aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r--drivers/mtd/nand/Kconfig7
-rw-r--r--drivers/mtd/nand/Makefile1
-rw-r--r--drivers/mtd/nand/mxc_nand.c1077
3 files changed, 1085 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 6eebe852b9b3..7153854eb83a 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -407,4 +407,11 @@ config MTD_NAND_FSL_UPM
407 Enables support for NAND Flash chips wired onto Freescale PowerPC 407 Enables support for NAND Flash chips wired onto Freescale PowerPC
408 processor localbus with User-Programmable Machine support. 408 processor localbus with User-Programmable Machine support.
409 409
410config MTD_NAND_MXC
411 tristate "MXC NAND support"
412 depends on ARCH_MX2
413 help
414 This enables the driver for the NAND flash controller on the
415 MXC processors.
416
410endif # MTD_NAND 417endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 8540c46ffba9..e0fee048c1b4 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -33,5 +33,6 @@ obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o
33obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o 33obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o
34obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o 34obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o
35obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o 35obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o
36obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
36 37
37nand-objs := nand_base.o nand_bbt.o 38nand-objs := nand_base.o nand_bbt.o
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c
new file mode 100644
index 000000000000..21fd4f1c4806
--- /dev/null
+++ b/drivers/mtd/nand/mxc_nand.c
@@ -0,0 +1,1077 @@
1/*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
18 */
19
20#include <linux/delay.h>
21#include <linux/slab.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/mtd/mtd.h>
25#include <linux/mtd/nand.h>
26#include <linux/mtd/partitions.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/platform_device.h>
30#include <linux/clk.h>
31#include <linux/err.h>
32#include <linux/io.h>
33
34#include <asm/mach/flash.h>
35#include <mach/mxc_nand.h>
36
37#define DRIVER_NAME "mxc_nand"
38
39/* Addresses for NFC registers */
40#define NFC_BUF_SIZE 0xE00
41#define NFC_BUF_ADDR 0xE04
42#define NFC_FLASH_ADDR 0xE06
43#define NFC_FLASH_CMD 0xE08
44#define NFC_CONFIG 0xE0A
45#define NFC_ECC_STATUS_RESULT 0xE0C
46#define NFC_RSLTMAIN_AREA 0xE0E
47#define NFC_RSLTSPARE_AREA 0xE10
48#define NFC_WRPROT 0xE12
49#define NFC_UNLOCKSTART_BLKADDR 0xE14
50#define NFC_UNLOCKEND_BLKADDR 0xE16
51#define NFC_NF_WRPRST 0xE18
52#define NFC_CONFIG1 0xE1A
53#define NFC_CONFIG2 0xE1C
54
55/* Addresses for NFC RAM BUFFER Main area 0 */
56#define MAIN_AREA0 0x000
57#define MAIN_AREA1 0x200
58#define MAIN_AREA2 0x400
59#define MAIN_AREA3 0x600
60
61/* Addresses for NFC SPARE BUFFER Spare area 0 */
62#define SPARE_AREA0 0x800
63#define SPARE_AREA1 0x810
64#define SPARE_AREA2 0x820
65#define SPARE_AREA3 0x830
66
67/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
68 * for Command operation */
69#define NFC_CMD 0x1
70
71/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
72 * for Address operation */
73#define NFC_ADDR 0x2
74
75/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
76 * for Input operation */
77#define NFC_INPUT 0x4
78
79/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
80 * for Data Output operation */
81#define NFC_OUTPUT 0x8
82
83/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
84 * for Read ID operation */
85#define NFC_ID 0x10
86
87/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
88 * for Read Status operation */
89#define NFC_STATUS 0x20
90
91/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
92 * Status operation */
93#define NFC_INT 0x8000
94
95#define NFC_SP_EN (1 << 2)
96#define NFC_ECC_EN (1 << 3)
97#define NFC_INT_MSK (1 << 4)
98#define NFC_BIG (1 << 5)
99#define NFC_RST (1 << 6)
100#define NFC_CE (1 << 7)
101#define NFC_ONE_CYCLE (1 << 8)
102
103struct mxc_nand_host {
104 struct mtd_info mtd;
105 struct nand_chip nand;
106 struct mtd_partition *parts;
107 struct device *dev;
108
109 void __iomem *regs;
110 int spare_only;
111 int status_request;
112 int pagesize_2k;
113 uint16_t col_addr;
114 struct clk *clk;
115 int clk_act;
116 int irq;
117
118 wait_queue_head_t irq_waitq;
119};
120
121/* Define delays in microsec for NAND device operations */
122#define TROP_US_DELAY 2000
123/* Macros to get byte and bit positions of ECC */
124#define COLPOS(x) ((x) >> 3)
125#define BITPOS(x) ((x) & 0xf)
126
127/* Define single bit Error positions in Main & Spare area */
128#define MAIN_SINGLEBIT_ERROR 0x4
129#define SPARE_SINGLEBIT_ERROR 0x1
130
131/* OOB placement block for use with hardware ecc generation */
132static struct nand_ecclayout nand_hw_eccoob_8 = {
133 .eccbytes = 5,
134 .eccpos = {6, 7, 8, 9, 10},
135 .oobfree = {{0, 5}, {11, 5}, }
136};
137
138static struct nand_ecclayout nand_hw_eccoob_16 = {
139 .eccbytes = 5,
140 .eccpos = {6, 7, 8, 9, 10},
141 .oobfree = {{0, 6}, {12, 4}, }
142};
143
144#ifdef CONFIG_MTD_PARTITIONS
145static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
146#endif
147
148static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
149{
150 struct mxc_nand_host *host = dev_id;
151
152 uint16_t tmp;
153
154 tmp = readw(host->regs + NFC_CONFIG1);
155 tmp |= NFC_INT_MSK; /* Disable interrupt */
156 writew(tmp, host->regs + NFC_CONFIG1);
157
158 wake_up(&host->irq_waitq);
159
160 return IRQ_HANDLED;
161}
162
163/* This function polls the NANDFC to wait for the basic operation to
164 * complete by checking the INT bit of config2 register.
165 */
166static void wait_op_done(struct mxc_nand_host *host, int max_retries,
167 uint16_t param, int useirq)
168{
169 uint32_t tmp;
170
171 if (useirq) {
172 if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
173
174 tmp = readw(host->regs + NFC_CONFIG1);
175 tmp &= ~NFC_INT_MSK; /* Enable interrupt */
176 writew(tmp, host->regs + NFC_CONFIG1);
177
178 wait_event(host->irq_waitq,
179 readw(host->regs + NFC_CONFIG2) & NFC_INT);
180
181 tmp = readw(host->regs + NFC_CONFIG2);
182 tmp &= ~NFC_INT;
183 writew(tmp, host->regs + NFC_CONFIG2);
184 }
185 } else {
186 while (max_retries-- > 0) {
187 if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
188 tmp = readw(host->regs + NFC_CONFIG2);
189 tmp &= ~NFC_INT;
190 writew(tmp, host->regs + NFC_CONFIG2);
191 break;
192 }
193 udelay(1);
194 }
195 if (max_retries <= 0)
196 DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
197 __func__, param);
198 }
199}
200
201/* This function issues the specified command to the NAND device and
202 * waits for completion. */
203static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
204{
205 DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
206
207 writew(cmd, host->regs + NFC_FLASH_CMD);
208 writew(NFC_CMD, host->regs + NFC_CONFIG2);
209
210 /* Wait for operation to complete */
211 wait_op_done(host, TROP_US_DELAY, cmd, useirq);
212}
213
214/* This function sends an address (or partial address) to the
215 * NAND device. The address is used to select the source/destination for
216 * a NAND command. */
217static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
218{
219 DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
220
221 writew(addr, host->regs + NFC_FLASH_ADDR);
222 writew(NFC_ADDR, host->regs + NFC_CONFIG2);
223
224 /* Wait for operation to complete */
225 wait_op_done(host, TROP_US_DELAY, addr, islast);
226}
227
228/* This function requests the NANDFC to initate the transfer
229 * of data currently in the NANDFC RAM buffer to the NAND device. */
230static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
231 int spare_only)
232{
233 DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
234
235 /* NANDFC buffer 0 is used for page read/write */
236 writew(buf_id, host->regs + NFC_BUF_ADDR);
237
238 /* Configure spare or page+spare access */
239 if (!host->pagesize_2k) {
240 uint16_t config1 = readw(host->regs + NFC_CONFIG1);
241 if (spare_only)
242 config1 |= NFC_SP_EN;
243 else
244 config1 &= ~(NFC_SP_EN);
245 writew(config1, host->regs + NFC_CONFIG1);
246 }
247
248 writew(NFC_INPUT, host->regs + NFC_CONFIG2);
249
250 /* Wait for operation to complete */
251 wait_op_done(host, TROP_US_DELAY, spare_only, true);
252}
253
254/* Requests NANDFC to initated the transfer of data from the
255 * NAND device into in the NANDFC ram buffer. */
256static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
257 int spare_only)
258{
259 DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
260
261 /* NANDFC buffer 0 is used for page read/write */
262 writew(buf_id, host->regs + NFC_BUF_ADDR);
263
264 /* Configure spare or page+spare access */
265 if (!host->pagesize_2k) {
266 uint32_t config1 = readw(host->regs + NFC_CONFIG1);
267 if (spare_only)
268 config1 |= NFC_SP_EN;
269 else
270 config1 &= ~NFC_SP_EN;
271 writew(config1, host->regs + NFC_CONFIG1);
272 }
273
274 writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
275
276 /* Wait for operation to complete */
277 wait_op_done(host, TROP_US_DELAY, spare_only, true);
278}
279
280/* Request the NANDFC to perform a read of the NAND device ID. */
281static void send_read_id(struct mxc_nand_host *host)
282{
283 struct nand_chip *this = &host->nand;
284 uint16_t tmp;
285
286 /* NANDFC buffer 0 is used for device ID output */
287 writew(0x0, host->regs + NFC_BUF_ADDR);
288
289 /* Read ID into main buffer */
290 tmp = readw(host->regs + NFC_CONFIG1);
291 tmp &= ~NFC_SP_EN;
292 writew(tmp, host->regs + NFC_CONFIG1);
293
294 writew(NFC_ID, host->regs + NFC_CONFIG2);
295
296 /* Wait for operation to complete */
297 wait_op_done(host, TROP_US_DELAY, 0, true);
298
299 if (this->options & NAND_BUSWIDTH_16) {
300 void __iomem *main_buf = host->regs + MAIN_AREA0;
301 /* compress the ID info */
302 writeb(readb(main_buf + 2), main_buf + 1);
303 writeb(readb(main_buf + 4), main_buf + 2);
304 writeb(readb(main_buf + 6), main_buf + 3);
305 writeb(readb(main_buf + 8), main_buf + 4);
306 writeb(readb(main_buf + 10), main_buf + 5);
307 }
308}
309
310/* This function requests the NANDFC to perform a read of the
311 * NAND device status and returns the current status. */
312static uint16_t get_dev_status(struct mxc_nand_host *host)
313{
314 void __iomem *main_buf = host->regs + MAIN_AREA1;
315 uint32_t store;
316 uint16_t ret, tmp;
317 /* Issue status request to NAND device */
318
319 /* store the main area1 first word, later do recovery */
320 store = readl(main_buf);
321 /* NANDFC buffer 1 is used for device status to prevent
322 * corruption of read/write buffer on status requests. */
323 writew(1, host->regs + NFC_BUF_ADDR);
324
325 /* Read status into main buffer */
326 tmp = readw(host->regs + NFC_CONFIG1);
327 tmp &= ~NFC_SP_EN;
328 writew(tmp, host->regs + NFC_CONFIG1);
329
330 writew(NFC_STATUS, host->regs + NFC_CONFIG2);
331
332 /* Wait for operation to complete */
333 wait_op_done(host, TROP_US_DELAY, 0, true);
334
335 /* Status is placed in first word of main buffer */
336 /* get status, then recovery area 1 data */
337 ret = readw(main_buf);
338 writel(store, main_buf);
339
340 return ret;
341}
342
343/* This functions is used by upper layer to checks if device is ready */
344static int mxc_nand_dev_ready(struct mtd_info *mtd)
345{
346 /*
347 * NFC handles R/B internally. Therefore, this function
348 * always returns status as ready.
349 */
350 return 1;
351}
352
353static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
354{
355 /*
356 * If HW ECC is enabled, we turn it on during init. There is
357 * no need to enable again here.
358 */
359}
360
361static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
362 u_char *read_ecc, u_char *calc_ecc)
363{
364 struct nand_chip *nand_chip = mtd->priv;
365 struct mxc_nand_host *host = nand_chip->priv;
366
367 /*
368 * 1-Bit errors are automatically corrected in HW. No need for
369 * additional correction. 2-Bit errors cannot be corrected by
370 * HW ECC, so we need to return failure
371 */
372 uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
373
374 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
375 DEBUG(MTD_DEBUG_LEVEL0,
376 "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
377 return -1;
378 }
379
380 return 0;
381}
382
383static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
384 u_char *ecc_code)
385{
386 return 0;
387}
388
389static u_char mxc_nand_read_byte(struct mtd_info *mtd)
390{
391 struct nand_chip *nand_chip = mtd->priv;
392 struct mxc_nand_host *host = nand_chip->priv;
393 uint8_t ret = 0;
394 uint16_t col, rd_word;
395 uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
396 uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
397
398 /* Check for status request */
399 if (host->status_request)
400 return get_dev_status(host) & 0xFF;
401
402 /* Get column for 16-bit access */
403 col = host->col_addr >> 1;
404
405 /* If we are accessing the spare region */
406 if (host->spare_only)
407 rd_word = readw(&spare_buf[col]);
408 else
409 rd_word = readw(&main_buf[col]);
410
411 /* Pick upper/lower byte of word from RAM buffer */
412 if (host->col_addr & 0x1)
413 ret = (rd_word >> 8) & 0xFF;
414 else
415 ret = rd_word & 0xFF;
416
417 /* Update saved column address */
418 host->col_addr++;
419
420 return ret;
421}
422
423static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
424{
425 struct nand_chip *nand_chip = mtd->priv;
426 struct mxc_nand_host *host = nand_chip->priv;
427 uint16_t col, rd_word, ret;
428 uint16_t __iomem *p;
429
430 DEBUG(MTD_DEBUG_LEVEL3,
431 "mxc_nand_read_word(col = %d)\n", host->col_addr);
432
433 col = host->col_addr;
434 /* Adjust saved column address */
435 if (col < mtd->writesize && host->spare_only)
436 col += mtd->writesize;
437
438 if (col < mtd->writesize)
439 p = (host->regs + MAIN_AREA0) + (col >> 1);
440 else
441 p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
442
443 if (col & 1) {
444 rd_word = readw(p);
445 ret = (rd_word >> 8) & 0xff;
446 rd_word = readw(&p[1]);
447 ret |= (rd_word << 8) & 0xff00;
448
449 } else
450 ret = readw(p);
451
452 /* Update saved column address */
453 host->col_addr = col + 2;
454
455 return ret;
456}
457
458/* Write data of length len to buffer buf. The data to be
459 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
460 * Operation by the NFC, the data is written to NAND Flash */
461static void mxc_nand_write_buf(struct mtd_info *mtd,
462 const u_char *buf, int len)
463{
464 struct nand_chip *nand_chip = mtd->priv;
465 struct mxc_nand_host *host = nand_chip->priv;
466 int n, col, i = 0;
467
468 DEBUG(MTD_DEBUG_LEVEL3,
469 "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
470 len);
471
472 col = host->col_addr;
473
474 /* Adjust saved column address */
475 if (col < mtd->writesize && host->spare_only)
476 col += mtd->writesize;
477
478 n = mtd->writesize + mtd->oobsize - col;
479 n = min(len, n);
480
481 DEBUG(MTD_DEBUG_LEVEL3,
482 "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
483
484 while (n) {
485 void __iomem *p;
486
487 if (col < mtd->writesize)
488 p = host->regs + MAIN_AREA0 + (col & ~3);
489 else
490 p = host->regs + SPARE_AREA0 -
491 mtd->writesize + (col & ~3);
492
493 DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
494 __LINE__, p);
495
496 if (((col | (int)&buf[i]) & 3) || n < 16) {
497 uint32_t data = 0;
498
499 if (col & 3 || n < 4)
500 data = readl(p);
501
502 switch (col & 3) {
503 case 0:
504 if (n) {
505 data = (data & 0xffffff00) |
506 (buf[i++] << 0);
507 n--;
508 col++;
509 }
510 case 1:
511 if (n) {
512 data = (data & 0xffff00ff) |
513 (buf[i++] << 8);
514 n--;
515 col++;
516 }
517 case 2:
518 if (n) {
519 data = (data & 0xff00ffff) |
520 (buf[i++] << 16);
521 n--;
522 col++;
523 }
524 case 3:
525 if (n) {
526 data = (data & 0x00ffffff) |
527 (buf[i++] << 24);
528 n--;
529 col++;
530 }
531 }
532
533 writel(data, p);
534 } else {
535 int m = mtd->writesize - col;
536
537 if (col >= mtd->writesize)
538 m += mtd->oobsize;
539
540 m = min(n, m) & ~3;
541
542 DEBUG(MTD_DEBUG_LEVEL3,
543 "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
544 __func__, __LINE__, n, m, i, col);
545
546 memcpy(p, &buf[i], m);
547 col += m;
548 i += m;
549 n -= m;
550 }
551 }
552 /* Update saved column address */
553 host->col_addr = col;
554}
555
556/* Read the data buffer from the NAND Flash. To read the data from NAND
557 * Flash first the data output cycle is initiated by the NFC, which copies
558 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
559 */
560static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
561{
562 struct nand_chip *nand_chip = mtd->priv;
563 struct mxc_nand_host *host = nand_chip->priv;
564 int n, col, i = 0;
565
566 DEBUG(MTD_DEBUG_LEVEL3,
567 "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
568
569 col = host->col_addr;
570
571 /* Adjust saved column address */
572 if (col < mtd->writesize && host->spare_only)
573 col += mtd->writesize;
574
575 n = mtd->writesize + mtd->oobsize - col;
576 n = min(len, n);
577
578 while (n) {
579 void __iomem *p;
580
581 if (col < mtd->writesize)
582 p = host->regs + MAIN_AREA0 + (col & ~3);
583 else
584 p = host->regs + SPARE_AREA0 -
585 mtd->writesize + (col & ~3);
586
587 if (((col | (int)&buf[i]) & 3) || n < 16) {
588 uint32_t data;
589
590 data = readl(p);
591 switch (col & 3) {
592 case 0:
593 if (n) {
594 buf[i++] = (uint8_t) (data);
595 n--;
596 col++;
597 }
598 case 1:
599 if (n) {
600 buf[i++] = (uint8_t) (data >> 8);
601 n--;
602 col++;
603 }
604 case 2:
605 if (n) {
606 buf[i++] = (uint8_t) (data >> 16);
607 n--;
608 col++;
609 }
610 case 3:
611 if (n) {
612 buf[i++] = (uint8_t) (data >> 24);
613 n--;
614 col++;
615 }
616 }
617 } else {
618 int m = mtd->writesize - col;
619
620 if (col >= mtd->writesize)
621 m += mtd->oobsize;
622
623 m = min(n, m) & ~3;
624 memcpy(&buf[i], p, m);
625 col += m;
626 i += m;
627 n -= m;
628 }
629 }
630 /* Update saved column address */
631 host->col_addr = col;
632
633}
634
635/* Used by the upper layer to verify the data in NAND Flash
636 * with the data in the buf. */
637static int mxc_nand_verify_buf(struct mtd_info *mtd,
638 const u_char *buf, int len)
639{
640 return -EFAULT;
641}
642
643/* This function is used by upper layer for select and
644 * deselect of the NAND chip */
645static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
646{
647 struct nand_chip *nand_chip = mtd->priv;
648 struct mxc_nand_host *host = nand_chip->priv;
649
650#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
651 if (chip > 0) {
652 DEBUG(MTD_DEBUG_LEVEL0,
653 "ERROR: Illegal chip select (chip = %d)\n", chip);
654 return;
655 }
656
657 if (chip == -1) {
658 writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
659 host->regs + NFC_CONFIG1);
660 return;
661 }
662
663 writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
664 host->regs + NFC_CONFIG1);
665#endif
666
667 switch (chip) {
668 case -1:
669 /* Disable the NFC clock */
670 if (host->clk_act) {
671 clk_disable(host->clk);
672 host->clk_act = 0;
673 }
674 break;
675 case 0:
676 /* Enable the NFC clock */
677 if (!host->clk_act) {
678 clk_enable(host->clk);
679 host->clk_act = 1;
680 }
681 break;
682
683 default:
684 break;
685 }
686}
687
688/* Used by the upper layer to write command to NAND Flash for
689 * different operations to be carried out on NAND Flash */
690static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
691 int column, int page_addr)
692{
693 struct nand_chip *nand_chip = mtd->priv;
694 struct mxc_nand_host *host = nand_chip->priv;
695 int useirq = true;
696
697 DEBUG(MTD_DEBUG_LEVEL3,
698 "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
699 command, column, page_addr);
700
701 /* Reset command state information */
702 host->status_request = false;
703
704 /* Command pre-processing step */
705 switch (command) {
706
707 case NAND_CMD_STATUS:
708 host->col_addr = 0;
709 host->status_request = true;
710 break;
711
712 case NAND_CMD_READ0:
713 host->col_addr = column;
714 host->spare_only = false;
715 useirq = false;
716 break;
717
718 case NAND_CMD_READOOB:
719 host->col_addr = column;
720 host->spare_only = true;
721 useirq = false;
722 if (host->pagesize_2k)
723 command = NAND_CMD_READ0; /* only READ0 is valid */
724 break;
725
726 case NAND_CMD_SEQIN:
727 if (column >= mtd->writesize) {
728 /*
729 * FIXME: before send SEQIN command for write OOB,
730 * We must read one page out.
731 * For K9F1GXX has no READ1 command to set current HW
732 * pointer to spare area, we must write the whole page
733 * including OOB together.
734 */
735 if (host->pagesize_2k)
736 /* call ourself to read a page */
737 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
738 page_addr);
739
740 host->col_addr = column - mtd->writesize;
741 host->spare_only = true;
742
743 /* Set program pointer to spare region */
744 if (!host->pagesize_2k)
745 send_cmd(host, NAND_CMD_READOOB, false);
746 } else {
747 host->spare_only = false;
748 host->col_addr = column;
749
750 /* Set program pointer to page start */
751 if (!host->pagesize_2k)
752 send_cmd(host, NAND_CMD_READ0, false);
753 }
754 useirq = false;
755 break;
756
757 case NAND_CMD_PAGEPROG:
758 send_prog_page(host, 0, host->spare_only);
759
760 if (host->pagesize_2k) {
761 /* data in 4 areas datas */
762 send_prog_page(host, 1, host->spare_only);
763 send_prog_page(host, 2, host->spare_only);
764 send_prog_page(host, 3, host->spare_only);
765 }
766
767 break;
768
769 case NAND_CMD_ERASE1:
770 useirq = false;
771 break;
772 }
773
774 /* Write out the command to the device. */
775 send_cmd(host, command, useirq);
776
777 /* Write out column address, if necessary */
778 if (column != -1) {
779 /*
780 * MXC NANDFC can only perform full page+spare or
781 * spare-only read/write. When the upper layers
782 * layers perform a read/write buf operation,
783 * we will used the saved column adress to index into
784 * the full page.
785 */
786 send_addr(host, 0, page_addr == -1);
787 if (host->pagesize_2k)
788 /* another col addr cycle for 2k page */
789 send_addr(host, 0, false);
790 }
791
792 /* Write out page address, if necessary */
793 if (page_addr != -1) {
794 /* paddr_0 - p_addr_7 */
795 send_addr(host, (page_addr & 0xff), false);
796
797 if (host->pagesize_2k) {
798 send_addr(host, (page_addr >> 8) & 0xFF, false);
799 if (mtd->size >= 0x40000000)
800 send_addr(host, (page_addr >> 16) & 0xff, true);
801 } else {
802 /* One more address cycle for higher density devices */
803 if (mtd->size >= 0x4000000) {
804 /* paddr_8 - paddr_15 */
805 send_addr(host, (page_addr >> 8) & 0xff, false);
806 send_addr(host, (page_addr >> 16) & 0xff, true);
807 } else
808 /* paddr_8 - paddr_15 */
809 send_addr(host, (page_addr >> 8) & 0xff, true);
810 }
811 }
812
813 /* Command post-processing step */
814 switch (command) {
815
816 case NAND_CMD_RESET:
817 break;
818
819 case NAND_CMD_READOOB:
820 case NAND_CMD_READ0:
821 if (host->pagesize_2k) {
822 /* send read confirm command */
823 send_cmd(host, NAND_CMD_READSTART, true);
824 /* read for each AREA */
825 send_read_page(host, 0, host->spare_only);
826 send_read_page(host, 1, host->spare_only);
827 send_read_page(host, 2, host->spare_only);
828 send_read_page(host, 3, host->spare_only);
829 } else
830 send_read_page(host, 0, host->spare_only);
831 break;
832
833 case NAND_CMD_READID:
834 send_read_id(host);
835 break;
836
837 case NAND_CMD_PAGEPROG:
838 break;
839
840 case NAND_CMD_STATUS:
841 break;
842
843 case NAND_CMD_ERASE2:
844 break;
845 }
846}
847
848static int __init mxcnd_probe(struct platform_device *pdev)
849{
850 struct nand_chip *this;
851 struct mtd_info *mtd;
852 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
853 struct mxc_nand_host *host;
854 struct resource *res;
855 uint16_t tmp;
856 int err = 0, nr_parts = 0;
857
858 /* Allocate memory for MTD device structure and private data */
859 host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL);
860 if (!host)
861 return -ENOMEM;
862
863 host->dev = &pdev->dev;
864 /* structures must be linked */
865 this = &host->nand;
866 mtd = &host->mtd;
867 mtd->priv = this;
868 mtd->owner = THIS_MODULE;
869
870 /* 50 us command delay time */
871 this->chip_delay = 5;
872
873 this->priv = host;
874 this->dev_ready = mxc_nand_dev_ready;
875 this->cmdfunc = mxc_nand_command;
876 this->select_chip = mxc_nand_select_chip;
877 this->read_byte = mxc_nand_read_byte;
878 this->read_word = mxc_nand_read_word;
879 this->write_buf = mxc_nand_write_buf;
880 this->read_buf = mxc_nand_read_buf;
881 this->verify_buf = mxc_nand_verify_buf;
882
883 host->clk = clk_get(&pdev->dev, "nfc_clk");
884 if (IS_ERR(host->clk))
885 goto eclk;
886
887 clk_enable(host->clk);
888 host->clk_act = 1;
889
890 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
891 if (!res) {
892 err = -ENODEV;
893 goto eres;
894 }
895
896 host->regs = ioremap(res->start, res->end - res->start + 1);
897 if (!host->regs) {
898 err = -EIO;
899 goto eres;
900 }
901
902 tmp = readw(host->regs + NFC_CONFIG1);
903 tmp |= NFC_INT_MSK;
904 writew(tmp, host->regs + NFC_CONFIG1);
905
906 init_waitqueue_head(&host->irq_waitq);
907
908 host->irq = platform_get_irq(pdev, 0);
909
910 err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
911 if (err)
912 goto eirq;
913
914 if (pdata->hw_ecc) {
915 this->ecc.calculate = mxc_nand_calculate_ecc;
916 this->ecc.hwctl = mxc_nand_enable_hwecc;
917 this->ecc.correct = mxc_nand_correct_data;
918 this->ecc.mode = NAND_ECC_HW;
919 this->ecc.size = 512;
920 this->ecc.bytes = 3;
921 this->ecc.layout = &nand_hw_eccoob_8;
922 tmp = readw(host->regs + NFC_CONFIG1);
923 tmp |= NFC_ECC_EN;
924 writew(tmp, host->regs + NFC_CONFIG1);
925 } else {
926 this->ecc.size = 512;
927 this->ecc.bytes = 3;
928 this->ecc.layout = &nand_hw_eccoob_8;
929 this->ecc.mode = NAND_ECC_SOFT;
930 tmp = readw(host->regs + NFC_CONFIG1);
931 tmp &= ~NFC_ECC_EN;
932 writew(tmp, host->regs + NFC_CONFIG1);
933 }
934
935 /* Reset NAND */
936 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
937
938 /* preset operation */
939 /* Unlock the internal RAM Buffer */
940 writew(0x2, host->regs + NFC_CONFIG);
941
942 /* Blocks to be unlocked */
943 writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
944 writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
945
946 /* Unlock Block Command for given address range */
947 writew(0x4, host->regs + NFC_WRPROT);
948
949 /* NAND bus width determines access funtions used by upper layer */
950 if (pdata->width == 2) {
951 this->options |= NAND_BUSWIDTH_16;
952 this->ecc.layout = &nand_hw_eccoob_16;
953 }
954
955 host->pagesize_2k = 0;
956
957 /* Scan to find existence of the device */
958 if (nand_scan(mtd, 1)) {
959 DEBUG(MTD_DEBUG_LEVEL0,
960 "MXC_ND: Unable to find any NAND device.\n");
961 err = -ENXIO;
962 goto escan;
963 }
964
965 /* Register the partitions */
966#ifdef CONFIG_MTD_PARTITIONS
967 nr_parts =
968 parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
969 if (nr_parts > 0)
970 add_mtd_partitions(mtd, host->parts, nr_parts);
971 else
972#endif
973 {
974 pr_info("Registering %s as whole device\n", mtd->name);
975 add_mtd_device(mtd);
976 }
977
978 platform_set_drvdata(pdev, host);
979
980 return 0;
981
982escan:
983 free_irq(host->irq, NULL);
984eirq:
985 iounmap(host->regs);
986eres:
987 clk_put(host->clk);
988eclk:
989 kfree(host);
990
991 return err;
992}
993
994static int __devexit mxcnd_remove(struct platform_device *pdev)
995{
996 struct mxc_nand_host *host = platform_get_drvdata(pdev);
997
998 clk_put(host->clk);
999
1000 platform_set_drvdata(pdev, NULL);
1001
1002 nand_release(&host->mtd);
1003 free_irq(host->irq, NULL);
1004 iounmap(host->regs);
1005 kfree(host);
1006
1007 return 0;
1008}
1009
1010#ifdef CONFIG_PM
1011static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
1012{
1013 struct mtd_info *info = platform_get_drvdata(pdev);
1014 int ret = 0;
1015
1016 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
1017 if (info)
1018 ret = info->suspend(info);
1019
1020 /* Disable the NFC clock */
1021 clk_disable(nfc_clk); /* FIXME */
1022
1023 return ret;
1024}
1025
1026static int mxcnd_resume(struct platform_device *pdev)
1027{
1028 struct mtd_info *info = platform_get_drvdata(pdev);
1029 int ret = 0;
1030
1031 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
1032 /* Enable the NFC clock */
1033 clk_enable(nfc_clk); /* FIXME */
1034
1035 if (info)
1036 info->resume(info);
1037
1038 return ret;
1039}
1040
1041#else
1042# define mxcnd_suspend NULL
1043# define mxcnd_resume NULL
1044#endif /* CONFIG_PM */
1045
1046static struct platform_driver mxcnd_driver = {
1047 .driver = {
1048 .name = DRIVER_NAME,
1049 },
1050 .remove = __exit_p(mxcnd_remove),
1051 .suspend = mxcnd_suspend,
1052 .resume = mxcnd_resume,
1053};
1054
1055static int __init mxc_nd_init(void)
1056{
1057 /* Register the device driver structure. */
1058 pr_info("MXC MTD nand Driver\n");
1059 if (platform_driver_probe(&mxcnd_driver, mxcnd_probe) != 0) {
1060 printk(KERN_ERR "Driver register failed for mxcnd_driver\n");
1061 return -ENODEV;
1062 }
1063 return 0;
1064}
1065
1066static void __exit mxc_nd_cleanup(void)
1067{
1068 /* Unregister the device structure */
1069 platform_driver_unregister(&mxcnd_driver);
1070}
1071
1072module_init(mxc_nd_init);
1073module_exit(mxc_nd_cleanup);
1074
1075MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1076MODULE_DESCRIPTION("MXC NAND MTD driver");
1077MODULE_LICENSE("GPL");