diff options
Diffstat (limited to 'drivers/mtd/ubi/attach.c')
-rw-r--r-- | drivers/mtd/ubi/attach.c | 1615 |
1 files changed, 1615 insertions, 0 deletions
diff --git a/drivers/mtd/ubi/attach.c b/drivers/mtd/ubi/attach.c new file mode 100644 index 000000000000..f59f748caf23 --- /dev/null +++ b/drivers/mtd/ubi/attach.c | |||
@@ -0,0 +1,1615 @@ | |||
1 | /* | ||
2 | * Copyright (c) International Business Machines Corp., 2006 | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | ||
12 | * the GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | * | ||
18 | * Author: Artem Bityutskiy (Битюцкий Артём) | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * UBI attaching sub-system. | ||
23 | * | ||
24 | * This sub-system is responsible for attaching MTD devices and it also | ||
25 | * implements flash media scanning. | ||
26 | * | ||
27 | * The attaching information is represented by a &struct ubi_attach_info' | ||
28 | * object. Information about volumes is represented by &struct ubi_ainf_volume | ||
29 | * objects which are kept in volume RB-tree with root at the @volumes field. | ||
30 | * The RB-tree is indexed by the volume ID. | ||
31 | * | ||
32 | * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These | ||
33 | * objects are kept in per-volume RB-trees with the root at the corresponding | ||
34 | * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of | ||
35 | * per-volume objects and each of these objects is the root of RB-tree of | ||
36 | * per-LEB objects. | ||
37 | * | ||
38 | * Corrupted physical eraseblocks are put to the @corr list, free physical | ||
39 | * eraseblocks are put to the @free list and the physical eraseblock to be | ||
40 | * erased are put to the @erase list. | ||
41 | * | ||
42 | * About corruptions | ||
43 | * ~~~~~~~~~~~~~~~~~ | ||
44 | * | ||
45 | * UBI protects EC and VID headers with CRC-32 checksums, so it can detect | ||
46 | * whether the headers are corrupted or not. Sometimes UBI also protects the | ||
47 | * data with CRC-32, e.g., when it executes the atomic LEB change operation, or | ||
48 | * when it moves the contents of a PEB for wear-leveling purposes. | ||
49 | * | ||
50 | * UBI tries to distinguish between 2 types of corruptions. | ||
51 | * | ||
52 | * 1. Corruptions caused by power cuts. These are expected corruptions and UBI | ||
53 | * tries to handle them gracefully, without printing too many warnings and | ||
54 | * error messages. The idea is that we do not lose important data in these | ||
55 | * cases - we may lose only the data which were being written to the media just | ||
56 | * before the power cut happened, and the upper layers (e.g., UBIFS) are | ||
57 | * supposed to handle such data losses (e.g., by using the FS journal). | ||
58 | * | ||
59 | * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like | ||
60 | * the reason is a power cut, UBI puts this PEB to the @erase list, and all | ||
61 | * PEBs in the @erase list are scheduled for erasure later. | ||
62 | * | ||
63 | * 2. Unexpected corruptions which are not caused by power cuts. During | ||
64 | * attaching, such PEBs are put to the @corr list and UBI preserves them. | ||
65 | * Obviously, this lessens the amount of available PEBs, and if at some point | ||
66 | * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs | ||
67 | * about such PEBs every time the MTD device is attached. | ||
68 | * | ||
69 | * However, it is difficult to reliably distinguish between these types of | ||
70 | * corruptions and UBI's strategy is as follows (in case of attaching by | ||
71 | * scanning). UBI assumes corruption type 2 if the VID header is corrupted and | ||
72 | * the data area does not contain all 0xFFs, and there were no bit-flips or | ||
73 | * integrity errors (e.g., ECC errors in case of NAND) while reading the data | ||
74 | * area. Otherwise UBI assumes corruption type 1. So the decision criteria | ||
75 | * are as follows. | ||
76 | * o If the data area contains only 0xFFs, there are no data, and it is safe | ||
77 | * to just erase this PEB - this is corruption type 1. | ||
78 | * o If the data area has bit-flips or data integrity errors (ECC errors on | ||
79 | * NAND), it is probably a PEB which was being erased when power cut | ||
80 | * happened, so this is corruption type 1. However, this is just a guess, | ||
81 | * which might be wrong. | ||
82 | * o Otherwise this it corruption type 2. | ||
83 | */ | ||
84 | |||
85 | #include <linux/err.h> | ||
86 | #include <linux/slab.h> | ||
87 | #include <linux/crc32.h> | ||
88 | #include <linux/math64.h> | ||
89 | #include <linux/random.h> | ||
90 | #include "ubi.h" | ||
91 | |||
92 | static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai); | ||
93 | |||
94 | /* Temporary variables used during scanning */ | ||
95 | static struct ubi_ec_hdr *ech; | ||
96 | static struct ubi_vid_hdr *vidh; | ||
97 | |||
98 | /** | ||
99 | * add_to_list - add physical eraseblock to a list. | ||
100 | * @ai: attaching information | ||
101 | * @pnum: physical eraseblock number to add | ||
102 | * @ec: erase counter of the physical eraseblock | ||
103 | * @to_head: if not zero, add to the head of the list | ||
104 | * @list: the list to add to | ||
105 | * | ||
106 | * This function allocates a 'struct ubi_ainf_peb' object for physical | ||
107 | * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists. | ||
108 | * If @to_head is not zero, PEB will be added to the head of the list, which | ||
109 | * basically means it will be processed first later. E.g., we add corrupted | ||
110 | * PEBs (corrupted due to power cuts) to the head of the erase list to make | ||
111 | * sure we erase them first and get rid of corruptions ASAP. This function | ||
112 | * returns zero in case of success and a negative error code in case of | ||
113 | * failure. | ||
114 | */ | ||
115 | static int add_to_list(struct ubi_attach_info *ai, int pnum, int ec, | ||
116 | int to_head, struct list_head *list) | ||
117 | { | ||
118 | struct ubi_ainf_peb *aeb; | ||
119 | |||
120 | if (list == &ai->free) { | ||
121 | dbg_bld("add to free: PEB %d, EC %d", pnum, ec); | ||
122 | } else if (list == &ai->erase) { | ||
123 | dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); | ||
124 | } else if (list == &ai->alien) { | ||
125 | dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); | ||
126 | ai->alien_peb_count += 1; | ||
127 | } else | ||
128 | BUG(); | ||
129 | |||
130 | aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); | ||
131 | if (!aeb) | ||
132 | return -ENOMEM; | ||
133 | |||
134 | aeb->pnum = pnum; | ||
135 | aeb->ec = ec; | ||
136 | if (to_head) | ||
137 | list_add(&aeb->u.list, list); | ||
138 | else | ||
139 | list_add_tail(&aeb->u.list, list); | ||
140 | return 0; | ||
141 | } | ||
142 | |||
143 | /** | ||
144 | * add_corrupted - add a corrupted physical eraseblock. | ||
145 | * @ai: attaching information | ||
146 | * @pnum: physical eraseblock number to add | ||
147 | * @ec: erase counter of the physical eraseblock | ||
148 | * | ||
149 | * This function allocates a 'struct ubi_ainf_peb' object for a corrupted | ||
150 | * physical eraseblock @pnum and adds it to the 'corr' list. The corruption | ||
151 | * was presumably not caused by a power cut. Returns zero in case of success | ||
152 | * and a negative error code in case of failure. | ||
153 | */ | ||
154 | static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec) | ||
155 | { | ||
156 | struct ubi_ainf_peb *aeb; | ||
157 | |||
158 | dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); | ||
159 | |||
160 | aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); | ||
161 | if (!aeb) | ||
162 | return -ENOMEM; | ||
163 | |||
164 | ai->corr_peb_count += 1; | ||
165 | aeb->pnum = pnum; | ||
166 | aeb->ec = ec; | ||
167 | list_add(&aeb->u.list, &ai->corr); | ||
168 | return 0; | ||
169 | } | ||
170 | |||
171 | /** | ||
172 | * validate_vid_hdr - check volume identifier header. | ||
173 | * @vid_hdr: the volume identifier header to check | ||
174 | * @av: information about the volume this logical eraseblock belongs to | ||
175 | * @pnum: physical eraseblock number the VID header came from | ||
176 | * | ||
177 | * This function checks that data stored in @vid_hdr is consistent. Returns | ||
178 | * non-zero if an inconsistency was found and zero if not. | ||
179 | * | ||
180 | * Note, UBI does sanity check of everything it reads from the flash media. | ||
181 | * Most of the checks are done in the I/O sub-system. Here we check that the | ||
182 | * information in the VID header is consistent to the information in other VID | ||
183 | * headers of the same volume. | ||
184 | */ | ||
185 | static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, | ||
186 | const struct ubi_ainf_volume *av, int pnum) | ||
187 | { | ||
188 | int vol_type = vid_hdr->vol_type; | ||
189 | int vol_id = be32_to_cpu(vid_hdr->vol_id); | ||
190 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | ||
191 | int data_pad = be32_to_cpu(vid_hdr->data_pad); | ||
192 | |||
193 | if (av->leb_count != 0) { | ||
194 | int av_vol_type; | ||
195 | |||
196 | /* | ||
197 | * This is not the first logical eraseblock belonging to this | ||
198 | * volume. Ensure that the data in its VID header is consistent | ||
199 | * to the data in previous logical eraseblock headers. | ||
200 | */ | ||
201 | |||
202 | if (vol_id != av->vol_id) { | ||
203 | ubi_err("inconsistent vol_id"); | ||
204 | goto bad; | ||
205 | } | ||
206 | |||
207 | if (av->vol_type == UBI_STATIC_VOLUME) | ||
208 | av_vol_type = UBI_VID_STATIC; | ||
209 | else | ||
210 | av_vol_type = UBI_VID_DYNAMIC; | ||
211 | |||
212 | if (vol_type != av_vol_type) { | ||
213 | ubi_err("inconsistent vol_type"); | ||
214 | goto bad; | ||
215 | } | ||
216 | |||
217 | if (used_ebs != av->used_ebs) { | ||
218 | ubi_err("inconsistent used_ebs"); | ||
219 | goto bad; | ||
220 | } | ||
221 | |||
222 | if (data_pad != av->data_pad) { | ||
223 | ubi_err("inconsistent data_pad"); | ||
224 | goto bad; | ||
225 | } | ||
226 | } | ||
227 | |||
228 | return 0; | ||
229 | |||
230 | bad: | ||
231 | ubi_err("inconsistent VID header at PEB %d", pnum); | ||
232 | ubi_dump_vid_hdr(vid_hdr); | ||
233 | ubi_dump_av(av); | ||
234 | return -EINVAL; | ||
235 | } | ||
236 | |||
237 | /** | ||
238 | * add_volume - add volume to the attaching information. | ||
239 | * @ai: attaching information | ||
240 | * @vol_id: ID of the volume to add | ||
241 | * @pnum: physical eraseblock number | ||
242 | * @vid_hdr: volume identifier header | ||
243 | * | ||
244 | * If the volume corresponding to the @vid_hdr logical eraseblock is already | ||
245 | * present in the attaching information, this function does nothing. Otherwise | ||
246 | * it adds corresponding volume to the attaching information. Returns a pointer | ||
247 | * to the allocated "av" object in case of success and a negative error code in | ||
248 | * case of failure. | ||
249 | */ | ||
250 | static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, | ||
251 | int vol_id, int pnum, | ||
252 | const struct ubi_vid_hdr *vid_hdr) | ||
253 | { | ||
254 | struct ubi_ainf_volume *av; | ||
255 | struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; | ||
256 | |||
257 | ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); | ||
258 | |||
259 | /* Walk the volume RB-tree to look if this volume is already present */ | ||
260 | while (*p) { | ||
261 | parent = *p; | ||
262 | av = rb_entry(parent, struct ubi_ainf_volume, rb); | ||
263 | |||
264 | if (vol_id == av->vol_id) | ||
265 | return av; | ||
266 | |||
267 | if (vol_id > av->vol_id) | ||
268 | p = &(*p)->rb_left; | ||
269 | else | ||
270 | p = &(*p)->rb_right; | ||
271 | } | ||
272 | |||
273 | /* The volume is absent - add it */ | ||
274 | av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); | ||
275 | if (!av) | ||
276 | return ERR_PTR(-ENOMEM); | ||
277 | |||
278 | av->highest_lnum = av->leb_count = 0; | ||
279 | av->vol_id = vol_id; | ||
280 | av->root = RB_ROOT; | ||
281 | av->used_ebs = be32_to_cpu(vid_hdr->used_ebs); | ||
282 | av->data_pad = be32_to_cpu(vid_hdr->data_pad); | ||
283 | av->compat = vid_hdr->compat; | ||
284 | av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME | ||
285 | : UBI_STATIC_VOLUME; | ||
286 | if (vol_id > ai->highest_vol_id) | ||
287 | ai->highest_vol_id = vol_id; | ||
288 | |||
289 | rb_link_node(&av->rb, parent, p); | ||
290 | rb_insert_color(&av->rb, &ai->volumes); | ||
291 | ai->vols_found += 1; | ||
292 | dbg_bld("added volume %d", vol_id); | ||
293 | return av; | ||
294 | } | ||
295 | |||
296 | /** | ||
297 | * compare_lebs - find out which logical eraseblock is newer. | ||
298 | * @ubi: UBI device description object | ||
299 | * @aeb: first logical eraseblock to compare | ||
300 | * @pnum: physical eraseblock number of the second logical eraseblock to | ||
301 | * compare | ||
302 | * @vid_hdr: volume identifier header of the second logical eraseblock | ||
303 | * | ||
304 | * This function compares 2 copies of a LEB and informs which one is newer. In | ||
305 | * case of success this function returns a positive value, in case of failure, a | ||
306 | * negative error code is returned. The success return codes use the following | ||
307 | * bits: | ||
308 | * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the | ||
309 | * second PEB (described by @pnum and @vid_hdr); | ||
310 | * o bit 0 is set: the second PEB is newer; | ||
311 | * o bit 1 is cleared: no bit-flips were detected in the newer LEB; | ||
312 | * o bit 1 is set: bit-flips were detected in the newer LEB; | ||
313 | * o bit 2 is cleared: the older LEB is not corrupted; | ||
314 | * o bit 2 is set: the older LEB is corrupted. | ||
315 | */ | ||
316 | static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, | ||
317 | int pnum, const struct ubi_vid_hdr *vid_hdr) | ||
318 | { | ||
319 | void *buf; | ||
320 | int len, err, second_is_newer, bitflips = 0, corrupted = 0; | ||
321 | uint32_t data_crc, crc; | ||
322 | struct ubi_vid_hdr *vh = NULL; | ||
323 | unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); | ||
324 | |||
325 | if (sqnum2 == aeb->sqnum) { | ||
326 | /* | ||
327 | * This must be a really ancient UBI image which has been | ||
328 | * created before sequence numbers support has been added. At | ||
329 | * that times we used 32-bit LEB versions stored in logical | ||
330 | * eraseblocks. That was before UBI got into mainline. We do not | ||
331 | * support these images anymore. Well, those images still work, | ||
332 | * but only if no unclean reboots happened. | ||
333 | */ | ||
334 | ubi_err("unsupported on-flash UBI format\n"); | ||
335 | return -EINVAL; | ||
336 | } | ||
337 | |||
338 | /* Obviously the LEB with lower sequence counter is older */ | ||
339 | second_is_newer = (sqnum2 > aeb->sqnum); | ||
340 | |||
341 | /* | ||
342 | * Now we know which copy is newer. If the copy flag of the PEB with | ||
343 | * newer version is not set, then we just return, otherwise we have to | ||
344 | * check data CRC. For the second PEB we already have the VID header, | ||
345 | * for the first one - we'll need to re-read it from flash. | ||
346 | * | ||
347 | * Note: this may be optimized so that we wouldn't read twice. | ||
348 | */ | ||
349 | |||
350 | if (second_is_newer) { | ||
351 | if (!vid_hdr->copy_flag) { | ||
352 | /* It is not a copy, so it is newer */ | ||
353 | dbg_bld("second PEB %d is newer, copy_flag is unset", | ||
354 | pnum); | ||
355 | return 1; | ||
356 | } | ||
357 | } else { | ||
358 | if (!aeb->copy_flag) { | ||
359 | /* It is not a copy, so it is newer */ | ||
360 | dbg_bld("first PEB %d is newer, copy_flag is unset", | ||
361 | pnum); | ||
362 | return bitflips << 1; | ||
363 | } | ||
364 | |||
365 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | ||
366 | if (!vh) | ||
367 | return -ENOMEM; | ||
368 | |||
369 | pnum = aeb->pnum; | ||
370 | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); | ||
371 | if (err) { | ||
372 | if (err == UBI_IO_BITFLIPS) | ||
373 | bitflips = 1; | ||
374 | else { | ||
375 | ubi_err("VID of PEB %d header is bad, but it " | ||
376 | "was OK earlier, err %d", pnum, err); | ||
377 | if (err > 0) | ||
378 | err = -EIO; | ||
379 | |||
380 | goto out_free_vidh; | ||
381 | } | ||
382 | } | ||
383 | |||
384 | vid_hdr = vh; | ||
385 | } | ||
386 | |||
387 | /* Read the data of the copy and check the CRC */ | ||
388 | |||
389 | len = be32_to_cpu(vid_hdr->data_size); | ||
390 | buf = vmalloc(len); | ||
391 | if (!buf) { | ||
392 | err = -ENOMEM; | ||
393 | goto out_free_vidh; | ||
394 | } | ||
395 | |||
396 | err = ubi_io_read_data(ubi, buf, pnum, 0, len); | ||
397 | if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) | ||
398 | goto out_free_buf; | ||
399 | |||
400 | data_crc = be32_to_cpu(vid_hdr->data_crc); | ||
401 | crc = crc32(UBI_CRC32_INIT, buf, len); | ||
402 | if (crc != data_crc) { | ||
403 | dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", | ||
404 | pnum, crc, data_crc); | ||
405 | corrupted = 1; | ||
406 | bitflips = 0; | ||
407 | second_is_newer = !second_is_newer; | ||
408 | } else { | ||
409 | dbg_bld("PEB %d CRC is OK", pnum); | ||
410 | bitflips = !!err; | ||
411 | } | ||
412 | |||
413 | vfree(buf); | ||
414 | ubi_free_vid_hdr(ubi, vh); | ||
415 | |||
416 | if (second_is_newer) | ||
417 | dbg_bld("second PEB %d is newer, copy_flag is set", pnum); | ||
418 | else | ||
419 | dbg_bld("first PEB %d is newer, copy_flag is set", pnum); | ||
420 | |||
421 | return second_is_newer | (bitflips << 1) | (corrupted << 2); | ||
422 | |||
423 | out_free_buf: | ||
424 | vfree(buf); | ||
425 | out_free_vidh: | ||
426 | ubi_free_vid_hdr(ubi, vh); | ||
427 | return err; | ||
428 | } | ||
429 | |||
430 | /** | ||
431 | * ubi_add_to_av - add used physical eraseblock to the attaching information. | ||
432 | * @ubi: UBI device description object | ||
433 | * @ai: attaching information | ||
434 | * @pnum: the physical eraseblock number | ||
435 | * @ec: erase counter | ||
436 | * @vid_hdr: the volume identifier header | ||
437 | * @bitflips: if bit-flips were detected when this physical eraseblock was read | ||
438 | * | ||
439 | * This function adds information about a used physical eraseblock to the | ||
440 | * 'used' tree of the corresponding volume. The function is rather complex | ||
441 | * because it has to handle cases when this is not the first physical | ||
442 | * eraseblock belonging to the same logical eraseblock, and the newer one has | ||
443 | * to be picked, while the older one has to be dropped. This function returns | ||
444 | * zero in case of success and a negative error code in case of failure. | ||
445 | */ | ||
446 | int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, | ||
447 | int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips) | ||
448 | { | ||
449 | int err, vol_id, lnum; | ||
450 | unsigned long long sqnum; | ||
451 | struct ubi_ainf_volume *av; | ||
452 | struct ubi_ainf_peb *aeb; | ||
453 | struct rb_node **p, *parent = NULL; | ||
454 | |||
455 | vol_id = be32_to_cpu(vid_hdr->vol_id); | ||
456 | lnum = be32_to_cpu(vid_hdr->lnum); | ||
457 | sqnum = be64_to_cpu(vid_hdr->sqnum); | ||
458 | |||
459 | dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", | ||
460 | pnum, vol_id, lnum, ec, sqnum, bitflips); | ||
461 | |||
462 | av = add_volume(ai, vol_id, pnum, vid_hdr); | ||
463 | if (IS_ERR(av)) | ||
464 | return PTR_ERR(av); | ||
465 | |||
466 | if (ai->max_sqnum < sqnum) | ||
467 | ai->max_sqnum = sqnum; | ||
468 | |||
469 | /* | ||
470 | * Walk the RB-tree of logical eraseblocks of volume @vol_id to look | ||
471 | * if this is the first instance of this logical eraseblock or not. | ||
472 | */ | ||
473 | p = &av->root.rb_node; | ||
474 | while (*p) { | ||
475 | int cmp_res; | ||
476 | |||
477 | parent = *p; | ||
478 | aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); | ||
479 | if (lnum != aeb->lnum) { | ||
480 | if (lnum < aeb->lnum) | ||
481 | p = &(*p)->rb_left; | ||
482 | else | ||
483 | p = &(*p)->rb_right; | ||
484 | continue; | ||
485 | } | ||
486 | |||
487 | /* | ||
488 | * There is already a physical eraseblock describing the same | ||
489 | * logical eraseblock present. | ||
490 | */ | ||
491 | |||
492 | dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d", | ||
493 | aeb->pnum, aeb->sqnum, aeb->ec); | ||
494 | |||
495 | /* | ||
496 | * Make sure that the logical eraseblocks have different | ||
497 | * sequence numbers. Otherwise the image is bad. | ||
498 | * | ||
499 | * However, if the sequence number is zero, we assume it must | ||
500 | * be an ancient UBI image from the era when UBI did not have | ||
501 | * sequence numbers. We still can attach these images, unless | ||
502 | * there is a need to distinguish between old and new | ||
503 | * eraseblocks, in which case we'll refuse the image in | ||
504 | * 'compare_lebs()'. In other words, we attach old clean | ||
505 | * images, but refuse attaching old images with duplicated | ||
506 | * logical eraseblocks because there was an unclean reboot. | ||
507 | */ | ||
508 | if (aeb->sqnum == sqnum && sqnum != 0) { | ||
509 | ubi_err("two LEBs with same sequence number %llu", | ||
510 | sqnum); | ||
511 | ubi_dump_aeb(aeb, 0); | ||
512 | ubi_dump_vid_hdr(vid_hdr); | ||
513 | return -EINVAL; | ||
514 | } | ||
515 | |||
516 | /* | ||
517 | * Now we have to drop the older one and preserve the newer | ||
518 | * one. | ||
519 | */ | ||
520 | cmp_res = compare_lebs(ubi, aeb, pnum, vid_hdr); | ||
521 | if (cmp_res < 0) | ||
522 | return cmp_res; | ||
523 | |||
524 | if (cmp_res & 1) { | ||
525 | /* | ||
526 | * This logical eraseblock is newer than the one | ||
527 | * found earlier. | ||
528 | */ | ||
529 | err = validate_vid_hdr(vid_hdr, av, pnum); | ||
530 | if (err) | ||
531 | return err; | ||
532 | |||
533 | err = add_to_list(ai, aeb->pnum, aeb->ec, cmp_res & 4, | ||
534 | &ai->erase); | ||
535 | if (err) | ||
536 | return err; | ||
537 | |||
538 | aeb->ec = ec; | ||
539 | aeb->pnum = pnum; | ||
540 | aeb->scrub = ((cmp_res & 2) || bitflips); | ||
541 | aeb->copy_flag = vid_hdr->copy_flag; | ||
542 | aeb->sqnum = sqnum; | ||
543 | |||
544 | if (av->highest_lnum == lnum) | ||
545 | av->last_data_size = | ||
546 | be32_to_cpu(vid_hdr->data_size); | ||
547 | |||
548 | return 0; | ||
549 | } else { | ||
550 | /* | ||
551 | * This logical eraseblock is older than the one found | ||
552 | * previously. | ||
553 | */ | ||
554 | return add_to_list(ai, pnum, ec, cmp_res & 4, | ||
555 | &ai->erase); | ||
556 | } | ||
557 | } | ||
558 | |||
559 | /* | ||
560 | * We've met this logical eraseblock for the first time, add it to the | ||
561 | * attaching information. | ||
562 | */ | ||
563 | |||
564 | err = validate_vid_hdr(vid_hdr, av, pnum); | ||
565 | if (err) | ||
566 | return err; | ||
567 | |||
568 | aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); | ||
569 | if (!aeb) | ||
570 | return -ENOMEM; | ||
571 | |||
572 | aeb->ec = ec; | ||
573 | aeb->pnum = pnum; | ||
574 | aeb->lnum = lnum; | ||
575 | aeb->scrub = bitflips; | ||
576 | aeb->copy_flag = vid_hdr->copy_flag; | ||
577 | aeb->sqnum = sqnum; | ||
578 | |||
579 | if (av->highest_lnum <= lnum) { | ||
580 | av->highest_lnum = lnum; | ||
581 | av->last_data_size = be32_to_cpu(vid_hdr->data_size); | ||
582 | } | ||
583 | |||
584 | av->leb_count += 1; | ||
585 | rb_link_node(&aeb->u.rb, parent, p); | ||
586 | rb_insert_color(&aeb->u.rb, &av->root); | ||
587 | return 0; | ||
588 | } | ||
589 | |||
590 | /** | ||
591 | * ubi_find_av - find volume in the attaching information. | ||
592 | * @ai: attaching information | ||
593 | * @vol_id: the requested volume ID | ||
594 | * | ||
595 | * This function returns a pointer to the volume description or %NULL if there | ||
596 | * are no data about this volume in the attaching information. | ||
597 | */ | ||
598 | struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, | ||
599 | int vol_id) | ||
600 | { | ||
601 | struct ubi_ainf_volume *av; | ||
602 | struct rb_node *p = ai->volumes.rb_node; | ||
603 | |||
604 | while (p) { | ||
605 | av = rb_entry(p, struct ubi_ainf_volume, rb); | ||
606 | |||
607 | if (vol_id == av->vol_id) | ||
608 | return av; | ||
609 | |||
610 | if (vol_id > av->vol_id) | ||
611 | p = p->rb_left; | ||
612 | else | ||
613 | p = p->rb_right; | ||
614 | } | ||
615 | |||
616 | return NULL; | ||
617 | } | ||
618 | |||
619 | /** | ||
620 | * ubi_remove_av - delete attaching information about a volume. | ||
621 | * @ai: attaching information | ||
622 | * @av: the volume attaching information to delete | ||
623 | */ | ||
624 | void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) | ||
625 | { | ||
626 | struct rb_node *rb; | ||
627 | struct ubi_ainf_peb *aeb; | ||
628 | |||
629 | dbg_bld("remove attaching information about volume %d", av->vol_id); | ||
630 | |||
631 | while ((rb = rb_first(&av->root))) { | ||
632 | aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb); | ||
633 | rb_erase(&aeb->u.rb, &av->root); | ||
634 | list_add_tail(&aeb->u.list, &ai->erase); | ||
635 | } | ||
636 | |||
637 | rb_erase(&av->rb, &ai->volumes); | ||
638 | kfree(av); | ||
639 | ai->vols_found -= 1; | ||
640 | } | ||
641 | |||
642 | /** | ||
643 | * early_erase_peb - erase a physical eraseblock. | ||
644 | * @ubi: UBI device description object | ||
645 | * @ai: attaching information | ||
646 | * @pnum: physical eraseblock number to erase; | ||
647 | * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown) | ||
648 | * | ||
649 | * This function erases physical eraseblock 'pnum', and writes the erase | ||
650 | * counter header to it. This function should only be used on UBI device | ||
651 | * initialization stages, when the EBA sub-system had not been yet initialized. | ||
652 | * This function returns zero in case of success and a negative error code in | ||
653 | * case of failure. | ||
654 | */ | ||
655 | static int early_erase_peb(struct ubi_device *ubi, | ||
656 | const struct ubi_attach_info *ai, int pnum, int ec) | ||
657 | { | ||
658 | int err; | ||
659 | struct ubi_ec_hdr *ec_hdr; | ||
660 | |||
661 | if ((long long)ec >= UBI_MAX_ERASECOUNTER) { | ||
662 | /* | ||
663 | * Erase counter overflow. Upgrade UBI and use 64-bit | ||
664 | * erase counters internally. | ||
665 | */ | ||
666 | ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); | ||
667 | return -EINVAL; | ||
668 | } | ||
669 | |||
670 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
671 | if (!ec_hdr) | ||
672 | return -ENOMEM; | ||
673 | |||
674 | ec_hdr->ec = cpu_to_be64(ec); | ||
675 | |||
676 | err = ubi_io_sync_erase(ubi, pnum, 0); | ||
677 | if (err < 0) | ||
678 | goto out_free; | ||
679 | |||
680 | err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); | ||
681 | |||
682 | out_free: | ||
683 | kfree(ec_hdr); | ||
684 | return err; | ||
685 | } | ||
686 | |||
687 | /** | ||
688 | * ubi_early_get_peb - get a free physical eraseblock. | ||
689 | * @ubi: UBI device description object | ||
690 | * @ai: attaching information | ||
691 | * | ||
692 | * This function returns a free physical eraseblock. It is supposed to be | ||
693 | * called on the UBI initialization stages when the wear-leveling sub-system is | ||
694 | * not initialized yet. This function picks a physical eraseblocks from one of | ||
695 | * the lists, writes the EC header if it is needed, and removes it from the | ||
696 | * list. | ||
697 | * | ||
698 | * This function returns a pointer to the "aeb" of the found free PEB in case | ||
699 | * of success and an error code in case of failure. | ||
700 | */ | ||
701 | struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, | ||
702 | struct ubi_attach_info *ai) | ||
703 | { | ||
704 | int err = 0; | ||
705 | struct ubi_ainf_peb *aeb, *tmp_aeb; | ||
706 | |||
707 | if (!list_empty(&ai->free)) { | ||
708 | aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list); | ||
709 | list_del(&aeb->u.list); | ||
710 | dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec); | ||
711 | return aeb; | ||
712 | } | ||
713 | |||
714 | /* | ||
715 | * We try to erase the first physical eraseblock from the erase list | ||
716 | * and pick it if we succeed, or try to erase the next one if not. And | ||
717 | * so forth. We don't want to take care about bad eraseblocks here - | ||
718 | * they'll be handled later. | ||
719 | */ | ||
720 | list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) { | ||
721 | if (aeb->ec == UBI_UNKNOWN) | ||
722 | aeb->ec = ai->mean_ec; | ||
723 | |||
724 | err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1); | ||
725 | if (err) | ||
726 | continue; | ||
727 | |||
728 | aeb->ec += 1; | ||
729 | list_del(&aeb->u.list); | ||
730 | dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec); | ||
731 | return aeb; | ||
732 | } | ||
733 | |||
734 | ubi_err("no free eraseblocks"); | ||
735 | return ERR_PTR(-ENOSPC); | ||
736 | } | ||
737 | |||
738 | /** | ||
739 | * check_corruption - check the data area of PEB. | ||
740 | * @ubi: UBI device description object | ||
741 | * @vid_hrd: the (corrupted) VID header of this PEB | ||
742 | * @pnum: the physical eraseblock number to check | ||
743 | * | ||
744 | * This is a helper function which is used to distinguish between VID header | ||
745 | * corruptions caused by power cuts and other reasons. If the PEB contains only | ||
746 | * 0xFF bytes in the data area, the VID header is most probably corrupted | ||
747 | * because of a power cut (%0 is returned in this case). Otherwise, it was | ||
748 | * probably corrupted for some other reasons (%1 is returned in this case). A | ||
749 | * negative error code is returned if a read error occurred. | ||
750 | * | ||
751 | * If the corruption reason was a power cut, UBI can safely erase this PEB. | ||
752 | * Otherwise, it should preserve it to avoid possibly destroying important | ||
753 | * information. | ||
754 | */ | ||
755 | static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, | ||
756 | int pnum) | ||
757 | { | ||
758 | int err; | ||
759 | |||
760 | mutex_lock(&ubi->buf_mutex); | ||
761 | memset(ubi->peb_buf, 0x00, ubi->leb_size); | ||
762 | |||
763 | err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start, | ||
764 | ubi->leb_size); | ||
765 | if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { | ||
766 | /* | ||
767 | * Bit-flips or integrity errors while reading the data area. | ||
768 | * It is difficult to say for sure what type of corruption is | ||
769 | * this, but presumably a power cut happened while this PEB was | ||
770 | * erased, so it became unstable and corrupted, and should be | ||
771 | * erased. | ||
772 | */ | ||
773 | err = 0; | ||
774 | goto out_unlock; | ||
775 | } | ||
776 | |||
777 | if (err) | ||
778 | goto out_unlock; | ||
779 | |||
780 | if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) | ||
781 | goto out_unlock; | ||
782 | |||
783 | ubi_err("PEB %d contains corrupted VID header, and the data does not " | ||
784 | "contain all 0xFF, this may be a non-UBI PEB or a severe VID " | ||
785 | "header corruption which requires manual inspection", pnum); | ||
786 | ubi_dump_vid_hdr(vid_hdr); | ||
787 | dbg_msg("hexdump of PEB %d offset %d, length %d", | ||
788 | pnum, ubi->leb_start, ubi->leb_size); | ||
789 | ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | ||
790 | ubi->peb_buf, ubi->leb_size, 1); | ||
791 | err = 1; | ||
792 | |||
793 | out_unlock: | ||
794 | mutex_unlock(&ubi->buf_mutex); | ||
795 | return err; | ||
796 | } | ||
797 | |||
798 | /** | ||
799 | * scan_peb - scan and process UBI headers of a PEB. | ||
800 | * @ubi: UBI device description object | ||
801 | * @ai: attaching information | ||
802 | * @pnum: the physical eraseblock number | ||
803 | * | ||
804 | * This function reads UBI headers of PEB @pnum, checks them, and adds | ||
805 | * information about this PEB to the corresponding list or RB-tree in the | ||
806 | * "attaching info" structure. Returns zero if the physical eraseblock was | ||
807 | * successfully handled and a negative error code in case of failure. | ||
808 | */ | ||
809 | static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, | ||
810 | int pnum) | ||
811 | { | ||
812 | long long uninitialized_var(ec); | ||
813 | int err, bitflips = 0, vol_id, ec_err = 0; | ||
814 | |||
815 | dbg_bld("scan PEB %d", pnum); | ||
816 | |||
817 | /* Skip bad physical eraseblocks */ | ||
818 | err = ubi_io_is_bad(ubi, pnum); | ||
819 | if (err < 0) | ||
820 | return err; | ||
821 | else if (err) { | ||
822 | ai->bad_peb_count += 1; | ||
823 | return 0; | ||
824 | } | ||
825 | |||
826 | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); | ||
827 | if (err < 0) | ||
828 | return err; | ||
829 | switch (err) { | ||
830 | case 0: | ||
831 | break; | ||
832 | case UBI_IO_BITFLIPS: | ||
833 | bitflips = 1; | ||
834 | break; | ||
835 | case UBI_IO_FF: | ||
836 | ai->empty_peb_count += 1; | ||
837 | return add_to_list(ai, pnum, UBI_UNKNOWN, 0, | ||
838 | &ai->erase); | ||
839 | case UBI_IO_FF_BITFLIPS: | ||
840 | ai->empty_peb_count += 1; | ||
841 | return add_to_list(ai, pnum, UBI_UNKNOWN, 1, | ||
842 | &ai->erase); | ||
843 | case UBI_IO_BAD_HDR_EBADMSG: | ||
844 | case UBI_IO_BAD_HDR: | ||
845 | /* | ||
846 | * We have to also look at the VID header, possibly it is not | ||
847 | * corrupted. Set %bitflips flag in order to make this PEB be | ||
848 | * moved and EC be re-created. | ||
849 | */ | ||
850 | ec_err = err; | ||
851 | ec = UBI_UNKNOWN; | ||
852 | bitflips = 1; | ||
853 | break; | ||
854 | default: | ||
855 | ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err); | ||
856 | return -EINVAL; | ||
857 | } | ||
858 | |||
859 | if (!ec_err) { | ||
860 | int image_seq; | ||
861 | |||
862 | /* Make sure UBI version is OK */ | ||
863 | if (ech->version != UBI_VERSION) { | ||
864 | ubi_err("this UBI version is %d, image version is %d", | ||
865 | UBI_VERSION, (int)ech->version); | ||
866 | return -EINVAL; | ||
867 | } | ||
868 | |||
869 | ec = be64_to_cpu(ech->ec); | ||
870 | if (ec > UBI_MAX_ERASECOUNTER) { | ||
871 | /* | ||
872 | * Erase counter overflow. The EC headers have 64 bits | ||
873 | * reserved, but we anyway make use of only 31 bit | ||
874 | * values, as this seems to be enough for any existing | ||
875 | * flash. Upgrade UBI and use 64-bit erase counters | ||
876 | * internally. | ||
877 | */ | ||
878 | ubi_err("erase counter overflow, max is %d", | ||
879 | UBI_MAX_ERASECOUNTER); | ||
880 | ubi_dump_ec_hdr(ech); | ||
881 | return -EINVAL; | ||
882 | } | ||
883 | |||
884 | /* | ||
885 | * Make sure that all PEBs have the same image sequence number. | ||
886 | * This allows us to detect situations when users flash UBI | ||
887 | * images incorrectly, so that the flash has the new UBI image | ||
888 | * and leftovers from the old one. This feature was added | ||
889 | * relatively recently, and the sequence number was always | ||
890 | * zero, because old UBI implementations always set it to zero. | ||
891 | * For this reasons, we do not panic if some PEBs have zero | ||
892 | * sequence number, while other PEBs have non-zero sequence | ||
893 | * number. | ||
894 | */ | ||
895 | image_seq = be32_to_cpu(ech->image_seq); | ||
896 | if (!ubi->image_seq && image_seq) | ||
897 | ubi->image_seq = image_seq; | ||
898 | if (ubi->image_seq && image_seq && | ||
899 | ubi->image_seq != image_seq) { | ||
900 | ubi_err("bad image sequence number %d in PEB %d, " | ||
901 | "expected %d", image_seq, pnum, ubi->image_seq); | ||
902 | ubi_dump_ec_hdr(ech); | ||
903 | return -EINVAL; | ||
904 | } | ||
905 | } | ||
906 | |||
907 | /* OK, we've done with the EC header, let's look at the VID header */ | ||
908 | |||
909 | err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); | ||
910 | if (err < 0) | ||
911 | return err; | ||
912 | switch (err) { | ||
913 | case 0: | ||
914 | break; | ||
915 | case UBI_IO_BITFLIPS: | ||
916 | bitflips = 1; | ||
917 | break; | ||
918 | case UBI_IO_BAD_HDR_EBADMSG: | ||
919 | if (ec_err == UBI_IO_BAD_HDR_EBADMSG) | ||
920 | /* | ||
921 | * Both EC and VID headers are corrupted and were read | ||
922 | * with data integrity error, probably this is a bad | ||
923 | * PEB, bit it is not marked as bad yet. This may also | ||
924 | * be a result of power cut during erasure. | ||
925 | */ | ||
926 | ai->maybe_bad_peb_count += 1; | ||
927 | case UBI_IO_BAD_HDR: | ||
928 | if (ec_err) | ||
929 | /* | ||
930 | * Both headers are corrupted. There is a possibility | ||
931 | * that this a valid UBI PEB which has corresponding | ||
932 | * LEB, but the headers are corrupted. However, it is | ||
933 | * impossible to distinguish it from a PEB which just | ||
934 | * contains garbage because of a power cut during erase | ||
935 | * operation. So we just schedule this PEB for erasure. | ||
936 | * | ||
937 | * Besides, in case of NOR flash, we deliberately | ||
938 | * corrupt both headers because NOR flash erasure is | ||
939 | * slow and can start from the end. | ||
940 | */ | ||
941 | err = 0; | ||
942 | else | ||
943 | /* | ||
944 | * The EC was OK, but the VID header is corrupted. We | ||
945 | * have to check what is in the data area. | ||
946 | */ | ||
947 | err = check_corruption(ubi, vidh, pnum); | ||
948 | |||
949 | if (err < 0) | ||
950 | return err; | ||
951 | else if (!err) | ||
952 | /* This corruption is caused by a power cut */ | ||
953 | err = add_to_list(ai, pnum, ec, 1, &ai->erase); | ||
954 | else | ||
955 | /* This is an unexpected corruption */ | ||
956 | err = add_corrupted(ai, pnum, ec); | ||
957 | if (err) | ||
958 | return err; | ||
959 | goto adjust_mean_ec; | ||
960 | case UBI_IO_FF_BITFLIPS: | ||
961 | err = add_to_list(ai, pnum, ec, 1, &ai->erase); | ||
962 | if (err) | ||
963 | return err; | ||
964 | goto adjust_mean_ec; | ||
965 | case UBI_IO_FF: | ||
966 | if (ec_err) | ||
967 | err = add_to_list(ai, pnum, ec, 1, &ai->erase); | ||
968 | else | ||
969 | err = add_to_list(ai, pnum, ec, 0, &ai->free); | ||
970 | if (err) | ||
971 | return err; | ||
972 | goto adjust_mean_ec; | ||
973 | default: | ||
974 | ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d", | ||
975 | err); | ||
976 | return -EINVAL; | ||
977 | } | ||
978 | |||
979 | vol_id = be32_to_cpu(vidh->vol_id); | ||
980 | if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { | ||
981 | int lnum = be32_to_cpu(vidh->lnum); | ||
982 | |||
983 | /* Unsupported internal volume */ | ||
984 | switch (vidh->compat) { | ||
985 | case UBI_COMPAT_DELETE: | ||
986 | ubi_msg("\"delete\" compatible internal volume %d:%d" | ||
987 | " found, will remove it", vol_id, lnum); | ||
988 | err = add_to_list(ai, pnum, ec, 1, &ai->erase); | ||
989 | if (err) | ||
990 | return err; | ||
991 | return 0; | ||
992 | |||
993 | case UBI_COMPAT_RO: | ||
994 | ubi_msg("read-only compatible internal volume %d:%d" | ||
995 | " found, switch to read-only mode", | ||
996 | vol_id, lnum); | ||
997 | ubi->ro_mode = 1; | ||
998 | break; | ||
999 | |||
1000 | case UBI_COMPAT_PRESERVE: | ||
1001 | ubi_msg("\"preserve\" compatible internal volume %d:%d" | ||
1002 | " found", vol_id, lnum); | ||
1003 | err = add_to_list(ai, pnum, ec, 0, &ai->alien); | ||
1004 | if (err) | ||
1005 | return err; | ||
1006 | return 0; | ||
1007 | |||
1008 | case UBI_COMPAT_REJECT: | ||
1009 | ubi_err("incompatible internal volume %d:%d found", | ||
1010 | vol_id, lnum); | ||
1011 | return -EINVAL; | ||
1012 | } | ||
1013 | } | ||
1014 | |||
1015 | if (ec_err) | ||
1016 | ubi_warn("valid VID header but corrupted EC header at PEB %d", | ||
1017 | pnum); | ||
1018 | err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips); | ||
1019 | if (err) | ||
1020 | return err; | ||
1021 | |||
1022 | adjust_mean_ec: | ||
1023 | if (!ec_err) { | ||
1024 | ai->ec_sum += ec; | ||
1025 | ai->ec_count += 1; | ||
1026 | if (ec > ai->max_ec) | ||
1027 | ai->max_ec = ec; | ||
1028 | if (ec < ai->min_ec) | ||
1029 | ai->min_ec = ec; | ||
1030 | } | ||
1031 | |||
1032 | return 0; | ||
1033 | } | ||
1034 | |||
1035 | /** | ||
1036 | * late_analysis - analyze the overall situation with PEB. | ||
1037 | * @ubi: UBI device description object | ||
1038 | * @ai: attaching information | ||
1039 | * | ||
1040 | * This is a helper function which takes a look what PEBs we have after we | ||
1041 | * gather information about all of them ("ai" is compete). It decides whether | ||
1042 | * the flash is empty and should be formatted of whether there are too many | ||
1043 | * corrupted PEBs and we should not attach this MTD device. Returns zero if we | ||
1044 | * should proceed with attaching the MTD device, and %-EINVAL if we should not. | ||
1045 | */ | ||
1046 | static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) | ||
1047 | { | ||
1048 | struct ubi_ainf_peb *aeb; | ||
1049 | int max_corr, peb_count; | ||
1050 | |||
1051 | peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count; | ||
1052 | max_corr = peb_count / 20 ?: 8; | ||
1053 | |||
1054 | /* | ||
1055 | * Few corrupted PEBs is not a problem and may be just a result of | ||
1056 | * unclean reboots. However, many of them may indicate some problems | ||
1057 | * with the flash HW or driver. | ||
1058 | */ | ||
1059 | if (ai->corr_peb_count) { | ||
1060 | ubi_err("%d PEBs are corrupted and preserved", | ||
1061 | ai->corr_peb_count); | ||
1062 | printk(KERN_ERR "Corrupted PEBs are:"); | ||
1063 | list_for_each_entry(aeb, &ai->corr, u.list) | ||
1064 | printk(KERN_CONT " %d", aeb->pnum); | ||
1065 | printk(KERN_CONT "\n"); | ||
1066 | |||
1067 | /* | ||
1068 | * If too many PEBs are corrupted, we refuse attaching, | ||
1069 | * otherwise, only print a warning. | ||
1070 | */ | ||
1071 | if (ai->corr_peb_count >= max_corr) { | ||
1072 | ubi_err("too many corrupted PEBs, refusing"); | ||
1073 | return -EINVAL; | ||
1074 | } | ||
1075 | } | ||
1076 | |||
1077 | if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) { | ||
1078 | /* | ||
1079 | * All PEBs are empty, or almost all - a couple PEBs look like | ||
1080 | * they may be bad PEBs which were not marked as bad yet. | ||
1081 | * | ||
1082 | * This piece of code basically tries to distinguish between | ||
1083 | * the following situations: | ||
1084 | * | ||
1085 | * 1. Flash is empty, but there are few bad PEBs, which are not | ||
1086 | * marked as bad so far, and which were read with error. We | ||
1087 | * want to go ahead and format this flash. While formatting, | ||
1088 | * the faulty PEBs will probably be marked as bad. | ||
1089 | * | ||
1090 | * 2. Flash contains non-UBI data and we do not want to format | ||
1091 | * it and destroy possibly important information. | ||
1092 | */ | ||
1093 | if (ai->maybe_bad_peb_count <= 2) { | ||
1094 | ai->is_empty = 1; | ||
1095 | ubi_msg("empty MTD device detected"); | ||
1096 | get_random_bytes(&ubi->image_seq, | ||
1097 | sizeof(ubi->image_seq)); | ||
1098 | } else { | ||
1099 | ubi_err("MTD device is not UBI-formatted and possibly " | ||
1100 | "contains non-UBI data - refusing it"); | ||
1101 | return -EINVAL; | ||
1102 | } | ||
1103 | |||
1104 | } | ||
1105 | |||
1106 | return 0; | ||
1107 | } | ||
1108 | |||
1109 | /** | ||
1110 | * scan_all - scan entire MTD device. | ||
1111 | * @ubi: UBI device description object | ||
1112 | * | ||
1113 | * This function does full scanning of an MTD device and returns complete | ||
1114 | * information about it in form of a "struct ubi_attach_info" object. In case | ||
1115 | * of failure, an error code is returned. | ||
1116 | */ | ||
1117 | static struct ubi_attach_info *scan_all(struct ubi_device *ubi) | ||
1118 | { | ||
1119 | int err, pnum; | ||
1120 | struct rb_node *rb1, *rb2; | ||
1121 | struct ubi_ainf_volume *av; | ||
1122 | struct ubi_ainf_peb *aeb; | ||
1123 | struct ubi_attach_info *ai; | ||
1124 | |||
1125 | ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); | ||
1126 | if (!ai) | ||
1127 | return ERR_PTR(-ENOMEM); | ||
1128 | |||
1129 | INIT_LIST_HEAD(&ai->corr); | ||
1130 | INIT_LIST_HEAD(&ai->free); | ||
1131 | INIT_LIST_HEAD(&ai->erase); | ||
1132 | INIT_LIST_HEAD(&ai->alien); | ||
1133 | ai->volumes = RB_ROOT; | ||
1134 | |||
1135 | err = -ENOMEM; | ||
1136 | ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache", | ||
1137 | sizeof(struct ubi_ainf_peb), | ||
1138 | 0, 0, NULL); | ||
1139 | if (!ai->aeb_slab_cache) | ||
1140 | goto out_ai; | ||
1141 | |||
1142 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
1143 | if (!ech) | ||
1144 | goto out_ai; | ||
1145 | |||
1146 | vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | ||
1147 | if (!vidh) | ||
1148 | goto out_ech; | ||
1149 | |||
1150 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | ||
1151 | cond_resched(); | ||
1152 | |||
1153 | dbg_gen("process PEB %d", pnum); | ||
1154 | err = scan_peb(ubi, ai, pnum); | ||
1155 | if (err < 0) | ||
1156 | goto out_vidh; | ||
1157 | } | ||
1158 | |||
1159 | dbg_msg("scanning is finished"); | ||
1160 | |||
1161 | /* Calculate mean erase counter */ | ||
1162 | if (ai->ec_count) | ||
1163 | ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); | ||
1164 | |||
1165 | err = late_analysis(ubi, ai); | ||
1166 | if (err) | ||
1167 | goto out_vidh; | ||
1168 | |||
1169 | /* | ||
1170 | * In case of unknown erase counter we use the mean erase counter | ||
1171 | * value. | ||
1172 | */ | ||
1173 | ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { | ||
1174 | ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) | ||
1175 | if (aeb->ec == UBI_UNKNOWN) | ||
1176 | aeb->ec = ai->mean_ec; | ||
1177 | } | ||
1178 | |||
1179 | list_for_each_entry(aeb, &ai->free, u.list) { | ||
1180 | if (aeb->ec == UBI_UNKNOWN) | ||
1181 | aeb->ec = ai->mean_ec; | ||
1182 | } | ||
1183 | |||
1184 | list_for_each_entry(aeb, &ai->corr, u.list) | ||
1185 | if (aeb->ec == UBI_UNKNOWN) | ||
1186 | aeb->ec = ai->mean_ec; | ||
1187 | |||
1188 | list_for_each_entry(aeb, &ai->erase, u.list) | ||
1189 | if (aeb->ec == UBI_UNKNOWN) | ||
1190 | aeb->ec = ai->mean_ec; | ||
1191 | |||
1192 | err = self_check_ai(ubi, ai); | ||
1193 | if (err) | ||
1194 | goto out_vidh; | ||
1195 | |||
1196 | ubi_free_vid_hdr(ubi, vidh); | ||
1197 | kfree(ech); | ||
1198 | |||
1199 | return ai; | ||
1200 | |||
1201 | out_vidh: | ||
1202 | ubi_free_vid_hdr(ubi, vidh); | ||
1203 | out_ech: | ||
1204 | kfree(ech); | ||
1205 | out_ai: | ||
1206 | ubi_destroy_ai(ai); | ||
1207 | return ERR_PTR(err); | ||
1208 | } | ||
1209 | |||
1210 | /** | ||
1211 | * ubi_attach - attach an MTD device. | ||
1212 | * @ubi: UBI device descriptor | ||
1213 | * | ||
1214 | * This function returns zero in case of success and a negative error code in | ||
1215 | * case of failure. | ||
1216 | */ | ||
1217 | int ubi_attach(struct ubi_device *ubi) | ||
1218 | { | ||
1219 | int err; | ||
1220 | struct ubi_attach_info *ai; | ||
1221 | |||
1222 | ai = scan_all(ubi); | ||
1223 | if (IS_ERR(ai)) | ||
1224 | return PTR_ERR(ai); | ||
1225 | |||
1226 | ubi->bad_peb_count = ai->bad_peb_count; | ||
1227 | ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; | ||
1228 | ubi->corr_peb_count = ai->corr_peb_count; | ||
1229 | ubi->max_ec = ai->max_ec; | ||
1230 | ubi->mean_ec = ai->mean_ec; | ||
1231 | ubi_msg("max. sequence number: %llu", ai->max_sqnum); | ||
1232 | |||
1233 | err = ubi_read_volume_table(ubi, ai); | ||
1234 | if (err) | ||
1235 | goto out_ai; | ||
1236 | |||
1237 | err = ubi_wl_init(ubi, ai); | ||
1238 | if (err) | ||
1239 | goto out_vtbl; | ||
1240 | |||
1241 | err = ubi_eba_init(ubi, ai); | ||
1242 | if (err) | ||
1243 | goto out_wl; | ||
1244 | |||
1245 | ubi_destroy_ai(ai); | ||
1246 | return 0; | ||
1247 | |||
1248 | out_wl: | ||
1249 | ubi_wl_close(ubi); | ||
1250 | out_vtbl: | ||
1251 | ubi_free_internal_volumes(ubi); | ||
1252 | vfree(ubi->vtbl); | ||
1253 | out_ai: | ||
1254 | ubi_destroy_ai(ai); | ||
1255 | return err; | ||
1256 | } | ||
1257 | |||
1258 | /** | ||
1259 | * destroy_av - free volume attaching information. | ||
1260 | * @av: volume attaching information | ||
1261 | * @ai: attaching information | ||
1262 | * | ||
1263 | * This function destroys the volume attaching information. | ||
1264 | */ | ||
1265 | static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) | ||
1266 | { | ||
1267 | struct ubi_ainf_peb *aeb; | ||
1268 | struct rb_node *this = av->root.rb_node; | ||
1269 | |||
1270 | while (this) { | ||
1271 | if (this->rb_left) | ||
1272 | this = this->rb_left; | ||
1273 | else if (this->rb_right) | ||
1274 | this = this->rb_right; | ||
1275 | else { | ||
1276 | aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); | ||
1277 | this = rb_parent(this); | ||
1278 | if (this) { | ||
1279 | if (this->rb_left == &aeb->u.rb) | ||
1280 | this->rb_left = NULL; | ||
1281 | else | ||
1282 | this->rb_right = NULL; | ||
1283 | } | ||
1284 | |||
1285 | kmem_cache_free(ai->aeb_slab_cache, aeb); | ||
1286 | } | ||
1287 | } | ||
1288 | kfree(av); | ||
1289 | } | ||
1290 | |||
1291 | /** | ||
1292 | * ubi_destroy_ai - destroy attaching information. | ||
1293 | * @ai: attaching information | ||
1294 | */ | ||
1295 | void ubi_destroy_ai(struct ubi_attach_info *ai) | ||
1296 | { | ||
1297 | struct ubi_ainf_peb *aeb, *aeb_tmp; | ||
1298 | struct ubi_ainf_volume *av; | ||
1299 | struct rb_node *rb; | ||
1300 | |||
1301 | list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { | ||
1302 | list_del(&aeb->u.list); | ||
1303 | kmem_cache_free(ai->aeb_slab_cache, aeb); | ||
1304 | } | ||
1305 | list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { | ||
1306 | list_del(&aeb->u.list); | ||
1307 | kmem_cache_free(ai->aeb_slab_cache, aeb); | ||
1308 | } | ||
1309 | list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { | ||
1310 | list_del(&aeb->u.list); | ||
1311 | kmem_cache_free(ai->aeb_slab_cache, aeb); | ||
1312 | } | ||
1313 | list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { | ||
1314 | list_del(&aeb->u.list); | ||
1315 | kmem_cache_free(ai->aeb_slab_cache, aeb); | ||
1316 | } | ||
1317 | |||
1318 | /* Destroy the volume RB-tree */ | ||
1319 | rb = ai->volumes.rb_node; | ||
1320 | while (rb) { | ||
1321 | if (rb->rb_left) | ||
1322 | rb = rb->rb_left; | ||
1323 | else if (rb->rb_right) | ||
1324 | rb = rb->rb_right; | ||
1325 | else { | ||
1326 | av = rb_entry(rb, struct ubi_ainf_volume, rb); | ||
1327 | |||
1328 | rb = rb_parent(rb); | ||
1329 | if (rb) { | ||
1330 | if (rb->rb_left == &av->rb) | ||
1331 | rb->rb_left = NULL; | ||
1332 | else | ||
1333 | rb->rb_right = NULL; | ||
1334 | } | ||
1335 | |||
1336 | destroy_av(ai, av); | ||
1337 | } | ||
1338 | } | ||
1339 | |||
1340 | if (ai->aeb_slab_cache) | ||
1341 | kmem_cache_destroy(ai->aeb_slab_cache); | ||
1342 | |||
1343 | kfree(ai); | ||
1344 | } | ||
1345 | |||
1346 | /** | ||
1347 | * self_check_ai - check the attaching information. | ||
1348 | * @ubi: UBI device description object | ||
1349 | * @ai: attaching information | ||
1350 | * | ||
1351 | * This function returns zero if the attaching information is all right, and a | ||
1352 | * negative error code if not or if an error occurred. | ||
1353 | */ | ||
1354 | static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai) | ||
1355 | { | ||
1356 | int pnum, err, vols_found = 0; | ||
1357 | struct rb_node *rb1, *rb2; | ||
1358 | struct ubi_ainf_volume *av; | ||
1359 | struct ubi_ainf_peb *aeb, *last_aeb; | ||
1360 | uint8_t *buf; | ||
1361 | |||
1362 | if (!ubi->dbg->chk_gen) | ||
1363 | return 0; | ||
1364 | |||
1365 | /* | ||
1366 | * At first, check that attaching information is OK. | ||
1367 | */ | ||
1368 | ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { | ||
1369 | int leb_count = 0; | ||
1370 | |||
1371 | cond_resched(); | ||
1372 | |||
1373 | vols_found += 1; | ||
1374 | |||
1375 | if (ai->is_empty) { | ||
1376 | ubi_err("bad is_empty flag"); | ||
1377 | goto bad_av; | ||
1378 | } | ||
1379 | |||
1380 | if (av->vol_id < 0 || av->highest_lnum < 0 || | ||
1381 | av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 || | ||
1382 | av->data_pad < 0 || av->last_data_size < 0) { | ||
1383 | ubi_err("negative values"); | ||
1384 | goto bad_av; | ||
1385 | } | ||
1386 | |||
1387 | if (av->vol_id >= UBI_MAX_VOLUMES && | ||
1388 | av->vol_id < UBI_INTERNAL_VOL_START) { | ||
1389 | ubi_err("bad vol_id"); | ||
1390 | goto bad_av; | ||
1391 | } | ||
1392 | |||
1393 | if (av->vol_id > ai->highest_vol_id) { | ||
1394 | ubi_err("highest_vol_id is %d, but vol_id %d is there", | ||
1395 | ai->highest_vol_id, av->vol_id); | ||
1396 | goto out; | ||
1397 | } | ||
1398 | |||
1399 | if (av->vol_type != UBI_DYNAMIC_VOLUME && | ||
1400 | av->vol_type != UBI_STATIC_VOLUME) { | ||
1401 | ubi_err("bad vol_type"); | ||
1402 | goto bad_av; | ||
1403 | } | ||
1404 | |||
1405 | if (av->data_pad > ubi->leb_size / 2) { | ||
1406 | ubi_err("bad data_pad"); | ||
1407 | goto bad_av; | ||
1408 | } | ||
1409 | |||
1410 | last_aeb = NULL; | ||
1411 | ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { | ||
1412 | cond_resched(); | ||
1413 | |||
1414 | last_aeb = aeb; | ||
1415 | leb_count += 1; | ||
1416 | |||
1417 | if (aeb->pnum < 0 || aeb->ec < 0) { | ||
1418 | ubi_err("negative values"); | ||
1419 | goto bad_aeb; | ||
1420 | } | ||
1421 | |||
1422 | if (aeb->ec < ai->min_ec) { | ||
1423 | ubi_err("bad ai->min_ec (%d), %d found", | ||
1424 | ai->min_ec, aeb->ec); | ||
1425 | goto bad_aeb; | ||
1426 | } | ||
1427 | |||
1428 | if (aeb->ec > ai->max_ec) { | ||
1429 | ubi_err("bad ai->max_ec (%d), %d found", | ||
1430 | ai->max_ec, aeb->ec); | ||
1431 | goto bad_aeb; | ||
1432 | } | ||
1433 | |||
1434 | if (aeb->pnum >= ubi->peb_count) { | ||
1435 | ubi_err("too high PEB number %d, total PEBs %d", | ||
1436 | aeb->pnum, ubi->peb_count); | ||
1437 | goto bad_aeb; | ||
1438 | } | ||
1439 | |||
1440 | if (av->vol_type == UBI_STATIC_VOLUME) { | ||
1441 | if (aeb->lnum >= av->used_ebs) { | ||
1442 | ubi_err("bad lnum or used_ebs"); | ||
1443 | goto bad_aeb; | ||
1444 | } | ||
1445 | } else { | ||
1446 | if (av->used_ebs != 0) { | ||
1447 | ubi_err("non-zero used_ebs"); | ||
1448 | goto bad_aeb; | ||
1449 | } | ||
1450 | } | ||
1451 | |||
1452 | if (aeb->lnum > av->highest_lnum) { | ||
1453 | ubi_err("incorrect highest_lnum or lnum"); | ||
1454 | goto bad_aeb; | ||
1455 | } | ||
1456 | } | ||
1457 | |||
1458 | if (av->leb_count != leb_count) { | ||
1459 | ubi_err("bad leb_count, %d objects in the tree", | ||
1460 | leb_count); | ||
1461 | goto bad_av; | ||
1462 | } | ||
1463 | |||
1464 | if (!last_aeb) | ||
1465 | continue; | ||
1466 | |||
1467 | aeb = last_aeb; | ||
1468 | |||
1469 | if (aeb->lnum != av->highest_lnum) { | ||
1470 | ubi_err("bad highest_lnum"); | ||
1471 | goto bad_aeb; | ||
1472 | } | ||
1473 | } | ||
1474 | |||
1475 | if (vols_found != ai->vols_found) { | ||
1476 | ubi_err("bad ai->vols_found %d, should be %d", | ||
1477 | ai->vols_found, vols_found); | ||
1478 | goto out; | ||
1479 | } | ||
1480 | |||
1481 | /* Check that attaching information is correct */ | ||
1482 | ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { | ||
1483 | last_aeb = NULL; | ||
1484 | ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { | ||
1485 | int vol_type; | ||
1486 | |||
1487 | cond_resched(); | ||
1488 | |||
1489 | last_aeb = aeb; | ||
1490 | |||
1491 | err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1); | ||
1492 | if (err && err != UBI_IO_BITFLIPS) { | ||
1493 | ubi_err("VID header is not OK (%d)", err); | ||
1494 | if (err > 0) | ||
1495 | err = -EIO; | ||
1496 | return err; | ||
1497 | } | ||
1498 | |||
1499 | vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? | ||
1500 | UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | ||
1501 | if (av->vol_type != vol_type) { | ||
1502 | ubi_err("bad vol_type"); | ||
1503 | goto bad_vid_hdr; | ||
1504 | } | ||
1505 | |||
1506 | if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) { | ||
1507 | ubi_err("bad sqnum %llu", aeb->sqnum); | ||
1508 | goto bad_vid_hdr; | ||
1509 | } | ||
1510 | |||
1511 | if (av->vol_id != be32_to_cpu(vidh->vol_id)) { | ||
1512 | ubi_err("bad vol_id %d", av->vol_id); | ||
1513 | goto bad_vid_hdr; | ||
1514 | } | ||
1515 | |||
1516 | if (av->compat != vidh->compat) { | ||
1517 | ubi_err("bad compat %d", vidh->compat); | ||
1518 | goto bad_vid_hdr; | ||
1519 | } | ||
1520 | |||
1521 | if (aeb->lnum != be32_to_cpu(vidh->lnum)) { | ||
1522 | ubi_err("bad lnum %d", aeb->lnum); | ||
1523 | goto bad_vid_hdr; | ||
1524 | } | ||
1525 | |||
1526 | if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) { | ||
1527 | ubi_err("bad used_ebs %d", av->used_ebs); | ||
1528 | goto bad_vid_hdr; | ||
1529 | } | ||
1530 | |||
1531 | if (av->data_pad != be32_to_cpu(vidh->data_pad)) { | ||
1532 | ubi_err("bad data_pad %d", av->data_pad); | ||
1533 | goto bad_vid_hdr; | ||
1534 | } | ||
1535 | } | ||
1536 | |||
1537 | if (!last_aeb) | ||
1538 | continue; | ||
1539 | |||
1540 | if (av->highest_lnum != be32_to_cpu(vidh->lnum)) { | ||
1541 | ubi_err("bad highest_lnum %d", av->highest_lnum); | ||
1542 | goto bad_vid_hdr; | ||
1543 | } | ||
1544 | |||
1545 | if (av->last_data_size != be32_to_cpu(vidh->data_size)) { | ||
1546 | ubi_err("bad last_data_size %d", av->last_data_size); | ||
1547 | goto bad_vid_hdr; | ||
1548 | } | ||
1549 | } | ||
1550 | |||
1551 | /* | ||
1552 | * Make sure that all the physical eraseblocks are in one of the lists | ||
1553 | * or trees. | ||
1554 | */ | ||
1555 | buf = kzalloc(ubi->peb_count, GFP_KERNEL); | ||
1556 | if (!buf) | ||
1557 | return -ENOMEM; | ||
1558 | |||
1559 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | ||
1560 | err = ubi_io_is_bad(ubi, pnum); | ||
1561 | if (err < 0) { | ||
1562 | kfree(buf); | ||
1563 | return err; | ||
1564 | } else if (err) | ||
1565 | buf[pnum] = 1; | ||
1566 | } | ||
1567 | |||
1568 | ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) | ||
1569 | ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) | ||
1570 | buf[aeb->pnum] = 1; | ||
1571 | |||
1572 | list_for_each_entry(aeb, &ai->free, u.list) | ||
1573 | buf[aeb->pnum] = 1; | ||
1574 | |||
1575 | list_for_each_entry(aeb, &ai->corr, u.list) | ||
1576 | buf[aeb->pnum] = 1; | ||
1577 | |||
1578 | list_for_each_entry(aeb, &ai->erase, u.list) | ||
1579 | buf[aeb->pnum] = 1; | ||
1580 | |||
1581 | list_for_each_entry(aeb, &ai->alien, u.list) | ||
1582 | buf[aeb->pnum] = 1; | ||
1583 | |||
1584 | err = 0; | ||
1585 | for (pnum = 0; pnum < ubi->peb_count; pnum++) | ||
1586 | if (!buf[pnum]) { | ||
1587 | ubi_err("PEB %d is not referred", pnum); | ||
1588 | err = 1; | ||
1589 | } | ||
1590 | |||
1591 | kfree(buf); | ||
1592 | if (err) | ||
1593 | goto out; | ||
1594 | return 0; | ||
1595 | |||
1596 | bad_aeb: | ||
1597 | ubi_err("bad attaching information about LEB %d", aeb->lnum); | ||
1598 | ubi_dump_aeb(aeb, 0); | ||
1599 | ubi_dump_av(av); | ||
1600 | goto out; | ||
1601 | |||
1602 | bad_av: | ||
1603 | ubi_err("bad attaching information about volume %d", av->vol_id); | ||
1604 | ubi_dump_av(av); | ||
1605 | goto out; | ||
1606 | |||
1607 | bad_vid_hdr: | ||
1608 | ubi_err("bad attaching information about volume %d", av->vol_id); | ||
1609 | ubi_dump_av(av); | ||
1610 | ubi_dump_vid_hdr(vidh); | ||
1611 | |||
1612 | out: | ||
1613 | dump_stack(); | ||
1614 | return -EINVAL; | ||
1615 | } | ||