aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/omap2.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/omap2.c')
-rw-r--r--drivers/mtd/nand/omap2.c573
1 files changed, 534 insertions, 39 deletions
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
index ec20f67e8949..1a88bd062ac1 100644
--- a/drivers/mtd/nand/omap2.c
+++ b/drivers/mtd/nand/omap2.c
@@ -22,9 +22,12 @@
22#include <linux/omap-dma.h> 22#include <linux/omap-dma.h>
23#include <linux/io.h> 23#include <linux/io.h>
24#include <linux/slab.h> 24#include <linux/slab.h>
25#include <linux/of.h>
26#include <linux/of_device.h>
25 27
26#ifdef CONFIG_MTD_NAND_OMAP_BCH 28#ifdef CONFIG_MTD_NAND_OMAP_BCH
27#include <linux/bch.h> 29#include <linux/bch.h>
30#include <linux/platform_data/elm.h>
28#endif 31#endif
29 32
30#include <linux/platform_data/mtd-nand-omap2.h> 33#include <linux/platform_data/mtd-nand-omap2.h>
@@ -120,6 +123,30 @@
120#define BCH8_MAX_ERROR 8 /* upto 8 bit correctable */ 123#define BCH8_MAX_ERROR 8 /* upto 8 bit correctable */
121#define BCH4_MAX_ERROR 4 /* upto 4 bit correctable */ 124#define BCH4_MAX_ERROR 4 /* upto 4 bit correctable */
122 125
126#define SECTOR_BYTES 512
127/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
128#define BCH4_BIT_PAD 4
129#define BCH8_ECC_MAX ((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8)
130#define BCH4_ECC_MAX ((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8)
131
132/* GPMC ecc engine settings for read */
133#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
134#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
135#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
136#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
137#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
138
139/* GPMC ecc engine settings for write */
140#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
141#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
142#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
143
144#ifdef CONFIG_MTD_NAND_OMAP_BCH
145static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
148#endif
149
123/* oob info generated runtime depending on ecc algorithm and layout selected */ 150/* oob info generated runtime depending on ecc algorithm and layout selected */
124static struct nand_ecclayout omap_oobinfo; 151static struct nand_ecclayout omap_oobinfo;
125/* Define some generic bad / good block scan pattern which are used 152/* Define some generic bad / good block scan pattern which are used
@@ -159,6 +186,9 @@ struct omap_nand_info {
159#ifdef CONFIG_MTD_NAND_OMAP_BCH 186#ifdef CONFIG_MTD_NAND_OMAP_BCH
160 struct bch_control *bch; 187 struct bch_control *bch;
161 struct nand_ecclayout ecclayout; 188 struct nand_ecclayout ecclayout;
189 bool is_elm_used;
190 struct device *elm_dev;
191 struct device_node *of_node;
162#endif 192#endif
163}; 193};
164 194
@@ -1034,6 +1064,13 @@ static int omap_dev_ready(struct mtd_info *mtd)
1034 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction 1064 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1035 * @mtd: MTD device structure 1065 * @mtd: MTD device structure
1036 * @mode: Read/Write mode 1066 * @mode: Read/Write mode
1067 *
1068 * When using BCH, sector size is hardcoded to 512 bytes.
1069 * Using wrapping mode 6 both for reading and writing if ELM module not uses
1070 * for error correction.
1071 * On writing,
1072 * eccsize0 = 0 (no additional protected byte in spare area)
1073 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1037 */ 1074 */
1038static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode) 1075static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1039{ 1076{
@@ -1042,32 +1079,57 @@ static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1042 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, 1079 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1043 mtd); 1080 mtd);
1044 struct nand_chip *chip = mtd->priv; 1081 struct nand_chip *chip = mtd->priv;
1045 u32 val; 1082 u32 val, wr_mode;
1083 unsigned int ecc_size1, ecc_size0;
1084
1085 /* Using wrapping mode 6 for writing */
1086 wr_mode = BCH_WRAPMODE_6;
1046 1087
1047 nerrors = info->nand.ecc.strength;
1048 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1049 nsectors = 1;
1050 /* 1088 /*
1051 * Program GPMC to perform correction on one 512-byte sector at a time. 1089 * ECC engine enabled for valid ecc_size0 nibbles
1052 * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and 1090 * and disabled for ecc_size1 nibbles.
1053 * gives a slight (5%) performance gain (but requires additional code).
1054 */ 1091 */
1092 ecc_size0 = BCH_ECC_SIZE0;
1093 ecc_size1 = BCH_ECC_SIZE1;
1094
1095 /* Perform ecc calculation on 512-byte sector */
1096 nsectors = 1;
1097
1098 /* Update number of error correction */
1099 nerrors = info->nand.ecc.strength;
1100
1101 /* Multi sector reading/writing for NAND flash with page size < 4096 */
1102 if (info->is_elm_used && (mtd->writesize <= 4096)) {
1103 if (mode == NAND_ECC_READ) {
1104 /* Using wrapping mode 1 for reading */
1105 wr_mode = BCH_WRAPMODE_1;
1106
1107 /*
1108 * ECC engine enabled for ecc_size0 nibbles
1109 * and disabled for ecc_size1 nibbles.
1110 */
1111 ecc_size0 = (nerrors == 8) ?
1112 BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
1113 ecc_size1 = (nerrors == 8) ?
1114 BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
1115 }
1116
1117 /* Perform ecc calculation for one page (< 4096) */
1118 nsectors = info->nand.ecc.steps;
1119 }
1055 1120
1056 writel(ECC1, info->reg.gpmc_ecc_control); 1121 writel(ECC1, info->reg.gpmc_ecc_control);
1057 1122
1058 /* 1123 /* Configure ecc size for BCH */
1059 * When using BCH, sector size is hardcoded to 512 bytes. 1124 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1060 * Here we are using wrapping mode 6 both for reading and writing, with:
1061 * size0 = 0 (no additional protected byte in spare area)
1062 * size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1063 */
1064 val = (32 << ECCSIZE1_SHIFT) | (0 << ECCSIZE0_SHIFT);
1065 writel(val, info->reg.gpmc_ecc_size_config); 1125 writel(val, info->reg.gpmc_ecc_size_config);
1066 1126
1127 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1128
1067 /* BCH configuration */ 1129 /* BCH configuration */
1068 val = ((1 << 16) | /* enable BCH */ 1130 val = ((1 << 16) | /* enable BCH */
1069 (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */ 1131 (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1070 (0x06 << 8) | /* wrap mode = 6 */ 1132 (wr_mode << 8) | /* wrap mode */
1071 (dev_width << 7) | /* bus width */ 1133 (dev_width << 7) | /* bus width */
1072 (((nsectors-1) & 0x7) << 4) | /* number of sectors */ 1134 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1073 (info->gpmc_cs << 1) | /* ECC CS */ 1135 (info->gpmc_cs << 1) | /* ECC CS */
@@ -1075,7 +1137,7 @@ static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1075 1137
1076 writel(val, info->reg.gpmc_ecc_config); 1138 writel(val, info->reg.gpmc_ecc_config);
1077 1139
1078 /* clear ecc and enable bits */ 1140 /* Clear ecc and enable bits */
1079 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); 1141 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1080} 1142}
1081 1143
@@ -1165,6 +1227,298 @@ static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1165} 1227}
1166 1228
1167/** 1229/**
1230 * omap3_calculate_ecc_bch - Generate bytes of ECC bytes
1231 * @mtd: MTD device structure
1232 * @dat: The pointer to data on which ecc is computed
1233 * @ecc_code: The ecc_code buffer
1234 *
1235 * Support calculating of BCH4/8 ecc vectors for the page
1236 */
1237static int omap3_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat,
1238 u_char *ecc_code)
1239{
1240 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1241 mtd);
1242 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1243 int i, eccbchtsel;
1244
1245 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1246 /*
1247 * find BCH scheme used
1248 * 0 -> BCH4
1249 * 1 -> BCH8
1250 */
1251 eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);
1252
1253 for (i = 0; i < nsectors; i++) {
1254
1255 /* Read hw-computed remainder */
1256 bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
1257 bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
1258 if (eccbchtsel) {
1259 bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
1260 bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
1261 }
1262
1263 if (eccbchtsel) {
1264 /* BCH8 ecc scheme */
1265 *ecc_code++ = (bch_val4 & 0xFF);
1266 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1267 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1268 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1269 *ecc_code++ = (bch_val3 & 0xFF);
1270 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1271 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1272 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1273 *ecc_code++ = (bch_val2 & 0xFF);
1274 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1275 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1276 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1277 *ecc_code++ = (bch_val1 & 0xFF);
1278 /*
1279 * Setting 14th byte to zero to handle
1280 * erased page & maintain compatibility
1281 * with RBL
1282 */
1283 *ecc_code++ = 0x0;
1284 } else {
1285 /* BCH4 ecc scheme */
1286 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1287 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1288 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1289 ((bch_val1 >> 28) & 0xF);
1290 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1291 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1292 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1293 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1294 /*
1295 * Setting 8th byte to zero to handle
1296 * erased page
1297 */
1298 *ecc_code++ = 0x0;
1299 }
1300 }
1301
1302 return 0;
1303}
1304
1305/**
1306 * erased_sector_bitflips - count bit flips
1307 * @data: data sector buffer
1308 * @oob: oob buffer
1309 * @info: omap_nand_info
1310 *
1311 * Check the bit flips in erased page falls below correctable level.
1312 * If falls below, report the page as erased with correctable bit
1313 * flip, else report as uncorrectable page.
1314 */
1315static int erased_sector_bitflips(u_char *data, u_char *oob,
1316 struct omap_nand_info *info)
1317{
1318 int flip_bits = 0, i;
1319
1320 for (i = 0; i < info->nand.ecc.size; i++) {
1321 flip_bits += hweight8(~data[i]);
1322 if (flip_bits > info->nand.ecc.strength)
1323 return 0;
1324 }
1325
1326 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1327 flip_bits += hweight8(~oob[i]);
1328 if (flip_bits > info->nand.ecc.strength)
1329 return 0;
1330 }
1331
1332 /*
1333 * Bit flips falls in correctable level.
1334 * Fill data area with 0xFF
1335 */
1336 if (flip_bits) {
1337 memset(data, 0xFF, info->nand.ecc.size);
1338 memset(oob, 0xFF, info->nand.ecc.bytes);
1339 }
1340
1341 return flip_bits;
1342}
1343
1344/**
1345 * omap_elm_correct_data - corrects page data area in case error reported
1346 * @mtd: MTD device structure
1347 * @data: page data
1348 * @read_ecc: ecc read from nand flash
1349 * @calc_ecc: ecc read from HW ECC registers
1350 *
1351 * Calculated ecc vector reported as zero in case of non-error pages.
1352 * In case of error/erased pages non-zero error vector is reported.
1353 * In case of non-zero ecc vector, check read_ecc at fixed offset
1354 * (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not.
1355 * To handle bit flips in this data, count the number of 0's in
1356 * read_ecc[x] and check if it greater than 4. If it is less, it is
1357 * programmed page, else erased page.
1358 *
1359 * 1. If page is erased, check with standard ecc vector (ecc vector
1360 * for erased page to find any bit flip). If check fails, bit flip
1361 * is present in erased page. Count the bit flips in erased page and
1362 * if it falls under correctable level, report page with 0xFF and
1363 * update the correctable bit information.
1364 * 2. If error is reported on programmed page, update elm error
1365 * vector and correct the page with ELM error correction routine.
1366 *
1367 */
1368static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1369 u_char *read_ecc, u_char *calc_ecc)
1370{
1371 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1372 mtd);
1373 int eccsteps = info->nand.ecc.steps;
1374 int i , j, stat = 0;
1375 int eccsize, eccflag, ecc_vector_size;
1376 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1377 u_char *ecc_vec = calc_ecc;
1378 u_char *spare_ecc = read_ecc;
1379 u_char *erased_ecc_vec;
1380 enum bch_ecc type;
1381 bool is_error_reported = false;
1382
1383 /* Initialize elm error vector to zero */
1384 memset(err_vec, 0, sizeof(err_vec));
1385
1386 if (info->nand.ecc.strength == BCH8_MAX_ERROR) {
1387 type = BCH8_ECC;
1388 erased_ecc_vec = bch8_vector;
1389 } else {
1390 type = BCH4_ECC;
1391 erased_ecc_vec = bch4_vector;
1392 }
1393
1394 ecc_vector_size = info->nand.ecc.bytes;
1395
1396 /*
1397 * Remove extra byte padding for BCH8 RBL
1398 * compatibility and erased page handling
1399 */
1400 eccsize = ecc_vector_size - 1;
1401
1402 for (i = 0; i < eccsteps ; i++) {
1403 eccflag = 0; /* initialize eccflag */
1404
1405 /*
1406 * Check any error reported,
1407 * In case of error, non zero ecc reported.
1408 */
1409
1410 for (j = 0; (j < eccsize); j++) {
1411 if (calc_ecc[j] != 0) {
1412 eccflag = 1; /* non zero ecc, error present */
1413 break;
1414 }
1415 }
1416
1417 if (eccflag == 1) {
1418 /*
1419 * Set threshold to minimum of 4, half of ecc.strength/2
1420 * to allow max bit flip in byte to 4
1421 */
1422 unsigned int threshold = min_t(unsigned int, 4,
1423 info->nand.ecc.strength / 2);
1424
1425 /*
1426 * Check data area is programmed by counting
1427 * number of 0's at fixed offset in spare area.
1428 * Checking count of 0's against threshold.
1429 * In case programmed page expects at least threshold
1430 * zeros in byte.
1431 * If zeros are less than threshold for programmed page/
1432 * zeros are more than threshold erased page, either
1433 * case page reported as uncorrectable.
1434 */
1435 if (hweight8(~read_ecc[eccsize]) >= threshold) {
1436 /*
1437 * Update elm error vector as
1438 * data area is programmed
1439 */
1440 err_vec[i].error_reported = true;
1441 is_error_reported = true;
1442 } else {
1443 /* Error reported in erased page */
1444 int bitflip_count;
1445 u_char *buf = &data[info->nand.ecc.size * i];
1446
1447 if (memcmp(calc_ecc, erased_ecc_vec, eccsize)) {
1448 bitflip_count = erased_sector_bitflips(
1449 buf, read_ecc, info);
1450
1451 if (bitflip_count)
1452 stat += bitflip_count;
1453 else
1454 return -EINVAL;
1455 }
1456 }
1457 }
1458
1459 /* Update the ecc vector */
1460 calc_ecc += ecc_vector_size;
1461 read_ecc += ecc_vector_size;
1462 }
1463
1464 /* Check if any error reported */
1465 if (!is_error_reported)
1466 return 0;
1467
1468 /* Decode BCH error using ELM module */
1469 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1470
1471 for (i = 0; i < eccsteps; i++) {
1472 if (err_vec[i].error_reported) {
1473 for (j = 0; j < err_vec[i].error_count; j++) {
1474 u32 bit_pos, byte_pos, error_max, pos;
1475
1476 if (type == BCH8_ECC)
1477 error_max = BCH8_ECC_MAX;
1478 else
1479 error_max = BCH4_ECC_MAX;
1480
1481 if (info->nand.ecc.strength == BCH8_MAX_ERROR)
1482 pos = err_vec[i].error_loc[j];
1483 else
1484 /* Add 4 to take care 4 bit padding */
1485 pos = err_vec[i].error_loc[j] +
1486 BCH4_BIT_PAD;
1487
1488 /* Calculate bit position of error */
1489 bit_pos = pos % 8;
1490
1491 /* Calculate byte position of error */
1492 byte_pos = (error_max - pos - 1) / 8;
1493
1494 if (pos < error_max) {
1495 if (byte_pos < 512)
1496 data[byte_pos] ^= 1 << bit_pos;
1497 else
1498 spare_ecc[byte_pos - 512] ^=
1499 1 << bit_pos;
1500 }
1501 /* else, not interested to correct ecc */
1502 }
1503 }
1504
1505 /* Update number of correctable errors */
1506 stat += err_vec[i].error_count;
1507
1508 /* Update page data with sector size */
1509 data += info->nand.ecc.size;
1510 spare_ecc += ecc_vector_size;
1511 }
1512
1513 for (i = 0; i < eccsteps; i++)
1514 /* Return error if uncorrectable error present */
1515 if (err_vec[i].error_uncorrectable)
1516 return -EINVAL;
1517
1518 return stat;
1519}
1520
1521/**
1168 * omap3_correct_data_bch - Decode received data and correct errors 1522 * omap3_correct_data_bch - Decode received data and correct errors
1169 * @mtd: MTD device structure 1523 * @mtd: MTD device structure
1170 * @data: page data 1524 * @data: page data
@@ -1197,6 +1551,92 @@ static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1197} 1551}
1198 1552
1199/** 1553/**
1554 * omap_write_page_bch - BCH ecc based write page function for entire page
1555 * @mtd: mtd info structure
1556 * @chip: nand chip info structure
1557 * @buf: data buffer
1558 * @oob_required: must write chip->oob_poi to OOB
1559 *
1560 * Custom write page method evolved to support multi sector writing in one shot
1561 */
1562static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1563 const uint8_t *buf, int oob_required)
1564{
1565 int i;
1566 uint8_t *ecc_calc = chip->buffers->ecccalc;
1567 uint32_t *eccpos = chip->ecc.layout->eccpos;
1568
1569 /* Enable GPMC ecc engine */
1570 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1571
1572 /* Write data */
1573 chip->write_buf(mtd, buf, mtd->writesize);
1574
1575 /* Update ecc vector from GPMC result registers */
1576 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1577
1578 for (i = 0; i < chip->ecc.total; i++)
1579 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1580
1581 /* Write ecc vector to OOB area */
1582 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1583 return 0;
1584}
1585
1586/**
1587 * omap_read_page_bch - BCH ecc based page read function for entire page
1588 * @mtd: mtd info structure
1589 * @chip: nand chip info structure
1590 * @buf: buffer to store read data
1591 * @oob_required: caller requires OOB data read to chip->oob_poi
1592 * @page: page number to read
1593 *
1594 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1595 * used for error correction.
1596 * Custom method evolved to support ELM error correction & multi sector
1597 * reading. On reading page data area is read along with OOB data with
1598 * ecc engine enabled. ecc vector updated after read of OOB data.
1599 * For non error pages ecc vector reported as zero.
1600 */
1601static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1602 uint8_t *buf, int oob_required, int page)
1603{
1604 uint8_t *ecc_calc = chip->buffers->ecccalc;
1605 uint8_t *ecc_code = chip->buffers->ecccode;
1606 uint32_t *eccpos = chip->ecc.layout->eccpos;
1607 uint8_t *oob = &chip->oob_poi[eccpos[0]];
1608 uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1609 int stat;
1610 unsigned int max_bitflips = 0;
1611
1612 /* Enable GPMC ecc engine */
1613 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1614
1615 /* Read data */
1616 chip->read_buf(mtd, buf, mtd->writesize);
1617
1618 /* Read oob bytes */
1619 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1620 chip->read_buf(mtd, oob, chip->ecc.total);
1621
1622 /* Calculate ecc bytes */
1623 chip->ecc.calculate(mtd, buf, ecc_calc);
1624
1625 memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1626
1627 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1628
1629 if (stat < 0) {
1630 mtd->ecc_stats.failed++;
1631 } else {
1632 mtd->ecc_stats.corrected += stat;
1633 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1634 }
1635
1636 return max_bitflips;
1637}
1638
1639/**
1200 * omap3_free_bch - Release BCH ecc resources 1640 * omap3_free_bch - Release BCH ecc resources
1201 * @mtd: MTD device structure 1641 * @mtd: MTD device structure
1202 */ 1642 */
@@ -1225,6 +1665,11 @@ static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1225#else 1665#else
1226 const int hw_errors = BCH4_MAX_ERROR; 1666 const int hw_errors = BCH4_MAX_ERROR;
1227#endif 1667#endif
1668 enum bch_ecc bch_type;
1669 const __be32 *parp;
1670 int lenp;
1671 struct device_node *elm_node;
1672
1228 info->bch = NULL; 1673 info->bch = NULL;
1229 1674
1230 max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 1675 max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ?
@@ -1235,30 +1680,67 @@ static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1235 goto fail; 1680 goto fail;
1236 } 1681 }
1237 1682
1238 /* software bch library is only used to detect and locate errors */ 1683 info->nand.ecc.size = 512;
1239 info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */); 1684 info->nand.ecc.hwctl = omap3_enable_hwecc_bch;
1240 if (!info->bch) 1685 info->nand.ecc.mode = NAND_ECC_HW;
1241 goto fail; 1686 info->nand.ecc.strength = max_errors;
1242 1687
1243 info->nand.ecc.size = 512; 1688 if (hw_errors == BCH8_MAX_ERROR)
1244 info->nand.ecc.hwctl = omap3_enable_hwecc_bch; 1689 bch_type = BCH8_ECC;
1245 info->nand.ecc.correct = omap3_correct_data_bch; 1690 else
1246 info->nand.ecc.mode = NAND_ECC_HW; 1691 bch_type = BCH4_ECC;
1247 1692
1248 /* 1693 /* Detect availability of ELM module */
1249 * The number of corrected errors in an ecc block that will trigger 1694 parp = of_get_property(info->of_node, "elm_id", &lenp);
1250 * block scrubbing defaults to the ecc strength (4 or 8). 1695 if ((parp == NULL) && (lenp != (sizeof(void *) * 2))) {
1251 * Set mtd->bitflip_threshold here to define a custom threshold. 1696 pr_err("Missing elm_id property, fall back to Software BCH\n");
1252 */ 1697 info->is_elm_used = false;
1698 } else {
1699 struct platform_device *pdev;
1253 1700
1254 if (max_errors == 8) { 1701 elm_node = of_find_node_by_phandle(be32_to_cpup(parp));
1255 info->nand.ecc.strength = 8; 1702 pdev = of_find_device_by_node(elm_node);
1256 info->nand.ecc.bytes = 13; 1703 info->elm_dev = &pdev->dev;
1257 info->nand.ecc.calculate = omap3_calculate_ecc_bch8; 1704 elm_config(info->elm_dev, bch_type);
1705 info->is_elm_used = true;
1706 }
1707
1708 if (info->is_elm_used && (mtd->writesize <= 4096)) {
1709
1710 if (hw_errors == BCH8_MAX_ERROR)
1711 info->nand.ecc.bytes = BCH8_SIZE;
1712 else
1713 info->nand.ecc.bytes = BCH4_SIZE;
1714
1715 info->nand.ecc.correct = omap_elm_correct_data;
1716 info->nand.ecc.calculate = omap3_calculate_ecc_bch;
1717 info->nand.ecc.read_page = omap_read_page_bch;
1718 info->nand.ecc.write_page = omap_write_page_bch;
1258 } else { 1719 } else {
1259 info->nand.ecc.strength = 4; 1720 /*
1260 info->nand.ecc.bytes = 7; 1721 * software bch library is only used to detect and
1261 info->nand.ecc.calculate = omap3_calculate_ecc_bch4; 1722 * locate errors
1723 */
1724 info->bch = init_bch(13, max_errors,
1725 0x201b /* hw polynomial */);
1726 if (!info->bch)
1727 goto fail;
1728
1729 info->nand.ecc.correct = omap3_correct_data_bch;
1730
1731 /*
1732 * The number of corrected errors in an ecc block that will
1733 * trigger block scrubbing defaults to the ecc strength (4 or 8)
1734 * Set mtd->bitflip_threshold here to define a custom threshold.
1735 */
1736
1737 if (max_errors == 8) {
1738 info->nand.ecc.bytes = 13;
1739 info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1740 } else {
1741 info->nand.ecc.bytes = 7;
1742 info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1743 }
1262 } 1744 }
1263 1745
1264 pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors); 1746 pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
@@ -1274,7 +1756,7 @@ fail:
1274 */ 1756 */
1275static int omap3_init_bch_tail(struct mtd_info *mtd) 1757static int omap3_init_bch_tail(struct mtd_info *mtd)
1276{ 1758{
1277 int i, steps; 1759 int i, steps, offset;
1278 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, 1760 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1279 mtd); 1761 mtd);
1280 struct nand_ecclayout *layout = &info->ecclayout; 1762 struct nand_ecclayout *layout = &info->ecclayout;
@@ -1296,11 +1778,21 @@ static int omap3_init_bch_tail(struct mtd_info *mtd)
1296 goto fail; 1778 goto fail;
1297 } 1779 }
1298 1780
1781 /* ECC layout compatible with RBL for BCH8 */
1782 if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
1783 offset = 2;
1784 else
1785 offset = mtd->oobsize - layout->eccbytes;
1786
1299 /* put ecc bytes at oob tail */ 1787 /* put ecc bytes at oob tail */
1300 for (i = 0; i < layout->eccbytes; i++) 1788 for (i = 0; i < layout->eccbytes; i++)
1301 layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i; 1789 layout->eccpos[i] = offset + i;
1790
1791 if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
1792 layout->oobfree[0].offset = 2 + layout->eccbytes * steps;
1793 else
1794 layout->oobfree[0].offset = 2;
1302 1795
1303 layout->oobfree[0].offset = 2;
1304 layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes; 1796 layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1305 info->nand.ecc.layout = layout; 1797 info->nand.ecc.layout = layout;
1306 1798
@@ -1363,6 +1855,9 @@ static int omap_nand_probe(struct platform_device *pdev)
1363 1855
1364 info->nand.options = pdata->devsize; 1856 info->nand.options = pdata->devsize;
1365 info->nand.options |= NAND_SKIP_BBTSCAN; 1857 info->nand.options |= NAND_SKIP_BBTSCAN;
1858#ifdef CONFIG_MTD_NAND_OMAP_BCH
1859 info->of_node = pdata->of_node;
1860#endif
1366 1861
1367 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1862 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1368 if (res == NULL) { 1863 if (res == NULL) {