diff options
Diffstat (limited to 'drivers/mtd/nftlmount.c')
-rw-r--r-- | drivers/mtd/nftlmount.c | 770 |
1 files changed, 770 insertions, 0 deletions
diff --git a/drivers/mtd/nftlmount.c b/drivers/mtd/nftlmount.c new file mode 100644 index 000000000000..84afd9029f53 --- /dev/null +++ b/drivers/mtd/nftlmount.c | |||
@@ -0,0 +1,770 @@ | |||
1 | /* | ||
2 | * NFTL mount code with extensive checks | ||
3 | * | ||
4 | * Author: Fabrice Bellard (fabrice.bellard@netgem.com) | ||
5 | * Copyright (C) 2000 Netgem S.A. | ||
6 | * | ||
7 | * $Id: nftlmount.c,v 1.40 2004/11/22 14:38:29 kalev Exp $ | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License as published by | ||
11 | * the Free Software Foundation; either version 2 of the License, or | ||
12 | * (at your option) any later version. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, | ||
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
17 | * GNU General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
22 | */ | ||
23 | |||
24 | #include <linux/kernel.h> | ||
25 | #include <asm/errno.h> | ||
26 | #include <linux/delay.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include <linux/mtd/mtd.h> | ||
29 | #include <linux/mtd/nand.h> | ||
30 | #include <linux/mtd/nftl.h> | ||
31 | |||
32 | #define SECTORSIZE 512 | ||
33 | |||
34 | char nftlmountrev[]="$Revision: 1.40 $"; | ||
35 | |||
36 | /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the | ||
37 | * various device information of the NFTL partition and Bad Unit Table. Update | ||
38 | * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] | ||
39 | * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c | ||
40 | */ | ||
41 | static int find_boot_record(struct NFTLrecord *nftl) | ||
42 | { | ||
43 | struct nftl_uci1 h1; | ||
44 | unsigned int block, boot_record_count = 0; | ||
45 | size_t retlen; | ||
46 | u8 buf[SECTORSIZE]; | ||
47 | struct NFTLMediaHeader *mh = &nftl->MediaHdr; | ||
48 | unsigned int i; | ||
49 | |||
50 | /* Assume logical EraseSize == physical erasesize for starting the scan. | ||
51 | We'll sort it out later if we find a MediaHeader which says otherwise */ | ||
52 | /* Actually, we won't. The new DiskOnChip driver has already scanned | ||
53 | the MediaHeader and adjusted the virtual erasesize it presents in | ||
54 | the mtd device accordingly. We could even get rid of | ||
55 | nftl->EraseSize if there were any point in doing so. */ | ||
56 | nftl->EraseSize = nftl->mbd.mtd->erasesize; | ||
57 | nftl->nb_blocks = nftl->mbd.mtd->size / nftl->EraseSize; | ||
58 | |||
59 | nftl->MediaUnit = BLOCK_NIL; | ||
60 | nftl->SpareMediaUnit = BLOCK_NIL; | ||
61 | |||
62 | /* search for a valid boot record */ | ||
63 | for (block = 0; block < nftl->nb_blocks; block++) { | ||
64 | int ret; | ||
65 | |||
66 | /* Check for ANAND header first. Then can whinge if it's found but later | ||
67 | checks fail */ | ||
68 | ret = MTD_READ(nftl->mbd.mtd, block * nftl->EraseSize, SECTORSIZE, &retlen, buf); | ||
69 | /* We ignore ret in case the ECC of the MediaHeader is invalid | ||
70 | (which is apparently acceptable) */ | ||
71 | if (retlen != SECTORSIZE) { | ||
72 | static int warncount = 5; | ||
73 | |||
74 | if (warncount) { | ||
75 | printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n", | ||
76 | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); | ||
77 | if (!--warncount) | ||
78 | printk(KERN_WARNING "Further failures for this block will not be printed\n"); | ||
79 | } | ||
80 | continue; | ||
81 | } | ||
82 | |||
83 | if (retlen < 6 || memcmp(buf, "ANAND", 6)) { | ||
84 | /* ANAND\0 not found. Continue */ | ||
85 | #if 0 | ||
86 | printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n", | ||
87 | block * nftl->EraseSize, nftl->mbd.mtd->index); | ||
88 | #endif | ||
89 | continue; | ||
90 | } | ||
91 | |||
92 | /* To be safer with BIOS, also use erase mark as discriminant */ | ||
93 | if ((ret = MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, | ||
94 | 8, &retlen, (char *)&h1) < 0)) { | ||
95 | printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n", | ||
96 | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); | ||
97 | continue; | ||
98 | } | ||
99 | |||
100 | #if 0 /* Some people seem to have devices without ECC or erase marks | ||
101 | on the Media Header blocks. There are enough other sanity | ||
102 | checks in here that we can probably do without it. | ||
103 | */ | ||
104 | if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) { | ||
105 | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n", | ||
106 | block * nftl->EraseSize, nftl->mbd.mtd->index, | ||
107 | le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1)); | ||
108 | continue; | ||
109 | } | ||
110 | |||
111 | /* Finally reread to check ECC */ | ||
112 | if ((ret = MTD_READECC(nftl->mbd.mtd, block * nftl->EraseSize, SECTORSIZE, | ||
113 | &retlen, buf, (char *)&oob, NULL) < 0)) { | ||
114 | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n", | ||
115 | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); | ||
116 | continue; | ||
117 | } | ||
118 | |||
119 | /* Paranoia. Check the ANAND header is still there after the ECC read */ | ||
120 | if (memcmp(buf, "ANAND", 6)) { | ||
121 | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n", | ||
122 | block * nftl->EraseSize, nftl->mbd.mtd->index); | ||
123 | printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n", | ||
124 | buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); | ||
125 | continue; | ||
126 | } | ||
127 | #endif | ||
128 | /* OK, we like it. */ | ||
129 | |||
130 | if (boot_record_count) { | ||
131 | /* We've already processed one. So we just check if | ||
132 | this one is the same as the first one we found */ | ||
133 | if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { | ||
134 | printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n", | ||
135 | nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); | ||
136 | /* if (debug) Print both side by side */ | ||
137 | if (boot_record_count < 2) { | ||
138 | /* We haven't yet seen two real ones */ | ||
139 | return -1; | ||
140 | } | ||
141 | continue; | ||
142 | } | ||
143 | if (boot_record_count == 1) | ||
144 | nftl->SpareMediaUnit = block; | ||
145 | |||
146 | /* Mark this boot record (NFTL MediaHeader) block as reserved */ | ||
147 | nftl->ReplUnitTable[block] = BLOCK_RESERVED; | ||
148 | |||
149 | |||
150 | boot_record_count++; | ||
151 | continue; | ||
152 | } | ||
153 | |||
154 | /* This is the first we've seen. Copy the media header structure into place */ | ||
155 | memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); | ||
156 | |||
157 | /* Do some sanity checks on it */ | ||
158 | #if 0 | ||
159 | The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual | ||
160 | erasesize based on UnitSizeFactor. So the erasesize we read from the mtd | ||
161 | device is already correct. | ||
162 | if (mh->UnitSizeFactor == 0) { | ||
163 | printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n"); | ||
164 | } else if (mh->UnitSizeFactor < 0xfc) { | ||
165 | printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n", | ||
166 | mh->UnitSizeFactor); | ||
167 | return -1; | ||
168 | } else if (mh->UnitSizeFactor != 0xff) { | ||
169 | printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n", | ||
170 | mh->UnitSizeFactor); | ||
171 | nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor); | ||
172 | nftl->nb_blocks = nftl->mbd.mtd->size / nftl->EraseSize; | ||
173 | } | ||
174 | #endif | ||
175 | nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); | ||
176 | if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { | ||
177 | printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); | ||
178 | printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", | ||
179 | nftl->nb_boot_blocks, nftl->nb_blocks); | ||
180 | return -1; | ||
181 | } | ||
182 | |||
183 | nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; | ||
184 | if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { | ||
185 | printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); | ||
186 | printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", | ||
187 | nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks); | ||
188 | return -1; | ||
189 | } | ||
190 | |||
191 | nftl->mbd.size = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); | ||
192 | |||
193 | /* If we're not using the last sectors in the device for some reason, | ||
194 | reduce nb_blocks accordingly so we forget they're there */ | ||
195 | nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); | ||
196 | |||
197 | /* XXX: will be suppressed */ | ||
198 | nftl->lastEUN = nftl->nb_blocks - 1; | ||
199 | |||
200 | /* memory alloc */ | ||
201 | nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL); | ||
202 | if (!nftl->EUNtable) { | ||
203 | printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n"); | ||
204 | return -ENOMEM; | ||
205 | } | ||
206 | |||
207 | nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL); | ||
208 | if (!nftl->ReplUnitTable) { | ||
209 | kfree(nftl->EUNtable); | ||
210 | printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n"); | ||
211 | return -ENOMEM; | ||
212 | } | ||
213 | |||
214 | /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */ | ||
215 | for (i = 0; i < nftl->nb_boot_blocks; i++) | ||
216 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; | ||
217 | /* mark all remaining blocks as potentially containing data */ | ||
218 | for (; i < nftl->nb_blocks; i++) { | ||
219 | nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED; | ||
220 | } | ||
221 | |||
222 | /* Mark this boot record (NFTL MediaHeader) block as reserved */ | ||
223 | nftl->ReplUnitTable[block] = BLOCK_RESERVED; | ||
224 | |||
225 | /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ | ||
226 | for (i = 0; i < nftl->nb_blocks; i++) { | ||
227 | #if 0 | ||
228 | The new DiskOnChip driver already scanned the bad block table. Just query it. | ||
229 | if ((i & (SECTORSIZE - 1)) == 0) { | ||
230 | /* read one sector for every SECTORSIZE of blocks */ | ||
231 | if ((ret = MTD_READECC(nftl->mbd.mtd, block * nftl->EraseSize + | ||
232 | i + SECTORSIZE, SECTORSIZE, &retlen, buf, | ||
233 | (char *)&oob, NULL)) < 0) { | ||
234 | printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n", | ||
235 | ret); | ||
236 | kfree(nftl->ReplUnitTable); | ||
237 | kfree(nftl->EUNtable); | ||
238 | return -1; | ||
239 | } | ||
240 | } | ||
241 | /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ | ||
242 | if (buf[i & (SECTORSIZE - 1)] != 0xff) | ||
243 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; | ||
244 | #endif | ||
245 | if (nftl->mbd.mtd->block_isbad(nftl->mbd.mtd, i * nftl->EraseSize)) | ||
246 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; | ||
247 | } | ||
248 | |||
249 | nftl->MediaUnit = block; | ||
250 | boot_record_count++; | ||
251 | |||
252 | } /* foreach (block) */ | ||
253 | |||
254 | return boot_record_count?0:-1; | ||
255 | } | ||
256 | |||
257 | static int memcmpb(void *a, int c, int n) | ||
258 | { | ||
259 | int i; | ||
260 | for (i = 0; i < n; i++) { | ||
261 | if (c != ((unsigned char *)a)[i]) | ||
262 | return 1; | ||
263 | } | ||
264 | return 0; | ||
265 | } | ||
266 | |||
267 | /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */ | ||
268 | static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len, | ||
269 | int check_oob) | ||
270 | { | ||
271 | int i; | ||
272 | size_t retlen; | ||
273 | u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize]; | ||
274 | |||
275 | for (i = 0; i < len; i += SECTORSIZE) { | ||
276 | if (MTD_READECC(nftl->mbd.mtd, address, SECTORSIZE, &retlen, buf, &buf[SECTORSIZE], &nftl->oobinfo) < 0) | ||
277 | return -1; | ||
278 | if (memcmpb(buf, 0xff, SECTORSIZE) != 0) | ||
279 | return -1; | ||
280 | |||
281 | if (check_oob) { | ||
282 | if (memcmpb(buf + SECTORSIZE, 0xff, nftl->mbd.mtd->oobsize) != 0) | ||
283 | return -1; | ||
284 | } | ||
285 | address += SECTORSIZE; | ||
286 | } | ||
287 | |||
288 | return 0; | ||
289 | } | ||
290 | |||
291 | /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and | ||
292 | * Update NFTL metadata. Each erase operation is checked with check_free_sectors | ||
293 | * | ||
294 | * Return: 0 when succeed, -1 on error. | ||
295 | * | ||
296 | * ToDo: 1. Is it neceressary to check_free_sector after erasing ?? | ||
297 | */ | ||
298 | int NFTL_formatblock(struct NFTLrecord *nftl, int block) | ||
299 | { | ||
300 | size_t retlen; | ||
301 | unsigned int nb_erases, erase_mark; | ||
302 | struct nftl_uci1 uci; | ||
303 | struct erase_info *instr = &nftl->instr; | ||
304 | |||
305 | /* Read the Unit Control Information #1 for Wear-Leveling */ | ||
306 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, | ||
307 | 8, &retlen, (char *)&uci) < 0) | ||
308 | goto default_uci1; | ||
309 | |||
310 | erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1)); | ||
311 | if (erase_mark != ERASE_MARK) { | ||
312 | default_uci1: | ||
313 | uci.EraseMark = cpu_to_le16(ERASE_MARK); | ||
314 | uci.EraseMark1 = cpu_to_le16(ERASE_MARK); | ||
315 | uci.WearInfo = cpu_to_le32(0); | ||
316 | } | ||
317 | |||
318 | memset(instr, 0, sizeof(struct erase_info)); | ||
319 | |||
320 | /* XXX: use async erase interface, XXX: test return code */ | ||
321 | instr->mtd = nftl->mbd.mtd; | ||
322 | instr->addr = block * nftl->EraseSize; | ||
323 | instr->len = nftl->EraseSize; | ||
324 | MTD_ERASE(nftl->mbd.mtd, instr); | ||
325 | |||
326 | if (instr->state == MTD_ERASE_FAILED) { | ||
327 | printk("Error while formatting block %d\n", block); | ||
328 | goto fail; | ||
329 | } | ||
330 | |||
331 | /* increase and write Wear-Leveling info */ | ||
332 | nb_erases = le32_to_cpu(uci.WearInfo); | ||
333 | nb_erases++; | ||
334 | |||
335 | /* wrap (almost impossible with current flashs) or free block */ | ||
336 | if (nb_erases == 0) | ||
337 | nb_erases = 1; | ||
338 | |||
339 | /* check the "freeness" of Erase Unit before updating metadata | ||
340 | * FixMe: is this check really necessary ? since we have check the | ||
341 | * return code after the erase operation. */ | ||
342 | if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0) | ||
343 | goto fail; | ||
344 | |||
345 | uci.WearInfo = le32_to_cpu(nb_erases); | ||
346 | if (MTD_WRITEOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, | ||
347 | &retlen, (char *)&uci) < 0) | ||
348 | goto fail; | ||
349 | return 0; | ||
350 | fail: | ||
351 | /* could not format, update the bad block table (caller is responsible | ||
352 | for setting the ReplUnitTable to BLOCK_RESERVED on failure) */ | ||
353 | nftl->mbd.mtd->block_markbad(nftl->mbd.mtd, instr->addr); | ||
354 | return -1; | ||
355 | } | ||
356 | |||
357 | /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct. | ||
358 | * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain | ||
359 | * was being folded when NFTL was interrupted. | ||
360 | * | ||
361 | * The check_free_sectors in this function is neceressary. There is a possible | ||
362 | * situation that after writing the Data area, the Block Control Information is | ||
363 | * not updated according (due to power failure or something) which leaves the block | ||
364 | * in an umconsistent state. So we have to check if a block is really FREE in this | ||
365 | * case. */ | ||
366 | static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block) | ||
367 | { | ||
368 | unsigned int block, i, status; | ||
369 | struct nftl_bci bci; | ||
370 | int sectors_per_block; | ||
371 | size_t retlen; | ||
372 | |||
373 | sectors_per_block = nftl->EraseSize / SECTORSIZE; | ||
374 | block = first_block; | ||
375 | for (;;) { | ||
376 | for (i = 0; i < sectors_per_block; i++) { | ||
377 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + i * SECTORSIZE, | ||
378 | 8, &retlen, (char *)&bci) < 0) | ||
379 | status = SECTOR_IGNORE; | ||
380 | else | ||
381 | status = bci.Status | bci.Status1; | ||
382 | |||
383 | switch(status) { | ||
384 | case SECTOR_FREE: | ||
385 | /* verify that the sector is really free. If not, mark | ||
386 | as ignore */ | ||
387 | if (memcmpb(&bci, 0xff, 8) != 0 || | ||
388 | check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE, | ||
389 | SECTORSIZE, 0) != 0) { | ||
390 | printk("Incorrect free sector %d in block %d: " | ||
391 | "marking it as ignored\n", | ||
392 | i, block); | ||
393 | |||
394 | /* sector not free actually : mark it as SECTOR_IGNORE */ | ||
395 | bci.Status = SECTOR_IGNORE; | ||
396 | bci.Status1 = SECTOR_IGNORE; | ||
397 | MTD_WRITEOOB(nftl->mbd.mtd, | ||
398 | block * nftl->EraseSize + i * SECTORSIZE, | ||
399 | 8, &retlen, (char *)&bci); | ||
400 | } | ||
401 | break; | ||
402 | default: | ||
403 | break; | ||
404 | } | ||
405 | } | ||
406 | |||
407 | /* proceed to next Erase Unit on the chain */ | ||
408 | block = nftl->ReplUnitTable[block]; | ||
409 | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) | ||
410 | printk("incorrect ReplUnitTable[] : %d\n", block); | ||
411 | if (block == BLOCK_NIL || block >= nftl->nb_blocks) | ||
412 | break; | ||
413 | } | ||
414 | } | ||
415 | |||
416 | /* calc_chain_lenght: Walk through a Virtual Unit Chain and estimate chain length */ | ||
417 | static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block) | ||
418 | { | ||
419 | unsigned int length = 0, block = first_block; | ||
420 | |||
421 | for (;;) { | ||
422 | length++; | ||
423 | /* avoid infinite loops, although this is guaranted not to | ||
424 | happen because of the previous checks */ | ||
425 | if (length >= nftl->nb_blocks) { | ||
426 | printk("nftl: length too long %d !\n", length); | ||
427 | break; | ||
428 | } | ||
429 | |||
430 | block = nftl->ReplUnitTable[block]; | ||
431 | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) | ||
432 | printk("incorrect ReplUnitTable[] : %d\n", block); | ||
433 | if (block == BLOCK_NIL || block >= nftl->nb_blocks) | ||
434 | break; | ||
435 | } | ||
436 | return length; | ||
437 | } | ||
438 | |||
439 | /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a | ||
440 | * Virtual Unit Chain, i.e. all the units are disconnected. | ||
441 | * | ||
442 | * It is not stricly correct to begin from the first block of the chain because | ||
443 | * if we stop the code, we may see again a valid chain if there was a first_block | ||
444 | * flag in a block inside it. But is it really a problem ? | ||
445 | * | ||
446 | * FixMe: Figure out what the last statesment means. What if power failure when we are | ||
447 | * in the for (;;) loop formatting blocks ?? | ||
448 | */ | ||
449 | static void format_chain(struct NFTLrecord *nftl, unsigned int first_block) | ||
450 | { | ||
451 | unsigned int block = first_block, block1; | ||
452 | |||
453 | printk("Formatting chain at block %d\n", first_block); | ||
454 | |||
455 | for (;;) { | ||
456 | block1 = nftl->ReplUnitTable[block]; | ||
457 | |||
458 | printk("Formatting block %d\n", block); | ||
459 | if (NFTL_formatblock(nftl, block) < 0) { | ||
460 | /* cannot format !!!! Mark it as Bad Unit */ | ||
461 | nftl->ReplUnitTable[block] = BLOCK_RESERVED; | ||
462 | } else { | ||
463 | nftl->ReplUnitTable[block] = BLOCK_FREE; | ||
464 | } | ||
465 | |||
466 | /* goto next block on the chain */ | ||
467 | block = block1; | ||
468 | |||
469 | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) | ||
470 | printk("incorrect ReplUnitTable[] : %d\n", block); | ||
471 | if (block == BLOCK_NIL || block >= nftl->nb_blocks) | ||
472 | break; | ||
473 | } | ||
474 | } | ||
475 | |||
476 | /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or | ||
477 | * totally free (only 0xff). | ||
478 | * | ||
479 | * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the | ||
480 | * following critia: | ||
481 | * 1. */ | ||
482 | static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) | ||
483 | { | ||
484 | struct nftl_uci1 h1; | ||
485 | unsigned int erase_mark; | ||
486 | size_t retlen; | ||
487 | |||
488 | /* check erase mark. */ | ||
489 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, | ||
490 | &retlen, (char *)&h1) < 0) | ||
491 | return -1; | ||
492 | |||
493 | erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); | ||
494 | if (erase_mark != ERASE_MARK) { | ||
495 | /* if no erase mark, the block must be totally free. This is | ||
496 | possible in two cases : empty filsystem or interrupted erase (very unlikely) */ | ||
497 | if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0) | ||
498 | return -1; | ||
499 | |||
500 | /* free block : write erase mark */ | ||
501 | h1.EraseMark = cpu_to_le16(ERASE_MARK); | ||
502 | h1.EraseMark1 = cpu_to_le16(ERASE_MARK); | ||
503 | h1.WearInfo = cpu_to_le32(0); | ||
504 | if (MTD_WRITEOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, | ||
505 | &retlen, (char *)&h1) < 0) | ||
506 | return -1; | ||
507 | } else { | ||
508 | #if 0 | ||
509 | /* if erase mark present, need to skip it when doing check */ | ||
510 | for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) { | ||
511 | /* check free sector */ | ||
512 | if (check_free_sectors (nftl, block * nftl->EraseSize + i, | ||
513 | SECTORSIZE, 0) != 0) | ||
514 | return -1; | ||
515 | |||
516 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + i, | ||
517 | 16, &retlen, buf) < 0) | ||
518 | return -1; | ||
519 | if (i == SECTORSIZE) { | ||
520 | /* skip erase mark */ | ||
521 | if (memcmpb(buf, 0xff, 8)) | ||
522 | return -1; | ||
523 | } else { | ||
524 | if (memcmpb(buf, 0xff, 16)) | ||
525 | return -1; | ||
526 | } | ||
527 | } | ||
528 | #endif | ||
529 | } | ||
530 | |||
531 | return 0; | ||
532 | } | ||
533 | |||
534 | /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS | ||
535 | * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2 | ||
536 | * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted | ||
537 | * for some reason. A clean up/check of the VUC is neceressary in this case. | ||
538 | * | ||
539 | * WARNING: return 0 if read error | ||
540 | */ | ||
541 | static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block) | ||
542 | { | ||
543 | struct nftl_uci2 uci; | ||
544 | size_t retlen; | ||
545 | |||
546 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8, | ||
547 | 8, &retlen, (char *)&uci) < 0) | ||
548 | return 0; | ||
549 | |||
550 | return le16_to_cpu((uci.FoldMark | uci.FoldMark1)); | ||
551 | } | ||
552 | |||
553 | int NFTL_mount(struct NFTLrecord *s) | ||
554 | { | ||
555 | int i; | ||
556 | unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark; | ||
557 | unsigned int block, first_block, is_first_block; | ||
558 | int chain_length, do_format_chain; | ||
559 | struct nftl_uci0 h0; | ||
560 | struct nftl_uci1 h1; | ||
561 | size_t retlen; | ||
562 | |||
563 | /* search for NFTL MediaHeader and Spare NFTL Media Header */ | ||
564 | if (find_boot_record(s) < 0) { | ||
565 | printk("Could not find valid boot record\n"); | ||
566 | return -1; | ||
567 | } | ||
568 | |||
569 | /* init the logical to physical table */ | ||
570 | for (i = 0; i < s->nb_blocks; i++) { | ||
571 | s->EUNtable[i] = BLOCK_NIL; | ||
572 | } | ||
573 | |||
574 | /* first pass : explore each block chain */ | ||
575 | first_logical_block = 0; | ||
576 | for (first_block = 0; first_block < s->nb_blocks; first_block++) { | ||
577 | /* if the block was not already explored, we can look at it */ | ||
578 | if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) { | ||
579 | block = first_block; | ||
580 | chain_length = 0; | ||
581 | do_format_chain = 0; | ||
582 | |||
583 | for (;;) { | ||
584 | /* read the block header. If error, we format the chain */ | ||
585 | if (MTD_READOOB(s->mbd.mtd, block * s->EraseSize + 8, 8, | ||
586 | &retlen, (char *)&h0) < 0 || | ||
587 | MTD_READOOB(s->mbd.mtd, block * s->EraseSize + SECTORSIZE + 8, 8, | ||
588 | &retlen, (char *)&h1) < 0) { | ||
589 | s->ReplUnitTable[block] = BLOCK_NIL; | ||
590 | do_format_chain = 1; | ||
591 | break; | ||
592 | } | ||
593 | |||
594 | logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum)); | ||
595 | rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum)); | ||
596 | nb_erases = le32_to_cpu (h1.WearInfo); | ||
597 | erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); | ||
598 | |||
599 | is_first_block = !(logical_block >> 15); | ||
600 | logical_block = logical_block & 0x7fff; | ||
601 | |||
602 | /* invalid/free block test */ | ||
603 | if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) { | ||
604 | if (chain_length == 0) { | ||
605 | /* if not currently in a chain, we can handle it safely */ | ||
606 | if (check_and_mark_free_block(s, block) < 0) { | ||
607 | /* not really free: format it */ | ||
608 | printk("Formatting block %d\n", block); | ||
609 | if (NFTL_formatblock(s, block) < 0) { | ||
610 | /* could not format: reserve the block */ | ||
611 | s->ReplUnitTable[block] = BLOCK_RESERVED; | ||
612 | } else { | ||
613 | s->ReplUnitTable[block] = BLOCK_FREE; | ||
614 | } | ||
615 | } else { | ||
616 | /* free block: mark it */ | ||
617 | s->ReplUnitTable[block] = BLOCK_FREE; | ||
618 | } | ||
619 | /* directly examine the next block. */ | ||
620 | goto examine_ReplUnitTable; | ||
621 | } else { | ||
622 | /* the block was in a chain : this is bad. We | ||
623 | must format all the chain */ | ||
624 | printk("Block %d: free but referenced in chain %d\n", | ||
625 | block, first_block); | ||
626 | s->ReplUnitTable[block] = BLOCK_NIL; | ||
627 | do_format_chain = 1; | ||
628 | break; | ||
629 | } | ||
630 | } | ||
631 | |||
632 | /* we accept only first blocks here */ | ||
633 | if (chain_length == 0) { | ||
634 | /* this block is not the first block in chain : | ||
635 | ignore it, it will be included in a chain | ||
636 | later, or marked as not explored */ | ||
637 | if (!is_first_block) | ||
638 | goto examine_ReplUnitTable; | ||
639 | first_logical_block = logical_block; | ||
640 | } else { | ||
641 | if (logical_block != first_logical_block) { | ||
642 | printk("Block %d: incorrect logical block: %d expected: %d\n", | ||
643 | block, logical_block, first_logical_block); | ||
644 | /* the chain is incorrect : we must format it, | ||
645 | but we need to read it completly */ | ||
646 | do_format_chain = 1; | ||
647 | } | ||
648 | if (is_first_block) { | ||
649 | /* we accept that a block is marked as first | ||
650 | block while being last block in a chain | ||
651 | only if the chain is being folded */ | ||
652 | if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS || | ||
653 | rep_block != 0xffff) { | ||
654 | printk("Block %d: incorrectly marked as first block in chain\n", | ||
655 | block); | ||
656 | /* the chain is incorrect : we must format it, | ||
657 | but we need to read it completly */ | ||
658 | do_format_chain = 1; | ||
659 | } else { | ||
660 | printk("Block %d: folding in progress - ignoring first block flag\n", | ||
661 | block); | ||
662 | } | ||
663 | } | ||
664 | } | ||
665 | chain_length++; | ||
666 | if (rep_block == 0xffff) { | ||
667 | /* no more blocks after */ | ||
668 | s->ReplUnitTable[block] = BLOCK_NIL; | ||
669 | break; | ||
670 | } else if (rep_block >= s->nb_blocks) { | ||
671 | printk("Block %d: referencing invalid block %d\n", | ||
672 | block, rep_block); | ||
673 | do_format_chain = 1; | ||
674 | s->ReplUnitTable[block] = BLOCK_NIL; | ||
675 | break; | ||
676 | } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) { | ||
677 | /* same problem as previous 'is_first_block' test: | ||
678 | we accept that the last block of a chain has | ||
679 | the first_block flag set if folding is in | ||
680 | progress. We handle here the case where the | ||
681 | last block appeared first */ | ||
682 | if (s->ReplUnitTable[rep_block] == BLOCK_NIL && | ||
683 | s->EUNtable[first_logical_block] == rep_block && | ||
684 | get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) { | ||
685 | /* EUNtable[] will be set after */ | ||
686 | printk("Block %d: folding in progress - ignoring first block flag\n", | ||
687 | rep_block); | ||
688 | s->ReplUnitTable[block] = rep_block; | ||
689 | s->EUNtable[first_logical_block] = BLOCK_NIL; | ||
690 | } else { | ||
691 | printk("Block %d: referencing block %d already in another chain\n", | ||
692 | block, rep_block); | ||
693 | /* XXX: should handle correctly fold in progress chains */ | ||
694 | do_format_chain = 1; | ||
695 | s->ReplUnitTable[block] = BLOCK_NIL; | ||
696 | } | ||
697 | break; | ||
698 | } else { | ||
699 | /* this is OK */ | ||
700 | s->ReplUnitTable[block] = rep_block; | ||
701 | block = rep_block; | ||
702 | } | ||
703 | } | ||
704 | |||
705 | /* the chain was completely explored. Now we can decide | ||
706 | what to do with it */ | ||
707 | if (do_format_chain) { | ||
708 | /* invalid chain : format it */ | ||
709 | format_chain(s, first_block); | ||
710 | } else { | ||
711 | unsigned int first_block1, chain_to_format, chain_length1; | ||
712 | int fold_mark; | ||
713 | |||
714 | /* valid chain : get foldmark */ | ||
715 | fold_mark = get_fold_mark(s, first_block); | ||
716 | if (fold_mark == 0) { | ||
717 | /* cannot get foldmark : format the chain */ | ||
718 | printk("Could read foldmark at block %d\n", first_block); | ||
719 | format_chain(s, first_block); | ||
720 | } else { | ||
721 | if (fold_mark == FOLD_MARK_IN_PROGRESS) | ||
722 | check_sectors_in_chain(s, first_block); | ||
723 | |||
724 | /* now handle the case where we find two chains at the | ||
725 | same virtual address : we select the longer one, | ||
726 | because the shorter one is the one which was being | ||
727 | folded if the folding was not done in place */ | ||
728 | first_block1 = s->EUNtable[first_logical_block]; | ||
729 | if (first_block1 != BLOCK_NIL) { | ||
730 | /* XXX: what to do if same length ? */ | ||
731 | chain_length1 = calc_chain_length(s, first_block1); | ||
732 | printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n", | ||
733 | first_block1, chain_length1, first_block, chain_length); | ||
734 | |||
735 | if (chain_length >= chain_length1) { | ||
736 | chain_to_format = first_block1; | ||
737 | s->EUNtable[first_logical_block] = first_block; | ||
738 | } else { | ||
739 | chain_to_format = first_block; | ||
740 | } | ||
741 | format_chain(s, chain_to_format); | ||
742 | } else { | ||
743 | s->EUNtable[first_logical_block] = first_block; | ||
744 | } | ||
745 | } | ||
746 | } | ||
747 | } | ||
748 | examine_ReplUnitTable:; | ||
749 | } | ||
750 | |||
751 | /* second pass to format unreferenced blocks and init free block count */ | ||
752 | s->numfreeEUNs = 0; | ||
753 | s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN); | ||
754 | |||
755 | for (block = 0; block < s->nb_blocks; block++) { | ||
756 | if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) { | ||
757 | printk("Unreferenced block %d, formatting it\n", block); | ||
758 | if (NFTL_formatblock(s, block) < 0) | ||
759 | s->ReplUnitTable[block] = BLOCK_RESERVED; | ||
760 | else | ||
761 | s->ReplUnitTable[block] = BLOCK_FREE; | ||
762 | } | ||
763 | if (s->ReplUnitTable[block] == BLOCK_FREE) { | ||
764 | s->numfreeEUNs++; | ||
765 | s->LastFreeEUN = block; | ||
766 | } | ||
767 | } | ||
768 | |||
769 | return 0; | ||
770 | } | ||