aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/onenand/onenand_base.c857
-rw-r--r--drivers/mtd/onenand/onenand_bbt.c14
-rw-r--r--drivers/mtd/onenand/onenand_sim.c81
3 files changed, 867 insertions, 85 deletions
diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c
index 2346857a275d..8d4c9c253732 100644
--- a/drivers/mtd/onenand/onenand_base.c
+++ b/drivers/mtd/onenand/onenand_base.c
@@ -9,6 +9,10 @@
9 * auto-placement support, read-while load support, various fixes 9 * auto-placement support, read-while load support, various fixes
10 * Copyright (C) Nokia Corporation, 2007 10 * Copyright (C) Nokia Corporation, 2007
11 * 11 *
12 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13 * Flex-OneNAND support
14 * Copyright (C) Samsung Electronics, 2008
15 *
12 * This program is free software; you can redistribute it and/or modify 16 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as 17 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation. 18 * published by the Free Software Foundation.
@@ -27,6 +31,30 @@
27 31
28#include <asm/io.h> 32#include <asm/io.h>
29 33
34/* Default Flex-OneNAND boundary and lock respectively */
35static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
36
37/**
38 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page
39 * For now, we expose only 64 out of 80 ecc bytes
40 */
41static struct nand_ecclayout onenand_oob_128 = {
42 .eccbytes = 64,
43 .eccpos = {
44 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
45 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
46 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
47 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
48 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
49 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
50 102, 103, 104, 105
51 },
52 .oobfree = {
53 {2, 4}, {18, 4}, {34, 4}, {50, 4},
54 {66, 4}, {82, 4}, {98, 4}, {114, 4}
55 }
56};
57
30/** 58/**
31 * onenand_oob_64 - oob info for large (2KB) page 59 * onenand_oob_64 - oob info for large (2KB) page
32 */ 60 */
@@ -65,6 +93,14 @@ static const unsigned char ffchars[] = {
65 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ 93 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
66 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 94 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
67 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ 95 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
96 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
97 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
98 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
99 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
100 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
101 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
102 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
103 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
68}; 104};
69 105
70/** 106/**
@@ -171,6 +207,70 @@ static int onenand_buffer_address(int dataram1, int sectors, int count)
171} 207}
172 208
173/** 209/**
210 * flexonenand_block- For given address return block number
211 * @param this - OneNAND device structure
212 * @param addr - Address for which block number is needed
213 */
214static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
215{
216 unsigned boundary, blk, die = 0;
217
218 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
219 die = 1;
220 addr -= this->diesize[0];
221 }
222
223 boundary = this->boundary[die];
224
225 blk = addr >> (this->erase_shift - 1);
226 if (blk > boundary)
227 blk = (blk + boundary + 1) >> 1;
228
229 blk += die ? this->density_mask : 0;
230 return blk;
231}
232
233inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
234{
235 if (!FLEXONENAND(this))
236 return addr >> this->erase_shift;
237 return flexonenand_block(this, addr);
238}
239
240/**
241 * flexonenand_addr - Return address of the block
242 * @this: OneNAND device structure
243 * @block: Block number on Flex-OneNAND
244 *
245 * Return address of the block
246 */
247static loff_t flexonenand_addr(struct onenand_chip *this, int block)
248{
249 loff_t ofs = 0;
250 int die = 0, boundary;
251
252 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
253 block -= this->density_mask;
254 die = 1;
255 ofs = this->diesize[0];
256 }
257
258 boundary = this->boundary[die];
259 ofs += (loff_t)block << (this->erase_shift - 1);
260 if (block > (boundary + 1))
261 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
262 return ofs;
263}
264
265loff_t onenand_addr(struct onenand_chip *this, int block)
266{
267 if (!FLEXONENAND(this))
268 return (loff_t)block << this->erase_shift;
269 return flexonenand_addr(this, block);
270}
271EXPORT_SYMBOL(onenand_addr);
272
273/**
174 * onenand_get_density - [DEFAULT] Get OneNAND density 274 * onenand_get_density - [DEFAULT] Get OneNAND density
175 * @param dev_id OneNAND device ID 275 * @param dev_id OneNAND device ID
176 * 276 *
@@ -183,6 +283,22 @@ static inline int onenand_get_density(int dev_id)
183} 283}
184 284
185/** 285/**
286 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
287 * @param mtd MTD device structure
288 * @param addr address whose erase region needs to be identified
289 */
290int flexonenand_region(struct mtd_info *mtd, loff_t addr)
291{
292 int i;
293
294 for (i = 0; i < mtd->numeraseregions; i++)
295 if (addr < mtd->eraseregions[i].offset)
296 break;
297 return i - 1;
298}
299EXPORT_SYMBOL(flexonenand_region);
300
301/**
186 * onenand_command - [DEFAULT] Send command to OneNAND device 302 * onenand_command - [DEFAULT] Send command to OneNAND device
187 * @param mtd MTD device structure 303 * @param mtd MTD device structure
188 * @param cmd the command to be sent 304 * @param cmd the command to be sent
@@ -207,16 +323,28 @@ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t le
207 page = -1; 323 page = -1;
208 break; 324 break;
209 325
326 case FLEXONENAND_CMD_PI_ACCESS:
327 /* addr contains die index */
328 block = addr * this->density_mask;
329 page = -1;
330 break;
331
210 case ONENAND_CMD_ERASE: 332 case ONENAND_CMD_ERASE:
211 case ONENAND_CMD_BUFFERRAM: 333 case ONENAND_CMD_BUFFERRAM:
212 case ONENAND_CMD_OTP_ACCESS: 334 case ONENAND_CMD_OTP_ACCESS:
213 block = (int) (addr >> this->erase_shift); 335 block = onenand_block(this, addr);
214 page = -1; 336 page = -1;
215 break; 337 break;
216 338
339 case FLEXONENAND_CMD_READ_PI:
340 cmd = ONENAND_CMD_READ;
341 block = addr * this->density_mask;
342 page = 0;
343 break;
344
217 default: 345 default:
218 block = (int) (addr >> this->erase_shift); 346 block = onenand_block(this, addr);
219 page = (int) (addr >> this->page_shift); 347 page = (int) (addr - onenand_addr(this, block)) >> this->page_shift;
220 348
221 if (ONENAND_IS_2PLANE(this)) { 349 if (ONENAND_IS_2PLANE(this)) {
222 /* Make the even block number */ 350 /* Make the even block number */
@@ -236,7 +364,7 @@ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t le
236 value = onenand_bufferram_address(this, block); 364 value = onenand_bufferram_address(this, block);
237 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 365 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
238 366
239 if (ONENAND_IS_2PLANE(this)) 367 if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this))
240 /* It is always BufferRAM0 */ 368 /* It is always BufferRAM0 */
241 ONENAND_SET_BUFFERRAM0(this); 369 ONENAND_SET_BUFFERRAM0(this);
242 else 370 else
@@ -258,13 +386,18 @@ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t le
258 386
259 if (page != -1) { 387 if (page != -1) {
260 /* Now we use page size operation */ 388 /* Now we use page size operation */
261 int sectors = 4, count = 4; 389 int sectors = 0, count = 0;
262 int dataram; 390 int dataram;
263 391
264 switch (cmd) { 392 switch (cmd) {
393 case FLEXONENAND_CMD_RECOVER_LSB:
265 case ONENAND_CMD_READ: 394 case ONENAND_CMD_READ:
266 case ONENAND_CMD_READOOB: 395 case ONENAND_CMD_READOOB:
267 dataram = ONENAND_SET_NEXT_BUFFERRAM(this); 396 if (ONENAND_IS_MLC(this))
397 /* It is always BufferRAM0 */
398 dataram = ONENAND_SET_BUFFERRAM0(this);
399 else
400 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
268 break; 401 break;
269 402
270 default: 403 default:
@@ -293,6 +426,30 @@ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t le
293} 426}
294 427
295/** 428/**
429 * onenand_read_ecc - return ecc status
430 * @param this onenand chip structure
431 */
432static inline int onenand_read_ecc(struct onenand_chip *this)
433{
434 int ecc, i, result = 0;
435
436 if (!FLEXONENAND(this))
437 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438
439 for (i = 0; i < 4; i++) {
440 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i);
441 if (likely(!ecc))
442 continue;
443 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
444 return ONENAND_ECC_2BIT_ALL;
445 else
446 result = ONENAND_ECC_1BIT_ALL;
447 }
448
449 return result;
450}
451
452/**
296 * onenand_wait - [DEFAULT] wait until the command is done 453 * onenand_wait - [DEFAULT] wait until the command is done
297 * @param mtd MTD device structure 454 * @param mtd MTD device structure
298 * @param state state to select the max. timeout value 455 * @param state state to select the max. timeout value
@@ -331,14 +488,14 @@ static int onenand_wait(struct mtd_info *mtd, int state)
331 * power off recovery (POR) test, it should read ECC status first 488 * power off recovery (POR) test, it should read ECC status first
332 */ 489 */
333 if (interrupt & ONENAND_INT_READ) { 490 if (interrupt & ONENAND_INT_READ) {
334 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS); 491 int ecc = onenand_read_ecc(this);
335 if (ecc) { 492 if (ecc) {
336 if (ecc & ONENAND_ECC_2BIT_ALL) { 493 if (ecc & ONENAND_ECC_2BIT_ALL) {
337 printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc); 494 printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
338 mtd->ecc_stats.failed++; 495 mtd->ecc_stats.failed++;
339 return -EBADMSG; 496 return -EBADMSG;
340 } else if (ecc & ONENAND_ECC_1BIT_ALL) { 497 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
341 printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc); 498 printk(KERN_DEBUG "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
342 mtd->ecc_stats.corrected++; 499 mtd->ecc_stats.corrected++;
343 } 500 }
344 } 501 }
@@ -656,7 +813,7 @@ static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
656 813
657 if (found && ONENAND_IS_DDP(this)) { 814 if (found && ONENAND_IS_DDP(this)) {
658 /* Select DataRAM for DDP */ 815 /* Select DataRAM for DDP */
659 int block = (int) (addr >> this->erase_shift); 816 int block = onenand_block(this, addr);
660 int value = onenand_bufferram_address(this, block); 817 int value = onenand_bufferram_address(this, block);
661 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 818 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
662 } 819 }
@@ -816,6 +973,149 @@ static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int col
816} 973}
817 974
818/** 975/**
976 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
977 * @param mtd MTD device structure
978 * @param addr address to recover
979 * @param status return value from onenand_wait / onenand_bbt_wait
980 *
981 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
982 * lower page address and MSB page has higher page address in paired pages.
983 * If power off occurs during MSB page program, the paired LSB page data can
984 * become corrupt. LSB page recovery read is a way to read LSB page though page
985 * data are corrupted. When uncorrectable error occurs as a result of LSB page
986 * read after power up, issue LSB page recovery read.
987 */
988static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
989{
990 struct onenand_chip *this = mtd->priv;
991 int i;
992
993 /* Recovery is only for Flex-OneNAND */
994 if (!FLEXONENAND(this))
995 return status;
996
997 /* check if we failed due to uncorrectable error */
998 if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
999 return status;
1000
1001 /* check if address lies in MLC region */
1002 i = flexonenand_region(mtd, addr);
1003 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1004 return status;
1005
1006 /* We are attempting to reread, so decrement stats.failed
1007 * which was incremented by onenand_wait due to read failure
1008 */
1009 printk(KERN_INFO "onenand_recover_lsb: Attempting to recover from uncorrectable read\n");
1010 mtd->ecc_stats.failed--;
1011
1012 /* Issue the LSB page recovery command */
1013 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1014 return this->wait(mtd, FL_READING);
1015}
1016
1017/**
1018 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1019 * @param mtd MTD device structure
1020 * @param from offset to read from
1021 * @param ops: oob operation description structure
1022 *
1023 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1024 * So, read-while-load is not present.
1025 */
1026static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1027 struct mtd_oob_ops *ops)
1028{
1029 struct onenand_chip *this = mtd->priv;
1030 struct mtd_ecc_stats stats;
1031 size_t len = ops->len;
1032 size_t ooblen = ops->ooblen;
1033 u_char *buf = ops->datbuf;
1034 u_char *oobbuf = ops->oobbuf;
1035 int read = 0, column, thislen;
1036 int oobread = 0, oobcolumn, thisooblen, oobsize;
1037 int ret = 0;
1038 int writesize = this->writesize;
1039
1040 DEBUG(MTD_DEBUG_LEVEL3, "onenand_mlc_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1041
1042 if (ops->mode == MTD_OOB_AUTO)
1043 oobsize = this->ecclayout->oobavail;
1044 else
1045 oobsize = mtd->oobsize;
1046
1047 oobcolumn = from & (mtd->oobsize - 1);
1048
1049 /* Do not allow reads past end of device */
1050 if (from + len > mtd->size) {
1051 printk(KERN_ERR "onenand_mlc_read_ops_nolock: Attempt read beyond end of device\n");
1052 ops->retlen = 0;
1053 ops->oobretlen = 0;
1054 return -EINVAL;
1055 }
1056
1057 stats = mtd->ecc_stats;
1058
1059 while (read < len) {
1060 cond_resched();
1061
1062 thislen = min_t(int, writesize, len - read);
1063
1064 column = from & (writesize - 1);
1065 if (column + thislen > writesize)
1066 thislen = writesize - column;
1067
1068 if (!onenand_check_bufferram(mtd, from)) {
1069 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1070
1071 ret = this->wait(mtd, FL_READING);
1072 if (unlikely(ret))
1073 ret = onenand_recover_lsb(mtd, from, ret);
1074 onenand_update_bufferram(mtd, from, !ret);
1075 if (ret == -EBADMSG)
1076 ret = 0;
1077 }
1078
1079 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1080 if (oobbuf) {
1081 thisooblen = oobsize - oobcolumn;
1082 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1083
1084 if (ops->mode == MTD_OOB_AUTO)
1085 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1086 else
1087 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1088 oobread += thisooblen;
1089 oobbuf += thisooblen;
1090 oobcolumn = 0;
1091 }
1092
1093 read += thislen;
1094 if (read == len)
1095 break;
1096
1097 from += thislen;
1098 buf += thislen;
1099 }
1100
1101 /*
1102 * Return success, if no ECC failures, else -EBADMSG
1103 * fs driver will take care of that, because
1104 * retlen == desired len and result == -EBADMSG
1105 */
1106 ops->retlen = read;
1107 ops->oobretlen = oobread;
1108
1109 if (ret)
1110 return ret;
1111
1112 if (mtd->ecc_stats.failed - stats.failed)
1113 return -EBADMSG;
1114
1115 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1116}
1117
1118/**
819 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band 1119 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
820 * @param mtd MTD device structure 1120 * @param mtd MTD device structure
821 * @param from offset to read from 1121 * @param from offset to read from
@@ -962,7 +1262,7 @@ static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
962 size_t len = ops->ooblen; 1262 size_t len = ops->ooblen;
963 mtd_oob_mode_t mode = ops->mode; 1263 mtd_oob_mode_t mode = ops->mode;
964 u_char *buf = ops->oobbuf; 1264 u_char *buf = ops->oobbuf;
965 int ret = 0; 1265 int ret = 0, readcmd;
966 1266
967 from += ops->ooboffs; 1267 from += ops->ooboffs;
968 1268
@@ -993,17 +1293,22 @@ static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
993 1293
994 stats = mtd->ecc_stats; 1294 stats = mtd->ecc_stats;
995 1295
1296 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1297
996 while (read < len) { 1298 while (read < len) {
997 cond_resched(); 1299 cond_resched();
998 1300
999 thislen = oobsize - column; 1301 thislen = oobsize - column;
1000 thislen = min_t(int, thislen, len); 1302 thislen = min_t(int, thislen, len);
1001 1303
1002 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize); 1304 this->command(mtd, readcmd, from, mtd->oobsize);
1003 1305
1004 onenand_update_bufferram(mtd, from, 0); 1306 onenand_update_bufferram(mtd, from, 0);
1005 1307
1006 ret = this->wait(mtd, FL_READING); 1308 ret = this->wait(mtd, FL_READING);
1309 if (unlikely(ret))
1310 ret = onenand_recover_lsb(mtd, from, ret);
1311
1007 if (ret && ret != -EBADMSG) { 1312 if (ret && ret != -EBADMSG) {
1008 printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret); 1313 printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1009 break; 1314 break;
@@ -1053,6 +1358,7 @@ static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1053static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len, 1358static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1054 size_t *retlen, u_char *buf) 1359 size_t *retlen, u_char *buf)
1055{ 1360{
1361 struct onenand_chip *this = mtd->priv;
1056 struct mtd_oob_ops ops = { 1362 struct mtd_oob_ops ops = {
1057 .len = len, 1363 .len = len,
1058 .ooblen = 0, 1364 .ooblen = 0,
@@ -1062,7 +1368,9 @@ static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1062 int ret; 1368 int ret;
1063 1369
1064 onenand_get_device(mtd, FL_READING); 1370 onenand_get_device(mtd, FL_READING);
1065 ret = onenand_read_ops_nolock(mtd, from, &ops); 1371 ret = ONENAND_IS_MLC(this) ?
1372 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1373 onenand_read_ops_nolock(mtd, from, &ops);
1066 onenand_release_device(mtd); 1374 onenand_release_device(mtd);
1067 1375
1068 *retlen = ops.retlen; 1376 *retlen = ops.retlen;
@@ -1080,6 +1388,7 @@ static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1080static int onenand_read_oob(struct mtd_info *mtd, loff_t from, 1388static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1081 struct mtd_oob_ops *ops) 1389 struct mtd_oob_ops *ops)
1082{ 1390{
1391 struct onenand_chip *this = mtd->priv;
1083 int ret; 1392 int ret;
1084 1393
1085 switch (ops->mode) { 1394 switch (ops->mode) {
@@ -1094,7 +1403,9 @@ static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1094 1403
1095 onenand_get_device(mtd, FL_READING); 1404 onenand_get_device(mtd, FL_READING);
1096 if (ops->datbuf) 1405 if (ops->datbuf)
1097 ret = onenand_read_ops_nolock(mtd, from, ops); 1406 ret = ONENAND_IS_MLC(this) ?
1407 onenand_mlc_read_ops_nolock(mtd, from, ops) :
1408 onenand_read_ops_nolock(mtd, from, ops);
1098 else 1409 else
1099 ret = onenand_read_oob_nolock(mtd, from, ops); 1410 ret = onenand_read_oob_nolock(mtd, from, ops);
1100 onenand_release_device(mtd); 1411 onenand_release_device(mtd);
@@ -1128,11 +1439,11 @@ static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1128 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 1439 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1129 1440
1130 if (interrupt & ONENAND_INT_READ) { 1441 if (interrupt & ONENAND_INT_READ) {
1131 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS); 1442 int ecc = onenand_read_ecc(this);
1132 if (ecc & ONENAND_ECC_2BIT_ALL) { 1443 if (ecc & ONENAND_ECC_2BIT_ALL) {
1133 printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x" 1444 printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1134 ", controller error 0x%04x\n", ecc, ctrl); 1445 ", controller error 0x%04x\n", ecc, ctrl);
1135 return ONENAND_BBT_READ_ERROR; 1446 return ONENAND_BBT_READ_ECC_ERROR;
1136 } 1447 }
1137 } else { 1448 } else {
1138 printk(KERN_ERR "onenand_bbt_wait: read timeout!" 1449 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
@@ -1163,7 +1474,7 @@ int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1163{ 1474{
1164 struct onenand_chip *this = mtd->priv; 1475 struct onenand_chip *this = mtd->priv;
1165 int read = 0, thislen, column; 1476 int read = 0, thislen, column;
1166 int ret = 0; 1477 int ret = 0, readcmd;
1167 size_t len = ops->ooblen; 1478 size_t len = ops->ooblen;
1168 u_char *buf = ops->oobbuf; 1479 u_char *buf = ops->oobbuf;
1169 1480
@@ -1183,17 +1494,22 @@ int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1183 1494
1184 column = from & (mtd->oobsize - 1); 1495 column = from & (mtd->oobsize - 1);
1185 1496
1497 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1498
1186 while (read < len) { 1499 while (read < len) {
1187 cond_resched(); 1500 cond_resched();
1188 1501
1189 thislen = mtd->oobsize - column; 1502 thislen = mtd->oobsize - column;
1190 thislen = min_t(int, thislen, len); 1503 thislen = min_t(int, thislen, len);
1191 1504
1192 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize); 1505 this->command(mtd, readcmd, from, mtd->oobsize);
1193 1506
1194 onenand_update_bufferram(mtd, from, 0); 1507 onenand_update_bufferram(mtd, from, 0);
1195 1508
1196 ret = onenand_bbt_wait(mtd, FL_READING); 1509 ret = onenand_bbt_wait(mtd, FL_READING);
1510 if (unlikely(ret))
1511 ret = onenand_recover_lsb(mtd, from, ret);
1512
1197 if (ret) 1513 if (ret)
1198 break; 1514 break;
1199 1515
@@ -1230,9 +1546,11 @@ static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to
1230{ 1546{
1231 struct onenand_chip *this = mtd->priv; 1547 struct onenand_chip *this = mtd->priv;
1232 u_char *oob_buf = this->oob_buf; 1548 u_char *oob_buf = this->oob_buf;
1233 int status, i; 1549 int status, i, readcmd;
1550
1551 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1234 1552
1235 this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize); 1553 this->command(mtd, readcmd, to, mtd->oobsize);
1236 onenand_update_bufferram(mtd, to, 0); 1554 onenand_update_bufferram(mtd, to, 0);
1237 status = this->wait(mtd, FL_READING); 1555 status = this->wait(mtd, FL_READING);
1238 if (status) 1556 if (status)
@@ -1633,7 +1951,7 @@ static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1633{ 1951{
1634 struct onenand_chip *this = mtd->priv; 1952 struct onenand_chip *this = mtd->priv;
1635 int column, ret = 0, oobsize; 1953 int column, ret = 0, oobsize;
1636 int written = 0; 1954 int written = 0, oobcmd;
1637 u_char *oobbuf; 1955 u_char *oobbuf;
1638 size_t len = ops->ooblen; 1956 size_t len = ops->ooblen;
1639 const u_char *buf = ops->oobbuf; 1957 const u_char *buf = ops->oobbuf;
@@ -1675,6 +1993,8 @@ static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1675 1993
1676 oobbuf = this->oob_buf; 1994 oobbuf = this->oob_buf;
1677 1995
1996 oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1997
1678 /* Loop until all data write */ 1998 /* Loop until all data write */
1679 while (written < len) { 1999 while (written < len) {
1680 int thislen = min_t(int, oobsize, len - written); 2000 int thislen = min_t(int, oobsize, len - written);
@@ -1692,7 +2012,14 @@ static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1692 memcpy(oobbuf + column, buf, thislen); 2012 memcpy(oobbuf + column, buf, thislen);
1693 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); 2013 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1694 2014
1695 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize); 2015 if (ONENAND_IS_MLC(this)) {
2016 /* Set main area of DataRAM to 0xff*/
2017 memset(this->page_buf, 0xff, mtd->writesize);
2018 this->write_bufferram(mtd, ONENAND_DATARAM,
2019 this->page_buf, 0, mtd->writesize);
2020 }
2021
2022 this->command(mtd, oobcmd, to, mtd->oobsize);
1696 2023
1697 onenand_update_bufferram(mtd, to, 0); 2024 onenand_update_bufferram(mtd, to, 0);
1698 if (ONENAND_IS_2PLANE(this)) { 2025 if (ONENAND_IS_2PLANE(this)) {
@@ -1815,29 +2142,48 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1815{ 2142{
1816 struct onenand_chip *this = mtd->priv; 2143 struct onenand_chip *this = mtd->priv;
1817 unsigned int block_size; 2144 unsigned int block_size;
1818 loff_t addr; 2145 loff_t addr = instr->addr;
1819 int len; 2146 loff_t len = instr->len;
1820 int ret = 0; 2147 int ret = 0, i;
2148 struct mtd_erase_region_info *region = NULL;
2149 loff_t region_end = 0;
1821 2150
1822 DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%012llx, len = %llu\n", (unsigned long long) instr->addr, (unsigned long long) instr->len); 2151 DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%012llx, len = %llu\n", (unsigned long long) instr->addr, (unsigned long long) instr->len);
1823 2152
1824 block_size = (1 << this->erase_shift); 2153 /* Do not allow erase past end of device */
1825 2154 if (unlikely((len + addr) > mtd->size)) {
1826 /* Start address must align on block boundary */ 2155 printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1827 if (unlikely(instr->addr & (block_size - 1))) {
1828 printk(KERN_ERR "onenand_erase: Unaligned address\n");
1829 return -EINVAL; 2156 return -EINVAL;
1830 } 2157 }
1831 2158
1832 /* Length must align on block boundary */ 2159 if (FLEXONENAND(this)) {
1833 if (unlikely(instr->len & (block_size - 1))) { 2160 /* Find the eraseregion of this address */
1834 printk(KERN_ERR "onenand_erase: Length not block aligned\n"); 2161 i = flexonenand_region(mtd, addr);
1835 return -EINVAL; 2162 region = &mtd->eraseregions[i];
2163
2164 block_size = region->erasesize;
2165 region_end = region->offset + region->erasesize * region->numblocks;
2166
2167 /* Start address within region must align on block boundary.
2168 * Erase region's start offset is always block start address.
2169 */
2170 if (unlikely((addr - region->offset) & (block_size - 1))) {
2171 printk(KERN_ERR "onenand_erase: Unaligned address\n");
2172 return -EINVAL;
2173 }
2174 } else {
2175 block_size = 1 << this->erase_shift;
2176
2177 /* Start address must align on block boundary */
2178 if (unlikely(addr & (block_size - 1))) {
2179 printk(KERN_ERR "onenand_erase: Unaligned address\n");
2180 return -EINVAL;
2181 }
1836 } 2182 }
1837 2183
1838 /* Do not allow erase past end of device */ 2184 /* Length must align on block boundary */
1839 if (unlikely((instr->len + instr->addr) > mtd->size)) { 2185 if (unlikely(len & (block_size - 1))) {
1840 printk(KERN_ERR "onenand_erase: Erase past end of device\n"); 2186 printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1841 return -EINVAL; 2187 return -EINVAL;
1842 } 2188 }
1843 2189
@@ -1847,9 +2193,6 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1847 onenand_get_device(mtd, FL_ERASING); 2193 onenand_get_device(mtd, FL_ERASING);
1848 2194
1849 /* Loop throught the pages */ 2195 /* Loop throught the pages */
1850 len = instr->len;
1851 addr = instr->addr;
1852
1853 instr->state = MTD_ERASING; 2196 instr->state = MTD_ERASING;
1854 2197
1855 while (len) { 2198 while (len) {
@@ -1869,7 +2212,8 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1869 ret = this->wait(mtd, FL_ERASING); 2212 ret = this->wait(mtd, FL_ERASING);
1870 /* Check, if it is write protected */ 2213 /* Check, if it is write protected */
1871 if (ret) { 2214 if (ret) {
1872 printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift)); 2215 printk(KERN_ERR "onenand_erase: Failed erase, block %d\n",
2216 onenand_block(this, addr));
1873 instr->state = MTD_ERASE_FAILED; 2217 instr->state = MTD_ERASE_FAILED;
1874 instr->fail_addr = addr; 2218 instr->fail_addr = addr;
1875 goto erase_exit; 2219 goto erase_exit;
@@ -1877,6 +2221,22 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1877 2221
1878 len -= block_size; 2222 len -= block_size;
1879 addr += block_size; 2223 addr += block_size;
2224
2225 if (addr == region_end) {
2226 if (!len)
2227 break;
2228 region++;
2229
2230 block_size = region->erasesize;
2231 region_end = region->offset + region->erasesize * region->numblocks;
2232
2233 if (len & (block_size - 1)) {
2234 /* FIXME: This should be handled at MTD partitioning level. */
2235 printk(KERN_ERR "onenand_erase: Unaligned address\n");
2236 goto erase_exit;
2237 }
2238 }
2239
1880 } 2240 }
1881 2241
1882 instr->state = MTD_ERASE_DONE; 2242 instr->state = MTD_ERASE_DONE;
@@ -1955,13 +2315,17 @@ static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1955 int block; 2315 int block;
1956 2316
1957 /* Get block number */ 2317 /* Get block number */
1958 block = ((int) ofs) >> bbm->bbt_erase_shift; 2318 block = onenand_block(this, ofs);
1959 if (bbm->bbt) 2319 if (bbm->bbt)
1960 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); 2320 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1961 2321
1962 /* We write two bytes, so we dont have to mess with 16 bit access */ 2322 /* We write two bytes, so we dont have to mess with 16 bit access */
1963 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); 2323 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1964 return onenand_write_oob_nolock(mtd, ofs, &ops); 2324 /* FIXME : What to do when marking SLC block in partition
2325 * with MLC erasesize? For now, it is not advisable to
2326 * create partitions containing both SLC and MLC regions.
2327 */
2328 return onenand_write_oob_nolock(mtd, ofs, &ops);
1965} 2329}
1966 2330
1967/** 2331/**
@@ -2005,8 +2369,8 @@ static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int
2005 int start, end, block, value, status; 2369 int start, end, block, value, status;
2006 int wp_status_mask; 2370 int wp_status_mask;
2007 2371
2008 start = ofs >> this->erase_shift; 2372 start = onenand_block(this, ofs);
2009 end = len >> this->erase_shift; 2373 end = onenand_block(this, ofs + len) - 1;
2010 2374
2011 if (cmd == ONENAND_CMD_LOCK) 2375 if (cmd == ONENAND_CMD_LOCK)
2012 wp_status_mask = ONENAND_WP_LS; 2376 wp_status_mask = ONENAND_WP_LS;
@@ -2018,7 +2382,7 @@ static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int
2018 /* Set start block address */ 2382 /* Set start block address */
2019 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2383 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2020 /* Set end block address */ 2384 /* Set end block address */
2021 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS); 2385 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
2022 /* Write lock command */ 2386 /* Write lock command */
2023 this->command(mtd, cmd, 0, 0); 2387 this->command(mtd, cmd, 0, 0);
2024 2388
@@ -2039,7 +2403,7 @@ static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int
2039 } 2403 }
2040 2404
2041 /* Block lock scheme */ 2405 /* Block lock scheme */
2042 for (block = start; block < start + end; block++) { 2406 for (block = start; block < end + 1; block++) {
2043 /* Set block address */ 2407 /* Set block address */
2044 value = onenand_block_address(this, block); 2408 value = onenand_block_address(this, block);
2045 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 2409 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
@@ -2147,7 +2511,7 @@ static void onenand_unlock_all(struct mtd_info *mtd)
2147{ 2511{
2148 struct onenand_chip *this = mtd->priv; 2512 struct onenand_chip *this = mtd->priv;
2149 loff_t ofs = 0; 2513 loff_t ofs = 0;
2150 size_t len = this->chipsize; 2514 loff_t len = mtd->size;
2151 2515
2152 if (this->options & ONENAND_HAS_UNLOCK_ALL) { 2516 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2153 /* Set start block address */ 2517 /* Set start block address */
@@ -2168,7 +2532,7 @@ static void onenand_unlock_all(struct mtd_info *mtd)
2168 return; 2532 return;
2169 2533
2170 /* Workaround for all block unlock in DDP */ 2534 /* Workaround for all block unlock in DDP */
2171 if (ONENAND_IS_DDP(this)) { 2535 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2172 /* All blocks on another chip */ 2536 /* All blocks on another chip */
2173 ofs = this->chipsize >> 1; 2537 ofs = this->chipsize >> 1;
2174 len = this->chipsize >> 1; 2538 len = this->chipsize >> 1;
@@ -2210,7 +2574,9 @@ static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2210 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); 2574 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2211 this->wait(mtd, FL_OTPING); 2575 this->wait(mtd, FL_OTPING);
2212 2576
2213 ret = onenand_read_ops_nolock(mtd, from, &ops); 2577 ret = ONENAND_IS_MLC(this) ?
2578 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2579 onenand_read_ops_nolock(mtd, from, &ops);
2214 2580
2215 /* Exit OTP access mode */ 2581 /* Exit OTP access mode */
2216 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 2582 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
@@ -2277,21 +2643,32 @@ static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2277 size_t *retlen, u_char *buf) 2643 size_t *retlen, u_char *buf)
2278{ 2644{
2279 struct onenand_chip *this = mtd->priv; 2645 struct onenand_chip *this = mtd->priv;
2280 struct mtd_oob_ops ops = { 2646 struct mtd_oob_ops ops;
2281 .mode = MTD_OOB_PLACE,
2282 .ooblen = len,
2283 .oobbuf = buf,
2284 .ooboffs = 0,
2285 };
2286 int ret; 2647 int ret;
2287 2648
2288 /* Enter OTP access mode */ 2649 /* Enter OTP access mode */
2289 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); 2650 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2290 this->wait(mtd, FL_OTPING); 2651 this->wait(mtd, FL_OTPING);
2291 2652
2292 ret = onenand_write_oob_nolock(mtd, from, &ops); 2653 if (FLEXONENAND(this)) {
2293 2654 /*
2294 *retlen = ops.oobretlen; 2655 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2656 * main area of page 49.
2657 */
2658 ops.len = mtd->writesize;
2659 ops.ooblen = 0;
2660 ops.datbuf = buf;
2661 ops.oobbuf = NULL;
2662 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
2663 *retlen = ops.retlen;
2664 } else {
2665 ops.mode = MTD_OOB_PLACE;
2666 ops.ooblen = len;
2667 ops.oobbuf = buf;
2668 ops.ooboffs = 0;
2669 ret = onenand_write_oob_nolock(mtd, from, &ops);
2670 *retlen = ops.oobretlen;
2671 }
2295 2672
2296 /* Exit OTP access mode */ 2673 /* Exit OTP access mode */
2297 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 2674 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
@@ -2475,27 +2852,34 @@ static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2475 size_t len) 2852 size_t len)
2476{ 2853{
2477 struct onenand_chip *this = mtd->priv; 2854 struct onenand_chip *this = mtd->priv;
2478 u_char *oob_buf = this->oob_buf; 2855 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
2479 size_t retlen; 2856 size_t retlen;
2480 int ret; 2857 int ret;
2481 2858
2482 memset(oob_buf, 0xff, mtd->oobsize); 2859 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
2860 : mtd->oobsize);
2483 /* 2861 /*
2484 * Note: OTP lock operation 2862 * Note: OTP lock operation
2485 * OTP block : 0xXXFC 2863 * OTP block : 0xXXFC
2486 * 1st block : 0xXXF3 (If chip support) 2864 * 1st block : 0xXXF3 (If chip support)
2487 * Both : 0xXXF0 (If chip support) 2865 * Both : 0xXXF0 (If chip support)
2488 */ 2866 */
2489 oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC; 2867 if (FLEXONENAND(this))
2868 buf[FLEXONENAND_OTP_LOCK_OFFSET] = 0xFC;
2869 else
2870 buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2490 2871
2491 /* 2872 /*
2492 * Write lock mark to 8th word of sector0 of page0 of the spare0. 2873 * Write lock mark to 8th word of sector0 of page0 of the spare0.
2493 * We write 16 bytes spare area instead of 2 bytes. 2874 * We write 16 bytes spare area instead of 2 bytes.
2875 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2876 * main area of page 49.
2494 */ 2877 */
2878
2495 from = 0; 2879 from = 0;
2496 len = 16; 2880 len = FLEXONENAND(this) ? mtd->writesize : 16;
2497 2881
2498 ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER); 2882 ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
2499 2883
2500 return ret ? : retlen; 2884 return ret ? : retlen;
2501} 2885}
@@ -2542,6 +2926,14 @@ static void onenand_check_features(struct mtd_info *mtd)
2542 break; 2926 break;
2543 } 2927 }
2544 2928
2929 if (ONENAND_IS_MLC(this))
2930 this->options &= ~ONENAND_HAS_2PLANE;
2931
2932 if (FLEXONENAND(this)) {
2933 this->options &= ~ONENAND_HAS_CONT_LOCK;
2934 this->options |= ONENAND_HAS_UNLOCK_ALL;
2935 }
2936
2545 if (this->options & ONENAND_HAS_CONT_LOCK) 2937 if (this->options & ONENAND_HAS_CONT_LOCK)
2546 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); 2938 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2547 if (this->options & ONENAND_HAS_UNLOCK_ALL) 2939 if (this->options & ONENAND_HAS_UNLOCK_ALL)
@@ -2559,14 +2951,16 @@ static void onenand_check_features(struct mtd_info *mtd)
2559 */ 2951 */
2560static void onenand_print_device_info(int device, int version) 2952static void onenand_print_device_info(int device, int version)
2561{ 2953{
2562 int vcc, demuxed, ddp, density; 2954 int vcc, demuxed, ddp, density, flexonenand;
2563 2955
2564 vcc = device & ONENAND_DEVICE_VCC_MASK; 2956 vcc = device & ONENAND_DEVICE_VCC_MASK;
2565 demuxed = device & ONENAND_DEVICE_IS_DEMUX; 2957 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2566 ddp = device & ONENAND_DEVICE_IS_DDP; 2958 ddp = device & ONENAND_DEVICE_IS_DDP;
2567 density = onenand_get_density(device); 2959 density = onenand_get_density(device);
2568 printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n", 2960 flexonenand = device & DEVICE_IS_FLEXONENAND;
2569 demuxed ? "" : "Muxed ", 2961 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2962 demuxed ? "" : "Muxed ",
2963 flexonenand ? "Flex-" : "",
2570 ddp ? "(DDP)" : "", 2964 ddp ? "(DDP)" : "",
2571 (16 << density), 2965 (16 << density),
2572 vcc ? "2.65/3.3" : "1.8", 2966 vcc ? "2.65/3.3" : "1.8",
@@ -2606,6 +3000,280 @@ static int onenand_check_maf(int manuf)
2606} 3000}
2607 3001
2608/** 3002/**
3003* flexonenand_get_boundary - Reads the SLC boundary
3004* @param onenand_info - onenand info structure
3005**/
3006static int flexonenand_get_boundary(struct mtd_info *mtd)
3007{
3008 struct onenand_chip *this = mtd->priv;
3009 unsigned die, bdry;
3010 int ret, syscfg, locked;
3011
3012 /* Disable ECC */
3013 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3014 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3015
3016 for (die = 0; die < this->dies; die++) {
3017 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3018 this->wait(mtd, FL_SYNCING);
3019
3020 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3021 ret = this->wait(mtd, FL_READING);
3022
3023 bdry = this->read_word(this->base + ONENAND_DATARAM);
3024 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3025 locked = 0;
3026 else
3027 locked = 1;
3028 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3029
3030 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3031 ret = this->wait(mtd, FL_RESETING);
3032
3033 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3034 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3035 }
3036
3037 /* Enable ECC */
3038 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3039 return 0;
3040}
3041
3042/**
3043 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3044 * boundary[], diesize[], mtd->size, mtd->erasesize
3045 * @param mtd - MTD device structure
3046 */
3047static void flexonenand_get_size(struct mtd_info *mtd)
3048{
3049 struct onenand_chip *this = mtd->priv;
3050 int die, i, eraseshift, density;
3051 int blksperdie, maxbdry;
3052 loff_t ofs;
3053
3054 density = onenand_get_density(this->device_id);
3055 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3056 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3057 maxbdry = blksperdie - 1;
3058 eraseshift = this->erase_shift - 1;
3059
3060 mtd->numeraseregions = this->dies << 1;
3061
3062 /* This fills up the device boundary */
3063 flexonenand_get_boundary(mtd);
3064 die = ofs = 0;
3065 i = -1;
3066 for (; die < this->dies; die++) {
3067 if (!die || this->boundary[die-1] != maxbdry) {
3068 i++;
3069 mtd->eraseregions[i].offset = ofs;
3070 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3071 mtd->eraseregions[i].numblocks =
3072 this->boundary[die] + 1;
3073 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3074 eraseshift++;
3075 } else {
3076 mtd->numeraseregions -= 1;
3077 mtd->eraseregions[i].numblocks +=
3078 this->boundary[die] + 1;
3079 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3080 }
3081 if (this->boundary[die] != maxbdry) {
3082 i++;
3083 mtd->eraseregions[i].offset = ofs;
3084 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3085 mtd->eraseregions[i].numblocks = maxbdry ^
3086 this->boundary[die];
3087 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3088 eraseshift--;
3089 } else
3090 mtd->numeraseregions -= 1;
3091 }
3092
3093 /* Expose MLC erase size except when all blocks are SLC */
3094 mtd->erasesize = 1 << this->erase_shift;
3095 if (mtd->numeraseregions == 1)
3096 mtd->erasesize >>= 1;
3097
3098 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3099 for (i = 0; i < mtd->numeraseregions; i++)
3100 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3101 " numblocks: %04u]\n",
3102 (unsigned int) mtd->eraseregions[i].offset,
3103 mtd->eraseregions[i].erasesize,
3104 mtd->eraseregions[i].numblocks);
3105
3106 for (die = 0, mtd->size = 0; die < this->dies; die++) {
3107 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3108 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3109 << (this->erase_shift - 1);
3110 mtd->size += this->diesize[die];
3111 }
3112}
3113
3114/**
3115 * flexonenand_check_blocks_erased - Check if blocks are erased
3116 * @param mtd_info - mtd info structure
3117 * @param start - first erase block to check
3118 * @param end - last erase block to check
3119 *
3120 * Converting an unerased block from MLC to SLC
3121 * causes byte values to change. Since both data and its ECC
3122 * have changed, reads on the block give uncorrectable error.
3123 * This might lead to the block being detected as bad.
3124 *
3125 * Avoid this by ensuring that the block to be converted is
3126 * erased.
3127 */
3128static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3129{
3130 struct onenand_chip *this = mtd->priv;
3131 int i, ret;
3132 int block;
3133 struct mtd_oob_ops ops = {
3134 .mode = MTD_OOB_PLACE,
3135 .ooboffs = 0,
3136 .ooblen = mtd->oobsize,
3137 .datbuf = NULL,
3138 .oobbuf = this->oob_buf,
3139 };
3140 loff_t addr;
3141
3142 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3143
3144 for (block = start; block <= end; block++) {
3145 addr = flexonenand_addr(this, block);
3146 if (onenand_block_isbad_nolock(mtd, addr, 0))
3147 continue;
3148
3149 /*
3150 * Since main area write results in ECC write to spare,
3151 * it is sufficient to check only ECC bytes for change.
3152 */
3153 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3154 if (ret)
3155 return ret;
3156
3157 for (i = 0; i < mtd->oobsize; i++)
3158 if (this->oob_buf[i] != 0xff)
3159 break;
3160
3161 if (i != mtd->oobsize) {
3162 printk(KERN_WARNING "Block %d not erased.\n", block);
3163 return 1;
3164 }
3165 }
3166
3167 return 0;
3168}
3169
3170/**
3171 * flexonenand_set_boundary - Writes the SLC boundary
3172 * @param mtd - mtd info structure
3173 */
3174int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3175 int boundary, int lock)
3176{
3177 struct onenand_chip *this = mtd->priv;
3178 int ret, density, blksperdie, old, new, thisboundary;
3179 loff_t addr;
3180
3181 /* Change only once for SDP Flex-OneNAND */
3182 if (die && (!ONENAND_IS_DDP(this)))
3183 return 0;
3184
3185 /* boundary value of -1 indicates no required change */
3186 if (boundary < 0 || boundary == this->boundary[die])
3187 return 0;
3188
3189 density = onenand_get_density(this->device_id);
3190 blksperdie = ((16 << density) << 20) >> this->erase_shift;
3191 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3192
3193 if (boundary >= blksperdie) {
3194 printk(KERN_ERR "flexonenand_set_boundary: Invalid boundary value. "
3195 "Boundary not changed.\n");
3196 return -EINVAL;
3197 }
3198
3199 /* Check if converting blocks are erased */
3200 old = this->boundary[die] + (die * this->density_mask);
3201 new = boundary + (die * this->density_mask);
3202 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3203 if (ret) {
3204 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
3205 return ret;
3206 }
3207
3208 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3209 this->wait(mtd, FL_SYNCING);
3210
3211 /* Check is boundary is locked */
3212 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3213 ret = this->wait(mtd, FL_READING);
3214
3215 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3216 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3217 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
3218 ret = 1;
3219 goto out;
3220 }
3221
3222 printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
3223 die, boundary, lock ? "(Locked)" : "(Unlocked)");
3224
3225 addr = die ? this->diesize[0] : 0;
3226
3227 boundary &= FLEXONENAND_PI_MASK;
3228 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3229
3230 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3231 ret = this->wait(mtd, FL_ERASING);
3232 if (ret) {
3233 printk(KERN_ERR "flexonenand_set_boundary: Failed PI erase for Die %d\n", die);
3234 goto out;
3235 }
3236
3237 this->write_word(boundary, this->base + ONENAND_DATARAM);
3238 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3239 ret = this->wait(mtd, FL_WRITING);
3240 if (ret) {
3241 printk(KERN_ERR "flexonenand_set_boundary: Failed PI write for Die %d\n", die);
3242 goto out;
3243 }
3244
3245 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3246 ret = this->wait(mtd, FL_WRITING);
3247out:
3248 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3249 this->wait(mtd, FL_RESETING);
3250 if (!ret)
3251 /* Recalculate device size on boundary change*/
3252 flexonenand_get_size(mtd);
3253
3254 return ret;
3255}
3256
3257/**
3258 * flexonenand_setup - capture Flex-OneNAND boundary and lock
3259 * values passed as kernel parameters
3260 * @param s kernel parameter string
3261 */
3262static int flexonenand_setup(char *s)
3263{
3264 int ints[5], i;
3265
3266 s = get_options(s, 5, ints);
3267
3268 for (i = 0; i < ints[0]; i++)
3269 flex_bdry[i] = ints[i + 1];
3270
3271 return 1;
3272}
3273
3274__setup("onenand.bdry=", flexonenand_setup);
3275
3276/**
2609 * onenand_probe - [OneNAND Interface] Probe the OneNAND device 3277 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2610 * @param mtd MTD device structure 3278 * @param mtd MTD device structure
2611 * 3279 *
@@ -2647,6 +3315,7 @@ static int onenand_probe(struct mtd_info *mtd)
2647 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); 3315 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2648 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); 3316 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2649 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); 3317 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3318 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2650 3319
2651 /* Check OneNAND device */ 3320 /* Check OneNAND device */
2652 if (maf_id != bram_maf_id || dev_id != bram_dev_id) 3321 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
@@ -2658,29 +3327,55 @@ static int onenand_probe(struct mtd_info *mtd)
2658 this->version_id = ver_id; 3327 this->version_id = ver_id;
2659 3328
2660 density = onenand_get_density(dev_id); 3329 density = onenand_get_density(dev_id);
3330 if (FLEXONENAND(this)) {
3331 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3332 /* Maximum possible erase regions */
3333 mtd->numeraseregions = this->dies << 1;
3334 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3335 * (this->dies << 1), GFP_KERNEL);
3336 if (!mtd->eraseregions)
3337 return -ENOMEM;
3338 }
3339
3340 /*
3341 * For Flex-OneNAND, chipsize represents maximum possible device size.
3342 * mtd->size represents the actual device size.
3343 */
2661 this->chipsize = (16 << density) << 20; 3344 this->chipsize = (16 << density) << 20;
2662 /* Set density mask. it is used for DDP */
2663 if (ONENAND_IS_DDP(this))
2664 this->density_mask = (1 << (density + 6));
2665 else
2666 this->density_mask = 0;
2667 3345
2668 /* OneNAND page size & block size */ 3346 /* OneNAND page size & block size */
2669 /* The data buffer size is equal to page size */ 3347 /* The data buffer size is equal to page size */
2670 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); 3348 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3349 /* We use the full BufferRAM */
3350 if (ONENAND_IS_MLC(this))
3351 mtd->writesize <<= 1;
3352
2671 mtd->oobsize = mtd->writesize >> 5; 3353 mtd->oobsize = mtd->writesize >> 5;
2672 /* Pages per a block are always 64 in OneNAND */ 3354 /* Pages per a block are always 64 in OneNAND */
2673 mtd->erasesize = mtd->writesize << 6; 3355 mtd->erasesize = mtd->writesize << 6;
3356 /*
3357 * Flex-OneNAND SLC area has 64 pages per block.
3358 * Flex-OneNAND MLC area has 128 pages per block.
3359 * Expose MLC erase size to find erase_shift and page_mask.
3360 */
3361 if (FLEXONENAND(this))
3362 mtd->erasesize <<= 1;
2674 3363
2675 this->erase_shift = ffs(mtd->erasesize) - 1; 3364 this->erase_shift = ffs(mtd->erasesize) - 1;
2676 this->page_shift = ffs(mtd->writesize) - 1; 3365 this->page_shift = ffs(mtd->writesize) - 1;
2677 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1; 3366 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3367 /* Set density mask. it is used for DDP */
3368 if (ONENAND_IS_DDP(this))
3369 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2678 /* It's real page size */ 3370 /* It's real page size */
2679 this->writesize = mtd->writesize; 3371 this->writesize = mtd->writesize;
2680 3372
2681 /* REVIST: Multichip handling */ 3373 /* REVIST: Multichip handling */
2682 3374
2683 mtd->size = this->chipsize; 3375 if (FLEXONENAND(this))
3376 flexonenand_get_size(mtd);
3377 else
3378 mtd->size = this->chipsize;
2684 3379
2685 /* Check OneNAND features */ 3380 /* Check OneNAND features */
2686 onenand_check_features(mtd); 3381 onenand_check_features(mtd);
@@ -2735,7 +3430,7 @@ static void onenand_resume(struct mtd_info *mtd)
2735 */ 3430 */
2736int onenand_scan(struct mtd_info *mtd, int maxchips) 3431int onenand_scan(struct mtd_info *mtd, int maxchips)
2737{ 3432{
2738 int i; 3433 int i, ret;
2739 struct onenand_chip *this = mtd->priv; 3434 struct onenand_chip *this = mtd->priv;
2740 3435
2741 if (!this->read_word) 3436 if (!this->read_word)
@@ -2797,6 +3492,10 @@ int onenand_scan(struct mtd_info *mtd, int maxchips)
2797 * Allow subpage writes up to oobsize. 3492 * Allow subpage writes up to oobsize.
2798 */ 3493 */
2799 switch (mtd->oobsize) { 3494 switch (mtd->oobsize) {
3495 case 128:
3496 this->ecclayout = &onenand_oob_128;
3497 mtd->subpage_sft = 0;
3498 break;
2800 case 64: 3499 case 64:
2801 this->ecclayout = &onenand_oob_64; 3500 this->ecclayout = &onenand_oob_64;
2802 mtd->subpage_sft = 2; 3501 mtd->subpage_sft = 2;
@@ -2862,7 +3561,16 @@ int onenand_scan(struct mtd_info *mtd, int maxchips)
2862 /* Unlock whole block */ 3561 /* Unlock whole block */
2863 onenand_unlock_all(mtd); 3562 onenand_unlock_all(mtd);
2864 3563
2865 return this->scan_bbt(mtd); 3564 ret = this->scan_bbt(mtd);
3565 if ((!FLEXONENAND(this)) || ret)
3566 return ret;
3567
3568 /* Change Flex-OneNAND boundaries if required */
3569 for (i = 0; i < MAX_DIES; i++)
3570 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3571 flex_bdry[(2 * i) + 1]);
3572
3573 return 0;
2866} 3574}
2867 3575
2868/** 3576/**
@@ -2891,6 +3599,7 @@ void onenand_release(struct mtd_info *mtd)
2891 kfree(this->page_buf); 3599 kfree(this->page_buf);
2892 if (this->options & ONENAND_OOBBUF_ALLOC) 3600 if (this->options & ONENAND_OOBBUF_ALLOC)
2893 kfree(this->oob_buf); 3601 kfree(this->oob_buf);
3602 kfree(mtd->eraseregions);
2894} 3603}
2895 3604
2896EXPORT_SYMBOL_GPL(onenand_scan); 3605EXPORT_SYMBOL_GPL(onenand_scan);
diff --git a/drivers/mtd/onenand/onenand_bbt.c b/drivers/mtd/onenand/onenand_bbt.c
index 2f53b51c6805..a91fcac1af01 100644
--- a/drivers/mtd/onenand/onenand_bbt.c
+++ b/drivers/mtd/onenand/onenand_bbt.c
@@ -63,6 +63,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
63 loff_t from; 63 loff_t from;
64 size_t readlen, ooblen; 64 size_t readlen, ooblen;
65 struct mtd_oob_ops ops; 65 struct mtd_oob_ops ops;
66 int rgn;
66 67
67 printk(KERN_INFO "Scanning device for bad blocks\n"); 68 printk(KERN_INFO "Scanning device for bad blocks\n");
68 69
@@ -76,7 +77,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
76 /* Note that numblocks is 2 * (real numblocks) here; 77 /* Note that numblocks is 2 * (real numblocks) here;
77 * see i += 2 below as it makses shifting and masking less painful 78 * see i += 2 below as it makses shifting and masking less painful
78 */ 79 */
79 numblocks = mtd->size >> (bbm->bbt_erase_shift - 1); 80 numblocks = this->chipsize >> (bbm->bbt_erase_shift - 1);
80 startblock = 0; 81 startblock = 0;
81 from = 0; 82 from = 0;
82 83
@@ -106,7 +107,12 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
106 } 107 }
107 } 108 }
108 i += 2; 109 i += 2;
109 from += (1 << bbm->bbt_erase_shift); 110
111 if (FLEXONENAND(this)) {
112 rgn = flexonenand_region(mtd, from);
113 from += mtd->eraseregions[rgn].erasesize;
114 } else
115 from += (1 << bbm->bbt_erase_shift);
110 } 116 }
111 117
112 return 0; 118 return 0;
@@ -143,7 +149,7 @@ static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
143 uint8_t res; 149 uint8_t res;
144 150
145 /* Get block number * 2 */ 151 /* Get block number * 2 */
146 block = (int) (offs >> (bbm->bbt_erase_shift - 1)); 152 block = (int) (onenand_block(this, offs) << 1);
147 res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03; 153 res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03;
148 154
149 DEBUG(MTD_DEBUG_LEVEL2, "onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n", 155 DEBUG(MTD_DEBUG_LEVEL2, "onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n",
@@ -178,7 +184,7 @@ int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
178 struct bbm_info *bbm = this->bbm; 184 struct bbm_info *bbm = this->bbm;
179 int len, ret = 0; 185 int len, ret = 0;
180 186
181 len = mtd->size >> (this->erase_shift + 2); 187 len = this->chipsize >> (this->erase_shift + 2);
182 /* Allocate memory (2bit per block) and clear the memory bad block table */ 188 /* Allocate memory (2bit per block) and clear the memory bad block table */
183 bbm->bbt = kzalloc(len, GFP_KERNEL); 189 bbm->bbt = kzalloc(len, GFP_KERNEL);
184 if (!bbm->bbt) { 190 if (!bbm->bbt) {
diff --git a/drivers/mtd/onenand/onenand_sim.c b/drivers/mtd/onenand/onenand_sim.c
index d64200b7c94b..f6e3c8aebd3a 100644
--- a/drivers/mtd/onenand/onenand_sim.c
+++ b/drivers/mtd/onenand/onenand_sim.c
@@ -6,6 +6,10 @@
6 * Copyright © 2005-2007 Samsung Electronics 6 * Copyright © 2005-2007 Samsung Electronics
7 * Kyungmin Park <kyungmin.park@samsung.com> 7 * Kyungmin Park <kyungmin.park@samsung.com>
8 * 8 *
9 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
10 * Flex-OneNAND simulator support
11 * Copyright (C) Samsung Electronics, 2008
12 *
9 * This program is free software; you can redistribute it and/or modify 13 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as 14 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation. 15 * published by the Free Software Foundation.
@@ -24,16 +28,38 @@
24#ifndef CONFIG_ONENAND_SIM_MANUFACTURER 28#ifndef CONFIG_ONENAND_SIM_MANUFACTURER
25#define CONFIG_ONENAND_SIM_MANUFACTURER 0xec 29#define CONFIG_ONENAND_SIM_MANUFACTURER 0xec
26#endif 30#endif
31
27#ifndef CONFIG_ONENAND_SIM_DEVICE_ID 32#ifndef CONFIG_ONENAND_SIM_DEVICE_ID
28#define CONFIG_ONENAND_SIM_DEVICE_ID 0x04 33#define CONFIG_ONENAND_SIM_DEVICE_ID 0x04
29#endif 34#endif
35
36#define CONFIG_FLEXONENAND ((CONFIG_ONENAND_SIM_DEVICE_ID >> 9) & 1)
37
30#ifndef CONFIG_ONENAND_SIM_VERSION_ID 38#ifndef CONFIG_ONENAND_SIM_VERSION_ID
31#define CONFIG_ONENAND_SIM_VERSION_ID 0x1e 39#define CONFIG_ONENAND_SIM_VERSION_ID 0x1e
32#endif 40#endif
33 41
42#ifndef CONFIG_ONENAND_SIM_TECHNOLOGY_ID
43#define CONFIG_ONENAND_SIM_TECHNOLOGY_ID CONFIG_FLEXONENAND
44#endif
45
46/* Initial boundary values for Flex-OneNAND Simulator */
47#ifndef CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY
48#define CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY 0x01
49#endif
50
51#ifndef CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY
52#define CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY 0x01
53#endif
54
34static int manuf_id = CONFIG_ONENAND_SIM_MANUFACTURER; 55static int manuf_id = CONFIG_ONENAND_SIM_MANUFACTURER;
35static int device_id = CONFIG_ONENAND_SIM_DEVICE_ID; 56static int device_id = CONFIG_ONENAND_SIM_DEVICE_ID;
36static int version_id = CONFIG_ONENAND_SIM_VERSION_ID; 57static int version_id = CONFIG_ONENAND_SIM_VERSION_ID;
58static int technology_id = CONFIG_ONENAND_SIM_TECHNOLOGY_ID;
59static int boundary[] = {
60 CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY,
61 CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY,
62};
37 63
38struct onenand_flash { 64struct onenand_flash {
39 void __iomem *base; 65 void __iomem *base;
@@ -57,12 +83,18 @@ struct onenand_flash {
57 (writew(v, this->base + ONENAND_REG_WP_STATUS)) 83 (writew(v, this->base + ONENAND_REG_WP_STATUS))
58 84
59/* It has all 0xff chars */ 85/* It has all 0xff chars */
60#define MAX_ONENAND_PAGESIZE (2048 + 64) 86#define MAX_ONENAND_PAGESIZE (4096 + 128)
61static unsigned char *ffchars; 87static unsigned char *ffchars;
62 88
89#if CONFIG_FLEXONENAND
90#define PARTITION_NAME "Flex-OneNAND simulator partition"
91#else
92#define PARTITION_NAME "OneNAND simulator partition"
93#endif
94
63static struct mtd_partition os_partitions[] = { 95static struct mtd_partition os_partitions[] = {
64 { 96 {
65 .name = "OneNAND simulator partition", 97 .name = PARTITION_NAME,
66 .offset = 0, 98 .offset = 0,
67 .size = MTDPART_SIZ_FULL, 99 .size = MTDPART_SIZ_FULL,
68 }, 100 },
@@ -104,6 +136,7 @@ static void onenand_lock_handle(struct onenand_chip *this, int cmd)
104 136
105 switch (cmd) { 137 switch (cmd) {
106 case ONENAND_CMD_UNLOCK: 138 case ONENAND_CMD_UNLOCK:
139 case ONENAND_CMD_UNLOCK_ALL:
107 if (block_lock_scheme) 140 if (block_lock_scheme)
108 ONENAND_SET_WP_STATUS(ONENAND_WP_US, this); 141 ONENAND_SET_WP_STATUS(ONENAND_WP_US, this);
109 else 142 else
@@ -228,10 +261,12 @@ static void onenand_data_handle(struct onenand_chip *this, int cmd,
228{ 261{
229 struct mtd_info *mtd = &info->mtd; 262 struct mtd_info *mtd = &info->mtd;
230 struct onenand_flash *flash = this->priv; 263 struct onenand_flash *flash = this->priv;
231 int main_offset, spare_offset; 264 int main_offset, spare_offset, die = 0;
232 void __iomem *src; 265 void __iomem *src;
233 void __iomem *dest; 266 void __iomem *dest;
234 unsigned int i; 267 unsigned int i;
268 static int pi_operation;
269 int erasesize, rgn;
235 270
236 if (dataram) { 271 if (dataram) {
237 main_offset = mtd->writesize; 272 main_offset = mtd->writesize;
@@ -241,10 +276,27 @@ static void onenand_data_handle(struct onenand_chip *this, int cmd,
241 spare_offset = 0; 276 spare_offset = 0;
242 } 277 }
243 278
279 if (pi_operation) {
280 die = readw(this->base + ONENAND_REG_START_ADDRESS2);
281 die >>= ONENAND_DDP_SHIFT;
282 }
283
244 switch (cmd) { 284 switch (cmd) {
285 case FLEXONENAND_CMD_PI_ACCESS:
286 pi_operation = 1;
287 break;
288
289 case ONENAND_CMD_RESET:
290 pi_operation = 0;
291 break;
292
245 case ONENAND_CMD_READ: 293 case ONENAND_CMD_READ:
246 src = ONENAND_CORE(flash) + offset; 294 src = ONENAND_CORE(flash) + offset;
247 dest = ONENAND_MAIN_AREA(this, main_offset); 295 dest = ONENAND_MAIN_AREA(this, main_offset);
296 if (pi_operation) {
297 writew(boundary[die], this->base + ONENAND_DATARAM);
298 break;
299 }
248 memcpy(dest, src, mtd->writesize); 300 memcpy(dest, src, mtd->writesize);
249 /* Fall through */ 301 /* Fall through */
250 302
@@ -257,6 +309,10 @@ static void onenand_data_handle(struct onenand_chip *this, int cmd,
257 case ONENAND_CMD_PROG: 309 case ONENAND_CMD_PROG:
258 src = ONENAND_MAIN_AREA(this, main_offset); 310 src = ONENAND_MAIN_AREA(this, main_offset);
259 dest = ONENAND_CORE(flash) + offset; 311 dest = ONENAND_CORE(flash) + offset;
312 if (pi_operation) {
313 boundary[die] = readw(this->base + ONENAND_DATARAM);
314 break;
315 }
260 /* To handle partial write */ 316 /* To handle partial write */
261 for (i = 0; i < (1 << mtd->subpage_sft); i++) { 317 for (i = 0; i < (1 << mtd->subpage_sft); i++) {
262 int off = i * this->subpagesize; 318 int off = i * this->subpagesize;
@@ -284,9 +340,18 @@ static void onenand_data_handle(struct onenand_chip *this, int cmd,
284 break; 340 break;
285 341
286 case ONENAND_CMD_ERASE: 342 case ONENAND_CMD_ERASE:
287 memset(ONENAND_CORE(flash) + offset, 0xff, mtd->erasesize); 343 if (pi_operation)
344 break;
345
346 if (FLEXONENAND(this)) {
347 rgn = flexonenand_region(mtd, offset);
348 erasesize = mtd->eraseregions[rgn].erasesize;
349 } else
350 erasesize = mtd->erasesize;
351
352 memset(ONENAND_CORE(flash) + offset, 0xff, erasesize);
288 memset(ONENAND_CORE_SPARE(flash, this, offset), 0xff, 353 memset(ONENAND_CORE_SPARE(flash, this, offset), 0xff,
289 (mtd->erasesize >> 5)); 354 (erasesize >> 5));
290 break; 355 break;
291 356
292 default: 357 default:
@@ -339,7 +404,7 @@ static void onenand_command_handle(struct onenand_chip *this, int cmd)
339 } 404 }
340 405
341 if (block != -1) 406 if (block != -1)
342 offset += block << this->erase_shift; 407 offset = onenand_addr(this, block);
343 408
344 if (page != -1) 409 if (page != -1)
345 offset += page << this->page_shift; 410 offset += page << this->page_shift;
@@ -390,6 +455,7 @@ static int __init flash_init(struct onenand_flash *flash)
390 } 455 }
391 456
392 density = device_id >> ONENAND_DEVICE_DENSITY_SHIFT; 457 density = device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
458 density &= ONENAND_DEVICE_DENSITY_MASK;
393 size = ((16 << 20) << density); 459 size = ((16 << 20) << density);
394 460
395 ONENAND_CORE(flash) = vmalloc(size + (size >> 5)); 461 ONENAND_CORE(flash) = vmalloc(size + (size >> 5));
@@ -405,8 +471,9 @@ static int __init flash_init(struct onenand_flash *flash)
405 writew(manuf_id, flash->base + ONENAND_REG_MANUFACTURER_ID); 471 writew(manuf_id, flash->base + ONENAND_REG_MANUFACTURER_ID);
406 writew(device_id, flash->base + ONENAND_REG_DEVICE_ID); 472 writew(device_id, flash->base + ONENAND_REG_DEVICE_ID);
407 writew(version_id, flash->base + ONENAND_REG_VERSION_ID); 473 writew(version_id, flash->base + ONENAND_REG_VERSION_ID);
474 writew(technology_id, flash->base + ONENAND_REG_TECHNOLOGY);
408 475
409 if (density < 2) 476 if (density < 2 && (!CONFIG_FLEXONENAND))
410 buffer_size = 0x0400; /* 1KiB page */ 477 buffer_size = 0x0400; /* 1KiB page */
411 else 478 else
412 buffer_size = 0x0800; /* 2KiB page */ 479 buffer_size = 0x0800; /* 2KiB page */