aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/omap2.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/omap2.c')
-rw-r--r--drivers/mtd/nand/omap2.c779
1 files changed, 779 insertions, 0 deletions
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
new file mode 100644
index 000000000000..ebd07e95b814
--- /dev/null
+++ b/drivers/mtd/nand/omap2.c
@@ -0,0 +1,779 @@
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
12#include <linux/dma-mapping.h>
13#include <linux/delay.h>
14#include <linux/jiffies.h>
15#include <linux/sched.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/nand.h>
18#include <linux/mtd/partitions.h>
19#include <linux/io.h>
20
21#include <asm/dma.h>
22
23#include <mach/gpmc.h>
24#include <mach/nand.h>
25
26#define GPMC_IRQ_STATUS 0x18
27#define GPMC_ECC_CONFIG 0x1F4
28#define GPMC_ECC_CONTROL 0x1F8
29#define GPMC_ECC_SIZE_CONFIG 0x1FC
30#define GPMC_ECC1_RESULT 0x200
31
32#define DRIVER_NAME "omap2-nand"
33
34/* size (4 KiB) for IO mapping */
35#define NAND_IO_SIZE SZ_4K
36
37#define NAND_WP_OFF 0
38#define NAND_WP_BIT 0x00000010
39#define WR_RD_PIN_MONITORING 0x00600000
40
41#define GPMC_BUF_FULL 0x00000001
42#define GPMC_BUF_EMPTY 0x00000000
43
44#define NAND_Ecc_P1e (1 << 0)
45#define NAND_Ecc_P2e (1 << 1)
46#define NAND_Ecc_P4e (1 << 2)
47#define NAND_Ecc_P8e (1 << 3)
48#define NAND_Ecc_P16e (1 << 4)
49#define NAND_Ecc_P32e (1 << 5)
50#define NAND_Ecc_P64e (1 << 6)
51#define NAND_Ecc_P128e (1 << 7)
52#define NAND_Ecc_P256e (1 << 8)
53#define NAND_Ecc_P512e (1 << 9)
54#define NAND_Ecc_P1024e (1 << 10)
55#define NAND_Ecc_P2048e (1 << 11)
56
57#define NAND_Ecc_P1o (1 << 16)
58#define NAND_Ecc_P2o (1 << 17)
59#define NAND_Ecc_P4o (1 << 18)
60#define NAND_Ecc_P8o (1 << 19)
61#define NAND_Ecc_P16o (1 << 20)
62#define NAND_Ecc_P32o (1 << 21)
63#define NAND_Ecc_P64o (1 << 22)
64#define NAND_Ecc_P128o (1 << 23)
65#define NAND_Ecc_P256o (1 << 24)
66#define NAND_Ecc_P512o (1 << 25)
67#define NAND_Ecc_P1024o (1 << 26)
68#define NAND_Ecc_P2048o (1 << 27)
69
70#define TF(value) (value ? 1 : 0)
71
72#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
73#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
74#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
75#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
76#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
77#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
78#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
79#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
80
81#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
82#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
83#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
84#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
85#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
86#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
87#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
88#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
89
90#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
91#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
92#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
93#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
94#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
95#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
96#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
97#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
98
99#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
100#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
101#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
102#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
103#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
104#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
105#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
106#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
107
108#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
109#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
110
111#ifdef CONFIG_MTD_PARTITIONS
112static const char *part_probes[] = { "cmdlinepart", NULL };
113#endif
114
115struct omap_nand_info {
116 struct nand_hw_control controller;
117 struct omap_nand_platform_data *pdata;
118 struct mtd_info mtd;
119 struct mtd_partition *parts;
120 struct nand_chip nand;
121 struct platform_device *pdev;
122
123 int gpmc_cs;
124 unsigned long phys_base;
125 void __iomem *gpmc_cs_baseaddr;
126 void __iomem *gpmc_baseaddr;
127};
128
129/**
130 * omap_nand_wp - This function enable or disable the Write Protect feature
131 * @mtd: MTD device structure
132 * @mode: WP ON/OFF
133 */
134static void omap_nand_wp(struct mtd_info *mtd, int mode)
135{
136 struct omap_nand_info *info = container_of(mtd,
137 struct omap_nand_info, mtd);
138
139 unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG);
140
141 if (mode)
142 config &= ~(NAND_WP_BIT); /* WP is ON */
143 else
144 config |= (NAND_WP_BIT); /* WP is OFF */
145
146 __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG));
147}
148
149/**
150 * omap_hwcontrol - hardware specific access to control-lines
151 * @mtd: MTD device structure
152 * @cmd: command to device
153 * @ctrl:
154 * NAND_NCE: bit 0 -> don't care
155 * NAND_CLE: bit 1 -> Command Latch
156 * NAND_ALE: bit 2 -> Address Latch
157 *
158 * NOTE: boards may use different bits for these!!
159 */
160static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
161{
162 struct omap_nand_info *info = container_of(mtd,
163 struct omap_nand_info, mtd);
164 switch (ctrl) {
165 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
166 info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
167 GPMC_CS_NAND_COMMAND;
168 info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
169 GPMC_CS_NAND_DATA;
170 break;
171
172 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
173 info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
174 GPMC_CS_NAND_ADDRESS;
175 info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
176 GPMC_CS_NAND_DATA;
177 break;
178
179 case NAND_CTRL_CHANGE | NAND_NCE:
180 info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
181 GPMC_CS_NAND_DATA;
182 info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
183 GPMC_CS_NAND_DATA;
184 break;
185 }
186
187 if (cmd != NAND_CMD_NONE)
188 __raw_writeb(cmd, info->nand.IO_ADDR_W);
189}
190
191/**
192 * omap_read_buf16 - read data from NAND controller into buffer
193 * @mtd: MTD device structure
194 * @buf: buffer to store date
195 * @len: number of bytes to read
196 */
197static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
198{
199 struct nand_chip *nand = mtd->priv;
200
201 __raw_readsw(nand->IO_ADDR_R, buf, len / 2);
202}
203
204/**
205 * omap_write_buf16 - write buffer to NAND controller
206 * @mtd: MTD device structure
207 * @buf: data buffer
208 * @len: number of bytes to write
209 */
210static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
211{
212 struct omap_nand_info *info = container_of(mtd,
213 struct omap_nand_info, mtd);
214 u16 *p = (u16 *) buf;
215
216 /* FIXME try bursts of writesw() or DMA ... */
217 len >>= 1;
218
219 while (len--) {
220 writew(*p++, info->nand.IO_ADDR_W);
221
222 while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
223 GPMC_STATUS) & GPMC_BUF_FULL))
224 ;
225 }
226}
227/**
228 * omap_verify_buf - Verify chip data against buffer
229 * @mtd: MTD device structure
230 * @buf: buffer containing the data to compare
231 * @len: number of bytes to compare
232 */
233static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
234{
235 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
236 mtd);
237 u16 *p = (u16 *) buf;
238
239 len >>= 1;
240 while (len--) {
241 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
242 return -EFAULT;
243 }
244
245 return 0;
246}
247
248#ifdef CONFIG_MTD_NAND_OMAP_HWECC
249/**
250 * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller
251 * @mtd: MTD device structure
252 */
253static void omap_hwecc_init(struct mtd_info *mtd)
254{
255 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
256 mtd);
257 struct nand_chip *chip = mtd->priv;
258 unsigned long val = 0x0;
259
260 /* Read from ECC Control Register */
261 val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL);
262 /* Clear all ECC | Enable Reg1 */
263 val = ((0x00000001<<8) | 0x00000001);
264 __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
265
266 /* Read from ECC Size Config Register */
267 val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
268 /* ECCSIZE1=512 | Select eccResultsize[0-3] */
269 val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
270 __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
271}
272
273/**
274 * gen_true_ecc - This function will generate true ECC value
275 * @ecc_buf: buffer to store ecc code
276 *
277 * This generated true ECC value can be used when correcting
278 * data read from NAND flash memory core
279 */
280static void gen_true_ecc(u8 *ecc_buf)
281{
282 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
283 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
284
285 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
286 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
287 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
288 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
289 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
290 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
291}
292
293/**
294 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
295 * @ecc_data1: ecc code from nand spare area
296 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
297 * @page_data: page data
298 *
299 * This function compares two ECC's and indicates if there is an error.
300 * If the error can be corrected it will be corrected to the buffer.
301 */
302static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
303 u8 *ecc_data2, /* read from register */
304 u8 *page_data)
305{
306 uint i;
307 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
308 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
309 u8 ecc_bit[24];
310 u8 ecc_sum = 0;
311 u8 find_bit = 0;
312 uint find_byte = 0;
313 int isEccFF;
314
315 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
316
317 gen_true_ecc(ecc_data1);
318 gen_true_ecc(ecc_data2);
319
320 for (i = 0; i <= 2; i++) {
321 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
322 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
323 }
324
325 for (i = 0; i < 8; i++) {
326 tmp0_bit[i] = *ecc_data1 % 2;
327 *ecc_data1 = *ecc_data1 / 2;
328 }
329
330 for (i = 0; i < 8; i++) {
331 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
332 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
333 }
334
335 for (i = 0; i < 8; i++) {
336 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
337 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
338 }
339
340 for (i = 0; i < 8; i++) {
341 comp0_bit[i] = *ecc_data2 % 2;
342 *ecc_data2 = *ecc_data2 / 2;
343 }
344
345 for (i = 0; i < 8; i++) {
346 comp1_bit[i] = *(ecc_data2 + 1) % 2;
347 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
348 }
349
350 for (i = 0; i < 8; i++) {
351 comp2_bit[i] = *(ecc_data2 + 2) % 2;
352 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
353 }
354
355 for (i = 0; i < 6; i++)
356 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
357
358 for (i = 0; i < 8; i++)
359 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
360
361 for (i = 0; i < 8; i++)
362 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
363
364 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
365 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
366
367 for (i = 0; i < 24; i++)
368 ecc_sum += ecc_bit[i];
369
370 switch (ecc_sum) {
371 case 0:
372 /* Not reached because this function is not called if
373 * ECC values are equal
374 */
375 return 0;
376
377 case 1:
378 /* Uncorrectable error */
379 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
380 return -1;
381
382 case 11:
383 /* UN-Correctable error */
384 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
385 return -1;
386
387 case 12:
388 /* Correctable error */
389 find_byte = (ecc_bit[23] << 8) +
390 (ecc_bit[21] << 7) +
391 (ecc_bit[19] << 6) +
392 (ecc_bit[17] << 5) +
393 (ecc_bit[15] << 4) +
394 (ecc_bit[13] << 3) +
395 (ecc_bit[11] << 2) +
396 (ecc_bit[9] << 1) +
397 ecc_bit[7];
398
399 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
400
401 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
402 "offset: %d, bit: %d\n", find_byte, find_bit);
403
404 page_data[find_byte] ^= (1 << find_bit);
405
406 return 0;
407 default:
408 if (isEccFF) {
409 if (ecc_data2[0] == 0 &&
410 ecc_data2[1] == 0 &&
411 ecc_data2[2] == 0)
412 return 0;
413 }
414 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
415 return -1;
416 }
417}
418
419/**
420 * omap_correct_data - Compares the ECC read with HW generated ECC
421 * @mtd: MTD device structure
422 * @dat: page data
423 * @read_ecc: ecc read from nand flash
424 * @calc_ecc: ecc read from HW ECC registers
425 *
426 * Compares the ecc read from nand spare area with ECC registers values
427 * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
428 * and correction.
429 */
430static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
431 u_char *read_ecc, u_char *calc_ecc)
432{
433 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
434 mtd);
435 int blockCnt = 0, i = 0, ret = 0;
436
437 /* Ex NAND_ECC_HW12_2048 */
438 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
439 (info->nand.ecc.size == 2048))
440 blockCnt = 4;
441 else
442 blockCnt = 1;
443
444 for (i = 0; i < blockCnt; i++) {
445 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
446 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
447 if (ret < 0)
448 return ret;
449 }
450 read_ecc += 3;
451 calc_ecc += 3;
452 dat += 512;
453 }
454 return 0;
455}
456
457/**
458 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
459 * @mtd: MTD device structure
460 * @dat: The pointer to data on which ecc is computed
461 * @ecc_code: The ecc_code buffer
462 *
463 * Using noninverted ECC can be considered ugly since writing a blank
464 * page ie. padding will clear the ECC bytes. This is no problem as long
465 * nobody is trying to write data on the seemingly unused page. Reading
466 * an erased page will produce an ECC mismatch between generated and read
467 * ECC bytes that has to be dealt with separately.
468 */
469static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
470 u_char *ecc_code)
471{
472 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
473 mtd);
474 unsigned long val = 0x0;
475 unsigned long reg;
476
477 /* Start Reading from HW ECC1_Result = 0x200 */
478 reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
479 val = __raw_readl(reg);
480 *ecc_code++ = val; /* P128e, ..., P1e */
481 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
482 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
483 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
484 reg += 4;
485
486 return 0;
487}
488
489/**
490 * omap_enable_hwecc - This function enables the hardware ecc functionality
491 * @mtd: MTD device structure
492 * @mode: Read/Write mode
493 */
494static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
495{
496 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
497 mtd);
498 struct nand_chip *chip = mtd->priv;
499 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
500 unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
501
502 switch (mode) {
503 case NAND_ECC_READ:
504 __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
505 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
506 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
507 break;
508 case NAND_ECC_READSYN:
509 __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
510 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
511 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
512 break;
513 case NAND_ECC_WRITE:
514 __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
515 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
516 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
517 break;
518 default:
519 DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
520 mode);
521 break;
522 }
523
524 __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
525}
526#endif
527
528/**
529 * omap_wait - wait until the command is done
530 * @mtd: MTD device structure
531 * @chip: NAND Chip structure
532 *
533 * Wait function is called during Program and erase operations and
534 * the way it is called from MTD layer, we should wait till the NAND
535 * chip is ready after the programming/erase operation has completed.
536 *
537 * Erase can take up to 400ms and program up to 20ms according to
538 * general NAND and SmartMedia specs
539 */
540static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
541{
542 struct nand_chip *this = mtd->priv;
543 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
544 mtd);
545 unsigned long timeo = jiffies;
546 int status = NAND_STATUS_FAIL, state = this->state;
547
548 if (state == FL_ERASING)
549 timeo += (HZ * 400) / 1000;
550 else
551 timeo += (HZ * 20) / 1000;
552
553 this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
554 GPMC_CS_NAND_COMMAND;
555 this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
556
557 __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
558
559 while (time_before(jiffies, timeo)) {
560 status = __raw_readb(this->IO_ADDR_R);
561 if (status & NAND_STATUS_READY)
562 break;
563 cond_resched();
564 }
565 return status;
566}
567
568/**
569 * omap_dev_ready - calls the platform specific dev_ready function
570 * @mtd: MTD device structure
571 */
572static int omap_dev_ready(struct mtd_info *mtd)
573{
574 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
575 mtd);
576 unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS);
577
578 if ((val & 0x100) == 0x100) {
579 /* Clear IRQ Interrupt */
580 val |= 0x100;
581 val &= ~(0x0);
582 __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS);
583 } else {
584 unsigned int cnt = 0;
585 while (cnt++ < 0x1FF) {
586 if ((val & 0x100) == 0x100)
587 return 0;
588 val = __raw_readl(info->gpmc_baseaddr +
589 GPMC_IRQ_STATUS);
590 }
591 }
592
593 return 1;
594}
595
596static int __devinit omap_nand_probe(struct platform_device *pdev)
597{
598 struct omap_nand_info *info;
599 struct omap_nand_platform_data *pdata;
600 int err;
601 unsigned long val;
602
603
604 pdata = pdev->dev.platform_data;
605 if (pdata == NULL) {
606 dev_err(&pdev->dev, "platform data missing\n");
607 return -ENODEV;
608 }
609
610 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
611 if (!info)
612 return -ENOMEM;
613
614 platform_set_drvdata(pdev, info);
615
616 spin_lock_init(&info->controller.lock);
617 init_waitqueue_head(&info->controller.wq);
618
619 info->pdev = pdev;
620
621 info->gpmc_cs = pdata->cs;
622 info->gpmc_baseaddr = pdata->gpmc_baseaddr;
623 info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr;
624
625 info->mtd.priv = &info->nand;
626 info->mtd.name = dev_name(&pdev->dev);
627 info->mtd.owner = THIS_MODULE;
628
629 err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base);
630 if (err < 0) {
631 dev_err(&pdev->dev, "Cannot request GPMC CS\n");
632 goto out_free_info;
633 }
634
635 /* Enable RD PIN Monitoring Reg */
636 if (pdata->dev_ready) {
637 val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
638 val |= WR_RD_PIN_MONITORING;
639 gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
640 }
641
642 val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
643 val &= ~(0xf << 8);
644 val |= (0xc & 0xf) << 8;
645 gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
646
647 /* NAND write protect off */
648 omap_nand_wp(&info->mtd, NAND_WP_OFF);
649
650 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
651 pdev->dev.driver->name)) {
652 err = -EBUSY;
653 goto out_free_cs;
654 }
655
656 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
657 if (!info->nand.IO_ADDR_R) {
658 err = -ENOMEM;
659 goto out_release_mem_region;
660 }
661 info->nand.controller = &info->controller;
662
663 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
664 info->nand.cmd_ctrl = omap_hwcontrol;
665
666 /* REVISIT: only supports 16-bit NAND flash */
667
668 info->nand.read_buf = omap_read_buf16;
669 info->nand.write_buf = omap_write_buf16;
670 info->nand.verify_buf = omap_verify_buf;
671
672 /*
673 * If RDY/BSY line is connected to OMAP then use the omap ready
674 * funcrtion and the generic nand_wait function which reads the status
675 * register after monitoring the RDY/BSY line.Otherwise use a standard
676 * chip delay which is slightly more than tR (AC Timing) of the NAND
677 * device and read status register until you get a failure or success
678 */
679 if (pdata->dev_ready) {
680 info->nand.dev_ready = omap_dev_ready;
681 info->nand.chip_delay = 0;
682 } else {
683 info->nand.waitfunc = omap_wait;
684 info->nand.chip_delay = 50;
685 }
686
687 info->nand.options |= NAND_SKIP_BBTSCAN;
688 if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000)
689 == 0x1000)
690 info->nand.options |= NAND_BUSWIDTH_16;
691
692#ifdef CONFIG_MTD_NAND_OMAP_HWECC
693 info->nand.ecc.bytes = 3;
694 info->nand.ecc.size = 512;
695 info->nand.ecc.calculate = omap_calculate_ecc;
696 info->nand.ecc.hwctl = omap_enable_hwecc;
697 info->nand.ecc.correct = omap_correct_data;
698 info->nand.ecc.mode = NAND_ECC_HW;
699
700 /* init HW ECC */
701 omap_hwecc_init(&info->mtd);
702#else
703 info->nand.ecc.mode = NAND_ECC_SOFT;
704#endif
705
706 /* DIP switches on some boards change between 8 and 16 bit
707 * bus widths for flash. Try the other width if the first try fails.
708 */
709 if (nand_scan(&info->mtd, 1)) {
710 info->nand.options ^= NAND_BUSWIDTH_16;
711 if (nand_scan(&info->mtd, 1)) {
712 err = -ENXIO;
713 goto out_release_mem_region;
714 }
715 }
716
717#ifdef CONFIG_MTD_PARTITIONS
718 err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
719 if (err > 0)
720 add_mtd_partitions(&info->mtd, info->parts, err);
721 else if (pdata->parts)
722 add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
723 else
724#endif
725 add_mtd_device(&info->mtd);
726
727 platform_set_drvdata(pdev, &info->mtd);
728
729 return 0;
730
731out_release_mem_region:
732 release_mem_region(info->phys_base, NAND_IO_SIZE);
733out_free_cs:
734 gpmc_cs_free(info->gpmc_cs);
735out_free_info:
736 kfree(info);
737
738 return err;
739}
740
741static int omap_nand_remove(struct platform_device *pdev)
742{
743 struct mtd_info *mtd = platform_get_drvdata(pdev);
744 struct omap_nand_info *info = mtd->priv;
745
746 platform_set_drvdata(pdev, NULL);
747 /* Release NAND device, its internal structures and partitions */
748 nand_release(&info->mtd);
749 iounmap(info->nand.IO_ADDR_R);
750 kfree(&info->mtd);
751 return 0;
752}
753
754static struct platform_driver omap_nand_driver = {
755 .probe = omap_nand_probe,
756 .remove = omap_nand_remove,
757 .driver = {
758 .name = DRIVER_NAME,
759 .owner = THIS_MODULE,
760 },
761};
762
763static int __init omap_nand_init(void)
764{
765 printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
766 return platform_driver_register(&omap_nand_driver);
767}
768
769static void __exit omap_nand_exit(void)
770{
771 platform_driver_unregister(&omap_nand_driver);
772}
773
774module_init(omap_nand_init);
775module_exit(omap_nand_exit);
776
777MODULE_ALIAS(DRIVER_NAME);
778MODULE_LICENSE("GPL");
779MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");