diff options
Diffstat (limited to 'drivers/mtd/devices/docecc.c')
-rw-r--r-- | drivers/mtd/devices/docecc.c | 526 |
1 files changed, 526 insertions, 0 deletions
diff --git a/drivers/mtd/devices/docecc.c b/drivers/mtd/devices/docecc.c new file mode 100644 index 000000000000..933877ff4d88 --- /dev/null +++ b/drivers/mtd/devices/docecc.c | |||
@@ -0,0 +1,526 @@ | |||
1 | /* | ||
2 | * ECC algorithm for M-systems disk on chip. We use the excellent Reed | ||
3 | * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the | ||
4 | * GNU GPL License. The rest is simply to convert the disk on chip | ||
5 | * syndrom into a standard syndom. | ||
6 | * | ||
7 | * Author: Fabrice Bellard (fabrice.bellard@netgem.com) | ||
8 | * Copyright (C) 2000 Netgem S.A. | ||
9 | * | ||
10 | * $Id: docecc.c,v 1.5 2003/05/21 15:15:06 dwmw2 Exp $ | ||
11 | * | ||
12 | * This program is free software; you can redistribute it and/or modify | ||
13 | * it under the terms of the GNU General Public License as published by | ||
14 | * the Free Software Foundation; either version 2 of the License, or | ||
15 | * (at your option) any later version. | ||
16 | * | ||
17 | * This program is distributed in the hope that it will be useful, | ||
18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
20 | * GNU General Public License for more details. | ||
21 | * | ||
22 | * You should have received a copy of the GNU General Public License | ||
23 | * along with this program; if not, write to the Free Software | ||
24 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
25 | */ | ||
26 | #include <linux/kernel.h> | ||
27 | #include <linux/module.h> | ||
28 | #include <asm/errno.h> | ||
29 | #include <asm/io.h> | ||
30 | #include <asm/uaccess.h> | ||
31 | #include <linux/miscdevice.h> | ||
32 | #include <linux/pci.h> | ||
33 | #include <linux/delay.h> | ||
34 | #include <linux/slab.h> | ||
35 | #include <linux/sched.h> | ||
36 | #include <linux/init.h> | ||
37 | #include <linux/types.h> | ||
38 | |||
39 | #include <linux/mtd/compatmac.h> /* for min() in older kernels */ | ||
40 | #include <linux/mtd/mtd.h> | ||
41 | #include <linux/mtd/doc2000.h> | ||
42 | |||
43 | /* need to undef it (from asm/termbits.h) */ | ||
44 | #undef B0 | ||
45 | |||
46 | #define MM 10 /* Symbol size in bits */ | ||
47 | #define KK (1023-4) /* Number of data symbols per block */ | ||
48 | #define B0 510 /* First root of generator polynomial, alpha form */ | ||
49 | #define PRIM 1 /* power of alpha used to generate roots of generator poly */ | ||
50 | #define NN ((1 << MM) - 1) | ||
51 | |||
52 | typedef unsigned short dtype; | ||
53 | |||
54 | /* 1+x^3+x^10 */ | ||
55 | static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; | ||
56 | |||
57 | /* This defines the type used to store an element of the Galois Field | ||
58 | * used by the code. Make sure this is something larger than a char if | ||
59 | * if anything larger than GF(256) is used. | ||
60 | * | ||
61 | * Note: unsigned char will work up to GF(256) but int seems to run | ||
62 | * faster on the Pentium. | ||
63 | */ | ||
64 | typedef int gf; | ||
65 | |||
66 | /* No legal value in index form represents zero, so | ||
67 | * we need a special value for this purpose | ||
68 | */ | ||
69 | #define A0 (NN) | ||
70 | |||
71 | /* Compute x % NN, where NN is 2**MM - 1, | ||
72 | * without a slow divide | ||
73 | */ | ||
74 | static inline gf | ||
75 | modnn(int x) | ||
76 | { | ||
77 | while (x >= NN) { | ||
78 | x -= NN; | ||
79 | x = (x >> MM) + (x & NN); | ||
80 | } | ||
81 | return x; | ||
82 | } | ||
83 | |||
84 | #define CLEAR(a,n) {\ | ||
85 | int ci;\ | ||
86 | for(ci=(n)-1;ci >=0;ci--)\ | ||
87 | (a)[ci] = 0;\ | ||
88 | } | ||
89 | |||
90 | #define COPY(a,b,n) {\ | ||
91 | int ci;\ | ||
92 | for(ci=(n)-1;ci >=0;ci--)\ | ||
93 | (a)[ci] = (b)[ci];\ | ||
94 | } | ||
95 | |||
96 | #define COPYDOWN(a,b,n) {\ | ||
97 | int ci;\ | ||
98 | for(ci=(n)-1;ci >=0;ci--)\ | ||
99 | (a)[ci] = (b)[ci];\ | ||
100 | } | ||
101 | |||
102 | #define Ldec 1 | ||
103 | |||
104 | /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] | ||
105 | lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; | ||
106 | polynomial form -> index form index_of[j=alpha**i] = i | ||
107 | alpha=2 is the primitive element of GF(2**m) | ||
108 | HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: | ||
109 | Let @ represent the primitive element commonly called "alpha" that | ||
110 | is the root of the primitive polynomial p(x). Then in GF(2^m), for any | ||
111 | 0 <= i <= 2^m-2, | ||
112 | @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) | ||
113 | where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation | ||
114 | of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for | ||
115 | example the polynomial representation of @^5 would be given by the binary | ||
116 | representation of the integer "alpha_to[5]". | ||
117 | Similarily, index_of[] can be used as follows: | ||
118 | As above, let @ represent the primitive element of GF(2^m) that is | ||
119 | the root of the primitive polynomial p(x). In order to find the power | ||
120 | of @ (alpha) that has the polynomial representation | ||
121 | a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) | ||
122 | we consider the integer "i" whose binary representation with a(0) being LSB | ||
123 | and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry | ||
124 | "index_of[i]". Now, @^index_of[i] is that element whose polynomial | ||
125 | representation is (a(0),a(1),a(2),...,a(m-1)). | ||
126 | NOTE: | ||
127 | The element alpha_to[2^m-1] = 0 always signifying that the | ||
128 | representation of "@^infinity" = 0 is (0,0,0,...,0). | ||
129 | Similarily, the element index_of[0] = A0 always signifying | ||
130 | that the power of alpha which has the polynomial representation | ||
131 | (0,0,...,0) is "infinity". | ||
132 | |||
133 | */ | ||
134 | |||
135 | static void | ||
136 | generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) | ||
137 | { | ||
138 | register int i, mask; | ||
139 | |||
140 | mask = 1; | ||
141 | Alpha_to[MM] = 0; | ||
142 | for (i = 0; i < MM; i++) { | ||
143 | Alpha_to[i] = mask; | ||
144 | Index_of[Alpha_to[i]] = i; | ||
145 | /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ | ||
146 | if (Pp[i] != 0) | ||
147 | Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ | ||
148 | mask <<= 1; /* single left-shift */ | ||
149 | } | ||
150 | Index_of[Alpha_to[MM]] = MM; | ||
151 | /* | ||
152 | * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by | ||
153 | * poly-repr of @^i shifted left one-bit and accounting for any @^MM | ||
154 | * term that may occur when poly-repr of @^i is shifted. | ||
155 | */ | ||
156 | mask >>= 1; | ||
157 | for (i = MM + 1; i < NN; i++) { | ||
158 | if (Alpha_to[i - 1] >= mask) | ||
159 | Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); | ||
160 | else | ||
161 | Alpha_to[i] = Alpha_to[i - 1] << 1; | ||
162 | Index_of[Alpha_to[i]] = i; | ||
163 | } | ||
164 | Index_of[0] = A0; | ||
165 | Alpha_to[NN] = 0; | ||
166 | } | ||
167 | |||
168 | /* | ||
169 | * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content | ||
170 | * of the feedback shift register after having processed the data and | ||
171 | * the ECC. | ||
172 | * | ||
173 | * Return number of symbols corrected, or -1 if codeword is illegal | ||
174 | * or uncorrectable. If eras_pos is non-null, the detected error locations | ||
175 | * are written back. NOTE! This array must be at least NN-KK elements long. | ||
176 | * The corrected data are written in eras_val[]. They must be xor with the data | ||
177 | * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . | ||
178 | * | ||
179 | * First "no_eras" erasures are declared by the calling program. Then, the | ||
180 | * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). | ||
181 | * If the number of channel errors is not greater than "t_after_eras" the | ||
182 | * transmitted codeword will be recovered. Details of algorithm can be found | ||
183 | * in R. Blahut's "Theory ... of Error-Correcting Codes". | ||
184 | |||
185 | * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure | ||
186 | * will result. The decoder *could* check for this condition, but it would involve | ||
187 | * extra time on every decoding operation. | ||
188 | * */ | ||
189 | static int | ||
190 | eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], | ||
191 | gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], | ||
192 | int no_eras) | ||
193 | { | ||
194 | int deg_lambda, el, deg_omega; | ||
195 | int i, j, r,k; | ||
196 | gf u,q,tmp,num1,num2,den,discr_r; | ||
197 | gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly | ||
198 | * and syndrome poly */ | ||
199 | gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; | ||
200 | gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; | ||
201 | int syn_error, count; | ||
202 | |||
203 | syn_error = 0; | ||
204 | for(i=0;i<NN-KK;i++) | ||
205 | syn_error |= bb[i]; | ||
206 | |||
207 | if (!syn_error) { | ||
208 | /* if remainder is zero, data[] is a codeword and there are no | ||
209 | * errors to correct. So return data[] unmodified | ||
210 | */ | ||
211 | count = 0; | ||
212 | goto finish; | ||
213 | } | ||
214 | |||
215 | for(i=1;i<=NN-KK;i++){ | ||
216 | s[i] = bb[0]; | ||
217 | } | ||
218 | for(j=1;j<NN-KK;j++){ | ||
219 | if(bb[j] == 0) | ||
220 | continue; | ||
221 | tmp = Index_of[bb[j]]; | ||
222 | |||
223 | for(i=1;i<=NN-KK;i++) | ||
224 | s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; | ||
225 | } | ||
226 | |||
227 | /* undo the feedback register implicit multiplication and convert | ||
228 | syndromes to index form */ | ||
229 | |||
230 | for(i=1;i<=NN-KK;i++) { | ||
231 | tmp = Index_of[s[i]]; | ||
232 | if (tmp != A0) | ||
233 | tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); | ||
234 | s[i] = tmp; | ||
235 | } | ||
236 | |||
237 | CLEAR(&lambda[1],NN-KK); | ||
238 | lambda[0] = 1; | ||
239 | |||
240 | if (no_eras > 0) { | ||
241 | /* Init lambda to be the erasure locator polynomial */ | ||
242 | lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; | ||
243 | for (i = 1; i < no_eras; i++) { | ||
244 | u = modnn(PRIM*eras_pos[i]); | ||
245 | for (j = i+1; j > 0; j--) { | ||
246 | tmp = Index_of[lambda[j - 1]]; | ||
247 | if(tmp != A0) | ||
248 | lambda[j] ^= Alpha_to[modnn(u + tmp)]; | ||
249 | } | ||
250 | } | ||
251 | #if DEBUG >= 1 | ||
252 | /* Test code that verifies the erasure locator polynomial just constructed | ||
253 | Needed only for decoder debugging. */ | ||
254 | |||
255 | /* find roots of the erasure location polynomial */ | ||
256 | for(i=1;i<=no_eras;i++) | ||
257 | reg[i] = Index_of[lambda[i]]; | ||
258 | count = 0; | ||
259 | for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { | ||
260 | q = 1; | ||
261 | for (j = 1; j <= no_eras; j++) | ||
262 | if (reg[j] != A0) { | ||
263 | reg[j] = modnn(reg[j] + j); | ||
264 | q ^= Alpha_to[reg[j]]; | ||
265 | } | ||
266 | if (q != 0) | ||
267 | continue; | ||
268 | /* store root and error location number indices */ | ||
269 | root[count] = i; | ||
270 | loc[count] = k; | ||
271 | count++; | ||
272 | } | ||
273 | if (count != no_eras) { | ||
274 | printf("\n lambda(x) is WRONG\n"); | ||
275 | count = -1; | ||
276 | goto finish; | ||
277 | } | ||
278 | #if DEBUG >= 2 | ||
279 | printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); | ||
280 | for (i = 0; i < count; i++) | ||
281 | printf("%d ", loc[i]); | ||
282 | printf("\n"); | ||
283 | #endif | ||
284 | #endif | ||
285 | } | ||
286 | for(i=0;i<NN-KK+1;i++) | ||
287 | b[i] = Index_of[lambda[i]]; | ||
288 | |||
289 | /* | ||
290 | * Begin Berlekamp-Massey algorithm to determine error+erasure | ||
291 | * locator polynomial | ||
292 | */ | ||
293 | r = no_eras; | ||
294 | el = no_eras; | ||
295 | while (++r <= NN-KK) { /* r is the step number */ | ||
296 | /* Compute discrepancy at the r-th step in poly-form */ | ||
297 | discr_r = 0; | ||
298 | for (i = 0; i < r; i++){ | ||
299 | if ((lambda[i] != 0) && (s[r - i] != A0)) { | ||
300 | discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; | ||
301 | } | ||
302 | } | ||
303 | discr_r = Index_of[discr_r]; /* Index form */ | ||
304 | if (discr_r == A0) { | ||
305 | /* 2 lines below: B(x) <-- x*B(x) */ | ||
306 | COPYDOWN(&b[1],b,NN-KK); | ||
307 | b[0] = A0; | ||
308 | } else { | ||
309 | /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ | ||
310 | t[0] = lambda[0]; | ||
311 | for (i = 0 ; i < NN-KK; i++) { | ||
312 | if(b[i] != A0) | ||
313 | t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; | ||
314 | else | ||
315 | t[i+1] = lambda[i+1]; | ||
316 | } | ||
317 | if (2 * el <= r + no_eras - 1) { | ||
318 | el = r + no_eras - el; | ||
319 | /* | ||
320 | * 2 lines below: B(x) <-- inv(discr_r) * | ||
321 | * lambda(x) | ||
322 | */ | ||
323 | for (i = 0; i <= NN-KK; i++) | ||
324 | b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); | ||
325 | } else { | ||
326 | /* 2 lines below: B(x) <-- x*B(x) */ | ||
327 | COPYDOWN(&b[1],b,NN-KK); | ||
328 | b[0] = A0; | ||
329 | } | ||
330 | COPY(lambda,t,NN-KK+1); | ||
331 | } | ||
332 | } | ||
333 | |||
334 | /* Convert lambda to index form and compute deg(lambda(x)) */ | ||
335 | deg_lambda = 0; | ||
336 | for(i=0;i<NN-KK+1;i++){ | ||
337 | lambda[i] = Index_of[lambda[i]]; | ||
338 | if(lambda[i] != A0) | ||
339 | deg_lambda = i; | ||
340 | } | ||
341 | /* | ||
342 | * Find roots of the error+erasure locator polynomial by Chien | ||
343 | * Search | ||
344 | */ | ||
345 | COPY(®[1],&lambda[1],NN-KK); | ||
346 | count = 0; /* Number of roots of lambda(x) */ | ||
347 | for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { | ||
348 | q = 1; | ||
349 | for (j = deg_lambda; j > 0; j--){ | ||
350 | if (reg[j] != A0) { | ||
351 | reg[j] = modnn(reg[j] + j); | ||
352 | q ^= Alpha_to[reg[j]]; | ||
353 | } | ||
354 | } | ||
355 | if (q != 0) | ||
356 | continue; | ||
357 | /* store root (index-form) and error location number */ | ||
358 | root[count] = i; | ||
359 | loc[count] = k; | ||
360 | /* If we've already found max possible roots, | ||
361 | * abort the search to save time | ||
362 | */ | ||
363 | if(++count == deg_lambda) | ||
364 | break; | ||
365 | } | ||
366 | if (deg_lambda != count) { | ||
367 | /* | ||
368 | * deg(lambda) unequal to number of roots => uncorrectable | ||
369 | * error detected | ||
370 | */ | ||
371 | count = -1; | ||
372 | goto finish; | ||
373 | } | ||
374 | /* | ||
375 | * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo | ||
376 | * x**(NN-KK)). in index form. Also find deg(omega). | ||
377 | */ | ||
378 | deg_omega = 0; | ||
379 | for (i = 0; i < NN-KK;i++){ | ||
380 | tmp = 0; | ||
381 | j = (deg_lambda < i) ? deg_lambda : i; | ||
382 | for(;j >= 0; j--){ | ||
383 | if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) | ||
384 | tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; | ||
385 | } | ||
386 | if(tmp != 0) | ||
387 | deg_omega = i; | ||
388 | omega[i] = Index_of[tmp]; | ||
389 | } | ||
390 | omega[NN-KK] = A0; | ||
391 | |||
392 | /* | ||
393 | * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = | ||
394 | * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form | ||
395 | */ | ||
396 | for (j = count-1; j >=0; j--) { | ||
397 | num1 = 0; | ||
398 | for (i = deg_omega; i >= 0; i--) { | ||
399 | if (omega[i] != A0) | ||
400 | num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; | ||
401 | } | ||
402 | num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; | ||
403 | den = 0; | ||
404 | |||
405 | /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ | ||
406 | for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { | ||
407 | if(lambda[i+1] != A0) | ||
408 | den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; | ||
409 | } | ||
410 | if (den == 0) { | ||
411 | #if DEBUG >= 1 | ||
412 | printf("\n ERROR: denominator = 0\n"); | ||
413 | #endif | ||
414 | /* Convert to dual- basis */ | ||
415 | count = -1; | ||
416 | goto finish; | ||
417 | } | ||
418 | /* Apply error to data */ | ||
419 | if (num1 != 0) { | ||
420 | eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; | ||
421 | } else { | ||
422 | eras_val[j] = 0; | ||
423 | } | ||
424 | } | ||
425 | finish: | ||
426 | for(i=0;i<count;i++) | ||
427 | eras_pos[i] = loc[i]; | ||
428 | return count; | ||
429 | } | ||
430 | |||
431 | /***************************************************************************/ | ||
432 | /* The DOC specific code begins here */ | ||
433 | |||
434 | #define SECTOR_SIZE 512 | ||
435 | /* The sector bytes are packed into NB_DATA MM bits words */ | ||
436 | #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) | ||
437 | |||
438 | /* | ||
439 | * Correct the errors in 'sector[]' by using 'ecc1[]' which is the | ||
440 | * content of the feedback shift register applyied to the sector and | ||
441 | * the ECC. Return the number of errors corrected (and correct them in | ||
442 | * sector), or -1 if error | ||
443 | */ | ||
444 | int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) | ||
445 | { | ||
446 | int parity, i, nb_errors; | ||
447 | gf bb[NN - KK + 1]; | ||
448 | gf error_val[NN-KK]; | ||
449 | int error_pos[NN-KK], pos, bitpos, index, val; | ||
450 | dtype *Alpha_to, *Index_of; | ||
451 | |||
452 | /* init log and exp tables here to save memory. However, it is slower */ | ||
453 | Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); | ||
454 | if (!Alpha_to) | ||
455 | return -1; | ||
456 | |||
457 | Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); | ||
458 | if (!Index_of) { | ||
459 | kfree(Alpha_to); | ||
460 | return -1; | ||
461 | } | ||
462 | |||
463 | generate_gf(Alpha_to, Index_of); | ||
464 | |||
465 | parity = ecc1[1]; | ||
466 | |||
467 | bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); | ||
468 | bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); | ||
469 | bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); | ||
470 | bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); | ||
471 | |||
472 | nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, | ||
473 | error_val, error_pos, 0); | ||
474 | if (nb_errors <= 0) | ||
475 | goto the_end; | ||
476 | |||
477 | /* correct the errors */ | ||
478 | for(i=0;i<nb_errors;i++) { | ||
479 | pos = error_pos[i]; | ||
480 | if (pos >= NB_DATA && pos < KK) { | ||
481 | nb_errors = -1; | ||
482 | goto the_end; | ||
483 | } | ||
484 | if (pos < NB_DATA) { | ||
485 | /* extract bit position (MSB first) */ | ||
486 | pos = 10 * (NB_DATA - 1 - pos) - 6; | ||
487 | /* now correct the following 10 bits. At most two bytes | ||
488 | can be modified since pos is even */ | ||
489 | index = (pos >> 3) ^ 1; | ||
490 | bitpos = pos & 7; | ||
491 | if ((index >= 0 && index < SECTOR_SIZE) || | ||
492 | index == (SECTOR_SIZE + 1)) { | ||
493 | val = error_val[i] >> (2 + bitpos); | ||
494 | parity ^= val; | ||
495 | if (index < SECTOR_SIZE) | ||
496 | sector[index] ^= val; | ||
497 | } | ||
498 | index = ((pos >> 3) + 1) ^ 1; | ||
499 | bitpos = (bitpos + 10) & 7; | ||
500 | if (bitpos == 0) | ||
501 | bitpos = 8; | ||
502 | if ((index >= 0 && index < SECTOR_SIZE) || | ||
503 | index == (SECTOR_SIZE + 1)) { | ||
504 | val = error_val[i] << (8 - bitpos); | ||
505 | parity ^= val; | ||
506 | if (index < SECTOR_SIZE) | ||
507 | sector[index] ^= val; | ||
508 | } | ||
509 | } | ||
510 | } | ||
511 | |||
512 | /* use parity to test extra errors */ | ||
513 | if ((parity & 0xff) != 0) | ||
514 | nb_errors = -1; | ||
515 | |||
516 | the_end: | ||
517 | kfree(Alpha_to); | ||
518 | kfree(Index_of); | ||
519 | return nb_errors; | ||
520 | } | ||
521 | |||
522 | EXPORT_SYMBOL_GPL(doc_decode_ecc); | ||
523 | |||
524 | MODULE_LICENSE("GPL"); | ||
525 | MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>"); | ||
526 | MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware"); | ||