aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/chips/Kconfig40
-rw-r--r--drivers/mtd/chips/Makefile4
-rw-r--r--drivers/mtd/chips/amd_flash.c1396
-rw-r--r--drivers/mtd/chips/jedec.c935
-rw-r--r--drivers/mtd/chips/sharp.c601
5 files changed, 0 insertions, 2976 deletions
diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig
index d28e0fc85e12..479d32b57a1e 100644
--- a/drivers/mtd/chips/Kconfig
+++ b/drivers/mtd/chips/Kconfig
@@ -1,5 +1,4 @@
1# drivers/mtd/chips/Kconfig 1# drivers/mtd/chips/Kconfig
2# $Id: Kconfig,v 1.18 2005/11/07 11:14:22 gleixner Exp $
3 2
4menu "RAM/ROM/Flash chip drivers" 3menu "RAM/ROM/Flash chip drivers"
5 depends on MTD!=n 4 depends on MTD!=n
@@ -231,45 +230,6 @@ config MTD_ABSENT
231 the system regardless of media presence. Device nodes created 230 the system regardless of media presence. Device nodes created
232 with this driver will return -ENODEV upon access. 231 with this driver will return -ENODEV upon access.
233 232
234config MTD_OBSOLETE_CHIPS
235 bool "Older (theoretically obsoleted now) drivers for non-CFI chips"
236 help
237 This option does not enable any code directly, but will allow you to
238 select some other chip drivers which are now considered obsolete,
239 because the generic CONFIG_JEDECPROBE code above should now detect
240 the chips which are supported by these drivers, and allow the generic
241 CFI-compatible drivers to drive the chips. Say 'N' here unless you have
242 already tried the CONFIG_JEDECPROBE method and reported its failure
243 to the MTD mailing list at <linux-mtd@lists.infradead.org>
244
245config MTD_AMDSTD
246 tristate "AMD compatible flash chip support (non-CFI)"
247 depends on MTD_OBSOLETE_CHIPS && BROKEN
248 help
249 This option enables support for flash chips using AMD-compatible
250 commands, including some which are not CFI-compatible and hence
251 cannot be used with the CONFIG_MTD_CFI_AMDSTD option.
252
253 It also works on AMD compatible chips that do conform to CFI.
254
255config MTD_SHARP
256 tristate "pre-CFI Sharp chip support"
257 depends on MTD_OBSOLETE_CHIPS
258 help
259 This option enables support for flash chips using Sharp-compatible
260 commands, including some which are not CFI-compatible and hence
261 cannot be used with the CONFIG_MTD_CFI_INTELxxx options.
262
263config MTD_JEDEC
264 tristate "JEDEC device support"
265 depends on MTD_OBSOLETE_CHIPS && BROKEN
266 help
267 Enable older JEDEC flash interface devices for self
268 programming flash. It is commonly used in older AMD chips. It is
269 only called JEDEC because the JEDEC association
270 <http://www.jedec.org/> distributes the identification codes for the
271 chips.
272
273config MTD_XIP 233config MTD_XIP
274 bool "XIP aware MTD support" 234 bool "XIP aware MTD support"
275 depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && EXPERIMENTAL && ARCH_MTD_XIP 235 depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && EXPERIMENTAL && ARCH_MTD_XIP
diff --git a/drivers/mtd/chips/Makefile b/drivers/mtd/chips/Makefile
index 75bc1c2a0f43..36582412ccda 100644
--- a/drivers/mtd/chips/Makefile
+++ b/drivers/mtd/chips/Makefile
@@ -1,19 +1,15 @@
1# 1#
2# linux/drivers/chips/Makefile 2# linux/drivers/chips/Makefile
3# 3#
4# $Id: Makefile.common,v 1.5 2005/11/07 11:14:22 gleixner Exp $
5 4
6obj-$(CONFIG_MTD) += chipreg.o 5obj-$(CONFIG_MTD) += chipreg.o
7obj-$(CONFIG_MTD_AMDSTD) += amd_flash.o
8obj-$(CONFIG_MTD_CFI) += cfi_probe.o 6obj-$(CONFIG_MTD_CFI) += cfi_probe.o
9obj-$(CONFIG_MTD_CFI_UTIL) += cfi_util.o 7obj-$(CONFIG_MTD_CFI_UTIL) += cfi_util.o
10obj-$(CONFIG_MTD_CFI_STAA) += cfi_cmdset_0020.o 8obj-$(CONFIG_MTD_CFI_STAA) += cfi_cmdset_0020.o
11obj-$(CONFIG_MTD_CFI_AMDSTD) += cfi_cmdset_0002.o 9obj-$(CONFIG_MTD_CFI_AMDSTD) += cfi_cmdset_0002.o
12obj-$(CONFIG_MTD_CFI_INTELEXT) += cfi_cmdset_0001.o 10obj-$(CONFIG_MTD_CFI_INTELEXT) += cfi_cmdset_0001.o
13obj-$(CONFIG_MTD_GEN_PROBE) += gen_probe.o 11obj-$(CONFIG_MTD_GEN_PROBE) += gen_probe.o
14obj-$(CONFIG_MTD_JEDEC) += jedec.o
15obj-$(CONFIG_MTD_JEDECPROBE) += jedec_probe.o 12obj-$(CONFIG_MTD_JEDECPROBE) += jedec_probe.o
16obj-$(CONFIG_MTD_RAM) += map_ram.o 13obj-$(CONFIG_MTD_RAM) += map_ram.o
17obj-$(CONFIG_MTD_ROM) += map_rom.o 14obj-$(CONFIG_MTD_ROM) += map_rom.o
18obj-$(CONFIG_MTD_SHARP) += sharp.o
19obj-$(CONFIG_MTD_ABSENT) += map_absent.o 15obj-$(CONFIG_MTD_ABSENT) += map_absent.o
diff --git a/drivers/mtd/chips/amd_flash.c b/drivers/mtd/chips/amd_flash.c
deleted file mode 100644
index e7999f15d85a..000000000000
--- a/drivers/mtd/chips/amd_flash.c
+++ /dev/null
@@ -1,1396 +0,0 @@
1/*
2 * MTD map driver for AMD compatible flash chips (non-CFI)
3 *
4 * Author: Jonas Holmberg <jonas.holmberg@axis.com>
5 *
6 * $Id: amd_flash.c,v 1.28 2005/11/07 11:14:22 gleixner Exp $
7 *
8 * Copyright (c) 2001 Axis Communications AB
9 *
10 * This file is under GPL.
11 *
12 */
13
14#include <linux/module.h>
15#include <linux/types.h>
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/errno.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/interrupt.h>
22#include <linux/init.h>
23#include <linux/mtd/map.h>
24#include <linux/mtd/mtd.h>
25#include <linux/mtd/flashchip.h>
26
27/* There's no limit. It exists only to avoid realloc. */
28#define MAX_AMD_CHIPS 8
29
30#define DEVICE_TYPE_X8 (8 / 8)
31#define DEVICE_TYPE_X16 (16 / 8)
32#define DEVICE_TYPE_X32 (32 / 8)
33
34/* Addresses */
35#define ADDR_MANUFACTURER 0x0000
36#define ADDR_DEVICE_ID 0x0001
37#define ADDR_SECTOR_LOCK 0x0002
38#define ADDR_HANDSHAKE 0x0003
39#define ADDR_UNLOCK_1 0x0555
40#define ADDR_UNLOCK_2 0x02AA
41
42/* Commands */
43#define CMD_UNLOCK_DATA_1 0x00AA
44#define CMD_UNLOCK_DATA_2 0x0055
45#define CMD_MANUFACTURER_UNLOCK_DATA 0x0090
46#define CMD_UNLOCK_BYPASS_MODE 0x0020
47#define CMD_PROGRAM_UNLOCK_DATA 0x00A0
48#define CMD_RESET_DATA 0x00F0
49#define CMD_SECTOR_ERASE_UNLOCK_DATA 0x0080
50#define CMD_SECTOR_ERASE_UNLOCK_DATA_2 0x0030
51
52#define CMD_UNLOCK_SECTOR 0x0060
53
54/* Manufacturers */
55#define MANUFACTURER_AMD 0x0001
56#define MANUFACTURER_ATMEL 0x001F
57#define MANUFACTURER_FUJITSU 0x0004
58#define MANUFACTURER_ST 0x0020
59#define MANUFACTURER_SST 0x00BF
60#define MANUFACTURER_TOSHIBA 0x0098
61
62/* AMD */
63#define AM29F800BB 0x2258
64#define AM29F800BT 0x22D6
65#define AM29LV800BB 0x225B
66#define AM29LV800BT 0x22DA
67#define AM29LV160DT 0x22C4
68#define AM29LV160DB 0x2249
69#define AM29BDS323D 0x22D1
70
71/* Atmel */
72#define AT49xV16x 0x00C0
73#define AT49xV16xT 0x00C2
74
75/* Fujitsu */
76#define MBM29LV160TE 0x22C4
77#define MBM29LV160BE 0x2249
78#define MBM29LV800BB 0x225B
79
80/* ST - www.st.com */
81#define M29W800T 0x00D7
82#define M29W160DT 0x22C4
83#define M29W160DB 0x2249
84
85/* SST */
86#define SST39LF800 0x2781
87#define SST39LF160 0x2782
88
89/* Toshiba */
90#define TC58FVT160 0x00C2
91#define TC58FVB160 0x0043
92
93#define D6_MASK 0x40
94
95struct amd_flash_private {
96 int device_type;
97 int interleave;
98 int numchips;
99 unsigned long chipshift;
100 struct flchip chips[0];
101};
102
103struct amd_flash_info {
104 const __u16 mfr_id;
105 const __u16 dev_id;
106 const char *name;
107 const u_long size;
108 const int numeraseregions;
109 const struct mtd_erase_region_info regions[4];
110};
111
112
113
114static int amd_flash_read(struct mtd_info *, loff_t, size_t, size_t *,
115 u_char *);
116static int amd_flash_write(struct mtd_info *, loff_t, size_t, size_t *,
117 const u_char *);
118static int amd_flash_erase(struct mtd_info *, struct erase_info *);
119static void amd_flash_sync(struct mtd_info *);
120static int amd_flash_suspend(struct mtd_info *);
121static void amd_flash_resume(struct mtd_info *);
122static void amd_flash_destroy(struct mtd_info *);
123static struct mtd_info *amd_flash_probe(struct map_info *map);
124
125
126static struct mtd_chip_driver amd_flash_chipdrv = {
127 .probe = amd_flash_probe,
128 .destroy = amd_flash_destroy,
129 .name = "amd_flash",
130 .module = THIS_MODULE
131};
132
133static inline __u32 wide_read(struct map_info *map, __u32 addr)
134{
135 if (map->buswidth == 1) {
136 return map_read8(map, addr);
137 } else if (map->buswidth == 2) {
138 return map_read16(map, addr);
139 } else if (map->buswidth == 4) {
140 return map_read32(map, addr);
141 }
142
143 return 0;
144}
145
146static inline void wide_write(struct map_info *map, __u32 val, __u32 addr)
147{
148 if (map->buswidth == 1) {
149 map_write8(map, val, addr);
150 } else if (map->buswidth == 2) {
151 map_write16(map, val, addr);
152 } else if (map->buswidth == 4) {
153 map_write32(map, val, addr);
154 }
155}
156
157static inline __u32 make_cmd(struct map_info *map, __u32 cmd)
158{
159 const struct amd_flash_private *private = map->fldrv_priv;
160 if ((private->interleave == 2) &&
161 (private->device_type == DEVICE_TYPE_X16)) {
162 cmd |= (cmd << 16);
163 }
164
165 return cmd;
166}
167
168static inline void send_unlock(struct map_info *map, unsigned long base)
169{
170 wide_write(map, (CMD_UNLOCK_DATA_1 << 16) | CMD_UNLOCK_DATA_1,
171 base + (map->buswidth * ADDR_UNLOCK_1));
172 wide_write(map, (CMD_UNLOCK_DATA_2 << 16) | CMD_UNLOCK_DATA_2,
173 base + (map->buswidth * ADDR_UNLOCK_2));
174}
175
176static inline void send_cmd(struct map_info *map, unsigned long base, __u32 cmd)
177{
178 send_unlock(map, base);
179 wide_write(map, make_cmd(map, cmd),
180 base + (map->buswidth * ADDR_UNLOCK_1));
181}
182
183static inline void send_cmd_to_addr(struct map_info *map, unsigned long base,
184 __u32 cmd, unsigned long addr)
185{
186 send_unlock(map, base);
187 wide_write(map, make_cmd(map, cmd), addr);
188}
189
190static inline int flash_is_busy(struct map_info *map, unsigned long addr,
191 int interleave)
192{
193
194 if ((interleave == 2) && (map->buswidth == 4)) {
195 __u32 read1, read2;
196
197 read1 = wide_read(map, addr);
198 read2 = wide_read(map, addr);
199
200 return (((read1 >> 16) & D6_MASK) !=
201 ((read2 >> 16) & D6_MASK)) ||
202 (((read1 & 0xffff) & D6_MASK) !=
203 ((read2 & 0xffff) & D6_MASK));
204 }
205
206 return ((wide_read(map, addr) & D6_MASK) !=
207 (wide_read(map, addr) & D6_MASK));
208}
209
210static inline void unlock_sector(struct map_info *map, unsigned long sect_addr,
211 int unlock)
212{
213 /* Sector lock address. A6 = 1 for unlock, A6 = 0 for lock */
214 int SLA = unlock ?
215 (sect_addr | (0x40 * map->buswidth)) :
216 (sect_addr & ~(0x40 * map->buswidth)) ;
217
218 __u32 cmd = make_cmd(map, CMD_UNLOCK_SECTOR);
219
220 wide_write(map, make_cmd(map, CMD_RESET_DATA), 0);
221 wide_write(map, cmd, SLA); /* 1st cycle: write cmd to any address */
222 wide_write(map, cmd, SLA); /* 2nd cycle: write cmd to any address */
223 wide_write(map, cmd, SLA); /* 3rd cycle: write cmd to SLA */
224}
225
226static inline int is_sector_locked(struct map_info *map,
227 unsigned long sect_addr)
228{
229 int status;
230
231 wide_write(map, CMD_RESET_DATA, 0);
232 send_cmd(map, sect_addr, CMD_MANUFACTURER_UNLOCK_DATA);
233
234 /* status is 0x0000 for unlocked and 0x0001 for locked */
235 status = wide_read(map, sect_addr + (map->buswidth * ADDR_SECTOR_LOCK));
236 wide_write(map, CMD_RESET_DATA, 0);
237 return status;
238}
239
240static int amd_flash_do_unlock(struct mtd_info *mtd, loff_t ofs, size_t len,
241 int is_unlock)
242{
243 struct map_info *map;
244 struct mtd_erase_region_info *merip;
245 int eraseoffset, erasesize, eraseblocks;
246 int i;
247 int retval = 0;
248 int lock_status;
249
250 map = mtd->priv;
251
252 /* Pass the whole chip through sector by sector and check for each
253 sector if the sector and the given interval overlap */
254 for(i = 0; i < mtd->numeraseregions; i++) {
255 merip = &mtd->eraseregions[i];
256
257 eraseoffset = merip->offset;
258 erasesize = merip->erasesize;
259 eraseblocks = merip->numblocks;
260
261 if (ofs > eraseoffset + erasesize)
262 continue;
263
264 while (eraseblocks > 0) {
265 if (ofs < eraseoffset + erasesize && ofs + len > eraseoffset) {
266 unlock_sector(map, eraseoffset, is_unlock);
267
268 lock_status = is_sector_locked(map, eraseoffset);
269
270 if (is_unlock && lock_status) {
271 printk("Cannot unlock sector at address %x length %xx\n",
272 eraseoffset, merip->erasesize);
273 retval = -1;
274 } else if (!is_unlock && !lock_status) {
275 printk("Cannot lock sector at address %x length %x\n",
276 eraseoffset, merip->erasesize);
277 retval = -1;
278 }
279 }
280 eraseoffset += erasesize;
281 eraseblocks --;
282 }
283 }
284 return retval;
285}
286
287static int amd_flash_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
288{
289 return amd_flash_do_unlock(mtd, ofs, len, 1);
290}
291
292static int amd_flash_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
293{
294 return amd_flash_do_unlock(mtd, ofs, len, 0);
295}
296
297
298/*
299 * Reads JEDEC manufacturer ID and device ID and returns the index of the first
300 * matching table entry (-1 if not found or alias for already found chip).
301 */
302static int probe_new_chip(struct mtd_info *mtd, __u32 base,
303 struct flchip *chips,
304 struct amd_flash_private *private,
305 const struct amd_flash_info *table, int table_size)
306{
307 __u32 mfr_id;
308 __u32 dev_id;
309 struct map_info *map = mtd->priv;
310 struct amd_flash_private temp;
311 int i;
312
313 temp.device_type = DEVICE_TYPE_X16; // Assume X16 (FIXME)
314 temp.interleave = 2;
315 map->fldrv_priv = &temp;
316
317 /* Enter autoselect mode. */
318 send_cmd(map, base, CMD_RESET_DATA);
319 send_cmd(map, base, CMD_MANUFACTURER_UNLOCK_DATA);
320
321 mfr_id = wide_read(map, base + (map->buswidth * ADDR_MANUFACTURER));
322 dev_id = wide_read(map, base + (map->buswidth * ADDR_DEVICE_ID));
323
324 if ((map->buswidth == 4) && ((mfr_id >> 16) == (mfr_id & 0xffff)) &&
325 ((dev_id >> 16) == (dev_id & 0xffff))) {
326 mfr_id &= 0xffff;
327 dev_id &= 0xffff;
328 } else {
329 temp.interleave = 1;
330 }
331
332 for (i = 0; i < table_size; i++) {
333 if ((mfr_id == table[i].mfr_id) &&
334 (dev_id == table[i].dev_id)) {
335 if (chips) {
336 int j;
337
338 /* Is this an alias for an already found chip?
339 * In that case that chip should be in
340 * autoselect mode now.
341 */
342 for (j = 0; j < private->numchips; j++) {
343 __u32 mfr_id_other;
344 __u32 dev_id_other;
345
346 mfr_id_other =
347 wide_read(map, chips[j].start +
348 (map->buswidth *
349 ADDR_MANUFACTURER
350 ));
351 dev_id_other =
352 wide_read(map, chips[j].start +
353 (map->buswidth *
354 ADDR_DEVICE_ID));
355 if (temp.interleave == 2) {
356 mfr_id_other &= 0xffff;
357 dev_id_other &= 0xffff;
358 }
359 if ((mfr_id_other == mfr_id) &&
360 (dev_id_other == dev_id)) {
361
362 /* Exit autoselect mode. */
363 send_cmd(map, base,
364 CMD_RESET_DATA);
365
366 return -1;
367 }
368 }
369
370 if (private->numchips == MAX_AMD_CHIPS) {
371 printk(KERN_WARNING
372 "%s: Too many flash chips "
373 "detected. Increase "
374 "MAX_AMD_CHIPS from %d.\n",
375 map->name, MAX_AMD_CHIPS);
376
377 return -1;
378 }
379
380 chips[private->numchips].start = base;
381 chips[private->numchips].state = FL_READY;
382 chips[private->numchips].mutex =
383 &chips[private->numchips]._spinlock;
384 private->numchips++;
385 }
386
387 printk("%s: Found %d x %ldMiB %s at 0x%x\n", map->name,
388 temp.interleave, (table[i].size)/(1024*1024),
389 table[i].name, base);
390
391 mtd->size += table[i].size * temp.interleave;
392 mtd->numeraseregions += table[i].numeraseregions;
393
394 break;
395 }
396 }
397
398 /* Exit autoselect mode. */
399 send_cmd(map, base, CMD_RESET_DATA);
400
401 if (i == table_size) {
402 printk(KERN_DEBUG "%s: unknown flash device at 0x%x, "
403 "mfr id 0x%x, dev id 0x%x\n", map->name,
404 base, mfr_id, dev_id);
405 map->fldrv_priv = NULL;
406
407 return -1;
408 }
409
410 private->device_type = temp.device_type;
411 private->interleave = temp.interleave;
412
413 return i;
414}
415
416
417
418static struct mtd_info *amd_flash_probe(struct map_info *map)
419{
420 static const struct amd_flash_info table[] = {
421 {
422 .mfr_id = MANUFACTURER_AMD,
423 .dev_id = AM29LV160DT,
424 .name = "AMD AM29LV160DT",
425 .size = 0x00200000,
426 .numeraseregions = 4,
427 .regions = {
428 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
429 { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 },
430 { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 },
431 { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 }
432 }
433 }, {
434 .mfr_id = MANUFACTURER_AMD,
435 .dev_id = AM29LV160DB,
436 .name = "AMD AM29LV160DB",
437 .size = 0x00200000,
438 .numeraseregions = 4,
439 .regions = {
440 { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
441 { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
442 { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
443 { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
444 }
445 }, {
446 .mfr_id = MANUFACTURER_TOSHIBA,
447 .dev_id = TC58FVT160,
448 .name = "Toshiba TC58FVT160",
449 .size = 0x00200000,
450 .numeraseregions = 4,
451 .regions = {
452 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
453 { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 },
454 { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 },
455 { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 }
456 }
457 }, {
458 .mfr_id = MANUFACTURER_FUJITSU,
459 .dev_id = MBM29LV160TE,
460 .name = "Fujitsu MBM29LV160TE",
461 .size = 0x00200000,
462 .numeraseregions = 4,
463 .regions = {
464 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
465 { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 },
466 { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 },
467 { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 }
468 }
469 }, {
470 .mfr_id = MANUFACTURER_TOSHIBA,
471 .dev_id = TC58FVB160,
472 .name = "Toshiba TC58FVB160",
473 .size = 0x00200000,
474 .numeraseregions = 4,
475 .regions = {
476 { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
477 { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
478 { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
479 { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
480 }
481 }, {
482 .mfr_id = MANUFACTURER_FUJITSU,
483 .dev_id = MBM29LV160BE,
484 .name = "Fujitsu MBM29LV160BE",
485 .size = 0x00200000,
486 .numeraseregions = 4,
487 .regions = {
488 { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
489 { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
490 { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
491 { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
492 }
493 }, {
494 .mfr_id = MANUFACTURER_AMD,
495 .dev_id = AM29LV800BB,
496 .name = "AMD AM29LV800BB",
497 .size = 0x00100000,
498 .numeraseregions = 4,
499 .regions = {
500 { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
501 { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
502 { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
503 { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
504 }
505 }, {
506 .mfr_id = MANUFACTURER_AMD,
507 .dev_id = AM29F800BB,
508 .name = "AMD AM29F800BB",
509 .size = 0x00100000,
510 .numeraseregions = 4,
511 .regions = {
512 { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
513 { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
514 { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
515 { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
516 }
517 }, {
518 .mfr_id = MANUFACTURER_AMD,
519 .dev_id = AM29LV800BT,
520 .name = "AMD AM29LV800BT",
521 .size = 0x00100000,
522 .numeraseregions = 4,
523 .regions = {
524 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
525 { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 },
526 { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 },
527 { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 }
528 }
529 }, {
530 .mfr_id = MANUFACTURER_AMD,
531 .dev_id = AM29F800BT,
532 .name = "AMD AM29F800BT",
533 .size = 0x00100000,
534 .numeraseregions = 4,
535 .regions = {
536 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
537 { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 },
538 { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 },
539 { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 }
540 }
541 }, {
542 .mfr_id = MANUFACTURER_AMD,
543 .dev_id = AM29LV800BB,
544 .name = "AMD AM29LV800BB",
545 .size = 0x00100000,
546 .numeraseregions = 4,
547 .regions = {
548 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
549 { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 },
550 { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 },
551 { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 }
552 }
553 }, {
554 .mfr_id = MANUFACTURER_FUJITSU,
555 .dev_id = MBM29LV800BB,
556 .name = "Fujitsu MBM29LV800BB",
557 .size = 0x00100000,
558 .numeraseregions = 4,
559 .regions = {
560 { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
561 { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
562 { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
563 { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
564 }
565 }, {
566 .mfr_id = MANUFACTURER_ST,
567 .dev_id = M29W800T,
568 .name = "ST M29W800T",
569 .size = 0x00100000,
570 .numeraseregions = 4,
571 .regions = {
572 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
573 { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 },
574 { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 },
575 { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 }
576 }
577 }, {
578 .mfr_id = MANUFACTURER_ST,
579 .dev_id = M29W160DT,
580 .name = "ST M29W160DT",
581 .size = 0x00200000,
582 .numeraseregions = 4,
583 .regions = {
584 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
585 { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 },
586 { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 },
587 { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 }
588 }
589 }, {
590 .mfr_id = MANUFACTURER_ST,
591 .dev_id = M29W160DB,
592 .name = "ST M29W160DB",
593 .size = 0x00200000,
594 .numeraseregions = 4,
595 .regions = {
596 { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
597 { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
598 { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
599 { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
600 }
601 }, {
602 .mfr_id = MANUFACTURER_AMD,
603 .dev_id = AM29BDS323D,
604 .name = "AMD AM29BDS323D",
605 .size = 0x00400000,
606 .numeraseregions = 3,
607 .regions = {
608 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 48 },
609 { .offset = 0x300000, .erasesize = 0x10000, .numblocks = 15 },
610 { .offset = 0x3f0000, .erasesize = 0x02000, .numblocks = 8 },
611 }
612 }, {
613 .mfr_id = MANUFACTURER_ATMEL,
614 .dev_id = AT49xV16x,
615 .name = "Atmel AT49xV16x",
616 .size = 0x00200000,
617 .numeraseregions = 2,
618 .regions = {
619 { .offset = 0x000000, .erasesize = 0x02000, .numblocks = 8 },
620 { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
621 }
622 }, {
623 .mfr_id = MANUFACTURER_ATMEL,
624 .dev_id = AT49xV16xT,
625 .name = "Atmel AT49xV16xT",
626 .size = 0x00200000,
627 .numeraseregions = 2,
628 .regions = {
629 { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
630 { .offset = 0x1F0000, .erasesize = 0x02000, .numblocks = 8 }
631 }
632 }
633 };
634
635 struct mtd_info *mtd;
636 struct flchip chips[MAX_AMD_CHIPS];
637 int table_pos[MAX_AMD_CHIPS];
638 struct amd_flash_private temp;
639 struct amd_flash_private *private;
640 u_long size;
641 unsigned long base;
642 int i;
643 int reg_idx;
644 int offset;
645
646 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
647 if (!mtd) {
648 printk(KERN_WARNING
649 "%s: kmalloc failed for info structure\n", map->name);
650 return NULL;
651 }
652 mtd->priv = map;
653
654 memset(&temp, 0, sizeof(temp));
655
656 printk("%s: Probing for AMD compatible flash...\n", map->name);
657
658 if ((table_pos[0] = probe_new_chip(mtd, 0, NULL, &temp, table,
659 ARRAY_SIZE(table)))
660 == -1) {
661 printk(KERN_WARNING
662 "%s: Found no AMD compatible device at location zero\n",
663 map->name);
664 kfree(mtd);
665
666 return NULL;
667 }
668
669 chips[0].start = 0;
670 chips[0].state = FL_READY;
671 chips[0].mutex = &chips[0]._spinlock;
672 temp.numchips = 1;
673 for (size = mtd->size; size > 1; size >>= 1) {
674 temp.chipshift++;
675 }
676 switch (temp.interleave) {
677 case 2:
678 temp.chipshift += 1;
679 break;
680 case 4:
681 temp.chipshift += 2;
682 break;
683 }
684
685 /* Find out if there are any more chips in the map. */
686 for (base = (1 << temp.chipshift);
687 base < map->size;
688 base += (1 << temp.chipshift)) {
689 int numchips = temp.numchips;
690 table_pos[numchips] = probe_new_chip(mtd, base, chips,
691 &temp, table, ARRAY_SIZE(table));
692 }
693
694 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) *
695 mtd->numeraseregions, GFP_KERNEL);
696 if (!mtd->eraseregions) {
697 printk(KERN_WARNING "%s: Failed to allocate "
698 "memory for MTD erase region info\n", map->name);
699 kfree(mtd);
700 map->fldrv_priv = NULL;
701 return NULL;
702 }
703
704 reg_idx = 0;
705 offset = 0;
706 for (i = 0; i < temp.numchips; i++) {
707 int dev_size;
708 int j;
709
710 dev_size = 0;
711 for (j = 0; j < table[table_pos[i]].numeraseregions; j++) {
712 mtd->eraseregions[reg_idx].offset = offset +
713 (table[table_pos[i]].regions[j].offset *
714 temp.interleave);
715 mtd->eraseregions[reg_idx].erasesize =
716 table[table_pos[i]].regions[j].erasesize *
717 temp.interleave;
718 mtd->eraseregions[reg_idx].numblocks =
719 table[table_pos[i]].regions[j].numblocks;
720 if (mtd->erasesize <
721 mtd->eraseregions[reg_idx].erasesize) {
722 mtd->erasesize =
723 mtd->eraseregions[reg_idx].erasesize;
724 }
725 dev_size += mtd->eraseregions[reg_idx].erasesize *
726 mtd->eraseregions[reg_idx].numblocks;
727 reg_idx++;
728 }
729 offset += dev_size;
730 }
731 mtd->type = MTD_NORFLASH;
732 mtd->writesize = 1;
733 mtd->flags = MTD_CAP_NORFLASH;
734 mtd->name = map->name;
735 mtd->erase = amd_flash_erase;
736 mtd->read = amd_flash_read;
737 mtd->write = amd_flash_write;
738 mtd->sync = amd_flash_sync;
739 mtd->suspend = amd_flash_suspend;
740 mtd->resume = amd_flash_resume;
741 mtd->lock = amd_flash_lock;
742 mtd->unlock = amd_flash_unlock;
743
744 private = kmalloc(sizeof(*private) + (sizeof(struct flchip) *
745 temp.numchips), GFP_KERNEL);
746 if (!private) {
747 printk(KERN_WARNING
748 "%s: kmalloc failed for private structure\n", map->name);
749 kfree(mtd);
750 map->fldrv_priv = NULL;
751 return NULL;
752 }
753 memcpy(private, &temp, sizeof(temp));
754 memcpy(private->chips, chips,
755 sizeof(struct flchip) * private->numchips);
756 for (i = 0; i < private->numchips; i++) {
757 init_waitqueue_head(&private->chips[i].wq);
758 spin_lock_init(&private->chips[i]._spinlock);
759 }
760
761 map->fldrv_priv = private;
762
763 map->fldrv = &amd_flash_chipdrv;
764
765 __module_get(THIS_MODULE);
766 return mtd;
767}
768
769
770
771static inline int read_one_chip(struct map_info *map, struct flchip *chip,
772 loff_t adr, size_t len, u_char *buf)
773{
774 DECLARE_WAITQUEUE(wait, current);
775 unsigned long timeo = jiffies + HZ;
776
777retry:
778 spin_lock_bh(chip->mutex);
779
780 if (chip->state != FL_READY){
781 printk(KERN_INFO "%s: waiting for chip to read, state = %d\n",
782 map->name, chip->state);
783 set_current_state(TASK_UNINTERRUPTIBLE);
784 add_wait_queue(&chip->wq, &wait);
785
786 spin_unlock_bh(chip->mutex);
787
788 schedule();
789 remove_wait_queue(&chip->wq, &wait);
790
791 if(signal_pending(current)) {
792 return -EINTR;
793 }
794
795 timeo = jiffies + HZ;
796
797 goto retry;
798 }
799
800 adr += chip->start;
801
802 chip->state = FL_READY;
803
804 map_copy_from(map, buf, adr, len);
805
806 wake_up(&chip->wq);
807 spin_unlock_bh(chip->mutex);
808
809 return 0;
810}
811
812
813
814static int amd_flash_read(struct mtd_info *mtd, loff_t from, size_t len,
815 size_t *retlen, u_char *buf)
816{
817 struct map_info *map = mtd->priv;
818 struct amd_flash_private *private = map->fldrv_priv;
819 unsigned long ofs;
820 int chipnum;
821 int ret = 0;
822
823 if ((from + len) > mtd->size) {
824 printk(KERN_WARNING "%s: read request past end of device "
825 "(0x%lx)\n", map->name, (unsigned long)from + len);
826
827 return -EINVAL;
828 }
829
830 /* Offset within the first chip that the first read should start. */
831 chipnum = (from >> private->chipshift);
832 ofs = from - (chipnum << private->chipshift);
833
834 *retlen = 0;
835
836 while (len) {
837 unsigned long this_len;
838
839 if (chipnum >= private->numchips) {
840 break;
841 }
842
843 if ((len + ofs - 1) >> private->chipshift) {
844 this_len = (1 << private->chipshift) - ofs;
845 } else {
846 this_len = len;
847 }
848
849 ret = read_one_chip(map, &private->chips[chipnum], ofs,
850 this_len, buf);
851 if (ret) {
852 break;
853 }
854
855 *retlen += this_len;
856 len -= this_len;
857 buf += this_len;
858
859 ofs = 0;
860 chipnum++;
861 }
862
863 return ret;
864}
865
866
867
868static int write_one_word(struct map_info *map, struct flchip *chip,
869 unsigned long adr, __u32 datum)
870{
871 unsigned long timeo = jiffies + HZ;
872 struct amd_flash_private *private = map->fldrv_priv;
873 DECLARE_WAITQUEUE(wait, current);
874 int ret = 0;
875 int times_left;
876
877retry:
878 spin_lock_bh(chip->mutex);
879
880 if (chip->state != FL_READY){
881 printk("%s: waiting for chip to write, state = %d\n",
882 map->name, chip->state);
883 set_current_state(TASK_UNINTERRUPTIBLE);
884 add_wait_queue(&chip->wq, &wait);
885
886 spin_unlock_bh(chip->mutex);
887
888 schedule();
889 remove_wait_queue(&chip->wq, &wait);
890 printk(KERN_INFO "%s: woke up to write\n", map->name);
891 if(signal_pending(current))
892 return -EINTR;
893
894 timeo = jiffies + HZ;
895
896 goto retry;
897 }
898
899 chip->state = FL_WRITING;
900
901 adr += chip->start;
902 ENABLE_VPP(map);
903 send_cmd(map, chip->start, CMD_PROGRAM_UNLOCK_DATA);
904 wide_write(map, datum, adr);
905
906 times_left = 500000;
907 while (times_left-- && flash_is_busy(map, adr, private->interleave)) {
908 if (need_resched()) {
909 spin_unlock_bh(chip->mutex);
910 schedule();
911 spin_lock_bh(chip->mutex);
912 }
913 }
914
915 if (!times_left) {
916 printk(KERN_WARNING "%s: write to 0x%lx timed out!\n",
917 map->name, adr);
918 ret = -EIO;
919 } else {
920 __u32 verify;
921 if ((verify = wide_read(map, adr)) != datum) {
922 printk(KERN_WARNING "%s: write to 0x%lx failed. "
923 "datum = %x, verify = %x\n",
924 map->name, adr, datum, verify);
925 ret = -EIO;
926 }
927 }
928
929 DISABLE_VPP(map);
930 chip->state = FL_READY;
931 wake_up(&chip->wq);
932 spin_unlock_bh(chip->mutex);
933
934 return ret;
935}
936
937
938
939static int amd_flash_write(struct mtd_info *mtd, loff_t to , size_t len,
940 size_t *retlen, const u_char *buf)
941{
942 struct map_info *map = mtd->priv;
943 struct amd_flash_private *private = map->fldrv_priv;
944 int ret = 0;
945 int chipnum;
946 unsigned long ofs;
947 unsigned long chipstart;
948
949 *retlen = 0;
950 if (!len) {
951 return 0;
952 }
953
954 chipnum = to >> private->chipshift;
955 ofs = to - (chipnum << private->chipshift);
956 chipstart = private->chips[chipnum].start;
957
958 /* If it's not bus-aligned, do the first byte write. */
959 if (ofs & (map->buswidth - 1)) {
960 unsigned long bus_ofs = ofs & ~(map->buswidth - 1);
961 int i = ofs - bus_ofs;
962 int n = 0;
963 u_char tmp_buf[4];
964 __u32 datum;
965
966 map_copy_from(map, tmp_buf,
967 bus_ofs + private->chips[chipnum].start,
968 map->buswidth);
969 while (len && i < map->buswidth)
970 tmp_buf[i++] = buf[n++], len--;
971
972 if (map->buswidth == 2) {
973 datum = *(__u16*)tmp_buf;
974 } else if (map->buswidth == 4) {
975 datum = *(__u32*)tmp_buf;
976 } else {
977 return -EINVAL; /* should never happen, but be safe */
978 }
979
980 ret = write_one_word(map, &private->chips[chipnum], bus_ofs,
981 datum);
982 if (ret) {
983 return ret;
984 }
985
986 ofs += n;
987 buf += n;
988 (*retlen) += n;
989
990 if (ofs >> private->chipshift) {
991 chipnum++;
992 ofs = 0;
993 if (chipnum == private->numchips) {
994 return 0;
995 }
996 }
997 }
998
999 /* We are now aligned, write as much as possible. */
1000 while(len >= map->buswidth) {
1001 __u32 datum;
1002
1003 if (map->buswidth == 1) {
1004 datum = *(__u8*)buf;
1005 } else if (map->buswidth == 2) {
1006 datum = *(__u16*)buf;
1007 } else if (map->buswidth == 4) {
1008 datum = *(__u32*)buf;
1009 } else {
1010 return -EINVAL;
1011 }
1012
1013 ret = write_one_word(map, &private->chips[chipnum], ofs, datum);
1014
1015 if (ret) {
1016 return ret;
1017 }
1018
1019 ofs += map->buswidth;
1020 buf += map->buswidth;
1021 (*retlen) += map->buswidth;
1022 len -= map->buswidth;
1023
1024 if (ofs >> private->chipshift) {
1025 chipnum++;
1026 ofs = 0;
1027 if (chipnum == private->numchips) {
1028 return 0;
1029 }
1030 chipstart = private->chips[chipnum].start;
1031 }
1032 }
1033
1034 if (len & (map->buswidth - 1)) {
1035 int i = 0, n = 0;
1036 u_char tmp_buf[2];
1037 __u32 datum;
1038
1039 map_copy_from(map, tmp_buf,
1040 ofs + private->chips[chipnum].start,
1041 map->buswidth);
1042 while (len--) {
1043 tmp_buf[i++] = buf[n++];
1044 }
1045
1046 if (map->buswidth == 2) {
1047 datum = *(__u16*)tmp_buf;
1048 } else if (map->buswidth == 4) {
1049 datum = *(__u32*)tmp_buf;
1050 } else {
1051 return -EINVAL; /* should never happen, but be safe */
1052 }
1053
1054 ret = write_one_word(map, &private->chips[chipnum], ofs, datum);
1055
1056 if (ret) {
1057 return ret;
1058 }
1059
1060 (*retlen) += n;
1061 }
1062
1063 return 0;
1064}
1065
1066
1067
1068static inline int erase_one_block(struct map_info *map, struct flchip *chip,
1069 unsigned long adr, u_long size)
1070{
1071 unsigned long timeo = jiffies + HZ;
1072 struct amd_flash_private *private = map->fldrv_priv;
1073 DECLARE_WAITQUEUE(wait, current);
1074
1075retry:
1076 spin_lock_bh(chip->mutex);
1077
1078 if (chip->state != FL_READY){
1079 set_current_state(TASK_UNINTERRUPTIBLE);
1080 add_wait_queue(&chip->wq, &wait);
1081
1082 spin_unlock_bh(chip->mutex);
1083
1084 schedule();
1085 remove_wait_queue(&chip->wq, &wait);
1086
1087 if (signal_pending(current)) {
1088 return -EINTR;
1089 }
1090
1091 timeo = jiffies + HZ;
1092
1093 goto retry;
1094 }
1095
1096 chip->state = FL_ERASING;
1097
1098 adr += chip->start;
1099 ENABLE_VPP(map);
1100 send_cmd(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA);
1101 send_cmd_to_addr(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA_2, adr);
1102
1103 timeo = jiffies + (HZ * 20);
1104
1105 spin_unlock_bh(chip->mutex);
1106 msleep(1000);
1107 spin_lock_bh(chip->mutex);
1108
1109 while (flash_is_busy(map, adr, private->interleave)) {
1110
1111 if (chip->state != FL_ERASING) {
1112 /* Someone's suspended the erase. Sleep */
1113 set_current_state(TASK_UNINTERRUPTIBLE);
1114 add_wait_queue(&chip->wq, &wait);
1115
1116 spin_unlock_bh(chip->mutex);
1117 printk(KERN_INFO "%s: erase suspended. Sleeping\n",
1118 map->name);
1119 schedule();
1120 remove_wait_queue(&chip->wq, &wait);
1121
1122 if (signal_pending(current)) {
1123 return -EINTR;
1124 }
1125
1126 timeo = jiffies + (HZ*2); /* FIXME */
1127 spin_lock_bh(chip->mutex);
1128 continue;
1129 }
1130
1131 /* OK Still waiting */
1132 if (time_after(jiffies, timeo)) {
1133 chip->state = FL_READY;
1134 spin_unlock_bh(chip->mutex);
1135 printk(KERN_WARNING "%s: waiting for erase to complete "
1136 "timed out.\n", map->name);
1137 DISABLE_VPP(map);
1138
1139 return -EIO;
1140 }
1141
1142 /* Latency issues. Drop the lock, wait a while and retry */
1143 spin_unlock_bh(chip->mutex);
1144
1145 if (need_resched())
1146 schedule();
1147 else
1148 udelay(1);
1149
1150 spin_lock_bh(chip->mutex);
1151 }
1152
1153 /* Verify every single word */
1154 {
1155 int address;
1156 int error = 0;
1157 __u8 verify;
1158
1159 for (address = adr; address < (adr + size); address++) {
1160 if ((verify = map_read8(map, address)) != 0xFF) {
1161 error = 1;
1162 break;
1163 }
1164 }
1165 if (error) {
1166 chip->state = FL_READY;
1167 spin_unlock_bh(chip->mutex);
1168 printk(KERN_WARNING
1169 "%s: verify error at 0x%x, size %ld.\n",
1170 map->name, address, size);
1171 DISABLE_VPP(map);
1172
1173 return -EIO;
1174 }
1175 }
1176
1177 DISABLE_VPP(map);
1178 chip->state = FL_READY;
1179 wake_up(&chip->wq);
1180 spin_unlock_bh(chip->mutex);
1181
1182 return 0;
1183}
1184
1185
1186
1187static int amd_flash_erase(struct mtd_info *mtd, struct erase_info *instr)
1188{
1189 struct map_info *map = mtd->priv;
1190 struct amd_flash_private *private = map->fldrv_priv;
1191 unsigned long adr, len;
1192 int chipnum;
1193 int ret = 0;
1194 int i;
1195 int first;
1196 struct mtd_erase_region_info *regions = mtd->eraseregions;
1197
1198 if (instr->addr > mtd->size) {
1199 return -EINVAL;
1200 }
1201
1202 if ((instr->len + instr->addr) > mtd->size) {
1203 return -EINVAL;
1204 }
1205
1206 /* Check that both start and end of the requested erase are
1207 * aligned with the erasesize at the appropriate addresses.
1208 */
1209
1210 i = 0;
1211
1212 /* Skip all erase regions which are ended before the start of
1213 the requested erase. Actually, to save on the calculations,
1214 we skip to the first erase region which starts after the
1215 start of the requested erase, and then go back one.
1216 */
1217
1218 while ((i < mtd->numeraseregions) &&
1219 (instr->addr >= regions[i].offset)) {
1220 i++;
1221 }
1222 i--;
1223
1224 /* OK, now i is pointing at the erase region in which this
1225 * erase request starts. Check the start of the requested
1226 * erase range is aligned with the erase size which is in
1227 * effect here.
1228 */
1229
1230 if (instr->addr & (regions[i].erasesize-1)) {
1231 return -EINVAL;
1232 }
1233
1234 /* Remember the erase region we start on. */
1235
1236 first = i;
1237
1238 /* Next, check that the end of the requested erase is aligned
1239 * with the erase region at that address.
1240 */
1241
1242 while ((i < mtd->numeraseregions) &&
1243 ((instr->addr + instr->len) >= regions[i].offset)) {
1244 i++;
1245 }
1246
1247 /* As before, drop back one to point at the region in which
1248 * the address actually falls.
1249 */
1250
1251 i--;
1252
1253 if ((instr->addr + instr->len) & (regions[i].erasesize-1)) {
1254 return -EINVAL;
1255 }
1256
1257 chipnum = instr->addr >> private->chipshift;
1258 adr = instr->addr - (chipnum << private->chipshift);
1259 len = instr->len;
1260
1261 i = first;
1262
1263 while (len) {
1264 ret = erase_one_block(map, &private->chips[chipnum], adr,
1265 regions[i].erasesize);
1266
1267 if (ret) {
1268 return ret;
1269 }
1270
1271 adr += regions[i].erasesize;
1272 len -= regions[i].erasesize;
1273
1274 if ((adr % (1 << private->chipshift)) ==
1275 ((regions[i].offset + (regions[i].erasesize *
1276 regions[i].numblocks))
1277 % (1 << private->chipshift))) {
1278 i++;
1279 }
1280
1281 if (adr >> private->chipshift) {
1282 adr = 0;
1283 chipnum++;
1284 if (chipnum >= private->numchips) {
1285 break;
1286 }
1287 }
1288 }
1289
1290 instr->state = MTD_ERASE_DONE;
1291 mtd_erase_callback(instr);
1292
1293 return 0;
1294}
1295
1296
1297
1298static void amd_flash_sync(struct mtd_info *mtd)
1299{
1300 struct map_info *map = mtd->priv;
1301 struct amd_flash_private *private = map->fldrv_priv;
1302 int i;
1303 struct flchip *chip;
1304 int ret = 0;
1305 DECLARE_WAITQUEUE(wait, current);
1306
1307 for (i = 0; !ret && (i < private->numchips); i++) {
1308 chip = &private->chips[i];
1309
1310 retry:
1311 spin_lock_bh(chip->mutex);
1312
1313 switch(chip->state) {
1314 case FL_READY:
1315 case FL_STATUS:
1316 case FL_CFI_QUERY:
1317 case FL_JEDEC_QUERY:
1318 chip->oldstate = chip->state;
1319 chip->state = FL_SYNCING;
1320 /* No need to wake_up() on this state change -
1321 * as the whole point is that nobody can do anything
1322 * with the chip now anyway.
1323 */
1324 case FL_SYNCING:
1325 spin_unlock_bh(chip->mutex);
1326 break;
1327
1328 default:
1329 /* Not an idle state */
1330 add_wait_queue(&chip->wq, &wait);
1331
1332 spin_unlock_bh(chip->mutex);
1333
1334 schedule();
1335
1336 remove_wait_queue(&chip->wq, &wait);
1337
1338 goto retry;
1339 }
1340 }
1341
1342 /* Unlock the chips again */
1343 for (i--; i >= 0; i--) {
1344 chip = &private->chips[i];
1345
1346 spin_lock_bh(chip->mutex);
1347
1348 if (chip->state == FL_SYNCING) {
1349 chip->state = chip->oldstate;
1350 wake_up(&chip->wq);
1351 }
1352 spin_unlock_bh(chip->mutex);
1353 }
1354}
1355
1356
1357
1358static int amd_flash_suspend(struct mtd_info *mtd)
1359{
1360printk("amd_flash_suspend(): not implemented!\n");
1361 return -EINVAL;
1362}
1363
1364
1365
1366static void amd_flash_resume(struct mtd_info *mtd)
1367{
1368printk("amd_flash_resume(): not implemented!\n");
1369}
1370
1371
1372
1373static void amd_flash_destroy(struct mtd_info *mtd)
1374{
1375 struct map_info *map = mtd->priv;
1376 struct amd_flash_private *private = map->fldrv_priv;
1377 kfree(private);
1378}
1379
1380int __init amd_flash_init(void)
1381{
1382 register_mtd_chip_driver(&amd_flash_chipdrv);
1383 return 0;
1384}
1385
1386void __exit amd_flash_exit(void)
1387{
1388 unregister_mtd_chip_driver(&amd_flash_chipdrv);
1389}
1390
1391module_init(amd_flash_init);
1392module_exit(amd_flash_exit);
1393
1394MODULE_LICENSE("GPL");
1395MODULE_AUTHOR("Jonas Holmberg <jonas.holmberg@axis.com>");
1396MODULE_DESCRIPTION("Old MTD chip driver for AMD flash chips");
diff --git a/drivers/mtd/chips/jedec.c b/drivers/mtd/chips/jedec.c
deleted file mode 100644
index 14e57b2bf842..000000000000
--- a/drivers/mtd/chips/jedec.c
+++ /dev/null
@@ -1,935 +0,0 @@
1
2/* JEDEC Flash Interface.
3 * This is an older type of interface for self programming flash. It is
4 * commonly use in older AMD chips and is obsolete compared with CFI.
5 * It is called JEDEC because the JEDEC association distributes the ID codes
6 * for the chips.
7 *
8 * See the AMD flash databook for information on how to operate the interface.
9 *
10 * This code does not support anything wider than 8 bit flash chips, I am
11 * not going to guess how to send commands to them, plus I expect they will
12 * all speak CFI..
13 *
14 * $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $
15 */
16
17#include <linux/init.h>
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/slab.h>
21#include <linux/mtd/jedec.h>
22#include <linux/mtd/map.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/compatmac.h>
25
26static struct mtd_info *jedec_probe(struct map_info *);
27static int jedec_probe8(struct map_info *map,unsigned long base,
28 struct jedec_private *priv);
29static int jedec_probe16(struct map_info *map,unsigned long base,
30 struct jedec_private *priv);
31static int jedec_probe32(struct map_info *map,unsigned long base,
32 struct jedec_private *priv);
33static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
34 unsigned long len);
35static int flash_erase(struct mtd_info *mtd, struct erase_info *instr);
36static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
37 size_t *retlen, const u_char *buf);
38
39static unsigned long my_bank_size;
40
41/* Listing of parts and sizes. We need this table to learn the sector
42 size of the chip and the total length */
43static const struct JEDECTable JEDEC_table[] = {
44 {
45 .jedec = 0x013D,
46 .name = "AMD Am29F017D",
47 .size = 2*1024*1024,
48 .sectorsize = 64*1024,
49 .capabilities = MTD_CAP_NORFLASH
50 },
51 {
52 .jedec = 0x01AD,
53 .name = "AMD Am29F016",
54 .size = 2*1024*1024,
55 .sectorsize = 64*1024,
56 .capabilities = MTD_CAP_NORFLASH
57 },
58 {
59 .jedec = 0x01D5,
60 .name = "AMD Am29F080",
61 .size = 1*1024*1024,
62 .sectorsize = 64*1024,
63 .capabilities = MTD_CAP_NORFLASH
64 },
65 {
66 .jedec = 0x01A4,
67 .name = "AMD Am29F040",
68 .size = 512*1024,
69 .sectorsize = 64*1024,
70 .capabilities = MTD_CAP_NORFLASH
71 },
72 {
73 .jedec = 0x20E3,
74 .name = "AMD Am29W040B",
75 .size = 512*1024,
76 .sectorsize = 64*1024,
77 .capabilities = MTD_CAP_NORFLASH
78 },
79 {
80 .jedec = 0xC2AD,
81 .name = "Macronix MX29F016",
82 .size = 2*1024*1024,
83 .sectorsize = 64*1024,
84 .capabilities = MTD_CAP_NORFLASH
85 },
86 { .jedec = 0x0 }
87};
88
89static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id);
90static void jedec_sync(struct mtd_info *mtd) {};
91static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
92 size_t *retlen, u_char *buf);
93static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
94 size_t *retlen, u_char *buf);
95
96static struct mtd_info *jedec_probe(struct map_info *map);
97
98
99
100static struct mtd_chip_driver jedec_chipdrv = {
101 .probe = jedec_probe,
102 .name = "jedec",
103 .module = THIS_MODULE
104};
105
106/* Probe entry point */
107
108static struct mtd_info *jedec_probe(struct map_info *map)
109{
110 struct mtd_info *MTD;
111 struct jedec_private *priv;
112 unsigned long Base;
113 unsigned long SectorSize;
114 unsigned count;
115 unsigned I,Uniq;
116 char Part[200];
117 memset(&priv,0,sizeof(priv));
118
119 MTD = kzalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL);
120 if (!MTD)
121 return NULL;
122
123 priv = (struct jedec_private *)&MTD[1];
124
125 my_bank_size = map->size;
126
127 if (map->size/my_bank_size > MAX_JEDEC_CHIPS)
128 {
129 printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n");
130 kfree(MTD);
131 return NULL;
132 }
133
134 for (Base = 0; Base < map->size; Base += my_bank_size)
135 {
136 // Perhaps zero could designate all tests?
137 if (map->buswidth == 0)
138 map->buswidth = 1;
139
140 if (map->buswidth == 1){
141 if (jedec_probe8(map,Base,priv) == 0) {
142 printk("did recognize jedec chip\n");
143 kfree(MTD);
144 return NULL;
145 }
146 }
147 if (map->buswidth == 2)
148 jedec_probe16(map,Base,priv);
149 if (map->buswidth == 4)
150 jedec_probe32(map,Base,priv);
151 }
152
153 // Get the biggest sector size
154 SectorSize = 0;
155 for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
156 {
157 // printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec);
158 // printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize);
159 if (priv->chips[I].sectorsize > SectorSize)
160 SectorSize = priv->chips[I].sectorsize;
161 }
162
163 // Quickly ensure that the other sector sizes are factors of the largest
164 for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
165 {
166 if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize)
167 {
168 printk("mtd: Failed. Device has incompatible mixed sector sizes\n");
169 kfree(MTD);
170 return NULL;
171 }
172 }
173
174 /* Generate a part name that includes the number of different chips and
175 other configuration information */
176 count = 1;
177 strlcpy(Part,map->name,sizeof(Part)-10);
178 strcat(Part," ");
179 Uniq = 0;
180 for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
181 {
182 const struct JEDECTable *JEDEC;
183
184 if (priv->chips[I+1].jedec == priv->chips[I].jedec)
185 {
186 count++;
187 continue;
188 }
189
190 // Locate the chip in the jedec table
191 JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec);
192 if (JEDEC == 0)
193 {
194 printk("mtd: Internal Error, JEDEC not set\n");
195 kfree(MTD);
196 return NULL;
197 }
198
199 if (Uniq != 0)
200 strcat(Part,",");
201 Uniq++;
202
203 if (count != 1)
204 sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name);
205 else
206 sprintf(Part+strlen(Part),"%s",JEDEC->name);
207 if (strlen(Part) > sizeof(Part)*2/3)
208 break;
209 count = 1;
210 }
211
212 /* Determine if the chips are organized in a linear fashion, or if there
213 are empty banks. Note, the last bank does not count here, only the
214 first banks are important. Holes on non-bank boundaries can not exist
215 due to the way the detection algorithm works. */
216 if (priv->size < my_bank_size)
217 my_bank_size = priv->size;
218 priv->is_banked = 0;
219 //printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size);
220 //printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]);
221 if (!priv->size) {
222 printk("priv->size is zero\n");
223 kfree(MTD);
224 return NULL;
225 }
226 if (priv->size/my_bank_size) {
227 if (priv->size/my_bank_size == 1) {
228 priv->size = my_bank_size;
229 }
230 else {
231 for (I = 0; I != priv->size/my_bank_size - 1; I++)
232 {
233 if (priv->bank_fill[I] != my_bank_size)
234 priv->is_banked = 1;
235
236 /* This even could be eliminated, but new de-optimized read/write
237 functions have to be written */
238 printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]);
239 if (priv->bank_fill[I] != priv->bank_fill[0])
240 {
241 printk("mtd: Failed. Cannot handle unsymmetric banking\n");
242 kfree(MTD);
243 return NULL;
244 }
245 }
246 }
247 }
248 if (priv->is_banked == 1)
249 strcat(Part,", banked");
250
251 // printk("Part: '%s'\n",Part);
252
253 memset(MTD,0,sizeof(*MTD));
254 // strlcpy(MTD->name,Part,sizeof(MTD->name));
255 MTD->name = map->name;
256 MTD->type = MTD_NORFLASH;
257 MTD->flags = MTD_CAP_NORFLASH;
258 MTD->writesize = 1;
259 MTD->erasesize = SectorSize*(map->buswidth);
260 // printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize);
261 MTD->size = priv->size;
262 // printk("MTD->size is %x\n",(unsigned int)MTD->size);
263 //MTD->module = THIS_MODULE; // ? Maybe this should be the low level module?
264 MTD->erase = flash_erase;
265 if (priv->is_banked == 1)
266 MTD->read = jedec_read_banked;
267 else
268 MTD->read = jedec_read;
269 MTD->write = flash_write;
270 MTD->sync = jedec_sync;
271 MTD->priv = map;
272 map->fldrv_priv = priv;
273 map->fldrv = &jedec_chipdrv;
274 __module_get(THIS_MODULE);
275 return MTD;
276}
277
278/* Helper for the JEDEC function, JEDEC numbers all have odd parity */
279static int checkparity(u_char C)
280{
281 u_char parity = 0;
282 while (C != 0)
283 {
284 parity ^= C & 1;
285 C >>= 1;
286 }
287
288 return parity == 1;
289}
290
291
292/* Take an array of JEDEC numbers that represent interleved flash chips
293 and process them. Check to make sure they are good JEDEC numbers, look
294 them up and then add them to the chip list */
295static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count,
296 unsigned long base,struct jedec_private *priv)
297{
298 unsigned I,J;
299 unsigned long Size;
300 unsigned long SectorSize;
301 const struct JEDECTable *JEDEC;
302
303 // Test #2 JEDEC numbers exhibit odd parity
304 for (I = 0; I != Count; I++)
305 {
306 if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0)
307 return 0;
308 }
309
310 // Finally, just make sure all the chip sizes are the same
311 JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
312
313 if (JEDEC == 0)
314 {
315 printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
316 return 0;
317 }
318
319 Size = JEDEC->size;
320 SectorSize = JEDEC->sectorsize;
321 for (I = 0; I != Count; I++)
322 {
323 JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
324 if (JEDEC == 0)
325 {
326 printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
327 return 0;
328 }
329
330 if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize)
331 {
332 printk("mtd: Failed. Interleved flash does not have matching characteristics\n");
333 return 0;
334 }
335 }
336
337 // Load the Chips
338 for (I = 0; I != MAX_JEDEC_CHIPS; I++)
339 {
340 if (priv->chips[I].jedec == 0)
341 break;
342 }
343
344 if (I + Count > MAX_JEDEC_CHIPS)
345 {
346 printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n");
347 return 0;
348 }
349
350 // Add them to the table
351 for (J = 0; J != Count; J++)
352 {
353 unsigned long Bank;
354
355 JEDEC = jedec_idtoinf(Mfg[J],Id[J]);
356 priv->chips[I].jedec = (Mfg[J] << 8) | Id[J];
357 priv->chips[I].size = JEDEC->size;
358 priv->chips[I].sectorsize = JEDEC->sectorsize;
359 priv->chips[I].base = base + J;
360 priv->chips[I].datashift = J*8;
361 priv->chips[I].capabilities = JEDEC->capabilities;
362 priv->chips[I].offset = priv->size + J;
363
364 // log2 n :|
365 priv->chips[I].addrshift = 0;
366 for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++);
367
368 // Determine how filled this bank is.
369 Bank = base & (~(my_bank_size-1));
370 if (priv->bank_fill[Bank/my_bank_size] < base +
371 (JEDEC->size << priv->chips[I].addrshift) - Bank)
372 priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank;
373 I++;
374 }
375
376 priv->size += priv->chips[I-1].size*Count;
377
378 return priv->chips[I-1].size;
379}
380
381/* Lookup the chip information from the JEDEC ID table. */
382static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id)
383{
384 __u16 Id = (mfr << 8) | id;
385 unsigned long I = 0;
386 for (I = 0; JEDEC_table[I].jedec != 0; I++)
387 if (JEDEC_table[I].jedec == Id)
388 return JEDEC_table + I;
389 return NULL;
390}
391
392// Look for flash using an 8 bit bus interface
393static int jedec_probe8(struct map_info *map,unsigned long base,
394 struct jedec_private *priv)
395{
396 #define flread(x) map_read8(map,base+x)
397 #define flwrite(v,x) map_write8(map,v,base+x)
398
399 const unsigned long AutoSel1 = 0xAA;
400 const unsigned long AutoSel2 = 0x55;
401 const unsigned long AutoSel3 = 0x90;
402 const unsigned long Reset = 0xF0;
403 __u32 OldVal;
404 __u8 Mfg[1];
405 __u8 Id[1];
406 unsigned I;
407 unsigned long Size;
408
409 // Wait for any write/erase operation to settle
410 OldVal = flread(base);
411 for (I = 0; OldVal != flread(base) && I < 10000; I++)
412 OldVal = flread(base);
413
414 // Reset the chip
415 flwrite(Reset,0x555);
416
417 // Send the sequence
418 flwrite(AutoSel1,0x555);
419 flwrite(AutoSel2,0x2AA);
420 flwrite(AutoSel3,0x555);
421
422 // Get the JEDEC numbers
423 Mfg[0] = flread(0);
424 Id[0] = flread(1);
425 // printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]);
426
427 Size = handle_jedecs(map,Mfg,Id,1,base,priv);
428 // printk("handle_jedecs Size is %x\n",(unsigned int)Size);
429 if (Size == 0)
430 {
431 flwrite(Reset,0x555);
432 return 0;
433 }
434
435
436 // Reset.
437 flwrite(Reset,0x555);
438
439 return 1;
440
441 #undef flread
442 #undef flwrite
443}
444
445// Look for flash using a 16 bit bus interface (ie 2 8-bit chips)
446static int jedec_probe16(struct map_info *map,unsigned long base,
447 struct jedec_private *priv)
448{
449 return 0;
450}
451
452// Look for flash using a 32 bit bus interface (ie 4 8-bit chips)
453static int jedec_probe32(struct map_info *map,unsigned long base,
454 struct jedec_private *priv)
455{
456 #define flread(x) map_read32(map,base+((x)<<2))
457 #define flwrite(v,x) map_write32(map,v,base+((x)<<2))
458
459 const unsigned long AutoSel1 = 0xAAAAAAAA;
460 const unsigned long AutoSel2 = 0x55555555;
461 const unsigned long AutoSel3 = 0x90909090;
462 const unsigned long Reset = 0xF0F0F0F0;
463 __u32 OldVal;
464 __u8 Mfg[4];
465 __u8 Id[4];
466 unsigned I;
467 unsigned long Size;
468
469 // Wait for any write/erase operation to settle
470 OldVal = flread(base);
471 for (I = 0; OldVal != flread(base) && I < 10000; I++)
472 OldVal = flread(base);
473
474 // Reset the chip
475 flwrite(Reset,0x555);
476
477 // Send the sequence
478 flwrite(AutoSel1,0x555);
479 flwrite(AutoSel2,0x2AA);
480 flwrite(AutoSel3,0x555);
481
482 // Test #1, JEDEC numbers are readable from 0x??00/0x??01
483 if (flread(0) != flread(0x100) ||
484 flread(1) != flread(0x101))
485 {
486 flwrite(Reset,0x555);
487 return 0;
488 }
489
490 // Split up the JEDEC numbers
491 OldVal = flread(0);
492 for (I = 0; I != 4; I++)
493 Mfg[I] = (OldVal >> (I*8));
494 OldVal = flread(1);
495 for (I = 0; I != 4; I++)
496 Id[I] = (OldVal >> (I*8));
497
498 Size = handle_jedecs(map,Mfg,Id,4,base,priv);
499 if (Size == 0)
500 {
501 flwrite(Reset,0x555);
502 return 0;
503 }
504
505 /* Check if there is address wrap around within a single bank, if this
506 returns JEDEC numbers then we assume that it is wrap around. Notice
507 we call this routine with the JEDEC return still enabled, if two or
508 more flashes have a truncated address space the probe test will still
509 work */
510 if (base + (Size<<2)+0x555 < map->size &&
511 base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size)
512 {
513 if (flread(base+Size) != flread(base+Size + 0x100) ||
514 flread(base+Size + 1) != flread(base+Size + 0x101))
515 {
516 jedec_probe32(map,base+Size,priv);
517 }
518 }
519
520 // Reset.
521 flwrite(0xF0F0F0F0,0x555);
522
523 return 1;
524
525 #undef flread
526 #undef flwrite
527}
528
529/* Linear read. */
530static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
531 size_t *retlen, u_char *buf)
532{
533 struct map_info *map = mtd->priv;
534
535 map_copy_from(map, buf, from, len);
536 *retlen = len;
537 return 0;
538}
539
540/* Banked read. Take special care to jump past the holes in the bank
541 mapping. This version assumes symetry in the holes.. */
542static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
543 size_t *retlen, u_char *buf)
544{
545 struct map_info *map = mtd->priv;
546 struct jedec_private *priv = map->fldrv_priv;
547
548 *retlen = 0;
549 while (len > 0)
550 {
551 // Determine what bank and offset into that bank the first byte is
552 unsigned long bank = from & (~(priv->bank_fill[0]-1));
553 unsigned long offset = from & (priv->bank_fill[0]-1);
554 unsigned long get = len;
555 if (priv->bank_fill[0] - offset < len)
556 get = priv->bank_fill[0] - offset;
557
558 bank /= priv->bank_fill[0];
559 map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get);
560
561 len -= get;
562 *retlen += get;
563 from += get;
564 }
565 return 0;
566}
567
568/* Pass the flags value that the flash return before it re-entered read
569 mode. */
570static void jedec_flash_failed(unsigned char code)
571{
572 /* Bit 5 being high indicates that there was an internal device
573 failure, erasure time limits exceeded or something */
574 if ((code & (1 << 5)) != 0)
575 {
576 printk("mtd: Internal Flash failure\n");
577 return;
578 }
579 printk("mtd: Programming didn't take\n");
580}
581
582/* This uses the erasure function described in the AMD Flash Handbook,
583 it will work for flashes with a fixed sector size only. Flashes with
584 a selection of sector sizes (ie the AMD Am29F800B) will need a different
585 routine. This routine tries to parallize erasing multiple chips/sectors
586 where possible */
587static int flash_erase(struct mtd_info *mtd, struct erase_info *instr)
588{
589 // Does IO to the currently selected chip
590 #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift))
591 #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift))
592
593 unsigned long Time = 0;
594 unsigned long NoTime = 0;
595 unsigned long start = instr->addr, len = instr->len;
596 unsigned int I;
597 struct map_info *map = mtd->priv;
598 struct jedec_private *priv = map->fldrv_priv;
599
600 // Verify the arguments..
601 if (start + len > mtd->size ||
602 (start % mtd->erasesize) != 0 ||
603 (len % mtd->erasesize) != 0 ||
604 (len/mtd->erasesize) == 0)
605 return -EINVAL;
606
607 jedec_flash_chip_scan(priv,start,len);
608
609 // Start the erase sequence on each chip
610 for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
611 {
612 unsigned long off;
613 struct jedec_flash_chip *chip = priv->chips + I;
614
615 if (chip->length == 0)
616 continue;
617
618 if (chip->start + chip->length > chip->size)
619 {
620 printk("DIE\n");
621 return -EIO;
622 }
623
624 flwrite(0xF0,chip->start + 0x555);
625 flwrite(0xAA,chip->start + 0x555);
626 flwrite(0x55,chip->start + 0x2AA);
627 flwrite(0x80,chip->start + 0x555);
628 flwrite(0xAA,chip->start + 0x555);
629 flwrite(0x55,chip->start + 0x2AA);
630
631 /* Once we start selecting the erase sectors the delay between each
632 command must not exceed 50us or it will immediately start erasing
633 and ignore the other sectors */
634 for (off = 0; off < len; off += chip->sectorsize)
635 {
636 // Check to make sure we didn't timeout
637 flwrite(0x30,chip->start + off);
638 if (off == 0)
639 continue;
640 if ((flread(chip->start + off) & (1 << 3)) != 0)
641 {
642 printk("mtd: Ack! We timed out the erase timer!\n");
643 return -EIO;
644 }
645 }
646 }
647
648 /* We could split this into a timer routine and return early, performing
649 background erasure.. Maybe later if the need warrents */
650
651 /* Poll the flash for erasure completion, specs say this can take as long
652 as 480 seconds to do all the sectors (for a 2 meg flash).
653 Erasure time is dependent on chip age, temp and wear.. */
654
655 /* This being a generic routine assumes a 32 bit bus. It does read32s
656 and bundles interleved chips into the same grouping. This will work
657 for all bus widths */
658 Time = 0;
659 NoTime = 0;
660 for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
661 {
662 struct jedec_flash_chip *chip = priv->chips + I;
663 unsigned long off = 0;
664 unsigned todo[4] = {0,0,0,0};
665 unsigned todo_left = 0;
666 unsigned J;
667
668 if (chip->length == 0)
669 continue;
670
671 /* Find all chips in this data line, realistically this is all
672 or nothing up to the interleve count */
673 for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
674 {
675 if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
676 (chip->base & (~((1<<chip->addrshift)-1))))
677 {
678 todo_left++;
679 todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1;
680 }
681 }
682
683 /* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1],
684 (short)todo[2],(short)todo[3]);
685 */
686 while (1)
687 {
688 __u32 Last[4];
689 unsigned long Count = 0;
690
691 /* During erase bit 7 is held low and bit 6 toggles, we watch this,
692 should it stop toggling or go high then the erase is completed,
693 or this is not really flash ;> */
694 switch (map->buswidth) {
695 case 1:
696 Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
697 Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
698 Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
699 break;
700 case 2:
701 Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
702 Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
703 Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
704 break;
705 case 3:
706 Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
707 Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
708 Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
709 break;
710 }
711 Count = 3;
712 while (todo_left != 0)
713 {
714 for (J = 0; J != 4; J++)
715 {
716 __u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF;
717 __u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF;
718 __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF;
719 if (todo[J] == 0)
720 continue;
721
722 if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2)
723 {
724// printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2);
725 continue;
726 }
727
728 if (Byte1 == Byte2)
729 {
730 jedec_flash_failed(Byte3);
731 return -EIO;
732 }
733
734 todo[J] = 0;
735 todo_left--;
736 }
737
738/* if (NoTime == 0)
739 Time += HZ/10 - schedule_timeout(HZ/10);*/
740 NoTime = 0;
741
742 switch (map->buswidth) {
743 case 1:
744 Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
745 break;
746 case 2:
747 Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
748 break;
749 case 4:
750 Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
751 break;
752 }
753 Count++;
754
755/* // Count time, max of 15s per sector (according to AMD)
756 if (Time > 15*len/mtd->erasesize*HZ)
757 {
758 printk("mtd: Flash Erase Timed out\n");
759 return -EIO;
760 } */
761 }
762
763 // Skip to the next chip if we used chip erase
764 if (chip->length == chip->size)
765 off = chip->size;
766 else
767 off += chip->sectorsize;
768
769 if (off >= chip->length)
770 break;
771 NoTime = 1;
772 }
773
774 for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
775 {
776 if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
777 (chip->base & (~((1<<chip->addrshift)-1))))
778 priv->chips[J].length = 0;
779 }
780 }
781
782 //printk("done\n");
783 instr->state = MTD_ERASE_DONE;
784 mtd_erase_callback(instr);
785 return 0;
786
787 #undef flread
788 #undef flwrite
789}
790
791/* This is the simple flash writing function. It writes to every byte, in
792 sequence. It takes care of how to properly address the flash if
793 the flash is interleved. It can only be used if all the chips in the
794 array are identical!*/
795static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
796 size_t *retlen, const u_char *buf)
797{
798 /* Does IO to the currently selected chip. It takes the bank addressing
799 base (which is divisible by the chip size) adds the necessary lower bits
800 of addrshift (interleave index) and then adds the control register index. */
801 #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
802 #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
803
804 struct map_info *map = mtd->priv;
805 struct jedec_private *priv = map->fldrv_priv;
806 unsigned long base;
807 unsigned long off;
808 size_t save_len = len;
809
810 if (start + len > mtd->size)
811 return -EIO;
812
813 //printk("Here");
814
815 //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len);
816 while (len != 0)
817 {
818 struct jedec_flash_chip *chip = priv->chips;
819 unsigned long bank;
820 unsigned long boffset;
821
822 // Compute the base of the flash.
823 off = ((unsigned long)start) % (chip->size << chip->addrshift);
824 base = start - off;
825
826 // Perform banked addressing translation.
827 bank = base & (~(priv->bank_fill[0]-1));
828 boffset = base & (priv->bank_fill[0]-1);
829 bank = (bank/priv->bank_fill[0])*my_bank_size;
830 base = bank + boffset;
831
832 // printk("Flasing %X %X %X\n",base,chip->size,len);
833 // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift);
834
835 // Loop over this page
836 for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++)
837 {
838 unsigned char oldbyte = map_read8(map,base+off);
839 unsigned char Last[4];
840 unsigned long Count = 0;
841
842 if (oldbyte == *buf) {
843 // printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len);
844 continue;
845 }
846 if (((~oldbyte) & *buf) != 0)
847 printk("mtd: warn: Trying to set a 0 to a 1\n");
848
849 // Write
850 flwrite(0xAA,0x555);
851 flwrite(0x55,0x2AA);
852 flwrite(0xA0,0x555);
853 map_write8(map,*buf,base + off);
854 Last[0] = map_read8(map,base + off);
855 Last[1] = map_read8(map,base + off);
856 Last[2] = map_read8(map,base + off);
857
858 /* Wait for the flash to finish the operation. We store the last 4
859 status bytes that have been retrieved so we can determine why
860 it failed. The toggle bits keep toggling when there is a
861 failure */
862 for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] &&
863 Count < 10000; Count++)
864 Last[Count % 4] = map_read8(map,base + off);
865 if (Last[(Count - 1) % 4] != *buf)
866 {
867 jedec_flash_failed(Last[(Count - 3) % 4]);
868 return -EIO;
869 }
870 }
871 }
872 *retlen = save_len;
873 return 0;
874}
875
876/* This is used to enhance the speed of the erase routine,
877 when things are being done to multiple chips it is possible to
878 parallize the operations, particularly full memory erases of multi
879 chip memories benifit */
880static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
881 unsigned long len)
882{
883 unsigned int I;
884
885 // Zero the records
886 for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
887 priv->chips[I].start = priv->chips[I].length = 0;
888
889 // Intersect the region with each chip
890 for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
891 {
892 struct jedec_flash_chip *chip = priv->chips + I;
893 unsigned long ByteStart;
894 unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift);
895
896 // End is before this chip or the start is after it
897 if (start+len < chip->offset ||
898 ChipEndByte - (1 << chip->addrshift) < start)
899 continue;
900
901 if (start < chip->offset)
902 {
903 ByteStart = chip->offset;
904 chip->start = 0;
905 }
906 else
907 {
908 chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift;
909 ByteStart = start;
910 }
911
912 if (start + len >= ChipEndByte)
913 chip->length = (ChipEndByte - ByteStart) >> chip->addrshift;
914 else
915 chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift;
916 }
917}
918
919int __init jedec_init(void)
920{
921 register_mtd_chip_driver(&jedec_chipdrv);
922 return 0;
923}
924
925static void __exit jedec_exit(void)
926{
927 unregister_mtd_chip_driver(&jedec_chipdrv);
928}
929
930module_init(jedec_init);
931module_exit(jedec_exit);
932
933MODULE_LICENSE("GPL");
934MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al.");
935MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips");
diff --git a/drivers/mtd/chips/sharp.c b/drivers/mtd/chips/sharp.c
deleted file mode 100644
index c9cd3d21ccfa..000000000000
--- a/drivers/mtd/chips/sharp.c
+++ /dev/null
@@ -1,601 +0,0 @@
1/*
2 * MTD chip driver for pre-CFI Sharp flash chips
3 *
4 * Copyright 2000,2001 David A. Schleef <ds@schleef.org>
5 * 2000,2001 Lineo, Inc.
6 *
7 * $Id: sharp.c,v 1.17 2005/11/29 14:28:28 gleixner Exp $
8 *
9 * Devices supported:
10 * LH28F016SCT Symmetrical block flash memory, 2Mx8
11 * LH28F008SCT Symmetrical block flash memory, 1Mx8
12 *
13 * Documentation:
14 * http://www.sharpmeg.com/datasheets/memic/flashcmp/
15 * http://www.sharpmeg.com/datasheets/memic/flashcmp/01symf/16m/016sctl9.pdf
16 * 016sctl9.pdf
17 *
18 * Limitations:
19 * This driver only supports 4x1 arrangement of chips.
20 * Not tested on anything but PowerPC.
21 */
22
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/sched.h>
27#include <linux/errno.h>
28#include <linux/interrupt.h>
29#include <linux/mtd/map.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/cfi.h>
32#include <linux/delay.h>
33#include <linux/init.h>
34#include <linux/slab.h>
35
36#define CMD_RESET 0xffffffff
37#define CMD_READ_ID 0x90909090
38#define CMD_READ_STATUS 0x70707070
39#define CMD_CLEAR_STATUS 0x50505050
40#define CMD_BLOCK_ERASE_1 0x20202020
41#define CMD_BLOCK_ERASE_2 0xd0d0d0d0
42#define CMD_BYTE_WRITE 0x40404040
43#define CMD_SUSPEND 0xb0b0b0b0
44#define CMD_RESUME 0xd0d0d0d0
45#define CMD_SET_BLOCK_LOCK_1 0x60606060
46#define CMD_SET_BLOCK_LOCK_2 0x01010101
47#define CMD_SET_MASTER_LOCK_1 0x60606060
48#define CMD_SET_MASTER_LOCK_2 0xf1f1f1f1
49#define CMD_CLEAR_BLOCK_LOCKS_1 0x60606060
50#define CMD_CLEAR_BLOCK_LOCKS_2 0xd0d0d0d0
51
52#define SR_READY 0x80808080 // 1 = ready
53#define SR_ERASE_SUSPEND 0x40404040 // 1 = block erase suspended
54#define SR_ERROR_ERASE 0x20202020 // 1 = error in block erase or clear lock bits
55#define SR_ERROR_WRITE 0x10101010 // 1 = error in byte write or set lock bit
56#define SR_VPP 0x08080808 // 1 = Vpp is low
57#define SR_WRITE_SUSPEND 0x04040404 // 1 = byte write suspended
58#define SR_PROTECT 0x02020202 // 1 = lock bit set
59#define SR_RESERVED 0x01010101
60
61#define SR_ERRORS (SR_ERROR_ERASE|SR_ERROR_WRITE|SR_VPP|SR_PROTECT)
62
63/* Configuration options */
64
65#undef AUTOUNLOCK /* automatically unlocks blocks before erasing */
66
67static struct mtd_info *sharp_probe(struct map_info *);
68
69static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd);
70
71static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len,
72 size_t *retlen, u_char *buf);
73static int sharp_write(struct mtd_info *mtd, loff_t from, size_t len,
74 size_t *retlen, const u_char *buf);
75static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr);
76static void sharp_sync(struct mtd_info *mtd);
77static int sharp_suspend(struct mtd_info *mtd);
78static void sharp_resume(struct mtd_info *mtd);
79static void sharp_destroy(struct mtd_info *mtd);
80
81static int sharp_write_oneword(struct map_info *map, struct flchip *chip,
82 unsigned long adr, __u32 datum);
83static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip,
84 unsigned long adr);
85#ifdef AUTOUNLOCK
86static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip,
87 unsigned long adr);
88#endif
89
90
91struct sharp_info{
92 struct flchip *chip;
93 int bogus;
94 int chipshift;
95 int numchips;
96 struct flchip chips[1];
97};
98
99static void sharp_destroy(struct mtd_info *mtd);
100
101static struct mtd_chip_driver sharp_chipdrv = {
102 .probe = sharp_probe,
103 .destroy = sharp_destroy,
104 .name = "sharp",
105 .module = THIS_MODULE
106};
107
108
109static struct mtd_info *sharp_probe(struct map_info *map)
110{
111 struct mtd_info *mtd = NULL;
112 struct sharp_info *sharp = NULL;
113 int width;
114
115 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
116 if(!mtd)
117 return NULL;
118
119 sharp = kzalloc(sizeof(*sharp), GFP_KERNEL);
120 if(!sharp) {
121 kfree(mtd);
122 return NULL;
123 }
124
125 width = sharp_probe_map(map,mtd);
126 if(!width){
127 kfree(mtd);
128 kfree(sharp);
129 return NULL;
130 }
131
132 mtd->priv = map;
133 mtd->type = MTD_NORFLASH;
134 mtd->erase = sharp_erase;
135 mtd->read = sharp_read;
136 mtd->write = sharp_write;
137 mtd->sync = sharp_sync;
138 mtd->suspend = sharp_suspend;
139 mtd->resume = sharp_resume;
140 mtd->flags = MTD_CAP_NORFLASH;
141 mtd->writesize = 1;
142 mtd->name = map->name;
143
144 sharp->chipshift = 23;
145 sharp->numchips = 1;
146 sharp->chips[0].start = 0;
147 sharp->chips[0].state = FL_READY;
148 sharp->chips[0].mutex = &sharp->chips[0]._spinlock;
149 sharp->chips[0].word_write_time = 0;
150 init_waitqueue_head(&sharp->chips[0].wq);
151 spin_lock_init(&sharp->chips[0]._spinlock);
152
153 map->fldrv = &sharp_chipdrv;
154 map->fldrv_priv = sharp;
155
156 __module_get(THIS_MODULE);
157 return mtd;
158}
159
160static inline void sharp_send_cmd(struct map_info *map, unsigned long cmd, unsigned long adr)
161{
162 map_word map_cmd;
163 map_cmd.x[0] = cmd;
164 map_write(map, map_cmd, adr);
165}
166
167static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd)
168{
169 map_word tmp, read0, read4;
170 unsigned long base = 0;
171 int width = 4;
172
173 tmp = map_read(map, base+0);
174
175 sharp_send_cmd(map, CMD_READ_ID, base+0);
176
177 read0 = map_read(map, base+0);
178 read4 = map_read(map, base+4);
179 if(read0.x[0] == 0x89898989){
180 printk("Looks like sharp flash\n");
181 switch(read4.x[0]){
182 case 0xaaaaaaaa:
183 case 0xa0a0a0a0:
184 /* aa - LH28F016SCT-L95 2Mx8, 32 64k blocks*/
185 /* a0 - LH28F016SCT-Z4 2Mx8, 32 64k blocks*/
186 mtd->erasesize = 0x10000 * width;
187 mtd->size = 0x200000 * width;
188 return width;
189 case 0xa6a6a6a6:
190 /* a6 - LH28F008SCT-L12 1Mx8, 16 64k blocks*/
191 /* a6 - LH28F008SCR-L85 1Mx8, 16 64k blocks*/
192 mtd->erasesize = 0x10000 * width;
193 mtd->size = 0x100000 * width;
194 return width;
195#if 0
196 case 0x00000000: /* unknown */
197 /* XX - LH28F004SCT 512kx8, 8 64k blocks*/
198 mtd->erasesize = 0x10000 * width;
199 mtd->size = 0x80000 * width;
200 return width;
201#endif
202 default:
203 printk("Sort-of looks like sharp flash, 0x%08lx 0x%08lx\n",
204 read0.x[0], read4.x[0]);
205 }
206 }else if((map_read(map, base+0).x[0] == CMD_READ_ID)){
207 /* RAM, probably */
208 printk("Looks like RAM\n");
209 map_write(map, tmp, base+0);
210 }else{
211 printk("Doesn't look like sharp flash, 0x%08lx 0x%08lx\n",
212 read0.x[0], read4.x[0]);
213 }
214
215 return 0;
216}
217
218/* This function returns with the chip->mutex lock held. */
219static int sharp_wait(struct map_info *map, struct flchip *chip)
220{
221 int i;
222 map_word status;
223 unsigned long timeo = jiffies + HZ;
224 DECLARE_WAITQUEUE(wait, current);
225 int adr = 0;
226
227retry:
228 spin_lock_bh(chip->mutex);
229
230 switch(chip->state){
231 case FL_READY:
232 sharp_send_cmd(map, CMD_READ_STATUS, adr);
233 chip->state = FL_STATUS;
234 case FL_STATUS:
235 for(i=0;i<100;i++){
236 status = map_read(map, adr);
237 if((status.x[0] & SR_READY)==SR_READY)
238 break;
239 udelay(1);
240 }
241 break;
242 default:
243 printk("Waiting for chip\n");
244
245 set_current_state(TASK_INTERRUPTIBLE);
246 add_wait_queue(&chip->wq, &wait);
247
248 spin_unlock_bh(chip->mutex);
249
250 schedule();
251 remove_wait_queue(&chip->wq, &wait);
252
253 if(signal_pending(current))
254 return -EINTR;
255
256 timeo = jiffies + HZ;
257
258 goto retry;
259 }
260
261 sharp_send_cmd(map, CMD_RESET, adr);
262
263 chip->state = FL_READY;
264
265 return 0;
266}
267
268static void sharp_release(struct flchip *chip)
269{
270 wake_up(&chip->wq);
271 spin_unlock_bh(chip->mutex);
272}
273
274static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len,
275 size_t *retlen, u_char *buf)
276{
277 struct map_info *map = mtd->priv;
278 struct sharp_info *sharp = map->fldrv_priv;
279 int chipnum;
280 int ret = 0;
281 int ofs = 0;
282
283 chipnum = (from >> sharp->chipshift);
284 ofs = from & ((1 << sharp->chipshift)-1);
285
286 *retlen = 0;
287
288 while(len){
289 unsigned long thislen;
290
291 if(chipnum>=sharp->numchips)
292 break;
293
294 thislen = len;
295 if(ofs+thislen >= (1<<sharp->chipshift))
296 thislen = (1<<sharp->chipshift) - ofs;
297
298 ret = sharp_wait(map,&sharp->chips[chipnum]);
299 if(ret<0)
300 break;
301
302 map_copy_from(map,buf,ofs,thislen);
303
304 sharp_release(&sharp->chips[chipnum]);
305
306 *retlen += thislen;
307 len -= thislen;
308 buf += thislen;
309
310 ofs = 0;
311 chipnum++;
312 }
313 return ret;
314}
315
316static int sharp_write(struct mtd_info *mtd, loff_t to, size_t len,
317 size_t *retlen, const u_char *buf)
318{
319 struct map_info *map = mtd->priv;
320 struct sharp_info *sharp = map->fldrv_priv;
321 int ret = 0;
322 int i,j;
323 int chipnum;
324 unsigned long ofs;
325 union { u32 l; unsigned char uc[4]; } tbuf;
326
327 *retlen = 0;
328
329 while(len){
330 tbuf.l = 0xffffffff;
331 chipnum = to >> sharp->chipshift;
332 ofs = to & ((1<<sharp->chipshift)-1);
333
334 j=0;
335 for(i=ofs&3;i<4 && len;i++){
336 tbuf.uc[i] = *buf;
337 buf++;
338 to++;
339 len--;
340 j++;
341 }
342 sharp_write_oneword(map, &sharp->chips[chipnum], ofs&~3, tbuf.l);
343 if(ret<0)
344 return ret;
345 (*retlen)+=j;
346 }
347
348 return 0;
349}
350
351static int sharp_write_oneword(struct map_info *map, struct flchip *chip,
352 unsigned long adr, __u32 datum)
353{
354 int ret;
355 int timeo;
356 int try;
357 int i;
358 map_word data, status;
359
360 status.x[0] = 0;
361 ret = sharp_wait(map,chip);
362
363 for(try=0;try<10;try++){
364 sharp_send_cmd(map, CMD_BYTE_WRITE, adr);
365 /* cpu_to_le32 -> hack to fix the writel be->le conversion */
366 data.x[0] = cpu_to_le32(datum);
367 map_write(map, data, adr);
368
369 chip->state = FL_WRITING;
370
371 timeo = jiffies + (HZ/2);
372
373 sharp_send_cmd(map, CMD_READ_STATUS, adr);
374 for(i=0;i<100;i++){
375 status = map_read(map, adr);
376 if((status.x[0] & SR_READY) == SR_READY)
377 break;
378 }
379 if(i==100){
380 printk("sharp: timed out writing\n");
381 }
382
383 if(!(status.x[0] & SR_ERRORS))
384 break;
385
386 printk("sharp: error writing byte at addr=%08lx status=%08lx\n", adr, status.x[0]);
387
388 sharp_send_cmd(map, CMD_CLEAR_STATUS, adr);
389 }
390 sharp_send_cmd(map, CMD_RESET, adr);
391 chip->state = FL_READY;
392
393 wake_up(&chip->wq);
394 spin_unlock_bh(chip->mutex);
395
396 return 0;
397}
398
399static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr)
400{
401 struct map_info *map = mtd->priv;
402 struct sharp_info *sharp = map->fldrv_priv;
403 unsigned long adr,len;
404 int chipnum, ret=0;
405
406//printk("sharp_erase()\n");
407 if(instr->addr & (mtd->erasesize - 1))
408 return -EINVAL;
409 if(instr->len & (mtd->erasesize - 1))
410 return -EINVAL;
411 if(instr->len + instr->addr > mtd->size)
412 return -EINVAL;
413
414 chipnum = instr->addr >> sharp->chipshift;
415 adr = instr->addr & ((1<<sharp->chipshift)-1);
416 len = instr->len;
417
418 while(len){
419 ret = sharp_erase_oneblock(map, &sharp->chips[chipnum], adr);
420 if(ret)return ret;
421
422 adr += mtd->erasesize;
423 len -= mtd->erasesize;
424 if(adr >> sharp->chipshift){
425 adr = 0;
426 chipnum++;
427 if(chipnum>=sharp->numchips)
428 break;
429 }
430 }
431
432 instr->state = MTD_ERASE_DONE;
433 mtd_erase_callback(instr);
434
435 return 0;
436}
437
438static int sharp_do_wait_for_ready(struct map_info *map, struct flchip *chip,
439 unsigned long adr)
440{
441 int ret;
442 unsigned long timeo;
443 map_word status;
444 DECLARE_WAITQUEUE(wait, current);
445
446 sharp_send_cmd(map, CMD_READ_STATUS, adr);
447 status = map_read(map, adr);
448
449 timeo = jiffies + HZ;
450
451 while(time_before(jiffies, timeo)){
452 sharp_send_cmd(map, CMD_READ_STATUS, adr);
453 status = map_read(map, adr);
454 if((status.x[0] & SR_READY)==SR_READY){
455 ret = 0;
456 goto out;
457 }
458 set_current_state(TASK_INTERRUPTIBLE);
459 add_wait_queue(&chip->wq, &wait);
460
461 //spin_unlock_bh(chip->mutex);
462
463 schedule_timeout(1);
464 schedule();
465 remove_wait_queue(&chip->wq, &wait);
466
467 //spin_lock_bh(chip->mutex);
468
469 if (signal_pending(current)){
470 ret = -EINTR;
471 goto out;
472 }
473
474 }
475 ret = -ETIME;
476out:
477 return ret;
478}
479
480static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip,
481 unsigned long adr)
482{
483 int ret;
484 //int timeo;
485 map_word status;
486 //int i;
487
488//printk("sharp_erase_oneblock()\n");
489
490#ifdef AUTOUNLOCK
491 /* This seems like a good place to do an unlock */
492 sharp_unlock_oneblock(map,chip,adr);
493#endif
494
495 sharp_send_cmd(map, CMD_BLOCK_ERASE_1, adr);
496 sharp_send_cmd(map, CMD_BLOCK_ERASE_2, adr);
497
498 chip->state = FL_ERASING;
499
500 ret = sharp_do_wait_for_ready(map,chip,adr);
501 if(ret<0)return ret;
502
503 sharp_send_cmd(map, CMD_READ_STATUS, adr);
504 status = map_read(map, adr);
505
506 if(!(status.x[0] & SR_ERRORS)){
507 sharp_send_cmd(map, CMD_RESET, adr);
508 chip->state = FL_READY;
509 //spin_unlock_bh(chip->mutex);
510 return 0;
511 }
512
513 printk("sharp: error erasing block at addr=%08lx status=%08lx\n", adr, status.x[0]);
514 sharp_send_cmd(map, CMD_CLEAR_STATUS, adr);
515
516 //spin_unlock_bh(chip->mutex);
517
518 return -EIO;
519}
520
521#ifdef AUTOUNLOCK
522static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip,
523 unsigned long adr)
524{
525 int i;
526 map_word status;
527
528 sharp_send_cmd(map, CMD_CLEAR_BLOCK_LOCKS_1, adr);
529 sharp_send_cmd(map, CMD_CLEAR_BLOCK_LOCKS_2, adr);
530
531 udelay(100);
532
533 status = map_read(map, adr);
534 printk("status=%08lx\n", status.x[0]);
535
536 for(i=0;i<1000;i++){
537 //sharp_send_cmd(map, CMD_READ_STATUS, adr);
538 status = map_read(map, adr);
539 if((status.x[0] & SR_READY) == SR_READY)
540 break;
541 udelay(100);
542 }
543 if(i==1000){
544 printk("sharp: timed out unlocking block\n");
545 }
546
547 if(!(status.x[0] & SR_ERRORS)){
548 sharp_send_cmd(map, CMD_RESET, adr);
549 chip->state = FL_READY;
550 return;
551 }
552
553 printk("sharp: error unlocking block at addr=%08lx status=%08lx\n", adr, status.x[0]);
554 sharp_send_cmd(map, CMD_CLEAR_STATUS, adr);
555}
556#endif
557
558static void sharp_sync(struct mtd_info *mtd)
559{
560 //printk("sharp_sync()\n");
561}
562
563static int sharp_suspend(struct mtd_info *mtd)
564{
565 printk("sharp_suspend()\n");
566 return -EINVAL;
567}
568
569static void sharp_resume(struct mtd_info *mtd)
570{
571 printk("sharp_resume()\n");
572
573}
574
575static void sharp_destroy(struct mtd_info *mtd)
576{
577 printk("sharp_destroy()\n");
578
579}
580
581static int __init sharp_probe_init(void)
582{
583 printk("MTD Sharp chip driver <ds@lineo.com>\n");
584
585 register_mtd_chip_driver(&sharp_chipdrv);
586
587 return 0;
588}
589
590static void __exit sharp_probe_exit(void)
591{
592 unregister_mtd_chip_driver(&sharp_chipdrv);
593}
594
595module_init(sharp_probe_init);
596module_exit(sharp_probe_exit);
597
598
599MODULE_LICENSE("GPL");
600MODULE_AUTHOR("David Schleef <ds@schleef.org>");
601MODULE_DESCRIPTION("Old MTD chip driver for pre-CFI Sharp flash chips");