diff options
Diffstat (limited to 'drivers/mtd/nand/omap2.c')
-rw-r--r-- | drivers/mtd/nand/omap2.c | 779 |
1 files changed, 779 insertions, 0 deletions
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c new file mode 100644 index 000000000000..ebd07e95b814 --- /dev/null +++ b/drivers/mtd/nand/omap2.c | |||
@@ -0,0 +1,779 @@ | |||
1 | /* | ||
2 | * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> | ||
3 | * Copyright © 2004 Micron Technology Inc. | ||
4 | * Copyright © 2004 David Brownell | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License version 2 as | ||
8 | * published by the Free Software Foundation. | ||
9 | */ | ||
10 | |||
11 | #include <linux/platform_device.h> | ||
12 | #include <linux/dma-mapping.h> | ||
13 | #include <linux/delay.h> | ||
14 | #include <linux/jiffies.h> | ||
15 | #include <linux/sched.h> | ||
16 | #include <linux/mtd/mtd.h> | ||
17 | #include <linux/mtd/nand.h> | ||
18 | #include <linux/mtd/partitions.h> | ||
19 | #include <linux/io.h> | ||
20 | |||
21 | #include <asm/dma.h> | ||
22 | |||
23 | #include <mach/gpmc.h> | ||
24 | #include <mach/nand.h> | ||
25 | |||
26 | #define GPMC_IRQ_STATUS 0x18 | ||
27 | #define GPMC_ECC_CONFIG 0x1F4 | ||
28 | #define GPMC_ECC_CONTROL 0x1F8 | ||
29 | #define GPMC_ECC_SIZE_CONFIG 0x1FC | ||
30 | #define GPMC_ECC1_RESULT 0x200 | ||
31 | |||
32 | #define DRIVER_NAME "omap2-nand" | ||
33 | |||
34 | /* size (4 KiB) for IO mapping */ | ||
35 | #define NAND_IO_SIZE SZ_4K | ||
36 | |||
37 | #define NAND_WP_OFF 0 | ||
38 | #define NAND_WP_BIT 0x00000010 | ||
39 | #define WR_RD_PIN_MONITORING 0x00600000 | ||
40 | |||
41 | #define GPMC_BUF_FULL 0x00000001 | ||
42 | #define GPMC_BUF_EMPTY 0x00000000 | ||
43 | |||
44 | #define NAND_Ecc_P1e (1 << 0) | ||
45 | #define NAND_Ecc_P2e (1 << 1) | ||
46 | #define NAND_Ecc_P4e (1 << 2) | ||
47 | #define NAND_Ecc_P8e (1 << 3) | ||
48 | #define NAND_Ecc_P16e (1 << 4) | ||
49 | #define NAND_Ecc_P32e (1 << 5) | ||
50 | #define NAND_Ecc_P64e (1 << 6) | ||
51 | #define NAND_Ecc_P128e (1 << 7) | ||
52 | #define NAND_Ecc_P256e (1 << 8) | ||
53 | #define NAND_Ecc_P512e (1 << 9) | ||
54 | #define NAND_Ecc_P1024e (1 << 10) | ||
55 | #define NAND_Ecc_P2048e (1 << 11) | ||
56 | |||
57 | #define NAND_Ecc_P1o (1 << 16) | ||
58 | #define NAND_Ecc_P2o (1 << 17) | ||
59 | #define NAND_Ecc_P4o (1 << 18) | ||
60 | #define NAND_Ecc_P8o (1 << 19) | ||
61 | #define NAND_Ecc_P16o (1 << 20) | ||
62 | #define NAND_Ecc_P32o (1 << 21) | ||
63 | #define NAND_Ecc_P64o (1 << 22) | ||
64 | #define NAND_Ecc_P128o (1 << 23) | ||
65 | #define NAND_Ecc_P256o (1 << 24) | ||
66 | #define NAND_Ecc_P512o (1 << 25) | ||
67 | #define NAND_Ecc_P1024o (1 << 26) | ||
68 | #define NAND_Ecc_P2048o (1 << 27) | ||
69 | |||
70 | #define TF(value) (value ? 1 : 0) | ||
71 | |||
72 | #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) | ||
73 | #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) | ||
74 | #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) | ||
75 | #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) | ||
76 | #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) | ||
77 | #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) | ||
78 | #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) | ||
79 | #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) | ||
80 | |||
81 | #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) | ||
82 | #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) | ||
83 | #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) | ||
84 | #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) | ||
85 | #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) | ||
86 | #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) | ||
87 | #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) | ||
88 | #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) | ||
89 | |||
90 | #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) | ||
91 | #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) | ||
92 | #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) | ||
93 | #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) | ||
94 | #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) | ||
95 | #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) | ||
96 | #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) | ||
97 | #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) | ||
98 | |||
99 | #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) | ||
100 | #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) | ||
101 | #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) | ||
102 | #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) | ||
103 | #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) | ||
104 | #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) | ||
105 | #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) | ||
106 | #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) | ||
107 | |||
108 | #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) | ||
109 | #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) | ||
110 | |||
111 | #ifdef CONFIG_MTD_PARTITIONS | ||
112 | static const char *part_probes[] = { "cmdlinepart", NULL }; | ||
113 | #endif | ||
114 | |||
115 | struct omap_nand_info { | ||
116 | struct nand_hw_control controller; | ||
117 | struct omap_nand_platform_data *pdata; | ||
118 | struct mtd_info mtd; | ||
119 | struct mtd_partition *parts; | ||
120 | struct nand_chip nand; | ||
121 | struct platform_device *pdev; | ||
122 | |||
123 | int gpmc_cs; | ||
124 | unsigned long phys_base; | ||
125 | void __iomem *gpmc_cs_baseaddr; | ||
126 | void __iomem *gpmc_baseaddr; | ||
127 | }; | ||
128 | |||
129 | /** | ||
130 | * omap_nand_wp - This function enable or disable the Write Protect feature | ||
131 | * @mtd: MTD device structure | ||
132 | * @mode: WP ON/OFF | ||
133 | */ | ||
134 | static void omap_nand_wp(struct mtd_info *mtd, int mode) | ||
135 | { | ||
136 | struct omap_nand_info *info = container_of(mtd, | ||
137 | struct omap_nand_info, mtd); | ||
138 | |||
139 | unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG); | ||
140 | |||
141 | if (mode) | ||
142 | config &= ~(NAND_WP_BIT); /* WP is ON */ | ||
143 | else | ||
144 | config |= (NAND_WP_BIT); /* WP is OFF */ | ||
145 | |||
146 | __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG)); | ||
147 | } | ||
148 | |||
149 | /** | ||
150 | * omap_hwcontrol - hardware specific access to control-lines | ||
151 | * @mtd: MTD device structure | ||
152 | * @cmd: command to device | ||
153 | * @ctrl: | ||
154 | * NAND_NCE: bit 0 -> don't care | ||
155 | * NAND_CLE: bit 1 -> Command Latch | ||
156 | * NAND_ALE: bit 2 -> Address Latch | ||
157 | * | ||
158 | * NOTE: boards may use different bits for these!! | ||
159 | */ | ||
160 | static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) | ||
161 | { | ||
162 | struct omap_nand_info *info = container_of(mtd, | ||
163 | struct omap_nand_info, mtd); | ||
164 | switch (ctrl) { | ||
165 | case NAND_CTRL_CHANGE | NAND_CTRL_CLE: | ||
166 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + | ||
167 | GPMC_CS_NAND_COMMAND; | ||
168 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + | ||
169 | GPMC_CS_NAND_DATA; | ||
170 | break; | ||
171 | |||
172 | case NAND_CTRL_CHANGE | NAND_CTRL_ALE: | ||
173 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + | ||
174 | GPMC_CS_NAND_ADDRESS; | ||
175 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + | ||
176 | GPMC_CS_NAND_DATA; | ||
177 | break; | ||
178 | |||
179 | case NAND_CTRL_CHANGE | NAND_NCE: | ||
180 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + | ||
181 | GPMC_CS_NAND_DATA; | ||
182 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + | ||
183 | GPMC_CS_NAND_DATA; | ||
184 | break; | ||
185 | } | ||
186 | |||
187 | if (cmd != NAND_CMD_NONE) | ||
188 | __raw_writeb(cmd, info->nand.IO_ADDR_W); | ||
189 | } | ||
190 | |||
191 | /** | ||
192 | * omap_read_buf16 - read data from NAND controller into buffer | ||
193 | * @mtd: MTD device structure | ||
194 | * @buf: buffer to store date | ||
195 | * @len: number of bytes to read | ||
196 | */ | ||
197 | static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) | ||
198 | { | ||
199 | struct nand_chip *nand = mtd->priv; | ||
200 | |||
201 | __raw_readsw(nand->IO_ADDR_R, buf, len / 2); | ||
202 | } | ||
203 | |||
204 | /** | ||
205 | * omap_write_buf16 - write buffer to NAND controller | ||
206 | * @mtd: MTD device structure | ||
207 | * @buf: data buffer | ||
208 | * @len: number of bytes to write | ||
209 | */ | ||
210 | static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) | ||
211 | { | ||
212 | struct omap_nand_info *info = container_of(mtd, | ||
213 | struct omap_nand_info, mtd); | ||
214 | u16 *p = (u16 *) buf; | ||
215 | |||
216 | /* FIXME try bursts of writesw() or DMA ... */ | ||
217 | len >>= 1; | ||
218 | |||
219 | while (len--) { | ||
220 | writew(*p++, info->nand.IO_ADDR_W); | ||
221 | |||
222 | while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + | ||
223 | GPMC_STATUS) & GPMC_BUF_FULL)) | ||
224 | ; | ||
225 | } | ||
226 | } | ||
227 | /** | ||
228 | * omap_verify_buf - Verify chip data against buffer | ||
229 | * @mtd: MTD device structure | ||
230 | * @buf: buffer containing the data to compare | ||
231 | * @len: number of bytes to compare | ||
232 | */ | ||
233 | static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) | ||
234 | { | ||
235 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
236 | mtd); | ||
237 | u16 *p = (u16 *) buf; | ||
238 | |||
239 | len >>= 1; | ||
240 | while (len--) { | ||
241 | if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) | ||
242 | return -EFAULT; | ||
243 | } | ||
244 | |||
245 | return 0; | ||
246 | } | ||
247 | |||
248 | #ifdef CONFIG_MTD_NAND_OMAP_HWECC | ||
249 | /** | ||
250 | * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller | ||
251 | * @mtd: MTD device structure | ||
252 | */ | ||
253 | static void omap_hwecc_init(struct mtd_info *mtd) | ||
254 | { | ||
255 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
256 | mtd); | ||
257 | struct nand_chip *chip = mtd->priv; | ||
258 | unsigned long val = 0x0; | ||
259 | |||
260 | /* Read from ECC Control Register */ | ||
261 | val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
262 | /* Clear all ECC | Enable Reg1 */ | ||
263 | val = ((0x00000001<<8) | 0x00000001); | ||
264 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
265 | |||
266 | /* Read from ECC Size Config Register */ | ||
267 | val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); | ||
268 | /* ECCSIZE1=512 | Select eccResultsize[0-3] */ | ||
269 | val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F)); | ||
270 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); | ||
271 | } | ||
272 | |||
273 | /** | ||
274 | * gen_true_ecc - This function will generate true ECC value | ||
275 | * @ecc_buf: buffer to store ecc code | ||
276 | * | ||
277 | * This generated true ECC value can be used when correcting | ||
278 | * data read from NAND flash memory core | ||
279 | */ | ||
280 | static void gen_true_ecc(u8 *ecc_buf) | ||
281 | { | ||
282 | u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | | ||
283 | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); | ||
284 | |||
285 | ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | | ||
286 | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); | ||
287 | ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | | ||
288 | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); | ||
289 | ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | | ||
290 | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); | ||
291 | } | ||
292 | |||
293 | /** | ||
294 | * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data | ||
295 | * @ecc_data1: ecc code from nand spare area | ||
296 | * @ecc_data2: ecc code from hardware register obtained from hardware ecc | ||
297 | * @page_data: page data | ||
298 | * | ||
299 | * This function compares two ECC's and indicates if there is an error. | ||
300 | * If the error can be corrected it will be corrected to the buffer. | ||
301 | */ | ||
302 | static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ | ||
303 | u8 *ecc_data2, /* read from register */ | ||
304 | u8 *page_data) | ||
305 | { | ||
306 | uint i; | ||
307 | u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; | ||
308 | u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; | ||
309 | u8 ecc_bit[24]; | ||
310 | u8 ecc_sum = 0; | ||
311 | u8 find_bit = 0; | ||
312 | uint find_byte = 0; | ||
313 | int isEccFF; | ||
314 | |||
315 | isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); | ||
316 | |||
317 | gen_true_ecc(ecc_data1); | ||
318 | gen_true_ecc(ecc_data2); | ||
319 | |||
320 | for (i = 0; i <= 2; i++) { | ||
321 | *(ecc_data1 + i) = ~(*(ecc_data1 + i)); | ||
322 | *(ecc_data2 + i) = ~(*(ecc_data2 + i)); | ||
323 | } | ||
324 | |||
325 | for (i = 0; i < 8; i++) { | ||
326 | tmp0_bit[i] = *ecc_data1 % 2; | ||
327 | *ecc_data1 = *ecc_data1 / 2; | ||
328 | } | ||
329 | |||
330 | for (i = 0; i < 8; i++) { | ||
331 | tmp1_bit[i] = *(ecc_data1 + 1) % 2; | ||
332 | *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; | ||
333 | } | ||
334 | |||
335 | for (i = 0; i < 8; i++) { | ||
336 | tmp2_bit[i] = *(ecc_data1 + 2) % 2; | ||
337 | *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; | ||
338 | } | ||
339 | |||
340 | for (i = 0; i < 8; i++) { | ||
341 | comp0_bit[i] = *ecc_data2 % 2; | ||
342 | *ecc_data2 = *ecc_data2 / 2; | ||
343 | } | ||
344 | |||
345 | for (i = 0; i < 8; i++) { | ||
346 | comp1_bit[i] = *(ecc_data2 + 1) % 2; | ||
347 | *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; | ||
348 | } | ||
349 | |||
350 | for (i = 0; i < 8; i++) { | ||
351 | comp2_bit[i] = *(ecc_data2 + 2) % 2; | ||
352 | *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; | ||
353 | } | ||
354 | |||
355 | for (i = 0; i < 6; i++) | ||
356 | ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; | ||
357 | |||
358 | for (i = 0; i < 8; i++) | ||
359 | ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; | ||
360 | |||
361 | for (i = 0; i < 8; i++) | ||
362 | ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; | ||
363 | |||
364 | ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; | ||
365 | ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; | ||
366 | |||
367 | for (i = 0; i < 24; i++) | ||
368 | ecc_sum += ecc_bit[i]; | ||
369 | |||
370 | switch (ecc_sum) { | ||
371 | case 0: | ||
372 | /* Not reached because this function is not called if | ||
373 | * ECC values are equal | ||
374 | */ | ||
375 | return 0; | ||
376 | |||
377 | case 1: | ||
378 | /* Uncorrectable error */ | ||
379 | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); | ||
380 | return -1; | ||
381 | |||
382 | case 11: | ||
383 | /* UN-Correctable error */ | ||
384 | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n"); | ||
385 | return -1; | ||
386 | |||
387 | case 12: | ||
388 | /* Correctable error */ | ||
389 | find_byte = (ecc_bit[23] << 8) + | ||
390 | (ecc_bit[21] << 7) + | ||
391 | (ecc_bit[19] << 6) + | ||
392 | (ecc_bit[17] << 5) + | ||
393 | (ecc_bit[15] << 4) + | ||
394 | (ecc_bit[13] << 3) + | ||
395 | (ecc_bit[11] << 2) + | ||
396 | (ecc_bit[9] << 1) + | ||
397 | ecc_bit[7]; | ||
398 | |||
399 | find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; | ||
400 | |||
401 | DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at " | ||
402 | "offset: %d, bit: %d\n", find_byte, find_bit); | ||
403 | |||
404 | page_data[find_byte] ^= (1 << find_bit); | ||
405 | |||
406 | return 0; | ||
407 | default: | ||
408 | if (isEccFF) { | ||
409 | if (ecc_data2[0] == 0 && | ||
410 | ecc_data2[1] == 0 && | ||
411 | ecc_data2[2] == 0) | ||
412 | return 0; | ||
413 | } | ||
414 | DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); | ||
415 | return -1; | ||
416 | } | ||
417 | } | ||
418 | |||
419 | /** | ||
420 | * omap_correct_data - Compares the ECC read with HW generated ECC | ||
421 | * @mtd: MTD device structure | ||
422 | * @dat: page data | ||
423 | * @read_ecc: ecc read from nand flash | ||
424 | * @calc_ecc: ecc read from HW ECC registers | ||
425 | * | ||
426 | * Compares the ecc read from nand spare area with ECC registers values | ||
427 | * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection | ||
428 | * and correction. | ||
429 | */ | ||
430 | static int omap_correct_data(struct mtd_info *mtd, u_char *dat, | ||
431 | u_char *read_ecc, u_char *calc_ecc) | ||
432 | { | ||
433 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
434 | mtd); | ||
435 | int blockCnt = 0, i = 0, ret = 0; | ||
436 | |||
437 | /* Ex NAND_ECC_HW12_2048 */ | ||
438 | if ((info->nand.ecc.mode == NAND_ECC_HW) && | ||
439 | (info->nand.ecc.size == 2048)) | ||
440 | blockCnt = 4; | ||
441 | else | ||
442 | blockCnt = 1; | ||
443 | |||
444 | for (i = 0; i < blockCnt; i++) { | ||
445 | if (memcmp(read_ecc, calc_ecc, 3) != 0) { | ||
446 | ret = omap_compare_ecc(read_ecc, calc_ecc, dat); | ||
447 | if (ret < 0) | ||
448 | return ret; | ||
449 | } | ||
450 | read_ecc += 3; | ||
451 | calc_ecc += 3; | ||
452 | dat += 512; | ||
453 | } | ||
454 | return 0; | ||
455 | } | ||
456 | |||
457 | /** | ||
458 | * omap_calcuate_ecc - Generate non-inverted ECC bytes. | ||
459 | * @mtd: MTD device structure | ||
460 | * @dat: The pointer to data on which ecc is computed | ||
461 | * @ecc_code: The ecc_code buffer | ||
462 | * | ||
463 | * Using noninverted ECC can be considered ugly since writing a blank | ||
464 | * page ie. padding will clear the ECC bytes. This is no problem as long | ||
465 | * nobody is trying to write data on the seemingly unused page. Reading | ||
466 | * an erased page will produce an ECC mismatch between generated and read | ||
467 | * ECC bytes that has to be dealt with separately. | ||
468 | */ | ||
469 | static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, | ||
470 | u_char *ecc_code) | ||
471 | { | ||
472 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
473 | mtd); | ||
474 | unsigned long val = 0x0; | ||
475 | unsigned long reg; | ||
476 | |||
477 | /* Start Reading from HW ECC1_Result = 0x200 */ | ||
478 | reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT); | ||
479 | val = __raw_readl(reg); | ||
480 | *ecc_code++ = val; /* P128e, ..., P1e */ | ||
481 | *ecc_code++ = val >> 16; /* P128o, ..., P1o */ | ||
482 | /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ | ||
483 | *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); | ||
484 | reg += 4; | ||
485 | |||
486 | return 0; | ||
487 | } | ||
488 | |||
489 | /** | ||
490 | * omap_enable_hwecc - This function enables the hardware ecc functionality | ||
491 | * @mtd: MTD device structure | ||
492 | * @mode: Read/Write mode | ||
493 | */ | ||
494 | static void omap_enable_hwecc(struct mtd_info *mtd, int mode) | ||
495 | { | ||
496 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
497 | mtd); | ||
498 | struct nand_chip *chip = mtd->priv; | ||
499 | unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; | ||
500 | unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG); | ||
501 | |||
502 | switch (mode) { | ||
503 | case NAND_ECC_READ: | ||
504 | __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
505 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ | ||
506 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); | ||
507 | break; | ||
508 | case NAND_ECC_READSYN: | ||
509 | __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
510 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ | ||
511 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); | ||
512 | break; | ||
513 | case NAND_ECC_WRITE: | ||
514 | __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
515 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ | ||
516 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); | ||
517 | break; | ||
518 | default: | ||
519 | DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n", | ||
520 | mode); | ||
521 | break; | ||
522 | } | ||
523 | |||
524 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG); | ||
525 | } | ||
526 | #endif | ||
527 | |||
528 | /** | ||
529 | * omap_wait - wait until the command is done | ||
530 | * @mtd: MTD device structure | ||
531 | * @chip: NAND Chip structure | ||
532 | * | ||
533 | * Wait function is called during Program and erase operations and | ||
534 | * the way it is called from MTD layer, we should wait till the NAND | ||
535 | * chip is ready after the programming/erase operation has completed. | ||
536 | * | ||
537 | * Erase can take up to 400ms and program up to 20ms according to | ||
538 | * general NAND and SmartMedia specs | ||
539 | */ | ||
540 | static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) | ||
541 | { | ||
542 | struct nand_chip *this = mtd->priv; | ||
543 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
544 | mtd); | ||
545 | unsigned long timeo = jiffies; | ||
546 | int status = NAND_STATUS_FAIL, state = this->state; | ||
547 | |||
548 | if (state == FL_ERASING) | ||
549 | timeo += (HZ * 400) / 1000; | ||
550 | else | ||
551 | timeo += (HZ * 20) / 1000; | ||
552 | |||
553 | this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr + | ||
554 | GPMC_CS_NAND_COMMAND; | ||
555 | this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; | ||
556 | |||
557 | __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W); | ||
558 | |||
559 | while (time_before(jiffies, timeo)) { | ||
560 | status = __raw_readb(this->IO_ADDR_R); | ||
561 | if (status & NAND_STATUS_READY) | ||
562 | break; | ||
563 | cond_resched(); | ||
564 | } | ||
565 | return status; | ||
566 | } | ||
567 | |||
568 | /** | ||
569 | * omap_dev_ready - calls the platform specific dev_ready function | ||
570 | * @mtd: MTD device structure | ||
571 | */ | ||
572 | static int omap_dev_ready(struct mtd_info *mtd) | ||
573 | { | ||
574 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
575 | mtd); | ||
576 | unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS); | ||
577 | |||
578 | if ((val & 0x100) == 0x100) { | ||
579 | /* Clear IRQ Interrupt */ | ||
580 | val |= 0x100; | ||
581 | val &= ~(0x0); | ||
582 | __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS); | ||
583 | } else { | ||
584 | unsigned int cnt = 0; | ||
585 | while (cnt++ < 0x1FF) { | ||
586 | if ((val & 0x100) == 0x100) | ||
587 | return 0; | ||
588 | val = __raw_readl(info->gpmc_baseaddr + | ||
589 | GPMC_IRQ_STATUS); | ||
590 | } | ||
591 | } | ||
592 | |||
593 | return 1; | ||
594 | } | ||
595 | |||
596 | static int __devinit omap_nand_probe(struct platform_device *pdev) | ||
597 | { | ||
598 | struct omap_nand_info *info; | ||
599 | struct omap_nand_platform_data *pdata; | ||
600 | int err; | ||
601 | unsigned long val; | ||
602 | |||
603 | |||
604 | pdata = pdev->dev.platform_data; | ||
605 | if (pdata == NULL) { | ||
606 | dev_err(&pdev->dev, "platform data missing\n"); | ||
607 | return -ENODEV; | ||
608 | } | ||
609 | |||
610 | info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); | ||
611 | if (!info) | ||
612 | return -ENOMEM; | ||
613 | |||
614 | platform_set_drvdata(pdev, info); | ||
615 | |||
616 | spin_lock_init(&info->controller.lock); | ||
617 | init_waitqueue_head(&info->controller.wq); | ||
618 | |||
619 | info->pdev = pdev; | ||
620 | |||
621 | info->gpmc_cs = pdata->cs; | ||
622 | info->gpmc_baseaddr = pdata->gpmc_baseaddr; | ||
623 | info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr; | ||
624 | |||
625 | info->mtd.priv = &info->nand; | ||
626 | info->mtd.name = dev_name(&pdev->dev); | ||
627 | info->mtd.owner = THIS_MODULE; | ||
628 | |||
629 | err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base); | ||
630 | if (err < 0) { | ||
631 | dev_err(&pdev->dev, "Cannot request GPMC CS\n"); | ||
632 | goto out_free_info; | ||
633 | } | ||
634 | |||
635 | /* Enable RD PIN Monitoring Reg */ | ||
636 | if (pdata->dev_ready) { | ||
637 | val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1); | ||
638 | val |= WR_RD_PIN_MONITORING; | ||
639 | gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val); | ||
640 | } | ||
641 | |||
642 | val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7); | ||
643 | val &= ~(0xf << 8); | ||
644 | val |= (0xc & 0xf) << 8; | ||
645 | gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val); | ||
646 | |||
647 | /* NAND write protect off */ | ||
648 | omap_nand_wp(&info->mtd, NAND_WP_OFF); | ||
649 | |||
650 | if (!request_mem_region(info->phys_base, NAND_IO_SIZE, | ||
651 | pdev->dev.driver->name)) { | ||
652 | err = -EBUSY; | ||
653 | goto out_free_cs; | ||
654 | } | ||
655 | |||
656 | info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); | ||
657 | if (!info->nand.IO_ADDR_R) { | ||
658 | err = -ENOMEM; | ||
659 | goto out_release_mem_region; | ||
660 | } | ||
661 | info->nand.controller = &info->controller; | ||
662 | |||
663 | info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; | ||
664 | info->nand.cmd_ctrl = omap_hwcontrol; | ||
665 | |||
666 | /* REVISIT: only supports 16-bit NAND flash */ | ||
667 | |||
668 | info->nand.read_buf = omap_read_buf16; | ||
669 | info->nand.write_buf = omap_write_buf16; | ||
670 | info->nand.verify_buf = omap_verify_buf; | ||
671 | |||
672 | /* | ||
673 | * If RDY/BSY line is connected to OMAP then use the omap ready | ||
674 | * funcrtion and the generic nand_wait function which reads the status | ||
675 | * register after monitoring the RDY/BSY line.Otherwise use a standard | ||
676 | * chip delay which is slightly more than tR (AC Timing) of the NAND | ||
677 | * device and read status register until you get a failure or success | ||
678 | */ | ||
679 | if (pdata->dev_ready) { | ||
680 | info->nand.dev_ready = omap_dev_ready; | ||
681 | info->nand.chip_delay = 0; | ||
682 | } else { | ||
683 | info->nand.waitfunc = omap_wait; | ||
684 | info->nand.chip_delay = 50; | ||
685 | } | ||
686 | |||
687 | info->nand.options |= NAND_SKIP_BBTSCAN; | ||
688 | if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000) | ||
689 | == 0x1000) | ||
690 | info->nand.options |= NAND_BUSWIDTH_16; | ||
691 | |||
692 | #ifdef CONFIG_MTD_NAND_OMAP_HWECC | ||
693 | info->nand.ecc.bytes = 3; | ||
694 | info->nand.ecc.size = 512; | ||
695 | info->nand.ecc.calculate = omap_calculate_ecc; | ||
696 | info->nand.ecc.hwctl = omap_enable_hwecc; | ||
697 | info->nand.ecc.correct = omap_correct_data; | ||
698 | info->nand.ecc.mode = NAND_ECC_HW; | ||
699 | |||
700 | /* init HW ECC */ | ||
701 | omap_hwecc_init(&info->mtd); | ||
702 | #else | ||
703 | info->nand.ecc.mode = NAND_ECC_SOFT; | ||
704 | #endif | ||
705 | |||
706 | /* DIP switches on some boards change between 8 and 16 bit | ||
707 | * bus widths for flash. Try the other width if the first try fails. | ||
708 | */ | ||
709 | if (nand_scan(&info->mtd, 1)) { | ||
710 | info->nand.options ^= NAND_BUSWIDTH_16; | ||
711 | if (nand_scan(&info->mtd, 1)) { | ||
712 | err = -ENXIO; | ||
713 | goto out_release_mem_region; | ||
714 | } | ||
715 | } | ||
716 | |||
717 | #ifdef CONFIG_MTD_PARTITIONS | ||
718 | err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); | ||
719 | if (err > 0) | ||
720 | add_mtd_partitions(&info->mtd, info->parts, err); | ||
721 | else if (pdata->parts) | ||
722 | add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); | ||
723 | else | ||
724 | #endif | ||
725 | add_mtd_device(&info->mtd); | ||
726 | |||
727 | platform_set_drvdata(pdev, &info->mtd); | ||
728 | |||
729 | return 0; | ||
730 | |||
731 | out_release_mem_region: | ||
732 | release_mem_region(info->phys_base, NAND_IO_SIZE); | ||
733 | out_free_cs: | ||
734 | gpmc_cs_free(info->gpmc_cs); | ||
735 | out_free_info: | ||
736 | kfree(info); | ||
737 | |||
738 | return err; | ||
739 | } | ||
740 | |||
741 | static int omap_nand_remove(struct platform_device *pdev) | ||
742 | { | ||
743 | struct mtd_info *mtd = platform_get_drvdata(pdev); | ||
744 | struct omap_nand_info *info = mtd->priv; | ||
745 | |||
746 | platform_set_drvdata(pdev, NULL); | ||
747 | /* Release NAND device, its internal structures and partitions */ | ||
748 | nand_release(&info->mtd); | ||
749 | iounmap(info->nand.IO_ADDR_R); | ||
750 | kfree(&info->mtd); | ||
751 | return 0; | ||
752 | } | ||
753 | |||
754 | static struct platform_driver omap_nand_driver = { | ||
755 | .probe = omap_nand_probe, | ||
756 | .remove = omap_nand_remove, | ||
757 | .driver = { | ||
758 | .name = DRIVER_NAME, | ||
759 | .owner = THIS_MODULE, | ||
760 | }, | ||
761 | }; | ||
762 | |||
763 | static int __init omap_nand_init(void) | ||
764 | { | ||
765 | printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME); | ||
766 | return platform_driver_register(&omap_nand_driver); | ||
767 | } | ||
768 | |||
769 | static void __exit omap_nand_exit(void) | ||
770 | { | ||
771 | platform_driver_unregister(&omap_nand_driver); | ||
772 | } | ||
773 | |||
774 | module_init(omap_nand_init); | ||
775 | module_exit(omap_nand_exit); | ||
776 | |||
777 | MODULE_ALIAS(DRIVER_NAME); | ||
778 | MODULE_LICENSE("GPL"); | ||
779 | MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); | ||