diff options
Diffstat (limited to 'drivers/mtd/ubi/wl.c')
-rw-r--r-- | drivers/mtd/ubi/wl.c | 1671 |
1 files changed, 1671 insertions, 0 deletions
diff --git a/drivers/mtd/ubi/wl.c b/drivers/mtd/ubi/wl.c new file mode 100644 index 000000000000..9ecaf77eca9e --- /dev/null +++ b/drivers/mtd/ubi/wl.c | |||
@@ -0,0 +1,1671 @@ | |||
1 | /* | ||
2 | * Copyright (c) International Business Machines Corp., 2006 | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | ||
12 | * the GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | * | ||
18 | * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * UBI wear-leveling unit. | ||
23 | * | ||
24 | * This unit is responsible for wear-leveling. It works in terms of physical | ||
25 | * eraseblocks and erase counters and knows nothing about logical eraseblocks, | ||
26 | * volumes, etc. From this unit's perspective all physical eraseblocks are of | ||
27 | * two types - used and free. Used physical eraseblocks are those that were | ||
28 | * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are | ||
29 | * those that were put by the 'ubi_wl_put_peb()' function. | ||
30 | * | ||
31 | * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter | ||
32 | * header. The rest of the physical eraseblock contains only 0xFF bytes. | ||
33 | * | ||
34 | * When physical eraseblocks are returned to the WL unit by means of the | ||
35 | * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is | ||
36 | * done asynchronously in context of the per-UBI device background thread, | ||
37 | * which is also managed by the WL unit. | ||
38 | * | ||
39 | * The wear-leveling is ensured by means of moving the contents of used | ||
40 | * physical eraseblocks with low erase counter to free physical eraseblocks | ||
41 | * with high erase counter. | ||
42 | * | ||
43 | * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick | ||
44 | * an "optimal" physical eraseblock. For example, when it is known that the | ||
45 | * physical eraseblock will be "put" soon because it contains short-term data, | ||
46 | * the WL unit may pick a free physical eraseblock with low erase counter, and | ||
47 | * so forth. | ||
48 | * | ||
49 | * If the WL unit fails to erase a physical eraseblock, it marks it as bad. | ||
50 | * | ||
51 | * This unit is also responsible for scrubbing. If a bit-flip is detected in a | ||
52 | * physical eraseblock, it has to be moved. Technically this is the same as | ||
53 | * moving it for wear-leveling reasons. | ||
54 | * | ||
55 | * As it was said, for the UBI unit all physical eraseblocks are either "free" | ||
56 | * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used | ||
57 | * eraseblocks are kept in a set of different RB-trees: @wl->used, | ||
58 | * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub. | ||
59 | * | ||
60 | * Note, in this implementation, we keep a small in-RAM object for each physical | ||
61 | * eraseblock. This is surely not a scalable solution. But it appears to be good | ||
62 | * enough for moderately large flashes and it is simple. In future, one may | ||
63 | * re-work this unit and make it more scalable. | ||
64 | * | ||
65 | * At the moment this unit does not utilize the sequence number, which was | ||
66 | * introduced relatively recently. But it would be wise to do this because the | ||
67 | * sequence number of a logical eraseblock characterizes how old is it. For | ||
68 | * example, when we move a PEB with low erase counter, and we need to pick the | ||
69 | * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we | ||
70 | * pick target PEB with an average EC if our PEB is not very "old". This is a | ||
71 | * room for future re-works of the WL unit. | ||
72 | * | ||
73 | * FIXME: looks too complex, should be simplified (later). | ||
74 | */ | ||
75 | |||
76 | #include <linux/slab.h> | ||
77 | #include <linux/crc32.h> | ||
78 | #include <linux/freezer.h> | ||
79 | #include <linux/kthread.h> | ||
80 | #include "ubi.h" | ||
81 | |||
82 | /* Number of physical eraseblocks reserved for wear-leveling purposes */ | ||
83 | #define WL_RESERVED_PEBS 1 | ||
84 | |||
85 | /* | ||
86 | * How many erase cycles are short term, unknown, and long term physical | ||
87 | * eraseblocks protected. | ||
88 | */ | ||
89 | #define ST_PROTECTION 16 | ||
90 | #define U_PROTECTION 10 | ||
91 | #define LT_PROTECTION 4 | ||
92 | |||
93 | /* | ||
94 | * Maximum difference between two erase counters. If this threshold is | ||
95 | * exceeded, the WL unit starts moving data from used physical eraseblocks with | ||
96 | * low erase counter to free physical eraseblocks with high erase counter. | ||
97 | */ | ||
98 | #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD | ||
99 | |||
100 | /* | ||
101 | * When a physical eraseblock is moved, the WL unit has to pick the target | ||
102 | * physical eraseblock to move to. The simplest way would be just to pick the | ||
103 | * one with the highest erase counter. But in certain workloads this could lead | ||
104 | * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a | ||
105 | * situation when the picked physical eraseblock is constantly erased after the | ||
106 | * data is written to it. So, we have a constant which limits the highest erase | ||
107 | * counter of the free physical eraseblock to pick. Namely, the WL unit does | ||
108 | * not pick eraseblocks with erase counter greater then the lowest erase | ||
109 | * counter plus %WL_FREE_MAX_DIFF. | ||
110 | */ | ||
111 | #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) | ||
112 | |||
113 | /* | ||
114 | * Maximum number of consecutive background thread failures which is enough to | ||
115 | * switch to read-only mode. | ||
116 | */ | ||
117 | #define WL_MAX_FAILURES 32 | ||
118 | |||
119 | /** | ||
120 | * struct ubi_wl_entry - wear-leveling entry. | ||
121 | * @rb: link in the corresponding RB-tree | ||
122 | * @ec: erase counter | ||
123 | * @pnum: physical eraseblock number | ||
124 | * | ||
125 | * Each physical eraseblock has a corresponding &struct wl_entry object which | ||
126 | * may be kept in different RB-trees. | ||
127 | */ | ||
128 | struct ubi_wl_entry { | ||
129 | struct rb_node rb; | ||
130 | int ec; | ||
131 | int pnum; | ||
132 | }; | ||
133 | |||
134 | /** | ||
135 | * struct ubi_wl_prot_entry - PEB protection entry. | ||
136 | * @rb_pnum: link in the @wl->prot.pnum RB-tree | ||
137 | * @rb_aec: link in the @wl->prot.aec RB-tree | ||
138 | * @abs_ec: the absolute erase counter value when the protection ends | ||
139 | * @e: the wear-leveling entry of the physical eraseblock under protection | ||
140 | * | ||
141 | * When the WL unit returns a physical eraseblock, the physical eraseblock is | ||
142 | * protected from being moved for some "time". For this reason, the physical | ||
143 | * eraseblock is not directly moved from the @wl->free tree to the @wl->used | ||
144 | * tree. There is one more tree in between where this physical eraseblock is | ||
145 | * temporarily stored (@wl->prot). | ||
146 | * | ||
147 | * All this protection stuff is needed because: | ||
148 | * o we don't want to move physical eraseblocks just after we have given them | ||
149 | * to the user; instead, we first want to let users fill them up with data; | ||
150 | * | ||
151 | * o there is a chance that the user will put the physical eraseblock very | ||
152 | * soon, so it makes sense not to move it for some time, but wait; this is | ||
153 | * especially important in case of "short term" physical eraseblocks. | ||
154 | * | ||
155 | * Physical eraseblocks stay protected only for limited time. But the "time" is | ||
156 | * measured in erase cycles in this case. This is implemented with help of the | ||
157 | * absolute erase counter (@wl->abs_ec). When it reaches certain value, the | ||
158 | * physical eraseblocks are moved from the protection trees (@wl->prot.*) to | ||
159 | * the @wl->used tree. | ||
160 | * | ||
161 | * Protected physical eraseblocks are searched by physical eraseblock number | ||
162 | * (when they are put) and by the absolute erase counter (to check if it is | ||
163 | * time to move them to the @wl->used tree). So there are actually 2 RB-trees | ||
164 | * storing the protected physical eraseblocks: @wl->prot.pnum and | ||
165 | * @wl->prot.aec. They are referred to as the "protection" trees. The | ||
166 | * first one is indexed by the physical eraseblock number. The second one is | ||
167 | * indexed by the absolute erase counter. Both trees store | ||
168 | * &struct ubi_wl_prot_entry objects. | ||
169 | * | ||
170 | * Each physical eraseblock has 2 main states: free and used. The former state | ||
171 | * corresponds to the @wl->free tree. The latter state is split up on several | ||
172 | * sub-states: | ||
173 | * o the WL movement is allowed (@wl->used tree); | ||
174 | * o the WL movement is temporarily prohibited (@wl->prot.pnum and | ||
175 | * @wl->prot.aec trees); | ||
176 | * o scrubbing is needed (@wl->scrub tree). | ||
177 | * | ||
178 | * Depending on the sub-state, wear-leveling entries of the used physical | ||
179 | * eraseblocks may be kept in one of those trees. | ||
180 | */ | ||
181 | struct ubi_wl_prot_entry { | ||
182 | struct rb_node rb_pnum; | ||
183 | struct rb_node rb_aec; | ||
184 | unsigned long long abs_ec; | ||
185 | struct ubi_wl_entry *e; | ||
186 | }; | ||
187 | |||
188 | /** | ||
189 | * struct ubi_work - UBI work description data structure. | ||
190 | * @list: a link in the list of pending works | ||
191 | * @func: worker function | ||
192 | * @priv: private data of the worker function | ||
193 | * | ||
194 | * @e: physical eraseblock to erase | ||
195 | * @torture: if the physical eraseblock has to be tortured | ||
196 | * | ||
197 | * The @func pointer points to the worker function. If the @cancel argument is | ||
198 | * not zero, the worker has to free the resources and exit immediately. The | ||
199 | * worker has to return zero in case of success and a negative error code in | ||
200 | * case of failure. | ||
201 | */ | ||
202 | struct ubi_work { | ||
203 | struct list_head list; | ||
204 | int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); | ||
205 | /* The below fields are only relevant to erasure works */ | ||
206 | struct ubi_wl_entry *e; | ||
207 | int torture; | ||
208 | }; | ||
209 | |||
210 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | ||
211 | static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec); | ||
212 | static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, | ||
213 | struct rb_root *root); | ||
214 | #else | ||
215 | #define paranoid_check_ec(ubi, pnum, ec) 0 | ||
216 | #define paranoid_check_in_wl_tree(e, root) | ||
217 | #endif | ||
218 | |||
219 | /* Slab cache for wear-leveling entries */ | ||
220 | static struct kmem_cache *wl_entries_slab; | ||
221 | |||
222 | /** | ||
223 | * tree_empty - a helper function to check if an RB-tree is empty. | ||
224 | * @root: the root of the tree | ||
225 | * | ||
226 | * This function returns non-zero if the RB-tree is empty and zero if not. | ||
227 | */ | ||
228 | static inline int tree_empty(struct rb_root *root) | ||
229 | { | ||
230 | return root->rb_node == NULL; | ||
231 | } | ||
232 | |||
233 | /** | ||
234 | * wl_tree_add - add a wear-leveling entry to a WL RB-tree. | ||
235 | * @e: the wear-leveling entry to add | ||
236 | * @root: the root of the tree | ||
237 | * | ||
238 | * Note, we use (erase counter, physical eraseblock number) pairs as keys in | ||
239 | * the @ubi->used and @ubi->free RB-trees. | ||
240 | */ | ||
241 | static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) | ||
242 | { | ||
243 | struct rb_node **p, *parent = NULL; | ||
244 | |||
245 | p = &root->rb_node; | ||
246 | while (*p) { | ||
247 | struct ubi_wl_entry *e1; | ||
248 | |||
249 | parent = *p; | ||
250 | e1 = rb_entry(parent, struct ubi_wl_entry, rb); | ||
251 | |||
252 | if (e->ec < e1->ec) | ||
253 | p = &(*p)->rb_left; | ||
254 | else if (e->ec > e1->ec) | ||
255 | p = &(*p)->rb_right; | ||
256 | else { | ||
257 | ubi_assert(e->pnum != e1->pnum); | ||
258 | if (e->pnum < e1->pnum) | ||
259 | p = &(*p)->rb_left; | ||
260 | else | ||
261 | p = &(*p)->rb_right; | ||
262 | } | ||
263 | } | ||
264 | |||
265 | rb_link_node(&e->rb, parent, p); | ||
266 | rb_insert_color(&e->rb, root); | ||
267 | } | ||
268 | |||
269 | |||
270 | /* | ||
271 | * Helper functions to add and delete wear-leveling entries from different | ||
272 | * trees. | ||
273 | */ | ||
274 | |||
275 | static void free_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e) | ||
276 | { | ||
277 | wl_tree_add(e, &ubi->free); | ||
278 | } | ||
279 | static inline void used_tree_add(struct ubi_device *ubi, | ||
280 | struct ubi_wl_entry *e) | ||
281 | { | ||
282 | wl_tree_add(e, &ubi->used); | ||
283 | } | ||
284 | static inline void scrub_tree_add(struct ubi_device *ubi, | ||
285 | struct ubi_wl_entry *e) | ||
286 | { | ||
287 | wl_tree_add(e, &ubi->scrub); | ||
288 | } | ||
289 | static inline void free_tree_del(struct ubi_device *ubi, | ||
290 | struct ubi_wl_entry *e) | ||
291 | { | ||
292 | paranoid_check_in_wl_tree(e, &ubi->free); | ||
293 | rb_erase(&e->rb, &ubi->free); | ||
294 | } | ||
295 | static inline void used_tree_del(struct ubi_device *ubi, | ||
296 | struct ubi_wl_entry *e) | ||
297 | { | ||
298 | paranoid_check_in_wl_tree(e, &ubi->used); | ||
299 | rb_erase(&e->rb, &ubi->used); | ||
300 | } | ||
301 | static inline void scrub_tree_del(struct ubi_device *ubi, | ||
302 | struct ubi_wl_entry *e) | ||
303 | { | ||
304 | paranoid_check_in_wl_tree(e, &ubi->scrub); | ||
305 | rb_erase(&e->rb, &ubi->scrub); | ||
306 | } | ||
307 | |||
308 | /** | ||
309 | * do_work - do one pending work. | ||
310 | * @ubi: UBI device description object | ||
311 | * | ||
312 | * This function returns zero in case of success and a negative error code in | ||
313 | * case of failure. | ||
314 | */ | ||
315 | static int do_work(struct ubi_device *ubi) | ||
316 | { | ||
317 | int err; | ||
318 | struct ubi_work *wrk; | ||
319 | |||
320 | spin_lock(&ubi->wl_lock); | ||
321 | |||
322 | if (list_empty(&ubi->works)) { | ||
323 | spin_unlock(&ubi->wl_lock); | ||
324 | return 0; | ||
325 | } | ||
326 | |||
327 | wrk = list_entry(ubi->works.next, struct ubi_work, list); | ||
328 | list_del(&wrk->list); | ||
329 | spin_unlock(&ubi->wl_lock); | ||
330 | |||
331 | /* | ||
332 | * Call the worker function. Do not touch the work structure | ||
333 | * after this call as it will have been freed or reused by that | ||
334 | * time by the worker function. | ||
335 | */ | ||
336 | err = wrk->func(ubi, wrk, 0); | ||
337 | if (err) | ||
338 | ubi_err("work failed with error code %d", err); | ||
339 | |||
340 | spin_lock(&ubi->wl_lock); | ||
341 | ubi->works_count -= 1; | ||
342 | ubi_assert(ubi->works_count >= 0); | ||
343 | spin_unlock(&ubi->wl_lock); | ||
344 | return err; | ||
345 | } | ||
346 | |||
347 | /** | ||
348 | * produce_free_peb - produce a free physical eraseblock. | ||
349 | * @ubi: UBI device description object | ||
350 | * | ||
351 | * This function tries to make a free PEB by means of synchronous execution of | ||
352 | * pending works. This may be needed if, for example the background thread is | ||
353 | * disabled. Returns zero in case of success and a negative error code in case | ||
354 | * of failure. | ||
355 | */ | ||
356 | static int produce_free_peb(struct ubi_device *ubi) | ||
357 | { | ||
358 | int err; | ||
359 | |||
360 | spin_lock(&ubi->wl_lock); | ||
361 | while (tree_empty(&ubi->free)) { | ||
362 | spin_unlock(&ubi->wl_lock); | ||
363 | |||
364 | dbg_wl("do one work synchronously"); | ||
365 | err = do_work(ubi); | ||
366 | if (err) | ||
367 | return err; | ||
368 | |||
369 | spin_lock(&ubi->wl_lock); | ||
370 | } | ||
371 | spin_unlock(&ubi->wl_lock); | ||
372 | |||
373 | return 0; | ||
374 | } | ||
375 | |||
376 | /** | ||
377 | * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. | ||
378 | * @e: the wear-leveling entry to check | ||
379 | * @root: the root of the tree | ||
380 | * | ||
381 | * This function returns non-zero if @e is in the @root RB-tree and zero if it | ||
382 | * is not. | ||
383 | */ | ||
384 | static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) | ||
385 | { | ||
386 | struct rb_node *p; | ||
387 | |||
388 | p = root->rb_node; | ||
389 | while (p) { | ||
390 | struct ubi_wl_entry *e1; | ||
391 | |||
392 | e1 = rb_entry(p, struct ubi_wl_entry, rb); | ||
393 | |||
394 | if (e->pnum == e1->pnum) { | ||
395 | ubi_assert(e == e1); | ||
396 | return 1; | ||
397 | } | ||
398 | |||
399 | if (e->ec < e1->ec) | ||
400 | p = p->rb_left; | ||
401 | else if (e->ec > e1->ec) | ||
402 | p = p->rb_right; | ||
403 | else { | ||
404 | ubi_assert(e->pnum != e1->pnum); | ||
405 | if (e->pnum < e1->pnum) | ||
406 | p = p->rb_left; | ||
407 | else | ||
408 | p = p->rb_right; | ||
409 | } | ||
410 | } | ||
411 | |||
412 | return 0; | ||
413 | } | ||
414 | |||
415 | /** | ||
416 | * prot_tree_add - add physical eraseblock to protection trees. | ||
417 | * @ubi: UBI device description object | ||
418 | * @e: the physical eraseblock to add | ||
419 | * @pe: protection entry object to use | ||
420 | * @abs_ec: absolute erase counter value when this physical eraseblock has | ||
421 | * to be removed from the protection trees. | ||
422 | * | ||
423 | * @wl->lock has to be locked. | ||
424 | */ | ||
425 | static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e, | ||
426 | struct ubi_wl_prot_entry *pe, int abs_ec) | ||
427 | { | ||
428 | struct rb_node **p, *parent = NULL; | ||
429 | struct ubi_wl_prot_entry *pe1; | ||
430 | |||
431 | pe->e = e; | ||
432 | pe->abs_ec = ubi->abs_ec + abs_ec; | ||
433 | |||
434 | p = &ubi->prot.pnum.rb_node; | ||
435 | while (*p) { | ||
436 | parent = *p; | ||
437 | pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum); | ||
438 | |||
439 | if (e->pnum < pe1->e->pnum) | ||
440 | p = &(*p)->rb_left; | ||
441 | else | ||
442 | p = &(*p)->rb_right; | ||
443 | } | ||
444 | rb_link_node(&pe->rb_pnum, parent, p); | ||
445 | rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum); | ||
446 | |||
447 | p = &ubi->prot.aec.rb_node; | ||
448 | parent = NULL; | ||
449 | while (*p) { | ||
450 | parent = *p; | ||
451 | pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec); | ||
452 | |||
453 | if (pe->abs_ec < pe1->abs_ec) | ||
454 | p = &(*p)->rb_left; | ||
455 | else | ||
456 | p = &(*p)->rb_right; | ||
457 | } | ||
458 | rb_link_node(&pe->rb_aec, parent, p); | ||
459 | rb_insert_color(&pe->rb_aec, &ubi->prot.aec); | ||
460 | } | ||
461 | |||
462 | /** | ||
463 | * find_wl_entry - find wear-leveling entry closest to certain erase counter. | ||
464 | * @root: the RB-tree where to look for | ||
465 | * @max: highest possible erase counter | ||
466 | * | ||
467 | * This function looks for a wear leveling entry with erase counter closest to | ||
468 | * @max and less then @max. | ||
469 | */ | ||
470 | static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) | ||
471 | { | ||
472 | struct rb_node *p; | ||
473 | struct ubi_wl_entry *e; | ||
474 | |||
475 | e = rb_entry(rb_first(root), struct ubi_wl_entry, rb); | ||
476 | max += e->ec; | ||
477 | |||
478 | p = root->rb_node; | ||
479 | while (p) { | ||
480 | struct ubi_wl_entry *e1; | ||
481 | |||
482 | e1 = rb_entry(p, struct ubi_wl_entry, rb); | ||
483 | if (e1->ec >= max) | ||
484 | p = p->rb_left; | ||
485 | else { | ||
486 | p = p->rb_right; | ||
487 | e = e1; | ||
488 | } | ||
489 | } | ||
490 | |||
491 | return e; | ||
492 | } | ||
493 | |||
494 | /** | ||
495 | * ubi_wl_get_peb - get a physical eraseblock. | ||
496 | * @ubi: UBI device description object | ||
497 | * @dtype: type of data which will be stored in this physical eraseblock | ||
498 | * | ||
499 | * This function returns a physical eraseblock in case of success and a | ||
500 | * negative error code in case of failure. Might sleep. | ||
501 | */ | ||
502 | int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) | ||
503 | { | ||
504 | int err, protect, medium_ec; | ||
505 | struct ubi_wl_entry *e, *first, *last; | ||
506 | struct ubi_wl_prot_entry *pe; | ||
507 | |||
508 | ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || | ||
509 | dtype == UBI_UNKNOWN); | ||
510 | |||
511 | pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_KERNEL); | ||
512 | if (!pe) | ||
513 | return -ENOMEM; | ||
514 | |||
515 | retry: | ||
516 | spin_lock(&ubi->wl_lock); | ||
517 | if (tree_empty(&ubi->free)) { | ||
518 | if (ubi->works_count == 0) { | ||
519 | ubi_assert(list_empty(&ubi->works)); | ||
520 | ubi_err("no free eraseblocks"); | ||
521 | spin_unlock(&ubi->wl_lock); | ||
522 | kfree(pe); | ||
523 | return -ENOSPC; | ||
524 | } | ||
525 | spin_unlock(&ubi->wl_lock); | ||
526 | |||
527 | err = produce_free_peb(ubi); | ||
528 | if (err < 0) { | ||
529 | kfree(pe); | ||
530 | return err; | ||
531 | } | ||
532 | goto retry; | ||
533 | } | ||
534 | |||
535 | switch (dtype) { | ||
536 | case UBI_LONGTERM: | ||
537 | /* | ||
538 | * For long term data we pick a physical eraseblock | ||
539 | * with high erase counter. But the highest erase | ||
540 | * counter we can pick is bounded by the the lowest | ||
541 | * erase counter plus %WL_FREE_MAX_DIFF. | ||
542 | */ | ||
543 | e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); | ||
544 | protect = LT_PROTECTION; | ||
545 | break; | ||
546 | case UBI_UNKNOWN: | ||
547 | /* | ||
548 | * For unknown data we pick a physical eraseblock with | ||
549 | * medium erase counter. But we by no means can pick a | ||
550 | * physical eraseblock with erase counter greater or | ||
551 | * equivalent than the lowest erase counter plus | ||
552 | * %WL_FREE_MAX_DIFF. | ||
553 | */ | ||
554 | first = rb_entry(rb_first(&ubi->free), | ||
555 | struct ubi_wl_entry, rb); | ||
556 | last = rb_entry(rb_last(&ubi->free), | ||
557 | struct ubi_wl_entry, rb); | ||
558 | |||
559 | if (last->ec - first->ec < WL_FREE_MAX_DIFF) | ||
560 | e = rb_entry(ubi->free.rb_node, | ||
561 | struct ubi_wl_entry, rb); | ||
562 | else { | ||
563 | medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; | ||
564 | e = find_wl_entry(&ubi->free, medium_ec); | ||
565 | } | ||
566 | protect = U_PROTECTION; | ||
567 | break; | ||
568 | case UBI_SHORTTERM: | ||
569 | /* | ||
570 | * For short term data we pick a physical eraseblock | ||
571 | * with the lowest erase counter as we expect it will | ||
572 | * be erased soon. | ||
573 | */ | ||
574 | e = rb_entry(rb_first(&ubi->free), | ||
575 | struct ubi_wl_entry, rb); | ||
576 | protect = ST_PROTECTION; | ||
577 | break; | ||
578 | default: | ||
579 | protect = 0; | ||
580 | e = NULL; | ||
581 | BUG(); | ||
582 | } | ||
583 | |||
584 | /* | ||
585 | * Move the physical eraseblock to the protection trees where it will | ||
586 | * be protected from being moved for some time. | ||
587 | */ | ||
588 | free_tree_del(ubi, e); | ||
589 | prot_tree_add(ubi, e, pe, protect); | ||
590 | |||
591 | dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect); | ||
592 | spin_unlock(&ubi->wl_lock); | ||
593 | |||
594 | return e->pnum; | ||
595 | } | ||
596 | |||
597 | /** | ||
598 | * prot_tree_del - remove a physical eraseblock from the protection trees | ||
599 | * @ubi: UBI device description object | ||
600 | * @pnum: the physical eraseblock to remove | ||
601 | */ | ||
602 | static void prot_tree_del(struct ubi_device *ubi, int pnum) | ||
603 | { | ||
604 | struct rb_node *p; | ||
605 | struct ubi_wl_prot_entry *pe = NULL; | ||
606 | |||
607 | p = ubi->prot.pnum.rb_node; | ||
608 | while (p) { | ||
609 | |||
610 | pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum); | ||
611 | |||
612 | if (pnum == pe->e->pnum) | ||
613 | break; | ||
614 | |||
615 | if (pnum < pe->e->pnum) | ||
616 | p = p->rb_left; | ||
617 | else | ||
618 | p = p->rb_right; | ||
619 | } | ||
620 | |||
621 | ubi_assert(pe->e->pnum == pnum); | ||
622 | rb_erase(&pe->rb_aec, &ubi->prot.aec); | ||
623 | rb_erase(&pe->rb_pnum, &ubi->prot.pnum); | ||
624 | kfree(pe); | ||
625 | } | ||
626 | |||
627 | /** | ||
628 | * sync_erase - synchronously erase a physical eraseblock. | ||
629 | * @ubi: UBI device description object | ||
630 | * @e: the the physical eraseblock to erase | ||
631 | * @torture: if the physical eraseblock has to be tortured | ||
632 | * | ||
633 | * This function returns zero in case of success and a negative error code in | ||
634 | * case of failure. | ||
635 | */ | ||
636 | static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture) | ||
637 | { | ||
638 | int err; | ||
639 | struct ubi_ec_hdr *ec_hdr; | ||
640 | unsigned long long ec = e->ec; | ||
641 | |||
642 | dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); | ||
643 | |||
644 | err = paranoid_check_ec(ubi, e->pnum, e->ec); | ||
645 | if (err > 0) | ||
646 | return -EINVAL; | ||
647 | |||
648 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
649 | if (!ec_hdr) | ||
650 | return -ENOMEM; | ||
651 | |||
652 | err = ubi_io_sync_erase(ubi, e->pnum, torture); | ||
653 | if (err < 0) | ||
654 | goto out_free; | ||
655 | |||
656 | ec += err; | ||
657 | if (ec > UBI_MAX_ERASECOUNTER) { | ||
658 | /* | ||
659 | * Erase counter overflow. Upgrade UBI and use 64-bit | ||
660 | * erase counters internally. | ||
661 | */ | ||
662 | ubi_err("erase counter overflow at PEB %d, EC %llu", | ||
663 | e->pnum, ec); | ||
664 | err = -EINVAL; | ||
665 | goto out_free; | ||
666 | } | ||
667 | |||
668 | dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); | ||
669 | |||
670 | ec_hdr->ec = cpu_to_ubi64(ec); | ||
671 | |||
672 | err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); | ||
673 | if (err) | ||
674 | goto out_free; | ||
675 | |||
676 | e->ec = ec; | ||
677 | spin_lock(&ubi->wl_lock); | ||
678 | if (e->ec > ubi->max_ec) | ||
679 | ubi->max_ec = e->ec; | ||
680 | spin_unlock(&ubi->wl_lock); | ||
681 | |||
682 | out_free: | ||
683 | kfree(ec_hdr); | ||
684 | return err; | ||
685 | } | ||
686 | |||
687 | /** | ||
688 | * check_protection_over - check if it is time to stop protecting some | ||
689 | * physical eraseblocks. | ||
690 | * @ubi: UBI device description object | ||
691 | * | ||
692 | * This function is called after each erase operation, when the absolute erase | ||
693 | * counter is incremented, to check if some physical eraseblock have not to be | ||
694 | * protected any longer. These physical eraseblocks are moved from the | ||
695 | * protection trees to the used tree. | ||
696 | */ | ||
697 | static void check_protection_over(struct ubi_device *ubi) | ||
698 | { | ||
699 | struct ubi_wl_prot_entry *pe; | ||
700 | |||
701 | /* | ||
702 | * There may be several protected physical eraseblock to remove, | ||
703 | * process them all. | ||
704 | */ | ||
705 | while (1) { | ||
706 | spin_lock(&ubi->wl_lock); | ||
707 | if (tree_empty(&ubi->prot.aec)) { | ||
708 | spin_unlock(&ubi->wl_lock); | ||
709 | break; | ||
710 | } | ||
711 | |||
712 | pe = rb_entry(rb_first(&ubi->prot.aec), | ||
713 | struct ubi_wl_prot_entry, rb_aec); | ||
714 | |||
715 | if (pe->abs_ec > ubi->abs_ec) { | ||
716 | spin_unlock(&ubi->wl_lock); | ||
717 | break; | ||
718 | } | ||
719 | |||
720 | dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu", | ||
721 | pe->e->pnum, ubi->abs_ec, pe->abs_ec); | ||
722 | rb_erase(&pe->rb_aec, &ubi->prot.aec); | ||
723 | rb_erase(&pe->rb_pnum, &ubi->prot.pnum); | ||
724 | used_tree_add(ubi, pe->e); | ||
725 | spin_unlock(&ubi->wl_lock); | ||
726 | |||
727 | kfree(pe); | ||
728 | cond_resched(); | ||
729 | } | ||
730 | } | ||
731 | |||
732 | /** | ||
733 | * schedule_ubi_work - schedule a work. | ||
734 | * @ubi: UBI device description object | ||
735 | * @wrk: the work to schedule | ||
736 | * | ||
737 | * This function enqueues a work defined by @wrk to the tail of the pending | ||
738 | * works list. | ||
739 | */ | ||
740 | static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) | ||
741 | { | ||
742 | spin_lock(&ubi->wl_lock); | ||
743 | list_add_tail(&wrk->list, &ubi->works); | ||
744 | ubi_assert(ubi->works_count >= 0); | ||
745 | ubi->works_count += 1; | ||
746 | if (ubi->thread_enabled) | ||
747 | wake_up_process(ubi->bgt_thread); | ||
748 | spin_unlock(&ubi->wl_lock); | ||
749 | } | ||
750 | |||
751 | static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, | ||
752 | int cancel); | ||
753 | |||
754 | /** | ||
755 | * schedule_erase - schedule an erase work. | ||
756 | * @ubi: UBI device description object | ||
757 | * @e: the WL entry of the physical eraseblock to erase | ||
758 | * @torture: if the physical eraseblock has to be tortured | ||
759 | * | ||
760 | * This function returns zero in case of success and a %-ENOMEM in case of | ||
761 | * failure. | ||
762 | */ | ||
763 | static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, | ||
764 | int torture) | ||
765 | { | ||
766 | struct ubi_work *wl_wrk; | ||
767 | |||
768 | dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", | ||
769 | e->pnum, e->ec, torture); | ||
770 | |||
771 | wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL); | ||
772 | if (!wl_wrk) | ||
773 | return -ENOMEM; | ||
774 | |||
775 | wl_wrk->func = &erase_worker; | ||
776 | wl_wrk->e = e; | ||
777 | wl_wrk->torture = torture; | ||
778 | |||
779 | schedule_ubi_work(ubi, wl_wrk); | ||
780 | return 0; | ||
781 | } | ||
782 | |||
783 | /** | ||
784 | * wear_leveling_worker - wear-leveling worker function. | ||
785 | * @ubi: UBI device description object | ||
786 | * @wrk: the work object | ||
787 | * @cancel: non-zero if the worker has to free memory and exit | ||
788 | * | ||
789 | * This function copies a more worn out physical eraseblock to a less worn out | ||
790 | * one. Returns zero in case of success and a negative error code in case of | ||
791 | * failure. | ||
792 | */ | ||
793 | static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, | ||
794 | int cancel) | ||
795 | { | ||
796 | int err, put = 0; | ||
797 | struct ubi_wl_entry *e1, *e2; | ||
798 | struct ubi_vid_hdr *vid_hdr; | ||
799 | |||
800 | kfree(wrk); | ||
801 | |||
802 | if (cancel) | ||
803 | return 0; | ||
804 | |||
805 | vid_hdr = ubi_zalloc_vid_hdr(ubi); | ||
806 | if (!vid_hdr) | ||
807 | return -ENOMEM; | ||
808 | |||
809 | spin_lock(&ubi->wl_lock); | ||
810 | |||
811 | /* | ||
812 | * Only one WL worker at a time is supported at this implementation, so | ||
813 | * make sure a PEB is not being moved already. | ||
814 | */ | ||
815 | if (ubi->move_to || tree_empty(&ubi->free) || | ||
816 | (tree_empty(&ubi->used) && tree_empty(&ubi->scrub))) { | ||
817 | /* | ||
818 | * Only one WL worker at a time is supported at this | ||
819 | * implementation, so if a LEB is already being moved, cancel. | ||
820 | * | ||
821 | * No free physical eraseblocks? Well, we cancel wear-leveling | ||
822 | * then. It will be triggered again when a free physical | ||
823 | * eraseblock appears. | ||
824 | * | ||
825 | * No used physical eraseblocks? They must be temporarily | ||
826 | * protected from being moved. They will be moved to the | ||
827 | * @ubi->used tree later and the wear-leveling will be | ||
828 | * triggered again. | ||
829 | */ | ||
830 | dbg_wl("cancel WL, a list is empty: free %d, used %d", | ||
831 | tree_empty(&ubi->free), tree_empty(&ubi->used)); | ||
832 | ubi->wl_scheduled = 0; | ||
833 | spin_unlock(&ubi->wl_lock); | ||
834 | ubi_free_vid_hdr(ubi, vid_hdr); | ||
835 | return 0; | ||
836 | } | ||
837 | |||
838 | if (tree_empty(&ubi->scrub)) { | ||
839 | /* | ||
840 | * Now pick the least worn-out used physical eraseblock and a | ||
841 | * highly worn-out free physical eraseblock. If the erase | ||
842 | * counters differ much enough, start wear-leveling. | ||
843 | */ | ||
844 | e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); | ||
845 | e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); | ||
846 | |||
847 | if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { | ||
848 | dbg_wl("no WL needed: min used EC %d, max free EC %d", | ||
849 | e1->ec, e2->ec); | ||
850 | ubi->wl_scheduled = 0; | ||
851 | spin_unlock(&ubi->wl_lock); | ||
852 | ubi_free_vid_hdr(ubi, vid_hdr); | ||
853 | return 0; | ||
854 | } | ||
855 | used_tree_del(ubi, e1); | ||
856 | dbg_wl("move PEB %d EC %d to PEB %d EC %d", | ||
857 | e1->pnum, e1->ec, e2->pnum, e2->ec); | ||
858 | } else { | ||
859 | e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb); | ||
860 | e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); | ||
861 | scrub_tree_del(ubi, e1); | ||
862 | dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); | ||
863 | } | ||
864 | |||
865 | free_tree_del(ubi, e2); | ||
866 | ubi_assert(!ubi->move_from && !ubi->move_to); | ||
867 | ubi_assert(!ubi->move_to_put && !ubi->move_from_put); | ||
868 | ubi->move_from = e1; | ||
869 | ubi->move_to = e2; | ||
870 | spin_unlock(&ubi->wl_lock); | ||
871 | |||
872 | /* | ||
873 | * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. | ||
874 | * We so far do not know which logical eraseblock our physical | ||
875 | * eraseblock (@e1) belongs to. We have to read the volume identifier | ||
876 | * header first. | ||
877 | */ | ||
878 | |||
879 | err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); | ||
880 | if (err && err != UBI_IO_BITFLIPS) { | ||
881 | if (err == UBI_IO_PEB_FREE) { | ||
882 | /* | ||
883 | * We are trying to move PEB without a VID header. UBI | ||
884 | * always write VID headers shortly after the PEB was | ||
885 | * given, so we have a situation when it did not have | ||
886 | * chance to write it down because it was preempted. | ||
887 | * Just re-schedule the work, so that next time it will | ||
888 | * likely have the VID header in place. | ||
889 | */ | ||
890 | dbg_wl("PEB %d has no VID header", e1->pnum); | ||
891 | err = 0; | ||
892 | } else { | ||
893 | ubi_err("error %d while reading VID header from PEB %d", | ||
894 | err, e1->pnum); | ||
895 | if (err > 0) | ||
896 | err = -EIO; | ||
897 | } | ||
898 | goto error; | ||
899 | } | ||
900 | |||
901 | err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); | ||
902 | if (err) { | ||
903 | if (err == UBI_IO_BITFLIPS) | ||
904 | err = 0; | ||
905 | goto error; | ||
906 | } | ||
907 | |||
908 | ubi_free_vid_hdr(ubi, vid_hdr); | ||
909 | spin_lock(&ubi->wl_lock); | ||
910 | if (!ubi->move_to_put) | ||
911 | used_tree_add(ubi, e2); | ||
912 | else | ||
913 | put = 1; | ||
914 | ubi->move_from = ubi->move_to = NULL; | ||
915 | ubi->move_from_put = ubi->move_to_put = 0; | ||
916 | ubi->wl_scheduled = 0; | ||
917 | spin_unlock(&ubi->wl_lock); | ||
918 | |||
919 | if (put) { | ||
920 | /* | ||
921 | * Well, the target PEB was put meanwhile, schedule it for | ||
922 | * erasure. | ||
923 | */ | ||
924 | dbg_wl("PEB %d was put meanwhile, erase", e2->pnum); | ||
925 | err = schedule_erase(ubi, e2, 0); | ||
926 | if (err) { | ||
927 | kmem_cache_free(wl_entries_slab, e2); | ||
928 | ubi_ro_mode(ubi); | ||
929 | } | ||
930 | } | ||
931 | |||
932 | err = schedule_erase(ubi, e1, 0); | ||
933 | if (err) { | ||
934 | kmem_cache_free(wl_entries_slab, e1); | ||
935 | ubi_ro_mode(ubi); | ||
936 | } | ||
937 | |||
938 | dbg_wl("done"); | ||
939 | return err; | ||
940 | |||
941 | /* | ||
942 | * Some error occurred. @e1 was not changed, so return it back. @e2 | ||
943 | * might be changed, schedule it for erasure. | ||
944 | */ | ||
945 | error: | ||
946 | if (err) | ||
947 | dbg_wl("error %d occurred, cancel operation", err); | ||
948 | ubi_assert(err <= 0); | ||
949 | |||
950 | ubi_free_vid_hdr(ubi, vid_hdr); | ||
951 | spin_lock(&ubi->wl_lock); | ||
952 | ubi->wl_scheduled = 0; | ||
953 | if (ubi->move_from_put) | ||
954 | put = 1; | ||
955 | else | ||
956 | used_tree_add(ubi, e1); | ||
957 | ubi->move_from = ubi->move_to = NULL; | ||
958 | ubi->move_from_put = ubi->move_to_put = 0; | ||
959 | spin_unlock(&ubi->wl_lock); | ||
960 | |||
961 | if (put) { | ||
962 | /* | ||
963 | * Well, the target PEB was put meanwhile, schedule it for | ||
964 | * erasure. | ||
965 | */ | ||
966 | dbg_wl("PEB %d was put meanwhile, erase", e1->pnum); | ||
967 | err = schedule_erase(ubi, e1, 0); | ||
968 | if (err) { | ||
969 | kmem_cache_free(wl_entries_slab, e1); | ||
970 | ubi_ro_mode(ubi); | ||
971 | } | ||
972 | } | ||
973 | |||
974 | err = schedule_erase(ubi, e2, 0); | ||
975 | if (err) { | ||
976 | kmem_cache_free(wl_entries_slab, e2); | ||
977 | ubi_ro_mode(ubi); | ||
978 | } | ||
979 | |||
980 | yield(); | ||
981 | return err; | ||
982 | } | ||
983 | |||
984 | /** | ||
985 | * ensure_wear_leveling - schedule wear-leveling if it is needed. | ||
986 | * @ubi: UBI device description object | ||
987 | * | ||
988 | * This function checks if it is time to start wear-leveling and schedules it | ||
989 | * if yes. This function returns zero in case of success and a negative error | ||
990 | * code in case of failure. | ||
991 | */ | ||
992 | static int ensure_wear_leveling(struct ubi_device *ubi) | ||
993 | { | ||
994 | int err = 0; | ||
995 | struct ubi_wl_entry *e1; | ||
996 | struct ubi_wl_entry *e2; | ||
997 | struct ubi_work *wrk; | ||
998 | |||
999 | spin_lock(&ubi->wl_lock); | ||
1000 | if (ubi->wl_scheduled) | ||
1001 | /* Wear-leveling is already in the work queue */ | ||
1002 | goto out_unlock; | ||
1003 | |||
1004 | /* | ||
1005 | * If the ubi->scrub tree is not empty, scrubbing is needed, and the | ||
1006 | * the WL worker has to be scheduled anyway. | ||
1007 | */ | ||
1008 | if (tree_empty(&ubi->scrub)) { | ||
1009 | if (tree_empty(&ubi->used) || tree_empty(&ubi->free)) | ||
1010 | /* No physical eraseblocks - no deal */ | ||
1011 | goto out_unlock; | ||
1012 | |||
1013 | /* | ||
1014 | * We schedule wear-leveling only if the difference between the | ||
1015 | * lowest erase counter of used physical eraseblocks and a high | ||
1016 | * erase counter of free physical eraseblocks is greater then | ||
1017 | * %UBI_WL_THRESHOLD. | ||
1018 | */ | ||
1019 | e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); | ||
1020 | e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); | ||
1021 | |||
1022 | if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) | ||
1023 | goto out_unlock; | ||
1024 | dbg_wl("schedule wear-leveling"); | ||
1025 | } else | ||
1026 | dbg_wl("schedule scrubbing"); | ||
1027 | |||
1028 | ubi->wl_scheduled = 1; | ||
1029 | spin_unlock(&ubi->wl_lock); | ||
1030 | |||
1031 | wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL); | ||
1032 | if (!wrk) { | ||
1033 | err = -ENOMEM; | ||
1034 | goto out_cancel; | ||
1035 | } | ||
1036 | |||
1037 | wrk->func = &wear_leveling_worker; | ||
1038 | schedule_ubi_work(ubi, wrk); | ||
1039 | return err; | ||
1040 | |||
1041 | out_cancel: | ||
1042 | spin_lock(&ubi->wl_lock); | ||
1043 | ubi->wl_scheduled = 0; | ||
1044 | out_unlock: | ||
1045 | spin_unlock(&ubi->wl_lock); | ||
1046 | return err; | ||
1047 | } | ||
1048 | |||
1049 | /** | ||
1050 | * erase_worker - physical eraseblock erase worker function. | ||
1051 | * @ubi: UBI device description object | ||
1052 | * @wl_wrk: the work object | ||
1053 | * @cancel: non-zero if the worker has to free memory and exit | ||
1054 | * | ||
1055 | * This function erases a physical eraseblock and perform torture testing if | ||
1056 | * needed. It also takes care about marking the physical eraseblock bad if | ||
1057 | * needed. Returns zero in case of success and a negative error code in case of | ||
1058 | * failure. | ||
1059 | */ | ||
1060 | static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, | ||
1061 | int cancel) | ||
1062 | { | ||
1063 | int err; | ||
1064 | struct ubi_wl_entry *e = wl_wrk->e; | ||
1065 | int pnum = e->pnum; | ||
1066 | |||
1067 | if (cancel) { | ||
1068 | dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); | ||
1069 | kfree(wl_wrk); | ||
1070 | kmem_cache_free(wl_entries_slab, e); | ||
1071 | return 0; | ||
1072 | } | ||
1073 | |||
1074 | dbg_wl("erase PEB %d EC %d", pnum, e->ec); | ||
1075 | |||
1076 | err = sync_erase(ubi, e, wl_wrk->torture); | ||
1077 | if (!err) { | ||
1078 | /* Fine, we've erased it successfully */ | ||
1079 | kfree(wl_wrk); | ||
1080 | |||
1081 | spin_lock(&ubi->wl_lock); | ||
1082 | ubi->abs_ec += 1; | ||
1083 | free_tree_add(ubi, e); | ||
1084 | spin_unlock(&ubi->wl_lock); | ||
1085 | |||
1086 | /* | ||
1087 | * One more erase operation has happened, take care about protected | ||
1088 | * physical eraseblocks. | ||
1089 | */ | ||
1090 | check_protection_over(ubi); | ||
1091 | |||
1092 | /* And take care about wear-leveling */ | ||
1093 | err = ensure_wear_leveling(ubi); | ||
1094 | return err; | ||
1095 | } | ||
1096 | |||
1097 | kfree(wl_wrk); | ||
1098 | kmem_cache_free(wl_entries_slab, e); | ||
1099 | |||
1100 | if (err != -EIO) { | ||
1101 | /* | ||
1102 | * If this is not %-EIO, we have no idea what to do. Scheduling | ||
1103 | * this physical eraseblock for erasure again would cause | ||
1104 | * errors again and again. Well, lets switch to RO mode. | ||
1105 | */ | ||
1106 | ubi_ro_mode(ubi); | ||
1107 | return err; | ||
1108 | } | ||
1109 | |||
1110 | /* It is %-EIO, the PEB went bad */ | ||
1111 | |||
1112 | if (!ubi->bad_allowed) { | ||
1113 | ubi_err("bad physical eraseblock %d detected", pnum); | ||
1114 | ubi_ro_mode(ubi); | ||
1115 | err = -EIO; | ||
1116 | } else { | ||
1117 | int need; | ||
1118 | |||
1119 | spin_lock(&ubi->volumes_lock); | ||
1120 | need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; | ||
1121 | if (need > 0) { | ||
1122 | need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; | ||
1123 | ubi->avail_pebs -= need; | ||
1124 | ubi->rsvd_pebs += need; | ||
1125 | ubi->beb_rsvd_pebs += need; | ||
1126 | if (need > 0) | ||
1127 | ubi_msg("reserve more %d PEBs", need); | ||
1128 | } | ||
1129 | |||
1130 | if (ubi->beb_rsvd_pebs == 0) { | ||
1131 | spin_unlock(&ubi->volumes_lock); | ||
1132 | ubi_err("no reserved physical eraseblocks"); | ||
1133 | ubi_ro_mode(ubi); | ||
1134 | return -EIO; | ||
1135 | } | ||
1136 | |||
1137 | spin_unlock(&ubi->volumes_lock); | ||
1138 | ubi_msg("mark PEB %d as bad", pnum); | ||
1139 | |||
1140 | err = ubi_io_mark_bad(ubi, pnum); | ||
1141 | if (err) { | ||
1142 | ubi_ro_mode(ubi); | ||
1143 | return err; | ||
1144 | } | ||
1145 | |||
1146 | spin_lock(&ubi->volumes_lock); | ||
1147 | ubi->beb_rsvd_pebs -= 1; | ||
1148 | ubi->bad_peb_count += 1; | ||
1149 | ubi->good_peb_count -= 1; | ||
1150 | ubi_calculate_reserved(ubi); | ||
1151 | if (ubi->beb_rsvd_pebs == 0) | ||
1152 | ubi_warn("last PEB from the reserved pool was used"); | ||
1153 | spin_unlock(&ubi->volumes_lock); | ||
1154 | } | ||
1155 | |||
1156 | return err; | ||
1157 | } | ||
1158 | |||
1159 | /** | ||
1160 | * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling | ||
1161 | * unit. | ||
1162 | * @ubi: UBI device description object | ||
1163 | * @pnum: physical eraseblock to return | ||
1164 | * @torture: if this physical eraseblock has to be tortured | ||
1165 | * | ||
1166 | * This function is called to return physical eraseblock @pnum to the pool of | ||
1167 | * free physical eraseblocks. The @torture flag has to be set if an I/O error | ||
1168 | * occurred to this @pnum and it has to be tested. This function returns zero | ||
1169 | * in case of success and a negative error code in case of failure. | ||
1170 | */ | ||
1171 | int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) | ||
1172 | { | ||
1173 | int err; | ||
1174 | struct ubi_wl_entry *e; | ||
1175 | |||
1176 | dbg_wl("PEB %d", pnum); | ||
1177 | ubi_assert(pnum >= 0); | ||
1178 | ubi_assert(pnum < ubi->peb_count); | ||
1179 | |||
1180 | spin_lock(&ubi->wl_lock); | ||
1181 | |||
1182 | e = ubi->lookuptbl[pnum]; | ||
1183 | if (e == ubi->move_from) { | ||
1184 | /* | ||
1185 | * User is putting the physical eraseblock which was selected to | ||
1186 | * be moved. It will be scheduled for erasure in the | ||
1187 | * wear-leveling worker. | ||
1188 | */ | ||
1189 | dbg_wl("PEB %d is being moved", pnum); | ||
1190 | ubi_assert(!ubi->move_from_put); | ||
1191 | ubi->move_from_put = 1; | ||
1192 | spin_unlock(&ubi->wl_lock); | ||
1193 | return 0; | ||
1194 | } else if (e == ubi->move_to) { | ||
1195 | /* | ||
1196 | * User is putting the physical eraseblock which was selected | ||
1197 | * as the target the data is moved to. It may happen if the EBA | ||
1198 | * unit already re-mapped the LEB but the WL unit did has not | ||
1199 | * put the PEB to the "used" tree. | ||
1200 | */ | ||
1201 | dbg_wl("PEB %d is the target of data moving", pnum); | ||
1202 | ubi_assert(!ubi->move_to_put); | ||
1203 | ubi->move_to_put = 1; | ||
1204 | spin_unlock(&ubi->wl_lock); | ||
1205 | return 0; | ||
1206 | } else { | ||
1207 | if (in_wl_tree(e, &ubi->used)) | ||
1208 | used_tree_del(ubi, e); | ||
1209 | else if (in_wl_tree(e, &ubi->scrub)) | ||
1210 | scrub_tree_del(ubi, e); | ||
1211 | else | ||
1212 | prot_tree_del(ubi, e->pnum); | ||
1213 | } | ||
1214 | spin_unlock(&ubi->wl_lock); | ||
1215 | |||
1216 | err = schedule_erase(ubi, e, torture); | ||
1217 | if (err) { | ||
1218 | spin_lock(&ubi->wl_lock); | ||
1219 | used_tree_add(ubi, e); | ||
1220 | spin_unlock(&ubi->wl_lock); | ||
1221 | } | ||
1222 | |||
1223 | return err; | ||
1224 | } | ||
1225 | |||
1226 | /** | ||
1227 | * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. | ||
1228 | * @ubi: UBI device description object | ||
1229 | * @pnum: the physical eraseblock to schedule | ||
1230 | * | ||
1231 | * If a bit-flip in a physical eraseblock is detected, this physical eraseblock | ||
1232 | * needs scrubbing. This function schedules a physical eraseblock for | ||
1233 | * scrubbing which is done in background. This function returns zero in case of | ||
1234 | * success and a negative error code in case of failure. | ||
1235 | */ | ||
1236 | int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) | ||
1237 | { | ||
1238 | struct ubi_wl_entry *e; | ||
1239 | |||
1240 | ubi_msg("schedule PEB %d for scrubbing", pnum); | ||
1241 | |||
1242 | retry: | ||
1243 | spin_lock(&ubi->wl_lock); | ||
1244 | e = ubi->lookuptbl[pnum]; | ||
1245 | if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { | ||
1246 | spin_unlock(&ubi->wl_lock); | ||
1247 | return 0; | ||
1248 | } | ||
1249 | |||
1250 | if (e == ubi->move_to) { | ||
1251 | /* | ||
1252 | * This physical eraseblock was used to move data to. The data | ||
1253 | * was moved but the PEB was not yet inserted to the proper | ||
1254 | * tree. We should just wait a little and let the WL worker | ||
1255 | * proceed. | ||
1256 | */ | ||
1257 | spin_unlock(&ubi->wl_lock); | ||
1258 | dbg_wl("the PEB %d is not in proper tree, retry", pnum); | ||
1259 | yield(); | ||
1260 | goto retry; | ||
1261 | } | ||
1262 | |||
1263 | if (in_wl_tree(e, &ubi->used)) | ||
1264 | used_tree_del(ubi, e); | ||
1265 | else | ||
1266 | prot_tree_del(ubi, pnum); | ||
1267 | |||
1268 | scrub_tree_add(ubi, e); | ||
1269 | spin_unlock(&ubi->wl_lock); | ||
1270 | |||
1271 | /* | ||
1272 | * Technically scrubbing is the same as wear-leveling, so it is done | ||
1273 | * by the WL worker. | ||
1274 | */ | ||
1275 | return ensure_wear_leveling(ubi); | ||
1276 | } | ||
1277 | |||
1278 | /** | ||
1279 | * ubi_wl_flush - flush all pending works. | ||
1280 | * @ubi: UBI device description object | ||
1281 | * | ||
1282 | * This function returns zero in case of success and a negative error code in | ||
1283 | * case of failure. | ||
1284 | */ | ||
1285 | int ubi_wl_flush(struct ubi_device *ubi) | ||
1286 | { | ||
1287 | int err, pending_count; | ||
1288 | |||
1289 | pending_count = ubi->works_count; | ||
1290 | |||
1291 | dbg_wl("flush (%d pending works)", pending_count); | ||
1292 | |||
1293 | /* | ||
1294 | * Erase while the pending works queue is not empty, but not more then | ||
1295 | * the number of currently pending works. | ||
1296 | */ | ||
1297 | while (pending_count-- > 0) { | ||
1298 | err = do_work(ubi); | ||
1299 | if (err) | ||
1300 | return err; | ||
1301 | } | ||
1302 | |||
1303 | return 0; | ||
1304 | } | ||
1305 | |||
1306 | /** | ||
1307 | * tree_destroy - destroy an RB-tree. | ||
1308 | * @root: the root of the tree to destroy | ||
1309 | */ | ||
1310 | static void tree_destroy(struct rb_root *root) | ||
1311 | { | ||
1312 | struct rb_node *rb; | ||
1313 | struct ubi_wl_entry *e; | ||
1314 | |||
1315 | rb = root->rb_node; | ||
1316 | while (rb) { | ||
1317 | if (rb->rb_left) | ||
1318 | rb = rb->rb_left; | ||
1319 | else if (rb->rb_right) | ||
1320 | rb = rb->rb_right; | ||
1321 | else { | ||
1322 | e = rb_entry(rb, struct ubi_wl_entry, rb); | ||
1323 | |||
1324 | rb = rb_parent(rb); | ||
1325 | if (rb) { | ||
1326 | if (rb->rb_left == &e->rb) | ||
1327 | rb->rb_left = NULL; | ||
1328 | else | ||
1329 | rb->rb_right = NULL; | ||
1330 | } | ||
1331 | |||
1332 | kmem_cache_free(wl_entries_slab, e); | ||
1333 | } | ||
1334 | } | ||
1335 | } | ||
1336 | |||
1337 | /** | ||
1338 | * ubi_thread - UBI background thread. | ||
1339 | * @u: the UBI device description object pointer | ||
1340 | */ | ||
1341 | static int ubi_thread(void *u) | ||
1342 | { | ||
1343 | int failures = 0; | ||
1344 | struct ubi_device *ubi = u; | ||
1345 | |||
1346 | ubi_msg("background thread \"%s\" started, PID %d", | ||
1347 | ubi->bgt_name, current->pid); | ||
1348 | |||
1349 | for (;;) { | ||
1350 | int err; | ||
1351 | |||
1352 | if (kthread_should_stop()) | ||
1353 | goto out; | ||
1354 | |||
1355 | if (try_to_freeze()) | ||
1356 | continue; | ||
1357 | |||
1358 | spin_lock(&ubi->wl_lock); | ||
1359 | if (list_empty(&ubi->works) || ubi->ro_mode || | ||
1360 | !ubi->thread_enabled) { | ||
1361 | set_current_state(TASK_INTERRUPTIBLE); | ||
1362 | spin_unlock(&ubi->wl_lock); | ||
1363 | schedule(); | ||
1364 | continue; | ||
1365 | } | ||
1366 | spin_unlock(&ubi->wl_lock); | ||
1367 | |||
1368 | err = do_work(ubi); | ||
1369 | if (err) { | ||
1370 | ubi_err("%s: work failed with error code %d", | ||
1371 | ubi->bgt_name, err); | ||
1372 | if (failures++ > WL_MAX_FAILURES) { | ||
1373 | /* | ||
1374 | * Too many failures, disable the thread and | ||
1375 | * switch to read-only mode. | ||
1376 | */ | ||
1377 | ubi_msg("%s: %d consecutive failures", | ||
1378 | ubi->bgt_name, WL_MAX_FAILURES); | ||
1379 | ubi_ro_mode(ubi); | ||
1380 | break; | ||
1381 | } | ||
1382 | } else | ||
1383 | failures = 0; | ||
1384 | |||
1385 | cond_resched(); | ||
1386 | } | ||
1387 | |||
1388 | out: | ||
1389 | dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); | ||
1390 | return 0; | ||
1391 | } | ||
1392 | |||
1393 | /** | ||
1394 | * cancel_pending - cancel all pending works. | ||
1395 | * @ubi: UBI device description object | ||
1396 | */ | ||
1397 | static void cancel_pending(struct ubi_device *ubi) | ||
1398 | { | ||
1399 | while (!list_empty(&ubi->works)) { | ||
1400 | struct ubi_work *wrk; | ||
1401 | |||
1402 | wrk = list_entry(ubi->works.next, struct ubi_work, list); | ||
1403 | list_del(&wrk->list); | ||
1404 | wrk->func(ubi, wrk, 1); | ||
1405 | ubi->works_count -= 1; | ||
1406 | ubi_assert(ubi->works_count >= 0); | ||
1407 | } | ||
1408 | } | ||
1409 | |||
1410 | /** | ||
1411 | * ubi_wl_init_scan - initialize the wear-leveling unit using scanning | ||
1412 | * information. | ||
1413 | * @ubi: UBI device description object | ||
1414 | * @si: scanning information | ||
1415 | * | ||
1416 | * This function returns zero in case of success, and a negative error code in | ||
1417 | * case of failure. | ||
1418 | */ | ||
1419 | int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) | ||
1420 | { | ||
1421 | int err; | ||
1422 | struct rb_node *rb1, *rb2; | ||
1423 | struct ubi_scan_volume *sv; | ||
1424 | struct ubi_scan_leb *seb, *tmp; | ||
1425 | struct ubi_wl_entry *e; | ||
1426 | |||
1427 | |||
1428 | ubi->used = ubi->free = ubi->scrub = RB_ROOT; | ||
1429 | ubi->prot.pnum = ubi->prot.aec = RB_ROOT; | ||
1430 | spin_lock_init(&ubi->wl_lock); | ||
1431 | ubi->max_ec = si->max_ec; | ||
1432 | INIT_LIST_HEAD(&ubi->works); | ||
1433 | |||
1434 | sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); | ||
1435 | |||
1436 | ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name); | ||
1437 | if (IS_ERR(ubi->bgt_thread)) { | ||
1438 | err = PTR_ERR(ubi->bgt_thread); | ||
1439 | ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, | ||
1440 | err); | ||
1441 | return err; | ||
1442 | } | ||
1443 | |||
1444 | if (ubi_devices_cnt == 0) { | ||
1445 | wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab", | ||
1446 | sizeof(struct ubi_wl_entry), | ||
1447 | 0, 0, NULL, NULL); | ||
1448 | if (!wl_entries_slab) | ||
1449 | return -ENOMEM; | ||
1450 | } | ||
1451 | |||
1452 | err = -ENOMEM; | ||
1453 | ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); | ||
1454 | if (!ubi->lookuptbl) | ||
1455 | goto out_free; | ||
1456 | |||
1457 | list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { | ||
1458 | cond_resched(); | ||
1459 | |||
1460 | e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); | ||
1461 | if (!e) | ||
1462 | goto out_free; | ||
1463 | |||
1464 | e->pnum = seb->pnum; | ||
1465 | e->ec = seb->ec; | ||
1466 | ubi->lookuptbl[e->pnum] = e; | ||
1467 | if (schedule_erase(ubi, e, 0)) { | ||
1468 | kmem_cache_free(wl_entries_slab, e); | ||
1469 | goto out_free; | ||
1470 | } | ||
1471 | } | ||
1472 | |||
1473 | list_for_each_entry(seb, &si->free, u.list) { | ||
1474 | cond_resched(); | ||
1475 | |||
1476 | e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); | ||
1477 | if (!e) | ||
1478 | goto out_free; | ||
1479 | |||
1480 | e->pnum = seb->pnum; | ||
1481 | e->ec = seb->ec; | ||
1482 | ubi_assert(e->ec >= 0); | ||
1483 | free_tree_add(ubi, e); | ||
1484 | ubi->lookuptbl[e->pnum] = e; | ||
1485 | } | ||
1486 | |||
1487 | list_for_each_entry(seb, &si->corr, u.list) { | ||
1488 | cond_resched(); | ||
1489 | |||
1490 | e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); | ||
1491 | if (!e) | ||
1492 | goto out_free; | ||
1493 | |||
1494 | e->pnum = seb->pnum; | ||
1495 | e->ec = seb->ec; | ||
1496 | ubi->lookuptbl[e->pnum] = e; | ||
1497 | if (schedule_erase(ubi, e, 0)) { | ||
1498 | kmem_cache_free(wl_entries_slab, e); | ||
1499 | goto out_free; | ||
1500 | } | ||
1501 | } | ||
1502 | |||
1503 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
1504 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | ||
1505 | cond_resched(); | ||
1506 | |||
1507 | e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); | ||
1508 | if (!e) | ||
1509 | goto out_free; | ||
1510 | |||
1511 | e->pnum = seb->pnum; | ||
1512 | e->ec = seb->ec; | ||
1513 | ubi->lookuptbl[e->pnum] = e; | ||
1514 | if (!seb->scrub) { | ||
1515 | dbg_wl("add PEB %d EC %d to the used tree", | ||
1516 | e->pnum, e->ec); | ||
1517 | used_tree_add(ubi, e); | ||
1518 | } else { | ||
1519 | dbg_wl("add PEB %d EC %d to the scrub tree", | ||
1520 | e->pnum, e->ec); | ||
1521 | scrub_tree_add(ubi, e); | ||
1522 | } | ||
1523 | } | ||
1524 | } | ||
1525 | |||
1526 | if (WL_RESERVED_PEBS > ubi->avail_pebs) { | ||
1527 | ubi_err("no enough physical eraseblocks (%d, need %d)", | ||
1528 | ubi->avail_pebs, WL_RESERVED_PEBS); | ||
1529 | goto out_free; | ||
1530 | } | ||
1531 | ubi->avail_pebs -= WL_RESERVED_PEBS; | ||
1532 | ubi->rsvd_pebs += WL_RESERVED_PEBS; | ||
1533 | |||
1534 | /* Schedule wear-leveling if needed */ | ||
1535 | err = ensure_wear_leveling(ubi); | ||
1536 | if (err) | ||
1537 | goto out_free; | ||
1538 | |||
1539 | return 0; | ||
1540 | |||
1541 | out_free: | ||
1542 | cancel_pending(ubi); | ||
1543 | tree_destroy(&ubi->used); | ||
1544 | tree_destroy(&ubi->free); | ||
1545 | tree_destroy(&ubi->scrub); | ||
1546 | kfree(ubi->lookuptbl); | ||
1547 | if (ubi_devices_cnt == 0) | ||
1548 | kmem_cache_destroy(wl_entries_slab); | ||
1549 | return err; | ||
1550 | } | ||
1551 | |||
1552 | /** | ||
1553 | * protection_trees_destroy - destroy the protection RB-trees. | ||
1554 | * @ubi: UBI device description object | ||
1555 | */ | ||
1556 | static void protection_trees_destroy(struct ubi_device *ubi) | ||
1557 | { | ||
1558 | struct rb_node *rb; | ||
1559 | struct ubi_wl_prot_entry *pe; | ||
1560 | |||
1561 | rb = ubi->prot.aec.rb_node; | ||
1562 | while (rb) { | ||
1563 | if (rb->rb_left) | ||
1564 | rb = rb->rb_left; | ||
1565 | else if (rb->rb_right) | ||
1566 | rb = rb->rb_right; | ||
1567 | else { | ||
1568 | pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec); | ||
1569 | |||
1570 | rb = rb_parent(rb); | ||
1571 | if (rb) { | ||
1572 | if (rb->rb_left == &pe->rb_aec) | ||
1573 | rb->rb_left = NULL; | ||
1574 | else | ||
1575 | rb->rb_right = NULL; | ||
1576 | } | ||
1577 | |||
1578 | kmem_cache_free(wl_entries_slab, pe->e); | ||
1579 | kfree(pe); | ||
1580 | } | ||
1581 | } | ||
1582 | } | ||
1583 | |||
1584 | /** | ||
1585 | * ubi_wl_close - close the wear-leveling unit. | ||
1586 | * @ubi: UBI device description object | ||
1587 | */ | ||
1588 | void ubi_wl_close(struct ubi_device *ubi) | ||
1589 | { | ||
1590 | dbg_wl("disable \"%s\"", ubi->bgt_name); | ||
1591 | if (ubi->bgt_thread) | ||
1592 | kthread_stop(ubi->bgt_thread); | ||
1593 | |||
1594 | dbg_wl("close the UBI wear-leveling unit"); | ||
1595 | |||
1596 | cancel_pending(ubi); | ||
1597 | protection_trees_destroy(ubi); | ||
1598 | tree_destroy(&ubi->used); | ||
1599 | tree_destroy(&ubi->free); | ||
1600 | tree_destroy(&ubi->scrub); | ||
1601 | kfree(ubi->lookuptbl); | ||
1602 | if (ubi_devices_cnt == 1) | ||
1603 | kmem_cache_destroy(wl_entries_slab); | ||
1604 | } | ||
1605 | |||
1606 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | ||
1607 | |||
1608 | /** | ||
1609 | * paranoid_check_ec - make sure that the erase counter of a physical eraseblock | ||
1610 | * is correct. | ||
1611 | * @ubi: UBI device description object | ||
1612 | * @pnum: the physical eraseblock number to check | ||
1613 | * @ec: the erase counter to check | ||
1614 | * | ||
1615 | * This function returns zero if the erase counter of physical eraseblock @pnum | ||
1616 | * is equivalent to @ec, %1 if not, and a negative error code if an error | ||
1617 | * occurred. | ||
1618 | */ | ||
1619 | static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec) | ||
1620 | { | ||
1621 | int err; | ||
1622 | long long read_ec; | ||
1623 | struct ubi_ec_hdr *ec_hdr; | ||
1624 | |||
1625 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
1626 | if (!ec_hdr) | ||
1627 | return -ENOMEM; | ||
1628 | |||
1629 | err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); | ||
1630 | if (err && err != UBI_IO_BITFLIPS) { | ||
1631 | /* The header does not have to exist */ | ||
1632 | err = 0; | ||
1633 | goto out_free; | ||
1634 | } | ||
1635 | |||
1636 | read_ec = ubi64_to_cpu(ec_hdr->ec); | ||
1637 | if (ec != read_ec) { | ||
1638 | ubi_err("paranoid check failed for PEB %d", pnum); | ||
1639 | ubi_err("read EC is %lld, should be %d", read_ec, ec); | ||
1640 | ubi_dbg_dump_stack(); | ||
1641 | err = 1; | ||
1642 | } else | ||
1643 | err = 0; | ||
1644 | |||
1645 | out_free: | ||
1646 | kfree(ec_hdr); | ||
1647 | return err; | ||
1648 | } | ||
1649 | |||
1650 | /** | ||
1651 | * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present | ||
1652 | * in a WL RB-tree. | ||
1653 | * @e: the wear-leveling entry to check | ||
1654 | * @root: the root of the tree | ||
1655 | * | ||
1656 | * This function returns zero if @e is in the @root RB-tree and %1 if it | ||
1657 | * is not. | ||
1658 | */ | ||
1659 | static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, | ||
1660 | struct rb_root *root) | ||
1661 | { | ||
1662 | if (in_wl_tree(e, root)) | ||
1663 | return 0; | ||
1664 | |||
1665 | ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", | ||
1666 | e->pnum, e->ec, root); | ||
1667 | ubi_dbg_dump_stack(); | ||
1668 | return 1; | ||
1669 | } | ||
1670 | |||
1671 | #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ | ||