpio_direction_output(host->board.enable_pin, 1); | ||
1447 | if (res < 0) { | ||
1448 | dev_err(&pdev->dev, | ||
1449 | "can't request output direction enable gpio %d\n", | ||
1450 | host->board.enable_pin); | ||
603 | goto err_ecc_ioremap; | 1451 | goto err_ecc_ioremap; |
604 | } | 1452 | } |
605 | nand_chip->ecc.calculate = atmel_nand_calculate; | ||
606 | nand_chip->ecc.correct = atmel_nand_correct; | ||
607 | nand_chip->ecc.hwctl = atmel_nand_hwctl; | ||
608 | nand_chip->ecc.read_page = atmel_nand_read_page; | ||
609 | nand_chip->ecc.bytes = 4; | ||
610 | nand_chip->ecc.strength = 1; | ||
611 | } | 1453 | } |
612 | 1454 | ||
1455 | nand_chip->ecc.mode = host->board.ecc_mode; | ||
613 | nand_chip->chip_delay = 20; /* 20us command delay time */ | 1456 | nand_chip->chip_delay = 20; /* 20us command delay time */ |
614 | 1457 | ||
615 | if (host->board.bus_width_16) /* 16-bit bus width */ | 1458 | if (host->board.bus_width_16) /* 16-bit bus width */ |
@@ -622,6 +1465,22 @@ static int __init atmel_nand_probe(struct platform_device *pdev) | |||
622 | atmel_nand_enable(host); | 1465 | atmel_nand_enable(host); |
623 | 1466 | ||
624 | if (gpio_is_valid(host->board.det_pin)) { | 1467 | if (gpio_is_valid(host->board.det_pin)) { |
1468 | res = gpio_request(host->board.det_pin, "nand_det"); | ||
1469 | if (res < 0) { | ||
1470 | dev_err(&pdev->dev, | ||
1471 | "can't request det gpio %d\n", | ||
1472 | host->board.det_pin); | ||
1473 | goto err_no_card; | ||
1474 | } | ||
1475 | |||
1476 | res = gpio_direction_input(host->board.det_pin); | ||
1477 | if (res < 0) { | ||
1478 | dev_err(&pdev->dev, | ||
1479 | "can't request input direction det gpio %d\n", | ||
1480 | host->board.det_pin); | ||
1481 | goto err_no_card; | ||
1482 | } | ||
1483 | |||
625 | if (gpio_get_value(host->board.det_pin)) { | 1484 | if (gpio_get_value(host->board.det_pin)) { |
626 | printk(KERN_INFO "No SmartMedia card inserted.\n"); | 1485 | printk(KERN_INFO "No SmartMedia card inserted.\n"); |
627 | res = -ENXIO; | 1486 | res = -ENXIO; |
@@ -661,40 +1520,13 @@ static int __init atmel_nand_probe(struct platform_device *pdev) | |||
661 | } | 1520 | } |
662 | 1521 | ||
663 | if (nand_chip->ecc.mode == NAND_ECC_HW) { | 1522 | if (nand_chip->ecc.mode == NAND_ECC_HW) { |
664 | /* ECC is calculated for the whole page (1 step) */ | 1523 | if (host->has_pmecc) |
665 | nand_chip->ecc.size = mtd->writesize; | 1524 | res = atmel_pmecc_nand_init_params(pdev, host); |
666 | 1525 | else | |
667 | /* set ECC page size and oob layout */ | 1526 | res = atmel_hw_nand_init_params(pdev, host); |
668 | switch (mtd->writesize) { | 1527 | |
669 | case 512: | 1528 | if (res != 0) |
670 | nand_chip->ecc.layout = &atmel_oobinfo_small; | 1529 | goto err_hw_ecc; |
671 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); | ||
672 | break; | ||
673 | case 1024: | ||
674 | nand_chip->ecc.layout = &atmel_oobinfo_large; | ||
675 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); | ||
676 | break; | ||
677 | case 2048: | ||
678 | nand_chip->ecc.layout = &atmel_oobinfo_large; | ||
679 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); | ||
680 | break; | ||
681 | case 4096: | ||
682 | nand_chip->ecc.layout = &atmel_oobinfo_large; | ||
683 | ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); | ||
684 | break; | ||
685 | default: | ||
686 | /* page size not handled by HW ECC */ | ||
687 | /* switching back to soft ECC */ | ||
688 | nand_chip->ecc.mode = NAND_ECC_SOFT; | ||
689 | nand_chip->ecc.calculate = NULL; | ||
690 | nand_chip->ecc.correct = NULL; | ||
691 | nand_chip->ecc.hwctl = NULL; | ||
692 | nand_chip->ecc.read_page = NULL; | ||
693 | nand_chip->ecc.postpad = 0; | ||
694 | nand_chip->ecc.prepad = 0; | ||
695 | nand_chip->ecc.bytes = 0; | ||
696 | break; | ||
697 | } | ||
698 | } | 1530 | } |
699 | 1531 | ||
700 | /* second phase scan */ | 1532 | /* second phase scan */ |
@@ -711,14 +1543,23 @@ static int __init atmel_nand_probe(struct platform_device *pdev) | |||
711 | return res; | 1543 | return res; |
712 | 1544 | ||
713 | err_scan_tail: | 1545 | err_scan_tail: |
1546 | if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) { | ||
1547 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); | ||
1548 | pmecc_data_free(host); | ||
1549 | } | ||
1550 | if (host->ecc) | ||
1551 | iounmap(host->ecc); | ||
1552 | if (host->pmerrloc_base) | ||
1553 | iounmap(host->pmerrloc_base); | ||
1554 | if (host->pmecc_rom_base) | ||
1555 | iounmap(host->pmecc_rom_base); | ||
1556 | err_hw_ecc: | ||
714 | err_scan_ident: | 1557 | err_scan_ident: |
715 | err_no_card: | 1558 | err_no_card: |
716 | atmel_nand_disable(host); | 1559 | atmel_nand_disable(host); |
717 | platform_set_drvdata(pdev, NULL); | 1560 | platform_set_drvdata(pdev, NULL); |
718 | if (host->dma_chan) | 1561 | if (host->dma_chan) |
719 | dma_release_channel(host->dma_chan); | 1562 | dma_release_channel(host->dma_chan); |
720 | if (host->ecc) | ||
721 | iounmap(host->ecc); | ||
722 | err_ecc_ioremap: | 1563 | err_ecc_ioremap: |
723 | iounmap(host->io_base); | 1564 | iounmap(host->io_base); |
724 | err_nand_ioremap: | 1565 | err_nand_ioremap: |
@@ -738,8 +1579,28 @@ static int __exit atmel_nand_remove(struct platform_device *pdev) | |||
738 | 1579 | ||
739 | atmel_nand_disable(host); | 1580 | atmel_nand_disable(host); |
740 | 1581 | ||
1582 | if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) { | ||
1583 | pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); | ||
1584 | pmerrloc_writel(host->pmerrloc_base, ELDIS, | ||
1585 | PMERRLOC_DISABLE); | ||
1586 | pmecc_data_free(host); | ||
1587 | } | ||
1588 | |||
1589 | if (gpio_is_valid(host->board.det_pin)) | ||
1590 | gpio_free(host->board.det_pin); | ||
1591 | |||
1592 | if (gpio_is_valid(host->board.enable_pin)) | ||
1593 | gpio_free(host->board.enable_pin); | ||
1594 | |||
1595 | if (gpio_is_valid(host->board.rdy_pin)) | ||
1596 | gpio_free(host->board.rdy_pin); | ||
1597 | |||
741 | if (host->ecc) | 1598 | if (host->ecc) |
742 | iounmap(host->ecc); | 1599 | iounmap(host->ecc); |
1600 | if (host->pmecc_rom_base) | ||
1601 | iounmap(host->pmecc_rom_base); | ||
1602 | if (host->pmerrloc_base) | ||
1603 | iounmap(host->pmerrloc_base); | ||
743 | 1604 | ||
744 | if (host->dma_chan) | 1605 | if (host->dma_chan) |
745 | dma_release_channel(host->dma_chan); | 1606 | dma_release_channel(host->dma_chan); |
diff --git a/drivers/mtd/nand/atmel_nand_ecc.h b/drivers/mtd/nand/atmel_nand_ecc.h index 578c776e1356..8a1e9a686759 100644 --- a/drivers/mtd/nand/atmel_nand_ecc.h +++ b/drivers/mtd/nand/atmel_nand_ecc.h | |||
@@ -3,7 +3,7 @@ | |||
3 | * Based on AT91SAM9260 datasheet revision B. | 3 | * Based on AT91SAM9260 datasheet revision B. |
4 | * | 4 | * |
5 | * Copyright (C) 2007 Andrew Victor | 5 | * Copyright (C) 2007 Andrew Victor |
6 | * Copyright (C) 2007 Atmel Corporation. | 6 | * Copyright (C) 2007 - 2012 Atmel Corporation. |
7 | * | 7 | * |
8 | * This program is free software; you can redistribute it and/or modify it | 8 | * This program is free software; you can redistribute it and/or modify it |
9 | * under the terms of the GNU General Public License as published by the | 9 | * under the terms of the GNU General Public License as published by the |
@@ -36,4 +36,116 @@ | |||
36 | #define ATMEL_ECC_NPR 0x10 /* NParity register */ | 36 | #define ATMEL_ECC_NPR 0x10 /* NParity register */ |
37 | #define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */ | 37 | #define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */ |
38 | 38 | ||
39 | /* PMECC Register Definitions */ | ||
40 | #define ATMEL_PMECC_CFG 0x000 /* Configuration Register */ | ||
41 | #define PMECC_CFG_BCH_ERR2 (0 << 0) | ||
42 | #define PMECC_CFG_BCH_ERR4 (1 << 0) | ||
43 | #define PMECC_CFG_BCH_ERR8 (2 << 0) | ||
44 | #define PMECC_CFG_BCH_ERR12 (3 << 0) | ||
45 | #define PMECC_CFG_BCH_ERR24 (4 << 0) | ||
46 | |||
47 | #define PMECC_CFG_SECTOR512 (0 << 4) | ||
48 | #define PMECC_CFG_SECTOR1024 (1 << 4) | ||
49 | |||
50 | #define PMECC_CFG_PAGE_1SECTOR (0 << 8) | ||
51 | #define PMECC_CFG_PAGE_2SECTORS (1 << 8) | ||
52 | #define PMECC_CFG_PAGE_4SECTORS (2 << 8) | ||
53 | #define PMECC_CFG_PAGE_8SECTORS (3 << 8) | ||
54 | |||
55 | #define PMECC_CFG_READ_OP (0 << 12) | ||
56 | #define PMECC_CFG_WRITE_OP (1 << 12) | ||
57 | |||
58 | #define PMECC_CFG_SPARE_ENABLE (1 << 16) | ||
59 | #define PMECC_CFG_SPARE_DISABLE (0 << 16) | ||
60 | |||
61 | #define PMECC_CFG_AUTO_ENABLE (1 << 20) | ||
62 | #define PMECC_CFG_AUTO_DISABLE (0 << 20) | ||
63 | |||
64 | #define ATMEL_PMECC_SAREA 0x004 /* Spare area size */ | ||
65 | #define ATMEL_PMECC_SADDR 0x008 /* PMECC starting address */ | ||
66 | #define ATMEL_PMECC_EADDR 0x00c /* PMECC ending address */ | ||
67 | #define ATMEL_PMECC_CLK 0x010 /* PMECC clock control */ | ||
68 | #define PMECC_CLK_133MHZ (2 << 0) | ||
69 | |||
70 | #define ATMEL_PMECC_CTRL 0x014 /* PMECC control register */ | ||
71 | #define PMECC_CTRL_RST (1 << 0) | ||
72 | #define PMECC_CTRL_DATA (1 << 1) | ||
73 | #define PMECC_CTRL_USER (1 << 2) | ||
74 | #define PMECC_CTRL_ENABLE (1 << 4) | ||
75 | #define PMECC_CTRL_DISABLE (1 << 5) | ||
76 | |||
77 | #define ATMEL_PMECC_SR 0x018 /* PMECC status register */ | ||
78 | #define PMECC_SR_BUSY (1 << 0) | ||
79 | #define PMECC_SR_ENABLE (1 << 4) | ||
80 | |||
81 | #define ATMEL_PMECC_IER 0x01c /* PMECC interrupt enable */ | ||
82 | #define PMECC_IER_ENABLE (1 << 0) | ||
83 | #define ATMEL_PMECC_IDR 0x020 /* PMECC interrupt disable */ | ||
84 | #define PMECC_IER_DISABLE (1 << 0) | ||
85 | #define ATMEL_PMECC_IMR 0x024 /* PMECC interrupt mask */ | ||
86 | #define PMECC_IER_MASK (1 << 0) | ||
87 | #define ATMEL_PMECC_ISR 0x028 /* PMECC interrupt status */ | ||
88 | #define ATMEL_PMECC_ECCx 0x040 /* PMECC ECC x */ | ||
89 | #define ATMEL_PMECC_REMx 0x240 /* PMECC REM x */ | ||
90 | |||
91 | /* PMERRLOC Register Definitions */ | ||
92 | #define ATMEL_PMERRLOC_ELCFG 0x000 /* Error location config */ | ||
93 | #define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) | ||
94 | #define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) | ||
95 | #define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) | ||
96 | |||
97 | #define ATMEL_PMERRLOC_ELPRIM 0x004 /* Error location primitive */ | ||
98 | #define ATMEL_PMERRLOC_ELEN 0x008 /* Error location enable */ | ||
99 | #define ATMEL_PMERRLOC_ELDIS 0x00c /* Error location disable */ | ||
100 | #define PMERRLOC_DISABLE (1 << 0) | ||
101 | |||
102 | #define ATMEL_PMERRLOC_ELSR 0x010 /* Error location status */ | ||
103 | #define PMERRLOC_ELSR_BUSY (1 << 0) | ||
104 | #define ATMEL_PMERRLOC_ELIER 0x014 /* Error location int enable */ | ||
105 | #define ATMEL_PMERRLOC_ELIDR 0x018 /* Error location int disable */ | ||
106 | #define ATMEL_PMERRLOC_ELIMR 0x01c /* Error location int mask */ | ||
107 | #define ATMEL_PMERRLOC_ELISR 0x020 /* Error location int status */ | ||
108 | #define PMERRLOC_ERR_NUM_MASK (0x1f << 8) | ||
109 | #define PMERRLOC_CALC_DONE (1 << 0) | ||
110 | #define ATMEL_PMERRLOC_SIGMAx 0x028 /* Error location SIGMA x */ | ||
111 | #define ATMEL_PMERRLOC_ELx 0x08c /* Error location x */ | ||
112 | |||
113 | /* Register access macros for PMECC */ | ||
114 | #define pmecc_readl_relaxed(addr, reg) \ | ||
115 | readl_relaxed((addr) + ATMEL_PMECC_##reg) | ||
116 | |||
117 | #define pmecc_writel(addr, reg, value) \ | ||
118 | writel((value), (addr) + ATMEL_PMECC_##reg) | ||
119 | |||
120 | #define pmecc_readb_ecc_relaxed(addr, sector, n) \ | ||
121 | readb_relaxed((addr) + ATMEL_PMECC_ECCx + ((sector) * 0x40) + (n)) | ||
122 | |||
123 | #define pmecc_readl_rem_relaxed(addr, sector, n) \ | ||
124 | readl_relaxed((addr) + ATMEL_PMECC_REMx + ((sector) * 0x40) + ((n) * 4)) | ||
125 | |||
126 | #define pmerrloc_readl_relaxed(addr, reg) \ | ||
127 | readl_relaxed((addr) + ATMEL_PMERRLOC_##reg) | ||
128 | |||
129 | #define pmerrloc_writel(addr, reg, value) \ | ||
130 | writel((value), (addr) + ATMEL_PMERRLOC_##reg) | ||
131 | |||
132 | #define pmerrloc_writel_sigma_relaxed(addr, n, value) \ | ||
133 | writel_relaxed((value), (addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4)) | ||
134 | |||
135 | #define pmerrloc_readl_sigma_relaxed(addr, n) \ | ||
136 | readl_relaxed((addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4)) | ||
137 | |||
138 | #define pmerrloc_readl_el_relaxed(addr, n) \ | ||
139 | readl_relaxed((addr) + ATMEL_PMERRLOC_ELx + ((n) * 4)) | ||
140 | |||
141 | /* Galois field dimension */ | ||
142 | #define PMECC_GF_DIMENSION_13 13 | ||
143 | #define PMECC_GF_DIMENSION_14 14 | ||
144 | |||
145 | #define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 | ||
146 | #define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 | ||
147 | |||
148 | /* Time out value for reading PMECC status register */ | ||
149 | #define PMECC_MAX_TIMEOUT_MS 100 | ||
150 | |||
39 | #endif | 151 | #endif |
diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/au1550nd.c index 9f609d2dcf62..5c47b200045a 100644 --- a/drivers/mtd/nand/au1550nd.c +++ b/drivers/mtd/nand/au1550nd.c | |||
@@ -141,28 +141,6 @@ static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) | |||
141 | } | 141 | } |
142 | 142 | ||
143 | /** | 143 | /** |
144 | * au_verify_buf - Verify chip data against buffer | ||
145 | * @mtd: MTD device structure | ||
146 | * @buf: buffer containing the data to compare | ||
147 | * @len: number of bytes to compare | ||
148 | * | ||
149 | * verify function for 8bit buswidth | ||
150 | */ | ||
151 | static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) | ||
152 | { | ||
153 | int i; | ||
154 | struct nand_chip *this = mtd->priv; | ||
155 | |||
156 | for (i = 0; i < len; i++) { | ||
157 | if (buf[i] != readb(this->IO_ADDR_R)) | ||
158 | return -EFAULT; | ||
159 | au_sync(); | ||
160 | } | ||
161 | |||
162 | return 0; | ||
163 | } | ||
164 | |||
165 | /** | ||
166 | * au_write_buf16 - write buffer to chip | 144 | * au_write_buf16 - write buffer to chip |
167 | * @mtd: MTD device structure | 145 | * @mtd: MTD device structure |
168 | * @buf: data buffer | 146 | * @buf: data buffer |
@@ -205,29 +183,6 @@ static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) | |||
205 | } | 183 | } |
206 | } | 184 | } |
207 | 185 | ||
208 | /** | ||
209 | * au_verify_buf16 - Verify chip data against buffer | ||
210 | * @mtd: MTD device structure | ||
211 | * @buf: buffer containing the data to compare | ||
212 | * @len: number of bytes to compare | ||
213 | * | ||
214 | * verify function for 16bit buswidth | ||
215 | */ | ||
216 | static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) | ||
217 | { | ||
218 | int i; | ||
219 | struct nand_chip *this = mtd->priv; | ||
220 | u16 *p = (u16 *) buf; | ||
221 | len >>= 1; | ||
222 | |||
223 | for (i = 0; i < len; i++) { | ||
224 | if (p[i] != readw(this->IO_ADDR_R)) | ||
225 | return -EFAULT; | ||
226 | au_sync(); | ||
227 | } | ||
228 | return 0; | ||
229 | } | ||
230 | |||
231 | /* Select the chip by setting nCE to low */ | 186 | /* Select the chip by setting nCE to low */ |
232 | #define NAND_CTL_SETNCE 1 | 187 | #define NAND_CTL_SETNCE 1 |
233 | /* Deselect the chip by setting nCE to high */ | 188 | /* Deselect the chip by setting nCE to high */ |
@@ -516,7 +471,6 @@ static int __devinit au1550nd_probe(struct platform_device *pdev) | |||
516 | this->read_word = au_read_word; | 471 | this->read_word = au_read_word; |
517 | this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf; | 472 | this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf; |
518 | this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf; | 473 | this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf; |
519 | this->verify_buf = (pd->devwidth) ? au_verify_buf16 : au_verify_buf; | ||
520 | 474 | ||
521 | ret = nand_scan(&ctx->info, 1); | 475 | ret = nand_scan(&ctx->info, 1); |
522 | if (ret) { | 476 | if (ret) { |
diff --git a/drivers/mtd/nand/bcm_umi_bch.c b/drivers/mtd/nand/bcm_umi_bch.c deleted file mode 100644 index 5914bb32e001..000000000000 --- a/drivers/mtd/nand/bcm_umi_bch.c +++ /dev/null | |||
@@ -1,217 +0,0 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | |||
15 | /* ---- Include Files ---------------------------------------------------- */ | ||
16 | #include "nand_bcm_umi.h" | ||
17 | |||
18 | /* ---- External Variable Declarations ----------------------------------- */ | ||
19 | /* ---- External Function Prototypes ------------------------------------- */ | ||
20 | /* ---- Public Variables ------------------------------------------------- */ | ||
21 | /* ---- Private Constants and Types -------------------------------------- */ | ||
22 | |||
23 | /* ---- Private Function Prototypes -------------------------------------- */ | ||
24 | static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd, | ||
25 | struct nand_chip *chip, uint8_t *buf, int oob_required, int page); | ||
26 | static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd, | ||
27 | struct nand_chip *chip, const uint8_t *buf, int oob_required); | ||
28 | |||
29 | /* ---- Private Variables ------------------------------------------------ */ | ||
30 | |||
31 | /* | ||
32 | ** nand_hw_eccoob | ||
33 | ** New oob placement block for use with hardware ecc generation. | ||
34 | */ | ||
35 | static struct nand_ecclayout nand_hw_eccoob_512 = { | ||
36 | /* Reserve 5 for BI indicator */ | ||
37 | .oobfree = { | ||
38 | #if (NAND_ECC_NUM_BYTES > 3) | ||
39 | {.offset = 0, .length = 2} | ||
40 | #else | ||
41 | {.offset = 0, .length = 5}, | ||
42 | {.offset = 6, .length = 7} | ||
43 | #endif | ||
44 | } | ||
45 | }; | ||
46 | |||
47 | /* | ||
48 | ** We treat the OOB for a 2K page as if it were 4 512 byte oobs, | ||
49 | ** except the BI is at byte 0. | ||
50 | */ | ||
51 | static struct nand_ecclayout nand_hw_eccoob_2048 = { | ||
52 | /* Reserve 0 as BI indicator */ | ||
53 | .oobfree = { | ||
54 | #if (NAND_ECC_NUM_BYTES > 10) | ||
55 | {.offset = 1, .length = 2}, | ||
56 | #elif (NAND_ECC_NUM_BYTES > 7) | ||
57 | {.offset = 1, .length = 5}, | ||
58 | {.offset = 16, .length = 6}, | ||
59 | {.offset = 32, .length = 6}, | ||
60 | {.offset = 48, .length = 6} | ||
61 | #else | ||
62 | {.offset = 1, .length = 8}, | ||
63 | {.offset = 16, .length = 9}, | ||
64 | {.offset = 32, .length = 9}, | ||
65 | {.offset = 48, .length = 9} | ||
66 | #endif | ||
67 | } | ||
68 | }; | ||
69 | |||
70 | /* We treat the OOB for a 4K page as if it were 8 512 byte oobs, | ||
71 | * except the BI is at byte 0. */ | ||
72 | static struct nand_ecclayout nand_hw_eccoob_4096 = { | ||
73 | /* Reserve 0 as BI indicator */ | ||
74 | .oobfree = { | ||
75 | #if (NAND_ECC_NUM_BYTES > 10) | ||
76 | {.offset = 1, .length = 2}, | ||
77 | {.offset = 16, .length = 3}, | ||
78 | {.offset = 32, .length = 3}, | ||
79 | {.offset = 48, .length = 3}, | ||
80 | {.offset = 64, .length = 3}, | ||
81 | {.offset = 80, .length = 3}, | ||
82 | {.offset = 96, .length = 3}, | ||
83 | {.offset = 112, .length = 3} | ||
84 | #else | ||
85 | {.offset = 1, .length = 5}, | ||
86 | {.offset = 16, .length = 6}, | ||
87 | {.offset = 32, .length = 6}, | ||
88 | {.offset = 48, .length = 6}, | ||
89 | {.offset = 64, .length = 6}, | ||
90 | {.offset = 80, .length = 6}, | ||
91 | {.offset = 96, .length = 6}, | ||
92 | {.offset = 112, .length = 6} | ||
93 | #endif | ||
94 | } | ||
95 | }; | ||
96 | |||
97 | /* ---- Private Functions ------------------------------------------------ */ | ||
98 | /* ==== Public Functions ================================================= */ | ||
99 | |||
100 | /**************************************************************************** | ||
101 | * | ||
102 | * bcm_umi_bch_read_page_hwecc - hardware ecc based page read function | ||
103 | * @mtd: mtd info structure | ||
104 | * @chip: nand chip info structure | ||
105 | * @buf: buffer to store read data | ||
106 | * @oob_required: caller expects OOB data read to chip->oob_poi | ||
107 | * | ||
108 | ***************************************************************************/ | ||
109 | static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd, | ||
110 | struct nand_chip *chip, uint8_t * buf, | ||
111 | int oob_required, int page) | ||
112 | { | ||
113 | int sectorIdx = 0; | ||
114 | int eccsize = chip->ecc.size; | ||
115 | int eccsteps = chip->ecc.steps; | ||
116 | uint8_t *datap = buf; | ||
117 | uint8_t eccCalc[NAND_ECC_NUM_BYTES]; | ||
118 | int sectorOobSize = mtd->oobsize / eccsteps; | ||
119 | int stat; | ||
120 | unsigned int max_bitflips = 0; | ||
121 | |||
122 | for (sectorIdx = 0; sectorIdx < eccsteps; | ||
123 | sectorIdx++, datap += eccsize) { | ||
124 | if (sectorIdx > 0) { | ||
125 | /* Seek to page location within sector */ | ||
126 | chip->cmdfunc(mtd, NAND_CMD_RNDOUT, sectorIdx * eccsize, | ||
127 | -1); | ||
128 | } | ||
129 | |||
130 | /* Enable hardware ECC before reading the buf */ | ||
131 | nand_bcm_umi_bch_enable_read_hwecc(); | ||
132 | |||
133 | /* Read in data */ | ||
134 | bcm_umi_nand_read_buf(mtd, datap, eccsize); | ||
135 | |||
136 | /* Pause hardware ECC after reading the buf */ | ||
137 | nand_bcm_umi_bch_pause_read_ecc_calc(); | ||
138 | |||
139 | /* Read the OOB ECC */ | ||
140 | chip->cmdfunc(mtd, NAND_CMD_RNDOUT, | ||
141 | mtd->writesize + sectorIdx * sectorOobSize, -1); | ||
142 | nand_bcm_umi_bch_read_oobEcc(mtd->writesize, eccCalc, | ||
143 | NAND_ECC_NUM_BYTES, | ||
144 | chip->oob_poi + | ||
145 | sectorIdx * sectorOobSize); | ||
146 | |||
147 | /* Correct any ECC detected errors */ | ||
148 | stat = | ||
149 | nand_bcm_umi_bch_correct_page(datap, eccCalc, | ||
150 | NAND_ECC_NUM_BYTES); | ||
151 | |||
152 | /* Update Stats */ | ||
153 | if (stat < 0) { | ||
154 | #if defined(NAND_BCM_UMI_DEBUG) | ||
155 | printk(KERN_WARNING "%s uncorr_err sectorIdx=%d\n", | ||
156 | __func__, sectorIdx); | ||
157 | printk(KERN_WARNING | ||
158 | "%s data %02x %02x %02x %02x " | ||
159 | "%02x %02x %02x %02x\n", | ||
160 | __func__, datap[0], datap[1], datap[2], datap[3], | ||
161 | datap[4], datap[5], datap[6], datap[7]); | ||
162 | printk(KERN_WARNING | ||
163 | "%s ecc %02x %02x %02x %02x " | ||
164 | "%02x %02x %02x %02x %02x %02x " | ||
165 | "%02x %02x %02x\n", | ||
166 | __func__, eccCalc[0], eccCalc[1], eccCalc[2], | ||
167 | eccCalc[3], eccCalc[4], eccCalc[5], eccCalc[6], | ||
168 | eccCalc[7], eccCalc[8], eccCalc[9], eccCalc[10], | ||
169 | eccCalc[11], eccCalc[12]); | ||
170 | BUG(); | ||
171 | #endif | ||
172 | mtd->ecc_stats.failed++; | ||
173 | } else { | ||
174 | #if defined(NAND_BCM_UMI_DEBUG) | ||
175 | if (stat > 0) { | ||
176 | printk(KERN_INFO | ||
177 | "%s %d correctable_errors detected\n", | ||
178 | __func__, stat); | ||
179 | } | ||
180 | #endif | ||
181 | mtd->ecc_stats.corrected += stat; | ||
182 | max_bitflips = max_t(unsigned int, max_bitflips, stat); | ||
183 | } | ||
184 | } | ||
185 | return max_bitflips; | ||
186 | } | ||
187 | |||
188 | /**************************************************************************** | ||
189 | * | ||
190 | * bcm_umi_bch_write_page_hwecc - hardware ecc based page write function | ||
191 | * @mtd: mtd info structure | ||
192 | * @chip: nand chip info structure | ||
193 | * @buf: data buffer | ||
194 | * @oob_required: must write chip->oob_poi to OOB | ||
195 | * | ||
196 | ***************************************************************************/ | ||
197 | static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd, | ||
198 | struct nand_chip *chip, const uint8_t *buf, int oob_required) | ||
199 | { | ||
200 | int sectorIdx = 0; | ||
201 | int eccsize = chip->ecc.size; | ||
202 | int eccsteps = chip->ecc.steps; | ||
203 | const uint8_t *datap = buf; | ||
204 | uint8_t *oobp = chip->oob_poi; | ||
205 | int sectorOobSize = mtd->oobsize / eccsteps; | ||
206 | |||
207 | for (sectorIdx = 0; sectorIdx < eccsteps; | ||
208 | sectorIdx++, datap += eccsize, oobp += sectorOobSize) { | ||
209 | /* Enable hardware ECC before writing the buf */ | ||
210 | nand_bcm_umi_bch_enable_write_hwecc(); | ||
211 | bcm_umi_nand_write_buf(mtd, datap, eccsize); | ||
212 | nand_bcm_umi_bch_write_oobEcc(mtd->writesize, oobp, | ||
213 | NAND_ECC_NUM_BYTES); | ||
214 | } | ||
215 | |||
216 | bcm_umi_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
217 | } | ||
diff --git a/drivers/mtd/nand/bcm_umi_nand.c b/drivers/mtd/nand/bcm_umi_nand.c deleted file mode 100644 index d0d1bd4d0e7d..000000000000 --- a/drivers/mtd/nand/bcm_umi_nand.c +++ /dev/null | |||
@@ -1,555 +0,0 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | |||
15 | /* ---- Include Files ---------------------------------------------------- */ | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/types.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/slab.h> | ||
21 | #include <linux/string.h> | ||
22 | #include <linux/ioport.h> | ||
23 | #include <linux/device.h> | ||
24 | #include <linux/delay.h> | ||
25 | #include <linux/err.h> | ||
26 | #include <linux/io.h> | ||
27 | #include <linux/platform_device.h> | ||
28 | #include <linux/mtd/mtd.h> | ||
29 | #include <linux/mtd/nand.h> | ||
30 | #include <linux/mtd/nand_ecc.h> | ||
31 | #include <linux/mtd/partitions.h> | ||
32 | |||
33 | #include <asm/mach-types.h> | ||
34 | |||
35 | #include <mach/reg_nand.h> | ||
36 | #include <mach/reg_umi.h> | ||
37 | |||
38 | #include "nand_bcm_umi.h" | ||
39 | |||
40 | #include <mach/memory_settings.h> | ||
41 | |||
42 | #define USE_DMA 1 | ||
43 | #include <mach/dma.h> | ||
44 | #include <linux/dma-mapping.h> | ||
45 | #include <linux/completion.h> | ||
46 | |||
47 | /* ---- External Variable Declarations ----------------------------------- */ | ||
48 | /* ---- External Function Prototypes ------------------------------------- */ | ||
49 | /* ---- Public Variables ------------------------------------------------- */ | ||
50 | /* ---- Private Constants and Types -------------------------------------- */ | ||
51 | static const __devinitconst char gBanner[] = KERN_INFO \ | ||
52 | "BCM UMI MTD NAND Driver: 1.00\n"; | ||
53 | |||
54 | #if NAND_ECC_BCH | ||
55 | static uint8_t scan_ff_pattern[] = { 0xff }; | ||
56 | |||
57 | static struct nand_bbt_descr largepage_bbt = { | ||
58 | .options = 0, | ||
59 | .offs = 0, | ||
60 | .len = 1, | ||
61 | .pattern = scan_ff_pattern | ||
62 | }; | ||
63 | #endif | ||
64 | |||
65 | /* | ||
66 | ** Preallocate a buffer to avoid having to do this every dma operation. | ||
67 | ** This is the size of the preallocated coherent DMA buffer. | ||
68 | */ | ||
69 | #if USE_DMA | ||
70 | #define DMA_MIN_BUFLEN 512 | ||
71 | #define DMA_MAX_BUFLEN PAGE_SIZE | ||
72 | #define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \ | ||
73 | ((len) > DMA_MAX_BUFLEN)) | ||
74 | |||
75 | /* | ||
76 | * The current NAND data space goes from 0x80001900 to 0x80001FFF, | ||
77 | * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page | ||
78 | * size NAND flash. Need to break the DMA down to multiple 1Ks. | ||
79 | * | ||
80 | * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000 | ||
81 | */ | ||
82 | #define DMA_MAX_LEN 1024 | ||
83 | |||
84 | #else /* !USE_DMA */ | ||
85 | #define DMA_MIN_BUFLEN 0 | ||
86 | #define DMA_MAX_BUFLEN 0 | ||
87 | #define USE_DIRECT_IO(len) 1 | ||
88 | #endif | ||
89 | /* ---- Private Function Prototypes -------------------------------------- */ | ||
90 | static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len); | ||
91 | static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, | ||
92 | int len); | ||
93 | |||
94 | /* ---- Private Variables ------------------------------------------------ */ | ||
95 | static struct mtd_info *board_mtd; | ||
96 | static void __iomem *bcm_umi_io_base; | ||
97 | static void *virtPtr; | ||
98 | static dma_addr_t physPtr; | ||
99 | static struct completion nand_comp; | ||
100 | |||
101 | /* ---- Private Functions ------------------------------------------------ */ | ||
102 | #if NAND_ECC_BCH | ||
103 | #include "bcm_umi_bch.c" | ||
104 | #else | ||
105 | #include "bcm_umi_hamming.c" | ||
106 | #endif | ||
107 | |||
108 | #if USE_DMA | ||
109 | |||
110 | /* Handler called when the DMA finishes. */ | ||
111 | static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData) | ||
112 | { | ||
113 | complete(&nand_comp); | ||
114 | } | ||
115 | |||
116 | static int nand_dma_init(void) | ||
117 | { | ||
118 | int rc; | ||
119 | |||
120 | rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM, | ||
121 | nand_dma_handler, NULL); | ||
122 | if (rc != 0) { | ||
123 | printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc); | ||
124 | return rc; | ||
125 | } | ||
126 | |||
127 | virtPtr = | ||
128 | dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL); | ||
129 | if (virtPtr == NULL) { | ||
130 | printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n"); | ||
131 | return -ENOMEM; | ||
132 | } | ||
133 | |||
134 | return 0; | ||
135 | } | ||
136 | |||
137 | static void nand_dma_term(void) | ||
138 | { | ||
139 | if (virtPtr != NULL) | ||
140 | dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr); | ||
141 | } | ||
142 | |||
143 | static void nand_dma_read(void *buf, int len) | ||
144 | { | ||
145 | int offset = 0; | ||
146 | int tmp_len = 0; | ||
147 | int len_left = len; | ||
148 | DMA_Handle_t hndl; | ||
149 | |||
150 | if (virtPtr == NULL) | ||
151 | panic("nand_dma_read: virtPtr == NULL\n"); | ||
152 | |||
153 | if ((void *)physPtr == NULL) | ||
154 | panic("nand_dma_read: physPtr == NULL\n"); | ||
155 | |||
156 | hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); | ||
157 | if (hndl < 0) { | ||
158 | printk(KERN_ERR | ||
159 | "nand_dma_read: unable to allocate dma channel: %d\n", | ||
160 | (int)hndl); | ||
161 | panic("\n"); | ||
162 | } | ||
163 | |||
164 | while (len_left > 0) { | ||
165 | if (len_left > DMA_MAX_LEN) { | ||
166 | tmp_len = DMA_MAX_LEN; | ||
167 | len_left -= DMA_MAX_LEN; | ||
168 | } else { | ||
169 | tmp_len = len_left; | ||
170 | len_left = 0; | ||
171 | } | ||
172 | |||
173 | init_completion(&nand_comp); | ||
174 | dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR, | ||
175 | physPtr + offset, tmp_len); | ||
176 | wait_for_completion(&nand_comp); | ||
177 | |||
178 | offset += tmp_len; | ||
179 | } | ||
180 | |||
181 | dma_free_channel(hndl); | ||
182 | |||
183 | if (buf != NULL) | ||
184 | memcpy(buf, virtPtr, len); | ||
185 | } | ||
186 | |||
187 | static void nand_dma_write(const void *buf, int len) | ||
188 | { | ||
189 | int offset = 0; | ||
190 | int tmp_len = 0; | ||
191 | int len_left = len; | ||
192 | DMA_Handle_t hndl; | ||
193 | |||
194 | if (buf == NULL) | ||
195 | panic("nand_dma_write: buf == NULL\n"); | ||
196 | |||
197 | if (virtPtr == NULL) | ||
198 | panic("nand_dma_write: virtPtr == NULL\n"); | ||
199 | |||
200 | if ((void *)physPtr == NULL) | ||
201 | panic("nand_dma_write: physPtr == NULL\n"); | ||
202 | |||
203 | memcpy(virtPtr, buf, len); | ||
204 | |||
205 | |||
206 | hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); | ||
207 | if (hndl < 0) { | ||
208 | printk(KERN_ERR | ||
209 | "nand_dma_write: unable to allocate dma channel: %d\n", | ||
210 | (int)hndl); | ||
211 | panic("\n"); | ||
212 | } | ||
213 | |||
214 | while (len_left > 0) { | ||
215 | if (len_left > DMA_MAX_LEN) { | ||
216 | tmp_len = DMA_MAX_LEN; | ||
217 | len_left -= DMA_MAX_LEN; | ||
218 | } else { | ||
219 | tmp_len = len_left; | ||
220 | len_left = 0; | ||
221 | } | ||
222 | |||
223 | init_completion(&nand_comp); | ||
224 | dma_transfer_mem_to_mem(hndl, physPtr + offset, | ||
225 | REG_NAND_DATA_PADDR, tmp_len); | ||
226 | wait_for_completion(&nand_comp); | ||
227 | |||
228 | offset += tmp_len; | ||
229 | } | ||
230 | |||
231 | dma_free_channel(hndl); | ||
232 | } | ||
233 | |||
234 | #endif | ||
235 | |||
236 | static int nand_dev_ready(struct mtd_info *mtd) | ||
237 | { | ||
238 | return nand_bcm_umi_dev_ready(); | ||
239 | } | ||
240 | |||
241 | /**************************************************************************** | ||
242 | * | ||
243 | * bcm_umi_nand_inithw | ||
244 | * | ||
245 | * This routine does the necessary hardware (board-specific) | ||
246 | * initializations. This includes setting up the timings, etc. | ||
247 | * | ||
248 | ***************************************************************************/ | ||
249 | int bcm_umi_nand_inithw(void) | ||
250 | { | ||
251 | /* Configure nand timing parameters */ | ||
252 | writel(readl(®_UMI_NAND_TCR) & ~0x7ffff, ®_UMI_NAND_TCR); | ||
253 | writel(readl(®_UMI_NAND_TCR) | HW_CFG_NAND_TCR, ®_UMI_NAND_TCR); | ||
254 | |||
255 | #if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS) | ||
256 | /* enable software control of CS */ | ||
257 | writel(readl(®_UMI_NAND_TCR) | REG_UMI_NAND_TCR_CS_SWCTRL, ®_UMI_NAND_TCR); | ||
258 | #endif | ||
259 | |||
260 | /* keep NAND chip select asserted */ | ||
261 | writel(readl(®_UMI_NAND_RCSR) | REG_UMI_NAND_RCSR_CS_ASSERTED, ®_UMI_NAND_RCSR); | ||
262 | |||
263 | writel(readl(®_UMI_NAND_TCR) & ~REG_UMI_NAND_TCR_WORD16, ®_UMI_NAND_TCR); | ||
264 | /* enable writes to flash */ | ||
265 | writel(readl(®_UMI_MMD_ICR) | REG_UMI_MMD_ICR_FLASH_WP, ®_UMI_MMD_ICR); | ||
266 | |||
267 | writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET); | ||
268 | nand_bcm_umi_wait_till_ready(); | ||
269 | |||
270 | #if NAND_ECC_BCH | ||
271 | nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES); | ||
272 | #endif | ||
273 | |||
274 | return 0; | ||
275 | } | ||
276 | |||
277 | /* Used to turn latch the proper register for access. */ | ||
278 | static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd, | ||
279 | unsigned int ctrl) | ||
280 | { | ||
281 | /* send command to hardware */ | ||
282 | struct nand_chip *chip = mtd->priv; | ||
283 | if (ctrl & NAND_CTRL_CHANGE) { | ||
284 | if (ctrl & NAND_CLE) { | ||
285 | chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET; | ||
286 | goto CMD; | ||
287 | } | ||
288 | if (ctrl & NAND_ALE) { | ||
289 | chip->IO_ADDR_W = | ||
290 | bcm_umi_io_base + REG_NAND_ADDR_OFFSET; | ||
291 | goto CMD; | ||
292 | } | ||
293 | chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; | ||
294 | } | ||
295 | |||
296 | CMD: | ||
297 | /* Send command to chip directly */ | ||
298 | if (cmd != NAND_CMD_NONE) | ||
299 | writeb(cmd, chip->IO_ADDR_W); | ||
300 | } | ||
301 | |||
302 | static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, | ||
303 | int len) | ||
304 | { | ||
305 | if (USE_DIRECT_IO(len)) { | ||
306 | /* Do it the old way if the buffer is small or too large. | ||
307 | * Probably quicker than starting and checking dma. */ | ||
308 | int i; | ||
309 | struct nand_chip *this = mtd->priv; | ||
310 | |||
311 | for (i = 0; i < len; i++) | ||
312 | writeb(buf[i], this->IO_ADDR_W); | ||
313 | } | ||
314 | #if USE_DMA | ||
315 | else | ||
316 | nand_dma_write(buf, len); | ||
317 | #endif | ||
318 | } | ||
319 | |||
320 | static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len) | ||
321 | { | ||
322 | if (USE_DIRECT_IO(len)) { | ||
323 | int i; | ||
324 | struct nand_chip *this = mtd->priv; | ||
325 | |||
326 | for (i = 0; i < len; i++) | ||
327 | buf[i] = readb(this->IO_ADDR_R); | ||
328 | } | ||
329 | #if USE_DMA | ||
330 | else | ||
331 | nand_dma_read(buf, len); | ||
332 | #endif | ||
333 | } | ||
334 | |||
335 | static uint8_t readbackbuf[NAND_MAX_PAGESIZE]; | ||
336 | static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, | ||
337 | int len) | ||
338 | { | ||
339 | /* | ||
340 | * Try to readback page with ECC correction. This is necessary | ||
341 | * for MLC parts which may have permanently stuck bits. | ||
342 | */ | ||
343 | struct nand_chip *chip = mtd->priv; | ||
344 | int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0, 0); | ||
345 | if (ret < 0) | ||
346 | return -EFAULT; | ||
347 | else { | ||
348 | if (memcmp(readbackbuf, buf, len) == 0) | ||
349 | return 0; | ||
350 | |||
351 | return -EFAULT; | ||
352 | } | ||
353 | return 0; | ||
354 | } | ||
355 | |||
356 | static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) | ||
357 | { | ||
358 | struct nand_chip *this; | ||
359 | struct resource *r; | ||
360 | int err = 0; | ||
361 | |||
362 | printk(gBanner); | ||
363 | |||
364 | /* Allocate memory for MTD device structure and private data */ | ||
365 | board_mtd = | ||
366 | kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), | ||
367 | GFP_KERNEL); | ||
368 | if (!board_mtd) { | ||
369 | printk(KERN_WARNING | ||
370 | "Unable to allocate NAND MTD device structure.\n"); | ||
371 | return -ENOMEM; | ||
372 | } | ||
373 | |||
374 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
375 | |||
376 | if (!r) { | ||
377 | err = -ENXIO; | ||
378 | goto out_free; | ||
379 | } | ||
380 | |||
381 | /* map physical address */ | ||
382 | bcm_umi_io_base = ioremap(r->start, resource_size(r)); | ||
383 | |||
384 | if (!bcm_umi_io_base) { | ||
385 | printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n"); | ||
386 | err = -EIO; | ||
387 | goto out_free; | ||
388 | } | ||
389 | |||
390 | /* Get pointer to private data */ | ||
391 | this = (struct nand_chip *)(&board_mtd[1]); | ||
392 | |||
393 | /* Initialize structures */ | ||
394 | memset((char *)board_mtd, 0, sizeof(struct mtd_info)); | ||
395 | memset((char *)this, 0, sizeof(struct nand_chip)); | ||
396 | |||
397 | /* Link the private data with the MTD structure */ | ||
398 | board_mtd->priv = this; | ||
399 | |||
400 | /* Initialize the NAND hardware. */ | ||
401 | if (bcm_umi_nand_inithw() < 0) { | ||
402 | printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n"); | ||
403 | err = -EIO; | ||
404 | goto out_unmap; | ||
405 | } | ||
406 | |||
407 | /* Set address of NAND IO lines */ | ||
408 | this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; | ||
409 | this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; | ||
410 | |||
411 | /* Set command delay time, see datasheet for correct value */ | ||
412 | this->chip_delay = 0; | ||
413 | /* Assign the device ready function, if available */ | ||
414 | this->dev_ready = nand_dev_ready; | ||
415 | this->options = 0; | ||
416 | |||
417 | this->write_buf = bcm_umi_nand_write_buf; | ||
418 | this->read_buf = bcm_umi_nand_read_buf; | ||
419 | this->verify_buf = bcm_umi_nand_verify_buf; | ||
420 | |||
421 | this->cmd_ctrl = bcm_umi_nand_hwcontrol; | ||
422 | this->ecc.mode = NAND_ECC_HW; | ||
423 | this->ecc.size = 512; | ||
424 | this->ecc.bytes = NAND_ECC_NUM_BYTES; | ||
425 | #if NAND_ECC_BCH | ||
426 | this->ecc.read_page = bcm_umi_bch_read_page_hwecc; | ||
427 | this->ecc.write_page = bcm_umi_bch_write_page_hwecc; | ||
428 | #else | ||
429 | this->ecc.correct = nand_correct_data512; | ||
430 | this->ecc.calculate = bcm_umi_hamming_get_hw_ecc; | ||
431 | this->ecc.hwctl = bcm_umi_hamming_enable_hwecc; | ||
432 | #endif | ||
433 | |||
434 | #if USE_DMA | ||
435 | err = nand_dma_init(); | ||
436 | if (err != 0) | ||
437 | goto out_unmap; | ||
438 | #endif | ||
439 | |||
440 | /* Figure out the size of the device that we have. | ||
441 | * We need to do this to figure out which ECC | ||
442 | * layout we'll be using. | ||
443 | */ | ||
444 | |||
445 | err = nand_scan_ident(board_mtd, 1, NULL); | ||
446 | if (err) { | ||
447 | printk(KERN_ERR "nand_scan failed: %d\n", err); | ||
448 | goto out_unmap; | ||
449 | } | ||
450 | |||
451 | /* Now that we know the nand size, we can setup the ECC layout */ | ||
452 | |||
453 | switch (board_mtd->writesize) { /* writesize is the pagesize */ | ||
454 | case 4096: | ||
455 | this->ecc.layout = &nand_hw_eccoob_4096; | ||
456 | break; | ||
457 | case 2048: | ||
458 | this->ecc.layout = &nand_hw_eccoob_2048; | ||
459 | break; | ||
460 | case 512: | ||
461 | this->ecc.layout = &nand_hw_eccoob_512; | ||
462 | break; | ||
463 | default: | ||
464 | { | ||
465 | printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n", | ||
466 | board_mtd->writesize); | ||
467 | err = -EINVAL; | ||
468 | goto out_unmap; | ||
469 | } | ||
470 | } | ||
471 | |||
472 | #if NAND_ECC_BCH | ||
473 | if (board_mtd->writesize > 512) { | ||
474 | if (this->bbt_options & NAND_BBT_USE_FLASH) | ||
475 | largepage_bbt.options = NAND_BBT_SCAN2NDPAGE; | ||
476 | this->badblock_pattern = &largepage_bbt; | ||
477 | } | ||
478 | |||
479 | this->ecc.strength = 8; | ||
480 | |||
481 | #endif | ||
482 | |||
483 | /* Now finish off the scan, now that ecc.layout has been initialized. */ | ||
484 | |||
485 | err = nand_scan_tail(board_mtd); | ||
486 | if (err) { | ||
487 | printk(KERN_ERR "nand_scan failed: %d\n", err); | ||
488 | goto out_unmap; | ||
489 | } | ||
490 | |||
491 | /* Register the partitions */ | ||
492 | board_mtd->name = "bcm_umi-nand"; | ||
493 | mtd_device_parse_register(board_mtd, NULL, NULL, NULL, 0); | ||
494 | |||
495 | /* Return happy */ | ||
496 | return 0; | ||
497 | out_unmap: | ||
498 | iounmap(bcm_umi_io_base); | ||
499 | out_free: | ||
500 | kfree(board_mtd); | ||
501 | return err; | ||
502 | } | ||
503 | |||
504 | static int bcm_umi_nand_remove(struct platform_device *pdev) | ||
505 | { | ||
506 | #if USE_DMA | ||
507 | nand_dma_term(); | ||
508 | #endif | ||
509 | |||
510 | /* Release resources, unregister device */ | ||
511 | nand_release(board_mtd); | ||
512 | |||
513 | /* unmap physical address */ | ||
514 | iounmap(bcm_umi_io_base); | ||
515 | |||
516 | /* Free the MTD device structure */ | ||
517 | kfree(board_mtd); | ||
518 | |||
519 | return 0; | ||
520 | } | ||
521 | |||
522 | #ifdef CONFIG_PM | ||
523 | static int bcm_umi_nand_suspend(struct platform_device *pdev, | ||
524 | pm_message_t state) | ||
525 | { | ||
526 | printk(KERN_ERR "MTD NAND suspend is being called\n"); | ||
527 | return 0; | ||
528 | } | ||
529 | |||
530 | static int bcm_umi_nand_resume(struct platform_device *pdev) | ||
531 | { | ||
532 | printk(KERN_ERR "MTD NAND resume is being called\n"); | ||
533 | return 0; | ||
534 | } | ||
535 | #else | ||
536 | #define bcm_umi_nand_suspend NULL | ||
537 | #define bcm_umi_nand_resume NULL | ||
538 | #endif | ||
539 | |||
540 | static struct platform_driver nand_driver = { | ||
541 | .driver = { | ||
542 | .name = "bcm-nand", | ||
543 | .owner = THIS_MODULE, | ||
544 | }, | ||
545 | .probe = bcm_umi_nand_probe, | ||
546 | .remove = bcm_umi_nand_remove, | ||
547 | .suspend = bcm_umi_nand_suspend, | ||
548 | .resume = bcm_umi_nand_resume, | ||
549 | }; | ||
550 | |||
551 | module_platform_driver(nand_driver); | ||
552 | |||
553 | MODULE_LICENSE("GPL"); | ||
554 | MODULE_AUTHOR("Broadcom"); | ||
555 | MODULE_DESCRIPTION("BCM UMI MTD NAND driver"); | ||
diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c index 3f1c18599cbd..ab0caa74eb43 100644 --- a/drivers/mtd/nand/bf5xx_nand.c +++ b/drivers/mtd/nand/bf5xx_nand.c | |||
@@ -566,11 +566,13 @@ static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip | |||
566 | return 0; | 566 | return 0; |
567 | } | 567 | } |
568 | 568 | ||
569 | static void bf5xx_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 569 | static int bf5xx_nand_write_page_raw(struct mtd_info *mtd, |
570 | const uint8_t *buf, int oob_required) | 570 | struct nand_chip *chip, const uint8_t *buf, int oob_required) |
571 | { | 571 | { |
572 | bf5xx_nand_write_buf(mtd, buf, mtd->writesize); | 572 | bf5xx_nand_write_buf(mtd, buf, mtd->writesize); |
573 | bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); | 573 | bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
574 | |||
575 | return 0; | ||
574 | } | 576 | } |
575 | 577 | ||
576 | /* | 578 | /* |
diff --git a/drivers/mtd/nand/cafe_nand.c b/drivers/mtd/nand/cafe_nand.c index f3f6cfedd69e..2bb7170502c2 100644 --- a/drivers/mtd/nand/cafe_nand.c +++ b/drivers/mtd/nand/cafe_nand.c | |||
@@ -377,7 +377,7 @@ static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, | |||
377 | * @buf: buffer to store read data | 377 | * @buf: buffer to store read data |
378 | * @oob_required: caller expects OOB data read to chip->oob_poi | 378 | * @oob_required: caller expects OOB data read to chip->oob_poi |
379 | * | 379 | * |
380 | * The hw generator calculates the error syndrome automatically. Therefor | 380 | * The hw generator calculates the error syndrome automatically. Therefore |
381 | * we need a special oob layout and handling. | 381 | * we need a special oob layout and handling. |
382 | */ | 382 | */ |
383 | static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, | 383 | static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
@@ -520,7 +520,7 @@ static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { | |||
520 | }; | 520 | }; |
521 | 521 | ||
522 | 522 | ||
523 | static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd, | 523 | static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd, |
524 | struct nand_chip *chip, | 524 | struct nand_chip *chip, |
525 | const uint8_t *buf, int oob_required) | 525 | const uint8_t *buf, int oob_required) |
526 | { | 526 | { |
@@ -531,6 +531,8 @@ static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd, | |||
531 | 531 | ||
532 | /* Set up ECC autogeneration */ | 532 | /* Set up ECC autogeneration */ |
533 | cafe->ctl2 |= (1<<30); | 533 | cafe->ctl2 |= (1<<30); |
534 | |||
535 | return 0; | ||
534 | } | 536 | } |
535 | 537 | ||
536 | static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 538 | static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
@@ -542,9 +544,12 @@ static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, | |||
542 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); | 544 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); |
543 | 545 | ||
544 | if (unlikely(raw)) | 546 | if (unlikely(raw)) |
545 | chip->ecc.write_page_raw(mtd, chip, buf, oob_required); | 547 | status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required); |
546 | else | 548 | else |
547 | chip->ecc.write_page(mtd, chip, buf, oob_required); | 549 | status = chip->ecc.write_page(mtd, chip, buf, oob_required); |
550 | |||
551 | if (status < 0) | ||
552 | return status; | ||
548 | 553 | ||
549 | /* | 554 | /* |
550 | * Cached progamming disabled for now, Not sure if its worth the | 555 | * Cached progamming disabled for now, Not sure if its worth the |
@@ -571,13 +576,6 @@ static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, | |||
571 | status = chip->waitfunc(mtd, chip); | 576 | status = chip->waitfunc(mtd, chip); |
572 | } | 577 | } |
573 | 578 | ||
574 | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | ||
575 | /* Send command to read back the data */ | ||
576 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | ||
577 | |||
578 | if (chip->verify_buf(mtd, buf, mtd->writesize)) | ||
579 | return -EIO; | ||
580 | #endif | ||
581 | return 0; | 579 | return 0; |
582 | } | 580 | } |
583 | 581 | ||
diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c index 1024bfc05c86..39b2ef848811 100644 --- a/drivers/mtd/nand/cmx270_nand.c +++ b/drivers/mtd/nand/cmx270_nand.c | |||
@@ -76,18 +76,6 @@ static void cmx270_read_buf(struct mtd_info *mtd, u_char *buf, int len) | |||
76 | *buf++ = readl(this->IO_ADDR_R) >> 16; | 76 | *buf++ = readl(this->IO_ADDR_R) >> 16; |
77 | } | 77 | } |
78 | 78 | ||
79 | static int cmx270_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) | ||
80 | { | ||
81 | int i; | ||
82 | struct nand_chip *this = mtd->priv; | ||
83 | |||
84 | for (i=0; i<len; i++) | ||
85 | if (buf[i] != (u_char)(readl(this->IO_ADDR_R) >> 16)) | ||
86 | return -EFAULT; | ||
87 | |||
88 | return 0; | ||
89 | } | ||
90 | |||
91 | static inline void nand_cs_on(void) | 79 | static inline void nand_cs_on(void) |
92 | { | 80 | { |
93 | gpio_set_value(GPIO_NAND_CS, 0); | 81 | gpio_set_value(GPIO_NAND_CS, 0); |
@@ -209,7 +197,6 @@ static int __init cmx270_init(void) | |||
209 | this->read_byte = cmx270_read_byte; | 197 | this->read_byte = cmx270_read_byte; |
210 | this->read_buf = cmx270_read_buf; | 198 | this->read_buf = cmx270_read_buf; |
211 | this->write_buf = cmx270_write_buf; | 199 | this->write_buf = cmx270_write_buf; |
212 | this->verify_buf = cmx270_verify_buf; | ||
213 | 200 | ||
214 | /* Scan to find existence of the device */ | 201 | /* Scan to find existence of the device */ |
215 | if (nand_scan (cmx270_nand_mtd, 1)) { | 202 | if (nand_scan (cmx270_nand_mtd, 1)) { |
diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c index f1deb1ee2c95..945047ad0952 100644 --- a/drivers/mtd/nand/davinci_nand.c +++ b/drivers/mtd/nand/davinci_nand.c | |||
@@ -33,6 +33,7 @@ | |||
33 | #include <linux/mtd/nand.h> | 33 | #include <linux/mtd/nand.h> |
34 | #include <linux/mtd/partitions.h> | 34 | #include <linux/mtd/partitions.h> |
35 | #include <linux/slab.h> | 35 | #include <linux/slab.h> |
36 | #include <linux/of_device.h> | ||
36 | 37 | ||
37 | #include <linux/platform_data/mtd-davinci.h> | 38 | #include <linux/platform_data/mtd-davinci.h> |
38 | #include <linux/platform_data/mtd-davinci-aemif.h> | 39 | #include <linux/platform_data/mtd-davinci-aemif.h> |
@@ -518,9 +519,75 @@ static struct nand_ecclayout hwecc4_2048 __initconst = { | |||
518 | }, | 519 | }, |
519 | }; | 520 | }; |
520 | 521 | ||
522 | #if defined(CONFIG_OF) | ||
523 | static const struct of_device_id davinci_nand_of_match[] = { | ||
524 | {.compatible = "ti,davinci-nand", }, | ||
525 | {}, | ||
526 | } | ||
527 | MODULE_DEVICE_TABLE(of, davinci_nand_of_match); | ||
528 | |||
529 | static struct davinci_nand_pdata | ||
530 | *nand_davinci_get_pdata(struct platform_device *pdev) | ||
531 | { | ||
532 | if (!pdev->dev.platform_data && pdev->dev.of_node) { | ||
533 | struct davinci_nand_pdata *pdata; | ||
534 | const char *mode; | ||
535 | u32 prop; | ||
536 | int len; | ||
537 | |||
538 | pdata = devm_kzalloc(&pdev->dev, | ||
539 | sizeof(struct davinci_nand_pdata), | ||
540 | GFP_KERNEL); | ||
541 | pdev->dev.platform_data = pdata; | ||
542 | if (!pdata) | ||
543 | return NULL; | ||
544 | if (!of_property_read_u32(pdev->dev.of_node, | ||
545 | "ti,davinci-chipselect", &prop)) | ||
546 | pdev->id = prop; | ||
547 | if (!of_property_read_u32(pdev->dev.of_node, | ||
548 | "ti,davinci-mask-ale", &prop)) | ||
549 | pdata->mask_ale = prop; | ||
550 | if (!of_property_read_u32(pdev->dev.of_node, | ||
551 | "ti,davinci-mask-cle", &prop)) | ||
552 | pdata->mask_cle = prop; | ||
553 | if (!of_property_read_u32(pdev->dev.of_node, | ||
554 | "ti,davinci-mask-chipsel", &prop)) | ||
555 | pdata->mask_chipsel = prop; | ||
556 | if (!of_property_read_string(pdev->dev.of_node, | ||
557 | "ti,davinci-ecc-mode", &mode)) { | ||
558 | if (!strncmp("none", mode, 4)) | ||
559 | pdata->ecc_mode = NAND_ECC_NONE; | ||
560 | if (!strncmp("soft", mode, 4)) | ||
561 | pdata->ecc_mode = NAND_ECC_SOFT; | ||
562 | if (!strncmp("hw", mode, 2)) | ||
563 | pdata->ecc_mode = NAND_ECC_HW; | ||
564 | } | ||
565 | if (!of_property_read_u32(pdev->dev.of_node, | ||
566 | "ti,davinci-ecc-bits", &prop)) | ||
567 | pdata->ecc_bits = prop; | ||
568 | if (!of_property_read_u32(pdev->dev.of_node, | ||
569 | "ti,davinci-nand-buswidth", &prop)) | ||
570 | if (prop == 16) | ||
571 | pdata->options |= NAND_BUSWIDTH_16; | ||
572 | if (of_find_property(pdev->dev.of_node, | ||
573 | "ti,davinci-nand-use-bbt", &len)) | ||
574 | pdata->bbt_options = NAND_BBT_USE_FLASH; | ||
575 | } | ||
576 | |||
577 | return pdev->dev.platform_data; | ||
578 | } | ||
579 | #else | ||
580 | #define davinci_nand_of_match NULL | ||
581 | static struct davinci_nand_pdata | ||
582 | *nand_davinci_get_pdata(struct platform_device *pdev) | ||
583 | { | ||
584 | return pdev->dev.platform_data; | ||
585 | } | ||
586 | #endif | ||
587 | |||
521 | static int __init nand_davinci_probe(struct platform_device *pdev) | 588 | static int __init nand_davinci_probe(struct platform_device *pdev) |
522 | { | 589 | { |
523 | struct davinci_nand_pdata *pdata = pdev->dev.platform_data; | 590 | struct davinci_nand_pdata *pdata; |
524 | struct davinci_nand_info *info; | 591 | struct davinci_nand_info *info; |
525 | struct resource *res1; | 592 | struct resource *res1; |
526 | struct resource *res2; | 593 | struct resource *res2; |
@@ -530,6 +597,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev) | |||
530 | uint32_t val; | 597 | uint32_t val; |
531 | nand_ecc_modes_t ecc_mode; | 598 | nand_ecc_modes_t ecc_mode; |
532 | 599 | ||
600 | pdata = nand_davinci_get_pdata(pdev); | ||
533 | /* insist on board-specific configuration */ | 601 | /* insist on board-specific configuration */ |
534 | if (!pdata) | 602 | if (!pdata) |
535 | return -ENODEV; | 603 | return -ENODEV; |
@@ -656,7 +724,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev) | |||
656 | goto err_clk; | 724 | goto err_clk; |
657 | } | 725 | } |
658 | 726 | ||
659 | ret = clk_enable(info->clk); | 727 | ret = clk_prepare_enable(info->clk); |
660 | if (ret < 0) { | 728 | if (ret < 0) { |
661 | dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", | 729 | dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", |
662 | ret); | 730 | ret); |
@@ -767,7 +835,7 @@ syndrome_done: | |||
767 | 835 | ||
768 | err_scan: | 836 | err_scan: |
769 | err_timing: | 837 | err_timing: |
770 | clk_disable(info->clk); | 838 | clk_disable_unprepare(info->clk); |
771 | 839 | ||
772 | err_clk_enable: | 840 | err_clk_enable: |
773 | clk_put(info->clk); | 841 | clk_put(info->clk); |
@@ -804,7 +872,7 @@ static int __exit nand_davinci_remove(struct platform_device *pdev) | |||
804 | 872 | ||
805 | nand_release(&info->mtd); | 873 | nand_release(&info->mtd); |
806 | 874 | ||
807 | clk_disable(info->clk); | 875 | clk_disable_unprepare(info->clk); |
808 | clk_put(info->clk); | 876 | clk_put(info->clk); |
809 | 877 | ||
810 | kfree(info); | 878 | kfree(info); |
@@ -816,6 +884,8 @@ static struct platform_driver nand_davinci_driver = { | |||
816 | .remove = __exit_p(nand_davinci_remove), | 884 | .remove = __exit_p(nand_davinci_remove), |
817 | .driver = { | 885 | .driver = { |
818 | .name = "davinci_nand", | 886 | .name = "davinci_nand", |
887 | .owner = THIS_MODULE, | ||
888 | .of_match_table = davinci_nand_of_match, | ||
819 | }, | 889 | }, |
820 | }; | 890 | }; |
821 | MODULE_ALIAS("platform:davinci_nand"); | 891 | MODULE_ALIAS("platform:davinci_nand"); |
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c index 0650aafa0dd2..e706a237170f 100644 --- a/drivers/mtd/nand/denali.c +++ b/drivers/mtd/nand/denali.c | |||
@@ -1028,7 +1028,7 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op) | |||
1028 | 1028 | ||
1029 | /* writes a page. user specifies type, and this function handles the | 1029 | /* writes a page. user specifies type, and this function handles the |
1030 | * configuration details. */ | 1030 | * configuration details. */ |
1031 | static void write_page(struct mtd_info *mtd, struct nand_chip *chip, | 1031 | static int write_page(struct mtd_info *mtd, struct nand_chip *chip, |
1032 | const uint8_t *buf, bool raw_xfer) | 1032 | const uint8_t *buf, bool raw_xfer) |
1033 | { | 1033 | { |
1034 | struct denali_nand_info *denali = mtd_to_denali(mtd); | 1034 | struct denali_nand_info *denali = mtd_to_denali(mtd); |
@@ -1078,6 +1078,8 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, | |||
1078 | 1078 | ||
1079 | denali_enable_dma(denali, false); | 1079 | denali_enable_dma(denali, false); |
1080 | dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE); | 1080 | dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE); |
1081 | |||
1082 | return 0; | ||
1081 | } | 1083 | } |
1082 | 1084 | ||
1083 | /* NAND core entry points */ | 1085 | /* NAND core entry points */ |
@@ -1086,24 +1088,24 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, | |||
1086 | * writing a page with ECC or without is similar, all the work is done | 1088 | * writing a page with ECC or without is similar, all the work is done |
1087 | * by write_page above. | 1089 | * by write_page above. |
1088 | * */ | 1090 | * */ |
1089 | static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 1091 | static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
1090 | const uint8_t *buf, int oob_required) | 1092 | const uint8_t *buf, int oob_required) |
1091 | { | 1093 | { |
1092 | /* for regular page writes, we let HW handle all the ECC | 1094 | /* for regular page writes, we let HW handle all the ECC |
1093 | * data written to the device. */ | 1095 | * data written to the device. */ |
1094 | write_page(mtd, chip, buf, false); | 1096 | return write_page(mtd, chip, buf, false); |
1095 | } | 1097 | } |
1096 | 1098 | ||
1097 | /* This is the callback that the NAND core calls to write a page without ECC. | 1099 | /* This is the callback that the NAND core calls to write a page without ECC. |
1098 | * raw access is similar to ECC page writes, so all the work is done in the | 1100 | * raw access is similar to ECC page writes, so all the work is done in the |
1099 | * write_page() function above. | 1101 | * write_page() function above. |
1100 | */ | 1102 | */ |
1101 | static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 1103 | static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
1102 | const uint8_t *buf, int oob_required) | 1104 | const uint8_t *buf, int oob_required) |
1103 | { | 1105 | { |
1104 | /* for raw page writes, we want to disable ECC and simply write | 1106 | /* for raw page writes, we want to disable ECC and simply write |
1105 | whatever data is in the buffer. */ | 1107 | whatever data is in the buffer. */ |
1106 | write_page(mtd, chip, buf, true); | 1108 | return write_page(mtd, chip, buf, true); |
1107 | } | 1109 | } |
1108 | 1110 | ||
1109 | static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, | 1111 | static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c index e2ca067631cf..256eb30f6180 100644 --- a/drivers/mtd/nand/diskonchip.c +++ b/drivers/mtd/nand/diskonchip.c | |||
@@ -376,19 +376,6 @@ static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) | |||
376 | } | 376 | } |
377 | } | 377 | } |
378 | 378 | ||
379 | static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) | ||
380 | { | ||
381 | struct nand_chip *this = mtd->priv; | ||
382 | struct doc_priv *doc = this->priv; | ||
383 | void __iomem *docptr = doc->virtadr; | ||
384 | int i; | ||
385 | |||
386 | for (i = 0; i < len; i++) | ||
387 | if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO)) | ||
388 | return -EFAULT; | ||
389 | return 0; | ||
390 | } | ||
391 | |||
392 | static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) | 379 | static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) |
393 | { | 380 | { |
394 | struct nand_chip *this = mtd->priv; | 381 | struct nand_chip *this = mtd->priv; |
@@ -526,26 +513,6 @@ static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) | |||
526 | buf[i] = ReadDOC(docptr, LastDataRead); | 513 | buf[i] = ReadDOC(docptr, LastDataRead); |
527 | } | 514 | } |
528 | 515 | ||
529 | static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) | ||
530 | { | ||
531 | struct nand_chip *this = mtd->priv; | ||
532 | struct doc_priv *doc = this->priv; | ||
533 | void __iomem *docptr = doc->virtadr; | ||
534 | int i; | ||
535 | |||
536 | /* Start read pipeline */ | ||
537 | ReadDOC(docptr, ReadPipeInit); | ||
538 | |||
539 | for (i = 0; i < len - 1; i++) | ||
540 | if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { | ||
541 | ReadDOC(docptr, LastDataRead); | ||
542 | return i; | ||
543 | } | ||
544 | if (buf[i] != ReadDOC(docptr, LastDataRead)) | ||
545 | return i; | ||
546 | return 0; | ||
547 | } | ||
548 | |||
549 | static u_char doc2001plus_read_byte(struct mtd_info *mtd) | 516 | static u_char doc2001plus_read_byte(struct mtd_info *mtd) |
550 | { | 517 | { |
551 | struct nand_chip *this = mtd->priv; | 518 | struct nand_chip *this = mtd->priv; |
@@ -610,33 +577,6 @@ static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) | |||
610 | printk("\n"); | 577 | printk("\n"); |
611 | } | 578 | } |
612 | 579 | ||
613 | static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) | ||
614 | { | ||
615 | struct nand_chip *this = mtd->priv; | ||
616 | struct doc_priv *doc = this->priv; | ||
617 | void __iomem *docptr = doc->virtadr; | ||
618 | int i; | ||
619 | |||
620 | if (debug) | ||
621 | printk("verifybuf of %d bytes: ", len); | ||
622 | |||
623 | /* Start read pipeline */ | ||
624 | ReadDOC(docptr, Mplus_ReadPipeInit); | ||
625 | ReadDOC(docptr, Mplus_ReadPipeInit); | ||
626 | |||
627 | for (i = 0; i < len - 2; i++) | ||
628 | if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { | ||
629 | ReadDOC(docptr, Mplus_LastDataRead); | ||
630 | ReadDOC(docptr, Mplus_LastDataRead); | ||
631 | return i; | ||
632 | } | ||
633 | if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead)) | ||
634 | return len - 2; | ||
635 | if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead)) | ||
636 | return len - 1; | ||
637 | return 0; | ||
638 | } | ||
639 | |||
640 | static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) | 580 | static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) |
641 | { | 581 | { |
642 | struct nand_chip *this = mtd->priv; | 582 | struct nand_chip *this = mtd->priv; |
@@ -1432,7 +1372,6 @@ static inline int __init doc2000_init(struct mtd_info *mtd) | |||
1432 | this->read_byte = doc2000_read_byte; | 1372 | this->read_byte = doc2000_read_byte; |
1433 | this->write_buf = doc2000_writebuf; | 1373 | this->write_buf = doc2000_writebuf; |
1434 | this->read_buf = doc2000_readbuf; | 1374 | this->read_buf = doc2000_readbuf; |
1435 | this->verify_buf = doc2000_verifybuf; | ||
1436 | this->scan_bbt = nftl_scan_bbt; | 1375 | this->scan_bbt = nftl_scan_bbt; |
1437 | 1376 | ||
1438 | doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; | 1377 | doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; |
@@ -1449,7 +1388,6 @@ static inline int __init doc2001_init(struct mtd_info *mtd) | |||
1449 | this->read_byte = doc2001_read_byte; | 1388 | this->read_byte = doc2001_read_byte; |
1450 | this->write_buf = doc2001_writebuf; | 1389 | this->write_buf = doc2001_writebuf; |
1451 | this->read_buf = doc2001_readbuf; | 1390 | this->read_buf = doc2001_readbuf; |
1452 | this->verify_buf = doc2001_verifybuf; | ||
1453 | 1391 | ||
1454 | ReadDOC(doc->virtadr, ChipID); | 1392 | ReadDOC(doc->virtadr, ChipID); |
1455 | ReadDOC(doc->virtadr, ChipID); | 1393 | ReadDOC(doc->virtadr, ChipID); |
@@ -1480,7 +1418,6 @@ static inline int __init doc2001plus_init(struct mtd_info *mtd) | |||
1480 | this->read_byte = doc2001plus_read_byte; | 1418 | this->read_byte = doc2001plus_read_byte; |
1481 | this->write_buf = doc2001plus_writebuf; | 1419 | this->write_buf = doc2001plus_writebuf; |
1482 | this->read_buf = doc2001plus_readbuf; | 1420 | this->read_buf = doc2001plus_readbuf; |
1483 | this->verify_buf = doc2001plus_verifybuf; | ||
1484 | this->scan_bbt = inftl_scan_bbt; | 1421 | this->scan_bbt = inftl_scan_bbt; |
1485 | this->cmd_ctrl = NULL; | 1422 | this->cmd_ctrl = NULL; |
1486 | this->select_chip = doc2001plus_select_chip; | 1423 | this->select_chip = doc2001plus_select_chip; |
diff --git a/drivers/mtd/nand/docg4.c b/drivers/mtd/nand/docg4.c index a225e49a5623..799da5d1c857 100644 --- a/drivers/mtd/nand/docg4.c +++ b/drivers/mtd/nand/docg4.c | |||
@@ -378,9 +378,9 @@ static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) | |||
378 | * bit flips(s) are not reported in stats. | 378 | * bit flips(s) are not reported in stats. |
379 | */ | 379 | */ |
380 | 380 | ||
381 | if (doc->oob_buf[15]) { | 381 | if (nand->oob_poi[15]) { |
382 | int bit, numsetbits = 0; | 382 | int bit, numsetbits = 0; |
383 | unsigned long written_flag = doc->oob_buf[15]; | 383 | unsigned long written_flag = nand->oob_poi[15]; |
384 | for_each_set_bit(bit, &written_flag, 8) | 384 | for_each_set_bit(bit, &written_flag, 8) |
385 | numsetbits++; | 385 | numsetbits++; |
386 | if (numsetbits > 4) { /* assume blank */ | 386 | if (numsetbits > 4) { /* assume blank */ |
@@ -428,7 +428,7 @@ static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) | |||
428 | /* if error within oob area preceeding ecc bytes... */ | 428 | /* if error within oob area preceeding ecc bytes... */ |
429 | if (errpos[i] > DOCG4_PAGE_SIZE * 8) | 429 | if (errpos[i] > DOCG4_PAGE_SIZE * 8) |
430 | change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, | 430 | change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, |
431 | (unsigned long *)doc->oob_buf); | 431 | (unsigned long *)nand->oob_poi); |
432 | 432 | ||
433 | else /* error in page data */ | 433 | else /* error in page data */ |
434 | change_bit(errpos[i], (unsigned long *)buf); | 434 | change_bit(errpos[i], (unsigned long *)buf); |
@@ -748,18 +748,12 @@ static int read_page(struct mtd_info *mtd, struct nand_chip *nand, | |||
748 | 748 | ||
749 | docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ | 749 | docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ |
750 | 750 | ||
751 | /* | 751 | /* this device always reads oob after page data */ |
752 | * Diskonchips read oob immediately after a page read. Mtd | ||
753 | * infrastructure issues a separate command for reading oob after the | ||
754 | * page is read. So we save the oob bytes in a local buffer and just | ||
755 | * copy it if the next command reads oob from the same page. | ||
756 | */ | ||
757 | |||
758 | /* first 14 oob bytes read from I/O reg */ | 752 | /* first 14 oob bytes read from I/O reg */ |
759 | docg4_read_buf(mtd, doc->oob_buf, 14); | 753 | docg4_read_buf(mtd, nand->oob_poi, 14); |
760 | 754 | ||
761 | /* last 2 read from another reg */ | 755 | /* last 2 read from another reg */ |
762 | buf16 = (uint16_t *)(doc->oob_buf + 14); | 756 | buf16 = (uint16_t *)(nand->oob_poi + 14); |
763 | *buf16 = readw(docptr + DOCG4_MYSTERY_REG); | 757 | *buf16 = readw(docptr + DOCG4_MYSTERY_REG); |
764 | 758 | ||
765 | write_nop(docptr); | 759 | write_nop(docptr); |
@@ -782,6 +776,8 @@ static int read_page(struct mtd_info *mtd, struct nand_chip *nand, | |||
782 | } | 776 | } |
783 | 777 | ||
784 | writew(0, docptr + DOC_DATAEND); | 778 | writew(0, docptr + DOC_DATAEND); |
779 | if (bits_corrected == -EBADMSG) /* uncorrectable errors */ | ||
780 | return 0; | ||
785 | return bits_corrected; | 781 | return bits_corrected; |
786 | } | 782 | } |
787 | 783 | ||
@@ -807,21 +803,6 @@ static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, | |||
807 | 803 | ||
808 | dev_dbg(doc->dev, "%s: page %x\n", __func__, page); | 804 | dev_dbg(doc->dev, "%s: page %x\n", __func__, page); |
809 | 805 | ||
810 | /* | ||
811 | * Oob bytes are read as part of a normal page read. If the previous | ||
812 | * nand command was a read of the page whose oob is now being read, just | ||
813 | * copy the oob bytes that we saved in a local buffer and avoid a | ||
814 | * separate oob read. | ||
815 | */ | ||
816 | if (doc->last_command.command == NAND_CMD_READ0 && | ||
817 | doc->last_command.page == page) { | ||
818 | memcpy(nand->oob_poi, doc->oob_buf, 16); | ||
819 | return 0; | ||
820 | } | ||
821 | |||
822 | /* | ||
823 | * Separate read of oob data only. | ||
824 | */ | ||
825 | docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); | 806 | docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); |
826 | 807 | ||
827 | writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); | 808 | writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); |
@@ -898,7 +879,7 @@ static void docg4_erase_block(struct mtd_info *mtd, int page) | |||
898 | write_nop(docptr); | 879 | write_nop(docptr); |
899 | } | 880 | } |
900 | 881 | ||
901 | static void write_page(struct mtd_info *mtd, struct nand_chip *nand, | 882 | static int write_page(struct mtd_info *mtd, struct nand_chip *nand, |
902 | const uint8_t *buf, bool use_ecc) | 883 | const uint8_t *buf, bool use_ecc) |
903 | { | 884 | { |
904 | struct docg4_priv *doc = nand->priv; | 885 | struct docg4_priv *doc = nand->priv; |
@@ -950,15 +931,17 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *nand, | |||
950 | write_nop(docptr); | 931 | write_nop(docptr); |
951 | writew(0, docptr + DOC_DATAEND); | 932 | writew(0, docptr + DOC_DATAEND); |
952 | write_nop(docptr); | 933 | write_nop(docptr); |
934 | |||
935 | return 0; | ||
953 | } | 936 | } |
954 | 937 | ||
955 | static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, | 938 | static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, |
956 | const uint8_t *buf, int oob_required) | 939 | const uint8_t *buf, int oob_required) |
957 | { | 940 | { |
958 | return write_page(mtd, nand, buf, false); | 941 | return write_page(mtd, nand, buf, false); |
959 | } | 942 | } |
960 | 943 | ||
961 | static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, | 944 | static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, |
962 | const uint8_t *buf, int oob_required) | 945 | const uint8_t *buf, int oob_required) |
963 | { | 946 | { |
964 | return write_page(mtd, nand, buf, true); | 947 | return write_page(mtd, nand, buf, true); |
diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c index 784293806110..cc1480a5e4c1 100644 --- a/drivers/mtd/nand/fsl_elbc_nand.c +++ b/drivers/mtd/nand/fsl_elbc_nand.c | |||
@@ -614,41 +614,6 @@ static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) | |||
614 | len, avail); | 614 | len, avail); |
615 | } | 615 | } |
616 | 616 | ||
617 | /* | ||
618 | * Verify buffer against the FCM Controller Data Buffer | ||
619 | */ | ||
620 | static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) | ||
621 | { | ||
622 | struct nand_chip *chip = mtd->priv; | ||
623 | struct fsl_elbc_mtd *priv = chip->priv; | ||
624 | struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; | ||
625 | int i; | ||
626 | |||
627 | if (len < 0) { | ||
628 | dev_err(priv->dev, "write_buf of %d bytes", len); | ||
629 | return -EINVAL; | ||
630 | } | ||
631 | |||
632 | if ((unsigned int)len > | ||
633 | elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) { | ||
634 | dev_err(priv->dev, | ||
635 | "verify_buf beyond end of buffer " | ||
636 | "(%d requested, %u available)\n", | ||
637 | len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index); | ||
638 | |||
639 | elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes; | ||
640 | return -EINVAL; | ||
641 | } | ||
642 | |||
643 | for (i = 0; i < len; i++) | ||
644 | if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i]) | ||
645 | != buf[i]) | ||
646 | break; | ||
647 | |||
648 | elbc_fcm_ctrl->index += len; | ||
649 | return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO; | ||
650 | } | ||
651 | |||
652 | /* This function is called after Program and Erase Operations to | 617 | /* This function is called after Program and Erase Operations to |
653 | * check for success or failure. | 618 | * check for success or failure. |
654 | */ | 619 | */ |
@@ -766,11 +731,13 @@ static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip, | |||
766 | /* ECC will be calculated automatically, and errors will be detected in | 731 | /* ECC will be calculated automatically, and errors will be detected in |
767 | * waitfunc. | 732 | * waitfunc. |
768 | */ | 733 | */ |
769 | static void fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 734 | static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
770 | const uint8_t *buf, int oob_required) | 735 | const uint8_t *buf, int oob_required) |
771 | { | 736 | { |
772 | fsl_elbc_write_buf(mtd, buf, mtd->writesize); | 737 | fsl_elbc_write_buf(mtd, buf, mtd->writesize); |
773 | fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); | 738 | fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
739 | |||
740 | return 0; | ||
774 | } | 741 | } |
775 | 742 | ||
776 | static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) | 743 | static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) |
@@ -796,7 +763,6 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) | |||
796 | chip->read_byte = fsl_elbc_read_byte; | 763 | chip->read_byte = fsl_elbc_read_byte; |
797 | chip->write_buf = fsl_elbc_write_buf; | 764 | chip->write_buf = fsl_elbc_write_buf; |
798 | chip->read_buf = fsl_elbc_read_buf; | 765 | chip->read_buf = fsl_elbc_read_buf; |
799 | chip->verify_buf = fsl_elbc_verify_buf; | ||
800 | chip->select_chip = fsl_elbc_select_chip; | 766 | chip->select_chip = fsl_elbc_select_chip; |
801 | chip->cmdfunc = fsl_elbc_cmdfunc; | 767 | chip->cmdfunc = fsl_elbc_cmdfunc; |
802 | chip->waitfunc = fsl_elbc_wait; | 768 | chip->waitfunc = fsl_elbc_wait; |
@@ -805,7 +771,6 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) | |||
805 | chip->bbt_md = &bbt_mirror_descr; | 771 | chip->bbt_md = &bbt_mirror_descr; |
806 | 772 | ||
807 | /* set up nand options */ | 773 | /* set up nand options */ |
808 | chip->options = NAND_NO_READRDY; | ||
809 | chip->bbt_options = NAND_BBT_USE_FLASH; | 774 | chip->bbt_options = NAND_BBT_USE_FLASH; |
810 | 775 | ||
811 | chip->controller = &elbc_fcm_ctrl->controller; | 776 | chip->controller = &elbc_fcm_ctrl->controller; |
@@ -916,7 +881,8 @@ static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev) | |||
916 | elbc_fcm_ctrl->chips[bank] = priv; | 881 | elbc_fcm_ctrl->chips[bank] = priv; |
917 | priv->bank = bank; | 882 | priv->bank = bank; |
918 | priv->ctrl = fsl_lbc_ctrl_dev; | 883 | priv->ctrl = fsl_lbc_ctrl_dev; |
919 | priv->dev = dev; | 884 | priv->dev = &pdev->dev; |
885 | dev_set_drvdata(priv->dev, priv); | ||
920 | 886 | ||
921 | priv->vbase = ioremap(res.start, resource_size(&res)); | 887 | priv->vbase = ioremap(res.start, resource_size(&res)); |
922 | if (!priv->vbase) { | 888 | if (!priv->vbase) { |
@@ -963,11 +929,10 @@ err: | |||
963 | 929 | ||
964 | static int fsl_elbc_nand_remove(struct platform_device *pdev) | 930 | static int fsl_elbc_nand_remove(struct platform_device *pdev) |
965 | { | 931 | { |
966 | int i; | ||
967 | struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; | 932 | struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; |
968 | for (i = 0; i < MAX_BANKS; i++) | 933 | struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev); |
969 | if (elbc_fcm_ctrl->chips[i]) | 934 | |
970 | fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]); | 935 | fsl_elbc_chip_remove(priv); |
971 | 936 | ||
972 | mutex_lock(&fsl_elbc_nand_mutex); | 937 | mutex_lock(&fsl_elbc_nand_mutex); |
973 | elbc_fcm_ctrl->counter--; | 938 | elbc_fcm_ctrl->counter--; |
diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c index 01e2f2e87d8c..3551a99076ba 100644 --- a/drivers/mtd/nand/fsl_ifc_nand.c +++ b/drivers/mtd/nand/fsl_ifc_nand.c | |||
@@ -194,7 +194,7 @@ static int is_blank(struct mtd_info *mtd, unsigned int bufnum) | |||
194 | struct nand_chip *chip = mtd->priv; | 194 | struct nand_chip *chip = mtd->priv; |
195 | struct fsl_ifc_mtd *priv = chip->priv; | 195 | struct fsl_ifc_mtd *priv = chip->priv; |
196 | u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); | 196 | u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); |
197 | u32 __iomem *mainarea = (u32 *)addr; | 197 | u32 __iomem *mainarea = (u32 __iomem *)addr; |
198 | u8 __iomem *oob = addr + mtd->writesize; | 198 | u8 __iomem *oob = addr + mtd->writesize; |
199 | int i; | 199 | int i; |
200 | 200 | ||
@@ -592,8 +592,8 @@ static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) | |||
592 | * next byte. | 592 | * next byte. |
593 | */ | 593 | */ |
594 | if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { | 594 | if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { |
595 | data = in_be16((uint16_t *)&ifc_nand_ctrl-> | 595 | data = in_be16((uint16_t __iomem *)&ifc_nand_ctrl-> |
596 | addr[ifc_nand_ctrl->index]); | 596 | addr[ifc_nand_ctrl->index]); |
597 | ifc_nand_ctrl->index += 2; | 597 | ifc_nand_ctrl->index += 2; |
598 | return (uint8_t) data; | 598 | return (uint8_t) data; |
599 | } | 599 | } |
@@ -628,46 +628,6 @@ static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) | |||
628 | } | 628 | } |
629 | 629 | ||
630 | /* | 630 | /* |
631 | * Verify buffer against the IFC Controller Data Buffer | ||
632 | */ | ||
633 | static int fsl_ifc_verify_buf(struct mtd_info *mtd, | ||
634 | const u_char *buf, int len) | ||
635 | { | ||
636 | struct nand_chip *chip = mtd->priv; | ||
637 | struct fsl_ifc_mtd *priv = chip->priv; | ||
638 | struct fsl_ifc_ctrl *ctrl = priv->ctrl; | ||
639 | struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; | ||
640 | int i; | ||
641 | |||
642 | if (len < 0) { | ||
643 | dev_err(priv->dev, "%s: write_buf of %d bytes", __func__, len); | ||
644 | return -EINVAL; | ||
645 | } | ||
646 | |||
647 | if ((unsigned int)len > nctrl->read_bytes - nctrl->index) { | ||
648 | dev_err(priv->dev, | ||
649 | "%s: beyond end of buffer (%d requested, %u available)\n", | ||
650 | __func__, len, nctrl->read_bytes - nctrl->index); | ||
651 | |||
652 | nctrl->index = nctrl->read_bytes; | ||
653 | return -EINVAL; | ||
654 | } | ||
655 | |||
656 | for (i = 0; i < len; i++) | ||
657 | if (in_8(&nctrl->addr[nctrl->index + i]) != buf[i]) | ||
658 | break; | ||
659 | |||
660 | nctrl->index += len; | ||
661 | |||
662 | if (i != len) | ||
663 | return -EIO; | ||
664 | if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) | ||
665 | return -EIO; | ||
666 | |||
667 | return 0; | ||
668 | } | ||
669 | |||
670 | /* | ||
671 | * This function is called after Program and Erase Operations to | 631 | * This function is called after Program and Erase Operations to |
672 | * check for success or failure. | 632 | * check for success or failure. |
673 | */ | 633 | */ |
@@ -722,11 +682,13 @@ static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, | |||
722 | /* ECC will be calculated automatically, and errors will be detected in | 682 | /* ECC will be calculated automatically, and errors will be detected in |
723 | * waitfunc. | 683 | * waitfunc. |
724 | */ | 684 | */ |
725 | static void fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 685 | static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
726 | const uint8_t *buf, int oob_required) | 686 | const uint8_t *buf, int oob_required) |
727 | { | 687 | { |
728 | fsl_ifc_write_buf(mtd, buf, mtd->writesize); | 688 | fsl_ifc_write_buf(mtd, buf, mtd->writesize); |
729 | fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); | 689 | fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
690 | |||
691 | return 0; | ||
730 | } | 692 | } |
731 | 693 | ||
732 | static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) | 694 | static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) |
@@ -844,7 +806,6 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) | |||
844 | 806 | ||
845 | chip->write_buf = fsl_ifc_write_buf; | 807 | chip->write_buf = fsl_ifc_write_buf; |
846 | chip->read_buf = fsl_ifc_read_buf; | 808 | chip->read_buf = fsl_ifc_read_buf; |
847 | chip->verify_buf = fsl_ifc_verify_buf; | ||
848 | chip->select_chip = fsl_ifc_select_chip; | 809 | chip->select_chip = fsl_ifc_select_chip; |
849 | chip->cmdfunc = fsl_ifc_cmdfunc; | 810 | chip->cmdfunc = fsl_ifc_cmdfunc; |
850 | chip->waitfunc = fsl_ifc_wait; | 811 | chip->waitfunc = fsl_ifc_wait; |
@@ -855,7 +816,6 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) | |||
855 | out_be32(&ifc->ifc_nand.ncfgr, 0x0); | 816 | out_be32(&ifc->ifc_nand.ncfgr, 0x0); |
856 | 817 | ||
857 | /* set up nand options */ | 818 | /* set up nand options */ |
858 | chip->options = NAND_NO_READRDY; | ||
859 | chip->bbt_options = NAND_BBT_USE_FLASH; | 819 | chip->bbt_options = NAND_BBT_USE_FLASH; |
860 | 820 | ||
861 | 821 | ||
diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/gpio.c index 27000a5f5f47..bc73bc5f2713 100644 --- a/drivers/mtd/nand/gpio.c +++ b/drivers/mtd/nand/gpio.c | |||
@@ -100,23 +100,6 @@ static void gpio_nand_readbuf(struct mtd_info *mtd, u_char *buf, int len) | |||
100 | readsb(this->IO_ADDR_R, buf, len); | 100 | readsb(this->IO_ADDR_R, buf, len); |
101 | } | 101 | } |
102 | 102 | ||
103 | static int gpio_nand_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) | ||
104 | { | ||
105 | struct nand_chip *this = mtd->priv; | ||
106 | unsigned char read, *p = (unsigned char *) buf; | ||
107 | int i, err = 0; | ||
108 | |||
109 | for (i = 0; i < len; i++) { | ||
110 | read = readb(this->IO_ADDR_R); | ||
111 | if (read != p[i]) { | ||
112 | pr_debug("%s: err at %d (read %04x vs %04x)\n", | ||
113 | __func__, i, read, p[i]); | ||
114 | err = -EFAULT; | ||
115 | } | ||
116 | } | ||
117 | return err; | ||
118 | } | ||
119 | |||
120 | static void gpio_nand_writebuf16(struct mtd_info *mtd, const u_char *buf, | 103 | static void gpio_nand_writebuf16(struct mtd_info *mtd, const u_char *buf, |
121 | int len) | 104 | int len) |
122 | { | 105 | { |
@@ -148,26 +131,6 @@ static void gpio_nand_readbuf16(struct mtd_info *mtd, u_char *buf, int len) | |||
148 | } | 131 | } |
149 | } | 132 | } |
150 | 133 | ||
151 | static int gpio_nand_verifybuf16(struct mtd_info *mtd, const u_char *buf, | ||
152 | int len) | ||
153 | { | ||
154 | struct nand_chip *this = mtd->priv; | ||
155 | unsigned short read, *p = (unsigned short *) buf; | ||
156 | int i, err = 0; | ||
157 | len >>= 1; | ||
158 | |||
159 | for (i = 0; i < len; i++) { | ||
160 | read = readw(this->IO_ADDR_R); | ||
161 | if (read != p[i]) { | ||
162 | pr_debug("%s: err at %d (read %04x vs %04x)\n", | ||
163 | __func__, i, read, p[i]); | ||
164 | err = -EFAULT; | ||
165 | } | ||
166 | } | ||
167 | return err; | ||
168 | } | ||
169 | |||
170 | |||
171 | static int gpio_nand_devready(struct mtd_info *mtd) | 134 | static int gpio_nand_devready(struct mtd_info *mtd) |
172 | { | 135 | { |
173 | struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); | 136 | struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); |
@@ -391,11 +354,9 @@ static int __devinit gpio_nand_probe(struct platform_device *dev) | |||
391 | if (this->options & NAND_BUSWIDTH_16) { | 354 | if (this->options & NAND_BUSWIDTH_16) { |
392 | this->read_buf = gpio_nand_readbuf16; | 355 | this->read_buf = gpio_nand_readbuf16; |
393 | this->write_buf = gpio_nand_writebuf16; | 356 | this->write_buf = gpio_nand_writebuf16; |
394 | this->verify_buf = gpio_nand_verifybuf16; | ||
395 | } else { | 357 | } else { |
396 | this->read_buf = gpio_nand_readbuf; | 358 | this->read_buf = gpio_nand_readbuf; |
397 | this->write_buf = gpio_nand_writebuf; | 359 | this->write_buf = gpio_nand_writebuf; |
398 | this->verify_buf = gpio_nand_verifybuf; | ||
399 | } | 360 | } |
400 | 361 | ||
401 | /* set the mtd private data for the nand driver */ | 362 | /* set the mtd private data for the nand driver */ |
@@ -456,20 +417,7 @@ static struct platform_driver gpio_nand_driver = { | |||
456 | }, | 417 | }, |
457 | }; | 418 | }; |
458 | 419 | ||
459 | static int __init gpio_nand_init(void) | 420 | module_platform_driver(gpio_nand_driver); |
460 | { | ||
461 | printk(KERN_INFO "GPIO NAND driver, © 2004 Simtec Electronics\n"); | ||
462 | |||
463 | return platform_driver_register(&gpio_nand_driver); | ||
464 | } | ||
465 | |||
466 | static void __exit gpio_nand_exit(void) | ||
467 | { | ||
468 | platform_driver_unregister(&gpio_nand_driver); | ||
469 | } | ||
470 | |||
471 | module_init(gpio_nand_init); | ||
472 | module_exit(gpio_nand_exit); | ||
473 | 421 | ||
474 | MODULE_LICENSE("GPL"); | 422 | MODULE_LICENSE("GPL"); |
475 | MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); | 423 | MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); |
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c index a1f43329ad43..3502accd4bc3 100644 --- a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c +++ b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c | |||
@@ -26,7 +26,7 @@ | |||
26 | #include "gpmi-regs.h" | 26 | #include "gpmi-regs.h" |
27 | #include "bch-regs.h" | 27 | #include "bch-regs.h" |
28 | 28 | ||
29 | struct timing_threshod timing_default_threshold = { | 29 | static struct timing_threshod timing_default_threshold = { |
30 | .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> | 30 | .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> |
31 | BP_GPMI_TIMING0_DATA_SETUP), | 31 | BP_GPMI_TIMING0_DATA_SETUP), |
32 | .internal_data_setup_in_ns = 0, | 32 | .internal_data_setup_in_ns = 0, |
@@ -124,12 +124,42 @@ error: | |||
124 | return -ETIMEDOUT; | 124 | return -ETIMEDOUT; |
125 | } | 125 | } |
126 | 126 | ||
127 | static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) | ||
128 | { | ||
129 | struct clk *clk; | ||
130 | int ret; | ||
131 | int i; | ||
132 | |||
133 | for (i = 0; i < GPMI_CLK_MAX; i++) { | ||
134 | clk = this->resources.clock[i]; | ||
135 | if (!clk) | ||
136 | break; | ||
137 | |||
138 | if (v) { | ||
139 | ret = clk_prepare_enable(clk); | ||
140 | if (ret) | ||
141 | goto err_clk; | ||
142 | } else { | ||
143 | clk_disable_unprepare(clk); | ||
144 | } | ||
145 | } | ||
146 | return 0; | ||
147 | |||
148 | err_clk: | ||
149 | for (; i > 0; i--) | ||
150 | clk_disable_unprepare(this->resources.clock[i - 1]); | ||
151 | return ret; | ||
152 | } | ||
153 | |||
154 | #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true) | ||
155 | #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false) | ||
156 | |||
127 | int gpmi_init(struct gpmi_nand_data *this) | 157 | int gpmi_init(struct gpmi_nand_data *this) |
128 | { | 158 | { |
129 | struct resources *r = &this->resources; | 159 | struct resources *r = &this->resources; |
130 | int ret; | 160 | int ret; |
131 | 161 | ||
132 | ret = clk_prepare_enable(r->clock); | 162 | ret = gpmi_enable_clk(this); |
133 | if (ret) | 163 | if (ret) |
134 | goto err_out; | 164 | goto err_out; |
135 | ret = gpmi_reset_block(r->gpmi_regs, false); | 165 | ret = gpmi_reset_block(r->gpmi_regs, false); |
@@ -149,7 +179,7 @@ int gpmi_init(struct gpmi_nand_data *this) | |||
149 | /* Select BCH ECC. */ | 179 | /* Select BCH ECC. */ |
150 | writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); | 180 | writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); |
151 | 181 | ||
152 | clk_disable_unprepare(r->clock); | 182 | gpmi_disable_clk(this); |
153 | return 0; | 183 | return 0; |
154 | err_out: | 184 | err_out: |
155 | return ret; | 185 | return ret; |
@@ -205,7 +235,7 @@ int bch_set_geometry(struct gpmi_nand_data *this) | |||
205 | ecc_strength = bch_geo->ecc_strength >> 1; | 235 | ecc_strength = bch_geo->ecc_strength >> 1; |
206 | page_size = bch_geo->page_size; | 236 | page_size = bch_geo->page_size; |
207 | 237 | ||
208 | ret = clk_prepare_enable(r->clock); | 238 | ret = gpmi_enable_clk(this); |
209 | if (ret) | 239 | if (ret) |
210 | goto err_out; | 240 | goto err_out; |
211 | 241 | ||
@@ -240,7 +270,7 @@ int bch_set_geometry(struct gpmi_nand_data *this) | |||
240 | writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, | 270 | writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, |
241 | r->bch_regs + HW_BCH_CTRL_SET); | 271 | r->bch_regs + HW_BCH_CTRL_SET); |
242 | 272 | ||
243 | clk_disable_unprepare(r->clock); | 273 | gpmi_disable_clk(this); |
244 | return 0; | 274 | return 0; |
245 | err_out: | 275 | err_out: |
246 | return ret; | 276 | return ret; |
@@ -263,6 +293,7 @@ static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, | |||
263 | struct gpmi_nfc_hardware_timing *hw) | 293 | struct gpmi_nfc_hardware_timing *hw) |
264 | { | 294 | { |
265 | struct timing_threshod *nfc = &timing_default_threshold; | 295 | struct timing_threshod *nfc = &timing_default_threshold; |
296 | struct resources *r = &this->resources; | ||
266 | struct nand_chip *nand = &this->nand; | 297 | struct nand_chip *nand = &this->nand; |
267 | struct nand_timing target = this->timing; | 298 | struct nand_timing target = this->timing; |
268 | bool improved_timing_is_available; | 299 | bool improved_timing_is_available; |
@@ -302,8 +333,9 @@ static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, | |||
302 | (target.tRHOH_in_ns >= 0) ; | 333 | (target.tRHOH_in_ns >= 0) ; |
303 | 334 | ||
304 | /* Inspect the clock. */ | 335 | /* Inspect the clock. */ |
336 | nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]); | ||
305 | clock_frequency_in_hz = nfc->clock_frequency_in_hz; | 337 | clock_frequency_in_hz = nfc->clock_frequency_in_hz; |
306 | clock_period_in_ns = 1000000000 / clock_frequency_in_hz; | 338 | clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz; |
307 | 339 | ||
308 | /* | 340 | /* |
309 | * The NFC quantizes setup and hold parameters in terms of clock cycles. | 341 | * The NFC quantizes setup and hold parameters in terms of clock cycles. |
@@ -698,17 +730,230 @@ return_results: | |||
698 | hw->address_setup_in_cycles = address_setup_in_cycles; | 730 | hw->address_setup_in_cycles = address_setup_in_cycles; |
699 | hw->use_half_periods = dll_use_half_periods; | 731 | hw->use_half_periods = dll_use_half_periods; |
700 | hw->sample_delay_factor = sample_delay_factor; | 732 | hw->sample_delay_factor = sample_delay_factor; |
733 | hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT; | ||
734 | hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; | ||
701 | 735 | ||
702 | /* Return success. */ | 736 | /* Return success. */ |
703 | return 0; | 737 | return 0; |
704 | } | 738 | } |
705 | 739 | ||
740 | /* | ||
741 | * <1> Firstly, we should know what's the GPMI-clock means. | ||
742 | * The GPMI-clock is the internal clock in the gpmi nand controller. | ||
743 | * If you set 100MHz to gpmi nand controller, the GPMI-clock's period | ||
744 | * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. | ||
745 | * | ||
746 | * <2> Secondly, we should know what's the frequency on the nand chip pins. | ||
747 | * The frequency on the nand chip pins is derived from the GPMI-clock. | ||
748 | * We can get it from the following equation: | ||
749 | * | ||
750 | * F = G / (DS + DH) | ||
751 | * | ||
752 | * F : the frequency on the nand chip pins. | ||
753 | * G : the GPMI clock, such as 100MHz. | ||
754 | * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP | ||
755 | * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD | ||
756 | * | ||
757 | * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, | ||
758 | * the nand EDO(extended Data Out) timing could be applied. | ||
759 | * The GPMI implements a feedback read strobe to sample the read data. | ||
760 | * The feedback read strobe can be delayed to support the nand EDO timing | ||
761 | * where the read strobe may deasserts before the read data is valid, and | ||
762 | * read data is valid for some time after read strobe. | ||
763 | * | ||
764 | * The following figure illustrates some aspects of a NAND Flash read: | ||
765 | * | ||
766 | * |<---tREA---->| | ||
767 | * | | | ||
768 | * | | | | ||
769 | * |<--tRP-->| | | ||
770 | * | | | | ||
771 | * __ ___|__________________________________ | ||
772 | * RDN \________/ | | ||
773 | * | | ||
774 | * /---------\ | ||
775 | * Read Data --------------< >--------- | ||
776 | * \---------/ | ||
777 | * | | | ||
778 | * |<-D->| | ||
779 | * FeedbackRDN ________ ____________ | ||
780 | * \___________/ | ||
781 | * | ||
782 | * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. | ||
783 | * | ||
784 | * | ||
785 | * <4> Now, we begin to describe how to compute the right RDN_DELAY. | ||
786 | * | ||
787 | * 4.1) From the aspect of the nand chip pins: | ||
788 | * Delay = (tREA + C - tRP) {1} | ||
789 | * | ||
790 | * tREA : the maximum read access time. From the ONFI nand standards, | ||
791 | * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4. | ||
792 | * Please check it in : www.onfi.org | ||
793 | * C : a constant for adjust the delay. default is 4. | ||
794 | * tRP : the read pulse width. | ||
795 | * Specified by the HW_GPMI_TIMING0:DATA_SETUP: | ||
796 | * tRP = (GPMI-clock-period) * DATA_SETUP | ||
797 | * | ||
798 | * 4.2) From the aspect of the GPMI nand controller: | ||
799 | * Delay = RDN_DELAY * 0.125 * RP {2} | ||
800 | * | ||
801 | * RP : the DLL reference period. | ||
802 | * if (GPMI-clock-period > DLL_THRETHOLD) | ||
803 | * RP = GPMI-clock-period / 2; | ||
804 | * else | ||
805 | * RP = GPMI-clock-period; | ||
806 | * | ||
807 | * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period | ||
808 | * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD | ||
809 | * is 16ns, but in mx6q, we use 12ns. | ||
810 | * | ||
811 | * 4.3) since {1} equals {2}, we get: | ||
812 | * | ||
813 | * (tREA + 4 - tRP) * 8 | ||
814 | * RDN_DELAY = --------------------- {3} | ||
815 | * RP | ||
816 | * | ||
817 | * 4.4) We only support the fastest asynchronous mode of ONFI nand. | ||
818 | * For some ONFI nand, the mode 4 is the fastest mode; | ||
819 | * while for some ONFI nand, the mode 5 is the fastest mode. | ||
820 | * So we only support the mode 4 and mode 5. It is no need to | ||
821 | * support other modes. | ||
822 | */ | ||
823 | static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, | ||
824 | struct gpmi_nfc_hardware_timing *hw) | ||
825 | { | ||
826 | struct resources *r = &this->resources; | ||
827 | unsigned long rate = clk_get_rate(r->clock[0]); | ||
828 | int mode = this->timing_mode; | ||
829 | int dll_threshold = 16; /* in ns */ | ||
830 | unsigned long delay; | ||
831 | unsigned long clk_period; | ||
832 | int t_rea; | ||
833 | int c = 4; | ||
834 | int t_rp; | ||
835 | int rp; | ||
836 | |||
837 | /* | ||
838 | * [1] for GPMI_HW_GPMI_TIMING0: | ||
839 | * The async mode requires 40MHz for mode 4, 50MHz for mode 5. | ||
840 | * The GPMI can support 100MHz at most. So if we want to | ||
841 | * get the 40MHz or 50MHz, we have to set DS=1, DH=1. | ||
842 | * Set the ADDRESS_SETUP to 0 in mode 4. | ||
843 | */ | ||
844 | hw->data_setup_in_cycles = 1; | ||
845 | hw->data_hold_in_cycles = 1; | ||
846 | hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0); | ||
847 | |||
848 | /* [2] for GPMI_HW_GPMI_TIMING1 */ | ||
849 | hw->device_busy_timeout = 0x9000; | ||
850 | |||
851 | /* [3] for GPMI_HW_GPMI_CTRL1 */ | ||
852 | hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; | ||
853 | |||
854 | if (GPMI_IS_MX6Q(this)) | ||
855 | dll_threshold = 12; | ||
856 | |||
857 | /* | ||
858 | * Enlarge 10 times for the numerator and denominator in {3}. | ||
859 | * This make us to get more accurate result. | ||
860 | */ | ||
861 | clk_period = NSEC_PER_SEC / (rate / 10); | ||
862 | dll_threshold *= 10; | ||
863 | t_rea = ((mode == 5) ? 16 : 20) * 10; | ||
864 | c *= 10; | ||
865 | |||
866 | t_rp = clk_period * 1; /* DATA_SETUP is 1 */ | ||
867 | |||
868 | if (clk_period > dll_threshold) { | ||
869 | hw->use_half_periods = 1; | ||
870 | rp = clk_period / 2; | ||
871 | } else { | ||
872 | hw->use_half_periods = 0; | ||
873 | rp = clk_period; | ||
874 | } | ||
875 | |||
876 | /* | ||
877 | * Multiply the numerator with 10, we could do a round off: | ||
878 | * 7.8 round up to 8; 7.4 round down to 7. | ||
879 | */ | ||
880 | delay = (((t_rea + c - t_rp) * 8) * 10) / rp; | ||
881 | delay = (delay + 5) / 10; | ||
882 | |||
883 | hw->sample_delay_factor = delay; | ||
884 | } | ||
885 | |||
886 | static int enable_edo_mode(struct gpmi_nand_data *this, int mode) | ||
887 | { | ||
888 | struct resources *r = &this->resources; | ||
889 | struct nand_chip *nand = &this->nand; | ||
890 | struct mtd_info *mtd = &this->mtd; | ||
891 | uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {}; | ||
892 | unsigned long rate; | ||
893 | int ret; | ||
894 | |||
895 | nand->select_chip(mtd, 0); | ||
896 | |||
897 | /* [1] send SET FEATURE commond to NAND */ | ||
898 | feature[0] = mode; | ||
899 | ret = nand->onfi_set_features(mtd, nand, | ||
900 | ONFI_FEATURE_ADDR_TIMING_MODE, feature); | ||
901 | if (ret) | ||
902 | goto err_out; | ||
903 | |||
904 | /* [2] send GET FEATURE command to double-check the timing mode */ | ||
905 | memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN); | ||
906 | ret = nand->onfi_get_features(mtd, nand, | ||
907 | ONFI_FEATURE_ADDR_TIMING_MODE, feature); | ||
908 | if (ret || feature[0] != mode) | ||
909 | goto err_out; | ||
910 | |||
911 | nand->select_chip(mtd, -1); | ||
912 | |||
913 | /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */ | ||
914 | rate = (mode == 5) ? 100000000 : 80000000; | ||
915 | clk_set_rate(r->clock[0], rate); | ||
916 | |||
917 | /* Let the gpmi_begin() re-compute the timing again. */ | ||
918 | this->flags &= ~GPMI_TIMING_INIT_OK; | ||
919 | |||
920 | this->flags |= GPMI_ASYNC_EDO_ENABLED; | ||
921 | this->timing_mode = mode; | ||
922 | dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode); | ||
923 | return 0; | ||
924 | |||
925 | err_out: | ||
926 | nand->select_chip(mtd, -1); | ||
927 | dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode); | ||
928 | return -EINVAL; | ||
929 | } | ||
930 | |||
931 | int gpmi_extra_init(struct gpmi_nand_data *this) | ||
932 | { | ||
933 | struct nand_chip *chip = &this->nand; | ||
934 | |||
935 | /* Enable the asynchronous EDO feature. */ | ||
936 | if (GPMI_IS_MX6Q(this) && chip->onfi_version) { | ||
937 | int mode = onfi_get_async_timing_mode(chip); | ||
938 | |||
939 | /* We only support the timing mode 4 and mode 5. */ | ||
940 | if (mode & ONFI_TIMING_MODE_5) | ||
941 | mode = 5; | ||
942 | else if (mode & ONFI_TIMING_MODE_4) | ||
943 | mode = 4; | ||
944 | else | ||
945 | return 0; | ||
946 | |||
947 | return enable_edo_mode(this, mode); | ||
948 | } | ||
949 | return 0; | ||
950 | } | ||
951 | |||
706 | /* Begin the I/O */ | 952 | /* Begin the I/O */ |
707 | void gpmi_begin(struct gpmi_nand_data *this) | 953 | void gpmi_begin(struct gpmi_nand_data *this) |
708 | { | 954 | { |
709 | struct resources *r = &this->resources; | 955 | struct resources *r = &this->resources; |
710 | struct timing_threshod *nfc = &timing_default_threshold; | 956 | void __iomem *gpmi_regs = r->gpmi_regs; |
711 | unsigned char *gpmi_regs = r->gpmi_regs; | ||
712 | unsigned int clock_period_in_ns; | 957 | unsigned int clock_period_in_ns; |
713 | uint32_t reg; | 958 | uint32_t reg; |
714 | unsigned int dll_wait_time_in_us; | 959 | unsigned int dll_wait_time_in_us; |
@@ -716,60 +961,66 @@ void gpmi_begin(struct gpmi_nand_data *this) | |||
716 | int ret; | 961 | int ret; |
717 | 962 | ||
718 | /* Enable the clock. */ | 963 | /* Enable the clock. */ |
719 | ret = clk_prepare_enable(r->clock); | 964 | ret = gpmi_enable_clk(this); |
720 | if (ret) { | 965 | if (ret) { |
721 | pr_err("We failed in enable the clk\n"); | 966 | pr_err("We failed in enable the clk\n"); |
722 | goto err_out; | 967 | goto err_out; |
723 | } | 968 | } |
724 | 969 | ||
725 | /* set ready/busy timeout */ | 970 | /* Only initialize the timing once */ |
726 | writel(0x500 << BP_GPMI_TIMING1_BUSY_TIMEOUT, | 971 | if (this->flags & GPMI_TIMING_INIT_OK) |
727 | gpmi_regs + HW_GPMI_TIMING1); | 972 | return; |
728 | 973 | this->flags |= GPMI_TIMING_INIT_OK; | |
729 | /* Get the timing information we need. */ | ||
730 | nfc->clock_frequency_in_hz = clk_get_rate(r->clock); | ||
731 | clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz; | ||
732 | 974 | ||
733 | gpmi_nfc_compute_hardware_timing(this, &hw); | 975 | if (this->flags & GPMI_ASYNC_EDO_ENABLED) |
976 | gpmi_compute_edo_timing(this, &hw); | ||
977 | else | ||
978 | gpmi_nfc_compute_hardware_timing(this, &hw); | ||
734 | 979 | ||
735 | /* Set up all the simple timing parameters. */ | 980 | /* [1] Set HW_GPMI_TIMING0 */ |
736 | reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | | 981 | reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | |
737 | BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | | 982 | BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | |
738 | BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ; | 983 | BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ; |
739 | 984 | ||
740 | writel(reg, gpmi_regs + HW_GPMI_TIMING0); | 985 | writel(reg, gpmi_regs + HW_GPMI_TIMING0); |
741 | 986 | ||
742 | /* | 987 | /* [2] Set HW_GPMI_TIMING1 */ |
743 | * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. | 988 | writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout), |
744 | */ | 989 | gpmi_regs + HW_GPMI_TIMING1); |
990 | |||
991 | /* [3] The following code is to set the HW_GPMI_CTRL1. */ | ||
992 | |||
993 | /* Set the WRN_DLY_SEL */ | ||
994 | writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR); | ||
995 | writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel), | ||
996 | gpmi_regs + HW_GPMI_CTRL1_SET); | ||
997 | |||
998 | /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */ | ||
745 | writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); | 999 | writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); |
746 | 1000 | ||
747 | /* Clear out the DLL control fields. */ | 1001 | /* Clear out the DLL control fields. */ |
748 | writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR); | 1002 | reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD; |
749 | writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR); | 1003 | writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR); |
750 | 1004 | ||
751 | /* If no sample delay is called for, return immediately. */ | 1005 | /* If no sample delay is called for, return immediately. */ |
752 | if (!hw.sample_delay_factor) | 1006 | if (!hw.sample_delay_factor) |
753 | return; | 1007 | return; |
754 | 1008 | ||
755 | /* Configure the HALF_PERIOD flag. */ | 1009 | /* Set RDN_DELAY or HALF_PERIOD. */ |
756 | if (hw.use_half_periods) | 1010 | reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0) |
757 | writel(BM_GPMI_CTRL1_HALF_PERIOD, | 1011 | | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor); |
758 | gpmi_regs + HW_GPMI_CTRL1_SET); | ||
759 | 1012 | ||
760 | /* Set the delay factor. */ | 1013 | writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET); |
761 | writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor), | ||
762 | gpmi_regs + HW_GPMI_CTRL1_SET); | ||
763 | 1014 | ||
764 | /* Enable the DLL. */ | 1015 | /* At last, we enable the DLL. */ |
765 | writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); | 1016 | writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); |
766 | 1017 | ||
767 | /* | 1018 | /* |
768 | * After we enable the GPMI DLL, we have to wait 64 clock cycles before | 1019 | * After we enable the GPMI DLL, we have to wait 64 clock cycles before |
769 | * we can use the GPMI. | 1020 | * we can use the GPMI. Calculate the amount of time we need to wait, |
770 | * | 1021 | * in microseconds. |
771 | * Calculate the amount of time we need to wait, in microseconds. | ||
772 | */ | 1022 | */ |
1023 | clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]); | ||
773 | dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; | 1024 | dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; |
774 | 1025 | ||
775 | if (!dll_wait_time_in_us) | 1026 | if (!dll_wait_time_in_us) |
@@ -784,8 +1035,7 @@ err_out: | |||
784 | 1035 | ||
785 | void gpmi_end(struct gpmi_nand_data *this) | 1036 | void gpmi_end(struct gpmi_nand_data *this) |
786 | { | 1037 | { |
787 | struct resources *r = &this->resources; | 1038 | gpmi_disable_clk(this); |
788 | clk_disable_unprepare(r->clock); | ||
789 | } | 1039 | } |
790 | 1040 | ||
791 | /* Clears a BCH interrupt. */ | 1041 | /* Clears a BCH interrupt. */ |
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c index a6cad5caba78..d79696b2f19b 100644 --- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c +++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c | |||
@@ -18,6 +18,9 @@ | |||
18 | * with this program; if not, write to the Free Software Foundation, Inc., | 18 | * with this program; if not, write to the Free Software Foundation, Inc., |
19 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | 19 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | */ | 20 | */ |
21 | |||
22 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | ||
23 | |||
21 | #include <linux/clk.h> | 24 | #include <linux/clk.h> |
22 | #include <linux/slab.h> | 25 | #include <linux/slab.h> |
23 | #include <linux/interrupt.h> | 26 | #include <linux/interrupt.h> |
@@ -27,6 +30,7 @@ | |||
27 | #include <linux/pinctrl/consumer.h> | 30 | #include <linux/pinctrl/consumer.h> |
28 | #include <linux/of.h> | 31 | #include <linux/of.h> |
29 | #include <linux/of_device.h> | 32 | #include <linux/of_device.h> |
33 | #include <linux/of_mtd.h> | ||
30 | #include "gpmi-nand.h" | 34 | #include "gpmi-nand.h" |
31 | 35 | ||
32 | /* add our owner bbt descriptor */ | 36 | /* add our owner bbt descriptor */ |
@@ -113,7 +117,7 @@ int common_nfc_set_geometry(struct gpmi_nand_data *this) | |||
113 | /* We use the same ECC strength for all chunks. */ | 117 | /* We use the same ECC strength for all chunks. */ |
114 | geo->ecc_strength = get_ecc_strength(this); | 118 | geo->ecc_strength = get_ecc_strength(this); |
115 | if (!geo->ecc_strength) { | 119 | if (!geo->ecc_strength) { |
116 | pr_err("We get a wrong ECC strength.\n"); | 120 | pr_err("wrong ECC strength.\n"); |
117 | return -EINVAL; | 121 | return -EINVAL; |
118 | } | 122 | } |
119 | 123 | ||
@@ -316,7 +320,7 @@ acquire_register_block(struct gpmi_nand_data *this, const char *res_name) | |||
316 | struct platform_device *pdev = this->pdev; | 320 | struct platform_device *pdev = this->pdev; |
317 | struct resources *res = &this->resources; | 321 | struct resources *res = &this->resources; |
318 | struct resource *r; | 322 | struct resource *r; |
319 | void *p; | 323 | void __iomem *p; |
320 | 324 | ||
321 | r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); | 325 | r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); |
322 | if (!r) { | 326 | if (!r) { |
@@ -423,8 +427,8 @@ static int __devinit acquire_dma_channels(struct gpmi_nand_data *this) | |||
423 | struct platform_device *pdev = this->pdev; | 427 | struct platform_device *pdev = this->pdev; |
424 | struct resource *r_dma; | 428 | struct resource *r_dma; |
425 | struct device_node *dn; | 429 | struct device_node *dn; |
426 | int dma_channel; | 430 | u32 dma_channel; |
427 | unsigned int ret; | 431 | int ret; |
428 | struct dma_chan *dma_chan; | 432 | struct dma_chan *dma_chan; |
429 | dma_cap_mask_t mask; | 433 | dma_cap_mask_t mask; |
430 | 434 | ||
@@ -464,9 +468,73 @@ acquire_err: | |||
464 | return -EINVAL; | 468 | return -EINVAL; |
465 | } | 469 | } |
466 | 470 | ||
471 | static void gpmi_put_clks(struct gpmi_nand_data *this) | ||
472 | { | ||
473 | struct resources *r = &this->resources; | ||
474 | struct clk *clk; | ||
475 | int i; | ||
476 | |||
477 | for (i = 0; i < GPMI_CLK_MAX; i++) { | ||
478 | clk = r->clock[i]; | ||
479 | if (clk) { | ||
480 | clk_put(clk); | ||
481 | r->clock[i] = NULL; | ||
482 | } | ||
483 | } | ||
484 | } | ||
485 | |||
486 | static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = { | ||
487 | "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", | ||
488 | }; | ||
489 | |||
490 | static int __devinit gpmi_get_clks(struct gpmi_nand_data *this) | ||
491 | { | ||
492 | struct resources *r = &this->resources; | ||
493 | char **extra_clks = NULL; | ||
494 | struct clk *clk; | ||
495 | int i; | ||
496 | |||
497 | /* The main clock is stored in the first. */ | ||
498 | r->clock[0] = clk_get(this->dev, "gpmi_io"); | ||
499 | if (IS_ERR(r->clock[0])) | ||
500 | goto err_clock; | ||
501 | |||
502 | /* Get extra clocks */ | ||
503 | if (GPMI_IS_MX6Q(this)) | ||
504 | extra_clks = extra_clks_for_mx6q; | ||
505 | if (!extra_clks) | ||
506 | return 0; | ||
507 | |||
508 | for (i = 1; i < GPMI_CLK_MAX; i++) { | ||
509 | if (extra_clks[i - 1] == NULL) | ||
510 | break; | ||
511 | |||
512 | clk = clk_get(this->dev, extra_clks[i - 1]); | ||
513 | if (IS_ERR(clk)) | ||
514 | goto err_clock; | ||
515 | |||
516 | r->clock[i] = clk; | ||
517 | } | ||
518 | |||
519 | if (GPMI_IS_MX6Q(this)) | ||
520 | /* | ||
521 | * Set the default value for the gpmi clock in mx6q: | ||
522 | * | ||
523 | * If you want to use the ONFI nand which is in the | ||
524 | * Synchronous Mode, you should change the clock as you need. | ||
525 | */ | ||
526 | clk_set_rate(r->clock[0], 22000000); | ||
527 | |||
528 | return 0; | ||
529 | |||
530 | err_clock: | ||
531 | dev_dbg(this->dev, "failed in finding the clocks.\n"); | ||
532 | gpmi_put_clks(this); | ||
533 | return -ENOMEM; | ||
534 | } | ||
535 | |||
467 | static int __devinit acquire_resources(struct gpmi_nand_data *this) | 536 | static int __devinit acquire_resources(struct gpmi_nand_data *this) |
468 | { | 537 | { |
469 | struct resources *res = &this->resources; | ||
470 | struct pinctrl *pinctrl; | 538 | struct pinctrl *pinctrl; |
471 | int ret; | 539 | int ret; |
472 | 540 | ||
@@ -492,12 +560,9 @@ static int __devinit acquire_resources(struct gpmi_nand_data *this) | |||
492 | goto exit_pin; | 560 | goto exit_pin; |
493 | } | 561 | } |
494 | 562 | ||
495 | res->clock = clk_get(&this->pdev->dev, NULL); | 563 | ret = gpmi_get_clks(this); |
496 | if (IS_ERR(res->clock)) { | 564 | if (ret) |
497 | pr_err("can not get the clock\n"); | ||
498 | ret = -ENOENT; | ||
499 | goto exit_clock; | 565 | goto exit_clock; |
500 | } | ||
501 | return 0; | 566 | return 0; |
502 | 567 | ||
503 | exit_clock: | 568 | exit_clock: |
@@ -512,9 +577,7 @@ exit_regs: | |||
512 | 577 | ||
513 | static void release_resources(struct gpmi_nand_data *this) | 578 | static void release_resources(struct gpmi_nand_data *this) |
514 | { | 579 | { |
515 | struct resources *r = &this->resources; | 580 | gpmi_put_clks(this); |
516 | |||
517 | clk_put(r->clock); | ||
518 | release_register_block(this); | 581 | release_register_block(this); |
519 | release_bch_irq(this); | 582 | release_bch_irq(this); |
520 | release_dma_channels(this); | 583 | release_dma_channels(this); |
@@ -667,12 +730,12 @@ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) | |||
667 | struct device *dev = this->dev; | 730 | struct device *dev = this->dev; |
668 | 731 | ||
669 | /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ | 732 | /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ |
670 | this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA); | 733 | this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); |
671 | if (this->cmd_buffer == NULL) | 734 | if (this->cmd_buffer == NULL) |
672 | goto error_alloc; | 735 | goto error_alloc; |
673 | 736 | ||
674 | /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */ | 737 | /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */ |
675 | this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA); | 738 | this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); |
676 | if (this->data_buffer_dma == NULL) | 739 | if (this->data_buffer_dma == NULL) |
677 | goto error_alloc; | 740 | goto error_alloc; |
678 | 741 | ||
@@ -930,7 +993,7 @@ exit_nfc: | |||
930 | return ret; | 993 | return ret; |
931 | } | 994 | } |
932 | 995 | ||
933 | static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 996 | static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
934 | const uint8_t *buf, int oob_required) | 997 | const uint8_t *buf, int oob_required) |
935 | { | 998 | { |
936 | struct gpmi_nand_data *this = chip->priv; | 999 | struct gpmi_nand_data *this = chip->priv; |
@@ -972,7 +1035,7 @@ static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, | |||
972 | &payload_virt, &payload_phys); | 1035 | &payload_virt, &payload_phys); |
973 | if (ret) { | 1036 | if (ret) { |
974 | pr_err("Inadequate payload DMA buffer\n"); | 1037 | pr_err("Inadequate payload DMA buffer\n"); |
975 | return; | 1038 | return 0; |
976 | } | 1039 | } |
977 | 1040 | ||
978 | ret = send_page_prepare(this, | 1041 | ret = send_page_prepare(this, |
@@ -1002,6 +1065,8 @@ exit_auxiliary: | |||
1002 | nfc_geo->payload_size, | 1065 | nfc_geo->payload_size, |
1003 | payload_virt, payload_phys); | 1066 | payload_virt, payload_phys); |
1004 | } | 1067 | } |
1068 | |||
1069 | return 0; | ||
1005 | } | 1070 | } |
1006 | 1071 | ||
1007 | /* | 1072 | /* |
@@ -1064,6 +1129,9 @@ exit_auxiliary: | |||
1064 | * ECC-based or raw view of the page is implicit in which function it calls | 1129 | * ECC-based or raw view of the page is implicit in which function it calls |
1065 | * (there is a similar pair of ECC-based/raw functions for writing). | 1130 | * (there is a similar pair of ECC-based/raw functions for writing). |
1066 | * | 1131 | * |
1132 | * FIXME: The following paragraph is incorrect, now that there exist | ||
1133 | * ecc.read_oob_raw and ecc.write_oob_raw functions. | ||
1134 | * | ||
1067 | * Since MTD assumes the OOB is not covered by ECC, there is no pair of | 1135 | * Since MTD assumes the OOB is not covered by ECC, there is no pair of |
1068 | * ECC-based/raw functions for reading or or writing the OOB. The fact that the | 1136 | * ECC-based/raw functions for reading or or writing the OOB. The fact that the |
1069 | * caller wants an ECC-based or raw view of the page is not propagated down to | 1137 | * caller wants an ECC-based or raw view of the page is not propagated down to |
@@ -1190,7 +1258,6 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) | |||
1190 | unsigned int search_area_size_in_strides; | 1258 | unsigned int search_area_size_in_strides; |
1191 | unsigned int stride; | 1259 | unsigned int stride; |
1192 | unsigned int page; | 1260 | unsigned int page; |
1193 | loff_t byte; | ||
1194 | uint8_t *buffer = chip->buffers->databuf; | 1261 | uint8_t *buffer = chip->buffers->databuf; |
1195 | int saved_chip_number; | 1262 | int saved_chip_number; |
1196 | int found_an_ncb_fingerprint = false; | 1263 | int found_an_ncb_fingerprint = false; |
@@ -1207,9 +1274,8 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) | |||
1207 | dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); | 1274 | dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); |
1208 | 1275 | ||
1209 | for (stride = 0; stride < search_area_size_in_strides; stride++) { | 1276 | for (stride = 0; stride < search_area_size_in_strides; stride++) { |
1210 | /* Compute the page and byte addresses. */ | 1277 | /* Compute the page addresses. */ |
1211 | page = stride * rom_geo->stride_size_in_pages; | 1278 | page = stride * rom_geo->stride_size_in_pages; |
1212 | byte = page * mtd->writesize; | ||
1213 | 1279 | ||
1214 | dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); | 1280 | dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); |
1215 | 1281 | ||
@@ -1251,7 +1317,6 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) | |||
1251 | unsigned int block; | 1317 | unsigned int block; |
1252 | unsigned int stride; | 1318 | unsigned int stride; |
1253 | unsigned int page; | 1319 | unsigned int page; |
1254 | loff_t byte; | ||
1255 | uint8_t *buffer = chip->buffers->databuf; | 1320 | uint8_t *buffer = chip->buffers->databuf; |
1256 | int saved_chip_number; | 1321 | int saved_chip_number; |
1257 | int status; | 1322 | int status; |
@@ -1300,9 +1365,8 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) | |||
1300 | /* Loop through the first search area, writing NCB fingerprints. */ | 1365 | /* Loop through the first search area, writing NCB fingerprints. */ |
1301 | dev_dbg(dev, "Writing NCB fingerprints...\n"); | 1366 | dev_dbg(dev, "Writing NCB fingerprints...\n"); |
1302 | for (stride = 0; stride < search_area_size_in_strides; stride++) { | 1367 | for (stride = 0; stride < search_area_size_in_strides; stride++) { |
1303 | /* Compute the page and byte addresses. */ | 1368 | /* Compute the page addresses. */ |
1304 | page = stride * rom_geo->stride_size_in_pages; | 1369 | page = stride * rom_geo->stride_size_in_pages; |
1305 | byte = page * mtd->writesize; | ||
1306 | 1370 | ||
1307 | /* Write the first page of the current stride. */ | 1371 | /* Write the first page of the current stride. */ |
1308 | dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); | 1372 | dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); |
@@ -1436,6 +1500,7 @@ static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this) | |||
1436 | /* Adjust the ECC strength according to the chip. */ | 1500 | /* Adjust the ECC strength according to the chip. */ |
1437 | this->nand.ecc.strength = this->bch_geometry.ecc_strength; | 1501 | this->nand.ecc.strength = this->bch_geometry.ecc_strength; |
1438 | this->mtd.ecc_strength = this->bch_geometry.ecc_strength; | 1502 | this->mtd.ecc_strength = this->bch_geometry.ecc_strength; |
1503 | this->mtd.bitflip_threshold = this->bch_geometry.ecc_strength; | ||
1439 | 1504 | ||
1440 | /* NAND boot init, depends on the gpmi_set_geometry(). */ | 1505 | /* NAND boot init, depends on the gpmi_set_geometry(). */ |
1441 | return nand_boot_init(this); | 1506 | return nand_boot_init(this); |
@@ -1452,11 +1517,19 @@ static int gpmi_scan_bbt(struct mtd_info *mtd) | |||
1452 | if (ret) | 1517 | if (ret) |
1453 | return ret; | 1518 | return ret; |
1454 | 1519 | ||
1520 | /* | ||
1521 | * Can we enable the extra features? such as EDO or Sync mode. | ||
1522 | * | ||
1523 | * We do not check the return value now. That's means if we fail in | ||
1524 | * enable the extra features, we still can run in the normal way. | ||
1525 | */ | ||
1526 | gpmi_extra_init(this); | ||
1527 | |||
1455 | /* use the default BBT implementation */ | 1528 | /* use the default BBT implementation */ |
1456 | return nand_default_bbt(mtd); | 1529 | return nand_default_bbt(mtd); |
1457 | } | 1530 | } |
1458 | 1531 | ||
1459 | void gpmi_nfc_exit(struct gpmi_nand_data *this) | 1532 | static void gpmi_nfc_exit(struct gpmi_nand_data *this) |
1460 | { | 1533 | { |
1461 | nand_release(&this->mtd); | 1534 | nand_release(&this->mtd); |
1462 | gpmi_free_dma_buffer(this); | 1535 | gpmi_free_dma_buffer(this); |
@@ -1497,6 +1570,8 @@ static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) | |||
1497 | chip->ecc.size = 1; | 1570 | chip->ecc.size = 1; |
1498 | chip->ecc.strength = 8; | 1571 | chip->ecc.strength = 8; |
1499 | chip->ecc.layout = &gpmi_hw_ecclayout; | 1572 | chip->ecc.layout = &gpmi_hw_ecclayout; |
1573 | if (of_get_nand_on_flash_bbt(this->dev->of_node)) | ||
1574 | chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; | ||
1500 | 1575 | ||
1501 | /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */ | 1576 | /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */ |
1502 | this->bch_geometry.payload_size = 1024; | 1577 | this->bch_geometry.payload_size = 1024; |
@@ -1579,6 +1654,8 @@ static int __devinit gpmi_nand_probe(struct platform_device *pdev) | |||
1579 | if (ret) | 1654 | if (ret) |
1580 | goto exit_nfc_init; | 1655 | goto exit_nfc_init; |
1581 | 1656 | ||
1657 | dev_info(this->dev, "driver registered.\n"); | ||
1658 | |||
1582 | return 0; | 1659 | return 0; |
1583 | 1660 | ||
1584 | exit_nfc_init: | 1661 | exit_nfc_init: |
@@ -1586,10 +1663,12 @@ exit_nfc_init: | |||
1586 | exit_acquire_resources: | 1663 | exit_acquire_resources: |
1587 | platform_set_drvdata(pdev, NULL); | 1664 | platform_set_drvdata(pdev, NULL); |
1588 | kfree(this); | 1665 | kfree(this); |
1666 | dev_err(this->dev, "driver registration failed: %d\n", ret); | ||
1667 | |||
1589 | return ret; | 1668 | return ret; |
1590 | } | 1669 | } |
1591 | 1670 | ||
1592 | static int __exit gpmi_nand_remove(struct platform_device *pdev) | 1671 | static int __devexit gpmi_nand_remove(struct platform_device *pdev) |
1593 | { | 1672 | { |
1594 | struct gpmi_nand_data *this = platform_get_drvdata(pdev); | 1673 | struct gpmi_nand_data *this = platform_get_drvdata(pdev); |
1595 | 1674 | ||
@@ -1606,29 +1685,10 @@ static struct platform_driver gpmi_nand_driver = { | |||
1606 | .of_match_table = gpmi_nand_id_table, | 1685 | .of_match_table = gpmi_nand_id_table, |
1607 | }, | 1686 | }, |
1608 | .probe = gpmi_nand_probe, | 1687 | .probe = gpmi_nand_probe, |
1609 | .remove = __exit_p(gpmi_nand_remove), | 1688 | .remove = __devexit_p(gpmi_nand_remove), |
1610 | .id_table = gpmi_ids, | 1689 | .id_table = gpmi_ids, |
1611 | }; | 1690 | }; |
1612 | 1691 | module_platform_driver(gpmi_nand_driver); | |
1613 | static int __init gpmi_nand_init(void) | ||
1614 | { | ||
1615 | int err; | ||
1616 | |||
1617 | err = platform_driver_register(&gpmi_nand_driver); | ||
1618 | if (err == 0) | ||
1619 | printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n"); | ||
1620 | else | ||
1621 | pr_err("i.MX GPMI NAND driver registration failed\n"); | ||
1622 | return err; | ||
1623 | } | ||
1624 | |||
1625 | static void __exit gpmi_nand_exit(void) | ||
1626 | { | ||
1627 | platform_driver_unregister(&gpmi_nand_driver); | ||
1628 | } | ||
1629 | |||
1630 | module_init(gpmi_nand_init); | ||
1631 | module_exit(gpmi_nand_exit); | ||
1632 | 1692 | ||
1633 | MODULE_AUTHOR("Freescale Semiconductor, Inc."); | 1693 | MODULE_AUTHOR("Freescale Semiconductor, Inc."); |
1634 | MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); | 1694 | MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); |
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h index ce5daa160920..7ac25c1e58f9 100644 --- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h +++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h | |||
@@ -22,14 +22,15 @@ | |||
22 | #include <linux/dma-mapping.h> | 22 | #include <linux/dma-mapping.h> |
23 | #include <linux/fsl/mxs-dma.h> | 23 | #include <linux/fsl/mxs-dma.h> |
24 | 24 | ||
25 | #define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */ | ||
25 | struct resources { | 26 | struct resources { |
26 | void *gpmi_regs; | 27 | void __iomem *gpmi_regs; |
27 | void *bch_regs; | 28 | void __iomem *bch_regs; |
28 | unsigned int bch_low_interrupt; | 29 | unsigned int bch_low_interrupt; |
29 | unsigned int bch_high_interrupt; | 30 | unsigned int bch_high_interrupt; |
30 | unsigned int dma_low_channel; | 31 | unsigned int dma_low_channel; |
31 | unsigned int dma_high_channel; | 32 | unsigned int dma_high_channel; |
32 | struct clk *clock; | 33 | struct clk *clock[GPMI_CLK_MAX]; |
33 | }; | 34 | }; |
34 | 35 | ||
35 | /** | 36 | /** |
@@ -121,6 +122,11 @@ struct nand_timing { | |||
121 | }; | 122 | }; |
122 | 123 | ||
123 | struct gpmi_nand_data { | 124 | struct gpmi_nand_data { |
125 | /* flags */ | ||
126 | #define GPMI_ASYNC_EDO_ENABLED (1 << 0) | ||
127 | #define GPMI_TIMING_INIT_OK (1 << 1) | ||
128 | int flags; | ||
129 | |||
124 | /* System Interface */ | 130 | /* System Interface */ |
125 | struct device *dev; | 131 | struct device *dev; |
126 | struct platform_device *pdev; | 132 | struct platform_device *pdev; |
@@ -131,6 +137,7 @@ struct gpmi_nand_data { | |||
131 | 137 | ||
132 | /* Flash Hardware */ | 138 | /* Flash Hardware */ |
133 | struct nand_timing timing; | 139 | struct nand_timing timing; |
140 | int timing_mode; | ||
134 | 141 | ||
135 | /* BCH */ | 142 | /* BCH */ |
136 | struct bch_geometry bch_geometry; | 143 | struct bch_geometry bch_geometry; |
@@ -188,16 +195,28 @@ struct gpmi_nand_data { | |||
188 | * @data_setup_in_cycles: The data setup time, in cycles. | 195 | * @data_setup_in_cycles: The data setup time, in cycles. |
189 | * @data_hold_in_cycles: The data hold time, in cycles. | 196 | * @data_hold_in_cycles: The data hold time, in cycles. |
190 | * @address_setup_in_cycles: The address setup time, in cycles. | 197 | * @address_setup_in_cycles: The address setup time, in cycles. |
198 | * @device_busy_timeout: The timeout waiting for NAND Ready/Busy, | ||
199 | * this value is the number of cycles multiplied | ||
200 | * by 4096. | ||
191 | * @use_half_periods: Indicates the clock is running slowly, so the | 201 | * @use_half_periods: Indicates the clock is running slowly, so the |
192 | * NFC DLL should use half-periods. | 202 | * NFC DLL should use half-periods. |
193 | * @sample_delay_factor: The sample delay factor. | 203 | * @sample_delay_factor: The sample delay factor. |
204 | * @wrn_dly_sel: The delay on the GPMI write strobe. | ||
194 | */ | 205 | */ |
195 | struct gpmi_nfc_hardware_timing { | 206 | struct gpmi_nfc_hardware_timing { |
207 | /* for HW_GPMI_TIMING0 */ | ||
196 | uint8_t data_setup_in_cycles; | 208 | uint8_t data_setup_in_cycles; |
197 | uint8_t data_hold_in_cycles; | 209 | uint8_t data_hold_in_cycles; |
198 | uint8_t address_setup_in_cycles; | 210 | uint8_t address_setup_in_cycles; |
211 | |||
212 | /* for HW_GPMI_TIMING1 */ | ||
213 | uint16_t device_busy_timeout; | ||
214 | #define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/ | ||
215 | |||
216 | /* for HW_GPMI_CTRL1 */ | ||
199 | bool use_half_periods; | 217 | bool use_half_periods; |
200 | uint8_t sample_delay_factor; | 218 | uint8_t sample_delay_factor; |
219 | uint8_t wrn_dly_sel; | ||
201 | }; | 220 | }; |
202 | 221 | ||
203 | /** | 222 | /** |
@@ -246,6 +265,7 @@ extern int start_dma_with_bch_irq(struct gpmi_nand_data *, | |||
246 | 265 | ||
247 | /* GPMI-NAND helper function library */ | 266 | /* GPMI-NAND helper function library */ |
248 | extern int gpmi_init(struct gpmi_nand_data *); | 267 | extern int gpmi_init(struct gpmi_nand_data *); |
268 | extern int gpmi_extra_init(struct gpmi_nand_data *); | ||
249 | extern void gpmi_clear_bch(struct gpmi_nand_data *); | 269 | extern void gpmi_clear_bch(struct gpmi_nand_data *); |
250 | extern void gpmi_dump_info(struct gpmi_nand_data *); | 270 | extern void gpmi_dump_info(struct gpmi_nand_data *); |
251 | extern int bch_set_geometry(struct gpmi_nand_data *); | 271 | extern int bch_set_geometry(struct gpmi_nand_data *); |
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h index 83431240e2f2..53397cc290fc 100644 --- a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h +++ b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h | |||
@@ -108,6 +108,15 @@ | |||
108 | #define HW_GPMI_CTRL1_CLR 0x00000068 | 108 | #define HW_GPMI_CTRL1_CLR 0x00000068 |
109 | #define HW_GPMI_CTRL1_TOG 0x0000006c | 109 | #define HW_GPMI_CTRL1_TOG 0x0000006c |
110 | 110 | ||
111 | #define BP_GPMI_CTRL1_WRN_DLY_SEL 22 | ||
112 | #define BM_GPMI_CTRL1_WRN_DLY_SEL (0x3 << BP_GPMI_CTRL1_WRN_DLY_SEL) | ||
113 | #define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ | ||
114 | (((v) << BP_GPMI_CTRL1_WRN_DLY_SEL) & BM_GPMI_CTRL1_WRN_DLY_SEL) | ||
115 | #define BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS 0x0 | ||
116 | #define BV_GPMI_CTRL1_WRN_DLY_SEL_6_TO_10NS 0x1 | ||
117 | #define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS 0x2 | ||
118 | #define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY 0x3 | ||
119 | |||
111 | #define BM_GPMI_CTRL1_BCH_MODE (1 << 18) | 120 | #define BM_GPMI_CTRL1_BCH_MODE (1 << 18) |
112 | 121 | ||
113 | #define BP_GPMI_CTRL1_DLL_ENABLE 17 | 122 | #define BP_GPMI_CTRL1_DLL_ENABLE 17 |
@@ -154,6 +163,9 @@ | |||
154 | 163 | ||
155 | #define HW_GPMI_TIMING1 0x00000080 | 164 | #define HW_GPMI_TIMING1 0x00000080 |
156 | #define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 | 165 | #define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 |
166 | #define BM_GPMI_TIMING1_BUSY_TIMEOUT (0xffff << BP_GPMI_TIMING1_BUSY_TIMEOUT) | ||
167 | #define BF_GPMI_TIMING1_BUSY_TIMEOUT(v) \ | ||
168 | (((v) << BP_GPMI_TIMING1_BUSY_TIMEOUT) & BM_GPMI_TIMING1_BUSY_TIMEOUT) | ||
157 | 169 | ||
158 | #define HW_GPMI_TIMING2 0x00000090 | 170 | #define HW_GPMI_TIMING2 0x00000090 |
159 | #define HW_GPMI_DATA 0x000000a0 | 171 | #define HW_GPMI_DATA 0x000000a0 |
diff --git a/drivers/mtd/nand/lpc32xx_mlc.c b/drivers/mtd/nand/lpc32xx_mlc.c new file mode 100644 index 000000000000..c29b7ac1f6af --- /dev/null +++ b/drivers/mtd/nand/lpc32xx_mlc.c | |||
@@ -0,0 +1,924 @@ | |||
1 | /* | ||
2 | * Driver for NAND MLC Controller in LPC32xx | ||
3 | * | ||
4 | * Author: Roland Stigge <stigge@antcom.de> | ||
5 | * | ||
6 | * Copyright © 2011 WORK Microwave GmbH | ||
7 | * Copyright © 2011, 2012 Roland Stigge | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License as published by | ||
11 | * the Free Software Foundation; either version 2 of the License, or | ||
12 | * (at your option) any later version. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, | ||
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
17 | * GNU General Public License for more details. | ||
18 | * | ||
19 | * | ||
20 | * NAND Flash Controller Operation: | ||
21 | * - Read: Auto Decode | ||
22 | * - Write: Auto Encode | ||
23 | * - Tested Page Sizes: 2048, 4096 | ||
24 | */ | ||
25 | |||
26 | #include <linux/slab.h> | ||
27 | #include <linux/module.h> | ||
28 | #include <linux/platform_device.h> | ||
29 | #include <linux/mtd/mtd.h> | ||
30 | #include <linux/mtd/nand.h> | ||
31 | #include <linux/mtd/partitions.h> | ||
32 | #include <linux/clk.h> | ||
33 | #include <linux/err.h> | ||
34 | #include <linux/delay.h> | ||
35 | #include <linux/completion.h> | ||
36 | #include <linux/interrupt.h> | ||
37 | #include <linux/of.h> | ||
38 | #include <linux/of_mtd.h> | ||
39 | #include <linux/of_gpio.h> | ||
40 | #include <linux/mtd/lpc32xx_mlc.h> | ||
41 | #include <linux/io.h> | ||
42 | #include <linux/mm.h> | ||
43 | #include <linux/dma-mapping.h> | ||
44 | #include <linux/dmaengine.h> | ||
45 | #include <linux/mtd/nand_ecc.h> | ||
46 | |||
47 | #define DRV_NAME "lpc32xx_mlc" | ||
48 | |||
49 | /********************************************************************** | ||
50 | * MLC NAND controller register offsets | ||
51 | **********************************************************************/ | ||
52 | |||
53 | #define MLC_BUFF(x) (x + 0x00000) | ||
54 | #define MLC_DATA(x) (x + 0x08000) | ||
55 | #define MLC_CMD(x) (x + 0x10000) | ||
56 | #define MLC_ADDR(x) (x + 0x10004) | ||
57 | #define MLC_ECC_ENC_REG(x) (x + 0x10008) | ||
58 | #define MLC_ECC_DEC_REG(x) (x + 0x1000C) | ||
59 | #define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010) | ||
60 | #define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014) | ||
61 | #define MLC_RPR(x) (x + 0x10018) | ||
62 | #define MLC_WPR(x) (x + 0x1001C) | ||
63 | #define MLC_RUBP(x) (x + 0x10020) | ||
64 | #define MLC_ROBP(x) (x + 0x10024) | ||
65 | #define MLC_SW_WP_ADD_LOW(x) (x + 0x10028) | ||
66 | #define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C) | ||
67 | #define MLC_ICR(x) (x + 0x10030) | ||
68 | #define MLC_TIME_REG(x) (x + 0x10034) | ||
69 | #define MLC_IRQ_MR(x) (x + 0x10038) | ||
70 | #define MLC_IRQ_SR(x) (x + 0x1003C) | ||
71 | #define MLC_LOCK_PR(x) (x + 0x10044) | ||
72 | #define MLC_ISR(x) (x + 0x10048) | ||
73 | #define MLC_CEH(x) (x + 0x1004C) | ||
74 | |||
75 | /********************************************************************** | ||
76 | * MLC_CMD bit definitions | ||
77 | **********************************************************************/ | ||
78 | #define MLCCMD_RESET 0xFF | ||
79 | |||
80 | /********************************************************************** | ||
81 | * MLC_ICR bit definitions | ||
82 | **********************************************************************/ | ||
83 | #define MLCICR_WPROT (1 << 3) | ||
84 | #define MLCICR_LARGEBLOCK (1 << 2) | ||
85 | #define MLCICR_LONGADDR (1 << 1) | ||
86 | #define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */ | ||
87 | |||
88 | /********************************************************************** | ||
89 | * MLC_TIME_REG bit definitions | ||
90 | **********************************************************************/ | ||
91 | #define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24) | ||
92 | #define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19) | ||
93 | #define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16) | ||
94 | #define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12) | ||
95 | #define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8) | ||
96 | #define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4) | ||
97 | #define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0) | ||
98 | |||
99 | /********************************************************************** | ||
100 | * MLC_IRQ_MR and MLC_IRQ_SR bit definitions | ||
101 | **********************************************************************/ | ||
102 | #define MLCIRQ_NAND_READY (1 << 5) | ||
103 | #define MLCIRQ_CONTROLLER_READY (1 << 4) | ||
104 | #define MLCIRQ_DECODE_FAILURE (1 << 3) | ||
105 | #define MLCIRQ_DECODE_ERROR (1 << 2) | ||
106 | #define MLCIRQ_ECC_READY (1 << 1) | ||
107 | #define MLCIRQ_WRPROT_FAULT (1 << 0) | ||
108 | |||
109 | /********************************************************************** | ||
110 | * MLC_LOCK_PR bit definitions | ||
111 | **********************************************************************/ | ||
112 | #define MLCLOCKPR_MAGIC 0xA25E | ||
113 | |||
114 | /********************************************************************** | ||
115 | * MLC_ISR bit definitions | ||
116 | **********************************************************************/ | ||
117 | #define MLCISR_DECODER_FAILURE (1 << 6) | ||
118 | #define MLCISR_ERRORS ((1 << 4) | (1 << 5)) | ||
119 | #define MLCISR_ERRORS_DETECTED (1 << 3) | ||
120 | #define MLCISR_ECC_READY (1 << 2) | ||
121 | #define MLCISR_CONTROLLER_READY (1 << 1) | ||
122 | #define MLCISR_NAND_READY (1 << 0) | ||
123 | |||
124 | /********************************************************************** | ||
125 | * MLC_CEH bit definitions | ||
126 | **********************************************************************/ | ||
127 | #define MLCCEH_NORMAL (1 << 0) | ||
128 | |||
129 | struct lpc32xx_nand_cfg_mlc { | ||
130 | uint32_t tcea_delay; | ||
131 | uint32_t busy_delay; | ||
132 | uint32_t nand_ta; | ||
133 | uint32_t rd_high; | ||
134 | uint32_t rd_low; | ||
135 | uint32_t wr_high; | ||
136 | uint32_t wr_low; | ||
137 | int wp_gpio; | ||
138 | struct mtd_partition *parts; | ||
139 | unsigned num_parts; | ||
140 | }; | ||
141 | |||
142 | static struct nand_ecclayout lpc32xx_nand_oob = { | ||
143 | .eccbytes = 40, | ||
144 | .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | ||
145 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | ||
146 | 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | ||
147 | 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, | ||
148 | .oobfree = { | ||
149 | { .offset = 0, | ||
150 | .length = 6, }, | ||
151 | { .offset = 16, | ||
152 | .length = 6, }, | ||
153 | { .offset = 32, | ||
154 | .length = 6, }, | ||
155 | { .offset = 48, | ||
156 | .length = 6, }, | ||
157 | }, | ||
158 | }; | ||
159 | |||
160 | static struct nand_bbt_descr lpc32xx_nand_bbt = { | ||
161 | .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | | ||
162 | NAND_BBT_WRITE, | ||
163 | .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, | ||
164 | }; | ||
165 | |||
166 | static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { | ||
167 | .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | | ||
168 | NAND_BBT_WRITE, | ||
169 | .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, | ||
170 | }; | ||
171 | |||
172 | struct lpc32xx_nand_host { | ||
173 | struct nand_chip nand_chip; | ||
174 | struct lpc32xx_mlc_platform_data *pdata; | ||
175 | struct clk *clk; | ||
176 | struct mtd_info mtd; | ||
177 | void __iomem *io_base; | ||
178 | int irq; | ||
179 | struct lpc32xx_nand_cfg_mlc *ncfg; | ||
180 | struct completion comp_nand; | ||
181 | struct completion comp_controller; | ||
182 | uint32_t llptr; | ||
183 | /* | ||
184 | * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer | ||
185 | */ | ||
186 | dma_addr_t oob_buf_phy; | ||
187 | /* | ||
188 | * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer | ||
189 | */ | ||
190 | uint8_t *oob_buf; | ||
191 | /* Physical address of DMA base address */ | ||
192 | dma_addr_t io_base_phy; | ||
193 | |||
194 | struct completion comp_dma; | ||
195 | struct dma_chan *dma_chan; | ||
196 | struct dma_slave_config dma_slave_config; | ||
197 | struct scatterlist sgl; | ||
198 | uint8_t *dma_buf; | ||
199 | uint8_t *dummy_buf; | ||
200 | int mlcsubpages; /* number of 512bytes-subpages */ | ||
201 | }; | ||
202 | |||
203 | /* | ||
204 | * Activate/Deactivate DMA Operation: | ||
205 | * | ||
206 | * Using the PL080 DMA Controller for transferring the 512 byte subpages | ||
207 | * instead of doing readl() / writel() in a loop slows it down significantly. | ||
208 | * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: | ||
209 | * | ||
210 | * - readl() of 128 x 32 bits in a loop: ~20us | ||
211 | * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us | ||
212 | * - DMA read of 512 bytes (32 bit, no bursts): ~100us | ||
213 | * | ||
214 | * This applies to the transfer itself. In the DMA case: only the | ||
215 | * wait_for_completion() (DMA setup _not_ included). | ||
216 | * | ||
217 | * Note that the 512 bytes subpage transfer is done directly from/to a | ||
218 | * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a | ||
219 | * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND | ||
220 | * controller transferring data between its internal buffer to/from the NAND | ||
221 | * chip.) | ||
222 | * | ||
223 | * Therefore, using the PL080 DMA is disabled by default, for now. | ||
224 | * | ||
225 | */ | ||
226 | static int use_dma; | ||
227 | |||
228 | static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) | ||
229 | { | ||
230 | uint32_t clkrate, tmp; | ||
231 | |||
232 | /* Reset MLC controller */ | ||
233 | writel(MLCCMD_RESET, MLC_CMD(host->io_base)); | ||
234 | udelay(1000); | ||
235 | |||
236 | /* Get base clock for MLC block */ | ||
237 | clkrate = clk_get_rate(host->clk); | ||
238 | if (clkrate == 0) | ||
239 | clkrate = 104000000; | ||
240 | |||
241 | /* Unlock MLC_ICR | ||
242 | * (among others, will be locked again automatically) */ | ||
243 | writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); | ||
244 | |||
245 | /* Configure MLC Controller: Large Block, 5 Byte Address */ | ||
246 | tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; | ||
247 | writel(tmp, MLC_ICR(host->io_base)); | ||
248 | |||
249 | /* Unlock MLC_TIME_REG | ||
250 | * (among others, will be locked again automatically) */ | ||
251 | writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); | ||
252 | |||
253 | /* Compute clock setup values, see LPC and NAND manual */ | ||
254 | tmp = 0; | ||
255 | tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); | ||
256 | tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); | ||
257 | tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); | ||
258 | tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); | ||
259 | tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); | ||
260 | tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); | ||
261 | tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); | ||
262 | writel(tmp, MLC_TIME_REG(host->io_base)); | ||
263 | |||
264 | /* Enable IRQ for CONTROLLER_READY and NAND_READY */ | ||
265 | writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, | ||
266 | MLC_IRQ_MR(host->io_base)); | ||
267 | |||
268 | /* Normal nCE operation: nCE controlled by controller */ | ||
269 | writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); | ||
270 | } | ||
271 | |||
272 | /* | ||
273 | * Hardware specific access to control lines | ||
274 | */ | ||
275 | static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, | ||
276 | unsigned int ctrl) | ||
277 | { | ||
278 | struct nand_chip *nand_chip = mtd->priv; | ||
279 | struct lpc32xx_nand_host *host = nand_chip->priv; | ||
280 | |||
281 | if (cmd != NAND_CMD_NONE) { | ||
282 | if (ctrl & NAND_CLE) | ||
283 | writel(cmd, MLC_CMD(host->io_base)); | ||
284 | else | ||
285 | writel(cmd, MLC_ADDR(host->io_base)); | ||
286 | } | ||
287 | } | ||
288 | |||
289 | /* | ||
290 | * Read Device Ready (NAND device _and_ controller ready) | ||
291 | */ | ||
292 | static int lpc32xx_nand_device_ready(struct mtd_info *mtd) | ||
293 | { | ||
294 | struct nand_chip *nand_chip = mtd->priv; | ||
295 | struct lpc32xx_nand_host *host = nand_chip->priv; | ||
296 | |||
297 | if ((readb(MLC_ISR(host->io_base)) & | ||
298 | (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == | ||
299 | (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) | ||
300 | return 1; | ||
301 | |||
302 | return 0; | ||
303 | } | ||
304 | |||
305 | static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host) | ||
306 | { | ||
307 | uint8_t sr; | ||
308 | |||
309 | /* Clear interrupt flag by reading status */ | ||
310 | sr = readb(MLC_IRQ_SR(host->io_base)); | ||
311 | if (sr & MLCIRQ_NAND_READY) | ||
312 | complete(&host->comp_nand); | ||
313 | if (sr & MLCIRQ_CONTROLLER_READY) | ||
314 | complete(&host->comp_controller); | ||
315 | |||
316 | return IRQ_HANDLED; | ||
317 | } | ||
318 | |||
319 | static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip) | ||
320 | { | ||
321 | struct lpc32xx_nand_host *host = chip->priv; | ||
322 | |||
323 | if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) | ||
324 | goto exit; | ||
325 | |||
326 | wait_for_completion(&host->comp_nand); | ||
327 | |||
328 | while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { | ||
329 | /* Seems to be delayed sometimes by controller */ | ||
330 | dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); | ||
331 | cpu_relax(); | ||
332 | } | ||
333 | |||
334 | exit: | ||
335 | return NAND_STATUS_READY; | ||
336 | } | ||
337 | |||
338 | static int lpc32xx_waitfunc_controller(struct mtd_info *mtd, | ||
339 | struct nand_chip *chip) | ||
340 | { | ||
341 | struct lpc32xx_nand_host *host = chip->priv; | ||
342 | |||
343 | if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) | ||
344 | goto exit; | ||
345 | |||
346 | wait_for_completion(&host->comp_controller); | ||
347 | |||
348 | while (!(readb(MLC_ISR(host->io_base)) & | ||
349 | MLCISR_CONTROLLER_READY)) { | ||
350 | dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); | ||
351 | cpu_relax(); | ||
352 | } | ||
353 | |||
354 | exit: | ||
355 | return NAND_STATUS_READY; | ||
356 | } | ||
357 | |||
358 | static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) | ||
359 | { | ||
360 | lpc32xx_waitfunc_nand(mtd, chip); | ||
361 | lpc32xx_waitfunc_controller(mtd, chip); | ||
362 | |||
363 | return NAND_STATUS_READY; | ||
364 | } | ||
365 | |||
366 | /* | ||
367 | * Enable NAND write protect | ||
368 | */ | ||
369 | static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) | ||
370 | { | ||
371 | if (gpio_is_valid(host->ncfg->wp_gpio)) | ||
372 | gpio_set_value(host->ncfg->wp_gpio, 0); | ||
373 | } | ||
374 | |||
375 | /* | ||
376 | * Disable NAND write protect | ||
377 | */ | ||
378 | static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) | ||
379 | { | ||
380 | if (gpio_is_valid(host->ncfg->wp_gpio)) | ||
381 | gpio_set_value(host->ncfg->wp_gpio, 1); | ||
382 | } | ||
383 | |||
384 | static void lpc32xx_dma_complete_func(void *completion) | ||
385 | { | ||
386 | complete(completion); | ||
387 | } | ||
388 | |||
389 | static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, | ||
390 | enum dma_transfer_direction dir) | ||
391 | { | ||
392 | struct nand_chip *chip = mtd->priv; | ||
393 | struct lpc32xx_nand_host *host = chip->priv; | ||
394 | struct dma_async_tx_descriptor *desc; | ||
395 | int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; | ||
396 | int res; | ||
397 | |||
398 | sg_init_one(&host->sgl, mem, len); | ||
399 | |||
400 | res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, | ||
401 | DMA_BIDIRECTIONAL); | ||
402 | if (res != 1) { | ||
403 | dev_err(mtd->dev.parent, "Failed to map sg list\n"); | ||
404 | return -ENXIO; | ||
405 | } | ||
406 | desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, | ||
407 | flags); | ||
408 | if (!desc) { | ||
409 | dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); | ||
410 | goto out1; | ||
411 | } | ||
412 | |||
413 | init_completion(&host->comp_dma); | ||
414 | desc->callback = lpc32xx_dma_complete_func; | ||
415 | desc->callback_param = &host->comp_dma; | ||
416 | |||
417 | dmaengine_submit(desc); | ||
418 | dma_async_issue_pending(host->dma_chan); | ||
419 | |||
420 | wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); | ||
421 | |||
422 | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | ||
423 | DMA_BIDIRECTIONAL); | ||
424 | return 0; | ||
425 | out1: | ||
426 | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | ||
427 | DMA_BIDIRECTIONAL); | ||
428 | return -ENXIO; | ||
429 | } | ||
430 | |||
431 | static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip, | ||
432 | uint8_t *buf, int oob_required, int page) | ||
433 | { | ||
434 | struct lpc32xx_nand_host *host = chip->priv; | ||
435 | int i, j; | ||
436 | uint8_t *oobbuf = chip->oob_poi; | ||
437 | uint32_t mlc_isr; | ||
438 | int res; | ||
439 | uint8_t *dma_buf; | ||
440 | bool dma_mapped; | ||
441 | |||
442 | if ((void *)buf <= high_memory) { | ||
443 | dma_buf = buf; | ||
444 | dma_mapped = true; | ||
445 | } else { | ||
446 | dma_buf = host->dma_buf; | ||
447 | dma_mapped = false; | ||
448 | } | ||
449 | |||
450 | /* Writing Command and Address */ | ||
451 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | ||
452 | |||
453 | /* For all sub-pages */ | ||
454 | for (i = 0; i < host->mlcsubpages; i++) { | ||
455 | /* Start Auto Decode Command */ | ||
456 | writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); | ||
457 | |||
458 | /* Wait for Controller Ready */ | ||
459 | lpc32xx_waitfunc_controller(mtd, chip); | ||
460 | |||
461 | /* Check ECC Error status */ | ||
462 | mlc_isr = readl(MLC_ISR(host->io_base)); | ||
463 | if (mlc_isr & MLCISR_DECODER_FAILURE) { | ||
464 | mtd->ecc_stats.failed++; | ||
465 | dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); | ||
466 | } else if (mlc_isr & MLCISR_ERRORS_DETECTED) { | ||
467 | mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; | ||
468 | } | ||
469 | |||
470 | /* Read 512 + 16 Bytes */ | ||
471 | if (use_dma) { | ||
472 | res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, | ||
473 | DMA_DEV_TO_MEM); | ||
474 | if (res) | ||
475 | return res; | ||
476 | } else { | ||
477 | for (j = 0; j < (512 >> 2); j++) { | ||
478 | *((uint32_t *)(buf)) = | ||
479 | readl(MLC_BUFF(host->io_base)); | ||
480 | buf += 4; | ||
481 | } | ||
482 | } | ||
483 | for (j = 0; j < (16 >> 2); j++) { | ||
484 | *((uint32_t *)(oobbuf)) = | ||
485 | readl(MLC_BUFF(host->io_base)); | ||
486 | oobbuf += 4; | ||
487 | } | ||
488 | } | ||
489 | |||
490 | if (use_dma && !dma_mapped) | ||
491 | memcpy(buf, dma_buf, mtd->writesize); | ||
492 | |||
493 | return 0; | ||
494 | } | ||
495 | |||
496 | static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd, | ||
497 | struct nand_chip *chip, | ||
498 | const uint8_t *buf, int oob_required) | ||
499 | { | ||
500 | struct lpc32xx_nand_host *host = chip->priv; | ||
501 | const uint8_t *oobbuf = chip->oob_poi; | ||
502 | uint8_t *dma_buf = (uint8_t *)buf; | ||
503 | int res; | ||
504 | int i, j; | ||
505 | |||
506 | if (use_dma && (void *)buf >= high_memory) { | ||
507 | dma_buf = host->dma_buf; | ||
508 | memcpy(dma_buf, buf, mtd->writesize); | ||
509 | } | ||
510 | |||
511 | for (i = 0; i < host->mlcsubpages; i++) { | ||
512 | /* Start Encode */ | ||
513 | writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); | ||
514 | |||
515 | /* Write 512 + 6 Bytes to Buffer */ | ||
516 | if (use_dma) { | ||
517 | res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, | ||
518 | DMA_MEM_TO_DEV); | ||
519 | if (res) | ||
520 | return res; | ||
521 | } else { | ||
522 | for (j = 0; j < (512 >> 2); j++) { | ||
523 | writel(*((uint32_t *)(buf)), | ||
524 | MLC_BUFF(host->io_base)); | ||
525 | buf += 4; | ||
526 | } | ||
527 | } | ||
528 | writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); | ||
529 | oobbuf += 4; | ||
530 | writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); | ||
531 | oobbuf += 12; | ||
532 | |||
533 | /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ | ||
534 | writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); | ||
535 | |||
536 | /* Wait for Controller Ready */ | ||
537 | lpc32xx_waitfunc_controller(mtd, chip); | ||
538 | } | ||
539 | return 0; | ||
540 | } | ||
541 | |||
542 | static int lpc32xx_write_page(struct mtd_info *mtd, struct nand_chip *chip, | ||
543 | const uint8_t *buf, int oob_required, int page, | ||
544 | int cached, int raw) | ||
545 | { | ||
546 | int res; | ||
547 | |||
548 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); | ||
549 | res = lpc32xx_write_page_lowlevel(mtd, chip, buf, oob_required); | ||
550 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | ||
551 | lpc32xx_waitfunc(mtd, chip); | ||
552 | |||
553 | return res; | ||
554 | } | ||
555 | |||
556 | static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, | ||
557 | int page) | ||
558 | { | ||
559 | struct lpc32xx_nand_host *host = chip->priv; | ||
560 | |||
561 | /* Read whole page - necessary with MLC controller! */ | ||
562 | lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page); | ||
563 | |||
564 | return 0; | ||
565 | } | ||
566 | |||
567 | static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, | ||
568 | int page) | ||
569 | { | ||
570 | /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ | ||
571 | return 0; | ||
572 | } | ||
573 | |||
574 | /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ | ||
575 | static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode) | ||
576 | { | ||
577 | /* Always enabled! */ | ||
578 | } | ||
579 | |||
580 | static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) | ||
581 | { | ||
582 | struct mtd_info *mtd = &host->mtd; | ||
583 | dma_cap_mask_t mask; | ||
584 | |||
585 | if (!host->pdata || !host->pdata->dma_filter) { | ||
586 | dev_err(mtd->dev.parent, "no DMA platform data\n"); | ||
587 | return -ENOENT; | ||
588 | } | ||
589 | |||
590 | dma_cap_zero(mask); | ||
591 | dma_cap_set(DMA_SLAVE, mask); | ||
592 | host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, | ||
593 | "nand-mlc"); | ||
594 | if (!host->dma_chan) { | ||
595 | dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); | ||
596 | return -EBUSY; | ||
597 | } | ||
598 | |||
599 | /* | ||
600 | * Set direction to a sensible value even if the dmaengine driver | ||
601 | * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x | ||
602 | * driver criticizes it as "alien transfer direction". | ||
603 | */ | ||
604 | host->dma_slave_config.direction = DMA_DEV_TO_MEM; | ||
605 | host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | ||
606 | host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | ||
607 | host->dma_slave_config.src_maxburst = 128; | ||
608 | host->dma_slave_config.dst_maxburst = 128; | ||
609 | /* DMA controller does flow control: */ | ||
610 | host->dma_slave_config.device_fc = false; | ||
611 | host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); | ||
612 | host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); | ||
613 | if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { | ||
614 | dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); | ||
615 | goto out1; | ||
616 | } | ||
617 | |||
618 | return 0; | ||
619 | out1: | ||
620 | dma_release_channel(host->dma_chan); | ||
621 | return -ENXIO; | ||
622 | } | ||
623 | |||
624 | static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) | ||
625 | { | ||
626 | struct lpc32xx_nand_cfg_mlc *ncfg; | ||
627 | struct device_node *np = dev->of_node; | ||
628 | |||
629 | ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); | ||
630 | if (!ncfg) { | ||
631 | dev_err(dev, "could not allocate memory for platform data\n"); | ||
632 | return NULL; | ||
633 | } | ||
634 | |||
635 | of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); | ||
636 | of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); | ||
637 | of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); | ||
638 | of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); | ||
639 | of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); | ||
640 | of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); | ||
641 | of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); | ||
642 | |||
643 | if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || | ||
644 | !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || | ||
645 | !ncfg->wr_low) { | ||
646 | dev_err(dev, "chip parameters not specified correctly\n"); | ||
647 | return NULL; | ||
648 | } | ||
649 | |||
650 | ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); | ||
651 | |||
652 | return ncfg; | ||
653 | } | ||
654 | |||
655 | /* | ||
656 | * Probe for NAND controller | ||
657 | */ | ||
658 | static int __devinit lpc32xx_nand_probe(struct platform_device *pdev) | ||
659 | { | ||
660 | struct lpc32xx_nand_host *host; | ||
661 | struct mtd_info *mtd; | ||
662 | struct nand_chip *nand_chip; | ||
663 | struct resource *rc; | ||
664 | int res; | ||
665 | struct mtd_part_parser_data ppdata = {}; | ||
666 | |||
667 | /* Allocate memory for the device structure (and zero it) */ | ||
668 | host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); | ||
669 | if (!host) { | ||
670 | dev_err(&pdev->dev, "failed to allocate device structure.\n"); | ||
671 | return -ENOMEM; | ||
672 | } | ||
673 | |||
674 | rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
675 | if (rc == NULL) { | ||
676 | dev_err(&pdev->dev, "No memory resource found for device!\r\n"); | ||
677 | return -ENXIO; | ||
678 | } | ||
679 | |||
680 | host->io_base = devm_request_and_ioremap(&pdev->dev, rc); | ||
681 | if (host->io_base == NULL) { | ||
682 | dev_err(&pdev->dev, "ioremap failed\n"); | ||
683 | return -EIO; | ||
684 | } | ||
685 | host->io_base_phy = rc->start; | ||
686 | |||
687 | mtd = &host->mtd; | ||
688 | nand_chip = &host->nand_chip; | ||
689 | if (pdev->dev.of_node) | ||
690 | host->ncfg = lpc32xx_parse_dt(&pdev->dev); | ||
691 | if (!host->ncfg) { | ||
692 | dev_err(&pdev->dev, | ||
693 | "Missing or bad NAND config from device tree\n"); | ||
694 | return -ENOENT; | ||
695 | } | ||
696 | if (host->ncfg->wp_gpio == -EPROBE_DEFER) | ||
697 | return -EPROBE_DEFER; | ||
698 | if (gpio_is_valid(host->ncfg->wp_gpio) && | ||
699 | gpio_request(host->ncfg->wp_gpio, "NAND WP")) { | ||
700 | dev_err(&pdev->dev, "GPIO not available\n"); | ||
701 | return -EBUSY; | ||
702 | } | ||
703 | lpc32xx_wp_disable(host); | ||
704 | |||
705 | host->pdata = pdev->dev.platform_data; | ||
706 | |||
707 | nand_chip->priv = host; /* link the private data structures */ | ||
708 | mtd->priv = nand_chip; | ||
709 | mtd->owner = THIS_MODULE; | ||
710 | mtd->dev.parent = &pdev->dev; | ||
711 | |||
712 | /* Get NAND clock */ | ||
713 | host->clk = clk_get(&pdev->dev, NULL); | ||
714 | if (IS_ERR(host->clk)) { | ||
715 | dev_err(&pdev->dev, "Clock initialization failure\n"); | ||
716 | res = -ENOENT; | ||
717 | goto err_exit1; | ||
718 | } | ||
719 | clk_enable(host->clk); | ||
720 | |||
721 | nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; | ||
722 | nand_chip->dev_ready = lpc32xx_nand_device_ready; | ||
723 | nand_chip->chip_delay = 25; /* us */ | ||
724 | nand_chip->IO_ADDR_R = MLC_DATA(host->io_base); | ||
725 | nand_chip->IO_ADDR_W = MLC_DATA(host->io_base); | ||
726 | |||
727 | /* Init NAND controller */ | ||
728 | lpc32xx_nand_setup(host); | ||
729 | |||
730 | platform_set_drvdata(pdev, host); | ||
731 | |||
732 | /* Initialize function pointers */ | ||
733 | nand_chip->ecc.hwctl = lpc32xx_ecc_enable; | ||
734 | nand_chip->ecc.read_page_raw = lpc32xx_read_page; | ||
735 | nand_chip->ecc.read_page = lpc32xx_read_page; | ||
736 | nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; | ||
737 | nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel; | ||
738 | nand_chip->ecc.write_oob = lpc32xx_write_oob; | ||
739 | nand_chip->ecc.read_oob = lpc32xx_read_oob; | ||
740 | nand_chip->ecc.strength = 4; | ||
741 | nand_chip->write_page = lpc32xx_write_page; | ||
742 | nand_chip->waitfunc = lpc32xx_waitfunc; | ||
743 | |||
744 | nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; | ||
745 | nand_chip->bbt_td = &lpc32xx_nand_bbt; | ||
746 | nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; | ||
747 | |||
748 | /* bitflip_threshold's default is defined as ecc_strength anyway. | ||
749 | * Unfortunately, it is set only later at add_mtd_device(). Meanwhile | ||
750 | * being 0, it causes bad block table scanning errors in | ||
751 | * nand_scan_tail(), so preparing it here. */ | ||
752 | mtd->bitflip_threshold = nand_chip->ecc.strength; | ||
753 | |||
754 | if (use_dma) { | ||
755 | res = lpc32xx_dma_setup(host); | ||
756 | if (res) { | ||
757 | res = -EIO; | ||
758 | goto err_exit2; | ||
759 | } | ||
760 | } | ||
761 | |||
762 | /* | ||
763 | * Scan to find existance of the device and | ||
764 | * Get the type of NAND device SMALL block or LARGE block | ||
765 | */ | ||
766 | if (nand_scan_ident(mtd, 1, NULL)) { | ||
767 | res = -ENXIO; | ||
768 | goto err_exit3; | ||
769 | } | ||
770 | |||
771 | host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); | ||
772 | if (!host->dma_buf) { | ||
773 | dev_err(&pdev->dev, "Error allocating dma_buf memory\n"); | ||
774 | res = -ENOMEM; | ||
775 | goto err_exit3; | ||
776 | } | ||
777 | |||
778 | host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); | ||
779 | if (!host->dummy_buf) { | ||
780 | dev_err(&pdev->dev, "Error allocating dummy_buf memory\n"); | ||
781 | res = -ENOMEM; | ||
782 | goto err_exit3; | ||
783 | } | ||
784 | |||
785 | nand_chip->ecc.mode = NAND_ECC_HW; | ||
786 | nand_chip->ecc.size = mtd->writesize; | ||
787 | nand_chip->ecc.layout = &lpc32xx_nand_oob; | ||
788 | host->mlcsubpages = mtd->writesize / 512; | ||
789 | |||
790 | /* initially clear interrupt status */ | ||
791 | readb(MLC_IRQ_SR(host->io_base)); | ||
792 | |||
793 | init_completion(&host->comp_nand); | ||
794 | init_completion(&host->comp_controller); | ||
795 | |||
796 | host->irq = platform_get_irq(pdev, 0); | ||
797 | if ((host->irq < 0) || (host->irq >= NR_IRQS)) { | ||
798 | dev_err(&pdev->dev, "failed to get platform irq\n"); | ||
799 | res = -EINVAL; | ||
800 | goto err_exit3; | ||
801 | } | ||
802 | |||
803 | if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq, | ||
804 | IRQF_TRIGGER_HIGH, DRV_NAME, host)) { | ||
805 | dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); | ||
806 | res = -ENXIO; | ||
807 | goto err_exit3; | ||
808 | } | ||
809 | |||
810 | /* | ||
811 | * Fills out all the uninitialized function pointers with the defaults | ||
812 | * And scans for a bad block table if appropriate. | ||
813 | */ | ||
814 | if (nand_scan_tail(mtd)) { | ||
815 | res = -ENXIO; | ||
816 | goto err_exit4; | ||
817 | } | ||
818 | |||
819 | mtd->name = DRV_NAME; | ||
820 | |||
821 | ppdata.of_node = pdev->dev.of_node; | ||
822 | res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, | ||
823 | host->ncfg->num_parts); | ||
824 | if (!res) | ||
825 | return res; | ||
826 | |||
827 | nand_release(mtd); | ||
828 | |||
829 | err_exit4: | ||
830 | free_irq(host->irq, host); | ||
831 | err_exit3: | ||
832 | if (use_dma) | ||
833 | dma_release_channel(host->dma_chan); | ||
834 | err_exit2: | ||
835 | clk_disable(host->clk); | ||
836 | clk_put(host->clk); | ||
837 | platform_set_drvdata(pdev, NULL); | ||
838 | err_exit1: | ||
839 | lpc32xx_wp_enable(host); | ||
840 | gpio_free(host->ncfg->wp_gpio); | ||
841 | |||
842 | return res; | ||
843 | } | ||
844 | |||
845 | /* | ||
846 | * Remove NAND device | ||
847 | */ | ||
848 | static int __devexit lpc32xx_nand_remove(struct platform_device *pdev) | ||
849 | { | ||
850 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | ||
851 | struct mtd_info *mtd = &host->mtd; | ||
852 | |||
853 | nand_release(mtd); | ||
854 | free_irq(host->irq, host); | ||
855 | if (use_dma) | ||
856 | dma_release_channel(host->dma_chan); | ||
857 | |||
858 | clk_disable(host->clk); | ||
859 | clk_put(host->clk); | ||
860 | platform_set_drvdata(pdev, NULL); | ||
861 | |||
862 | lpc32xx_wp_enable(host); | ||
863 | gpio_free(host->ncfg->wp_gpio); | ||
864 | |||
865 | return 0; | ||
866 | } | ||
867 | |||
868 | #ifdef CONFIG_PM | ||
869 | static int lpc32xx_nand_resume(struct platform_device *pdev) | ||
870 | { | ||
871 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | ||
872 | |||
873 | /* Re-enable NAND clock */ | ||
874 | clk_enable(host->clk); | ||
875 | |||
876 | /* Fresh init of NAND controller */ | ||
877 | lpc32xx_nand_setup(host); | ||
878 | |||
879 | /* Disable write protect */ | ||
880 | lpc32xx_wp_disable(host); | ||
881 | |||
882 | return 0; | ||
883 | } | ||
884 | |||
885 | static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) | ||
886 | { | ||
887 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | ||
888 | |||
889 | /* Enable write protect for safety */ | ||
890 | lpc32xx_wp_enable(host); | ||
891 | |||
892 | /* Disable clock */ | ||
893 | clk_disable(host->clk); | ||
894 | return 0; | ||
895 | } | ||
896 | |||
897 | #else | ||
898 | #define lpc32xx_nand_resume NULL | ||
899 | #define lpc32xx_nand_suspend NULL | ||
900 | #endif | ||
901 | |||
902 | static const struct of_device_id lpc32xx_nand_match[] = { | ||
903 | { .compatible = "nxp,lpc3220-mlc" }, | ||
904 | { /* sentinel */ }, | ||
905 | }; | ||
906 | MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); | ||
907 | |||
908 | static struct platform_driver lpc32xx_nand_driver = { | ||
909 | .probe = lpc32xx_nand_probe, | ||
910 | .remove = __devexit_p(lpc32xx_nand_remove), | ||
911 | .resume = lpc32xx_nand_resume, | ||
912 | .suspend = lpc32xx_nand_suspend, | ||
913 | .driver = { | ||
914 | .name = DRV_NAME, | ||
915 | .owner = THIS_MODULE, | ||
916 | .of_match_table = of_match_ptr(lpc32xx_nand_match), | ||
917 | }, | ||
918 | }; | ||
919 | |||
920 | module_platform_driver(lpc32xx_nand_driver); | ||
921 | |||
922 | MODULE_LICENSE("GPL"); | ||
923 | MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); | ||
924 | MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); | ||
diff --git a/drivers/mtd/nand/lpc32xx_slc.c b/drivers/mtd/nand/lpc32xx_slc.c new file mode 100644 index 000000000000..32409c45d479 --- /dev/null +++ b/drivers/mtd/nand/lpc32xx_slc.c | |||
@@ -0,0 +1,1039 @@ | |||
1 | /* | ||
2 | * NXP LPC32XX NAND SLC driver | ||
3 | * | ||
4 | * Authors: | ||
5 | * Kevin Wells <kevin.wells@nxp.com> | ||
6 | * Roland Stigge <stigge@antcom.de> | ||
7 | * | ||
8 | * Copyright © 2011 NXP Semiconductors | ||
9 | * Copyright © 2012 Roland Stigge | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or modify | ||
12 | * it under the terms of the GNU General Public License as published by | ||
13 | * the Free Software Foundation; either version 2 of the License, or | ||
14 | * (at your option) any later version. | ||
15 | * | ||
16 | * This program is distributed in the hope that it will be useful, | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
19 | * GNU General Public License for more details. | ||
20 | */ | ||
21 | |||
22 | #include <linux/slab.h> | ||
23 | #include <linux/module.h> | ||
24 | #include <linux/platform_device.h> | ||
25 | #include <linux/mtd/mtd.h> | ||
26 | #include <linux/mtd/nand.h> | ||
27 | #include <linux/mtd/partitions.h> | ||
28 | #include <linux/clk.h> | ||
29 | #include <linux/err.h> | ||
30 | #include <linux/delay.h> | ||
31 | #include <linux/io.h> | ||
32 | #include <linux/mm.h> | ||
33 | #include <linux/dma-mapping.h> | ||
34 | #include <linux/dmaengine.h> | ||
35 | #include <linux/mtd/nand_ecc.h> | ||
36 | #include <linux/gpio.h> | ||
37 | #include <linux/of.h> | ||
38 | #include <linux/of_mtd.h> | ||
39 | #include <linux/of_gpio.h> | ||
40 | #include <linux/mtd/lpc32xx_slc.h> | ||
41 | |||
42 | #define LPC32XX_MODNAME "lpc32xx-nand" | ||
43 | |||
44 | /********************************************************************** | ||
45 | * SLC NAND controller register offsets | ||
46 | **********************************************************************/ | ||
47 | |||
48 | #define SLC_DATA(x) (x + 0x000) | ||
49 | #define SLC_ADDR(x) (x + 0x004) | ||
50 | #define SLC_CMD(x) (x + 0x008) | ||
51 | #define SLC_STOP(x) (x + 0x00C) | ||
52 | #define SLC_CTRL(x) (x + 0x010) | ||
53 | #define SLC_CFG(x) (x + 0x014) | ||
54 | #define SLC_STAT(x) (x + 0x018) | ||
55 | #define SLC_INT_STAT(x) (x + 0x01C) | ||
56 | #define SLC_IEN(x) (x + 0x020) | ||
57 | #define SLC_ISR(x) (x + 0x024) | ||
58 | #define SLC_ICR(x) (x + 0x028) | ||
59 | #define SLC_TAC(x) (x + 0x02C) | ||
60 | #define SLC_TC(x) (x + 0x030) | ||
61 | #define SLC_ECC(x) (x + 0x034) | ||
62 | #define SLC_DMA_DATA(x) (x + 0x038) | ||
63 | |||
64 | /********************************************************************** | ||
65 | * slc_ctrl register definitions | ||
66 | **********************************************************************/ | ||
67 | #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ | ||
68 | #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ | ||
69 | #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ | ||
70 | |||
71 | /********************************************************************** | ||
72 | * slc_cfg register definitions | ||
73 | **********************************************************************/ | ||
74 | #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ | ||
75 | #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ | ||
76 | #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ | ||
77 | #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ | ||
78 | #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ | ||
79 | #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ | ||
80 | |||
81 | /********************************************************************** | ||
82 | * slc_stat register definitions | ||
83 | **********************************************************************/ | ||
84 | #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ | ||
85 | #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ | ||
86 | #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ | ||
87 | |||
88 | /********************************************************************** | ||
89 | * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions | ||
90 | **********************************************************************/ | ||
91 | #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ | ||
92 | #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ | ||
93 | |||
94 | /********************************************************************** | ||
95 | * slc_tac register definitions | ||
96 | **********************************************************************/ | ||
97 | /* Clock setting for RDY write sample wait time in 2*n clocks */ | ||
98 | #define SLCTAC_WDR(n) (((n) & 0xF) << 28) | ||
99 | /* Write pulse width in clock cycles, 1 to 16 clocks */ | ||
100 | #define SLCTAC_WWIDTH(n) (((n) & 0xF) << 24) | ||
101 | /* Write hold time of control and data signals, 1 to 16 clocks */ | ||
102 | #define SLCTAC_WHOLD(n) (((n) & 0xF) << 20) | ||
103 | /* Write setup time of control and data signals, 1 to 16 clocks */ | ||
104 | #define SLCTAC_WSETUP(n) (((n) & 0xF) << 16) | ||
105 | /* Clock setting for RDY read sample wait time in 2*n clocks */ | ||
106 | #define SLCTAC_RDR(n) (((n) & 0xF) << 12) | ||
107 | /* Read pulse width in clock cycles, 1 to 16 clocks */ | ||
108 | #define SLCTAC_RWIDTH(n) (((n) & 0xF) << 8) | ||
109 | /* Read hold time of control and data signals, 1 to 16 clocks */ | ||
110 | #define SLCTAC_RHOLD(n) (((n) & 0xF) << 4) | ||
111 | /* Read setup time of control and data signals, 1 to 16 clocks */ | ||
112 | #define SLCTAC_RSETUP(n) (((n) & 0xF) << 0) | ||
113 | |||
114 | /********************************************************************** | ||
115 | * slc_ecc register definitions | ||
116 | **********************************************************************/ | ||
117 | /* ECC line party fetch macro */ | ||
118 | #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) | ||
119 | #define SLCECC_TO_COLPAR(n) ((n) & 0x3F) | ||
120 | |||
121 | /* | ||
122 | * DMA requires storage space for the DMA local buffer and the hardware ECC | ||
123 | * storage area. The DMA local buffer is only used if DMA mapping fails | ||
124 | * during runtime. | ||
125 | */ | ||
126 | #define LPC32XX_DMA_DATA_SIZE 4096 | ||
127 | #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) | ||
128 | |||
129 | /* Number of bytes used for ECC stored in NAND per 256 bytes */ | ||
130 | #define LPC32XX_SLC_DEV_ECC_BYTES 3 | ||
131 | |||
132 | /* | ||
133 | * If the NAND base clock frequency can't be fetched, this frequency will be | ||
134 | * used instead as the base. This rate is used to setup the timing registers | ||
135 | * used for NAND accesses. | ||
136 | */ | ||
137 | #define LPC32XX_DEF_BUS_RATE 133250000 | ||
138 | |||
139 | /* Milliseconds for DMA FIFO timeout (unlikely anyway) */ | ||
140 | #define LPC32XX_DMA_TIMEOUT 100 | ||
141 | |||
142 | /* | ||
143 | * NAND ECC Layout for small page NAND devices | ||
144 | * Note: For large and huge page devices, the default layouts are used | ||
145 | */ | ||
146 | static struct nand_ecclayout lpc32xx_nand_oob_16 = { | ||
147 | .eccbytes = 6, | ||
148 | .eccpos = {10, 11, 12, 13, 14, 15}, | ||
149 | .oobfree = { | ||
150 | { .offset = 0, .length = 4 }, | ||
151 | { .offset = 6, .length = 4 }, | ||
152 | }, | ||
153 | }; | ||
154 | |||
155 | static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; | ||
156 | static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; | ||
157 | |||
158 | /* | ||
159 | * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 | ||
160 | * Note: Large page devices used the default layout | ||
161 | */ | ||
162 | static struct nand_bbt_descr bbt_smallpage_main_descr = { | ||
163 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | ||
164 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | ||
165 | .offs = 0, | ||
166 | .len = 4, | ||
167 | .veroffs = 6, | ||
168 | .maxblocks = 4, | ||
169 | .pattern = bbt_pattern | ||
170 | }; | ||
171 | |||
172 | static struct nand_bbt_descr bbt_smallpage_mirror_descr = { | ||
173 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | ||
174 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | ||
175 | .offs = 0, | ||
176 | .len = 4, | ||
177 | .veroffs = 6, | ||
178 | .maxblocks = 4, | ||
179 | .pattern = mirror_pattern | ||
180 | }; | ||
181 | |||
182 | /* | ||
183 | * NAND platform configuration structure | ||
184 | */ | ||
185 | struct lpc32xx_nand_cfg_slc { | ||
186 | uint32_t wdr_clks; | ||
187 | uint32_t wwidth; | ||
188 | uint32_t whold; | ||
189 | uint32_t wsetup; | ||
190 | uint32_t rdr_clks; | ||
191 | uint32_t rwidth; | ||
192 | uint32_t rhold; | ||
193 | uint32_t rsetup; | ||
194 | bool use_bbt; | ||
195 | int wp_gpio; | ||
196 | struct mtd_partition *parts; | ||
197 | unsigned num_parts; | ||
198 | }; | ||
199 | |||
200 | struct lpc32xx_nand_host { | ||
201 | struct nand_chip nand_chip; | ||
202 | struct lpc32xx_slc_platform_data *pdata; | ||
203 | struct clk *clk; | ||
204 | struct mtd_info mtd; | ||
205 | void __iomem *io_base; | ||
206 | struct lpc32xx_nand_cfg_slc *ncfg; | ||
207 | |||
208 | struct completion comp; | ||
209 | struct dma_chan *dma_chan; | ||
210 | uint32_t dma_buf_len; | ||
211 | struct dma_slave_config dma_slave_config; | ||
212 | struct scatterlist sgl; | ||
213 | |||
214 | /* | ||
215 | * DMA and CPU addresses of ECC work area and data buffer | ||
216 | */ | ||
217 | uint32_t *ecc_buf; | ||
218 | uint8_t *data_buf; | ||
219 | dma_addr_t io_base_dma; | ||
220 | }; | ||
221 | |||
222 | static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) | ||
223 | { | ||
224 | uint32_t clkrate, tmp; | ||
225 | |||
226 | /* Reset SLC controller */ | ||
227 | writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); | ||
228 | udelay(1000); | ||
229 | |||
230 | /* Basic setup */ | ||
231 | writel(0, SLC_CFG(host->io_base)); | ||
232 | writel(0, SLC_IEN(host->io_base)); | ||
233 | writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), | ||
234 | SLC_ICR(host->io_base)); | ||
235 | |||
236 | /* Get base clock for SLC block */ | ||
237 | clkrate = clk_get_rate(host->clk); | ||
238 | if (clkrate == 0) | ||
239 | clkrate = LPC32XX_DEF_BUS_RATE; | ||
240 | |||
241 | /* Compute clock setup values */ | ||
242 | tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | | ||
243 | SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) | | ||
244 | SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) | | ||
245 | SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) | | ||
246 | SLCTAC_RDR(host->ncfg->rdr_clks) | | ||
247 | SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) | | ||
248 | SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) | | ||
249 | SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup)); | ||
250 | writel(tmp, SLC_TAC(host->io_base)); | ||
251 | } | ||
252 | |||
253 | /* | ||
254 | * Hardware specific access to control lines | ||
255 | */ | ||
256 | static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, | ||
257 | unsigned int ctrl) | ||
258 | { | ||
259 | uint32_t tmp; | ||
260 | struct nand_chip *chip = mtd->priv; | ||
261 | struct lpc32xx_nand_host *host = chip->priv; | ||
262 | |||
263 | /* Does CE state need to be changed? */ | ||
264 | tmp = readl(SLC_CFG(host->io_base)); | ||
265 | if (ctrl & NAND_NCE) | ||
266 | tmp |= SLCCFG_CE_LOW; | ||
267 | else | ||
268 | tmp &= ~SLCCFG_CE_LOW; | ||
269 | writel(tmp, SLC_CFG(host->io_base)); | ||
270 | |||
271 | if (cmd != NAND_CMD_NONE) { | ||
272 | if (ctrl & NAND_CLE) | ||
273 | writel(cmd, SLC_CMD(host->io_base)); | ||
274 | else | ||
275 | writel(cmd, SLC_ADDR(host->io_base)); | ||
276 | } | ||
277 | } | ||
278 | |||
279 | /* | ||
280 | * Read the Device Ready pin | ||
281 | */ | ||
282 | static int lpc32xx_nand_device_ready(struct mtd_info *mtd) | ||
283 | { | ||
284 | struct nand_chip *chip = mtd->priv; | ||
285 | struct lpc32xx_nand_host *host = chip->priv; | ||
286 | int rdy = 0; | ||
287 | |||
288 | if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) | ||
289 | rdy = 1; | ||
290 | |||
291 | return rdy; | ||
292 | } | ||
293 | |||
294 | /* | ||
295 | * Enable NAND write protect | ||
296 | */ | ||
297 | static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) | ||
298 | { | ||
299 | if (gpio_is_valid(host->ncfg->wp_gpio)) | ||
300 | gpio_set_value(host->ncfg->wp_gpio, 0); | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * Disable NAND write protect | ||
305 | */ | ||
306 | static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) | ||
307 | { | ||
308 | if (gpio_is_valid(host->ncfg->wp_gpio)) | ||
309 | gpio_set_value(host->ncfg->wp_gpio, 1); | ||
310 | } | ||
311 | |||
312 | /* | ||
313 | * Prepares SLC for transfers with H/W ECC enabled | ||
314 | */ | ||
315 | static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) | ||
316 | { | ||
317 | /* Hardware ECC is enabled automatically in hardware as needed */ | ||
318 | } | ||
319 | |||
320 | /* | ||
321 | * Calculates the ECC for the data | ||
322 | */ | ||
323 | static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, | ||
324 | const unsigned char *buf, | ||
325 | unsigned char *code) | ||
326 | { | ||
327 | /* | ||
328 | * ECC is calculated automatically in hardware during syndrome read | ||
329 | * and write operations, so it doesn't need to be calculated here. | ||
330 | */ | ||
331 | return 0; | ||
332 | } | ||
333 | |||
334 | /* | ||
335 | * Read a single byte from NAND device | ||
336 | */ | ||
337 | static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) | ||
338 | { | ||
339 | struct nand_chip *chip = mtd->priv; | ||
340 | struct lpc32xx_nand_host *host = chip->priv; | ||
341 | |||
342 | return (uint8_t)readl(SLC_DATA(host->io_base)); | ||
343 | } | ||
344 | |||
345 | /* | ||
346 | * Simple device read without ECC | ||
347 | */ | ||
348 | static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | ||
349 | { | ||
350 | struct nand_chip *chip = mtd->priv; | ||
351 | struct lpc32xx_nand_host *host = chip->priv; | ||
352 | |||
353 | /* Direct device read with no ECC */ | ||
354 | while (len-- > 0) | ||
355 | *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); | ||
356 | } | ||
357 | |||
358 | /* | ||
359 | * Simple device write without ECC | ||
360 | */ | ||
361 | static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | ||
362 | { | ||
363 | struct nand_chip *chip = mtd->priv; | ||
364 | struct lpc32xx_nand_host *host = chip->priv; | ||
365 | |||
366 | /* Direct device write with no ECC */ | ||
367 | while (len-- > 0) | ||
368 | writel((uint32_t)*buf++, SLC_DATA(host->io_base)); | ||
369 | } | ||
370 | |||
371 | /* | ||
372 | * Read the OOB data from the device without ECC using FIFO method | ||
373 | */ | ||
374 | static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, | ||
375 | struct nand_chip *chip, int page) | ||
376 | { | ||
377 | chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | ||
378 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
379 | |||
380 | return 0; | ||
381 | } | ||
382 | |||
383 | /* | ||
384 | * Write the OOB data to the device without ECC using FIFO method | ||
385 | */ | ||
386 | static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, | ||
387 | struct nand_chip *chip, int page) | ||
388 | { | ||
389 | int status; | ||
390 | |||
391 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); | ||
392 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
393 | |||
394 | /* Send command to program the OOB data */ | ||
395 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | ||
396 | |||
397 | status = chip->waitfunc(mtd, chip); | ||
398 | |||
399 | return status & NAND_STATUS_FAIL ? -EIO : 0; | ||
400 | } | ||
401 | |||
402 | /* | ||
403 | * Fills in the ECC fields in the OOB buffer with the hardware generated ECC | ||
404 | */ | ||
405 | static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) | ||
406 | { | ||
407 | int i; | ||
408 | |||
409 | for (i = 0; i < (count * 3); i += 3) { | ||
410 | uint32_t ce = ecc[i / 3]; | ||
411 | ce = ~(ce << 2) & 0xFFFFFF; | ||
412 | spare[i + 2] = (uint8_t)(ce & 0xFF); | ||
413 | ce >>= 8; | ||
414 | spare[i + 1] = (uint8_t)(ce & 0xFF); | ||
415 | ce >>= 8; | ||
416 | spare[i] = (uint8_t)(ce & 0xFF); | ||
417 | } | ||
418 | } | ||
419 | |||
420 | static void lpc32xx_dma_complete_func(void *completion) | ||
421 | { | ||
422 | complete(completion); | ||
423 | } | ||
424 | |||
425 | static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, | ||
426 | void *mem, int len, enum dma_transfer_direction dir) | ||
427 | { | ||
428 | struct nand_chip *chip = mtd->priv; | ||
429 | struct lpc32xx_nand_host *host = chip->priv; | ||
430 | struct dma_async_tx_descriptor *desc; | ||
431 | int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; | ||
432 | int res; | ||
433 | |||
434 | host->dma_slave_config.direction = dir; | ||
435 | host->dma_slave_config.src_addr = dma; | ||
436 | host->dma_slave_config.dst_addr = dma; | ||
437 | host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | ||
438 | host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | ||
439 | host->dma_slave_config.src_maxburst = 4; | ||
440 | host->dma_slave_config.dst_maxburst = 4; | ||
441 | /* DMA controller does flow control: */ | ||
442 | host->dma_slave_config.device_fc = false; | ||
443 | if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { | ||
444 | dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); | ||
445 | return -ENXIO; | ||
446 | } | ||
447 | |||
448 | sg_init_one(&host->sgl, mem, len); | ||
449 | |||
450 | res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, | ||
451 | DMA_BIDIRECTIONAL); | ||
452 | if (res != 1) { | ||
453 | dev_err(mtd->dev.parent, "Failed to map sg list\n"); | ||
454 | return -ENXIO; | ||
455 | } | ||
456 | desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, | ||
457 | flags); | ||
458 | if (!desc) { | ||
459 | dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); | ||
460 | goto out1; | ||
461 | } | ||
462 | |||
463 | init_completion(&host->comp); | ||
464 | desc->callback = lpc32xx_dma_complete_func; | ||
465 | desc->callback_param = &host->comp; | ||
466 | |||
467 | dmaengine_submit(desc); | ||
468 | dma_async_issue_pending(host->dma_chan); | ||
469 | |||
470 | wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); | ||
471 | |||
472 | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | ||
473 | DMA_BIDIRECTIONAL); | ||
474 | |||
475 | return 0; | ||
476 | out1: | ||
477 | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | ||
478 | DMA_BIDIRECTIONAL); | ||
479 | return -ENXIO; | ||
480 | } | ||
481 | |||
482 | /* | ||
483 | * DMA read/write transfers with ECC support | ||
484 | */ | ||
485 | static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, | ||
486 | int read) | ||
487 | { | ||
488 | struct nand_chip *chip = mtd->priv; | ||
489 | struct lpc32xx_nand_host *host = chip->priv; | ||
490 | int i, status = 0; | ||
491 | unsigned long timeout; | ||
492 | int res; | ||
493 | enum dma_transfer_direction dir = | ||
494 | read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; | ||
495 | uint8_t *dma_buf; | ||
496 | bool dma_mapped; | ||
497 | |||
498 | if ((void *)buf <= high_memory) { | ||
499 | dma_buf = buf; | ||
500 | dma_mapped = true; | ||
501 | } else { | ||
502 | dma_buf = host->data_buf; | ||
503 | dma_mapped = false; | ||
504 | if (!read) | ||
505 | memcpy(host->data_buf, buf, mtd->writesize); | ||
506 | } | ||
507 | |||
508 | if (read) { | ||
509 | writel(readl(SLC_CFG(host->io_base)) | | ||
510 | SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | | ||
511 | SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); | ||
512 | } else { | ||
513 | writel((readl(SLC_CFG(host->io_base)) | | ||
514 | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & | ||
515 | ~SLCCFG_DMA_DIR, | ||
516 | SLC_CFG(host->io_base)); | ||
517 | } | ||
518 | |||
519 | /* Clear initial ECC */ | ||
520 | writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); | ||
521 | |||
522 | /* Transfer size is data area only */ | ||
523 | writel(mtd->writesize, SLC_TC(host->io_base)); | ||
524 | |||
525 | /* Start transfer in the NAND controller */ | ||
526 | writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, | ||
527 | SLC_CTRL(host->io_base)); | ||
528 | |||
529 | for (i = 0; i < chip->ecc.steps; i++) { | ||
530 | /* Data */ | ||
531 | res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), | ||
532 | dma_buf + i * chip->ecc.size, | ||
533 | mtd->writesize / chip->ecc.steps, dir); | ||
534 | if (res) | ||
535 | return res; | ||
536 | |||
537 | /* Always _read_ ECC */ | ||
538 | if (i == chip->ecc.steps - 1) | ||
539 | break; | ||
540 | if (!read) /* ECC availability delayed on write */ | ||
541 | udelay(10); | ||
542 | res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), | ||
543 | &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); | ||
544 | if (res) | ||
545 | return res; | ||
546 | } | ||
547 | |||
548 | /* | ||
549 | * According to NXP, the DMA can be finished here, but the NAND | ||
550 | * controller may still have buffered data. After porting to using the | ||
551 | * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) | ||
552 | * appears to be always true, according to tests. Keeping the check for | ||
553 | * safety reasons for now. | ||
554 | */ | ||
555 | if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { | ||
556 | dev_warn(mtd->dev.parent, "FIFO not empty!\n"); | ||
557 | timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); | ||
558 | while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && | ||
559 | time_before(jiffies, timeout)) | ||
560 | cpu_relax(); | ||
561 | if (!time_before(jiffies, timeout)) { | ||
562 | dev_err(mtd->dev.parent, "FIFO held data too long\n"); | ||
563 | status = -EIO; | ||
564 | } | ||
565 | } | ||
566 | |||
567 | /* Read last calculated ECC value */ | ||
568 | if (!read) | ||
569 | udelay(10); | ||
570 | host->ecc_buf[chip->ecc.steps - 1] = | ||
571 | readl(SLC_ECC(host->io_base)); | ||
572 | |||
573 | /* Flush DMA */ | ||
574 | dmaengine_terminate_all(host->dma_chan); | ||
575 | |||
576 | if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || | ||
577 | readl(SLC_TC(host->io_base))) { | ||
578 | /* Something is left in the FIFO, something is wrong */ | ||
579 | dev_err(mtd->dev.parent, "DMA FIFO failure\n"); | ||
580 | status = -EIO; | ||
581 | } | ||
582 | |||
583 | /* Stop DMA & HW ECC */ | ||
584 | writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, | ||
585 | SLC_CTRL(host->io_base)); | ||
586 | writel(readl(SLC_CFG(host->io_base)) & | ||
587 | ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | | ||
588 | SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); | ||
589 | |||
590 | if (!dma_mapped && read) | ||
591 | memcpy(buf, host->data_buf, mtd->writesize); | ||
592 | |||
593 | return status; | ||
594 | } | ||
595 | |||
596 | /* | ||
597 | * Read the data and OOB data from the device, use ECC correction with the | ||
598 | * data, disable ECC for the OOB data | ||
599 | */ | ||
600 | static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, | ||
601 | struct nand_chip *chip, uint8_t *buf, | ||
602 | int oob_required, int page) | ||
603 | { | ||
604 | struct lpc32xx_nand_host *host = chip->priv; | ||
605 | int stat, i, status; | ||
606 | uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; | ||
607 | |||
608 | /* Issue read command */ | ||
609 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | ||
610 | |||
611 | /* Read data and oob, calculate ECC */ | ||
612 | status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); | ||
613 | |||
614 | /* Get OOB data */ | ||
615 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
616 | |||
617 | /* Convert to stored ECC format */ | ||
618 | lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); | ||
619 | |||
620 | /* Pointer to ECC data retrieved from NAND spare area */ | ||
621 | oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0]; | ||
622 | |||
623 | for (i = 0; i < chip->ecc.steps; i++) { | ||
624 | stat = chip->ecc.correct(mtd, buf, oobecc, | ||
625 | &tmpecc[i * chip->ecc.bytes]); | ||
626 | if (stat < 0) | ||
627 | mtd->ecc_stats.failed++; | ||
628 | else | ||
629 | mtd->ecc_stats.corrected += stat; | ||
630 | |||
631 | buf += chip->ecc.size; | ||
632 | oobecc += chip->ecc.bytes; | ||
633 | } | ||
634 | |||
635 | return status; | ||
636 | } | ||
637 | |||
638 | /* | ||
639 | * Read the data and OOB data from the device, no ECC correction with the | ||
640 | * data or OOB data | ||
641 | */ | ||
642 | static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, | ||
643 | struct nand_chip *chip, | ||
644 | uint8_t *buf, int oob_required, | ||
645 | int page) | ||
646 | { | ||
647 | /* Issue read command */ | ||
648 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | ||
649 | |||
650 | /* Raw reads can just use the FIFO interface */ | ||
651 | chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); | ||
652 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
653 | |||
654 | return 0; | ||
655 | } | ||
656 | |||
657 | /* | ||
658 | * Write the data and OOB data to the device, use ECC with the data, | ||
659 | * disable ECC for the OOB data | ||
660 | */ | ||
661 | static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, | ||
662 | struct nand_chip *chip, | ||
663 | const uint8_t *buf, int oob_required) | ||
664 | { | ||
665 | struct lpc32xx_nand_host *host = chip->priv; | ||
666 | uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0]; | ||
667 | int error; | ||
668 | |||
669 | /* Write data, calculate ECC on outbound data */ | ||
670 | error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); | ||
671 | if (error) | ||
672 | return error; | ||
673 | |||
674 | /* | ||
675 | * The calculated ECC needs some manual work done to it before | ||
676 | * committing it to NAND. Process the calculated ECC and place | ||
677 | * the resultant values directly into the OOB buffer. */ | ||
678 | lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); | ||
679 | |||
680 | /* Write ECC data to device */ | ||
681 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
682 | return 0; | ||
683 | } | ||
684 | |||
685 | /* | ||
686 | * Write the data and OOB data to the device, no ECC correction with the | ||
687 | * data or OOB data | ||
688 | */ | ||
689 | static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, | ||
690 | struct nand_chip *chip, | ||
691 | const uint8_t *buf, | ||
692 | int oob_required) | ||
693 | { | ||
694 | /* Raw writes can just use the FIFO interface */ | ||
695 | chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); | ||
696 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
697 | return 0; | ||
698 | } | ||
699 | |||
700 | static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) | ||
701 | { | ||
702 | struct mtd_info *mtd = &host->mtd; | ||
703 | dma_cap_mask_t mask; | ||
704 | |||
705 | if (!host->pdata || !host->pdata->dma_filter) { | ||
706 | dev_err(mtd->dev.parent, "no DMA platform data\n"); | ||
707 | return -ENOENT; | ||
708 | } | ||
709 | |||
710 | dma_cap_zero(mask); | ||
711 | dma_cap_set(DMA_SLAVE, mask); | ||
712 | host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, | ||
713 | "nand-slc"); | ||
714 | if (!host->dma_chan) { | ||
715 | dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); | ||
716 | return -EBUSY; | ||
717 | } | ||
718 | |||
719 | return 0; | ||
720 | } | ||
721 | |||
722 | static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) | ||
723 | { | ||
724 | struct lpc32xx_nand_cfg_slc *ncfg; | ||
725 | struct device_node *np = dev->of_node; | ||
726 | |||
727 | ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); | ||
728 | if (!ncfg) { | ||
729 | dev_err(dev, "could not allocate memory for NAND config\n"); | ||
730 | return NULL; | ||
731 | } | ||
732 | |||
733 | of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); | ||
734 | of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); | ||
735 | of_property_read_u32(np, "nxp,whold", &ncfg->whold); | ||
736 | of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); | ||
737 | of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); | ||
738 | of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); | ||
739 | of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); | ||
740 | of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); | ||
741 | |||
742 | if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || | ||
743 | !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || | ||
744 | !ncfg->rhold || !ncfg->rsetup) { | ||
745 | dev_err(dev, "chip parameters not specified correctly\n"); | ||
746 | return NULL; | ||
747 | } | ||
748 | |||
749 | ncfg->use_bbt = of_get_nand_on_flash_bbt(np); | ||
750 | ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); | ||
751 | |||
752 | return ncfg; | ||
753 | } | ||
754 | |||
755 | /* | ||
756 | * Probe for NAND controller | ||
757 | */ | ||
758 | static int __devinit lpc32xx_nand_probe(struct platform_device *pdev) | ||
759 | { | ||
760 | struct lpc32xx_nand_host *host; | ||
761 | struct mtd_info *mtd; | ||
762 | struct nand_chip *chip; | ||
763 | struct resource *rc; | ||
764 | struct mtd_part_parser_data ppdata = {}; | ||
765 | int res; | ||
766 | |||
767 | rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
768 | if (rc == NULL) { | ||
769 | dev_err(&pdev->dev, "No memory resource found for device\n"); | ||
770 | return -EBUSY; | ||
771 | } | ||
772 | |||
773 | /* Allocate memory for the device structure (and zero it) */ | ||
774 | host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); | ||
775 | if (!host) { | ||
776 | dev_err(&pdev->dev, "failed to allocate device structure\n"); | ||
777 | return -ENOMEM; | ||
778 | } | ||
779 | host->io_base_dma = rc->start; | ||
780 | |||
781 | host->io_base = devm_request_and_ioremap(&pdev->dev, rc); | ||
782 | if (host->io_base == NULL) { | ||
783 | dev_err(&pdev->dev, "ioremap failed\n"); | ||
784 | return -ENOMEM; | ||
785 | } | ||
786 | |||
787 | if (pdev->dev.of_node) | ||
788 | host->ncfg = lpc32xx_parse_dt(&pdev->dev); | ||
789 | if (!host->ncfg) { | ||
790 | dev_err(&pdev->dev, | ||
791 | "Missing or bad NAND config from device tree\n"); | ||
792 | return -ENOENT; | ||
793 | } | ||
794 | if (host->ncfg->wp_gpio == -EPROBE_DEFER) | ||
795 | return -EPROBE_DEFER; | ||
796 | if (gpio_is_valid(host->ncfg->wp_gpio) && | ||
797 | gpio_request(host->ncfg->wp_gpio, "NAND WP")) { | ||
798 | dev_err(&pdev->dev, "GPIO not available\n"); | ||
799 | return -EBUSY; | ||
800 | } | ||
801 | lpc32xx_wp_disable(host); | ||
802 | |||
803 | host->pdata = pdev->dev.platform_data; | ||
804 | |||
805 | mtd = &host->mtd; | ||
806 | chip = &host->nand_chip; | ||
807 | chip->priv = host; | ||
808 | mtd->priv = chip; | ||
809 | mtd->owner = THIS_MODULE; | ||
810 | mtd->dev.parent = &pdev->dev; | ||
811 | |||
812 | /* Get NAND clock */ | ||
813 | host->clk = clk_get(&pdev->dev, NULL); | ||
814 | if (IS_ERR(host->clk)) { | ||
815 | dev_err(&pdev->dev, "Clock failure\n"); | ||
816 | res = -ENOENT; | ||
817 | goto err_exit1; | ||
818 | } | ||
819 | clk_enable(host->clk); | ||
820 | |||
821 | /* Set NAND IO addresses and command/ready functions */ | ||
822 | chip->IO_ADDR_R = SLC_DATA(host->io_base); | ||
823 | chip->IO_ADDR_W = SLC_DATA(host->io_base); | ||
824 | chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; | ||
825 | chip->dev_ready = lpc32xx_nand_device_ready; | ||
826 | chip->chip_delay = 20; /* 20us command delay time */ | ||
827 | |||
828 | /* Init NAND controller */ | ||
829 | lpc32xx_nand_setup(host); | ||
830 | |||
831 | platform_set_drvdata(pdev, host); | ||
832 | |||
833 | /* NAND callbacks for LPC32xx SLC hardware */ | ||
834 | chip->ecc.mode = NAND_ECC_HW_SYNDROME; | ||
835 | chip->read_byte = lpc32xx_nand_read_byte; | ||
836 | chip->read_buf = lpc32xx_nand_read_buf; | ||
837 | chip->write_buf = lpc32xx_nand_write_buf; | ||
838 | chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; | ||
839 | chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; | ||
840 | chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; | ||
841 | chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; | ||
842 | chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; | ||
843 | chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; | ||
844 | chip->ecc.calculate = lpc32xx_nand_ecc_calculate; | ||
845 | chip->ecc.correct = nand_correct_data; | ||
846 | chip->ecc.strength = 1; | ||
847 | chip->ecc.hwctl = lpc32xx_nand_ecc_enable; | ||
848 | |||
849 | /* bitflip_threshold's default is defined as ecc_strength anyway. | ||
850 | * Unfortunately, it is set only later at add_mtd_device(). Meanwhile | ||
851 | * being 0, it causes bad block table scanning errors in | ||
852 | * nand_scan_tail(), so preparing it here already. */ | ||
853 | mtd->bitflip_threshold = chip->ecc.strength; | ||
854 | |||
855 | /* | ||
856 | * Allocate a large enough buffer for a single huge page plus | ||
857 | * extra space for the spare area and ECC storage area | ||
858 | */ | ||
859 | host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; | ||
860 | host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, | ||
861 | GFP_KERNEL); | ||
862 | if (host->data_buf == NULL) { | ||
863 | dev_err(&pdev->dev, "Error allocating memory\n"); | ||
864 | res = -ENOMEM; | ||
865 | goto err_exit2; | ||
866 | } | ||
867 | |||
868 | res = lpc32xx_nand_dma_setup(host); | ||
869 | if (res) { | ||
870 | res = -EIO; | ||
871 | goto err_exit2; | ||
872 | } | ||
873 | |||
874 | /* Find NAND device */ | ||
875 | if (nand_scan_ident(mtd, 1, NULL)) { | ||
876 | res = -ENXIO; | ||
877 | goto err_exit3; | ||
878 | } | ||
879 | |||
880 | /* OOB and ECC CPU and DMA work areas */ | ||
881 | host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); | ||
882 | |||
883 | /* | ||
884 | * Small page FLASH has a unique OOB layout, but large and huge | ||
885 | * page FLASH use the standard layout. Small page FLASH uses a | ||
886 | * custom BBT marker layout. | ||
887 | */ | ||
888 | if (mtd->writesize <= 512) | ||
889 | chip->ecc.layout = &lpc32xx_nand_oob_16; | ||
890 | |||
891 | /* These sizes remain the same regardless of page size */ | ||
892 | chip->ecc.size = 256; | ||
893 | chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; | ||
894 | chip->ecc.prepad = chip->ecc.postpad = 0; | ||
895 | |||
896 | /* Avoid extra scan if using BBT, setup BBT support */ | ||
897 | if (host->ncfg->use_bbt) { | ||
898 | chip->options |= NAND_SKIP_BBTSCAN; | ||
899 | chip->bbt_options |= NAND_BBT_USE_FLASH; | ||
900 | |||
901 | /* | ||
902 | * Use a custom BBT marker setup for small page FLASH that | ||
903 | * won't interfere with the ECC layout. Large and huge page | ||
904 | * FLASH use the standard layout. | ||
905 | */ | ||
906 | if (mtd->writesize <= 512) { | ||
907 | chip->bbt_td = &bbt_smallpage_main_descr; | ||
908 | chip->bbt_md = &bbt_smallpage_mirror_descr; | ||
909 | } | ||
910 | } | ||
911 | |||
912 | /* | ||
913 | * Fills out all the uninitialized function pointers with the defaults | ||
914 | */ | ||
915 | if (nand_scan_tail(mtd)) { | ||
916 | res = -ENXIO; | ||
917 | goto err_exit3; | ||
918 | } | ||
919 | |||
920 | /* Standard layout in FLASH for bad block tables */ | ||
921 | if (host->ncfg->use_bbt) { | ||
922 | if (nand_default_bbt(mtd) < 0) | ||
923 | dev_err(&pdev->dev, | ||
924 | "Error initializing default bad block tables\n"); | ||
925 | } | ||
926 | |||
927 | mtd->name = "nxp_lpc3220_slc"; | ||
928 | ppdata.of_node = pdev->dev.of_node; | ||
929 | res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, | ||
930 | host->ncfg->num_parts); | ||
931 | if (!res) | ||
932 | return res; | ||
933 | |||
934 | nand_release(mtd); | ||
935 | |||
936 | err_exit3: | ||
937 | dma_release_channel(host->dma_chan); | ||
938 | err_exit2: | ||
939 | clk_disable(host->clk); | ||
940 | clk_put(host->clk); | ||
941 | platform_set_drvdata(pdev, NULL); | ||
942 | err_exit1: | ||
943 | lpc32xx_wp_enable(host); | ||
944 | gpio_free(host->ncfg->wp_gpio); | ||
945 | |||
946 | return res; | ||
947 | } | ||
948 | |||
949 | /* | ||
950 | * Remove NAND device. | ||
951 | */ | ||
952 | static int __devexit lpc32xx_nand_remove(struct platform_device *pdev) | ||
953 | { | ||
954 | uint32_t tmp; | ||
955 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | ||
956 | struct mtd_info *mtd = &host->mtd; | ||
957 | |||
958 | nand_release(mtd); | ||
959 | dma_release_channel(host->dma_chan); | ||
960 | |||
961 | /* Force CE high */ | ||
962 | tmp = readl(SLC_CTRL(host->io_base)); | ||
963 | tmp &= ~SLCCFG_CE_LOW; | ||
964 | writel(tmp, SLC_CTRL(host->io_base)); | ||
965 | |||
966 | clk_disable(host->clk); | ||
967 | clk_put(host->clk); | ||
968 | platform_set_drvdata(pdev, NULL); | ||
969 | lpc32xx_wp_enable(host); | ||
970 | gpio_free(host->ncfg->wp_gpio); | ||
971 | |||
972 | return 0; | ||
973 | } | ||
974 | |||
975 | #ifdef CONFIG_PM | ||
976 | static int lpc32xx_nand_resume(struct platform_device *pdev) | ||
977 | { | ||
978 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | ||
979 | |||
980 | /* Re-enable NAND clock */ | ||
981 | clk_enable(host->clk); | ||
982 | |||
983 | /* Fresh init of NAND controller */ | ||
984 | lpc32xx_nand_setup(host); | ||
985 | |||
986 | /* Disable write protect */ | ||
987 | lpc32xx_wp_disable(host); | ||
988 | |||
989 | return 0; | ||
990 | } | ||
991 | |||
992 | static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) | ||
993 | { | ||
994 | uint32_t tmp; | ||
995 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | ||
996 | |||
997 | /* Force CE high */ | ||
998 | tmp = readl(SLC_CTRL(host->io_base)); | ||
999 | tmp &= ~SLCCFG_CE_LOW; | ||
1000 | writel(tmp, SLC_CTRL(host->io_base)); | ||
1001 | |||
1002 | /* Enable write protect for safety */ | ||
1003 | lpc32xx_wp_enable(host); | ||
1004 | |||
1005 | /* Disable clock */ | ||
1006 | clk_disable(host->clk); | ||
1007 | |||
1008 | return 0; | ||
1009 | } | ||
1010 | |||
1011 | #else | ||
1012 | #define lpc32xx_nand_resume NULL | ||
1013 | #define lpc32xx_nand_suspend NULL | ||
1014 | #endif | ||
1015 | |||
1016 | static const struct of_device_id lpc32xx_nand_match[] = { | ||
1017 | { .compatible = "nxp,lpc3220-slc" }, | ||
1018 | { /* sentinel */ }, | ||
1019 | }; | ||
1020 | MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); | ||
1021 | |||
1022 | static struct platform_driver lpc32xx_nand_driver = { | ||
1023 | .probe = lpc32xx_nand_probe, | ||
1024 | .remove = __devexit_p(lpc32xx_nand_remove), | ||
1025 | .resume = lpc32xx_nand_resume, | ||
1026 | .suspend = lpc32xx_nand_suspend, | ||
1027 | .driver = { | ||
1028 | .name = LPC32XX_MODNAME, | ||
1029 | .owner = THIS_MODULE, | ||
1030 | .of_match_table = of_match_ptr(lpc32xx_nand_match), | ||
1031 | }, | ||
1032 | }; | ||
1033 | |||
1034 | module_platform_driver(lpc32xx_nand_driver); | ||
1035 | |||
1036 | MODULE_LICENSE("GPL"); | ||
1037 | MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); | ||
1038 | MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); | ||
1039 | MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); | ||
diff --git a/drivers/mtd/nand/mpc5121_nfc.c b/drivers/mtd/nand/mpc5121_nfc.c index c259c24d7986..f776c8577b8c 100644 --- a/drivers/mtd/nand/mpc5121_nfc.c +++ b/drivers/mtd/nand/mpc5121_nfc.c | |||
@@ -506,27 +506,6 @@ static void mpc5121_nfc_write_buf(struct mtd_info *mtd, | |||
506 | mpc5121_nfc_buf_copy(mtd, (u_char *)buf, len, 1); | 506 | mpc5121_nfc_buf_copy(mtd, (u_char *)buf, len, 1); |
507 | } | 507 | } |
508 | 508 | ||
509 | /* Compare buffer with NAND flash */ | ||
510 | static int mpc5121_nfc_verify_buf(struct mtd_info *mtd, | ||
511 | const u_char *buf, int len) | ||
512 | { | ||
513 | u_char tmp[256]; | ||
514 | uint bsize; | ||
515 | |||
516 | while (len) { | ||
517 | bsize = min(len, 256); | ||
518 | mpc5121_nfc_read_buf(mtd, tmp, bsize); | ||
519 | |||
520 | if (memcmp(buf, tmp, bsize)) | ||
521 | return 1; | ||
522 | |||
523 | buf += bsize; | ||
524 | len -= bsize; | ||
525 | } | ||
526 | |||
527 | return 0; | ||
528 | } | ||
529 | |||
530 | /* Read byte from NFC buffers */ | 509 | /* Read byte from NFC buffers */ |
531 | static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd) | 510 | static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd) |
532 | { | 511 | { |
@@ -732,7 +711,6 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) | |||
732 | chip->read_word = mpc5121_nfc_read_word; | 711 | chip->read_word = mpc5121_nfc_read_word; |
733 | chip->read_buf = mpc5121_nfc_read_buf; | 712 | chip->read_buf = mpc5121_nfc_read_buf; |
734 | chip->write_buf = mpc5121_nfc_write_buf; | 713 | chip->write_buf = mpc5121_nfc_write_buf; |
735 | chip->verify_buf = mpc5121_nfc_verify_buf; | ||
736 | chip->select_chip = mpc5121_nfc_select_chip; | 714 | chip->select_chip = mpc5121_nfc_select_chip; |
737 | chip->bbt_options = NAND_BBT_USE_FLASH; | 715 | chip->bbt_options = NAND_BBT_USE_FLASH; |
738 | chip->ecc.mode = NAND_ECC_SOFT; | 716 | chip->ecc.mode = NAND_ECC_SOFT; |
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 5683604967d7..72e31d86030d 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c | |||
@@ -43,8 +43,8 @@ | |||
43 | 43 | ||
44 | #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35()) | 44 | #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35()) |
45 | #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21()) | 45 | #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21()) |
46 | #define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53()) | 46 | #define nfc_is_v3_2a() cpu_is_mx51() |
47 | #define nfc_is_v3() nfc_is_v3_2() | 47 | #define nfc_is_v3_2b() cpu_is_mx53() |
48 | 48 | ||
49 | /* Addresses for NFC registers */ | 49 | /* Addresses for NFC registers */ |
50 | #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) | 50 | #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) |
@@ -122,7 +122,7 @@ | |||
122 | #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) | 122 | #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) |
123 | #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) | 123 | #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) |
124 | #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) | 124 | #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) |
125 | #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7) | 125 | #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) |
126 | #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) | 126 | #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) |
127 | #define NFC_V3_CONFIG2_INT_MSK (1 << 15) | 127 | #define NFC_V3_CONFIG2_INT_MSK (1 << 15) |
128 | #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) | 128 | #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) |
@@ -174,6 +174,7 @@ struct mxc_nand_devtype_data { | |||
174 | int spare_len; | 174 | int spare_len; |
175 | int eccbytes; | 175 | int eccbytes; |
176 | int eccsize; | 176 | int eccsize; |
177 | int ppb_shift; | ||
177 | }; | 178 | }; |
178 | 179 | ||
179 | struct mxc_nand_host { | 180 | struct mxc_nand_host { |
@@ -745,14 +746,6 @@ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | |||
745 | host->buf_start += n; | 746 | host->buf_start += n; |
746 | } | 747 | } |
747 | 748 | ||
748 | /* Used by the upper layer to verify the data in NAND Flash | ||
749 | * with the data in the buf. */ | ||
750 | static int mxc_nand_verify_buf(struct mtd_info *mtd, | ||
751 | const u_char *buf, int len) | ||
752 | { | ||
753 | return -EFAULT; | ||
754 | } | ||
755 | |||
756 | /* This function is used by upper layer for select and | 749 | /* This function is used by upper layer for select and |
757 | * deselect of the NAND chip */ | 750 | * deselect of the NAND chip */ |
758 | static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip) | 751 | static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip) |
@@ -784,7 +777,7 @@ static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip) | |||
784 | if (chip == -1) { | 777 | if (chip == -1) { |
785 | /* Disable the NFC clock */ | 778 | /* Disable the NFC clock */ |
786 | if (host->clk_act) { | 779 | if (host->clk_act) { |
787 | clk_disable(host->clk); | 780 | clk_disable_unprepare(host->clk); |
788 | host->clk_act = 0; | 781 | host->clk_act = 0; |
789 | } | 782 | } |
790 | return; | 783 | return; |
@@ -792,7 +785,7 @@ static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip) | |||
792 | 785 | ||
793 | if (!host->clk_act) { | 786 | if (!host->clk_act) { |
794 | /* Enable the NFC clock */ | 787 | /* Enable the NFC clock */ |
795 | clk_enable(host->clk); | 788 | clk_prepare_enable(host->clk); |
796 | host->clk_act = 1; | 789 | host->clk_act = 1; |
797 | } | 790 | } |
798 | 791 | ||
@@ -1021,7 +1014,9 @@ static void preset_v3(struct mtd_info *mtd) | |||
1021 | } | 1014 | } |
1022 | 1015 | ||
1023 | if (mtd->writesize) { | 1016 | if (mtd->writesize) { |
1024 | config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6); | 1017 | config2 |= NFC_V3_CONFIG2_PPB( |
1018 | ffs(mtd->erasesize / mtd->writesize) - 6, | ||
1019 | host->devtype_data->ppb_shift); | ||
1025 | host->eccsize = get_eccsize(mtd); | 1020 | host->eccsize = get_eccsize(mtd); |
1026 | if (host->eccsize == 8) | 1021 | if (host->eccsize == 8) |
1027 | config2 |= NFC_V3_CONFIG2_ECC_MODE_8; | 1022 | config2 |= NFC_V3_CONFIG2_ECC_MODE_8; |
@@ -1234,7 +1229,7 @@ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { | |||
1234 | .eccsize = 0, | 1229 | .eccsize = 0, |
1235 | }; | 1230 | }; |
1236 | 1231 | ||
1237 | /* v3: i.MX51, i.MX53 */ | 1232 | /* v3.2a: i.MX51 */ |
1238 | static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { | 1233 | static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { |
1239 | .preset = preset_v3, | 1234 | .preset = preset_v3, |
1240 | .send_cmd = send_cmd_v3, | 1235 | .send_cmd = send_cmd_v3, |
@@ -1258,6 +1253,34 @@ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { | |||
1258 | .spare_len = 64, | 1253 | .spare_len = 64, |
1259 | .eccbytes = 0, | 1254 | .eccbytes = 0, |
1260 | .eccsize = 0, | 1255 | .eccsize = 0, |
1256 | .ppb_shift = 7, | ||
1257 | }; | ||
1258 | |||
1259 | /* v3.2b: i.MX53 */ | ||
1260 | static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { | ||
1261 | .preset = preset_v3, | ||
1262 | .send_cmd = send_cmd_v3, | ||
1263 | .send_addr = send_addr_v3, | ||
1264 | .send_page = send_page_v3, | ||
1265 | .send_read_id = send_read_id_v3, | ||
1266 | .get_dev_status = get_dev_status_v3, | ||
1267 | .check_int = check_int_v3, | ||
1268 | .irq_control = irq_control_v3, | ||
1269 | .get_ecc_status = get_ecc_status_v3, | ||
1270 | .ecclayout_512 = &nandv2_hw_eccoob_smallpage, | ||
1271 | .ecclayout_2k = &nandv2_hw_eccoob_largepage, | ||
1272 | .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */ | ||
1273 | .select_chip = mxc_nand_select_chip_v1_v3, | ||
1274 | .correct_data = mxc_nand_correct_data_v2_v3, | ||
1275 | .irqpending_quirk = 0, | ||
1276 | .needs_ip = 1, | ||
1277 | .regs_offset = 0, | ||
1278 | .spare0_offset = 0x1000, | ||
1279 | .axi_offset = 0x1e00, | ||
1280 | .spare_len = 64, | ||
1281 | .eccbytes = 0, | ||
1282 | .eccsize = 0, | ||
1283 | .ppb_shift = 8, | ||
1261 | }; | 1284 | }; |
1262 | 1285 | ||
1263 | #ifdef CONFIG_OF_MTD | 1286 | #ifdef CONFIG_OF_MTD |
@@ -1274,6 +1297,9 @@ static const struct of_device_id mxcnd_dt_ids[] = { | |||
1274 | }, { | 1297 | }, { |
1275 | .compatible = "fsl,imx51-nand", | 1298 | .compatible = "fsl,imx51-nand", |
1276 | .data = &imx51_nand_devtype_data, | 1299 | .data = &imx51_nand_devtype_data, |
1300 | }, { | ||
1301 | .compatible = "fsl,imx53-nand", | ||
1302 | .data = &imx53_nand_devtype_data, | ||
1277 | }, | 1303 | }, |
1278 | { /* sentinel */ } | 1304 | { /* sentinel */ } |
1279 | }; | 1305 | }; |
@@ -1327,15 +1353,17 @@ static int __init mxcnd_probe_pdata(struct mxc_nand_host *host) | |||
1327 | host->devtype_data = &imx27_nand_devtype_data; | 1353 | host->devtype_data = &imx27_nand_devtype_data; |
1328 | } else if (nfc_is_v21()) { | 1354 | } else if (nfc_is_v21()) { |
1329 | host->devtype_data = &imx25_nand_devtype_data; | 1355 | host->devtype_data = &imx25_nand_devtype_data; |
1330 | } else if (nfc_is_v3_2()) { | 1356 | } else if (nfc_is_v3_2a()) { |
1331 | host->devtype_data = &imx51_nand_devtype_data; | 1357 | host->devtype_data = &imx51_nand_devtype_data; |
1358 | } else if (nfc_is_v3_2b()) { | ||
1359 | host->devtype_data = &imx53_nand_devtype_data; | ||
1332 | } else | 1360 | } else |
1333 | BUG(); | 1361 | BUG(); |
1334 | 1362 | ||
1335 | return 0; | 1363 | return 0; |
1336 | } | 1364 | } |
1337 | 1365 | ||
1338 | static int __init mxcnd_probe(struct platform_device *pdev) | 1366 | static int __devinit mxcnd_probe(struct platform_device *pdev) |
1339 | { | 1367 | { |
1340 | struct nand_chip *this; | 1368 | struct nand_chip *this; |
1341 | struct mtd_info *mtd; | 1369 | struct mtd_info *mtd; |
@@ -1344,8 +1372,8 @@ static int __init mxcnd_probe(struct platform_device *pdev) | |||
1344 | int err = 0; | 1372 | int err = 0; |
1345 | 1373 | ||
1346 | /* Allocate memory for MTD device structure and private data */ | 1374 | /* Allocate memory for MTD device structure and private data */ |
1347 | host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE + | 1375 | host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host) + |
1348 | NAND_MAX_OOBSIZE, GFP_KERNEL); | 1376 | NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE, GFP_KERNEL); |
1349 | if (!host) | 1377 | if (!host) |
1350 | return -ENOMEM; | 1378 | return -ENOMEM; |
1351 | 1379 | ||
@@ -1370,36 +1398,38 @@ static int __init mxcnd_probe(struct platform_device *pdev) | |||
1370 | this->read_word = mxc_nand_read_word; | 1398 | this->read_word = mxc_nand_read_word; |
1371 | this->write_buf = mxc_nand_write_buf; | 1399 | this->write_buf = mxc_nand_write_buf; |
1372 | this->read_buf = mxc_nand_read_buf; | 1400 | this->read_buf = mxc_nand_read_buf; |
1373 | this->verify_buf = mxc_nand_verify_buf; | ||
1374 | 1401 | ||
1375 | host->clk = clk_get(&pdev->dev, "nfc"); | 1402 | host->clk = devm_clk_get(&pdev->dev, NULL); |
1376 | if (IS_ERR(host->clk)) { | 1403 | if (IS_ERR(host->clk)) |
1377 | err = PTR_ERR(host->clk); | 1404 | return PTR_ERR(host->clk); |
1378 | goto eclk; | ||
1379 | } | ||
1380 | 1405 | ||
1381 | clk_prepare_enable(host->clk); | 1406 | err = mxcnd_probe_dt(host); |
1382 | host->clk_act = 1; | 1407 | if (err > 0) |
1408 | err = mxcnd_probe_pdata(host); | ||
1409 | if (err < 0) | ||
1410 | return err; | ||
1383 | 1411 | ||
1384 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 1412 | if (host->devtype_data->needs_ip) { |
1385 | if (!res) { | 1413 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
1386 | err = -ENODEV; | 1414 | if (!res) |
1387 | goto eres; | 1415 | return -ENODEV; |
1388 | } | 1416 | host->regs_ip = devm_request_and_ioremap(&pdev->dev, res); |
1417 | if (!host->regs_ip) | ||
1418 | return -ENOMEM; | ||
1389 | 1419 | ||
1390 | host->base = ioremap(res->start, resource_size(res)); | 1420 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
1391 | if (!host->base) { | 1421 | } else { |
1392 | err = -ENOMEM; | 1422 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
1393 | goto eres; | ||
1394 | } | 1423 | } |
1395 | 1424 | ||
1396 | host->main_area0 = host->base; | 1425 | if (!res) |
1426 | return -ENODEV; | ||
1397 | 1427 | ||
1398 | err = mxcnd_probe_dt(host); | 1428 | host->base = devm_request_and_ioremap(&pdev->dev, res); |
1399 | if (err > 0) | 1429 | if (!host->base) |
1400 | err = mxcnd_probe_pdata(host); | 1430 | return -ENOMEM; |
1401 | if (err < 0) | 1431 | |
1402 | goto eirq; | 1432 | host->main_area0 = host->base; |
1403 | 1433 | ||
1404 | if (host->devtype_data->regs_offset) | 1434 | if (host->devtype_data->regs_offset) |
1405 | host->regs = host->base + host->devtype_data->regs_offset; | 1435 | host->regs = host->base + host->devtype_data->regs_offset; |
@@ -1414,19 +1444,6 @@ static int __init mxcnd_probe(struct platform_device *pdev) | |||
1414 | this->ecc.size = 512; | 1444 | this->ecc.size = 512; |
1415 | this->ecc.layout = host->devtype_data->ecclayout_512; | 1445 | this->ecc.layout = host->devtype_data->ecclayout_512; |
1416 | 1446 | ||
1417 | if (host->devtype_data->needs_ip) { | ||
1418 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1); | ||
1419 | if (!res) { | ||
1420 | err = -ENODEV; | ||
1421 | goto eirq; | ||
1422 | } | ||
1423 | host->regs_ip = ioremap(res->start, resource_size(res)); | ||
1424 | if (!host->regs_ip) { | ||
1425 | err = -ENOMEM; | ||
1426 | goto eirq; | ||
1427 | } | ||
1428 | } | ||
1429 | |||
1430 | if (host->pdata.hw_ecc) { | 1447 | if (host->pdata.hw_ecc) { |
1431 | this->ecc.calculate = mxc_nand_calculate_ecc; | 1448 | this->ecc.calculate = mxc_nand_calculate_ecc; |
1432 | this->ecc.hwctl = mxc_nand_enable_hwecc; | 1449 | this->ecc.hwctl = mxc_nand_enable_hwecc; |
@@ -1458,9 +1475,13 @@ static int __init mxcnd_probe(struct platform_device *pdev) | |||
1458 | */ | 1475 | */ |
1459 | host->devtype_data->irq_control(host, 0); | 1476 | host->devtype_data->irq_control(host, 0); |
1460 | 1477 | ||
1461 | err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host); | 1478 | err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, |
1479 | IRQF_DISABLED, DRIVER_NAME, host); | ||
1462 | if (err) | 1480 | if (err) |
1463 | goto eirq; | 1481 | return err; |
1482 | |||
1483 | clk_prepare_enable(host->clk); | ||
1484 | host->clk_act = 1; | ||
1464 | 1485 | ||
1465 | /* | 1486 | /* |
1466 | * Now that we "own" the interrupt make sure the interrupt mask bit is | 1487 | * Now that we "own" the interrupt make sure the interrupt mask bit is |
@@ -1512,15 +1533,7 @@ static int __init mxcnd_probe(struct platform_device *pdev) | |||
1512 | return 0; | 1533 | return 0; |
1513 | 1534 | ||
1514 | escan: | 1535 | escan: |
1515 | free_irq(host->irq, host); | 1536 | clk_disable_unprepare(host->clk); |
1516 | eirq: | ||
1517 | if (host->regs_ip) | ||
1518 | iounmap(host->regs_ip); | ||
1519 | iounmap(host->base); | ||
1520 | eres: | ||
1521 | clk_put(host->clk); | ||
1522 | eclk: | ||
1523 | kfree(host); | ||
1524 | 1537 | ||
1525 | return err; | 1538 | return err; |
1526 | } | 1539 | } |
@@ -1529,16 +1542,9 @@ static int __devexit mxcnd_remove(struct platform_device *pdev) | |||
1529 | { | 1542 | { |
1530 | struct mxc_nand_host *host = platform_get_drvdata(pdev); | 1543 | struct mxc_nand_host *host = platform_get_drvdata(pdev); |
1531 | 1544 | ||
1532 | clk_put(host->clk); | ||
1533 | |||
1534 | platform_set_drvdata(pdev, NULL); | 1545 | platform_set_drvdata(pdev, NULL); |
1535 | 1546 | ||
1536 | nand_release(&host->mtd); | 1547 | nand_release(&host->mtd); |
1537 | free_irq(host->irq, host); | ||
1538 | if (host->regs_ip) | ||
1539 | iounmap(host->regs_ip); | ||
1540 | iounmap(host->base); | ||
1541 | kfree(host); | ||
1542 | 1548 | ||
1543 | return 0; | 1549 | return 0; |
1544 | } | 1550 | } |
@@ -1549,22 +1555,10 @@ static struct platform_driver mxcnd_driver = { | |||
1549 | .owner = THIS_MODULE, | 1555 | .owner = THIS_MODULE, |
1550 | .of_match_table = of_match_ptr(mxcnd_dt_ids), | 1556 | .of_match_table = of_match_ptr(mxcnd_dt_ids), |
1551 | }, | 1557 | }, |
1558 | .probe = mxcnd_probe, | ||
1552 | .remove = __devexit_p(mxcnd_remove), | 1559 | .remove = __devexit_p(mxcnd_remove), |
1553 | }; | 1560 | }; |
1554 | 1561 | module_platform_driver(mxcnd_driver); | |
1555 | static int __init mxc_nd_init(void) | ||
1556 | { | ||
1557 | return platform_driver_probe(&mxcnd_driver, mxcnd_probe); | ||
1558 | } | ||
1559 | |||
1560 | static void __exit mxc_nd_cleanup(void) | ||
1561 | { | ||
1562 | /* Unregister the device structure */ | ||
1563 | platform_driver_unregister(&mxcnd_driver); | ||
1564 | } | ||
1565 | |||
1566 | module_init(mxc_nd_init); | ||
1567 | module_exit(mxc_nd_cleanup); | ||
1568 | 1562 | ||
1569 | MODULE_AUTHOR("Freescale Semiconductor, Inc."); | 1563 | MODULE_AUTHOR("Freescale Semiconductor, Inc."); |
1570 | MODULE_DESCRIPTION("MXC NAND MTD driver"); | 1564 | MODULE_DESCRIPTION("MXC NAND MTD driver"); |
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index a11253a0fcab..ec6841d8e956 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c | |||
@@ -243,25 +243,6 @@ static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | |||
243 | } | 243 | } |
244 | 244 | ||
245 | /** | 245 | /** |
246 | * nand_verify_buf - [DEFAULT] Verify chip data against buffer | ||
247 | * @mtd: MTD device structure | ||
248 | * @buf: buffer containing the data to compare | ||
249 | * @len: number of bytes to compare | ||
250 | * | ||
251 | * Default verify function for 8bit buswidth. | ||
252 | */ | ||
253 | static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | ||
254 | { | ||
255 | int i; | ||
256 | struct nand_chip *chip = mtd->priv; | ||
257 | |||
258 | for (i = 0; i < len; i++) | ||
259 | if (buf[i] != readb(chip->IO_ADDR_R)) | ||
260 | return -EFAULT; | ||
261 | return 0; | ||
262 | } | ||
263 | |||
264 | /** | ||
265 | * nand_write_buf16 - [DEFAULT] write buffer to chip | 246 | * nand_write_buf16 - [DEFAULT] write buffer to chip |
266 | * @mtd: MTD device structure | 247 | * @mtd: MTD device structure |
267 | * @buf: data buffer | 248 | * @buf: data buffer |
@@ -301,28 +282,6 @@ static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) | |||
301 | } | 282 | } |
302 | 283 | ||
303 | /** | 284 | /** |
304 | * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer | ||
305 | * @mtd: MTD device structure | ||
306 | * @buf: buffer containing the data to compare | ||
307 | * @len: number of bytes to compare | ||
308 | * | ||
309 | * Default verify function for 16bit buswidth. | ||
310 | */ | ||
311 | static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) | ||
312 | { | ||
313 | int i; | ||
314 | struct nand_chip *chip = mtd->priv; | ||
315 | u16 *p = (u16 *) buf; | ||
316 | len >>= 1; | ||
317 | |||
318 | for (i = 0; i < len; i++) | ||
319 | if (p[i] != readw(chip->IO_ADDR_R)) | ||
320 | return -EFAULT; | ||
321 | |||
322 | return 0; | ||
323 | } | ||
324 | |||
325 | /** | ||
326 | * nand_block_bad - [DEFAULT] Read bad block marker from the chip | 285 | * nand_block_bad - [DEFAULT] Read bad block marker from the chip |
327 | * @mtd: MTD device structure | 286 | * @mtd: MTD device structure |
328 | * @ofs: offset from device start | 287 | * @ofs: offset from device start |
@@ -1525,7 +1484,8 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, | |||
1525 | ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, | 1484 | ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, |
1526 | oob_required, | 1485 | oob_required, |
1527 | page); | 1486 | page); |
1528 | else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob) | 1487 | else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && |
1488 | !oob) | ||
1529 | ret = chip->ecc.read_subpage(mtd, chip, | 1489 | ret = chip->ecc.read_subpage(mtd, chip, |
1530 | col, bytes, bufpoi); | 1490 | col, bytes, bufpoi); |
1531 | else | 1491 | else |
@@ -1542,7 +1502,7 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, | |||
1542 | 1502 | ||
1543 | /* Transfer not aligned data */ | 1503 | /* Transfer not aligned data */ |
1544 | if (!aligned) { | 1504 | if (!aligned) { |
1545 | if (!NAND_SUBPAGE_READ(chip) && !oob && | 1505 | if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && |
1546 | !(mtd->ecc_stats.failed - stats.failed) && | 1506 | !(mtd->ecc_stats.failed - stats.failed) && |
1547 | (ops->mode != MTD_OPS_RAW)) { | 1507 | (ops->mode != MTD_OPS_RAW)) { |
1548 | chip->pagebuf = realpage; | 1508 | chip->pagebuf = realpage; |
@@ -1565,14 +1525,6 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, | |||
1565 | oobreadlen -= toread; | 1525 | oobreadlen -= toread; |
1566 | } | 1526 | } |
1567 | } | 1527 | } |
1568 | |||
1569 | if (!(chip->options & NAND_NO_READRDY)) { | ||
1570 | /* Apply delay or wait for ready/busy pin */ | ||
1571 | if (!chip->dev_ready) | ||
1572 | udelay(chip->chip_delay); | ||
1573 | else | ||
1574 | nand_wait_ready(mtd); | ||
1575 | } | ||
1576 | } else { | 1528 | } else { |
1577 | memcpy(buf, chip->buffers->databuf + col, bytes); | 1529 | memcpy(buf, chip->buffers->databuf + col, bytes); |
1578 | buf += bytes; | 1530 | buf += bytes; |
@@ -1633,7 +1585,7 @@ static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, | |||
1633 | ops.len = len; | 1585 | ops.len = len; |
1634 | ops.datbuf = buf; | 1586 | ops.datbuf = buf; |
1635 | ops.oobbuf = NULL; | 1587 | ops.oobbuf = NULL; |
1636 | ops.mode = 0; | 1588 | ops.mode = MTD_OPS_PLACE_OOB; |
1637 | ret = nand_do_read_ops(mtd, from, &ops); | 1589 | ret = nand_do_read_ops(mtd, from, &ops); |
1638 | *retlen = ops.retlen; | 1590 | *retlen = ops.retlen; |
1639 | nand_release_device(mtd); | 1591 | nand_release_device(mtd); |
@@ -1837,14 +1789,6 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, | |||
1837 | len = min(len, readlen); | 1789 | len = min(len, readlen); |
1838 | buf = nand_transfer_oob(chip, buf, ops, len); | 1790 | buf = nand_transfer_oob(chip, buf, ops, len); |
1839 | 1791 | ||
1840 | if (!(chip->options & NAND_NO_READRDY)) { | ||
1841 | /* Apply delay or wait for ready/busy pin */ | ||
1842 | if (!chip->dev_ready) | ||
1843 | udelay(chip->chip_delay); | ||
1844 | else | ||
1845 | nand_wait_ready(mtd); | ||
1846 | } | ||
1847 | |||
1848 | readlen -= len; | 1792 | readlen -= len; |
1849 | if (!readlen) | 1793 | if (!readlen) |
1850 | break; | 1794 | break; |
@@ -1927,12 +1871,14 @@ out: | |||
1927 | * | 1871 | * |
1928 | * Not for syndrome calculating ECC controllers, which use a special oob layout. | 1872 | * Not for syndrome calculating ECC controllers, which use a special oob layout. |
1929 | */ | 1873 | */ |
1930 | static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 1874 | static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
1931 | const uint8_t *buf, int oob_required) | 1875 | const uint8_t *buf, int oob_required) |
1932 | { | 1876 | { |
1933 | chip->write_buf(mtd, buf, mtd->writesize); | 1877 | chip->write_buf(mtd, buf, mtd->writesize); |
1934 | if (oob_required) | 1878 | if (oob_required) |
1935 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 1879 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
1880 | |||
1881 | return 0; | ||
1936 | } | 1882 | } |
1937 | 1883 | ||
1938 | /** | 1884 | /** |
@@ -1944,7 +1890,7 @@ static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | |||
1944 | * | 1890 | * |
1945 | * We need a special oob layout and handling even when ECC isn't checked. | 1891 | * We need a special oob layout and handling even when ECC isn't checked. |
1946 | */ | 1892 | */ |
1947 | static void nand_write_page_raw_syndrome(struct mtd_info *mtd, | 1893 | static int nand_write_page_raw_syndrome(struct mtd_info *mtd, |
1948 | struct nand_chip *chip, | 1894 | struct nand_chip *chip, |
1949 | const uint8_t *buf, int oob_required) | 1895 | const uint8_t *buf, int oob_required) |
1950 | { | 1896 | { |
@@ -1974,6 +1920,8 @@ static void nand_write_page_raw_syndrome(struct mtd_info *mtd, | |||
1974 | size = mtd->oobsize - (oob - chip->oob_poi); | 1920 | size = mtd->oobsize - (oob - chip->oob_poi); |
1975 | if (size) | 1921 | if (size) |
1976 | chip->write_buf(mtd, oob, size); | 1922 | chip->write_buf(mtd, oob, size); |
1923 | |||
1924 | return 0; | ||
1977 | } | 1925 | } |
1978 | /** | 1926 | /** |
1979 | * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function | 1927 | * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function |
@@ -1982,7 +1930,7 @@ static void nand_write_page_raw_syndrome(struct mtd_info *mtd, | |||
1982 | * @buf: data buffer | 1930 | * @buf: data buffer |
1983 | * @oob_required: must write chip->oob_poi to OOB | 1931 | * @oob_required: must write chip->oob_poi to OOB |
1984 | */ | 1932 | */ |
1985 | static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, | 1933 | static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, |
1986 | const uint8_t *buf, int oob_required) | 1934 | const uint8_t *buf, int oob_required) |
1987 | { | 1935 | { |
1988 | int i, eccsize = chip->ecc.size; | 1936 | int i, eccsize = chip->ecc.size; |
@@ -1999,7 +1947,7 @@ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, | |||
1999 | for (i = 0; i < chip->ecc.total; i++) | 1947 | for (i = 0; i < chip->ecc.total; i++) |
2000 | chip->oob_poi[eccpos[i]] = ecc_calc[i]; | 1948 | chip->oob_poi[eccpos[i]] = ecc_calc[i]; |
2001 | 1949 | ||
2002 | chip->ecc.write_page_raw(mtd, chip, buf, 1); | 1950 | return chip->ecc.write_page_raw(mtd, chip, buf, 1); |
2003 | } | 1951 | } |
2004 | 1952 | ||
2005 | /** | 1953 | /** |
@@ -2009,7 +1957,7 @@ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, | |||
2009 | * @buf: data buffer | 1957 | * @buf: data buffer |
2010 | * @oob_required: must write chip->oob_poi to OOB | 1958 | * @oob_required: must write chip->oob_poi to OOB |
2011 | */ | 1959 | */ |
2012 | static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 1960 | static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
2013 | const uint8_t *buf, int oob_required) | 1961 | const uint8_t *buf, int oob_required) |
2014 | { | 1962 | { |
2015 | int i, eccsize = chip->ecc.size; | 1963 | int i, eccsize = chip->ecc.size; |
@@ -2029,6 +1977,8 @@ static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | |||
2029 | chip->oob_poi[eccpos[i]] = ecc_calc[i]; | 1977 | chip->oob_poi[eccpos[i]] = ecc_calc[i]; |
2030 | 1978 | ||
2031 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 1979 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
1980 | |||
1981 | return 0; | ||
2032 | } | 1982 | } |
2033 | 1983 | ||
2034 | /** | 1984 | /** |
@@ -2041,7 +1991,7 @@ static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | |||
2041 | * The hw generator calculates the error syndrome automatically. Therefore we | 1991 | * The hw generator calculates the error syndrome automatically. Therefore we |
2042 | * need a special oob layout and handling. | 1992 | * need a special oob layout and handling. |
2043 | */ | 1993 | */ |
2044 | static void nand_write_page_syndrome(struct mtd_info *mtd, | 1994 | static int nand_write_page_syndrome(struct mtd_info *mtd, |
2045 | struct nand_chip *chip, | 1995 | struct nand_chip *chip, |
2046 | const uint8_t *buf, int oob_required) | 1996 | const uint8_t *buf, int oob_required) |
2047 | { | 1997 | { |
@@ -2075,6 +2025,8 @@ static void nand_write_page_syndrome(struct mtd_info *mtd, | |||
2075 | i = mtd->oobsize - (oob - chip->oob_poi); | 2025 | i = mtd->oobsize - (oob - chip->oob_poi); |
2076 | if (i) | 2026 | if (i) |
2077 | chip->write_buf(mtd, oob, i); | 2027 | chip->write_buf(mtd, oob, i); |
2028 | |||
2029 | return 0; | ||
2078 | } | 2030 | } |
2079 | 2031 | ||
2080 | /** | 2032 | /** |
@@ -2096,9 +2048,12 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, | |||
2096 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); | 2048 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); |
2097 | 2049 | ||
2098 | if (unlikely(raw)) | 2050 | if (unlikely(raw)) |
2099 | chip->ecc.write_page_raw(mtd, chip, buf, oob_required); | 2051 | status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required); |
2100 | else | 2052 | else |
2101 | chip->ecc.write_page(mtd, chip, buf, oob_required); | 2053 | status = chip->ecc.write_page(mtd, chip, buf, oob_required); |
2054 | |||
2055 | if (status < 0) | ||
2056 | return status; | ||
2102 | 2057 | ||
2103 | /* | 2058 | /* |
2104 | * Cached progamming disabled for now. Not sure if it's worth the | 2059 | * Cached progamming disabled for now. Not sure if it's worth the |
@@ -2125,16 +2080,6 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, | |||
2125 | status = chip->waitfunc(mtd, chip); | 2080 | status = chip->waitfunc(mtd, chip); |
2126 | } | 2081 | } |
2127 | 2082 | ||
2128 | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | ||
2129 | /* Send command to read back the data */ | ||
2130 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | ||
2131 | |||
2132 | if (chip->verify_buf(mtd, buf, mtd->writesize)) | ||
2133 | return -EIO; | ||
2134 | |||
2135 | /* Make sure the next page prog is preceded by a status read */ | ||
2136 | chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); | ||
2137 | #endif | ||
2138 | return 0; | 2083 | return 0; |
2139 | } | 2084 | } |
2140 | 2085 | ||
@@ -2336,7 +2281,7 @@ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, | |||
2336 | ops.len = len; | 2281 | ops.len = len; |
2337 | ops.datbuf = (uint8_t *)buf; | 2282 | ops.datbuf = (uint8_t *)buf; |
2338 | ops.oobbuf = NULL; | 2283 | ops.oobbuf = NULL; |
2339 | ops.mode = 0; | 2284 | ops.mode = MTD_OPS_PLACE_OOB; |
2340 | 2285 | ||
2341 | ret = nand_do_write_ops(mtd, to, &ops); | 2286 | ret = nand_do_write_ops(mtd, to, &ops); |
2342 | 2287 | ||
@@ -2365,7 +2310,7 @@ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, | |||
2365 | ops.len = len; | 2310 | ops.len = len; |
2366 | ops.datbuf = (uint8_t *)buf; | 2311 | ops.datbuf = (uint8_t *)buf; |
2367 | ops.oobbuf = NULL; | 2312 | ops.oobbuf = NULL; |
2368 | ops.mode = 0; | 2313 | ops.mode = MTD_OPS_PLACE_OOB; |
2369 | ret = nand_do_write_ops(mtd, to, &ops); | 2314 | ret = nand_do_write_ops(mtd, to, &ops); |
2370 | *retlen = ops.retlen; | 2315 | *retlen = ops.retlen; |
2371 | nand_release_device(mtd); | 2316 | nand_release_device(mtd); |
@@ -2755,6 +2700,50 @@ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) | |||
2755 | } | 2700 | } |
2756 | 2701 | ||
2757 | /** | 2702 | /** |
2703 | * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand | ||
2704 | * @mtd: MTD device structure | ||
2705 | * @chip: nand chip info structure | ||
2706 | * @addr: feature address. | ||
2707 | * @subfeature_param: the subfeature parameters, a four bytes array. | ||
2708 | */ | ||
2709 | static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, | ||
2710 | int addr, uint8_t *subfeature_param) | ||
2711 | { | ||
2712 | int status; | ||
2713 | |||
2714 | if (!chip->onfi_version) | ||
2715 | return -EINVAL; | ||
2716 | |||
2717 | chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1); | ||
2718 | chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN); | ||
2719 | status = chip->waitfunc(mtd, chip); | ||
2720 | if (status & NAND_STATUS_FAIL) | ||
2721 | return -EIO; | ||
2722 | return 0; | ||
2723 | } | ||
2724 | |||
2725 | /** | ||
2726 | * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand | ||
2727 | * @mtd: MTD device structure | ||
2728 | * @chip: nand chip info structure | ||
2729 | * @addr: feature address. | ||
2730 | * @subfeature_param: the subfeature parameters, a four bytes array. | ||
2731 | */ | ||
2732 | static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, | ||
2733 | int addr, uint8_t *subfeature_param) | ||
2734 | { | ||
2735 | if (!chip->onfi_version) | ||
2736 | return -EINVAL; | ||
2737 | |||
2738 | /* clear the sub feature parameters */ | ||
2739 | memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN); | ||
2740 | |||
2741 | chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1); | ||
2742 | chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN); | ||
2743 | return 0; | ||
2744 | } | ||
2745 | |||
2746 | /** | ||
2758 | * nand_suspend - [MTD Interface] Suspend the NAND flash | 2747 | * nand_suspend - [MTD Interface] Suspend the NAND flash |
2759 | * @mtd: MTD device structure | 2748 | * @mtd: MTD device structure |
2760 | */ | 2749 | */ |
@@ -2809,8 +2798,6 @@ static void nand_set_defaults(struct nand_chip *chip, int busw) | |||
2809 | chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; | 2798 | chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; |
2810 | if (!chip->read_buf) | 2799 | if (!chip->read_buf) |
2811 | chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; | 2800 | chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; |
2812 | if (!chip->verify_buf) | ||
2813 | chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; | ||
2814 | if (!chip->scan_bbt) | 2801 | if (!chip->scan_bbt) |
2815 | chip->scan_bbt = nand_default_bbt; | 2802 | chip->scan_bbt = nand_default_bbt; |
2816 | 2803 | ||
@@ -2914,14 +2901,250 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, | |||
2914 | if (le16_to_cpu(p->features) & 1) | 2901 | if (le16_to_cpu(p->features) & 1) |
2915 | *busw = NAND_BUSWIDTH_16; | 2902 | *busw = NAND_BUSWIDTH_16; |
2916 | 2903 | ||
2917 | chip->options &= ~NAND_CHIPOPTIONS_MSK; | ||
2918 | chip->options |= NAND_NO_READRDY & NAND_CHIPOPTIONS_MSK; | ||
2919 | |||
2920 | pr_info("ONFI flash detected\n"); | 2904 | pr_info("ONFI flash detected\n"); |
2921 | return 1; | 2905 | return 1; |
2922 | } | 2906 | } |
2923 | 2907 | ||
2924 | /* | 2908 | /* |
2909 | * nand_id_has_period - Check if an ID string has a given wraparound period | ||
2910 | * @id_data: the ID string | ||
2911 | * @arrlen: the length of the @id_data array | ||
2912 | * @period: the period of repitition | ||
2913 | * | ||
2914 | * Check if an ID string is repeated within a given sequence of bytes at | ||
2915 | * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a | ||
2916 | * period of 2). This is a helper function for nand_id_len(). Returns non-zero | ||
2917 | * if the repetition has a period of @period; otherwise, returns zero. | ||
2918 | */ | ||
2919 | static int nand_id_has_period(u8 *id_data, int arrlen, int period) | ||
2920 | { | ||
2921 | int i, j; | ||
2922 | for (i = 0; i < period; i++) | ||
2923 | for (j = i + period; j < arrlen; j += period) | ||
2924 | if (id_data[i] != id_data[j]) | ||
2925 | return 0; | ||
2926 | return 1; | ||
2927 | } | ||
2928 | |||
2929 | /* | ||
2930 | * nand_id_len - Get the length of an ID string returned by CMD_READID | ||
2931 | * @id_data: the ID string | ||
2932 | * @arrlen: the length of the @id_data array | ||
2933 | |||
2934 | * Returns the length of the ID string, according to known wraparound/trailing | ||
2935 | * zero patterns. If no pattern exists, returns the length of the array. | ||
2936 | */ | ||
2937 | static int nand_id_len(u8 *id_data, int arrlen) | ||
2938 | { | ||
2939 | int last_nonzero, period; | ||
2940 | |||
2941 | /* Find last non-zero byte */ | ||
2942 | for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) | ||
2943 | if (id_data[last_nonzero]) | ||
2944 | break; | ||
2945 | |||
2946 | /* All zeros */ | ||
2947 | if (last_nonzero < 0) | ||
2948 | return 0; | ||
2949 | |||
2950 | /* Calculate wraparound period */ | ||
2951 | for (period = 1; period < arrlen; period++) | ||
2952 | if (nand_id_has_period(id_data, arrlen, period)) | ||
2953 | break; | ||
2954 | |||
2955 | /* There's a repeated pattern */ | ||
2956 | if (period < arrlen) | ||
2957 | return period; | ||
2958 | |||
2959 | /* There are trailing zeros */ | ||
2960 | if (last_nonzero < arrlen - 1) | ||
2961 | return last_nonzero + 1; | ||
2962 | |||
2963 | /* No pattern detected */ | ||
2964 | return arrlen; | ||
2965 | } | ||
2966 | |||
2967 | /* | ||
2968 | * Many new NAND share similar device ID codes, which represent the size of the | ||
2969 | * chip. The rest of the parameters must be decoded according to generic or | ||
2970 | * manufacturer-specific "extended ID" decoding patterns. | ||
2971 | */ | ||
2972 | static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip, | ||
2973 | u8 id_data[8], int *busw) | ||
2974 | { | ||
2975 | int extid, id_len; | ||
2976 | /* The 3rd id byte holds MLC / multichip data */ | ||
2977 | chip->cellinfo = id_data[2]; | ||
2978 | /* The 4th id byte is the important one */ | ||
2979 | extid = id_data[3]; | ||
2980 | |||
2981 | id_len = nand_id_len(id_data, 8); | ||
2982 | |||
2983 | /* | ||
2984 | * Field definitions are in the following datasheets: | ||
2985 | * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) | ||
2986 | * New style (6 byte ID): Samsung K9GAG08U0F (p.44) | ||
2987 | * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22) | ||
2988 | * | ||
2989 | * Check for ID length, cell type, and Hynix/Samsung ID to decide what | ||
2990 | * to do. | ||
2991 | */ | ||
2992 | if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG) { | ||
2993 | /* Calc pagesize */ | ||
2994 | mtd->writesize = 2048 << (extid & 0x03); | ||
2995 | extid >>= 2; | ||
2996 | /* Calc oobsize */ | ||
2997 | switch (((extid >> 2) & 0x04) | (extid & 0x03)) { | ||
2998 | case 1: | ||
2999 | mtd->oobsize = 128; | ||
3000 | break; | ||
3001 | case 2: | ||
3002 | mtd->oobsize = 218; | ||
3003 | break; | ||
3004 | case 3: | ||
3005 | mtd->oobsize = 400; | ||
3006 | break; | ||
3007 | case 4: | ||
3008 | mtd->oobsize = 436; | ||
3009 | break; | ||
3010 | case 5: | ||
3011 | mtd->oobsize = 512; | ||
3012 | break; | ||
3013 | case 6: | ||
3014 | default: /* Other cases are "reserved" (unknown) */ | ||
3015 | mtd->oobsize = 640; | ||
3016 | break; | ||
3017 | } | ||
3018 | extid >>= 2; | ||
3019 | /* Calc blocksize */ | ||
3020 | mtd->erasesize = (128 * 1024) << | ||
3021 | (((extid >> 1) & 0x04) | (extid & 0x03)); | ||
3022 | *busw = 0; | ||
3023 | } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX && | ||
3024 | (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) { | ||
3025 | unsigned int tmp; | ||
3026 | |||
3027 | /* Calc pagesize */ | ||
3028 | mtd->writesize = 2048 << (extid & 0x03); | ||
3029 | extid >>= 2; | ||
3030 | /* Calc oobsize */ | ||
3031 | switch (((extid >> 2) & 0x04) | (extid & 0x03)) { | ||
3032 | case 0: | ||
3033 | mtd->oobsize = 128; | ||
3034 | break; | ||
3035 | case 1: | ||
3036 | mtd->oobsize = 224; | ||
3037 | break; | ||
3038 | case 2: | ||
3039 | mtd->oobsize = 448; | ||
3040 | break; | ||
3041 | case 3: | ||
3042 | mtd->oobsize = 64; | ||
3043 | break; | ||
3044 | case 4: | ||
3045 | mtd->oobsize = 32; | ||
3046 | break; | ||
3047 | case 5: | ||
3048 | mtd->oobsize = 16; | ||
3049 | break; | ||
3050 | default: | ||
3051 | mtd->oobsize = 640; | ||
3052 | break; | ||
3053 | } | ||
3054 | extid >>= 2; | ||
3055 | /* Calc blocksize */ | ||
3056 | tmp = ((extid >> 1) & 0x04) | (extid & 0x03); | ||
3057 | if (tmp < 0x03) | ||
3058 | mtd->erasesize = (128 * 1024) << tmp; | ||
3059 | else if (tmp == 0x03) | ||
3060 | mtd->erasesize = 768 * 1024; | ||
3061 | else | ||
3062 | mtd->erasesize = (64 * 1024) << tmp; | ||
3063 | *busw = 0; | ||
3064 | } else { | ||
3065 | /* Calc pagesize */ | ||
3066 | mtd->writesize = 1024 << (extid & 0x03); | ||
3067 | extid >>= 2; | ||
3068 | /* Calc oobsize */ | ||
3069 | mtd->oobsize = (8 << (extid & 0x01)) * | ||
3070 | (mtd->writesize >> 9); | ||
3071 | extid >>= 2; | ||
3072 | /* Calc blocksize. Blocksize is multiples of 64KiB */ | ||
3073 | mtd->erasesize = (64 * 1024) << (extid & 0x03); | ||
3074 | extid >>= 2; | ||
3075 | /* Get buswidth information */ | ||
3076 | *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; | ||
3077 | } | ||
3078 | } | ||
3079 | |||
3080 | /* | ||
3081 | * Old devices have chip data hardcoded in the device ID table. nand_decode_id | ||
3082 | * decodes a matching ID table entry and assigns the MTD size parameters for | ||
3083 | * the chip. | ||
3084 | */ | ||
3085 | static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip, | ||
3086 | struct nand_flash_dev *type, u8 id_data[8], | ||
3087 | int *busw) | ||
3088 | { | ||
3089 | int maf_id = id_data[0]; | ||
3090 | |||
3091 | mtd->erasesize = type->erasesize; | ||
3092 | mtd->writesize = type->pagesize; | ||
3093 | mtd->oobsize = mtd->writesize / 32; | ||
3094 | *busw = type->options & NAND_BUSWIDTH_16; | ||
3095 | |||
3096 | /* | ||
3097 | * Check for Spansion/AMD ID + repeating 5th, 6th byte since | ||
3098 | * some Spansion chips have erasesize that conflicts with size | ||
3099 | * listed in nand_ids table. | ||
3100 | * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) | ||
3101 | */ | ||
3102 | if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00 | ||
3103 | && id_data[6] == 0x00 && id_data[7] == 0x00 | ||
3104 | && mtd->writesize == 512) { | ||
3105 | mtd->erasesize = 128 * 1024; | ||
3106 | mtd->erasesize <<= ((id_data[3] & 0x03) << 1); | ||
3107 | } | ||
3108 | } | ||
3109 | |||
3110 | /* | ||
3111 | * Set the bad block marker/indicator (BBM/BBI) patterns according to some | ||
3112 | * heuristic patterns using various detected parameters (e.g., manufacturer, | ||
3113 | * page size, cell-type information). | ||
3114 | */ | ||
3115 | static void nand_decode_bbm_options(struct mtd_info *mtd, | ||
3116 | struct nand_chip *chip, u8 id_data[8]) | ||
3117 | { | ||
3118 | int maf_id = id_data[0]; | ||
3119 | |||
3120 | /* Set the bad block position */ | ||
3121 | if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) | ||
3122 | chip->badblockpos = NAND_LARGE_BADBLOCK_POS; | ||
3123 | else | ||
3124 | chip->badblockpos = NAND_SMALL_BADBLOCK_POS; | ||
3125 | |||
3126 | /* | ||
3127 | * Bad block marker is stored in the last page of each block on Samsung | ||
3128 | * and Hynix MLC devices; stored in first two pages of each block on | ||
3129 | * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba, | ||
3130 | * AMD/Spansion, and Macronix. All others scan only the first page. | ||
3131 | */ | ||
3132 | if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) && | ||
3133 | (maf_id == NAND_MFR_SAMSUNG || | ||
3134 | maf_id == NAND_MFR_HYNIX)) | ||
3135 | chip->bbt_options |= NAND_BBT_SCANLASTPAGE; | ||
3136 | else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) && | ||
3137 | (maf_id == NAND_MFR_SAMSUNG || | ||
3138 | maf_id == NAND_MFR_HYNIX || | ||
3139 | maf_id == NAND_MFR_TOSHIBA || | ||
3140 | maf_id == NAND_MFR_AMD || | ||
3141 | maf_id == NAND_MFR_MACRONIX)) || | ||
3142 | (mtd->writesize == 2048 && | ||
3143 | maf_id == NAND_MFR_MICRON)) | ||
3144 | chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; | ||
3145 | } | ||
3146 | |||
3147 | /* | ||
2925 | * Get the flash and manufacturer id and lookup if the type is supported. | 3148 | * Get the flash and manufacturer id and lookup if the type is supported. |
2926 | */ | 3149 | */ |
2927 | static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, | 3150 | static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, |
@@ -2932,7 +3155,6 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, | |||
2932 | { | 3155 | { |
2933 | int i, maf_idx; | 3156 | int i, maf_idx; |
2934 | u8 id_data[8]; | 3157 | u8 id_data[8]; |
2935 | int ret; | ||
2936 | 3158 | ||
2937 | /* Select the device */ | 3159 | /* Select the device */ |
2938 | chip->select_chip(mtd, 0); | 3160 | chip->select_chip(mtd, 0); |
@@ -2959,7 +3181,8 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, | |||
2959 | 3181 | ||
2960 | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 3182 | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); |
2961 | 3183 | ||
2962 | for (i = 0; i < 2; i++) | 3184 | /* Read entire ID string */ |
3185 | for (i = 0; i < 8; i++) | ||
2963 | id_data[i] = chip->read_byte(mtd); | 3186 | id_data[i] = chip->read_byte(mtd); |
2964 | 3187 | ||
2965 | if (id_data[0] != *maf_id || id_data[1] != *dev_id) { | 3188 | if (id_data[0] != *maf_id || id_data[1] != *dev_id) { |
@@ -2979,18 +3202,10 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, | |||
2979 | chip->onfi_version = 0; | 3202 | chip->onfi_version = 0; |
2980 | if (!type->name || !type->pagesize) { | 3203 | if (!type->name || !type->pagesize) { |
2981 | /* Check is chip is ONFI compliant */ | 3204 | /* Check is chip is ONFI compliant */ |
2982 | ret = nand_flash_detect_onfi(mtd, chip, &busw); | 3205 | if (nand_flash_detect_onfi(mtd, chip, &busw)) |
2983 | if (ret) | ||
2984 | goto ident_done; | 3206 | goto ident_done; |
2985 | } | 3207 | } |
2986 | 3208 | ||
2987 | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | ||
2988 | |||
2989 | /* Read entire ID string */ | ||
2990 | |||
2991 | for (i = 0; i < 8; i++) | ||
2992 | id_data[i] = chip->read_byte(mtd); | ||
2993 | |||
2994 | if (!type->name) | 3209 | if (!type->name) |
2995 | return ERR_PTR(-ENODEV); | 3210 | return ERR_PTR(-ENODEV); |
2996 | 3211 | ||
@@ -3003,86 +3218,13 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, | |||
3003 | /* Set the pagesize, oobsize, erasesize by the driver */ | 3218 | /* Set the pagesize, oobsize, erasesize by the driver */ |
3004 | busw = chip->init_size(mtd, chip, id_data); | 3219 | busw = chip->init_size(mtd, chip, id_data); |
3005 | } else if (!type->pagesize) { | 3220 | } else if (!type->pagesize) { |
3006 | int extid; | 3221 | /* Decode parameters from extended ID */ |
3007 | /* The 3rd id byte holds MLC / multichip data */ | 3222 | nand_decode_ext_id(mtd, chip, id_data, &busw); |
3008 | chip->cellinfo = id_data[2]; | ||
3009 | /* The 4th id byte is the important one */ | ||
3010 | extid = id_data[3]; | ||
3011 | |||
3012 | /* | ||
3013 | * Field definitions are in the following datasheets: | ||
3014 | * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) | ||
3015 | * New style (6 byte ID): Samsung K9GBG08U0M (p.40) | ||
3016 | * | ||
3017 | * Check for wraparound + Samsung ID + nonzero 6th byte | ||
3018 | * to decide what to do. | ||
3019 | */ | ||
3020 | if (id_data[0] == id_data[6] && id_data[1] == id_data[7] && | ||
3021 | id_data[0] == NAND_MFR_SAMSUNG && | ||
3022 | (chip->cellinfo & NAND_CI_CELLTYPE_MSK) && | ||
3023 | id_data[5] != 0x00) { | ||
3024 | /* Calc pagesize */ | ||
3025 | mtd->writesize = 2048 << (extid & 0x03); | ||
3026 | extid >>= 2; | ||
3027 | /* Calc oobsize */ | ||
3028 | switch (extid & 0x03) { | ||
3029 | case 1: | ||
3030 | mtd->oobsize = 128; | ||
3031 | break; | ||
3032 | case 2: | ||
3033 | mtd->oobsize = 218; | ||
3034 | break; | ||
3035 | case 3: | ||
3036 | mtd->oobsize = 400; | ||
3037 | break; | ||
3038 | default: | ||
3039 | mtd->oobsize = 436; | ||
3040 | break; | ||
3041 | } | ||
3042 | extid >>= 2; | ||
3043 | /* Calc blocksize */ | ||
3044 | mtd->erasesize = (128 * 1024) << | ||
3045 | (((extid >> 1) & 0x04) | (extid & 0x03)); | ||
3046 | busw = 0; | ||
3047 | } else { | ||
3048 | /* Calc pagesize */ | ||
3049 | mtd->writesize = 1024 << (extid & 0x03); | ||
3050 | extid >>= 2; | ||
3051 | /* Calc oobsize */ | ||
3052 | mtd->oobsize = (8 << (extid & 0x01)) * | ||
3053 | (mtd->writesize >> 9); | ||
3054 | extid >>= 2; | ||
3055 | /* Calc blocksize. Blocksize is multiples of 64KiB */ | ||
3056 | mtd->erasesize = (64 * 1024) << (extid & 0x03); | ||
3057 | extid >>= 2; | ||
3058 | /* Get buswidth information */ | ||
3059 | busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; | ||
3060 | } | ||
3061 | } else { | 3223 | } else { |
3062 | /* | 3224 | nand_decode_id(mtd, chip, type, id_data, &busw); |
3063 | * Old devices have chip data hardcoded in the device id table. | ||
3064 | */ | ||
3065 | mtd->erasesize = type->erasesize; | ||
3066 | mtd->writesize = type->pagesize; | ||
3067 | mtd->oobsize = mtd->writesize / 32; | ||
3068 | busw = type->options & NAND_BUSWIDTH_16; | ||
3069 | |||
3070 | /* | ||
3071 | * Check for Spansion/AMD ID + repeating 5th, 6th byte since | ||
3072 | * some Spansion chips have erasesize that conflicts with size | ||
3073 | * listed in nand_ids table. | ||
3074 | * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) | ||
3075 | */ | ||
3076 | if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && | ||
3077 | id_data[5] == 0x00 && id_data[6] == 0x00 && | ||
3078 | id_data[7] == 0x00 && mtd->writesize == 512) { | ||
3079 | mtd->erasesize = 128 * 1024; | ||
3080 | mtd->erasesize <<= ((id_data[3] & 0x03) << 1); | ||
3081 | } | ||
3082 | } | 3225 | } |
3083 | /* Get chip options, preserve non chip based options */ | 3226 | /* Get chip options */ |
3084 | chip->options &= ~NAND_CHIPOPTIONS_MSK; | 3227 | chip->options |= type->options; |
3085 | chip->options |= type->options & NAND_CHIPOPTIONS_MSK; | ||
3086 | 3228 | ||
3087 | /* | 3229 | /* |
3088 | * Check if chip is not a Samsung device. Do not clear the | 3230 | * Check if chip is not a Samsung device. Do not clear the |
@@ -3112,6 +3254,8 @@ ident_done: | |||
3112 | return ERR_PTR(-EINVAL); | 3254 | return ERR_PTR(-EINVAL); |
3113 | } | 3255 | } |
3114 | 3256 | ||
3257 | nand_decode_bbm_options(mtd, chip, id_data); | ||
3258 | |||
3115 | /* Calculate the address shift from the page size */ | 3259 | /* Calculate the address shift from the page size */ |
3116 | chip->page_shift = ffs(mtd->writesize) - 1; | 3260 | chip->page_shift = ffs(mtd->writesize) - 1; |
3117 | /* Convert chipsize to number of pages per chip -1 */ | 3261 | /* Convert chipsize to number of pages per chip -1 */ |
@@ -3128,33 +3272,6 @@ ident_done: | |||
3128 | 3272 | ||
3129 | chip->badblockbits = 8; | 3273 | chip->badblockbits = 8; |
3130 | 3274 | ||
3131 | /* Set the bad block position */ | ||
3132 | if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16)) | ||
3133 | chip->badblockpos = NAND_LARGE_BADBLOCK_POS; | ||
3134 | else | ||
3135 | chip->badblockpos = NAND_SMALL_BADBLOCK_POS; | ||
3136 | |||
3137 | /* | ||
3138 | * Bad block marker is stored in the last page of each block | ||
3139 | * on Samsung and Hynix MLC devices; stored in first two pages | ||
3140 | * of each block on Micron devices with 2KiB pages and on | ||
3141 | * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix. | ||
3142 | * All others scan only the first page. | ||
3143 | */ | ||
3144 | if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) && | ||
3145 | (*maf_id == NAND_MFR_SAMSUNG || | ||
3146 | *maf_id == NAND_MFR_HYNIX)) | ||
3147 | chip->bbt_options |= NAND_BBT_SCANLASTPAGE; | ||
3148 | else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) && | ||
3149 | (*maf_id == NAND_MFR_SAMSUNG || | ||
3150 | *maf_id == NAND_MFR_HYNIX || | ||
3151 | *maf_id == NAND_MFR_TOSHIBA || | ||
3152 | *maf_id == NAND_MFR_AMD || | ||
3153 | *maf_id == NAND_MFR_MACRONIX)) || | ||
3154 | (mtd->writesize == 2048 && | ||
3155 | *maf_id == NAND_MFR_MICRON)) | ||
3156 | chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; | ||
3157 | |||
3158 | /* Check for AND chips with 4 page planes */ | 3275 | /* Check for AND chips with 4 page planes */ |
3159 | if (chip->options & NAND_4PAGE_ARRAY) | 3276 | if (chip->options & NAND_4PAGE_ARRAY) |
3160 | chip->erase_cmd = multi_erase_cmd; | 3277 | chip->erase_cmd = multi_erase_cmd; |
@@ -3284,6 +3401,12 @@ int nand_scan_tail(struct mtd_info *mtd) | |||
3284 | if (!chip->write_page) | 3401 | if (!chip->write_page) |
3285 | chip->write_page = nand_write_page; | 3402 | chip->write_page = nand_write_page; |
3286 | 3403 | ||
3404 | /* set for ONFI nand */ | ||
3405 | if (!chip->onfi_set_features) | ||
3406 | chip->onfi_set_features = nand_onfi_set_features; | ||
3407 | if (!chip->onfi_get_features) | ||
3408 | chip->onfi_get_features = nand_onfi_get_features; | ||
3409 | |||
3287 | /* | 3410 | /* |
3288 | * Check ECC mode, default to software if 3byte/512byte hardware ECC is | 3411 | * Check ECC mode, default to software if 3byte/512byte hardware ECC is |
3289 | * selected and we have 256 byte pagesize fallback to software ECC | 3412 | * selected and we have 256 byte pagesize fallback to software ECC |
@@ -3477,6 +3600,10 @@ int nand_scan_tail(struct mtd_info *mtd) | |||
3477 | /* Invalidate the pagebuffer reference */ | 3600 | /* Invalidate the pagebuffer reference */ |
3478 | chip->pagebuf = -1; | 3601 | chip->pagebuf = -1; |
3479 | 3602 | ||
3603 | /* Large page NAND with SOFT_ECC should support subpage reads */ | ||
3604 | if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9)) | ||
3605 | chip->options |= NAND_SUBPAGE_READ; | ||
3606 | |||
3480 | /* Fill in remaining MTD driver data */ | 3607 | /* Fill in remaining MTD driver data */ |
3481 | mtd->type = MTD_NANDFLASH; | 3608 | mtd->type = MTD_NANDFLASH; |
3482 | mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : | 3609 | mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : |
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c index 30d1319ff065..916d6e9c0ab1 100644 --- a/drivers/mtd/nand/nand_bbt.c +++ b/drivers/mtd/nand/nand_bbt.c | |||
@@ -4,7 +4,7 @@ | |||
4 | * Overview: | 4 | * Overview: |
5 | * Bad block table support for the NAND driver | 5 | * Bad block table support for the NAND driver |
6 | * | 6 | * |
7 | * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) | 7 | * Copyright © 2004 Thomas Gleixner (tglx@linutronix.de) |
8 | * | 8 | * |
9 | * This program is free software; you can redistribute it and/or modify | 9 | * This program is free software; you can redistribute it and/or modify |
10 | * it under the terms of the GNU General Public License version 2 as | 10 | * it under the terms of the GNU General Public License version 2 as |
@@ -22,7 +22,7 @@ | |||
22 | * BBT on flash. If a BBT is found then the contents are read and the memory | 22 | * BBT on flash. If a BBT is found then the contents are read and the memory |
23 | * based BBT is created. If a mirrored BBT is selected then the mirror is | 23 | * based BBT is created. If a mirrored BBT is selected then the mirror is |
24 | * searched too and the versions are compared. If the mirror has a greater | 24 | * searched too and the versions are compared. If the mirror has a greater |
25 | * version number than the mirror BBT is used to build the memory based BBT. | 25 | * version number, then the mirror BBT is used to build the memory based BBT. |
26 | * If the tables are not versioned, then we "or" the bad block information. | 26 | * If the tables are not versioned, then we "or" the bad block information. |
27 | * If one of the BBTs is out of date or does not exist it is (re)created. | 27 | * If one of the BBTs is out of date or does not exist it is (re)created. |
28 | * If no BBT exists at all then the device is scanned for factory marked | 28 | * If no BBT exists at all then the device is scanned for factory marked |
@@ -62,21 +62,20 @@ | |||
62 | #include <linux/slab.h> | 62 | #include <linux/slab.h> |
63 | #include <linux/types.h> | 63 | #include <linux/types.h> |
64 | #include <linux/mtd/mtd.h> | 64 | #include <linux/mtd/mtd.h> |
65 | #include <linux/mtd/bbm.h> | ||
65 | #include <linux/mtd/nand.h> | 66 | #include <linux/mtd/nand.h> |
66 | #include <linux/mtd/nand_ecc.h> | 67 | #include <linux/mtd/nand_ecc.h> |
67 | #include <linux/bitops.h> | 68 | #include <linux/bitops.h> |
68 | #include <linux/delay.h> | 69 | #include <linux/delay.h> |
69 | #include <linux/vmalloc.h> | 70 | #include <linux/vmalloc.h> |
70 | #include <linux/export.h> | 71 | #include <linux/export.h> |
72 | #include <linux/string.h> | ||
71 | 73 | ||
72 | static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) | 74 | static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) |
73 | { | 75 | { |
74 | int ret; | 76 | if (memcmp(buf, td->pattern, td->len)) |
75 | 77 | return -1; | |
76 | ret = memcmp(buf, td->pattern, td->len); | 78 | return 0; |
77 | if (!ret) | ||
78 | return ret; | ||
79 | return -1; | ||
80 | } | 79 | } |
81 | 80 | ||
82 | /** | 81 | /** |
@@ -92,19 +91,16 @@ static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) | |||
92 | */ | 91 | */ |
93 | static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) | 92 | static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) |
94 | { | 93 | { |
95 | int i, end = 0; | 94 | int end = 0; |
96 | uint8_t *p = buf; | 95 | uint8_t *p = buf; |
97 | 96 | ||
98 | if (td->options & NAND_BBT_NO_OOB) | 97 | if (td->options & NAND_BBT_NO_OOB) |
99 | return check_pattern_no_oob(buf, td); | 98 | return check_pattern_no_oob(buf, td); |
100 | 99 | ||
101 | end = paglen + td->offs; | 100 | end = paglen + td->offs; |
102 | if (td->options & NAND_BBT_SCANEMPTY) { | 101 | if (td->options & NAND_BBT_SCANEMPTY) |
103 | for (i = 0; i < end; i++) { | 102 | if (memchr_inv(p, 0xff, end)) |
104 | if (p[i] != 0xff) | 103 | return -1; |
105 | return -1; | ||
106 | } | ||
107 | } | ||
108 | p += end; | 104 | p += end; |
109 | 105 | ||
110 | /* Compare the pattern */ | 106 | /* Compare the pattern */ |
@@ -114,10 +110,8 @@ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_desc | |||
114 | if (td->options & NAND_BBT_SCANEMPTY) { | 110 | if (td->options & NAND_BBT_SCANEMPTY) { |
115 | p += td->len; | 111 | p += td->len; |
116 | end += td->len; | 112 | end += td->len; |
117 | for (i = end; i < len; i++) { | 113 | if (memchr_inv(p, 0xff, len - end)) |
118 | if (*p++ != 0xff) | 114 | return -1; |
119 | return -1; | ||
120 | } | ||
121 | } | 115 | } |
122 | return 0; | 116 | return 0; |
123 | } | 117 | } |
@@ -133,14 +127,9 @@ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_desc | |||
133 | */ | 127 | */ |
134 | static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) | 128 | static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) |
135 | { | 129 | { |
136 | int i; | ||
137 | uint8_t *p = buf; | ||
138 | |||
139 | /* Compare the pattern */ | 130 | /* Compare the pattern */ |
140 | for (i = 0; i < td->len; i++) { | 131 | if (memcmp(buf + td->offs, td->pattern, td->len)) |
141 | if (p[td->offs + i] != td->pattern[i]) | 132 | return -1; |
142 | return -1; | ||
143 | } | ||
144 | return 0; | 133 | return 0; |
145 | } | 134 | } |
146 | 135 | ||
@@ -288,7 +277,7 @@ static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc | |||
288 | } | 277 | } |
289 | 278 | ||
290 | /* BBT marker is in the first page, no OOB */ | 279 | /* BBT marker is in the first page, no OOB */ |
291 | static int scan_read_raw_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, | 280 | static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, |
292 | struct nand_bbt_descr *td) | 281 | struct nand_bbt_descr *td) |
293 | { | 282 | { |
294 | size_t retlen; | 283 | size_t retlen; |
@@ -301,14 +290,24 @@ static int scan_read_raw_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, | |||
301 | return mtd_read(mtd, offs, len, &retlen, buf); | 290 | return mtd_read(mtd, offs, len, &retlen, buf); |
302 | } | 291 | } |
303 | 292 | ||
304 | /* Scan read raw data from flash */ | 293 | /** |
305 | static int scan_read_raw_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, | 294 | * scan_read_oob - [GENERIC] Scan data+OOB region to buffer |
295 | * @mtd: MTD device structure | ||
296 | * @buf: temporary buffer | ||
297 | * @offs: offset at which to scan | ||
298 | * @len: length of data region to read | ||
299 | * | ||
300 | * Scan read data from data+OOB. May traverse multiple pages, interleaving | ||
301 | * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest" | ||
302 | * ECC condition (error or bitflip). May quit on the first (non-ECC) error. | ||
303 | */ | ||
304 | static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, | ||
306 | size_t len) | 305 | size_t len) |
307 | { | 306 | { |
308 | struct mtd_oob_ops ops; | 307 | struct mtd_oob_ops ops; |
309 | int res; | 308 | int res, ret = 0; |
310 | 309 | ||
311 | ops.mode = MTD_OPS_RAW; | 310 | ops.mode = MTD_OPS_PLACE_OOB; |
312 | ops.ooboffs = 0; | 311 | ops.ooboffs = 0; |
313 | ops.ooblen = mtd->oobsize; | 312 | ops.ooblen = mtd->oobsize; |
314 | 313 | ||
@@ -318,24 +317,27 @@ static int scan_read_raw_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, | |||
318 | ops.oobbuf = buf + ops.len; | 317 | ops.oobbuf = buf + ops.len; |
319 | 318 | ||
320 | res = mtd_read_oob(mtd, offs, &ops); | 319 | res = mtd_read_oob(mtd, offs, &ops); |
321 | 320 | if (res) { | |
322 | if (res) | 321 | if (!mtd_is_bitflip_or_eccerr(res)) |
323 | return res; | 322 | return res; |
323 | else if (mtd_is_eccerr(res) || !ret) | ||
324 | ret = res; | ||
325 | } | ||
324 | 326 | ||
325 | buf += mtd->oobsize + mtd->writesize; | 327 | buf += mtd->oobsize + mtd->writesize; |
326 | len -= mtd->writesize; | 328 | len -= mtd->writesize; |
327 | offs += mtd->writesize; | 329 | offs += mtd->writesize; |
328 | } | 330 | } |
329 | return 0; | 331 | return ret; |
330 | } | 332 | } |
331 | 333 | ||
332 | static int scan_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t offs, | 334 | static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs, |
333 | size_t len, struct nand_bbt_descr *td) | 335 | size_t len, struct nand_bbt_descr *td) |
334 | { | 336 | { |
335 | if (td->options & NAND_BBT_NO_OOB) | 337 | if (td->options & NAND_BBT_NO_OOB) |
336 | return scan_read_raw_data(mtd, buf, offs, td); | 338 | return scan_read_data(mtd, buf, offs, td); |
337 | else | 339 | else |
338 | return scan_read_raw_oob(mtd, buf, offs, len); | 340 | return scan_read_oob(mtd, buf, offs, len); |
339 | } | 341 | } |
340 | 342 | ||
341 | /* Scan write data with oob to flash */ | 343 | /* Scan write data with oob to flash */ |
@@ -373,14 +375,14 @@ static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td) | |||
373 | * Read the bad block table(s) for all chips starting at a given page. We | 375 | * Read the bad block table(s) for all chips starting at a given page. We |
374 | * assume that the bbt bits are in consecutive order. | 376 | * assume that the bbt bits are in consecutive order. |
375 | */ | 377 | */ |
376 | static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, | 378 | static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, |
377 | struct nand_bbt_descr *td, struct nand_bbt_descr *md) | 379 | struct nand_bbt_descr *td, struct nand_bbt_descr *md) |
378 | { | 380 | { |
379 | struct nand_chip *this = mtd->priv; | 381 | struct nand_chip *this = mtd->priv; |
380 | 382 | ||
381 | /* Read the primary version, if available */ | 383 | /* Read the primary version, if available */ |
382 | if (td->options & NAND_BBT_VERSION) { | 384 | if (td->options & NAND_BBT_VERSION) { |
383 | scan_read_raw(mtd, buf, (loff_t)td->pages[0] << this->page_shift, | 385 | scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift, |
384 | mtd->writesize, td); | 386 | mtd->writesize, td); |
385 | td->version[0] = buf[bbt_get_ver_offs(mtd, td)]; | 387 | td->version[0] = buf[bbt_get_ver_offs(mtd, td)]; |
386 | pr_info("Bad block table at page %d, version 0x%02X\n", | 388 | pr_info("Bad block table at page %d, version 0x%02X\n", |
@@ -389,28 +391,27 @@ static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, | |||
389 | 391 | ||
390 | /* Read the mirror version, if available */ | 392 | /* Read the mirror version, if available */ |
391 | if (md && (md->options & NAND_BBT_VERSION)) { | 393 | if (md && (md->options & NAND_BBT_VERSION)) { |
392 | scan_read_raw(mtd, buf, (loff_t)md->pages[0] << this->page_shift, | 394 | scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift, |
393 | mtd->writesize, td); | 395 | mtd->writesize, md); |
394 | md->version[0] = buf[bbt_get_ver_offs(mtd, md)]; | 396 | md->version[0] = buf[bbt_get_ver_offs(mtd, md)]; |
395 | pr_info("Bad block table at page %d, version 0x%02X\n", | 397 | pr_info("Bad block table at page %d, version 0x%02X\n", |
396 | md->pages[0], md->version[0]); | 398 | md->pages[0], md->version[0]); |
397 | } | 399 | } |
398 | return 1; | ||
399 | } | 400 | } |
400 | 401 | ||
401 | /* Scan a given block full */ | 402 | /* Scan a given block full */ |
402 | static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, | 403 | static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, |
403 | loff_t offs, uint8_t *buf, size_t readlen, | 404 | loff_t offs, uint8_t *buf, size_t readlen, |
404 | int scanlen, int len) | 405 | int scanlen, int numpages) |
405 | { | 406 | { |
406 | int ret, j; | 407 | int ret, j; |
407 | 408 | ||
408 | ret = scan_read_raw_oob(mtd, buf, offs, readlen); | 409 | ret = scan_read_oob(mtd, buf, offs, readlen); |
409 | /* Ignore ECC errors when checking for BBM */ | 410 | /* Ignore ECC errors when checking for BBM */ |
410 | if (ret && !mtd_is_bitflip_or_eccerr(ret)) | 411 | if (ret && !mtd_is_bitflip_or_eccerr(ret)) |
411 | return ret; | 412 | return ret; |
412 | 413 | ||
413 | for (j = 0; j < len; j++, buf += scanlen) { | 414 | for (j = 0; j < numpages; j++, buf += scanlen) { |
414 | if (check_pattern(buf, scanlen, mtd->writesize, bd)) | 415 | if (check_pattern(buf, scanlen, mtd->writesize, bd)) |
415 | return 1; | 416 | return 1; |
416 | } | 417 | } |
@@ -419,7 +420,7 @@ static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, | |||
419 | 420 | ||
420 | /* Scan a given block partially */ | 421 | /* Scan a given block partially */ |
421 | static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, | 422 | static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, |
422 | loff_t offs, uint8_t *buf, int len) | 423 | loff_t offs, uint8_t *buf, int numpages) |
423 | { | 424 | { |
424 | struct mtd_oob_ops ops; | 425 | struct mtd_oob_ops ops; |
425 | int j, ret; | 426 | int j, ret; |
@@ -430,7 +431,7 @@ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, | |||
430 | ops.datbuf = NULL; | 431 | ops.datbuf = NULL; |
431 | ops.mode = MTD_OPS_PLACE_OOB; | 432 | ops.mode = MTD_OPS_PLACE_OOB; |
432 | 433 | ||
433 | for (j = 0; j < len; j++) { | 434 | for (j = 0; j < numpages; j++) { |
434 | /* | 435 | /* |
435 | * Read the full oob until read_oob is fixed to handle single | 436 | * Read the full oob until read_oob is fixed to handle single |
436 | * byte reads for 16 bit buswidth. | 437 | * byte reads for 16 bit buswidth. |
@@ -463,7 +464,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, | |||
463 | struct nand_bbt_descr *bd, int chip) | 464 | struct nand_bbt_descr *bd, int chip) |
464 | { | 465 | { |
465 | struct nand_chip *this = mtd->priv; | 466 | struct nand_chip *this = mtd->priv; |
466 | int i, numblocks, len, scanlen; | 467 | int i, numblocks, numpages, scanlen; |
467 | int startblock; | 468 | int startblock; |
468 | loff_t from; | 469 | loff_t from; |
469 | size_t readlen; | 470 | size_t readlen; |
@@ -471,11 +472,11 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, | |||
471 | pr_info("Scanning device for bad blocks\n"); | 472 | pr_info("Scanning device for bad blocks\n"); |
472 | 473 | ||
473 | if (bd->options & NAND_BBT_SCANALLPAGES) | 474 | if (bd->options & NAND_BBT_SCANALLPAGES) |
474 | len = 1 << (this->bbt_erase_shift - this->page_shift); | 475 | numpages = 1 << (this->bbt_erase_shift - this->page_shift); |
475 | else if (bd->options & NAND_BBT_SCAN2NDPAGE) | 476 | else if (bd->options & NAND_BBT_SCAN2NDPAGE) |
476 | len = 2; | 477 | numpages = 2; |
477 | else | 478 | else |
478 | len = 1; | 479 | numpages = 1; |
479 | 480 | ||
480 | if (!(bd->options & NAND_BBT_SCANEMPTY)) { | 481 | if (!(bd->options & NAND_BBT_SCANEMPTY)) { |
481 | /* We need only read few bytes from the OOB area */ | 482 | /* We need only read few bytes from the OOB area */ |
@@ -484,7 +485,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, | |||
484 | } else { | 485 | } else { |
485 | /* Full page content should be read */ | 486 | /* Full page content should be read */ |
486 | scanlen = mtd->writesize + mtd->oobsize; | 487 | scanlen = mtd->writesize + mtd->oobsize; |
487 | readlen = len * mtd->writesize; | 488 | readlen = numpages * mtd->writesize; |
488 | } | 489 | } |
489 | 490 | ||
490 | if (chip == -1) { | 491 | if (chip == -1) { |
@@ -508,7 +509,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, | |||
508 | } | 509 | } |
509 | 510 | ||
510 | if (this->bbt_options & NAND_BBT_SCANLASTPAGE) | 511 | if (this->bbt_options & NAND_BBT_SCANLASTPAGE) |
511 | from += mtd->erasesize - (mtd->writesize * len); | 512 | from += mtd->erasesize - (mtd->writesize * numpages); |
512 | 513 | ||
513 | for (i = startblock; i < numblocks;) { | 514 | for (i = startblock; i < numblocks;) { |
514 | int ret; | 515 | int ret; |
@@ -517,9 +518,9 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, | |||
517 | 518 | ||
518 | if (bd->options & NAND_BBT_SCANALLPAGES) | 519 | if (bd->options & NAND_BBT_SCANALLPAGES) |
519 | ret = scan_block_full(mtd, bd, from, buf, readlen, | 520 | ret = scan_block_full(mtd, bd, from, buf, readlen, |
520 | scanlen, len); | 521 | scanlen, numpages); |
521 | else | 522 | else |
522 | ret = scan_block_fast(mtd, bd, from, buf, len); | 523 | ret = scan_block_fast(mtd, bd, from, buf, numpages); |
523 | 524 | ||
524 | if (ret < 0) | 525 | if (ret < 0) |
525 | return ret; | 526 | return ret; |
@@ -594,7 +595,7 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr | |||
594 | loff_t offs = (loff_t)actblock << this->bbt_erase_shift; | 595 | loff_t offs = (loff_t)actblock << this->bbt_erase_shift; |
595 | 596 | ||
596 | /* Read first page */ | 597 | /* Read first page */ |
597 | scan_read_raw(mtd, buf, offs, mtd->writesize, td); | 598 | scan_read(mtd, buf, offs, mtd->writesize, td); |
598 | if (!check_pattern(buf, scanlen, mtd->writesize, td)) { | 599 | if (!check_pattern(buf, scanlen, mtd->writesize, td)) { |
599 | td->pages[i] = actblock << blocktopage; | 600 | td->pages[i] = actblock << blocktopage; |
600 | if (td->options & NAND_BBT_VERSION) { | 601 | if (td->options & NAND_BBT_VERSION) { |
@@ -626,7 +627,9 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr | |||
626 | * | 627 | * |
627 | * Search and read the bad block table(s). | 628 | * Search and read the bad block table(s). |
628 | */ | 629 | */ |
629 | static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) | 630 | static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf, |
631 | struct nand_bbt_descr *td, | ||
632 | struct nand_bbt_descr *md) | ||
630 | { | 633 | { |
631 | /* Search the primary table */ | 634 | /* Search the primary table */ |
632 | search_bbt(mtd, buf, td); | 635 | search_bbt(mtd, buf, td); |
@@ -634,9 +637,6 @@ static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt | |||
634 | /* Search the mirror table */ | 637 | /* Search the mirror table */ |
635 | if (md) | 638 | if (md) |
636 | search_bbt(mtd, buf, md); | 639 | search_bbt(mtd, buf, md); |
637 | |||
638 | /* Force result check */ | ||
639 | return 1; | ||
640 | } | 640 | } |
641 | 641 | ||
642 | /** | 642 | /** |
@@ -1162,14 +1162,13 @@ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) | |||
1162 | 1162 | ||
1163 | /* Is the bbt at a given page? */ | 1163 | /* Is the bbt at a given page? */ |
1164 | if (td->options & NAND_BBT_ABSPAGE) { | 1164 | if (td->options & NAND_BBT_ABSPAGE) { |
1165 | res = read_abs_bbts(mtd, buf, td, md); | 1165 | read_abs_bbts(mtd, buf, td, md); |
1166 | } else { | 1166 | } else { |
1167 | /* Search the bad block table using a pattern in oob */ | 1167 | /* Search the bad block table using a pattern in oob */ |
1168 | res = search_read_bbts(mtd, buf, td, md); | 1168 | search_read_bbts(mtd, buf, td, md); |
1169 | } | 1169 | } |
1170 | 1170 | ||
1171 | if (res) | 1171 | res = check_create(mtd, buf, bd); |
1172 | res = check_create(mtd, buf, bd); | ||
1173 | 1172 | ||
1174 | /* Prevent the bbt regions from erasing / writing */ | 1173 | /* Prevent the bbt regions from erasing / writing */ |
1175 | mark_bbt_region(mtd, td); | 1174 | mark_bbt_region(mtd, td); |
@@ -1260,7 +1259,7 @@ static struct nand_bbt_descr bbt_main_descr = { | |||
1260 | .offs = 8, | 1259 | .offs = 8, |
1261 | .len = 4, | 1260 | .len = 4, |
1262 | .veroffs = 12, | 1261 | .veroffs = 12, |
1263 | .maxblocks = 4, | 1262 | .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, |
1264 | .pattern = bbt_pattern | 1263 | .pattern = bbt_pattern |
1265 | }; | 1264 | }; |
1266 | 1265 | ||
@@ -1270,27 +1269,27 @@ static struct nand_bbt_descr bbt_mirror_descr = { | |||
1270 | .offs = 8, | 1269 | .offs = 8, |
1271 | .len = 4, | 1270 | .len = 4, |
1272 | .veroffs = 12, | 1271 | .veroffs = 12, |
1273 | .maxblocks = 4, | 1272 | .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, |
1274 | .pattern = mirror_pattern | 1273 | .pattern = mirror_pattern |
1275 | }; | 1274 | }; |
1276 | 1275 | ||
1277 | static struct nand_bbt_descr bbt_main_no_bbt_descr = { | 1276 | static struct nand_bbt_descr bbt_main_no_oob_descr = { |
1278 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 1277 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1279 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP | 1278 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP |
1280 | | NAND_BBT_NO_OOB, | 1279 | | NAND_BBT_NO_OOB, |
1281 | .len = 4, | 1280 | .len = 4, |
1282 | .veroffs = 4, | 1281 | .veroffs = 4, |
1283 | .maxblocks = 4, | 1282 | .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, |
1284 | .pattern = bbt_pattern | 1283 | .pattern = bbt_pattern |
1285 | }; | 1284 | }; |
1286 | 1285 | ||
1287 | static struct nand_bbt_descr bbt_mirror_no_bbt_descr = { | 1286 | static struct nand_bbt_descr bbt_mirror_no_oob_descr = { |
1288 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 1287 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1289 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP | 1288 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP |
1290 | | NAND_BBT_NO_OOB, | 1289 | | NAND_BBT_NO_OOB, |
1291 | .len = 4, | 1290 | .len = 4, |
1292 | .veroffs = 4, | 1291 | .veroffs = 4, |
1293 | .maxblocks = 4, | 1292 | .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, |
1294 | .pattern = mirror_pattern | 1293 | .pattern = mirror_pattern |
1295 | }; | 1294 | }; |
1296 | 1295 | ||
@@ -1355,8 +1354,8 @@ int nand_default_bbt(struct mtd_info *mtd) | |||
1355 | /* Use the default pattern descriptors */ | 1354 | /* Use the default pattern descriptors */ |
1356 | if (!this->bbt_td) { | 1355 | if (!this->bbt_td) { |
1357 | if (this->bbt_options & NAND_BBT_NO_OOB) { | 1356 | if (this->bbt_options & NAND_BBT_NO_OOB) { |
1358 | this->bbt_td = &bbt_main_no_bbt_descr; | 1357 | this->bbt_td = &bbt_main_no_oob_descr; |
1359 | this->bbt_md = &bbt_mirror_no_bbt_descr; | 1358 | this->bbt_md = &bbt_mirror_no_oob_descr; |
1360 | } else { | 1359 | } else { |
1361 | this->bbt_td = &bbt_main_descr; | 1360 | this->bbt_td = &bbt_main_descr; |
1362 | this->bbt_md = &bbt_mirror_descr; | 1361 | this->bbt_md = &bbt_mirror_descr; |
@@ -1406,3 +1405,4 @@ int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) | |||
1406 | 1405 | ||
1407 | EXPORT_SYMBOL(nand_scan_bbt); | 1406 | EXPORT_SYMBOL(nand_scan_bbt); |
1408 | EXPORT_SYMBOL(nand_default_bbt); | 1407 | EXPORT_SYMBOL(nand_default_bbt); |
1408 | EXPORT_SYMBOL_GPL(nand_update_bbt); | ||
diff --git a/drivers/mtd/nand/nand_bcm_umi.c b/drivers/mtd/nand/nand_bcm_umi.c deleted file mode 100644 index 46a6bc9c4b74..000000000000 --- a/drivers/mtd/nand/nand_bcm_umi.c +++ /dev/null | |||
@@ -1,149 +0,0 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | |||
15 | /* ---- Include Files ---------------------------------------------------- */ | ||
16 | #include <mach/reg_umi.h> | ||
17 | #include "nand_bcm_umi.h" | ||
18 | #ifdef BOOT0_BUILD | ||
19 | #include <uart.h> | ||
20 | #endif | ||
21 | |||
22 | /* ---- External Variable Declarations ----------------------------------- */ | ||
23 | /* ---- External Function Prototypes ------------------------------------- */ | ||
24 | /* ---- Public Variables ------------------------------------------------- */ | ||
25 | /* ---- Private Constants and Types -------------------------------------- */ | ||
26 | /* ---- Private Function Prototypes -------------------------------------- */ | ||
27 | /* ---- Private Variables ------------------------------------------------ */ | ||
28 | /* ---- Private Functions ------------------------------------------------ */ | ||
29 | |||
30 | #if NAND_ECC_BCH | ||
31 | /**************************************************************************** | ||
32 | * nand_bch_ecc_flip_bit - Routine to flip an errored bit | ||
33 | * | ||
34 | * PURPOSE: | ||
35 | * This is a helper routine that flips the bit (0 -> 1 or 1 -> 0) of the | ||
36 | * errored bit specified | ||
37 | * | ||
38 | * PARAMETERS: | ||
39 | * datap - Container that holds the 512 byte data | ||
40 | * errorLocation - Location of the bit that needs to be flipped | ||
41 | * | ||
42 | * RETURNS: | ||
43 | * None | ||
44 | ****************************************************************************/ | ||
45 | static void nand_bcm_umi_bch_ecc_flip_bit(uint8_t *datap, int errorLocation) | ||
46 | { | ||
47 | int locWithinAByte = (errorLocation & REG_UMI_BCH_ERR_LOC_BYTE) >> 0; | ||
48 | int locWithinAWord = (errorLocation & REG_UMI_BCH_ERR_LOC_WORD) >> 3; | ||
49 | int locWithinAPage = (errorLocation & REG_UMI_BCH_ERR_LOC_PAGE) >> 5; | ||
50 | |||
51 | uint8_t errorByte = 0; | ||
52 | uint8_t byteMask = 1 << locWithinAByte; | ||
53 | |||
54 | /* BCH uses big endian, need to change the location | ||
55 | * bits to little endian */ | ||
56 | locWithinAWord = 3 - locWithinAWord; | ||
57 | |||
58 | errorByte = datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord]; | ||
59 | |||
60 | #ifdef BOOT0_BUILD | ||
61 | puthexs("\nECC Correct Offset: ", | ||
62 | locWithinAPage * sizeof(uint32_t) + locWithinAWord); | ||
63 | puthexs(" errorByte:", errorByte); | ||
64 | puthex8(" Bit: ", locWithinAByte); | ||
65 | #endif | ||
66 | |||
67 | if (errorByte & byteMask) { | ||
68 | /* bit needs to be cleared */ | ||
69 | errorByte &= ~byteMask; | ||
70 | } else { | ||
71 | /* bit needs to be set */ | ||
72 | errorByte |= byteMask; | ||
73 | } | ||
74 | |||
75 | /* write back the value with the fixed bit */ | ||
76 | datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord] = errorByte; | ||
77 | } | ||
78 | |||
79 | /**************************************************************************** | ||
80 | * nand_correct_page_bch - Routine to correct bit errors when reading NAND | ||
81 | * | ||
82 | * PURPOSE: | ||
83 | * This routine reads the BCH registers to determine if there are any bit | ||
84 | * errors during the read of the last 512 bytes of data + ECC bytes. If | ||
85 | * errors exists, the routine fixes it. | ||
86 | * | ||
87 | * PARAMETERS: | ||
88 | * datap - Container that holds the 512 byte data | ||
89 | * | ||
90 | * RETURNS: | ||
91 | * 0 or greater = Number of errors corrected | ||
92 | * (No errors are found or errors have been fixed) | ||
93 | * -1 = Error(s) cannot be fixed | ||
94 | ****************************************************************************/ | ||
95 | int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, | ||
96 | int numEccBytes) | ||
97 | { | ||
98 | int numErrors; | ||
99 | int errorLocation; | ||
100 | int idx; | ||
101 | uint32_t regValue; | ||
102 | |||
103 | /* wait for read ECC to be valid */ | ||
104 | regValue = nand_bcm_umi_bch_poll_read_ecc_calc(); | ||
105 | |||
106 | /* | ||
107 | * read the control status register to determine if there | ||
108 | * are error'ed bits | ||
109 | * see if errors are correctible | ||
110 | */ | ||
111 | if ((regValue & REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR) > 0) { | ||
112 | int i; | ||
113 | |||
114 | for (i = 0; i < numEccBytes; i++) { | ||
115 | if (readEccData[i] != 0xff) { | ||
116 | /* errors cannot be fixed, return -1 */ | ||
117 | return -1; | ||
118 | } | ||
119 | } | ||
120 | /* If ECC is unprogrammed then we can't correct, | ||
121 | * assume everything OK */ | ||
122 | return 0; | ||
123 | } | ||
124 | |||
125 | if ((regValue & REG_UMI_BCH_CTRL_STATUS_CORR_ERR) == 0) { | ||
126 | /* no errors */ | ||
127 | return 0; | ||
128 | } | ||
129 | |||
130 | /* | ||
131 | * Fix errored bits by doing the following: | ||
132 | * 1. Read the number of errors in the control and status register | ||
133 | * 2. Read the error location registers that corresponds to the number | ||
134 | * of errors reported | ||
135 | * 3. Invert the bit in the data | ||
136 | */ | ||
137 | numErrors = (regValue & REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR) >> 20; | ||
138 | |||
139 | for (idx = 0; idx < numErrors; idx++) { | ||
140 | errorLocation = | ||
141 | REG_UMI_BCH_ERR_LOC_ADDR(idx) & REG_UMI_BCH_ERR_LOC_MASK; | ||
142 | |||
143 | /* Flip bit */ | ||
144 | nand_bcm_umi_bch_ecc_flip_bit(datap, errorLocation); | ||
145 | } | ||
146 | /* Errors corrected */ | ||
147 | return numErrors; | ||
148 | } | ||
149 | #endif | ||
diff --git a/drivers/mtd/nand/nand_bcm_umi.h b/drivers/mtd/nand/nand_bcm_umi.h deleted file mode 100644 index d90186684db8..000000000000 --- a/drivers/mtd/nand/nand_bcm_umi.h +++ /dev/null | |||
@@ -1,336 +0,0 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2003 - 2009 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | #ifndef NAND_BCM_UMI_H | ||
15 | #define NAND_BCM_UMI_H | ||
16 | |||
17 | /* ---- Include Files ---------------------------------------------------- */ | ||
18 | #include <mach/reg_umi.h> | ||
19 | #include <mach/reg_nand.h> | ||
20 | #include <mach/cfg_global.h> | ||
21 | |||
22 | /* ---- Constants and Types ---------------------------------------------- */ | ||
23 | #if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING) | ||
24 | #define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0) | ||
25 | #else | ||
26 | #define NAND_ECC_BCH 0 | ||
27 | #endif | ||
28 | |||
29 | #define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13 | ||
30 | |||
31 | #if NAND_ECC_BCH | ||
32 | #ifdef BOOT0_BUILD | ||
33 | #define NAND_ECC_NUM_BYTES 13 | ||
34 | #else | ||
35 | #define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES | ||
36 | #endif | ||
37 | #else | ||
38 | #define NAND_ECC_NUM_BYTES 3 | ||
39 | #endif | ||
40 | |||
41 | #define NAND_DATA_ACCESS_SIZE 512 | ||
42 | |||
43 | /* ---- Variable Externs ------------------------------------------ */ | ||
44 | /* ---- Function Prototypes --------------------------------------- */ | ||
45 | int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, | ||
46 | int numEccBytes); | ||
47 | |||
48 | /* Check in device is ready */ | ||
49 | static inline int nand_bcm_umi_dev_ready(void) | ||
50 | { | ||
51 | return readl(®_UMI_NAND_RCSR) & REG_UMI_NAND_RCSR_RDY; | ||
52 | } | ||
53 | |||
54 | /* Wait until device is ready */ | ||
55 | static inline void nand_bcm_umi_wait_till_ready(void) | ||
56 | { | ||
57 | while (nand_bcm_umi_dev_ready() == 0) | ||
58 | ; | ||
59 | } | ||
60 | |||
61 | /* Enable Hamming ECC */ | ||
62 | static inline void nand_bcm_umi_hamming_enable_hwecc(void) | ||
63 | { | ||
64 | /* disable and reset ECC, 512 byte page */ | ||
65 | writel(readl(®_UMI_NAND_ECC_CSR) & ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE | | ||
66 | REG_UMI_NAND_ECC_CSR_256BYTE), ®_UMI_NAND_ECC_CSR); | ||
67 | /* enable ECC */ | ||
68 | writel(readl(®_UMI_NAND_ECC_CSR) | REG_UMI_NAND_ECC_CSR_ECC_ENABLE, | ||
69 | ®_UMI_NAND_ECC_CSR); | ||
70 | } | ||
71 | |||
72 | #if NAND_ECC_BCH | ||
73 | /* BCH ECC specifics */ | ||
74 | #define ECC_BITS_PER_CORRECTABLE_BIT 13 | ||
75 | |||
76 | /* Enable BCH Read ECC */ | ||
77 | static inline void nand_bcm_umi_bch_enable_read_hwecc(void) | ||
78 | { | ||
79 | /* disable and reset ECC */ | ||
80 | writel(REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID, ®_UMI_BCH_CTRL_STATUS); | ||
81 | /* Turn on ECC */ | ||
82 | writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN, ®_UMI_BCH_CTRL_STATUS); | ||
83 | } | ||
84 | |||
85 | /* Enable BCH Write ECC */ | ||
86 | static inline void nand_bcm_umi_bch_enable_write_hwecc(void) | ||
87 | { | ||
88 | /* disable and reset ECC */ | ||
89 | writel(REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID, ®_UMI_BCH_CTRL_STATUS); | ||
90 | /* Turn on ECC */ | ||
91 | writel(REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN, ®_UMI_BCH_CTRL_STATUS); | ||
92 | } | ||
93 | |||
94 | /* Config number of BCH ECC bytes */ | ||
95 | static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes) | ||
96 | { | ||
97 | uint32_t nValue; | ||
98 | uint32_t tValue; | ||
99 | uint32_t kValue; | ||
100 | uint32_t numBits = numEccBytes * 8; | ||
101 | |||
102 | /* disable and reset ECC */ | ||
103 | writel(REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID | | ||
104 | REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID, | ||
105 | ®_UMI_BCH_CTRL_STATUS); | ||
106 | |||
107 | /* Every correctible bit requires 13 ECC bits */ | ||
108 | tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT); | ||
109 | |||
110 | /* Total data in number of bits for generating and computing BCH ECC */ | ||
111 | nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8; | ||
112 | |||
113 | /* K parameter is used internally. K = N - (T * 13) */ | ||
114 | kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT); | ||
115 | |||
116 | /* Write the settings */ | ||
117 | writel(nValue, ®_UMI_BCH_N); | ||
118 | writel(tValue, ®_UMI_BCH_T); | ||
119 | writel(kValue, ®_UMI_BCH_K); | ||
120 | } | ||
121 | |||
122 | /* Pause during ECC read calculation to skip bytes in OOB */ | ||
123 | static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void) | ||
124 | { | ||
125 | writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN | REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC, ®_UMI_BCH_CTRL_STATUS); | ||
126 | } | ||
127 | |||
128 | /* Resume during ECC read calculation after skipping bytes in OOB */ | ||
129 | static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void) | ||
130 | { | ||
131 | writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN, ®_UMI_BCH_CTRL_STATUS); | ||
132 | } | ||
133 | |||
134 | /* Poll read ECC calc to check when hardware completes */ | ||
135 | static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void) | ||
136 | { | ||
137 | uint32_t regVal; | ||
138 | |||
139 | do { | ||
140 | /* wait for ECC to be valid */ | ||
141 | regVal = readl(®_UMI_BCH_CTRL_STATUS); | ||
142 | } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0); | ||
143 | |||
144 | return regVal; | ||
145 | } | ||
146 | |||
147 | /* Poll write ECC calc to check when hardware completes */ | ||
148 | static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void) | ||
149 | { | ||
150 | /* wait for ECC to be valid */ | ||
151 | while ((readl(®_UMI_BCH_CTRL_STATUS) & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID) | ||
152 | == 0) | ||
153 | ; | ||
154 | } | ||
155 | |||
156 | /* Read the OOB and ECC, for kernel write OOB to a buffer */ | ||
157 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
158 | static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, | ||
159 | uint8_t *eccCalc, int numEccBytes, uint8_t *oobp) | ||
160 | #else | ||
161 | static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, | ||
162 | uint8_t *eccCalc, int numEccBytes) | ||
163 | #endif | ||
164 | { | ||
165 | int eccPos = 0; | ||
166 | int numToRead = 16; /* There are 16 bytes per sector in the OOB */ | ||
167 | |||
168 | /* ECC is already paused when this function is called */ | ||
169 | if (pageSize != NAND_DATA_ACCESS_SIZE) { | ||
170 | /* skip BI */ | ||
171 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
172 | *oobp++ = readb(®_NAND_DATA8); | ||
173 | #else | ||
174 | readb(®_NAND_DATA8); | ||
175 | #endif | ||
176 | numToRead--; | ||
177 | } | ||
178 | |||
179 | while (numToRead > numEccBytes) { | ||
180 | /* skip free oob region */ | ||
181 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
182 | *oobp++ = readb(®_NAND_DATA8); | ||
183 | #else | ||
184 | readb(®_NAND_DATA8); | ||
185 | #endif | ||
186 | numToRead--; | ||
187 | } | ||
188 | |||
189 | if (pageSize == NAND_DATA_ACCESS_SIZE) { | ||
190 | /* read ECC bytes before BI */ | ||
191 | nand_bcm_umi_bch_resume_read_ecc_calc(); | ||
192 | |||
193 | while (numToRead > 11) { | ||
194 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
195 | *oobp = readb(®_NAND_DATA8); | ||
196 | eccCalc[eccPos++] = *oobp; | ||
197 | oobp++; | ||
198 | #else | ||
199 | eccCalc[eccPos++] = readb(®_NAND_DATA8); | ||
200 | #endif | ||
201 | numToRead--; | ||
202 | } | ||
203 | |||
204 | nand_bcm_umi_bch_pause_read_ecc_calc(); | ||
205 | |||
206 | if (numToRead == 11) { | ||
207 | /* read BI */ | ||
208 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
209 | *oobp++ = readb(®_NAND_DATA8); | ||
210 | #else | ||
211 | readb(®_NAND_DATA8); | ||
212 | #endif | ||
213 | numToRead--; | ||
214 | } | ||
215 | |||
216 | } | ||
217 | /* read ECC bytes */ | ||
218 | nand_bcm_umi_bch_resume_read_ecc_calc(); | ||
219 | while (numToRead) { | ||
220 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
221 | *oobp = readb(®_NAND_DATA8); | ||
222 | eccCalc[eccPos++] = *oobp; | ||
223 | oobp++; | ||
224 | #else | ||
225 | eccCalc[eccPos++] = readb(®_NAND_DATA8); | ||
226 | #endif | ||
227 | numToRead--; | ||
228 | } | ||
229 | } | ||
230 | |||
231 | /* Helper function to write ECC */ | ||
232 | static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos, | ||
233 | uint8_t *oobp, uint8_t eccVal) | ||
234 | { | ||
235 | if (eccBytePos <= numEccBytes) | ||
236 | *oobp = eccVal; | ||
237 | } | ||
238 | |||
239 | /* Write OOB with ECC */ | ||
240 | static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize, | ||
241 | uint8_t *oobp, int numEccBytes) | ||
242 | { | ||
243 | uint32_t eccVal = 0xffffffff; | ||
244 | |||
245 | /* wait for write ECC to be valid */ | ||
246 | nand_bcm_umi_bch_poll_write_ecc_calc(); | ||
247 | |||
248 | /* | ||
249 | ** Get the hardware ecc from the 32-bit result registers. | ||
250 | ** Read after 512 byte accesses. Format B3B2B1B0 | ||
251 | ** where B3 = ecc3, etc. | ||
252 | */ | ||
253 | |||
254 | if (pageSize == NAND_DATA_ACCESS_SIZE) { | ||
255 | /* Now fill in the ECC bytes */ | ||
256 | if (numEccBytes >= 13) | ||
257 | eccVal = readl(®_UMI_BCH_WR_ECC_3); | ||
258 | |||
259 | /* Usually we skip CM in oob[0,1] */ | ||
260 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0], | ||
261 | (eccVal >> 16) & 0xff); | ||
262 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1], | ||
263 | (eccVal >> 8) & 0xff); | ||
264 | |||
265 | /* Write ECC in oob[2,3,4] */ | ||
266 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2], | ||
267 | eccVal & 0xff); /* ECC 12 */ | ||
268 | |||
269 | if (numEccBytes >= 9) | ||
270 | eccVal = readl(®_UMI_BCH_WR_ECC_2); | ||
271 | |||
272 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3], | ||
273 | (eccVal >> 24) & 0xff); /* ECC11 */ | ||
274 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4], | ||
275 | (eccVal >> 16) & 0xff); /* ECC10 */ | ||
276 | |||
277 | /* Always Skip BI in oob[5] */ | ||
278 | } else { | ||
279 | /* Always Skip BI in oob[0] */ | ||
280 | |||
281 | /* Now fill in the ECC bytes */ | ||
282 | if (numEccBytes >= 13) | ||
283 | eccVal = readl(®_UMI_BCH_WR_ECC_3); | ||
284 | |||
285 | /* Usually skip CM in oob[1,2] */ | ||
286 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1], | ||
287 | (eccVal >> 16) & 0xff); | ||
288 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2], | ||
289 | (eccVal >> 8) & 0xff); | ||
290 | |||
291 | /* Write ECC in oob[3-15] */ | ||
292 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3], | ||
293 | eccVal & 0xff); /* ECC12 */ | ||
294 | |||
295 | if (numEccBytes >= 9) | ||
296 | eccVal = readl(®_UMI_BCH_WR_ECC_2); | ||
297 | |||
298 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4], | ||
299 | (eccVal >> 24) & 0xff); /* ECC11 */ | ||
300 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5], | ||
301 | (eccVal >> 16) & 0xff); /* ECC10 */ | ||
302 | } | ||
303 | |||
304 | /* Fill in the remainder of ECC locations */ | ||
305 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6], | ||
306 | (eccVal >> 8) & 0xff); /* ECC9 */ | ||
307 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7], | ||
308 | eccVal & 0xff); /* ECC8 */ | ||
309 | |||
310 | if (numEccBytes >= 5) | ||
311 | eccVal = readl(®_UMI_BCH_WR_ECC_1); | ||
312 | |||
313 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8], | ||
314 | (eccVal >> 24) & 0xff); /* ECC7 */ | ||
315 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9], | ||
316 | (eccVal >> 16) & 0xff); /* ECC6 */ | ||
317 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10], | ||
318 | (eccVal >> 8) & 0xff); /* ECC5 */ | ||
319 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11], | ||
320 | eccVal & 0xff); /* ECC4 */ | ||
321 | |||
322 | if (numEccBytes >= 1) | ||
323 | eccVal = readl(®_UMI_BCH_WR_ECC_0); | ||
324 | |||
325 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12], | ||
326 | (eccVal >> 24) & 0xff); /* ECC3 */ | ||
327 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13], | ||
328 | (eccVal >> 16) & 0xff); /* ECC2 */ | ||
329 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14], | ||
330 | (eccVal >> 8) & 0xff); /* ECC1 */ | ||
331 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15], | ||
332 | eccVal & 0xff); /* ECC0 */ | ||
333 | } | ||
334 | #endif | ||
335 | |||
336 | #endif /* NAND_BCM_UMI_H */ | ||
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c index 621b70b7a159..e3aa2748a6e7 100644 --- a/drivers/mtd/nand/nand_ids.c +++ b/drivers/mtd/nand/nand_ids.c | |||
@@ -70,7 +70,7 @@ struct nand_flash_dev nand_flash_ids[] = { | |||
70 | * These are the new chips with large page size. The pagesize and the | 70 | * These are the new chips with large page size. The pagesize and the |
71 | * erasesize is determined from the extended id bytes | 71 | * erasesize is determined from the extended id bytes |
72 | */ | 72 | */ |
73 | #define LP_OPTIONS (NAND_SAMSUNG_LP_OPTIONS | NAND_NO_READRDY) | 73 | #define LP_OPTIONS NAND_SAMSUNG_LP_OPTIONS |
74 | #define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) | 74 | #define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) |
75 | 75 | ||
76 | /* 512 Megabit */ | 76 | /* 512 Megabit */ |
@@ -157,7 +157,7 @@ struct nand_flash_dev nand_flash_ids[] = { | |||
157 | * writes possible, but not implemented now | 157 | * writes possible, but not implemented now |
158 | */ | 158 | */ |
159 | {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, | 159 | {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, |
160 | NAND_IS_AND | NAND_NO_READRDY | NAND_4PAGE_ARRAY | BBT_AUTO_REFRESH}, | 160 | NAND_IS_AND | NAND_4PAGE_ARRAY | BBT_AUTO_REFRESH}, |
161 | 161 | ||
162 | {NULL,} | 162 | {NULL,} |
163 | }; | 163 | }; |
@@ -174,8 +174,9 @@ struct nand_manufacturers nand_manuf_ids[] = { | |||
174 | {NAND_MFR_STMICRO, "ST Micro"}, | 174 | {NAND_MFR_STMICRO, "ST Micro"}, |
175 | {NAND_MFR_HYNIX, "Hynix"}, | 175 | {NAND_MFR_HYNIX, "Hynix"}, |
176 | {NAND_MFR_MICRON, "Micron"}, | 176 | {NAND_MFR_MICRON, "Micron"}, |
177 | {NAND_MFR_AMD, "AMD"}, | 177 | {NAND_MFR_AMD, "AMD/Spansion"}, |
178 | {NAND_MFR_MACRONIX, "Macronix"}, | 178 | {NAND_MFR_MACRONIX, "Macronix"}, |
179 | {NAND_MFR_EON, "Eon"}, | ||
179 | {0x0, "Unknown"} | 180 | {0x0, "Unknown"} |
180 | }; | 181 | }; |
181 | 182 | ||
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c index cf0cd3146817..a932c485eb04 100644 --- a/drivers/mtd/nand/nandsim.c +++ b/drivers/mtd/nand/nandsim.c | |||
@@ -447,8 +447,6 @@ static unsigned int rptwear_cnt = 0; | |||
447 | /* MTD structure for NAND controller */ | 447 | /* MTD structure for NAND controller */ |
448 | static struct mtd_info *nsmtd; | 448 | static struct mtd_info *nsmtd; |
449 | 449 | ||
450 | static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE]; | ||
451 | |||
452 | /* | 450 | /* |
453 | * Allocate array of page pointers, create slab allocation for an array | 451 | * Allocate array of page pointers, create slab allocation for an array |
454 | * and initialize the array by NULL pointers. | 452 | * and initialize the array by NULL pointers. |
@@ -2189,19 +2187,6 @@ static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | |||
2189 | return; | 2187 | return; |
2190 | } | 2188 | } |
2191 | 2189 | ||
2192 | static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) | ||
2193 | { | ||
2194 | ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len); | ||
2195 | |||
2196 | if (!memcmp(buf, &ns_verify_buf[0], len)) { | ||
2197 | NS_DBG("verify_buf: the buffer is OK\n"); | ||
2198 | return 0; | ||
2199 | } else { | ||
2200 | NS_DBG("verify_buf: the buffer is wrong\n"); | ||
2201 | return -EFAULT; | ||
2202 | } | ||
2203 | } | ||
2204 | |||
2205 | /* | 2190 | /* |
2206 | * Module initialization function | 2191 | * Module initialization function |
2207 | */ | 2192 | */ |
@@ -2236,7 +2221,6 @@ static int __init ns_init_module(void) | |||
2236 | chip->dev_ready = ns_device_ready; | 2221 | chip->dev_ready = ns_device_ready; |
2237 | chip->write_buf = ns_nand_write_buf; | 2222 | chip->write_buf = ns_nand_write_buf; |
2238 | chip->read_buf = ns_nand_read_buf; | 2223 | chip->read_buf = ns_nand_read_buf; |
2239 | chip->verify_buf = ns_nand_verify_buf; | ||
2240 | chip->read_word = ns_nand_read_word; | 2224 | chip->read_word = ns_nand_read_word; |
2241 | chip->ecc.mode = NAND_ECC_SOFT; | 2225 | chip->ecc.mode = NAND_ECC_SOFT; |
2242 | /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ | 2226 | /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ |
@@ -2333,6 +2317,7 @@ static int __init ns_init_module(void) | |||
2333 | uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; | 2317 | uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; |
2334 | if (new_size >> overridesize != nsmtd->erasesize) { | 2318 | if (new_size >> overridesize != nsmtd->erasesize) { |
2335 | NS_ERR("overridesize is too big\n"); | 2319 | NS_ERR("overridesize is too big\n"); |
2320 | retval = -EINVAL; | ||
2336 | goto err_exit; | 2321 | goto err_exit; |
2337 | } | 2322 | } |
2338 | /* N.B. This relies on nand_scan not doing anything with the size before we change it */ | 2323 | /* N.B. This relies on nand_scan not doing anything with the size before we change it */ |
diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/ndfc.c index 2b6f632cf274..5fd3f010e3ae 100644 --- a/drivers/mtd/nand/ndfc.c +++ b/drivers/mtd/nand/ndfc.c | |||
@@ -140,18 +140,6 @@ static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | |||
140 | out_be32(ndfc->ndfcbase + NDFC_DATA, *p++); | 140 | out_be32(ndfc->ndfcbase + NDFC_DATA, *p++); |
141 | } | 141 | } |
142 | 142 | ||
143 | static int ndfc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | ||
144 | { | ||
145 | struct nand_chip *chip = mtd->priv; | ||
146 | struct ndfc_controller *ndfc = chip->priv; | ||
147 | uint32_t *p = (uint32_t *) buf; | ||
148 | |||
149 | for(;len > 0; len -= 4) | ||
150 | if (*p++ != in_be32(ndfc->ndfcbase + NDFC_DATA)) | ||
151 | return -EFAULT; | ||
152 | return 0; | ||
153 | } | ||
154 | |||
155 | /* | 143 | /* |
156 | * Initialize chip structure | 144 | * Initialize chip structure |
157 | */ | 145 | */ |
@@ -172,7 +160,6 @@ static int ndfc_chip_init(struct ndfc_controller *ndfc, | |||
172 | chip->controller = &ndfc->ndfc_control; | 160 | chip->controller = &ndfc->ndfc_control; |
173 | chip->read_buf = ndfc_read_buf; | 161 | chip->read_buf = ndfc_read_buf; |
174 | chip->write_buf = ndfc_write_buf; | 162 | chip->write_buf = ndfc_write_buf; |
175 | chip->verify_buf = ndfc_verify_buf; | ||
176 | chip->ecc.correct = nand_correct_data; | 163 | chip->ecc.correct = nand_correct_data; |
177 | chip->ecc.hwctl = ndfc_enable_hwecc; | 164 | chip->ecc.hwctl = ndfc_enable_hwecc; |
178 | chip->ecc.calculate = ndfc_calculate_ecc; | 165 | chip->ecc.calculate = ndfc_calculate_ecc; |
diff --git a/drivers/mtd/nand/nuc900_nand.c b/drivers/mtd/nand/nuc900_nand.c index 8febe46e1105..94dc46bc118c 100644 --- a/drivers/mtd/nand/nuc900_nand.c +++ b/drivers/mtd/nand/nuc900_nand.c | |||
@@ -112,22 +112,6 @@ static void nuc900_nand_write_buf(struct mtd_info *mtd, | |||
112 | write_data_reg(nand, buf[i]); | 112 | write_data_reg(nand, buf[i]); |
113 | } | 113 | } |
114 | 114 | ||
115 | static int nuc900_verify_buf(struct mtd_info *mtd, | ||
116 | const unsigned char *buf, int len) | ||
117 | { | ||
118 | int i; | ||
119 | struct nuc900_nand *nand; | ||
120 | |||
121 | nand = container_of(mtd, struct nuc900_nand, mtd); | ||
122 | |||
123 | for (i = 0; i < len; i++) { | ||
124 | if (buf[i] != (unsigned char)read_data_reg(nand)) | ||
125 | return -EFAULT; | ||
126 | } | ||
127 | |||
128 | return 0; | ||
129 | } | ||
130 | |||
131 | static int nuc900_check_rb(struct nuc900_nand *nand) | 115 | static int nuc900_check_rb(struct nuc900_nand *nand) |
132 | { | 116 | { |
133 | unsigned int val; | 117 | unsigned int val; |
@@ -292,7 +276,6 @@ static int __devinit nuc900_nand_probe(struct platform_device *pdev) | |||
292 | chip->read_byte = nuc900_nand_read_byte; | 276 | chip->read_byte = nuc900_nand_read_byte; |
293 | chip->write_buf = nuc900_nand_write_buf; | 277 | chip->write_buf = nuc900_nand_write_buf; |
294 | chip->read_buf = nuc900_nand_read_buf; | 278 | chip->read_buf = nuc900_nand_read_buf; |
295 | chip->verify_buf = nuc900_verify_buf; | ||
296 | chip->chip_delay = 50; | 279 | chip->chip_delay = 50; |
297 | chip->options = 0; | 280 | chip->options = 0; |
298 | chip->ecc.mode = NAND_ECC_SOFT; | 281 | chip->ecc.mode = NAND_ECC_SOFT; |
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c index fc8111278d12..5b3138620646 100644 --- a/drivers/mtd/nand/omap2.c +++ b/drivers/mtd/nand/omap2.c | |||
@@ -425,7 +425,7 @@ static void omap_nand_dma_callback(void *data) | |||
425 | } | 425 | } |
426 | 426 | ||
427 | /* | 427 | /* |
428 | * omap_nand_dma_transfer: configer and start dma transfer | 428 | * omap_nand_dma_transfer: configure and start dma transfer |
429 | * @mtd: MTD device structure | 429 | * @mtd: MTD device structure |
430 | * @addr: virtual address in RAM of source/destination | 430 | * @addr: virtual address in RAM of source/destination |
431 | * @len: number of data bytes to be transferred | 431 | * @len: number of data bytes to be transferred |
@@ -546,7 +546,7 @@ static void omap_write_buf_dma_pref(struct mtd_info *mtd, | |||
546 | } | 546 | } |
547 | 547 | ||
548 | /* | 548 | /* |
549 | * omap_nand_irq - GMPC irq handler | 549 | * omap_nand_irq - GPMC irq handler |
550 | * @this_irq: gpmc irq number | 550 | * @this_irq: gpmc irq number |
551 | * @dev: omap_nand_info structure pointer is passed here | 551 | * @dev: omap_nand_info structure pointer is passed here |
552 | */ | 552 | */ |
@@ -698,27 +698,6 @@ out_copy: | |||
698 | } | 698 | } |
699 | 699 | ||
700 | /** | 700 | /** |
701 | * omap_verify_buf - Verify chip data against buffer | ||
702 | * @mtd: MTD device structure | ||
703 | * @buf: buffer containing the data to compare | ||
704 | * @len: number of bytes to compare | ||
705 | */ | ||
706 | static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) | ||
707 | { | ||
708 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
709 | mtd); | ||
710 | u16 *p = (u16 *) buf; | ||
711 | |||
712 | len >>= 1; | ||
713 | while (len--) { | ||
714 | if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) | ||
715 | return -EFAULT; | ||
716 | } | ||
717 | |||
718 | return 0; | ||
719 | } | ||
720 | |||
721 | /** | ||
722 | * gen_true_ecc - This function will generate true ECC value | 701 | * gen_true_ecc - This function will generate true ECC value |
723 | * @ecc_buf: buffer to store ecc code | 702 | * @ecc_buf: buffer to store ecc code |
724 | * | 703 | * |
@@ -1326,8 +1305,8 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) | |||
1326 | 1305 | ||
1327 | /* | 1306 | /* |
1328 | * If RDY/BSY line is connected to OMAP then use the omap ready | 1307 | * If RDY/BSY line is connected to OMAP then use the omap ready |
1329 | * funcrtion and the generic nand_wait function which reads the status | 1308 | * function and the generic nand_wait function which reads the status |
1330 | * register after monitoring the RDY/BSY line.Otherwise use a standard | 1309 | * register after monitoring the RDY/BSY line. Otherwise use a standard |
1331 | * chip delay which is slightly more than tR (AC Timing) of the NAND | 1310 | * chip delay which is slightly more than tR (AC Timing) of the NAND |
1332 | * device and read status register until you get a failure or success | 1311 | * device and read status register until you get a failure or success |
1333 | */ | 1312 | */ |
@@ -1428,9 +1407,7 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) | |||
1428 | goto out_release_mem_region; | 1407 | goto out_release_mem_region; |
1429 | } | 1408 | } |
1430 | 1409 | ||
1431 | info->nand.verify_buf = omap_verify_buf; | 1410 | /* select the ecc type */ |
1432 | |||
1433 | /* selsect the ecc type */ | ||
1434 | if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT) | 1411 | if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT) |
1435 | info->nand.ecc.mode = NAND_ECC_SOFT; | 1412 | info->nand.ecc.mode = NAND_ECC_SOFT; |
1436 | else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) || | 1413 | else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) || |
@@ -1536,7 +1513,8 @@ static int omap_nand_remove(struct platform_device *pdev) | |||
1536 | /* Release NAND device, its internal structures and partitions */ | 1513 | /* Release NAND device, its internal structures and partitions */ |
1537 | nand_release(&info->mtd); | 1514 | nand_release(&info->mtd); |
1538 | iounmap(info->nand.IO_ADDR_R); | 1515 | iounmap(info->nand.IO_ADDR_R); |
1539 | kfree(&info->mtd); | 1516 | release_mem_region(info->phys_base, NAND_IO_SIZE); |
1517 | kfree(info); | ||
1540 | return 0; | 1518 | return 0; |
1541 | } | 1519 | } |
1542 | 1520 | ||
diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c index 131b58a133f1..aefaf8cd31ef 100644 --- a/drivers/mtd/nand/orion_nand.c +++ b/drivers/mtd/nand/orion_nand.c | |||
@@ -21,7 +21,6 @@ | |||
21 | #include <linux/err.h> | 21 | #include <linux/err.h> |
22 | #include <asm/io.h> | 22 | #include <asm/io.h> |
23 | #include <asm/sizes.h> | 23 | #include <asm/sizes.h> |
24 | #include <mach/hardware.h> | ||
25 | #include <linux/platform_data/mtd-orion_nand.h> | 24 | #include <linux/platform_data/mtd-orion_nand.h> |
26 | 25 | ||
27 | static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | 26 | static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
diff --git a/drivers/mtd/nand/plat_nand.c b/drivers/mtd/nand/plat_nand.c index 1bcb52040422..a47ee68a0cfa 100644 --- a/drivers/mtd/nand/plat_nand.c +++ b/drivers/mtd/nand/plat_nand.c | |||
@@ -37,6 +37,11 @@ static int __devinit plat_nand_probe(struct platform_device *pdev) | |||
37 | const char **part_types; | 37 | const char **part_types; |
38 | int err = 0; | 38 | int err = 0; |
39 | 39 | ||
40 | if (!pdata) { | ||
41 | dev_err(&pdev->dev, "platform_nand_data is missing\n"); | ||
42 | return -EINVAL; | ||
43 | } | ||
44 | |||
40 | if (pdata->chip.nr_chips < 1) { | 45 | if (pdata->chip.nr_chips < 1) { |
41 | dev_err(&pdev->dev, "invalid number of chips specified\n"); | 46 | dev_err(&pdev->dev, "invalid number of chips specified\n"); |
42 | return -EINVAL; | 47 | return -EINVAL; |
diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c index c45227173efd..37ee75c7bacb 100644 --- a/drivers/mtd/nand/pxa3xx_nand.c +++ b/drivers/mtd/nand/pxa3xx_nand.c | |||
@@ -683,11 +683,13 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, | |||
683 | info->state = STATE_IDLE; | 683 | info->state = STATE_IDLE; |
684 | } | 684 | } |
685 | 685 | ||
686 | static void pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, | 686 | static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, |
687 | struct nand_chip *chip, const uint8_t *buf, int oob_required) | 687 | struct nand_chip *chip, const uint8_t *buf, int oob_required) |
688 | { | 688 | { |
689 | chip->write_buf(mtd, buf, mtd->writesize); | 689 | chip->write_buf(mtd, buf, mtd->writesize); |
690 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 690 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
691 | |||
692 | return 0; | ||
691 | } | 693 | } |
692 | 694 | ||
693 | static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, | 695 | static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, |
@@ -771,12 +773,6 @@ static void pxa3xx_nand_write_buf(struct mtd_info *mtd, | |||
771 | info->buf_start += real_len; | 773 | info->buf_start += real_len; |
772 | } | 774 | } |
773 | 775 | ||
774 | static int pxa3xx_nand_verify_buf(struct mtd_info *mtd, | ||
775 | const uint8_t *buf, int len) | ||
776 | { | ||
777 | return 0; | ||
778 | } | ||
779 | |||
780 | static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) | 776 | static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) |
781 | { | 777 | { |
782 | return; | 778 | return; |
@@ -1007,7 +1003,6 @@ KEEP_CONFIG: | |||
1007 | chip->ecc.size = host->page_size; | 1003 | chip->ecc.size = host->page_size; |
1008 | chip->ecc.strength = 1; | 1004 | chip->ecc.strength = 1; |
1009 | 1005 | ||
1010 | chip->options |= NAND_NO_READRDY; | ||
1011 | if (host->reg_ndcr & NDCR_DWIDTH_M) | 1006 | if (host->reg_ndcr & NDCR_DWIDTH_M) |
1012 | chip->options |= NAND_BUSWIDTH_16; | 1007 | chip->options |= NAND_BUSWIDTH_16; |
1013 | 1008 | ||
@@ -1070,7 +1065,6 @@ static int alloc_nand_resource(struct platform_device *pdev) | |||
1070 | chip->read_byte = pxa3xx_nand_read_byte; | 1065 | chip->read_byte = pxa3xx_nand_read_byte; |
1071 | chip->read_buf = pxa3xx_nand_read_buf; | 1066 | chip->read_buf = pxa3xx_nand_read_buf; |
1072 | chip->write_buf = pxa3xx_nand_write_buf; | 1067 | chip->write_buf = pxa3xx_nand_write_buf; |
1073 | chip->verify_buf = pxa3xx_nand_verify_buf; | ||
1074 | } | 1068 | } |
1075 | 1069 | ||
1076 | spin_lock_init(&chip->controller->lock); | 1070 | spin_lock_init(&chip->controller->lock); |
diff --git a/drivers/mtd/nand/r852.c b/drivers/mtd/nand/r852.c index 8cb627751c9c..4495f8551fa0 100644 --- a/drivers/mtd/nand/r852.c +++ b/drivers/mtd/nand/r852.c | |||
@@ -309,27 +309,6 @@ static uint8_t r852_read_byte(struct mtd_info *mtd) | |||
309 | return r852_read_reg(dev, R852_DATALINE); | 309 | return r852_read_reg(dev, R852_DATALINE); |
310 | } | 310 | } |
311 | 311 | ||
312 | |||
313 | /* | ||
314 | * Readback the buffer to verify it | ||
315 | */ | ||
316 | int r852_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | ||
317 | { | ||
318 | struct r852_device *dev = r852_get_dev(mtd); | ||
319 | |||
320 | /* We can't be sure about anything here... */ | ||
321 | if (dev->card_unstable) | ||
322 | return -1; | ||
323 | |||
324 | /* This will never happen, unless you wired up a nand chip | ||
325 | with > 512 bytes page size to the reader */ | ||
326 | if (len > SM_SECTOR_SIZE) | ||
327 | return 0; | ||
328 | |||
329 | r852_read_buf(mtd, dev->tmp_buffer, len); | ||
330 | return memcmp(buf, dev->tmp_buffer, len); | ||
331 | } | ||
332 | |||
333 | /* | 312 | /* |
334 | * Control several chip lines & send commands | 313 | * Control several chip lines & send commands |
335 | */ | 314 | */ |
@@ -882,7 +861,6 @@ int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) | |||
882 | chip->read_byte = r852_read_byte; | 861 | chip->read_byte = r852_read_byte; |
883 | chip->read_buf = r852_read_buf; | 862 | chip->read_buf = r852_read_buf; |
884 | chip->write_buf = r852_write_buf; | 863 | chip->write_buf = r852_write_buf; |
885 | chip->verify_buf = r852_verify_buf; | ||
886 | 864 | ||
887 | /* ecc */ | 865 | /* ecc */ |
888 | chip->ecc.mode = NAND_ECC_HW_SYNDROME; | 866 | chip->ecc.mode = NAND_ECC_HW_SYNDROME; |
diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c index d8040619ad8d..295e4bedad96 100644 --- a/drivers/mtd/nand/s3c2410.c +++ b/drivers/mtd/nand/s3c2410.c | |||
@@ -21,6 +21,8 @@ | |||
21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
22 | */ | 22 | */ |
23 | 23 | ||
24 | #define pr_fmt(fmt) "nand-s3c2410: " fmt | ||
25 | |||
24 | #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG | 26 | #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG |
25 | #define DEBUG | 27 | #define DEBUG |
26 | #endif | 28 | #endif |
@@ -30,6 +32,7 @@ | |||
30 | #include <linux/init.h> | 32 | #include <linux/init.h> |
31 | #include <linux/kernel.h> | 33 | #include <linux/kernel.h> |
32 | #include <linux/string.h> | 34 | #include <linux/string.h> |
35 | #include <linux/io.h> | ||
33 | #include <linux/ioport.h> | 36 | #include <linux/ioport.h> |
34 | #include <linux/platform_device.h> | 37 | #include <linux/platform_device.h> |
35 | #include <linux/delay.h> | 38 | #include <linux/delay.h> |
@@ -43,24 +46,9 @@ | |||
43 | #include <linux/mtd/nand_ecc.h> | 46 | #include <linux/mtd/nand_ecc.h> |
44 | #include <linux/mtd/partitions.h> | 47 | #include <linux/mtd/partitions.h> |
45 | 48 | ||
46 | #include <asm/io.h> | ||
47 | |||
48 | #include <plat/regs-nand.h> | 49 | #include <plat/regs-nand.h> |
49 | #include <linux/platform_data/mtd-nand-s3c2410.h> | 50 | #include <linux/platform_data/mtd-nand-s3c2410.h> |
50 | 51 | ||
51 | #ifdef CONFIG_MTD_NAND_S3C2410_HWECC | ||
52 | static int hardware_ecc = 1; | ||
53 | #else | ||
54 | static int hardware_ecc = 0; | ||
55 | #endif | ||
56 | |||
57 | #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP | ||
58 | static const int clock_stop = 1; | ||
59 | #else | ||
60 | static const int clock_stop = 0; | ||
61 | #endif | ||
62 | |||
63 | |||
64 | /* new oob placement block for use with hardware ecc generation | 52 | /* new oob placement block for use with hardware ecc generation |
65 | */ | 53 | */ |
66 | 54 | ||
@@ -109,9 +97,8 @@ enum s3c_nand_clk_state { | |||
109 | * @mtds: An array of MTD instances on this controoler. | 97 | * @mtds: An array of MTD instances on this controoler. |
110 | * @platform: The platform data for this board. | 98 | * @platform: The platform data for this board. |
111 | * @device: The platform device we bound to. | 99 | * @device: The platform device we bound to. |
112 | * @area: The IO area resource that came from request_mem_region(). | ||
113 | * @clk: The clock resource for this controller. | 100 | * @clk: The clock resource for this controller. |
114 | * @regs: The area mapped for the hardware registers described by @area. | 101 | * @regs: The area mapped for the hardware registers. |
115 | * @sel_reg: Pointer to the register controlling the NAND selection. | 102 | * @sel_reg: Pointer to the register controlling the NAND selection. |
116 | * @sel_bit: The bit in @sel_reg to select the NAND chip. | 103 | * @sel_bit: The bit in @sel_reg to select the NAND chip. |
117 | * @mtd_count: The number of MTDs created from this controller. | 104 | * @mtd_count: The number of MTDs created from this controller. |
@@ -128,7 +115,6 @@ struct s3c2410_nand_info { | |||
128 | 115 | ||
129 | /* device info */ | 116 | /* device info */ |
130 | struct device *device; | 117 | struct device *device; |
131 | struct resource *area; | ||
132 | struct clk *clk; | 118 | struct clk *clk; |
133 | void __iomem *regs; | 119 | void __iomem *regs; |
134 | void __iomem *sel_reg; | 120 | void __iomem *sel_reg; |
@@ -169,7 +155,11 @@ static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) | |||
169 | 155 | ||
170 | static inline int allow_clk_suspend(struct s3c2410_nand_info *info) | 156 | static inline int allow_clk_suspend(struct s3c2410_nand_info *info) |
171 | { | 157 | { |
172 | return clock_stop; | 158 | #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP |
159 | return 1; | ||
160 | #else | ||
161 | return 0; | ||
162 | #endif | ||
173 | } | 163 | } |
174 | 164 | ||
175 | /** | 165 | /** |
@@ -215,7 +205,8 @@ static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) | |||
215 | pr_debug("result %d from %ld, %d\n", result, clk, wanted); | 205 | pr_debug("result %d from %ld, %d\n", result, clk, wanted); |
216 | 206 | ||
217 | if (result > max) { | 207 | if (result > max) { |
218 | printk("%d ns is too big for current clock rate %ld\n", wanted, clk); | 208 | pr_err("%d ns is too big for current clock rate %ld\n", |
209 | wanted, clk); | ||
219 | return -1; | 210 | return -1; |
220 | } | 211 | } |
221 | 212 | ||
@@ -225,7 +216,7 @@ static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) | |||
225 | return result; | 216 | return result; |
226 | } | 217 | } |
227 | 218 | ||
228 | #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) | 219 | #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) |
229 | 220 | ||
230 | /* controller setup */ | 221 | /* controller setup */ |
231 | 222 | ||
@@ -268,7 +259,8 @@ static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) | |||
268 | } | 259 | } |
269 | 260 | ||
270 | dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", | 261 | dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", |
271 | tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate)); | 262 | tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), |
263 | twrph1, to_ns(twrph1, clkrate)); | ||
272 | 264 | ||
273 | switch (info->cpu_type) { | 265 | switch (info->cpu_type) { |
274 | case TYPE_S3C2410: | 266 | case TYPE_S3C2410: |
@@ -325,13 +317,13 @@ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) | |||
325 | if (ret < 0) | 317 | if (ret < 0) |
326 | return ret; | 318 | return ret; |
327 | 319 | ||
328 | switch (info->cpu_type) { | 320 | switch (info->cpu_type) { |
329 | case TYPE_S3C2410: | 321 | case TYPE_S3C2410: |
330 | default: | 322 | default: |
331 | break; | 323 | break; |
332 | 324 | ||
333 | case TYPE_S3C2440: | 325 | case TYPE_S3C2440: |
334 | case TYPE_S3C2412: | 326 | case TYPE_S3C2412: |
335 | /* enable the controller and de-assert nFCE */ | 327 | /* enable the controller and de-assert nFCE */ |
336 | 328 | ||
337 | writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); | 329 | writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); |
@@ -450,6 +442,7 @@ static int s3c2412_nand_devready(struct mtd_info *mtd) | |||
450 | 442 | ||
451 | /* ECC handling functions */ | 443 | /* ECC handling functions */ |
452 | 444 | ||
445 | #ifdef CONFIG_MTD_NAND_S3C2410_HWECC | ||
453 | static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, | 446 | static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, |
454 | u_char *read_ecc, u_char *calc_ecc) | 447 | u_char *read_ecc, u_char *calc_ecc) |
455 | { | 448 | { |
@@ -463,10 +456,8 @@ static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, | |||
463 | diff1 = read_ecc[1] ^ calc_ecc[1]; | 456 | diff1 = read_ecc[1] ^ calc_ecc[1]; |
464 | diff2 = read_ecc[2] ^ calc_ecc[2]; | 457 | diff2 = read_ecc[2] ^ calc_ecc[2]; |
465 | 458 | ||
466 | pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n", | 459 | pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n", |
467 | __func__, | 460 | __func__, 3, read_ecc, 3, calc_ecc, |
468 | read_ecc[0], read_ecc[1], read_ecc[2], | ||
469 | calc_ecc[0], calc_ecc[1], calc_ecc[2], | ||
470 | diff0, diff1, diff2); | 461 | diff0, diff1, diff2); |
471 | 462 | ||
472 | if (diff0 == 0 && diff1 == 0 && diff2 == 0) | 463 | if (diff0 == 0 && diff1 == 0 && diff2 == 0) |
@@ -546,7 +537,8 @@ static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode) | |||
546 | unsigned long ctrl; | 537 | unsigned long ctrl; |
547 | 538 | ||
548 | ctrl = readl(info->regs + S3C2440_NFCONT); | 539 | ctrl = readl(info->regs + S3C2440_NFCONT); |
549 | writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT); | 540 | writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, |
541 | info->regs + S3C2440_NFCONT); | ||
550 | } | 542 | } |
551 | 543 | ||
552 | static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) | 544 | static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) |
@@ -558,7 +550,8 @@ static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) | |||
558 | writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); | 550 | writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); |
559 | } | 551 | } |
560 | 552 | ||
561 | static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 553 | static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
554 | u_char *ecc_code) | ||
562 | { | 555 | { |
563 | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 556 | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
564 | 557 | ||
@@ -566,13 +559,13 @@ static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u | |||
566 | ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); | 559 | ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); |
567 | ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); | 560 | ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); |
568 | 561 | ||
569 | pr_debug("%s: returning ecc %02x%02x%02x\n", __func__, | 562 | pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); |
570 | ecc_code[0], ecc_code[1], ecc_code[2]); | ||
571 | 563 | ||
572 | return 0; | 564 | return 0; |
573 | } | 565 | } |
574 | 566 | ||
575 | static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 567 | static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
568 | u_char *ecc_code) | ||
576 | { | 569 | { |
577 | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 570 | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
578 | unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); | 571 | unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); |
@@ -581,12 +574,13 @@ static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u | |||
581 | ecc_code[1] = ecc >> 8; | 574 | ecc_code[1] = ecc >> 8; |
582 | ecc_code[2] = ecc >> 16; | 575 | ecc_code[2] = ecc >> 16; |
583 | 576 | ||
584 | pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]); | 577 | pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); |
585 | 578 | ||
586 | return 0; | 579 | return 0; |
587 | } | 580 | } |
588 | 581 | ||
589 | static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 582 | static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
583 | u_char *ecc_code) | ||
590 | { | 584 | { |
591 | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 585 | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
592 | unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); | 586 | unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); |
@@ -599,6 +593,7 @@ static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u | |||
599 | 593 | ||
600 | return 0; | 594 | return 0; |
601 | } | 595 | } |
596 | #endif | ||
602 | 597 | ||
603 | /* over-ride the standard functions for a little more speed. We can | 598 | /* over-ride the standard functions for a little more speed. We can |
604 | * use read/write block to move the data buffers to/from the controller | 599 | * use read/write block to move the data buffers to/from the controller |
@@ -625,13 +620,15 @@ static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | |||
625 | } | 620 | } |
626 | } | 621 | } |
627 | 622 | ||
628 | static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) | 623 | static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, |
624 | int len) | ||
629 | { | 625 | { |
630 | struct nand_chip *this = mtd->priv; | 626 | struct nand_chip *this = mtd->priv; |
631 | writesb(this->IO_ADDR_W, buf, len); | 627 | writesb(this->IO_ADDR_W, buf, len); |
632 | } | 628 | } |
633 | 629 | ||
634 | static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) | 630 | static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, |
631 | int len) | ||
635 | { | 632 | { |
636 | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 633 | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
637 | 634 | ||
@@ -675,7 +672,8 @@ static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) | |||
675 | CPUFREQ_TRANSITION_NOTIFIER); | 672 | CPUFREQ_TRANSITION_NOTIFIER); |
676 | } | 673 | } |
677 | 674 | ||
678 | static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) | 675 | static inline void |
676 | s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) | ||
679 | { | 677 | { |
680 | cpufreq_unregister_notifier(&info->freq_transition, | 678 | cpufreq_unregister_notifier(&info->freq_transition, |
681 | CPUFREQ_TRANSITION_NOTIFIER); | 679 | CPUFREQ_TRANSITION_NOTIFIER); |
@@ -687,7 +685,8 @@ static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) | |||
687 | return 0; | 685 | return 0; |
688 | } | 686 | } |
689 | 687 | ||
690 | static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) | 688 | static inline void |
689 | s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) | ||
691 | { | 690 | { |
692 | } | 691 | } |
693 | #endif | 692 | #endif |
@@ -717,29 +716,12 @@ static int s3c24xx_nand_remove(struct platform_device *pdev) | |||
717 | pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); | 716 | pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); |
718 | nand_release(&ptr->mtd); | 717 | nand_release(&ptr->mtd); |
719 | } | 718 | } |
720 | |||
721 | kfree(info->mtds); | ||
722 | } | 719 | } |
723 | 720 | ||
724 | /* free the common resources */ | 721 | /* free the common resources */ |
725 | 722 | ||
726 | if (!IS_ERR(info->clk)) { | 723 | if (!IS_ERR(info->clk)) |
727 | s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); | 724 | s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); |
728 | clk_put(info->clk); | ||
729 | } | ||
730 | |||
731 | if (info->regs != NULL) { | ||
732 | iounmap(info->regs); | ||
733 | info->regs = NULL; | ||
734 | } | ||
735 | |||
736 | if (info->area != NULL) { | ||
737 | release_resource(info->area); | ||
738 | kfree(info->area); | ||
739 | info->area = NULL; | ||
740 | } | ||
741 | |||
742 | kfree(info); | ||
743 | 725 | ||
744 | return 0; | 726 | return 0; |
745 | } | 727 | } |
@@ -810,7 +792,7 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, | |||
810 | dev_info(info->device, "System booted from NAND\n"); | 792 | dev_info(info->device, "System booted from NAND\n"); |
811 | 793 | ||
812 | break; | 794 | break; |
813 | } | 795 | } |
814 | 796 | ||
815 | chip->IO_ADDR_R = chip->IO_ADDR_W; | 797 | chip->IO_ADDR_R = chip->IO_ADDR_W; |
816 | 798 | ||
@@ -819,32 +801,31 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, | |||
819 | nmtd->mtd.owner = THIS_MODULE; | 801 | nmtd->mtd.owner = THIS_MODULE; |
820 | nmtd->set = set; | 802 | nmtd->set = set; |
821 | 803 | ||
822 | if (hardware_ecc) { | 804 | #ifdef CONFIG_MTD_NAND_S3C2410_HWECC |
805 | chip->ecc.calculate = s3c2410_nand_calculate_ecc; | ||
806 | chip->ecc.correct = s3c2410_nand_correct_data; | ||
807 | chip->ecc.mode = NAND_ECC_HW; | ||
808 | chip->ecc.strength = 1; | ||
809 | |||
810 | switch (info->cpu_type) { | ||
811 | case TYPE_S3C2410: | ||
812 | chip->ecc.hwctl = s3c2410_nand_enable_hwecc; | ||
823 | chip->ecc.calculate = s3c2410_nand_calculate_ecc; | 813 | chip->ecc.calculate = s3c2410_nand_calculate_ecc; |
824 | chip->ecc.correct = s3c2410_nand_correct_data; | 814 | break; |
825 | chip->ecc.mode = NAND_ECC_HW; | ||
826 | chip->ecc.strength = 1; | ||
827 | |||
828 | switch (info->cpu_type) { | ||
829 | case TYPE_S3C2410: | ||
830 | chip->ecc.hwctl = s3c2410_nand_enable_hwecc; | ||
831 | chip->ecc.calculate = s3c2410_nand_calculate_ecc; | ||
832 | break; | ||
833 | |||
834 | case TYPE_S3C2412: | ||
835 | chip->ecc.hwctl = s3c2412_nand_enable_hwecc; | ||
836 | chip->ecc.calculate = s3c2412_nand_calculate_ecc; | ||
837 | break; | ||
838 | |||
839 | case TYPE_S3C2440: | ||
840 | chip->ecc.hwctl = s3c2440_nand_enable_hwecc; | ||
841 | chip->ecc.calculate = s3c2440_nand_calculate_ecc; | ||
842 | break; | ||
843 | 815 | ||
844 | } | 816 | case TYPE_S3C2412: |
845 | } else { | 817 | chip->ecc.hwctl = s3c2412_nand_enable_hwecc; |
846 | chip->ecc.mode = NAND_ECC_SOFT; | 818 | chip->ecc.calculate = s3c2412_nand_calculate_ecc; |
819 | break; | ||
820 | |||
821 | case TYPE_S3C2440: | ||
822 | chip->ecc.hwctl = s3c2440_nand_enable_hwecc; | ||
823 | chip->ecc.calculate = s3c2440_nand_calculate_ecc; | ||
824 | break; | ||
847 | } | 825 | } |
826 | #else | ||
827 | chip->ecc.mode = NAND_ECC_SOFT; | ||
828 | #endif | ||
848 | 829 | ||
849 | if (set->ecc_layout != NULL) | 830 | if (set->ecc_layout != NULL) |
850 | chip->ecc.layout = set->ecc_layout; | 831 | chip->ecc.layout = set->ecc_layout; |
@@ -921,7 +902,7 @@ static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info, | |||
921 | static int s3c24xx_nand_probe(struct platform_device *pdev) | 902 | static int s3c24xx_nand_probe(struct platform_device *pdev) |
922 | { | 903 | { |
923 | struct s3c2410_platform_nand *plat = to_nand_plat(pdev); | 904 | struct s3c2410_platform_nand *plat = to_nand_plat(pdev); |
924 | enum s3c_cpu_type cpu_type; | 905 | enum s3c_cpu_type cpu_type; |
925 | struct s3c2410_nand_info *info; | 906 | struct s3c2410_nand_info *info; |
926 | struct s3c2410_nand_mtd *nmtd; | 907 | struct s3c2410_nand_mtd *nmtd; |
927 | struct s3c2410_nand_set *sets; | 908 | struct s3c2410_nand_set *sets; |
@@ -935,7 +916,7 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) | |||
935 | 916 | ||
936 | pr_debug("s3c2410_nand_probe(%p)\n", pdev); | 917 | pr_debug("s3c2410_nand_probe(%p)\n", pdev); |
937 | 918 | ||
938 | info = kzalloc(sizeof(*info), GFP_KERNEL); | 919 | info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); |
939 | if (info == NULL) { | 920 | if (info == NULL) { |
940 | dev_err(&pdev->dev, "no memory for flash info\n"); | 921 | dev_err(&pdev->dev, "no memory for flash info\n"); |
941 | err = -ENOMEM; | 922 | err = -ENOMEM; |
@@ -949,7 +930,7 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) | |||
949 | 930 | ||
950 | /* get the clock source and enable it */ | 931 | /* get the clock source and enable it */ |
951 | 932 | ||
952 | info->clk = clk_get(&pdev->dev, "nand"); | 933 | info->clk = devm_clk_get(&pdev->dev, "nand"); |
953 | if (IS_ERR(info->clk)) { | 934 | if (IS_ERR(info->clk)) { |
954 | dev_err(&pdev->dev, "failed to get clock\n"); | 935 | dev_err(&pdev->dev, "failed to get clock\n"); |
955 | err = -ENOENT; | 936 | err = -ENOENT; |
@@ -961,22 +942,14 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) | |||
961 | /* allocate and map the resource */ | 942 | /* allocate and map the resource */ |
962 | 943 | ||
963 | /* currently we assume we have the one resource */ | 944 | /* currently we assume we have the one resource */ |
964 | res = pdev->resource; | 945 | res = pdev->resource; |
965 | size = resource_size(res); | 946 | size = resource_size(res); |
966 | 947 | ||
967 | info->area = request_mem_region(res->start, size, pdev->name); | 948 | info->device = &pdev->dev; |
968 | 949 | info->platform = plat; | |
969 | if (info->area == NULL) { | 950 | info->cpu_type = cpu_type; |
970 | dev_err(&pdev->dev, "cannot reserve register region\n"); | ||
971 | err = -ENOENT; | ||
972 | goto exit_error; | ||
973 | } | ||
974 | |||
975 | info->device = &pdev->dev; | ||
976 | info->platform = plat; | ||
977 | info->regs = ioremap(res->start, size); | ||
978 | info->cpu_type = cpu_type; | ||
979 | 951 | ||
952 | info->regs = devm_request_and_ioremap(&pdev->dev, res); | ||
980 | if (info->regs == NULL) { | 953 | if (info->regs == NULL) { |
981 | dev_err(&pdev->dev, "cannot reserve register region\n"); | 954 | dev_err(&pdev->dev, "cannot reserve register region\n"); |
982 | err = -EIO; | 955 | err = -EIO; |
@@ -999,7 +972,7 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) | |||
999 | /* allocate our information */ | 972 | /* allocate our information */ |
1000 | 973 | ||
1001 | size = nr_sets * sizeof(*info->mtds); | 974 | size = nr_sets * sizeof(*info->mtds); |
1002 | info->mtds = kzalloc(size, GFP_KERNEL); | 975 | info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); |
1003 | if (info->mtds == NULL) { | 976 | if (info->mtds == NULL) { |
1004 | dev_err(&pdev->dev, "failed to allocate mtd storage\n"); | 977 | dev_err(&pdev->dev, "failed to allocate mtd storage\n"); |
1005 | err = -ENOMEM; | 978 | err = -ENOMEM; |
@@ -1011,7 +984,8 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) | |||
1011 | nmtd = info->mtds; | 984 | nmtd = info->mtds; |
1012 | 985 | ||
1013 | for (setno = 0; setno < nr_sets; setno++, nmtd++) { | 986 | for (setno = 0; setno < nr_sets; setno++, nmtd++) { |
1014 | pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info); | 987 | pr_debug("initialising set %d (%p, info %p)\n", |
988 | setno, nmtd, info); | ||
1015 | 989 | ||
1016 | s3c2410_nand_init_chip(info, nmtd, sets); | 990 | s3c2410_nand_init_chip(info, nmtd, sets); |
1017 | 991 | ||
@@ -1134,20 +1108,7 @@ static struct platform_driver s3c24xx_nand_driver = { | |||
1134 | }, | 1108 | }, |
1135 | }; | 1109 | }; |
1136 | 1110 | ||
1137 | static int __init s3c2410_nand_init(void) | 1111 | module_platform_driver(s3c24xx_nand_driver); |
1138 | { | ||
1139 | printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n"); | ||
1140 | |||
1141 | return platform_driver_register(&s3c24xx_nand_driver); | ||
1142 | } | ||
1143 | |||
1144 | static void __exit s3c2410_nand_exit(void) | ||
1145 | { | ||
1146 | platform_driver_unregister(&s3c24xx_nand_driver); | ||
1147 | } | ||
1148 | |||
1149 | module_init(s3c2410_nand_init); | ||
1150 | module_exit(s3c2410_nand_exit); | ||
1151 | 1112 | ||
1152 | MODULE_LICENSE("GPL"); | 1113 | MODULE_LICENSE("GPL"); |
1153 | MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); | 1114 | MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); |
diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/sh_flctl.c index aa9b8a5e0b8f..4fbfe96e37a1 100644 --- a/drivers/mtd/nand/sh_flctl.c +++ b/drivers/mtd/nand/sh_flctl.c | |||
@@ -24,10 +24,12 @@ | |||
24 | #include <linux/module.h> | 24 | #include <linux/module.h> |
25 | #include <linux/kernel.h> | 25 | #include <linux/kernel.h> |
26 | #include <linux/delay.h> | 26 | #include <linux/delay.h> |
27 | #include <linux/interrupt.h> | ||
27 | #include <linux/io.h> | 28 | #include <linux/io.h> |
28 | #include <linux/platform_device.h> | 29 | #include <linux/platform_device.h> |
29 | #include <linux/pm_runtime.h> | 30 | #include <linux/pm_runtime.h> |
30 | #include <linux/slab.h> | 31 | #include <linux/slab.h> |
32 | #include <linux/string.h> | ||
31 | 33 | ||
32 | #include <linux/mtd/mtd.h> | 34 | #include <linux/mtd/mtd.h> |
33 | #include <linux/mtd/nand.h> | 35 | #include <linux/mtd/nand.h> |
@@ -43,11 +45,17 @@ static struct nand_ecclayout flctl_4secc_oob_16 = { | |||
43 | }; | 45 | }; |
44 | 46 | ||
45 | static struct nand_ecclayout flctl_4secc_oob_64 = { | 47 | static struct nand_ecclayout flctl_4secc_oob_64 = { |
46 | .eccbytes = 10, | 48 | .eccbytes = 4 * 10, |
47 | .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57}, | 49 | .eccpos = { |
50 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | ||
51 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | ||
52 | 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | ||
53 | 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, | ||
48 | .oobfree = { | 54 | .oobfree = { |
49 | {.offset = 60, | 55 | {.offset = 2, .length = 4}, |
50 | . length = 4} }, | 56 | {.offset = 16, .length = 6}, |
57 | {.offset = 32, .length = 6}, | ||
58 | {.offset = 48, .length = 6} }, | ||
51 | }; | 59 | }; |
52 | 60 | ||
53 | static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; | 61 | static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; |
@@ -61,15 +69,15 @@ static struct nand_bbt_descr flctl_4secc_smallpage = { | |||
61 | 69 | ||
62 | static struct nand_bbt_descr flctl_4secc_largepage = { | 70 | static struct nand_bbt_descr flctl_4secc_largepage = { |
63 | .options = NAND_BBT_SCAN2NDPAGE, | 71 | .options = NAND_BBT_SCAN2NDPAGE, |
64 | .offs = 58, | 72 | .offs = 0, |
65 | .len = 2, | 73 | .len = 2, |
66 | .pattern = scan_ff_pattern, | 74 | .pattern = scan_ff_pattern, |
67 | }; | 75 | }; |
68 | 76 | ||
69 | static void empty_fifo(struct sh_flctl *flctl) | 77 | static void empty_fifo(struct sh_flctl *flctl) |
70 | { | 78 | { |
71 | writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */ | 79 | writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl)); |
72 | writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */ | 80 | writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); |
73 | } | 81 | } |
74 | 82 | ||
75 | static void start_translation(struct sh_flctl *flctl) | 83 | static void start_translation(struct sh_flctl *flctl) |
@@ -158,27 +166,56 @@ static void wait_wfifo_ready(struct sh_flctl *flctl) | |||
158 | timeout_error(flctl, __func__); | 166 | timeout_error(flctl, __func__); |
159 | } | 167 | } |
160 | 168 | ||
161 | static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number) | 169 | static enum flctl_ecc_res_t wait_recfifo_ready |
170 | (struct sh_flctl *flctl, int sector_number) | ||
162 | { | 171 | { |
163 | uint32_t timeout = LOOP_TIMEOUT_MAX; | 172 | uint32_t timeout = LOOP_TIMEOUT_MAX; |
164 | int checked[4]; | ||
165 | void __iomem *ecc_reg[4]; | 173 | void __iomem *ecc_reg[4]; |
166 | int i; | 174 | int i; |
175 | int state = FL_SUCCESS; | ||
167 | uint32_t data, size; | 176 | uint32_t data, size; |
168 | 177 | ||
169 | memset(checked, 0, sizeof(checked)); | 178 | /* |
170 | 179 | * First this loops checks in FLDTCNTR if we are ready to read out the | |
180 | * oob data. This is the case if either all went fine without errors or | ||
181 | * if the bottom part of the loop corrected the errors or marked them as | ||
182 | * uncorrectable and the controller is given time to push the data into | ||
183 | * the FIFO. | ||
184 | */ | ||
171 | while (timeout--) { | 185 | while (timeout--) { |
186 | /* check if all is ok and we can read out the OOB */ | ||
172 | size = readl(FLDTCNTR(flctl)) >> 24; | 187 | size = readl(FLDTCNTR(flctl)) >> 24; |
173 | if (size & 0xFF) | 188 | if ((size & 0xFF) == 4) |
174 | return 0; /* success */ | 189 | return state; |
190 | |||
191 | /* check if a correction code has been calculated */ | ||
192 | if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) { | ||
193 | /* | ||
194 | * either we wait for the fifo to be filled or a | ||
195 | * correction pattern is being generated | ||
196 | */ | ||
197 | udelay(1); | ||
198 | continue; | ||
199 | } | ||
175 | 200 | ||
176 | if (readl(FL4ECCCR(flctl)) & _4ECCFA) | 201 | /* check for an uncorrectable error */ |
177 | return 1; /* can't correct */ | 202 | if (readl(FL4ECCCR(flctl)) & _4ECCFA) { |
203 | /* check if we face a non-empty page */ | ||
204 | for (i = 0; i < 512; i++) { | ||
205 | if (flctl->done_buff[i] != 0xff) { | ||
206 | state = FL_ERROR; /* can't correct */ | ||
207 | break; | ||
208 | } | ||
209 | } | ||
178 | 210 | ||
179 | udelay(1); | 211 | if (state == FL_SUCCESS) |
180 | if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) | 212 | dev_dbg(&flctl->pdev->dev, |
213 | "reading empty sector %d, ecc error ignored\n", | ||
214 | sector_number); | ||
215 | |||
216 | writel(0, FL4ECCCR(flctl)); | ||
181 | continue; | 217 | continue; |
218 | } | ||
182 | 219 | ||
183 | /* start error correction */ | 220 | /* start error correction */ |
184 | ecc_reg[0] = FL4ECCRESULT0(flctl); | 221 | ecc_reg[0] = FL4ECCRESULT0(flctl); |
@@ -187,28 +224,26 @@ static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number) | |||
187 | ecc_reg[3] = FL4ECCRESULT3(flctl); | 224 | ecc_reg[3] = FL4ECCRESULT3(flctl); |
188 | 225 | ||
189 | for (i = 0; i < 3; i++) { | 226 | for (i = 0; i < 3; i++) { |
227 | uint8_t org; | ||
228 | int index; | ||
229 | |||
190 | data = readl(ecc_reg[i]); | 230 | data = readl(ecc_reg[i]); |
191 | if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) { | ||
192 | uint8_t org; | ||
193 | int index; | ||
194 | |||
195 | if (flctl->page_size) | ||
196 | index = (512 * sector_number) + | ||
197 | (data >> 16); | ||
198 | else | ||
199 | index = data >> 16; | ||
200 | |||
201 | org = flctl->done_buff[index]; | ||
202 | flctl->done_buff[index] = org ^ (data & 0xFF); | ||
203 | checked[i] = 1; | ||
204 | } | ||
205 | } | ||
206 | 231 | ||
232 | if (flctl->page_size) | ||
233 | index = (512 * sector_number) + | ||
234 | (data >> 16); | ||
235 | else | ||
236 | index = data >> 16; | ||
237 | |||
238 | org = flctl->done_buff[index]; | ||
239 | flctl->done_buff[index] = org ^ (data & 0xFF); | ||
240 | } | ||
241 | state = FL_REPAIRABLE; | ||
207 | writel(0, FL4ECCCR(flctl)); | 242 | writel(0, FL4ECCCR(flctl)); |
208 | } | 243 | } |
209 | 244 | ||
210 | timeout_error(flctl, __func__); | 245 | timeout_error(flctl, __func__); |
211 | return 1; /* timeout */ | 246 | return FL_TIMEOUT; /* timeout */ |
212 | } | 247 | } |
213 | 248 | ||
214 | static void wait_wecfifo_ready(struct sh_flctl *flctl) | 249 | static void wait_wecfifo_ready(struct sh_flctl *flctl) |
@@ -241,31 +276,33 @@ static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) | |||
241 | { | 276 | { |
242 | int i, len_4align; | 277 | int i, len_4align; |
243 | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; | 278 | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; |
244 | void *fifo_addr = (void *)FLDTFIFO(flctl); | ||
245 | 279 | ||
246 | len_4align = (rlen + 3) / 4; | 280 | len_4align = (rlen + 3) / 4; |
247 | 281 | ||
248 | for (i = 0; i < len_4align; i++) { | 282 | for (i = 0; i < len_4align; i++) { |
249 | wait_rfifo_ready(flctl); | 283 | wait_rfifo_ready(flctl); |
250 | buf[i] = readl(fifo_addr); | 284 | buf[i] = readl(FLDTFIFO(flctl)); |
251 | buf[i] = be32_to_cpu(buf[i]); | 285 | buf[i] = be32_to_cpu(buf[i]); |
252 | } | 286 | } |
253 | } | 287 | } |
254 | 288 | ||
255 | static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff, int sector) | 289 | static enum flctl_ecc_res_t read_ecfiforeg |
290 | (struct sh_flctl *flctl, uint8_t *buff, int sector) | ||
256 | { | 291 | { |
257 | int i; | 292 | int i; |
293 | enum flctl_ecc_res_t res; | ||
258 | unsigned long *ecc_buf = (unsigned long *)buff; | 294 | unsigned long *ecc_buf = (unsigned long *)buff; |
259 | void *fifo_addr = (void *)FLECFIFO(flctl); | ||
260 | 295 | ||
261 | for (i = 0; i < 4; i++) { | 296 | res = wait_recfifo_ready(flctl , sector); |
262 | if (wait_recfifo_ready(flctl , sector)) | 297 | |
263 | return 1; | 298 | if (res != FL_ERROR) { |
264 | ecc_buf[i] = readl(fifo_addr); | 299 | for (i = 0; i < 4; i++) { |
265 | ecc_buf[i] = be32_to_cpu(ecc_buf[i]); | 300 | ecc_buf[i] = readl(FLECFIFO(flctl)); |
301 | ecc_buf[i] = be32_to_cpu(ecc_buf[i]); | ||
302 | } | ||
266 | } | 303 | } |
267 | 304 | ||
268 | return 0; | 305 | return res; |
269 | } | 306 | } |
270 | 307 | ||
271 | static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset) | 308 | static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset) |
@@ -281,6 +318,18 @@ static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset) | |||
281 | } | 318 | } |
282 | } | 319 | } |
283 | 320 | ||
321 | static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, int offset) | ||
322 | { | ||
323 | int i, len_4align; | ||
324 | unsigned long *data = (unsigned long *)&flctl->done_buff[offset]; | ||
325 | |||
326 | len_4align = (rlen + 3) / 4; | ||
327 | for (i = 0; i < len_4align; i++) { | ||
328 | wait_wecfifo_ready(flctl); | ||
329 | writel(cpu_to_be32(data[i]), FLECFIFO(flctl)); | ||
330 | } | ||
331 | } | ||
332 | |||
284 | static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) | 333 | static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) |
285 | { | 334 | { |
286 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 335 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
@@ -346,73 +395,65 @@ static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_va | |||
346 | static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 395 | static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
347 | uint8_t *buf, int oob_required, int page) | 396 | uint8_t *buf, int oob_required, int page) |
348 | { | 397 | { |
349 | int i, eccsize = chip->ecc.size; | 398 | chip->read_buf(mtd, buf, mtd->writesize); |
350 | int eccbytes = chip->ecc.bytes; | 399 | if (oob_required) |
351 | int eccsteps = chip->ecc.steps; | 400 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
352 | uint8_t *p = buf; | ||
353 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | ||
354 | |||
355 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) | ||
356 | chip->read_buf(mtd, p, eccsize); | ||
357 | |||
358 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | ||
359 | if (flctl->hwecc_cant_correct[i]) | ||
360 | mtd->ecc_stats.failed++; | ||
361 | else | ||
362 | mtd->ecc_stats.corrected += 0; /* FIXME */ | ||
363 | } | ||
364 | |||
365 | return 0; | 401 | return 0; |
366 | } | 402 | } |
367 | 403 | ||
368 | static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 404 | static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
369 | const uint8_t *buf, int oob_required) | 405 | const uint8_t *buf, int oob_required) |
370 | { | 406 | { |
371 | int i, eccsize = chip->ecc.size; | 407 | chip->write_buf(mtd, buf, mtd->writesize); |
372 | int eccbytes = chip->ecc.bytes; | 408 | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
373 | int eccsteps = chip->ecc.steps; | 409 | return 0; |
374 | const uint8_t *p = buf; | ||
375 | |||
376 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) | ||
377 | chip->write_buf(mtd, p, eccsize); | ||
378 | } | 410 | } |
379 | 411 | ||
380 | static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) | 412 | static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) |
381 | { | 413 | { |
382 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 414 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
383 | int sector, page_sectors; | 415 | int sector, page_sectors; |
416 | enum flctl_ecc_res_t ecc_result; | ||
384 | 417 | ||
385 | if (flctl->page_size) | 418 | page_sectors = flctl->page_size ? 4 : 1; |
386 | page_sectors = 4; | ||
387 | else | ||
388 | page_sectors = 1; | ||
389 | |||
390 | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, | ||
391 | FLCMNCR(flctl)); | ||
392 | 419 | ||
393 | set_cmd_regs(mtd, NAND_CMD_READ0, | 420 | set_cmd_regs(mtd, NAND_CMD_READ0, |
394 | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); | 421 | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); |
395 | 422 | ||
396 | for (sector = 0; sector < page_sectors; sector++) { | 423 | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, |
397 | int ret; | 424 | FLCMNCR(flctl)); |
425 | writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); | ||
426 | writel(page_addr << 2, FLADR(flctl)); | ||
398 | 427 | ||
399 | empty_fifo(flctl); | 428 | empty_fifo(flctl); |
400 | writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); | 429 | start_translation(flctl); |
401 | writel(page_addr << 2 | sector, FLADR(flctl)); | ||
402 | 430 | ||
403 | start_translation(flctl); | 431 | for (sector = 0; sector < page_sectors; sector++) { |
404 | read_fiforeg(flctl, 512, 512 * sector); | 432 | read_fiforeg(flctl, 512, 512 * sector); |
405 | 433 | ||
406 | ret = read_ecfiforeg(flctl, | 434 | ecc_result = read_ecfiforeg(flctl, |
407 | &flctl->done_buff[mtd->writesize + 16 * sector], | 435 | &flctl->done_buff[mtd->writesize + 16 * sector], |
408 | sector); | 436 | sector); |
409 | 437 | ||
410 | if (ret) | 438 | switch (ecc_result) { |
411 | flctl->hwecc_cant_correct[sector] = 1; | 439 | case FL_REPAIRABLE: |
412 | 440 | dev_info(&flctl->pdev->dev, | |
413 | writel(0x0, FL4ECCCR(flctl)); | 441 | "applied ecc on page 0x%x", page_addr); |
414 | wait_completion(flctl); | 442 | flctl->mtd.ecc_stats.corrected++; |
443 | break; | ||
444 | case FL_ERROR: | ||
445 | dev_warn(&flctl->pdev->dev, | ||
446 | "page 0x%x contains corrupted data\n", | ||
447 | page_addr); | ||
448 | flctl->mtd.ecc_stats.failed++; | ||
449 | break; | ||
450 | default: | ||
451 | ; | ||
452 | } | ||
415 | } | 453 | } |
454 | |||
455 | wait_completion(flctl); | ||
456 | |||
416 | writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), | 457 | writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), |
417 | FLCMNCR(flctl)); | 458 | FLCMNCR(flctl)); |
418 | } | 459 | } |
@@ -420,30 +461,20 @@ static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) | |||
420 | static void execmd_read_oob(struct mtd_info *mtd, int page_addr) | 461 | static void execmd_read_oob(struct mtd_info *mtd, int page_addr) |
421 | { | 462 | { |
422 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 463 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
464 | int page_sectors = flctl->page_size ? 4 : 1; | ||
465 | int i; | ||
423 | 466 | ||
424 | set_cmd_regs(mtd, NAND_CMD_READ0, | 467 | set_cmd_regs(mtd, NAND_CMD_READ0, |
425 | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); | 468 | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); |
426 | 469 | ||
427 | empty_fifo(flctl); | 470 | empty_fifo(flctl); |
428 | if (flctl->page_size) { | ||
429 | int i; | ||
430 | /* In case that the page size is 2k */ | ||
431 | for (i = 0; i < 16 * 3; i++) | ||
432 | flctl->done_buff[i] = 0xFF; | ||
433 | |||
434 | set_addr(mtd, 3 * 528 + 512, page_addr); | ||
435 | writel(16, FLDTCNTR(flctl)); | ||
436 | 471 | ||
437 | start_translation(flctl); | 472 | for (i = 0; i < page_sectors; i++) { |
438 | read_fiforeg(flctl, 16, 16 * 3); | 473 | set_addr(mtd, (512 + 16) * i + 512 , page_addr); |
439 | wait_completion(flctl); | ||
440 | } else { | ||
441 | /* In case that the page size is 512b */ | ||
442 | set_addr(mtd, 512, page_addr); | ||
443 | writel(16, FLDTCNTR(flctl)); | 474 | writel(16, FLDTCNTR(flctl)); |
444 | 475 | ||
445 | start_translation(flctl); | 476 | start_translation(flctl); |
446 | read_fiforeg(flctl, 16, 0); | 477 | read_fiforeg(flctl, 16, 16 * i); |
447 | wait_completion(flctl); | 478 | wait_completion(flctl); |
448 | } | 479 | } |
449 | } | 480 | } |
@@ -451,34 +482,26 @@ static void execmd_read_oob(struct mtd_info *mtd, int page_addr) | |||
451 | static void execmd_write_page_sector(struct mtd_info *mtd) | 482 | static void execmd_write_page_sector(struct mtd_info *mtd) |
452 | { | 483 | { |
453 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 484 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
454 | int i, page_addr = flctl->seqin_page_addr; | 485 | int page_addr = flctl->seqin_page_addr; |
455 | int sector, page_sectors; | 486 | int sector, page_sectors; |
456 | 487 | ||
457 | if (flctl->page_size) | 488 | page_sectors = flctl->page_size ? 4 : 1; |
458 | page_sectors = 4; | ||
459 | else | ||
460 | page_sectors = 1; | ||
461 | |||
462 | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); | ||
463 | 489 | ||
464 | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, | 490 | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, |
465 | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); | 491 | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); |
466 | 492 | ||
467 | for (sector = 0; sector < page_sectors; sector++) { | 493 | empty_fifo(flctl); |
468 | empty_fifo(flctl); | 494 | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); |
469 | writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); | 495 | writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); |
470 | writel(page_addr << 2 | sector, FLADR(flctl)); | 496 | writel(page_addr << 2, FLADR(flctl)); |
497 | start_translation(flctl); | ||
471 | 498 | ||
472 | start_translation(flctl); | 499 | for (sector = 0; sector < page_sectors; sector++) { |
473 | write_fiforeg(flctl, 512, 512 * sector); | 500 | write_fiforeg(flctl, 512, 512 * sector); |
474 | 501 | write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector); | |
475 | for (i = 0; i < 4; i++) { | ||
476 | wait_wecfifo_ready(flctl); /* wait for write ready */ | ||
477 | writel(0xFFFFFFFF, FLECFIFO(flctl)); | ||
478 | } | ||
479 | wait_completion(flctl); | ||
480 | } | 502 | } |
481 | 503 | ||
504 | wait_completion(flctl); | ||
482 | writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); | 505 | writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); |
483 | } | 506 | } |
484 | 507 | ||
@@ -488,18 +511,12 @@ static void execmd_write_oob(struct mtd_info *mtd) | |||
488 | int page_addr = flctl->seqin_page_addr; | 511 | int page_addr = flctl->seqin_page_addr; |
489 | int sector, page_sectors; | 512 | int sector, page_sectors; |
490 | 513 | ||
491 | if (flctl->page_size) { | 514 | page_sectors = flctl->page_size ? 4 : 1; |
492 | sector = 3; | ||
493 | page_sectors = 4; | ||
494 | } else { | ||
495 | sector = 0; | ||
496 | page_sectors = 1; | ||
497 | } | ||
498 | 515 | ||
499 | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, | 516 | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, |
500 | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); | 517 | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); |
501 | 518 | ||
502 | for (; sector < page_sectors; sector++) { | 519 | for (sector = 0; sector < page_sectors; sector++) { |
503 | empty_fifo(flctl); | 520 | empty_fifo(flctl); |
504 | set_addr(mtd, sector * 528 + 512, page_addr); | 521 | set_addr(mtd, sector * 528 + 512, page_addr); |
505 | writel(16, FLDTCNTR(flctl)); /* set read size */ | 522 | writel(16, FLDTCNTR(flctl)); /* set read size */ |
@@ -731,10 +748,9 @@ static void flctl_select_chip(struct mtd_info *mtd, int chipnr) | |||
731 | static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 748 | static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
732 | { | 749 | { |
733 | struct sh_flctl *flctl = mtd_to_flctl(mtd); | 750 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
734 | int i, index = flctl->index; | 751 | int index = flctl->index; |
735 | 752 | ||
736 | for (i = 0; i < len; i++) | 753 | memcpy(&flctl->done_buff[index], buf, len); |
737 | flctl->done_buff[index + i] = buf[i]; | ||
738 | flctl->index += len; | 754 | flctl->index += len; |
739 | } | 755 | } |
740 | 756 | ||
@@ -763,20 +779,11 @@ static uint16_t flctl_read_word(struct mtd_info *mtd) | |||
763 | 779 | ||
764 | static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 780 | static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
765 | { | 781 | { |
766 | int i; | 782 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
767 | 783 | int index = flctl->index; | |
768 | for (i = 0; i < len; i++) | ||
769 | buf[i] = flctl_read_byte(mtd); | ||
770 | } | ||
771 | |||
772 | static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) | ||
773 | { | ||
774 | int i; | ||
775 | 784 | ||
776 | for (i = 0; i < len; i++) | 785 | memcpy(buf, &flctl->done_buff[index], len); |
777 | if (buf[i] != flctl_read_byte(mtd)) | 786 | flctl->index += len; |
778 | return -EFAULT; | ||
779 | return 0; | ||
780 | } | 787 | } |
781 | 788 | ||
782 | static int flctl_chip_init_tail(struct mtd_info *mtd) | 789 | static int flctl_chip_init_tail(struct mtd_info *mtd) |
@@ -831,7 +838,7 @@ static int flctl_chip_init_tail(struct mtd_info *mtd) | |||
831 | chip->ecc.mode = NAND_ECC_HW; | 838 | chip->ecc.mode = NAND_ECC_HW; |
832 | 839 | ||
833 | /* 4 symbols ECC enabled */ | 840 | /* 4 symbols ECC enabled */ |
834 | flctl->flcmncr_base |= _4ECCEN | ECCPOS2 | ECCPOS_02; | 841 | flctl->flcmncr_base |= _4ECCEN; |
835 | } else { | 842 | } else { |
836 | chip->ecc.mode = NAND_ECC_SOFT; | 843 | chip->ecc.mode = NAND_ECC_SOFT; |
837 | } | 844 | } |
@@ -839,6 +846,16 @@ static int flctl_chip_init_tail(struct mtd_info *mtd) | |||
839 | return 0; | 846 | return 0; |
840 | } | 847 | } |
841 | 848 | ||
849 | static irqreturn_t flctl_handle_flste(int irq, void *dev_id) | ||
850 | { | ||
851 | struct sh_flctl *flctl = dev_id; | ||
852 | |||
853 | dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl))); | ||
854 | writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); | ||
855 | |||
856 | return IRQ_HANDLED; | ||
857 | } | ||
858 | |||
842 | static int __devinit flctl_probe(struct platform_device *pdev) | 859 | static int __devinit flctl_probe(struct platform_device *pdev) |
843 | { | 860 | { |
844 | struct resource *res; | 861 | struct resource *res; |
@@ -847,6 +864,7 @@ static int __devinit flctl_probe(struct platform_device *pdev) | |||
847 | struct nand_chip *nand; | 864 | struct nand_chip *nand; |
848 | struct sh_flctl_platform_data *pdata; | 865 | struct sh_flctl_platform_data *pdata; |
849 | int ret = -ENXIO; | 866 | int ret = -ENXIO; |
867 | int irq; | ||
850 | 868 | ||
851 | pdata = pdev->dev.platform_data; | 869 | pdata = pdev->dev.platform_data; |
852 | if (pdata == NULL) { | 870 | if (pdata == NULL) { |
@@ -872,14 +890,27 @@ static int __devinit flctl_probe(struct platform_device *pdev) | |||
872 | goto err_iomap; | 890 | goto err_iomap; |
873 | } | 891 | } |
874 | 892 | ||
893 | irq = platform_get_irq(pdev, 0); | ||
894 | if (irq < 0) { | ||
895 | dev_err(&pdev->dev, "failed to get flste irq data\n"); | ||
896 | goto err_flste; | ||
897 | } | ||
898 | |||
899 | ret = request_irq(irq, flctl_handle_flste, IRQF_SHARED, "flste", flctl); | ||
900 | if (ret) { | ||
901 | dev_err(&pdev->dev, "request interrupt failed.\n"); | ||
902 | goto err_flste; | ||
903 | } | ||
904 | |||
875 | platform_set_drvdata(pdev, flctl); | 905 | platform_set_drvdata(pdev, flctl); |
876 | flctl_mtd = &flctl->mtd; | 906 | flctl_mtd = &flctl->mtd; |
877 | nand = &flctl->chip; | 907 | nand = &flctl->chip; |
878 | flctl_mtd->priv = nand; | 908 | flctl_mtd->priv = nand; |
879 | flctl->pdev = pdev; | 909 | flctl->pdev = pdev; |
880 | flctl->flcmncr_base = pdata->flcmncr_val; | ||
881 | flctl->hwecc = pdata->has_hwecc; | 910 | flctl->hwecc = pdata->has_hwecc; |
882 | flctl->holden = pdata->use_holden; | 911 | flctl->holden = pdata->use_holden; |
912 | flctl->flcmncr_base = pdata->flcmncr_val; | ||
913 | flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE; | ||
883 | 914 | ||
884 | /* Set address of hardware control function */ | 915 | /* Set address of hardware control function */ |
885 | /* 20 us command delay time */ | 916 | /* 20 us command delay time */ |
@@ -888,7 +919,6 @@ static int __devinit flctl_probe(struct platform_device *pdev) | |||
888 | nand->read_byte = flctl_read_byte; | 919 | nand->read_byte = flctl_read_byte; |
889 | nand->write_buf = flctl_write_buf; | 920 | nand->write_buf = flctl_write_buf; |
890 | nand->read_buf = flctl_read_buf; | 921 | nand->read_buf = flctl_read_buf; |
891 | nand->verify_buf = flctl_verify_buf; | ||
892 | nand->select_chip = flctl_select_chip; | 922 | nand->select_chip = flctl_select_chip; |
893 | nand->cmdfunc = flctl_cmdfunc; | 923 | nand->cmdfunc = flctl_cmdfunc; |
894 | 924 | ||
@@ -918,6 +948,9 @@ static int __devinit flctl_probe(struct platform_device *pdev) | |||
918 | 948 | ||
919 | err_chip: | 949 | err_chip: |
920 | pm_runtime_disable(&pdev->dev); | 950 | pm_runtime_disable(&pdev->dev); |
951 | free_irq(irq, flctl); | ||
952 | err_flste: | ||
953 | iounmap(flctl->reg); | ||
921 | err_iomap: | 954 | err_iomap: |
922 | kfree(flctl); | 955 | kfree(flctl); |
923 | return ret; | 956 | return ret; |
@@ -929,6 +962,8 @@ static int __devexit flctl_remove(struct platform_device *pdev) | |||
929 | 962 | ||
930 | nand_release(&flctl->mtd); | 963 | nand_release(&flctl->mtd); |
931 | pm_runtime_disable(&pdev->dev); | 964 | pm_runtime_disable(&pdev->dev); |
965 | free_irq(platform_get_irq(pdev, 0), flctl); | ||
966 | iounmap(flctl->reg); | ||
932 | kfree(flctl); | 967 | kfree(flctl); |
933 | 968 | ||
934 | return 0; | 969 | return 0; |
diff --git a/drivers/mtd/nand/socrates_nand.c b/drivers/mtd/nand/socrates_nand.c index e02b08bcf0c0..f3f28fafbf7a 100644 --- a/drivers/mtd/nand/socrates_nand.c +++ b/drivers/mtd/nand/socrates_nand.c | |||
@@ -98,24 +98,6 @@ static uint16_t socrates_nand_read_word(struct mtd_info *mtd) | |||
98 | return word; | 98 | return word; |
99 | } | 99 | } |
100 | 100 | ||
101 | /** | ||
102 | * socrates_nand_verify_buf - Verify chip data against buffer | ||
103 | * @mtd: MTD device structure | ||
104 | * @buf: buffer containing the data to compare | ||
105 | * @len: number of bytes to compare | ||
106 | */ | ||
107 | static int socrates_nand_verify_buf(struct mtd_info *mtd, const u8 *buf, | ||
108 | int len) | ||
109 | { | ||
110 | int i; | ||
111 | |||
112 | for (i = 0; i < len; i++) { | ||
113 | if (buf[i] != socrates_nand_read_byte(mtd)) | ||
114 | return -EFAULT; | ||
115 | } | ||
116 | return 0; | ||
117 | } | ||
118 | |||
119 | /* | 101 | /* |
120 | * Hardware specific access to control-lines | 102 | * Hardware specific access to control-lines |
121 | */ | 103 | */ |
@@ -201,7 +183,6 @@ static int __devinit socrates_nand_probe(struct platform_device *ofdev) | |||
201 | nand_chip->read_word = socrates_nand_read_word; | 183 | nand_chip->read_word = socrates_nand_read_word; |
202 | nand_chip->write_buf = socrates_nand_write_buf; | 184 | nand_chip->write_buf = socrates_nand_write_buf; |
203 | nand_chip->read_buf = socrates_nand_read_buf; | 185 | nand_chip->read_buf = socrates_nand_read_buf; |
204 | nand_chip->verify_buf = socrates_nand_verify_buf; | ||
205 | nand_chip->dev_ready = socrates_nand_device_ready; | 186 | nand_chip->dev_ready = socrates_nand_device_ready; |
206 | 187 | ||
207 | nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */ | 188 | nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */ |
diff --git a/drivers/mtd/nand/tmio_nand.c b/drivers/mtd/nand/tmio_nand.c index 5aa518081c51..508e9e04b092 100644 --- a/drivers/mtd/nand/tmio_nand.c +++ b/drivers/mtd/nand/tmio_nand.c | |||
@@ -256,18 +256,6 @@ static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | |||
256 | tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); | 256 | tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); |
257 | } | 257 | } |
258 | 258 | ||
259 | static int | ||
260 | tmio_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) | ||
261 | { | ||
262 | struct tmio_nand *tmio = mtd_to_tmio(mtd); | ||
263 | u16 *p = (u16 *) buf; | ||
264 | |||
265 | for (len >>= 1; len; len--) | ||
266 | if (*(p++) != tmio_ioread16(tmio->fcr + FCR_DATA)) | ||
267 | return -EFAULT; | ||
268 | return 0; | ||
269 | } | ||
270 | |||
271 | static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode) | 259 | static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode) |
272 | { | 260 | { |
273 | struct tmio_nand *tmio = mtd_to_tmio(mtd); | 261 | struct tmio_nand *tmio = mtd_to_tmio(mtd); |
@@ -424,7 +412,6 @@ static int tmio_probe(struct platform_device *dev) | |||
424 | nand_chip->read_byte = tmio_nand_read_byte; | 412 | nand_chip->read_byte = tmio_nand_read_byte; |
425 | nand_chip->write_buf = tmio_nand_write_buf; | 413 | nand_chip->write_buf = tmio_nand_write_buf; |
426 | nand_chip->read_buf = tmio_nand_read_buf; | 414 | nand_chip->read_buf = tmio_nand_read_buf; |
427 | nand_chip->verify_buf = tmio_nand_verify_buf; | ||
428 | 415 | ||
429 | /* set eccmode using hardware ECC */ | 416 | /* set eccmode using hardware ECC */ |
430 | nand_chip->ecc.mode = NAND_ECC_HW; | 417 | nand_chip->ecc.mode = NAND_ECC_HW; |
diff --git a/drivers/mtd/nand/txx9ndfmc.c b/drivers/mtd/nand/txx9ndfmc.c index 26398dcf21cf..e3d7266e256f 100644 --- a/drivers/mtd/nand/txx9ndfmc.c +++ b/drivers/mtd/nand/txx9ndfmc.c | |||
@@ -131,18 +131,6 @@ static void txx9ndfmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | |||
131 | *buf++ = __raw_readl(ndfdtr); | 131 | *buf++ = __raw_readl(ndfdtr); |
132 | } | 132 | } |
133 | 133 | ||
134 | static int txx9ndfmc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, | ||
135 | int len) | ||
136 | { | ||
137 | struct platform_device *dev = mtd_to_platdev(mtd); | ||
138 | void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR); | ||
139 | |||
140 | while (len--) | ||
141 | if (*buf++ != (uint8_t)__raw_readl(ndfdtr)) | ||
142 | return -EFAULT; | ||
143 | return 0; | ||
144 | } | ||
145 | |||
146 | static void txx9ndfmc_cmd_ctrl(struct mtd_info *mtd, int cmd, | 134 | static void txx9ndfmc_cmd_ctrl(struct mtd_info *mtd, int cmd, |
147 | unsigned int ctrl) | 135 | unsigned int ctrl) |
148 | { | 136 | { |
@@ -346,7 +334,6 @@ static int __init txx9ndfmc_probe(struct platform_device *dev) | |||
346 | chip->read_byte = txx9ndfmc_read_byte; | 334 | chip->read_byte = txx9ndfmc_read_byte; |
347 | chip->read_buf = txx9ndfmc_read_buf; | 335 | chip->read_buf = txx9ndfmc_read_buf; |
348 | chip->write_buf = txx9ndfmc_write_buf; | 336 | chip->write_buf = txx9ndfmc_write_buf; |
349 | chip->verify_buf = txx9ndfmc_verify_buf; | ||
350 | chip->cmd_ctrl = txx9ndfmc_cmd_ctrl; | 337 | chip->cmd_ctrl = txx9ndfmc_cmd_ctrl; |
351 | chip->dev_ready = txx9ndfmc_dev_ready; | 338 | chip->dev_ready = txx9ndfmc_dev_ready; |
352 | chip->ecc.calculate = txx9ndfmc_calculate_ecc; | 339 | chip->ecc.calculate = txx9ndfmc_calculate_ecc; |
diff --git a/drivers/mtd/nand/xway_nand.c b/drivers/mtd/nand/xway_nand.c new file mode 100644 index 000000000000..3f81dc8f214c --- /dev/null +++ b/drivers/mtd/nand/xway_nand.c | |||
@@ -0,0 +1,201 @@ | |||
1 | /* | ||
2 | * This program is free software; you can redistribute it and/or modify it | ||
3 | * under the terms of the GNU General Public License version 2 as published | ||
4 | * by the Free Software Foundation. | ||
5 | * | ||
6 | * Copyright © 2012 John Crispin <blogic@openwrt.org> | ||
7 | */ | ||
8 | |||
9 | #include <linux/mtd/nand.h> | ||
10 | #include <linux/of_gpio.h> | ||
11 | #include <linux/of_platform.h> | ||
12 | |||
13 | #include <lantiq_soc.h> | ||
14 | |||
15 | /* nand registers */ | ||
16 | #define EBU_ADDSEL1 0x24 | ||
17 | #define EBU_NAND_CON 0xB0 | ||
18 | #define EBU_NAND_WAIT 0xB4 | ||
19 | #define EBU_NAND_ECC0 0xB8 | ||
20 | #define EBU_NAND_ECC_AC 0xBC | ||
21 | |||
22 | /* nand commands */ | ||
23 | #define NAND_CMD_ALE (1 << 2) | ||
24 | #define NAND_CMD_CLE (1 << 3) | ||
25 | #define NAND_CMD_CS (1 << 4) | ||
26 | #define NAND_WRITE_CMD_RESET 0xff | ||
27 | #define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE) | ||
28 | #define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE) | ||
29 | #define NAND_WRITE_DATA (NAND_CMD_CS) | ||
30 | #define NAND_READ_DATA (NAND_CMD_CS) | ||
31 | #define NAND_WAIT_WR_C (1 << 3) | ||
32 | #define NAND_WAIT_RD (0x1) | ||
33 | |||
34 | /* we need to tel the ebu which addr we mapped the nand to */ | ||
35 | #define ADDSEL1_MASK(x) (x << 4) | ||
36 | #define ADDSEL1_REGEN 1 | ||
37 | |||
38 | /* we need to tell the EBU that we have nand attached and set it up properly */ | ||
39 | #define BUSCON1_SETUP (1 << 22) | ||
40 | #define BUSCON1_BCGEN_RES (0x3 << 12) | ||
41 | #define BUSCON1_WAITWRC2 (2 << 8) | ||
42 | #define BUSCON1_WAITRDC2 (2 << 6) | ||
43 | #define BUSCON1_HOLDC1 (1 << 4) | ||
44 | #define BUSCON1_RECOVC1 (1 << 2) | ||
45 | #define BUSCON1_CMULT4 1 | ||
46 | |||
47 | #define NAND_CON_CE (1 << 20) | ||
48 | #define NAND_CON_OUT_CS1 (1 << 10) | ||
49 | #define NAND_CON_IN_CS1 (1 << 8) | ||
50 | #define NAND_CON_PRE_P (1 << 7) | ||
51 | #define NAND_CON_WP_P (1 << 6) | ||
52 | #define NAND_CON_SE_P (1 << 5) | ||
53 | #define NAND_CON_CS_P (1 << 4) | ||
54 | #define NAND_CON_CSMUX (1 << 1) | ||
55 | #define NAND_CON_NANDM 1 | ||
56 | |||
57 | static void xway_reset_chip(struct nand_chip *chip) | ||
58 | { | ||
59 | unsigned long nandaddr = (unsigned long) chip->IO_ADDR_W; | ||
60 | unsigned long flags; | ||
61 | |||
62 | nandaddr &= ~NAND_WRITE_ADDR; | ||
63 | nandaddr |= NAND_WRITE_CMD; | ||
64 | |||
65 | /* finish with a reset */ | ||
66 | spin_lock_irqsave(&ebu_lock, flags); | ||
67 | writeb(NAND_WRITE_CMD_RESET, (void __iomem *) nandaddr); | ||
68 | while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) | ||
69 | ; | ||
70 | spin_unlock_irqrestore(&ebu_lock, flags); | ||
71 | } | ||
72 | |||
73 | static void xway_select_chip(struct mtd_info *mtd, int chip) | ||
74 | { | ||
75 | |||
76 | switch (chip) { | ||
77 | case -1: | ||
78 | ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON); | ||
79 | ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON); | ||
80 | break; | ||
81 | case 0: | ||
82 | ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON); | ||
83 | ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON); | ||
84 | break; | ||
85 | default: | ||
86 | BUG(); | ||
87 | } | ||
88 | } | ||
89 | |||
90 | static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | ||
91 | { | ||
92 | struct nand_chip *this = mtd->priv; | ||
93 | unsigned long nandaddr = (unsigned long) this->IO_ADDR_W; | ||
94 | unsigned long flags; | ||
95 | |||
96 | if (ctrl & NAND_CTRL_CHANGE) { | ||
97 | nandaddr &= ~(NAND_WRITE_CMD | NAND_WRITE_ADDR); | ||
98 | if (ctrl & NAND_CLE) | ||
99 | nandaddr |= NAND_WRITE_CMD; | ||
100 | else | ||
101 | nandaddr |= NAND_WRITE_ADDR; | ||
102 | this->IO_ADDR_W = (void __iomem *) nandaddr; | ||
103 | } | ||
104 | |||
105 | if (cmd != NAND_CMD_NONE) { | ||
106 | spin_lock_irqsave(&ebu_lock, flags); | ||
107 | writeb(cmd, this->IO_ADDR_W); | ||
108 | while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) | ||
109 | ; | ||
110 | spin_unlock_irqrestore(&ebu_lock, flags); | ||
111 | } | ||
112 | } | ||
113 | |||
114 | static int xway_dev_ready(struct mtd_info *mtd) | ||
115 | { | ||
116 | return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD; | ||
117 | } | ||
118 | |||
119 | static unsigned char xway_read_byte(struct mtd_info *mtd) | ||
120 | { | ||
121 | struct nand_chip *this = mtd->priv; | ||
122 | unsigned long nandaddr = (unsigned long) this->IO_ADDR_R; | ||
123 | unsigned long flags; | ||
124 | int ret; | ||
125 | |||
126 | spin_lock_irqsave(&ebu_lock, flags); | ||
127 | ret = ltq_r8((void __iomem *)(nandaddr + NAND_READ_DATA)); | ||
128 | spin_unlock_irqrestore(&ebu_lock, flags); | ||
129 | |||
130 | return ret; | ||
131 | } | ||
132 | |||
133 | static int xway_nand_probe(struct platform_device *pdev) | ||
134 | { | ||
135 | struct nand_chip *this = platform_get_drvdata(pdev); | ||
136 | unsigned long nandaddr = (unsigned long) this->IO_ADDR_W; | ||
137 | const __be32 *cs = of_get_property(pdev->dev.of_node, | ||
138 | "lantiq,cs", NULL); | ||
139 | u32 cs_flag = 0; | ||
140 | |||
141 | /* load our CS from the DT. Either we find a valid 1 or default to 0 */ | ||
142 | if (cs && (*cs == 1)) | ||
143 | cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1; | ||
144 | |||
145 | /* setup the EBU to run in NAND mode on our base addr */ | ||
146 | ltq_ebu_w32(CPHYSADDR(nandaddr) | ||
147 | | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); | ||
148 | |||
149 | ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2 | ||
150 | | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 | ||
151 | | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); | ||
152 | |||
153 | ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P | ||
154 | | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P | ||
155 | | cs_flag, EBU_NAND_CON); | ||
156 | |||
157 | /* finish with a reset */ | ||
158 | xway_reset_chip(this); | ||
159 | |||
160 | return 0; | ||
161 | } | ||
162 | |||
163 | /* allow users to override the partition in DT using the cmdline */ | ||
164 | static const char *part_probes[] = { "cmdlinepart", "ofpart", NULL }; | ||
165 | |||
166 | static struct platform_nand_data xway_nand_data = { | ||
167 | .chip = { | ||
168 | .nr_chips = 1, | ||
169 | .chip_delay = 30, | ||
170 | .part_probe_types = part_probes, | ||
171 | }, | ||
172 | .ctrl = { | ||
173 | .probe = xway_nand_probe, | ||
174 | .cmd_ctrl = xway_cmd_ctrl, | ||
175 | .dev_ready = xway_dev_ready, | ||
176 | .select_chip = xway_select_chip, | ||
177 | .read_byte = xway_read_byte, | ||
178 | } | ||
179 | }; | ||
180 | |||
181 | /* | ||
182 | * Try to find the node inside the DT. If it is available attach out | ||
183 | * platform_nand_data | ||
184 | */ | ||
185 | static int __init xway_register_nand(void) | ||
186 | { | ||
187 | struct device_node *node; | ||
188 | struct platform_device *pdev; | ||
189 | |||
190 | node = of_find_compatible_node(NULL, NULL, "lantiq,nand-xway"); | ||
191 | if (!node) | ||
192 | return -ENOENT; | ||
193 | pdev = of_find_device_by_node(node); | ||
194 | if (!pdev) | ||
195 | return -EINVAL; | ||
196 | pdev->dev.platform_data = &xway_nand_data; | ||
197 | of_node_put(node); | ||
198 | return 0; | ||
199 | } | ||
200 | |||
201 | subsys_initcall(xway_register_nand); | ||
diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c index 9e2dfd517aa5..8dd6ba52404a 100644 --- a/drivers/mtd/sm_ftl.c +++ b/drivers/mtd/sm_ftl.c | |||
@@ -346,7 +346,6 @@ static int sm_write_sector(struct sm_ftl *ftl, | |||
346 | ret = mtd_write_oob(mtd, sm_mkoffset(ftl, zone, block, boffset), &ops); | 346 | ret = mtd_write_oob(mtd, sm_mkoffset(ftl, zone, block, boffset), &ops); |
347 | 347 | ||
348 | /* Now we assume that hardware will catch write bitflip errors */ | 348 | /* Now we assume that hardware will catch write bitflip errors */ |
349 | /* If you are paranoid, use CONFIG_MTD_NAND_VERIFY_WRITE */ | ||
350 | 349 | ||
351 | if (ret) { | 350 | if (ret) { |
352 | dbg("write to block %d at zone %d, failed with error %d", | 351 | dbg("write to block %d at zone %d, failed with error %d", |
diff --git a/drivers/mtd/tests/Makefile b/drivers/mtd/tests/Makefile index b44dcab940d8..bd0065c0d359 100644 --- a/drivers/mtd/tests/Makefile +++ b/drivers/mtd/tests/Makefile | |||
@@ -6,3 +6,4 @@ obj-$(CONFIG_MTD_TESTS) += mtd_stresstest.o | |||
6 | obj-$(CONFIG_MTD_TESTS) += mtd_subpagetest.o | 6 | obj-$(CONFIG_MTD_TESTS) += mtd_subpagetest.o |
7 | obj-$(CONFIG_MTD_TESTS) += mtd_torturetest.o | 7 | obj-$(CONFIG_MTD_TESTS) += mtd_torturetest.o |
8 | obj-$(CONFIG_MTD_TESTS) += mtd_nandecctest.o | 8 | obj-$(CONFIG_MTD_TESTS) += mtd_nandecctest.o |
9 | obj-$(CONFIG_MTD_TESTS) += mtd_nandbiterrs.o | ||
diff --git a/drivers/mtd/tests/mtd_nandbiterrs.c b/drivers/mtd/tests/mtd_nandbiterrs.c new file mode 100644 index 000000000000..cc8d62cb280c --- /dev/null +++ b/drivers/mtd/tests/mtd_nandbiterrs.c | |||
@@ -0,0 +1,460 @@ | |||
1 | /* | ||
2 | * Copyright © 2012 NetCommWireless | ||
3 | * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au> | ||
4 | * | ||
5 | * Test for multi-bit error recovery on a NAND page This mostly tests the | ||
6 | * ECC controller / driver. | ||
7 | * | ||
8 | * There are two test modes: | ||
9 | * | ||
10 | * 0 - artificially inserting bit errors until the ECC fails | ||
11 | * This is the default method and fairly quick. It should | ||
12 | * be independent of the quality of the FLASH. | ||
13 | * | ||
14 | * 1 - re-writing the same pattern repeatedly until the ECC fails. | ||
15 | * This method relies on the physics of NAND FLASH to eventually | ||
16 | * generate '0' bits if '1' has been written sufficient times. | ||
17 | * Depending on the NAND, the first bit errors will appear after | ||
18 | * 1000 or more writes and then will usually snowball, reaching the | ||
19 | * limits of the ECC quickly. | ||
20 | * | ||
21 | * The test stops after 10000 cycles, should your FLASH be | ||
22 | * exceptionally good and not generate bit errors before that. Try | ||
23 | * a different page in that case. | ||
24 | * | ||
25 | * Please note that neither of these tests will significantly 'use up' any | ||
26 | * FLASH endurance. Only a maximum of two erase operations will be performed. | ||
27 | * | ||
28 | * | ||
29 | * This program is free software; you can redistribute it and/or modify it | ||
30 | * under the terms of the GNU General Public License version 2 as published by | ||
31 | * the Free Software Foundation. | ||
32 | * | ||
33 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
34 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
35 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
36 | * more details. | ||
37 | * | ||
38 | * You should have received a copy of the GNU General Public License along with | ||
39 | * this program; see the file COPYING. If not, write to the Free Software | ||
40 | * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
41 | */ | ||
42 | #include <linux/init.h> | ||
43 | #include <linux/module.h> | ||
44 | #include <linux/moduleparam.h> | ||
45 | #include <linux/mtd/mtd.h> | ||
46 | #include <linux/err.h> | ||
47 | #include <linux/mtd/nand.h> | ||
48 | #include <linux/slab.h> | ||
49 | |||
50 | #define msg(FMT, VA...) pr_info("mtd_nandbiterrs: "FMT, ##VA) | ||
51 | |||
52 | static int dev; | ||
53 | module_param(dev, int, S_IRUGO); | ||
54 | MODULE_PARM_DESC(dev, "MTD device number to use"); | ||
55 | |||
56 | static unsigned page_offset; | ||
57 | module_param(page_offset, uint, S_IRUGO); | ||
58 | MODULE_PARM_DESC(page_offset, "Page number relative to dev start"); | ||
59 | |||
60 | static unsigned seed; | ||
61 | module_param(seed, uint, S_IRUGO); | ||
62 | MODULE_PARM_DESC(seed, "Random seed"); | ||
63 | |||
64 | static int mode; | ||
65 | module_param(mode, int, S_IRUGO); | ||
66 | MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test"); | ||
67 | |||
68 | static unsigned max_overwrite = 10000; | ||
69 | |||
70 | static loff_t offset; /* Offset of the page we're using. */ | ||
71 | static unsigned eraseblock; /* Eraseblock number for our page. */ | ||
72 | |||
73 | /* We assume that the ECC can correct up to a certain number | ||
74 | * of biterrors per subpage. */ | ||
75 | static unsigned subsize; /* Size of subpages */ | ||
76 | static unsigned subcount; /* Number of subpages per page */ | ||
77 | |||
78 | static struct mtd_info *mtd; /* MTD device */ | ||
79 | |||
80 | static uint8_t *wbuffer; /* One page write / compare buffer */ | ||
81 | static uint8_t *rbuffer; /* One page read buffer */ | ||
82 | |||
83 | /* 'random' bytes from known offsets */ | ||
84 | static uint8_t hash(unsigned offset) | ||
85 | { | ||
86 | unsigned v = offset; | ||
87 | unsigned char c; | ||
88 | v ^= 0x7f7edfd3; | ||
89 | v = v ^ (v >> 3); | ||
90 | v = v ^ (v >> 5); | ||
91 | v = v ^ (v >> 13); | ||
92 | c = v & 0xFF; | ||
93 | /* Reverse bits of result. */ | ||
94 | c = (c & 0x0F) << 4 | (c & 0xF0) >> 4; | ||
95 | c = (c & 0x33) << 2 | (c & 0xCC) >> 2; | ||
96 | c = (c & 0x55) << 1 | (c & 0xAA) >> 1; | ||
97 | return c; | ||
98 | } | ||
99 | |||
100 | static int erase_block(void) | ||
101 | { | ||
102 | int err; | ||
103 | struct erase_info ei; | ||
104 | loff_t addr = eraseblock * mtd->erasesize; | ||
105 | |||
106 | msg("erase_block\n"); | ||
107 | |||
108 | memset(&ei, 0, sizeof(struct erase_info)); | ||
109 | ei.mtd = mtd; | ||
110 | ei.addr = addr; | ||
111 | ei.len = mtd->erasesize; | ||
112 | |||
113 | err = mtd_erase(mtd, &ei); | ||
114 | if (err || ei.state == MTD_ERASE_FAILED) { | ||
115 | msg("error %d while erasing\n", err); | ||
116 | if (!err) | ||
117 | err = -EIO; | ||
118 | return err; | ||
119 | } | ||
120 | |||
121 | return 0; | ||
122 | } | ||
123 | |||
124 | /* Writes wbuffer to page */ | ||
125 | static int write_page(int log) | ||
126 | { | ||
127 | int err = 0; | ||
128 | size_t written; | ||
129 | |||
130 | if (log) | ||
131 | msg("write_page\n"); | ||
132 | |||
133 | err = mtd_write(mtd, offset, mtd->writesize, &written, wbuffer); | ||
134 | if (err || written != mtd->writesize) { | ||
135 | msg("error: write failed at %#llx\n", (long long)offset); | ||
136 | if (!err) | ||
137 | err = -EIO; | ||
138 | } | ||
139 | |||
140 | return err; | ||
141 | } | ||
142 | |||
143 | /* Re-writes the data area while leaving the OOB alone. */ | ||
144 | static int rewrite_page(int log) | ||
145 | { | ||
146 | int err = 0; | ||
147 | struct mtd_oob_ops ops; | ||
148 | |||
149 | if (log) | ||
150 | msg("rewrite page\n"); | ||
151 | |||
152 | ops.mode = MTD_OPS_RAW; /* No ECC */ | ||
153 | ops.len = mtd->writesize; | ||
154 | ops.retlen = 0; | ||
155 | ops.ooblen = 0; | ||
156 | ops.oobretlen = 0; | ||
157 | ops.ooboffs = 0; | ||
158 | ops.datbuf = wbuffer; | ||
159 | ops.oobbuf = NULL; | ||
160 | |||
161 | err = mtd_write_oob(mtd, offset, &ops); | ||
162 | if (err || ops.retlen != mtd->writesize) { | ||
163 | msg("error: write_oob failed (%d)\n", err); | ||
164 | if (!err) | ||
165 | err = -EIO; | ||
166 | } | ||
167 | |||
168 | return err; | ||
169 | } | ||
170 | |||
171 | /* Reads page into rbuffer. Returns number of corrected bit errors (>=0) | ||
172 | * or error (<0) */ | ||
173 | static int read_page(int log) | ||
174 | { | ||
175 | int err = 0; | ||
176 | size_t read; | ||
177 | struct mtd_ecc_stats oldstats; | ||
178 | |||
179 | if (log) | ||
180 | msg("read_page\n"); | ||
181 | |||
182 | /* Saving last mtd stats */ | ||
183 | memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats)); | ||
184 | |||
185 | err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer); | ||
186 | if (err == -EUCLEAN) | ||
187 | err = mtd->ecc_stats.corrected - oldstats.corrected; | ||
188 | |||
189 | if (err < 0 || read != mtd->writesize) { | ||
190 | msg("error: read failed at %#llx\n", (long long)offset); | ||
191 | if (err >= 0) | ||
192 | err = -EIO; | ||
193 | } | ||
194 | |||
195 | return err; | ||
196 | } | ||
197 | |||
198 | /* Verifies rbuffer against random sequence */ | ||
199 | static int verify_page(int log) | ||
200 | { | ||
201 | unsigned i, errs = 0; | ||
202 | |||
203 | if (log) | ||
204 | msg("verify_page\n"); | ||
205 | |||
206 | for (i = 0; i < mtd->writesize; i++) { | ||
207 | if (rbuffer[i] != hash(i+seed)) { | ||
208 | msg("Error: page offset %u, expected %02x, got %02x\n", | ||
209 | i, hash(i+seed), rbuffer[i]); | ||
210 | errs++; | ||
211 | } | ||
212 | } | ||
213 | |||
214 | if (errs) | ||
215 | return -EIO; | ||
216 | else | ||
217 | return 0; | ||
218 | } | ||
219 | |||
220 | #define CBIT(v, n) ((v) & (1 << (n))) | ||
221 | #define BCLR(v, n) ((v) = (v) & ~(1 << (n))) | ||
222 | |||
223 | /* Finds the first '1' bit in wbuffer starting at offset 'byte' | ||
224 | * and sets it to '0'. */ | ||
225 | static int insert_biterror(unsigned byte) | ||
226 | { | ||
227 | int bit; | ||
228 | |||
229 | while (byte < mtd->writesize) { | ||
230 | for (bit = 7; bit >= 0; bit--) { | ||
231 | if (CBIT(wbuffer[byte], bit)) { | ||
232 | BCLR(wbuffer[byte], bit); | ||
233 | msg("Inserted biterror @ %u/%u\n", byte, bit); | ||
234 | return 0; | ||
235 | } | ||
236 | } | ||
237 | byte++; | ||
238 | } | ||
239 | msg("biterror: Failed to find a '1' bit\n"); | ||
240 | return -EIO; | ||
241 | } | ||
242 | |||
243 | /* Writes 'random' data to page and then introduces deliberate bit | ||
244 | * errors into the page, while verifying each step. */ | ||
245 | static int incremental_errors_test(void) | ||
246 | { | ||
247 | int err = 0; | ||
248 | unsigned i; | ||
249 | unsigned errs_per_subpage = 0; | ||
250 | |||
251 | msg("incremental biterrors test\n"); | ||
252 | |||
253 | for (i = 0; i < mtd->writesize; i++) | ||
254 | wbuffer[i] = hash(i+seed); | ||
255 | |||
256 | err = write_page(1); | ||
257 | if (err) | ||
258 | goto exit; | ||
259 | |||
260 | while (1) { | ||
261 | |||
262 | err = rewrite_page(1); | ||
263 | if (err) | ||
264 | goto exit; | ||
265 | |||
266 | err = read_page(1); | ||
267 | if (err > 0) | ||
268 | msg("Read reported %d corrected bit errors\n", err); | ||
269 | if (err < 0) { | ||
270 | msg("After %d biterrors per subpage, read reported error %d\n", | ||
271 | errs_per_subpage, err); | ||
272 | err = 0; | ||
273 | goto exit; | ||
274 | } | ||
275 | |||
276 | err = verify_page(1); | ||
277 | if (err) { | ||
278 | msg("ECC failure, read data is incorrect despite read success\n"); | ||
279 | goto exit; | ||
280 | } | ||
281 | |||
282 | msg("Successfully corrected %d bit errors per subpage\n", | ||
283 | errs_per_subpage); | ||
284 | |||
285 | for (i = 0; i < subcount; i++) { | ||
286 | err = insert_biterror(i * subsize); | ||
287 | if (err < 0) | ||
288 | goto exit; | ||
289 | } | ||
290 | errs_per_subpage++; | ||
291 | } | ||
292 | |||
293 | exit: | ||
294 | return err; | ||
295 | } | ||
296 | |||
297 | |||
298 | /* Writes 'random' data to page and then re-writes that same data repeatedly. | ||
299 | This eventually develops bit errors (bits written as '1' will slowly become | ||
300 | '0'), which are corrected as far as the ECC is capable of. */ | ||
301 | static int overwrite_test(void) | ||
302 | { | ||
303 | int err = 0; | ||
304 | unsigned i; | ||
305 | unsigned max_corrected = 0; | ||
306 | unsigned opno = 0; | ||
307 | /* We don't expect more than this many correctable bit errors per | ||
308 | * page. */ | ||
309 | #define MAXBITS 512 | ||
310 | static unsigned bitstats[MAXBITS]; /* bit error histogram. */ | ||
311 | |||
312 | memset(bitstats, 0, sizeof(bitstats)); | ||
313 | |||
314 | msg("overwrite biterrors test\n"); | ||
315 | |||
316 | for (i = 0; i < mtd->writesize; i++) | ||
317 | wbuffer[i] = hash(i+seed); | ||
318 | |||
319 | err = write_page(1); | ||
320 | if (err) | ||
321 | goto exit; | ||
322 | |||
323 | while (opno < max_overwrite) { | ||
324 | |||
325 | err = rewrite_page(0); | ||
326 | if (err) | ||
327 | break; | ||
328 | |||
329 | err = read_page(0); | ||
330 | if (err >= 0) { | ||
331 | if (err >= MAXBITS) { | ||
332 | msg("Implausible number of bit errors corrected\n"); | ||
333 | err = -EIO; | ||
334 | break; | ||
335 | } | ||
336 | bitstats[err]++; | ||
337 | if (err > max_corrected) { | ||
338 | max_corrected = err; | ||
339 | msg("Read reported %d corrected bit errors\n", | ||
340 | err); | ||
341 | } | ||
342 | } else { /* err < 0 */ | ||
343 | msg("Read reported error %d\n", err); | ||
344 | err = 0; | ||
345 | break; | ||
346 | } | ||
347 | |||
348 | err = verify_page(0); | ||
349 | if (err) { | ||
350 | bitstats[max_corrected] = opno; | ||
351 | msg("ECC failure, read data is incorrect despite read success\n"); | ||
352 | break; | ||
353 | } | ||
354 | |||
355 | opno++; | ||
356 | } | ||
357 | |||
358 | /* At this point bitstats[0] contains the number of ops with no bit | ||
359 | * errors, bitstats[1] the number of ops with 1 bit error, etc. */ | ||
360 | msg("Bit error histogram (%d operations total):\n", opno); | ||
361 | for (i = 0; i < max_corrected; i++) | ||
362 | msg("Page reads with %3d corrected bit errors: %d\n", | ||
363 | i, bitstats[i]); | ||
364 | |||
365 | exit: | ||
366 | return err; | ||
367 | } | ||
368 | |||
369 | static int __init mtd_nandbiterrs_init(void) | ||
370 | { | ||
371 | int err = 0; | ||
372 | |||
373 | msg("\n"); | ||
374 | msg("==================================================\n"); | ||
375 | msg("MTD device: %d\n", dev); | ||
376 | |||
377 | mtd = get_mtd_device(NULL, dev); | ||
378 | if (IS_ERR(mtd)) { | ||
379 | err = PTR_ERR(mtd); | ||
380 | msg("error: cannot get MTD device\n"); | ||
381 | goto exit_mtddev; | ||
382 | } | ||
383 | |||
384 | if (mtd->type != MTD_NANDFLASH) { | ||
385 | msg("this test requires NAND flash\n"); | ||
386 | err = -ENODEV; | ||
387 | goto exit_nand; | ||
388 | } | ||
389 | |||
390 | msg("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n", | ||
391 | (unsigned long long)mtd->size, mtd->erasesize, | ||
392 | mtd->writesize, mtd->oobsize); | ||
393 | |||
394 | subsize = mtd->writesize >> mtd->subpage_sft; | ||
395 | subcount = mtd->writesize / subsize; | ||
396 | |||
397 | msg("Device uses %d subpages of %d bytes\n", subcount, subsize); | ||
398 | |||
399 | offset = page_offset * mtd->writesize; | ||
400 | eraseblock = mtd_div_by_eb(offset, mtd); | ||
401 | |||
402 | msg("Using page=%u, offset=%llu, eraseblock=%u\n", | ||
403 | page_offset, offset, eraseblock); | ||
404 | |||
405 | wbuffer = kmalloc(mtd->writesize, GFP_KERNEL); | ||
406 | if (!wbuffer) { | ||
407 | err = -ENOMEM; | ||
408 | goto exit_wbuffer; | ||
409 | } | ||
410 | |||
411 | rbuffer = kmalloc(mtd->writesize, GFP_KERNEL); | ||
412 | if (!rbuffer) { | ||
413 | err = -ENOMEM; | ||
414 | goto exit_rbuffer; | ||
415 | } | ||
416 | |||
417 | err = erase_block(); | ||
418 | if (err) | ||
419 | goto exit_error; | ||
420 | |||
421 | if (mode == 0) | ||
422 | err = incremental_errors_test(); | ||
423 | else | ||
424 | err = overwrite_test(); | ||
425 | |||
426 | if (err) | ||
427 | goto exit_error; | ||
428 | |||
429 | /* We leave the block un-erased in case of test failure. */ | ||
430 | err = erase_block(); | ||
431 | if (err) | ||
432 | goto exit_error; | ||
433 | |||
434 | err = -EIO; | ||
435 | msg("finished successfully.\n"); | ||
436 | msg("==================================================\n"); | ||
437 | |||
438 | exit_error: | ||
439 | kfree(rbuffer); | ||
440 | exit_rbuffer: | ||
441 | kfree(wbuffer); | ||
442 | exit_wbuffer: | ||
443 | /* Nothing */ | ||
444 | exit_nand: | ||
445 | put_mtd_device(mtd); | ||
446 | exit_mtddev: | ||
447 | return err; | ||
448 | } | ||
449 | |||
450 | static void __exit mtd_nandbiterrs_exit(void) | ||
451 | { | ||
452 | return; | ||
453 | } | ||
454 | |||
455 | module_init(mtd_nandbiterrs_init); | ||
456 | module_exit(mtd_nandbiterrs_exit); | ||
457 | |||
458 | MODULE_DESCRIPTION("NAND bit error recovery test"); | ||
459 | MODULE_AUTHOR("Iwo Mergler"); | ||
460 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/mtd/tests/mtd_nandecctest.c b/drivers/mtd/tests/mtd_nandecctest.c index 70d6d7d0d656..b437fa425077 100644 --- a/drivers/mtd/tests/mtd_nandecctest.c +++ b/drivers/mtd/tests/mtd_nandecctest.c | |||
@@ -4,60 +4,287 @@ | |||
4 | #include <linux/random.h> | 4 | #include <linux/random.h> |
5 | #include <linux/string.h> | 5 | #include <linux/string.h> |
6 | #include <linux/bitops.h> | 6 | #include <linux/bitops.h> |
7 | #include <linux/jiffies.h> | 7 | #include <linux/slab.h> |
8 | #include <linux/mtd/nand_ecc.h> | 8 | #include <linux/mtd/nand_ecc.h> |
9 | 9 | ||
10 | /* | ||
11 | * Test the implementation for software ECC | ||
12 | * | ||
13 | * No actual MTD device is needed, So we don't need to warry about losing | ||
14 | * important data by human error. | ||
15 | * | ||
16 | * This covers possible patterns of corruption which can be reliably corrected | ||
17 | * or detected. | ||
18 | */ | ||
19 | |||
10 | #if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE) | 20 | #if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE) |
11 | 21 | ||
12 | static void inject_single_bit_error(void *data, size_t size) | 22 | struct nand_ecc_test { |
23 | const char *name; | ||
24 | void (*prepare)(void *, void *, void *, void *, const size_t); | ||
25 | int (*verify)(void *, void *, void *, const size_t); | ||
26 | }; | ||
27 | |||
28 | /* | ||
29 | * The reason for this __change_bit_le() instead of __change_bit() is to inject | ||
30 | * bit error properly within the region which is not a multiple of | ||
31 | * sizeof(unsigned long) on big-endian systems | ||
32 | */ | ||
33 | #ifdef __LITTLE_ENDIAN | ||
34 | #define __change_bit_le(nr, addr) __change_bit(nr, addr) | ||
35 | #elif defined(__BIG_ENDIAN) | ||
36 | #define __change_bit_le(nr, addr) \ | ||
37 | __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr) | ||
38 | #else | ||
39 | #error "Unknown byte order" | ||
40 | #endif | ||
41 | |||
42 | static void single_bit_error_data(void *error_data, void *correct_data, | ||
43 | size_t size) | ||
13 | { | 44 | { |
14 | unsigned long offset = random32() % (size * BITS_PER_BYTE); | 45 | unsigned int offset = random32() % (size * BITS_PER_BYTE); |
15 | 46 | ||
16 | __change_bit(offset, data); | 47 | memcpy(error_data, correct_data, size); |
48 | __change_bit_le(offset, error_data); | ||
17 | } | 49 | } |
18 | 50 | ||
19 | static unsigned char data[512]; | 51 | static void double_bit_error_data(void *error_data, void *correct_data, |
20 | static unsigned char error_data[512]; | 52 | size_t size) |
53 | { | ||
54 | unsigned int offset[2]; | ||
55 | |||
56 | offset[0] = random32() % (size * BITS_PER_BYTE); | ||
57 | do { | ||
58 | offset[1] = random32() % (size * BITS_PER_BYTE); | ||
59 | } while (offset[0] == offset[1]); | ||
21 | 60 | ||
22 | static int nand_ecc_test(const size_t size) | 61 | memcpy(error_data, correct_data, size); |
62 | |||
63 | __change_bit_le(offset[0], error_data); | ||
64 | __change_bit_le(offset[1], error_data); | ||
65 | } | ||
66 | |||
67 | static unsigned int random_ecc_bit(size_t size) | ||
23 | { | 68 | { |
24 | unsigned char code[3]; | 69 | unsigned int offset = random32() % (3 * BITS_PER_BYTE); |
25 | unsigned char error_code[3]; | 70 | |
26 | char testname[30]; | 71 | if (size == 256) { |
72 | /* | ||
73 | * Don't inject a bit error into the insignificant bits (16th | ||
74 | * and 17th bit) in ECC code for 256 byte data block | ||
75 | */ | ||
76 | while (offset == 16 || offset == 17) | ||
77 | offset = random32() % (3 * BITS_PER_BYTE); | ||
78 | } | ||
27 | 79 | ||
28 | BUG_ON(sizeof(data) < size); | 80 | return offset; |
81 | } | ||
29 | 82 | ||
30 | sprintf(testname, "nand-ecc-%zu", size); | 83 | static void single_bit_error_ecc(void *error_ecc, void *correct_ecc, |
84 | size_t size) | ||
85 | { | ||
86 | unsigned int offset = random_ecc_bit(size); | ||
31 | 87 | ||
32 | get_random_bytes(data, size); | 88 | memcpy(error_ecc, correct_ecc, 3); |
89 | __change_bit_le(offset, error_ecc); | ||
90 | } | ||
33 | 91 | ||
34 | memcpy(error_data, data, size); | 92 | static void double_bit_error_ecc(void *error_ecc, void *correct_ecc, |
35 | inject_single_bit_error(error_data, size); | 93 | size_t size) |
94 | { | ||
95 | unsigned int offset[2]; | ||
36 | 96 | ||
37 | __nand_calculate_ecc(data, size, code); | 97 | offset[0] = random_ecc_bit(size); |
38 | __nand_calculate_ecc(error_data, size, error_code); | 98 | do { |
39 | __nand_correct_data(error_data, code, error_code, size); | 99 | offset[1] = random_ecc_bit(size); |
100 | } while (offset[0] == offset[1]); | ||
40 | 101 | ||
41 | if (!memcmp(data, error_data, size)) { | 102 | memcpy(error_ecc, correct_ecc, 3); |
42 | printk(KERN_INFO "mtd_nandecctest: ok - %s\n", testname); | 103 | __change_bit_le(offset[0], error_ecc); |
104 | __change_bit_le(offset[1], error_ecc); | ||
105 | } | ||
106 | |||
107 | static void no_bit_error(void *error_data, void *error_ecc, | ||
108 | void *correct_data, void *correct_ecc, const size_t size) | ||
109 | { | ||
110 | memcpy(error_data, correct_data, size); | ||
111 | memcpy(error_ecc, correct_ecc, 3); | ||
112 | } | ||
113 | |||
114 | static int no_bit_error_verify(void *error_data, void *error_ecc, | ||
115 | void *correct_data, const size_t size) | ||
116 | { | ||
117 | unsigned char calc_ecc[3]; | ||
118 | int ret; | ||
119 | |||
120 | __nand_calculate_ecc(error_data, size, calc_ecc); | ||
121 | ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); | ||
122 | if (ret == 0 && !memcmp(correct_data, error_data, size)) | ||
43 | return 0; | 123 | return 0; |
44 | } | ||
45 | 124 | ||
46 | printk(KERN_ERR "mtd_nandecctest: not ok - %s\n", testname); | 125 | return -EINVAL; |
126 | } | ||
127 | |||
128 | static void single_bit_error_in_data(void *error_data, void *error_ecc, | ||
129 | void *correct_data, void *correct_ecc, const size_t size) | ||
130 | { | ||
131 | single_bit_error_data(error_data, correct_data, size); | ||
132 | memcpy(error_ecc, correct_ecc, 3); | ||
133 | } | ||
134 | |||
135 | static void single_bit_error_in_ecc(void *error_data, void *error_ecc, | ||
136 | void *correct_data, void *correct_ecc, const size_t size) | ||
137 | { | ||
138 | memcpy(error_data, correct_data, size); | ||
139 | single_bit_error_ecc(error_ecc, correct_ecc, size); | ||
140 | } | ||
141 | |||
142 | static int single_bit_error_correct(void *error_data, void *error_ecc, | ||
143 | void *correct_data, const size_t size) | ||
144 | { | ||
145 | unsigned char calc_ecc[3]; | ||
146 | int ret; | ||
47 | 147 | ||
48 | printk(KERN_DEBUG "hexdump of data:\n"); | 148 | __nand_calculate_ecc(error_data, size, calc_ecc); |
49 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 4, | 149 | ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); |
50 | data, size, false); | 150 | if (ret == 1 && !memcmp(correct_data, error_data, size)) |
51 | printk(KERN_DEBUG "hexdump of error data:\n"); | 151 | return 0; |
52 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 4, | 152 | |
153 | return -EINVAL; | ||
154 | } | ||
155 | |||
156 | static void double_bit_error_in_data(void *error_data, void *error_ecc, | ||
157 | void *correct_data, void *correct_ecc, const size_t size) | ||
158 | { | ||
159 | double_bit_error_data(error_data, correct_data, size); | ||
160 | memcpy(error_ecc, correct_ecc, 3); | ||
161 | } | ||
162 | |||
163 | static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc, | ||
164 | void *correct_data, void *correct_ecc, const size_t size) | ||
165 | { | ||
166 | single_bit_error_data(error_data, correct_data, size); | ||
167 | single_bit_error_ecc(error_ecc, correct_ecc, size); | ||
168 | } | ||
169 | |||
170 | static void double_bit_error_in_ecc(void *error_data, void *error_ecc, | ||
171 | void *correct_data, void *correct_ecc, const size_t size) | ||
172 | { | ||
173 | memcpy(error_data, correct_data, size); | ||
174 | double_bit_error_ecc(error_ecc, correct_ecc, size); | ||
175 | } | ||
176 | |||
177 | static int double_bit_error_detect(void *error_data, void *error_ecc, | ||
178 | void *correct_data, const size_t size) | ||
179 | { | ||
180 | unsigned char calc_ecc[3]; | ||
181 | int ret; | ||
182 | |||
183 | __nand_calculate_ecc(error_data, size, calc_ecc); | ||
184 | ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); | ||
185 | |||
186 | return (ret == -1) ? 0 : -EINVAL; | ||
187 | } | ||
188 | |||
189 | static const struct nand_ecc_test nand_ecc_test[] = { | ||
190 | { | ||
191 | .name = "no-bit-error", | ||
192 | .prepare = no_bit_error, | ||
193 | .verify = no_bit_error_verify, | ||
194 | }, | ||
195 | { | ||
196 | .name = "single-bit-error-in-data-correct", | ||
197 | .prepare = single_bit_error_in_data, | ||
198 | .verify = single_bit_error_correct, | ||
199 | }, | ||
200 | { | ||
201 | .name = "single-bit-error-in-ecc-correct", | ||
202 | .prepare = single_bit_error_in_ecc, | ||
203 | .verify = single_bit_error_correct, | ||
204 | }, | ||
205 | { | ||
206 | .name = "double-bit-error-in-data-detect", | ||
207 | .prepare = double_bit_error_in_data, | ||
208 | .verify = double_bit_error_detect, | ||
209 | }, | ||
210 | { | ||
211 | .name = "single-bit-error-in-data-and-ecc-detect", | ||
212 | .prepare = single_bit_error_in_data_and_ecc, | ||
213 | .verify = double_bit_error_detect, | ||
214 | }, | ||
215 | { | ||
216 | .name = "double-bit-error-in-ecc-detect", | ||
217 | .prepare = double_bit_error_in_ecc, | ||
218 | .verify = double_bit_error_detect, | ||
219 | }, | ||
220 | }; | ||
221 | |||
222 | static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data, | ||
223 | void *correct_ecc, const size_t size) | ||
224 | { | ||
225 | pr_info("hexdump of error data:\n"); | ||
226 | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, | ||
53 | error_data, size, false); | 227 | error_data, size, false); |
228 | print_hex_dump(KERN_INFO, "hexdump of error ecc: ", | ||
229 | DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false); | ||
230 | |||
231 | pr_info("hexdump of correct data:\n"); | ||
232 | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, | ||
233 | correct_data, size, false); | ||
234 | print_hex_dump(KERN_INFO, "hexdump of correct ecc: ", | ||
235 | DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false); | ||
236 | } | ||
237 | |||
238 | static int nand_ecc_test_run(const size_t size) | ||
239 | { | ||
240 | int i; | ||
241 | int err = 0; | ||
242 | void *error_data; | ||
243 | void *error_ecc; | ||
244 | void *correct_data; | ||
245 | void *correct_ecc; | ||
54 | 246 | ||
55 | return -1; | 247 | error_data = kmalloc(size, GFP_KERNEL); |
248 | error_ecc = kmalloc(3, GFP_KERNEL); | ||
249 | correct_data = kmalloc(size, GFP_KERNEL); | ||
250 | correct_ecc = kmalloc(3, GFP_KERNEL); | ||
251 | |||
252 | if (!error_data || !error_ecc || !correct_data || !correct_ecc) { | ||
253 | err = -ENOMEM; | ||
254 | goto error; | ||
255 | } | ||
256 | |||
257 | get_random_bytes(correct_data, size); | ||
258 | __nand_calculate_ecc(correct_data, size, correct_ecc); | ||
259 | |||
260 | for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) { | ||
261 | nand_ecc_test[i].prepare(error_data, error_ecc, | ||
262 | correct_data, correct_ecc, size); | ||
263 | err = nand_ecc_test[i].verify(error_data, error_ecc, | ||
264 | correct_data, size); | ||
265 | |||
266 | if (err) { | ||
267 | pr_err("mtd_nandecctest: not ok - %s-%zd\n", | ||
268 | nand_ecc_test[i].name, size); | ||
269 | dump_data_ecc(error_data, error_ecc, | ||
270 | correct_data, correct_ecc, size); | ||
271 | break; | ||
272 | } | ||
273 | pr_info("mtd_nandecctest: ok - %s-%zd\n", | ||
274 | nand_ecc_test[i].name, size); | ||
275 | } | ||
276 | error: | ||
277 | kfree(error_data); | ||
278 | kfree(error_ecc); | ||
279 | kfree(correct_data); | ||
280 | kfree(correct_ecc); | ||
281 | |||
282 | return err; | ||
56 | } | 283 | } |
57 | 284 | ||
58 | #else | 285 | #else |
59 | 286 | ||
60 | static int nand_ecc_test(const size_t size) | 287 | static int nand_ecc_test_run(const size_t size) |
61 | { | 288 | { |
62 | return 0; | 289 | return 0; |
63 | } | 290 | } |
@@ -66,12 +293,13 @@ static int nand_ecc_test(const size_t size) | |||
66 | 293 | ||
67 | static int __init ecc_test_init(void) | 294 | static int __init ecc_test_init(void) |
68 | { | 295 | { |
69 | srandom32(jiffies); | 296 | int err; |
70 | 297 | ||
71 | nand_ecc_test(256); | 298 | err = nand_ecc_test_run(256); |
72 | nand_ecc_test(512); | 299 | if (err) |
300 | return err; | ||
73 | 301 | ||
74 | return 0; | 302 | return nand_ecc_test_run(512); |
75 | } | 303 | } |
76 | 304 | ||
77 | static void __exit ecc_test_exit(void) | 305 | static void __exit ecc_test_exit(void) |
diff --git a/drivers/mtd/tests/mtd_speedtest.c b/drivers/mtd/tests/mtd_speedtest.c index 2aec4f3b72be..42b0f7456fc4 100644 --- a/drivers/mtd/tests/mtd_speedtest.c +++ b/drivers/mtd/tests/mtd_speedtest.c | |||
@@ -26,6 +26,7 @@ | |||
26 | #include <linux/mtd/mtd.h> | 26 | #include <linux/mtd/mtd.h> |
27 | #include <linux/slab.h> | 27 | #include <linux/slab.h> |
28 | #include <linux/sched.h> | 28 | #include <linux/sched.h> |
29 | #include <linux/random.h> | ||
29 | 30 | ||
30 | #define PRINT_PREF KERN_INFO "mtd_speedtest: " | 31 | #define PRINT_PREF KERN_INFO "mtd_speedtest: " |
31 | 32 | ||
@@ -47,25 +48,13 @@ static int ebcnt; | |||
47 | static int pgcnt; | 48 | static int pgcnt; |
48 | static int goodebcnt; | 49 | static int goodebcnt; |
49 | static struct timeval start, finish; | 50 | static struct timeval start, finish; |
50 | static unsigned long next = 1; | ||
51 | |||
52 | static inline unsigned int simple_rand(void) | ||
53 | { | ||
54 | next = next * 1103515245 + 12345; | ||
55 | return (unsigned int)((next / 65536) % 32768); | ||
56 | } | ||
57 | |||
58 | static inline void simple_srand(unsigned long seed) | ||
59 | { | ||
60 | next = seed; | ||
61 | } | ||
62 | 51 | ||
63 | static void set_random_data(unsigned char *buf, size_t len) | 52 | static void set_random_data(unsigned char *buf, size_t len) |
64 | { | 53 | { |
65 | size_t i; | 54 | size_t i; |
66 | 55 | ||
67 | for (i = 0; i < len; ++i) | 56 | for (i = 0; i < len; ++i) |
68 | buf[i] = simple_rand(); | 57 | buf[i] = random32(); |
69 | } | 58 | } |
70 | 59 | ||
71 | static int erase_eraseblock(int ebnum) | 60 | static int erase_eraseblock(int ebnum) |
@@ -407,7 +396,6 @@ static int __init mtd_speedtest_init(void) | |||
407 | goto out; | 396 | goto out; |
408 | } | 397 | } |
409 | 398 | ||
410 | simple_srand(1); | ||
411 | set_random_data(iobuf, mtd->erasesize); | 399 | set_random_data(iobuf, mtd->erasesize); |
412 | 400 | ||
413 | err = scan_for_bad_eraseblocks(); | 401 | err = scan_for_bad_eraseblocks(); |
diff --git a/drivers/mtd/tests/mtd_stresstest.c b/drivers/mtd/tests/mtd_stresstest.c index 7b33f22d0b58..cb268cebf01a 100644 --- a/drivers/mtd/tests/mtd_stresstest.c +++ b/drivers/mtd/tests/mtd_stresstest.c | |||
@@ -27,6 +27,7 @@ | |||
27 | #include <linux/slab.h> | 27 | #include <linux/slab.h> |
28 | #include <linux/sched.h> | 28 | #include <linux/sched.h> |
29 | #include <linux/vmalloc.h> | 29 | #include <linux/vmalloc.h> |
30 | #include <linux/random.h> | ||
30 | 31 | ||
31 | #define PRINT_PREF KERN_INFO "mtd_stresstest: " | 32 | #define PRINT_PREF KERN_INFO "mtd_stresstest: " |
32 | 33 | ||
@@ -48,28 +49,13 @@ static int pgsize; | |||
48 | static int bufsize; | 49 | static int bufsize; |
49 | static int ebcnt; | 50 | static int ebcnt; |
50 | static int pgcnt; | 51 | static int pgcnt; |
51 | static unsigned long next = 1; | ||
52 | |||
53 | static inline unsigned int simple_rand(void) | ||
54 | { | ||
55 | next = next * 1103515245 + 12345; | ||
56 | return (unsigned int)((next / 65536) % 32768); | ||
57 | } | ||
58 | |||
59 | static inline void simple_srand(unsigned long seed) | ||
60 | { | ||
61 | next = seed; | ||
62 | } | ||
63 | 52 | ||
64 | static int rand_eb(void) | 53 | static int rand_eb(void) |
65 | { | 54 | { |
66 | int eb; | 55 | unsigned int eb; |
67 | 56 | ||
68 | again: | 57 | again: |
69 | if (ebcnt < 32768) | 58 | eb = random32(); |
70 | eb = simple_rand(); | ||
71 | else | ||
72 | eb = (simple_rand() << 15) | simple_rand(); | ||
73 | /* Read or write up 2 eraseblocks at a time - hence 'ebcnt - 1' */ | 59 | /* Read or write up 2 eraseblocks at a time - hence 'ebcnt - 1' */ |
74 | eb %= (ebcnt - 1); | 60 | eb %= (ebcnt - 1); |
75 | if (bbt[eb]) | 61 | if (bbt[eb]) |
@@ -79,24 +65,18 @@ again: | |||
79 | 65 | ||
80 | static int rand_offs(void) | 66 | static int rand_offs(void) |
81 | { | 67 | { |
82 | int offs; | 68 | unsigned int offs; |
83 | 69 | ||
84 | if (bufsize < 32768) | 70 | offs = random32(); |
85 | offs = simple_rand(); | ||
86 | else | ||
87 | offs = (simple_rand() << 15) | simple_rand(); | ||
88 | offs %= bufsize; | 71 | offs %= bufsize; |
89 | return offs; | 72 | return offs; |
90 | } | 73 | } |
91 | 74 | ||
92 | static int rand_len(int offs) | 75 | static int rand_len(int offs) |
93 | { | 76 | { |
94 | int len; | 77 | unsigned int len; |
95 | 78 | ||
96 | if (bufsize < 32768) | 79 | len = random32(); |
97 | len = simple_rand(); | ||
98 | else | ||
99 | len = (simple_rand() << 15) | simple_rand(); | ||
100 | len %= (bufsize - offs); | 80 | len %= (bufsize - offs); |
101 | return len; | 81 | return len; |
102 | } | 82 | } |
@@ -211,7 +191,7 @@ static int do_write(void) | |||
211 | 191 | ||
212 | static int do_operation(void) | 192 | static int do_operation(void) |
213 | { | 193 | { |
214 | if (simple_rand() & 1) | 194 | if (random32() & 1) |
215 | return do_read(); | 195 | return do_read(); |
216 | else | 196 | else |
217 | return do_write(); | 197 | return do_write(); |
@@ -302,9 +282,8 @@ static int __init mtd_stresstest_init(void) | |||
302 | } | 282 | } |
303 | for (i = 0; i < ebcnt; i++) | 283 | for (i = 0; i < ebcnt; i++) |
304 | offsets[i] = mtd->erasesize; | 284 | offsets[i] = mtd->erasesize; |
305 | simple_srand(current->pid); | ||
306 | for (i = 0; i < bufsize; i++) | 285 | for (i = 0; i < bufsize; i++) |
307 | writebuf[i] = simple_rand(); | 286 | writebuf[i] = random32(); |
308 | 287 | ||
309 | err = scan_for_bad_eraseblocks(); | 288 | err = scan_for_bad_eraseblocks(); |
310 | if (err) | 289 | if (err) |