diff options
Diffstat (limited to 'drivers/mtd/devices/doc2000.c')
-rw-r--r-- | drivers/mtd/devices/doc2000.c | 1309 |
1 files changed, 1309 insertions, 0 deletions
diff --git a/drivers/mtd/devices/doc2000.c b/drivers/mtd/devices/doc2000.c new file mode 100644 index 000000000000..5fc532895a24 --- /dev/null +++ b/drivers/mtd/devices/doc2000.c | |||
@@ -0,0 +1,1309 @@ | |||
1 | |||
2 | /* | ||
3 | * Linux driver for Disk-On-Chip 2000 and Millennium | ||
4 | * (c) 1999 Machine Vision Holdings, Inc. | ||
5 | * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> | ||
6 | * | ||
7 | * $Id: doc2000.c,v 1.66 2005/01/05 18:05:12 dwmw2 Exp $ | ||
8 | */ | ||
9 | |||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/module.h> | ||
12 | #include <asm/errno.h> | ||
13 | #include <asm/io.h> | ||
14 | #include <asm/uaccess.h> | ||
15 | #include <linux/miscdevice.h> | ||
16 | #include <linux/pci.h> | ||
17 | #include <linux/delay.h> | ||
18 | #include <linux/slab.h> | ||
19 | #include <linux/sched.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/types.h> | ||
22 | #include <linux/bitops.h> | ||
23 | |||
24 | #include <linux/mtd/mtd.h> | ||
25 | #include <linux/mtd/nand.h> | ||
26 | #include <linux/mtd/doc2000.h> | ||
27 | |||
28 | #define DOC_SUPPORT_2000 | ||
29 | #define DOC_SUPPORT_2000TSOP | ||
30 | #define DOC_SUPPORT_MILLENNIUM | ||
31 | |||
32 | #ifdef DOC_SUPPORT_2000 | ||
33 | #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) | ||
34 | #else | ||
35 | #define DoC_is_2000(doc) (0) | ||
36 | #endif | ||
37 | |||
38 | #if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM) | ||
39 | #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) | ||
40 | #else | ||
41 | #define DoC_is_Millennium(doc) (0) | ||
42 | #endif | ||
43 | |||
44 | /* #define ECC_DEBUG */ | ||
45 | |||
46 | /* I have no idea why some DoC chips can not use memcpy_from|to_io(). | ||
47 | * This may be due to the different revisions of the ASIC controller built-in or | ||
48 | * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment | ||
49 | * this: | ||
50 | #undef USE_MEMCPY | ||
51 | */ | ||
52 | |||
53 | static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, | ||
54 | size_t *retlen, u_char *buf); | ||
55 | static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, | ||
56 | size_t *retlen, const u_char *buf); | ||
57 | static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, | ||
58 | size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); | ||
59 | static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len, | ||
60 | size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); | ||
61 | static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, | ||
62 | unsigned long count, loff_t to, size_t *retlen, | ||
63 | u_char *eccbuf, struct nand_oobinfo *oobsel); | ||
64 | static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len, | ||
65 | size_t *retlen, u_char *buf); | ||
66 | static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len, | ||
67 | size_t *retlen, const u_char *buf); | ||
68 | static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, | ||
69 | size_t *retlen, const u_char *buf); | ||
70 | static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); | ||
71 | |||
72 | static struct mtd_info *doc2klist = NULL; | ||
73 | |||
74 | /* Perform the required delay cycles by reading from the appropriate register */ | ||
75 | static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) | ||
76 | { | ||
77 | volatile char dummy; | ||
78 | int i; | ||
79 | |||
80 | for (i = 0; i < cycles; i++) { | ||
81 | if (DoC_is_Millennium(doc)) | ||
82 | dummy = ReadDOC(doc->virtadr, NOP); | ||
83 | else | ||
84 | dummy = ReadDOC(doc->virtadr, DOCStatus); | ||
85 | } | ||
86 | |||
87 | } | ||
88 | |||
89 | /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ | ||
90 | static int _DoC_WaitReady(struct DiskOnChip *doc) | ||
91 | { | ||
92 | void __iomem *docptr = doc->virtadr; | ||
93 | unsigned long timeo = jiffies + (HZ * 10); | ||
94 | |||
95 | DEBUG(MTD_DEBUG_LEVEL3, | ||
96 | "_DoC_WaitReady called for out-of-line wait\n"); | ||
97 | |||
98 | /* Out-of-line routine to wait for chip response */ | ||
99 | while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { | ||
100 | /* issue 2 read from NOP register after reading from CDSNControl register | ||
101 | see Software Requirement 11.4 item 2. */ | ||
102 | DoC_Delay(doc, 2); | ||
103 | |||
104 | if (time_after(jiffies, timeo)) { | ||
105 | DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); | ||
106 | return -EIO; | ||
107 | } | ||
108 | udelay(1); | ||
109 | cond_resched(); | ||
110 | } | ||
111 | |||
112 | return 0; | ||
113 | } | ||
114 | |||
115 | static inline int DoC_WaitReady(struct DiskOnChip *doc) | ||
116 | { | ||
117 | void __iomem *docptr = doc->virtadr; | ||
118 | |||
119 | /* This is inline, to optimise the common case, where it's ready instantly */ | ||
120 | int ret = 0; | ||
121 | |||
122 | /* 4 read form NOP register should be issued in prior to the read from CDSNControl | ||
123 | see Software Requirement 11.4 item 2. */ | ||
124 | DoC_Delay(doc, 4); | ||
125 | |||
126 | if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) | ||
127 | /* Call the out-of-line routine to wait */ | ||
128 | ret = _DoC_WaitReady(doc); | ||
129 | |||
130 | /* issue 2 read from NOP register after reading from CDSNControl register | ||
131 | see Software Requirement 11.4 item 2. */ | ||
132 | DoC_Delay(doc, 2); | ||
133 | |||
134 | return ret; | ||
135 | } | ||
136 | |||
137 | /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to | ||
138 | bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is | ||
139 | required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ | ||
140 | |||
141 | static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command, | ||
142 | unsigned char xtraflags) | ||
143 | { | ||
144 | void __iomem *docptr = doc->virtadr; | ||
145 | |||
146 | if (DoC_is_2000(doc)) | ||
147 | xtraflags |= CDSN_CTRL_FLASH_IO; | ||
148 | |||
149 | /* Assert the CLE (Command Latch Enable) line to the flash chip */ | ||
150 | WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); | ||
151 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ | ||
152 | |||
153 | if (DoC_is_Millennium(doc)) | ||
154 | WriteDOC(command, docptr, CDSNSlowIO); | ||
155 | |||
156 | /* Send the command */ | ||
157 | WriteDOC_(command, docptr, doc->ioreg); | ||
158 | if (DoC_is_Millennium(doc)) | ||
159 | WriteDOC(command, docptr, WritePipeTerm); | ||
160 | |||
161 | /* Lower the CLE line */ | ||
162 | WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); | ||
163 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ | ||
164 | |||
165 | /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ | ||
166 | return DoC_WaitReady(doc); | ||
167 | } | ||
168 | |||
169 | /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to | ||
170 | bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is | ||
171 | required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ | ||
172 | |||
173 | static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, | ||
174 | unsigned char xtraflags1, unsigned char xtraflags2) | ||
175 | { | ||
176 | int i; | ||
177 | void __iomem *docptr = doc->virtadr; | ||
178 | |||
179 | if (DoC_is_2000(doc)) | ||
180 | xtraflags1 |= CDSN_CTRL_FLASH_IO; | ||
181 | |||
182 | /* Assert the ALE (Address Latch Enable) line to the flash chip */ | ||
183 | WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); | ||
184 | |||
185 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ | ||
186 | |||
187 | /* Send the address */ | ||
188 | /* Devices with 256-byte page are addressed as: | ||
189 | Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) | ||
190 | * there is no device on the market with page256 | ||
191 | and more than 24 bits. | ||
192 | Devices with 512-byte page are addressed as: | ||
193 | Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) | ||
194 | * 25-31 is sent only if the chip support it. | ||
195 | * bit 8 changes the read command to be sent | ||
196 | (NAND_CMD_READ0 or NAND_CMD_READ1). | ||
197 | */ | ||
198 | |||
199 | if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { | ||
200 | if (DoC_is_Millennium(doc)) | ||
201 | WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); | ||
202 | WriteDOC_(ofs & 0xff, docptr, doc->ioreg); | ||
203 | } | ||
204 | |||
205 | if (doc->page256) { | ||
206 | ofs = ofs >> 8; | ||
207 | } else { | ||
208 | ofs = ofs >> 9; | ||
209 | } | ||
210 | |||
211 | if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { | ||
212 | for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { | ||
213 | if (DoC_is_Millennium(doc)) | ||
214 | WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); | ||
215 | WriteDOC_(ofs & 0xff, docptr, doc->ioreg); | ||
216 | } | ||
217 | } | ||
218 | |||
219 | if (DoC_is_Millennium(doc)) | ||
220 | WriteDOC(ofs & 0xff, docptr, WritePipeTerm); | ||
221 | |||
222 | DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ | ||
223 | |||
224 | /* FIXME: The SlowIO's for millennium could be replaced by | ||
225 | a single WritePipeTerm here. mf. */ | ||
226 | |||
227 | /* Lower the ALE line */ | ||
228 | WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, | ||
229 | CDSNControl); | ||
230 | |||
231 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ | ||
232 | |||
233 | /* Wait for the chip to respond - Software requirement 11.4.1 */ | ||
234 | return DoC_WaitReady(doc); | ||
235 | } | ||
236 | |||
237 | /* Read a buffer from DoC, taking care of Millennium odditys */ | ||
238 | static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) | ||
239 | { | ||
240 | volatile int dummy; | ||
241 | int modulus = 0xffff; | ||
242 | void __iomem *docptr = doc->virtadr; | ||
243 | int i; | ||
244 | |||
245 | if (len <= 0) | ||
246 | return; | ||
247 | |||
248 | if (DoC_is_Millennium(doc)) { | ||
249 | /* Read the data via the internal pipeline through CDSN IO register, | ||
250 | see Pipelined Read Operations 11.3 */ | ||
251 | dummy = ReadDOC(docptr, ReadPipeInit); | ||
252 | |||
253 | /* Millennium should use the LastDataRead register - Pipeline Reads */ | ||
254 | len--; | ||
255 | |||
256 | /* This is needed for correctly ECC calculation */ | ||
257 | modulus = 0xff; | ||
258 | } | ||
259 | |||
260 | for (i = 0; i < len; i++) | ||
261 | buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); | ||
262 | |||
263 | if (DoC_is_Millennium(doc)) { | ||
264 | buf[i] = ReadDOC(docptr, LastDataRead); | ||
265 | } | ||
266 | } | ||
267 | |||
268 | /* Write a buffer to DoC, taking care of Millennium odditys */ | ||
269 | static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) | ||
270 | { | ||
271 | void __iomem *docptr = doc->virtadr; | ||
272 | int i; | ||
273 | |||
274 | if (len <= 0) | ||
275 | return; | ||
276 | |||
277 | for (i = 0; i < len; i++) | ||
278 | WriteDOC_(buf[i], docptr, doc->ioreg + i); | ||
279 | |||
280 | if (DoC_is_Millennium(doc)) { | ||
281 | WriteDOC(0x00, docptr, WritePipeTerm); | ||
282 | } | ||
283 | } | ||
284 | |||
285 | |||
286 | /* DoC_SelectChip: Select a given flash chip within the current floor */ | ||
287 | |||
288 | static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) | ||
289 | { | ||
290 | void __iomem *docptr = doc->virtadr; | ||
291 | |||
292 | /* Software requirement 11.4.4 before writing DeviceSelect */ | ||
293 | /* Deassert the CE line to eliminate glitches on the FCE# outputs */ | ||
294 | WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); | ||
295 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ | ||
296 | |||
297 | /* Select the individual flash chip requested */ | ||
298 | WriteDOC(chip, docptr, CDSNDeviceSelect); | ||
299 | DoC_Delay(doc, 4); | ||
300 | |||
301 | /* Reassert the CE line */ | ||
302 | WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, | ||
303 | CDSNControl); | ||
304 | DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ | ||
305 | |||
306 | /* Wait for it to be ready */ | ||
307 | return DoC_WaitReady(doc); | ||
308 | } | ||
309 | |||
310 | /* DoC_SelectFloor: Select a given floor (bank of flash chips) */ | ||
311 | |||
312 | static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) | ||
313 | { | ||
314 | void __iomem *docptr = doc->virtadr; | ||
315 | |||
316 | /* Select the floor (bank) of chips required */ | ||
317 | WriteDOC(floor, docptr, FloorSelect); | ||
318 | |||
319 | /* Wait for the chip to be ready */ | ||
320 | return DoC_WaitReady(doc); | ||
321 | } | ||
322 | |||
323 | /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ | ||
324 | |||
325 | static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) | ||
326 | { | ||
327 | int mfr, id, i, j; | ||
328 | volatile char dummy; | ||
329 | |||
330 | /* Page in the required floor/chip */ | ||
331 | DoC_SelectFloor(doc, floor); | ||
332 | DoC_SelectChip(doc, chip); | ||
333 | |||
334 | /* Reset the chip */ | ||
335 | if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { | ||
336 | DEBUG(MTD_DEBUG_LEVEL2, | ||
337 | "DoC_Command (reset) for %d,%d returned true\n", | ||
338 | floor, chip); | ||
339 | return 0; | ||
340 | } | ||
341 | |||
342 | |||
343 | /* Read the NAND chip ID: 1. Send ReadID command */ | ||
344 | if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { | ||
345 | DEBUG(MTD_DEBUG_LEVEL2, | ||
346 | "DoC_Command (ReadID) for %d,%d returned true\n", | ||
347 | floor, chip); | ||
348 | return 0; | ||
349 | } | ||
350 | |||
351 | /* Read the NAND chip ID: 2. Send address byte zero */ | ||
352 | DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); | ||
353 | |||
354 | /* Read the manufacturer and device id codes from the device */ | ||
355 | |||
356 | if (DoC_is_Millennium(doc)) { | ||
357 | DoC_Delay(doc, 2); | ||
358 | dummy = ReadDOC(doc->virtadr, ReadPipeInit); | ||
359 | mfr = ReadDOC(doc->virtadr, LastDataRead); | ||
360 | |||
361 | DoC_Delay(doc, 2); | ||
362 | dummy = ReadDOC(doc->virtadr, ReadPipeInit); | ||
363 | id = ReadDOC(doc->virtadr, LastDataRead); | ||
364 | } else { | ||
365 | /* CDSN Slow IO register see Software Req 11.4 item 5. */ | ||
366 | dummy = ReadDOC(doc->virtadr, CDSNSlowIO); | ||
367 | DoC_Delay(doc, 2); | ||
368 | mfr = ReadDOC_(doc->virtadr, doc->ioreg); | ||
369 | |||
370 | /* CDSN Slow IO register see Software Req 11.4 item 5. */ | ||
371 | dummy = ReadDOC(doc->virtadr, CDSNSlowIO); | ||
372 | DoC_Delay(doc, 2); | ||
373 | id = ReadDOC_(doc->virtadr, doc->ioreg); | ||
374 | } | ||
375 | |||
376 | /* No response - return failure */ | ||
377 | if (mfr == 0xff || mfr == 0) | ||
378 | return 0; | ||
379 | |||
380 | /* Check it's the same as the first chip we identified. | ||
381 | * M-Systems say that any given DiskOnChip device should only | ||
382 | * contain _one_ type of flash part, although that's not a | ||
383 | * hardware restriction. */ | ||
384 | if (doc->mfr) { | ||
385 | if (doc->mfr == mfr && doc->id == id) | ||
386 | return 1; /* This is another the same the first */ | ||
387 | else | ||
388 | printk(KERN_WARNING | ||
389 | "Flash chip at floor %d, chip %d is different:\n", | ||
390 | floor, chip); | ||
391 | } | ||
392 | |||
393 | /* Print and store the manufacturer and ID codes. */ | ||
394 | for (i = 0; nand_flash_ids[i].name != NULL; i++) { | ||
395 | if (id == nand_flash_ids[i].id) { | ||
396 | /* Try to identify manufacturer */ | ||
397 | for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { | ||
398 | if (nand_manuf_ids[j].id == mfr) | ||
399 | break; | ||
400 | } | ||
401 | printk(KERN_INFO | ||
402 | "Flash chip found: Manufacturer ID: %2.2X, " | ||
403 | "Chip ID: %2.2X (%s:%s)\n", mfr, id, | ||
404 | nand_manuf_ids[j].name, nand_flash_ids[i].name); | ||
405 | if (!doc->mfr) { | ||
406 | doc->mfr = mfr; | ||
407 | doc->id = id; | ||
408 | doc->chipshift = | ||
409 | ffs((nand_flash_ids[i].chipsize << 20)) - 1; | ||
410 | doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0; | ||
411 | doc->pageadrlen = doc->chipshift > 25 ? 3 : 2; | ||
412 | doc->erasesize = | ||
413 | nand_flash_ids[i].erasesize; | ||
414 | return 1; | ||
415 | } | ||
416 | return 0; | ||
417 | } | ||
418 | } | ||
419 | |||
420 | |||
421 | /* We haven't fully identified the chip. Print as much as we know. */ | ||
422 | printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n", | ||
423 | id, mfr); | ||
424 | |||
425 | printk(KERN_WARNING "Please report to dwmw2@infradead.org\n"); | ||
426 | return 0; | ||
427 | } | ||
428 | |||
429 | /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ | ||
430 | |||
431 | static void DoC_ScanChips(struct DiskOnChip *this, int maxchips) | ||
432 | { | ||
433 | int floor, chip; | ||
434 | int numchips[MAX_FLOORS]; | ||
435 | int ret = 1; | ||
436 | |||
437 | this->numchips = 0; | ||
438 | this->mfr = 0; | ||
439 | this->id = 0; | ||
440 | |||
441 | /* For each floor, find the number of valid chips it contains */ | ||
442 | for (floor = 0; floor < MAX_FLOORS; floor++) { | ||
443 | ret = 1; | ||
444 | numchips[floor] = 0; | ||
445 | for (chip = 0; chip < maxchips && ret != 0; chip++) { | ||
446 | |||
447 | ret = DoC_IdentChip(this, floor, chip); | ||
448 | if (ret) { | ||
449 | numchips[floor]++; | ||
450 | this->numchips++; | ||
451 | } | ||
452 | } | ||
453 | } | ||
454 | |||
455 | /* If there are none at all that we recognise, bail */ | ||
456 | if (!this->numchips) { | ||
457 | printk(KERN_NOTICE "No flash chips recognised.\n"); | ||
458 | return; | ||
459 | } | ||
460 | |||
461 | /* Allocate an array to hold the information for each chip */ | ||
462 | this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); | ||
463 | if (!this->chips) { | ||
464 | printk(KERN_NOTICE "No memory for allocating chip info structures\n"); | ||
465 | return; | ||
466 | } | ||
467 | |||
468 | ret = 0; | ||
469 | |||
470 | /* Fill out the chip array with {floor, chipno} for each | ||
471 | * detected chip in the device. */ | ||
472 | for (floor = 0; floor < MAX_FLOORS; floor++) { | ||
473 | for (chip = 0; chip < numchips[floor]; chip++) { | ||
474 | this->chips[ret].floor = floor; | ||
475 | this->chips[ret].chip = chip; | ||
476 | this->chips[ret].curadr = 0; | ||
477 | this->chips[ret].curmode = 0x50; | ||
478 | ret++; | ||
479 | } | ||
480 | } | ||
481 | |||
482 | /* Calculate and print the total size of the device */ | ||
483 | this->totlen = this->numchips * (1 << this->chipshift); | ||
484 | |||
485 | printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", | ||
486 | this->numchips, this->totlen >> 20); | ||
487 | } | ||
488 | |||
489 | static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) | ||
490 | { | ||
491 | int tmp1, tmp2, retval; | ||
492 | if (doc1->physadr == doc2->physadr) | ||
493 | return 1; | ||
494 | |||
495 | /* Use the alias resolution register which was set aside for this | ||
496 | * purpose. If it's value is the same on both chips, they might | ||
497 | * be the same chip, and we write to one and check for a change in | ||
498 | * the other. It's unclear if this register is usuable in the | ||
499 | * DoC 2000 (it's in the Millennium docs), but it seems to work. */ | ||
500 | tmp1 = ReadDOC(doc1->virtadr, AliasResolution); | ||
501 | tmp2 = ReadDOC(doc2->virtadr, AliasResolution); | ||
502 | if (tmp1 != tmp2) | ||
503 | return 0; | ||
504 | |||
505 | WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution); | ||
506 | tmp2 = ReadDOC(doc2->virtadr, AliasResolution); | ||
507 | if (tmp2 == (tmp1 + 1) % 0xff) | ||
508 | retval = 1; | ||
509 | else | ||
510 | retval = 0; | ||
511 | |||
512 | /* Restore register contents. May not be necessary, but do it just to | ||
513 | * be safe. */ | ||
514 | WriteDOC(tmp1, doc1->virtadr, AliasResolution); | ||
515 | |||
516 | return retval; | ||
517 | } | ||
518 | |||
519 | static const char im_name[] = "DoC2k_init"; | ||
520 | |||
521 | /* This routine is made available to other mtd code via | ||
522 | * inter_module_register. It must only be accessed through | ||
523 | * inter_module_get which will bump the use count of this module. The | ||
524 | * addresses passed back in mtd are valid as long as the use count of | ||
525 | * this module is non-zero, i.e. between inter_module_get and | ||
526 | * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. | ||
527 | */ | ||
528 | static void DoC2k_init(struct mtd_info *mtd) | ||
529 | { | ||
530 | struct DiskOnChip *this = mtd->priv; | ||
531 | struct DiskOnChip *old = NULL; | ||
532 | int maxchips; | ||
533 | |||
534 | /* We must avoid being called twice for the same device. */ | ||
535 | |||
536 | if (doc2klist) | ||
537 | old = doc2klist->priv; | ||
538 | |||
539 | while (old) { | ||
540 | if (DoC2k_is_alias(old, this)) { | ||
541 | printk(KERN_NOTICE | ||
542 | "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n", | ||
543 | this->physadr); | ||
544 | iounmap(this->virtadr); | ||
545 | kfree(mtd); | ||
546 | return; | ||
547 | } | ||
548 | if (old->nextdoc) | ||
549 | old = old->nextdoc->priv; | ||
550 | else | ||
551 | old = NULL; | ||
552 | } | ||
553 | |||
554 | |||
555 | switch (this->ChipID) { | ||
556 | case DOC_ChipID_Doc2kTSOP: | ||
557 | mtd->name = "DiskOnChip 2000 TSOP"; | ||
558 | this->ioreg = DoC_Mil_CDSN_IO; | ||
559 | /* Pretend it's a Millennium */ | ||
560 | this->ChipID = DOC_ChipID_DocMil; | ||
561 | maxchips = MAX_CHIPS; | ||
562 | break; | ||
563 | case DOC_ChipID_Doc2k: | ||
564 | mtd->name = "DiskOnChip 2000"; | ||
565 | this->ioreg = DoC_2k_CDSN_IO; | ||
566 | maxchips = MAX_CHIPS; | ||
567 | break; | ||
568 | case DOC_ChipID_DocMil: | ||
569 | mtd->name = "DiskOnChip Millennium"; | ||
570 | this->ioreg = DoC_Mil_CDSN_IO; | ||
571 | maxchips = MAX_CHIPS_MIL; | ||
572 | break; | ||
573 | default: | ||
574 | printk("Unknown ChipID 0x%02x\n", this->ChipID); | ||
575 | kfree(mtd); | ||
576 | iounmap(this->virtadr); | ||
577 | return; | ||
578 | } | ||
579 | |||
580 | printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name, | ||
581 | this->physadr); | ||
582 | |||
583 | mtd->type = MTD_NANDFLASH; | ||
584 | mtd->flags = MTD_CAP_NANDFLASH; | ||
585 | mtd->ecctype = MTD_ECC_RS_DiskOnChip; | ||
586 | mtd->size = 0; | ||
587 | mtd->erasesize = 0; | ||
588 | mtd->oobblock = 512; | ||
589 | mtd->oobsize = 16; | ||
590 | mtd->owner = THIS_MODULE; | ||
591 | mtd->erase = doc_erase; | ||
592 | mtd->point = NULL; | ||
593 | mtd->unpoint = NULL; | ||
594 | mtd->read = doc_read; | ||
595 | mtd->write = doc_write; | ||
596 | mtd->read_ecc = doc_read_ecc; | ||
597 | mtd->write_ecc = doc_write_ecc; | ||
598 | mtd->writev_ecc = doc_writev_ecc; | ||
599 | mtd->read_oob = doc_read_oob; | ||
600 | mtd->write_oob = doc_write_oob; | ||
601 | mtd->sync = NULL; | ||
602 | |||
603 | this->totlen = 0; | ||
604 | this->numchips = 0; | ||
605 | |||
606 | this->curfloor = -1; | ||
607 | this->curchip = -1; | ||
608 | init_MUTEX(&this->lock); | ||
609 | |||
610 | /* Ident all the chips present. */ | ||
611 | DoC_ScanChips(this, maxchips); | ||
612 | |||
613 | if (!this->totlen) { | ||
614 | kfree(mtd); | ||
615 | iounmap(this->virtadr); | ||
616 | } else { | ||
617 | this->nextdoc = doc2klist; | ||
618 | doc2klist = mtd; | ||
619 | mtd->size = this->totlen; | ||
620 | mtd->erasesize = this->erasesize; | ||
621 | add_mtd_device(mtd); | ||
622 | return; | ||
623 | } | ||
624 | } | ||
625 | |||
626 | static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, | ||
627 | size_t * retlen, u_char * buf) | ||
628 | { | ||
629 | /* Just a special case of doc_read_ecc */ | ||
630 | return doc_read_ecc(mtd, from, len, retlen, buf, NULL, NULL); | ||
631 | } | ||
632 | |||
633 | static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, | ||
634 | size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel) | ||
635 | { | ||
636 | struct DiskOnChip *this = mtd->priv; | ||
637 | void __iomem *docptr = this->virtadr; | ||
638 | struct Nand *mychip; | ||
639 | unsigned char syndrome[6]; | ||
640 | volatile char dummy; | ||
641 | int i, len256 = 0, ret=0; | ||
642 | size_t left = len; | ||
643 | |||
644 | /* Don't allow read past end of device */ | ||
645 | if (from >= this->totlen) | ||
646 | return -EINVAL; | ||
647 | |||
648 | down(&this->lock); | ||
649 | |||
650 | *retlen = 0; | ||
651 | while (left) { | ||
652 | len = left; | ||
653 | |||
654 | /* Don't allow a single read to cross a 512-byte block boundary */ | ||
655 | if (from + len > ((from | 0x1ff) + 1)) | ||
656 | len = ((from | 0x1ff) + 1) - from; | ||
657 | |||
658 | /* The ECC will not be calculated correctly if less than 512 is read */ | ||
659 | if (len != 0x200 && eccbuf) | ||
660 | printk(KERN_WARNING | ||
661 | "ECC needs a full sector read (adr: %lx size %lx)\n", | ||
662 | (long) from, (long) len); | ||
663 | |||
664 | /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */ | ||
665 | |||
666 | |||
667 | /* Find the chip which is to be used and select it */ | ||
668 | mychip = &this->chips[from >> (this->chipshift)]; | ||
669 | |||
670 | if (this->curfloor != mychip->floor) { | ||
671 | DoC_SelectFloor(this, mychip->floor); | ||
672 | DoC_SelectChip(this, mychip->chip); | ||
673 | } else if (this->curchip != mychip->chip) { | ||
674 | DoC_SelectChip(this, mychip->chip); | ||
675 | } | ||
676 | |||
677 | this->curfloor = mychip->floor; | ||
678 | this->curchip = mychip->chip; | ||
679 | |||
680 | DoC_Command(this, | ||
681 | (!this->page256 | ||
682 | && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, | ||
683 | CDSN_CTRL_WP); | ||
684 | DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, | ||
685 | CDSN_CTRL_ECC_IO); | ||
686 | |||
687 | if (eccbuf) { | ||
688 | /* Prime the ECC engine */ | ||
689 | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | ||
690 | WriteDOC(DOC_ECC_EN, docptr, ECCConf); | ||
691 | } else { | ||
692 | /* disable the ECC engine */ | ||
693 | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | ||
694 | WriteDOC(DOC_ECC_DIS, docptr, ECCConf); | ||
695 | } | ||
696 | |||
697 | /* treat crossing 256-byte sector for 2M x 8bits devices */ | ||
698 | if (this->page256 && from + len > (from | 0xff) + 1) { | ||
699 | len256 = (from | 0xff) + 1 - from; | ||
700 | DoC_ReadBuf(this, buf, len256); | ||
701 | |||
702 | DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); | ||
703 | DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, | ||
704 | CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); | ||
705 | } | ||
706 | |||
707 | DoC_ReadBuf(this, &buf[len256], len - len256); | ||
708 | |||
709 | /* Let the caller know we completed it */ | ||
710 | *retlen += len; | ||
711 | |||
712 | if (eccbuf) { | ||
713 | /* Read the ECC data through the DiskOnChip ECC logic */ | ||
714 | /* Note: this will work even with 2M x 8bit devices as */ | ||
715 | /* they have 8 bytes of OOB per 256 page. mf. */ | ||
716 | DoC_ReadBuf(this, eccbuf, 6); | ||
717 | |||
718 | /* Flush the pipeline */ | ||
719 | if (DoC_is_Millennium(this)) { | ||
720 | dummy = ReadDOC(docptr, ECCConf); | ||
721 | dummy = ReadDOC(docptr, ECCConf); | ||
722 | i = ReadDOC(docptr, ECCConf); | ||
723 | } else { | ||
724 | dummy = ReadDOC(docptr, 2k_ECCStatus); | ||
725 | dummy = ReadDOC(docptr, 2k_ECCStatus); | ||
726 | i = ReadDOC(docptr, 2k_ECCStatus); | ||
727 | } | ||
728 | |||
729 | /* Check the ECC Status */ | ||
730 | if (i & 0x80) { | ||
731 | int nb_errors; | ||
732 | /* There was an ECC error */ | ||
733 | #ifdef ECC_DEBUG | ||
734 | printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from); | ||
735 | #endif | ||
736 | /* Read the ECC syndrom through the DiskOnChip ECC logic. | ||
737 | These syndrome will be all ZERO when there is no error */ | ||
738 | for (i = 0; i < 6; i++) { | ||
739 | syndrome[i] = | ||
740 | ReadDOC(docptr, ECCSyndrome0 + i); | ||
741 | } | ||
742 | nb_errors = doc_decode_ecc(buf, syndrome); | ||
743 | |||
744 | #ifdef ECC_DEBUG | ||
745 | printk(KERN_ERR "Errors corrected: %x\n", nb_errors); | ||
746 | #endif | ||
747 | if (nb_errors < 0) { | ||
748 | /* We return error, but have actually done the read. Not that | ||
749 | this can be told to user-space, via sys_read(), but at least | ||
750 | MTD-aware stuff can know about it by checking *retlen */ | ||
751 | ret = -EIO; | ||
752 | } | ||
753 | } | ||
754 | |||
755 | #ifdef PSYCHO_DEBUG | ||
756 | printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", | ||
757 | (long)from, eccbuf[0], eccbuf[1], eccbuf[2], | ||
758 | eccbuf[3], eccbuf[4], eccbuf[5]); | ||
759 | #endif | ||
760 | |||
761 | /* disable the ECC engine */ | ||
762 | WriteDOC(DOC_ECC_DIS, docptr , ECCConf); | ||
763 | } | ||
764 | |||
765 | /* according to 11.4.1, we need to wait for the busy line | ||
766 | * drop if we read to the end of the page. */ | ||
767 | if(0 == ((from + len) & 0x1ff)) | ||
768 | { | ||
769 | DoC_WaitReady(this); | ||
770 | } | ||
771 | |||
772 | from += len; | ||
773 | left -= len; | ||
774 | buf += len; | ||
775 | } | ||
776 | |||
777 | up(&this->lock); | ||
778 | |||
779 | return ret; | ||
780 | } | ||
781 | |||
782 | static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, | ||
783 | size_t * retlen, const u_char * buf) | ||
784 | { | ||
785 | char eccbuf[6]; | ||
786 | return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, NULL); | ||
787 | } | ||
788 | |||
789 | static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len, | ||
790 | size_t * retlen, const u_char * buf, | ||
791 | u_char * eccbuf, struct nand_oobinfo *oobsel) | ||
792 | { | ||
793 | struct DiskOnChip *this = mtd->priv; | ||
794 | int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ | ||
795 | void __iomem *docptr = this->virtadr; | ||
796 | volatile char dummy; | ||
797 | int len256 = 0; | ||
798 | struct Nand *mychip; | ||
799 | size_t left = len; | ||
800 | int status; | ||
801 | |||
802 | /* Don't allow write past end of device */ | ||
803 | if (to >= this->totlen) | ||
804 | return -EINVAL; | ||
805 | |||
806 | down(&this->lock); | ||
807 | |||
808 | *retlen = 0; | ||
809 | while (left) { | ||
810 | len = left; | ||
811 | |||
812 | /* Don't allow a single write to cross a 512-byte block boundary */ | ||
813 | if (to + len > ((to | 0x1ff) + 1)) | ||
814 | len = ((to | 0x1ff) + 1) - to; | ||
815 | |||
816 | /* The ECC will not be calculated correctly if less than 512 is written */ | ||
817 | /* DBB- | ||
818 | if (len != 0x200 && eccbuf) | ||
819 | printk(KERN_WARNING | ||
820 | "ECC needs a full sector write (adr: %lx size %lx)\n", | ||
821 | (long) to, (long) len); | ||
822 | -DBB */ | ||
823 | |||
824 | /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ | ||
825 | |||
826 | /* Find the chip which is to be used and select it */ | ||
827 | mychip = &this->chips[to >> (this->chipshift)]; | ||
828 | |||
829 | if (this->curfloor != mychip->floor) { | ||
830 | DoC_SelectFloor(this, mychip->floor); | ||
831 | DoC_SelectChip(this, mychip->chip); | ||
832 | } else if (this->curchip != mychip->chip) { | ||
833 | DoC_SelectChip(this, mychip->chip); | ||
834 | } | ||
835 | |||
836 | this->curfloor = mychip->floor; | ||
837 | this->curchip = mychip->chip; | ||
838 | |||
839 | /* Set device to main plane of flash */ | ||
840 | DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); | ||
841 | DoC_Command(this, | ||
842 | (!this->page256 | ||
843 | && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, | ||
844 | CDSN_CTRL_WP); | ||
845 | |||
846 | DoC_Command(this, NAND_CMD_SEQIN, 0); | ||
847 | DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); | ||
848 | |||
849 | if (eccbuf) { | ||
850 | /* Prime the ECC engine */ | ||
851 | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | ||
852 | WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); | ||
853 | } else { | ||
854 | /* disable the ECC engine */ | ||
855 | WriteDOC(DOC_ECC_RESET, docptr, ECCConf); | ||
856 | WriteDOC(DOC_ECC_DIS, docptr, ECCConf); | ||
857 | } | ||
858 | |||
859 | /* treat crossing 256-byte sector for 2M x 8bits devices */ | ||
860 | if (this->page256 && to + len > (to | 0xff) + 1) { | ||
861 | len256 = (to | 0xff) + 1 - to; | ||
862 | DoC_WriteBuf(this, buf, len256); | ||
863 | |||
864 | DoC_Command(this, NAND_CMD_PAGEPROG, 0); | ||
865 | |||
866 | DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); | ||
867 | /* There's an implicit DoC_WaitReady() in DoC_Command */ | ||
868 | |||
869 | dummy = ReadDOC(docptr, CDSNSlowIO); | ||
870 | DoC_Delay(this, 2); | ||
871 | |||
872 | if (ReadDOC_(docptr, this->ioreg) & 1) { | ||
873 | printk(KERN_ERR "Error programming flash\n"); | ||
874 | /* Error in programming */ | ||
875 | *retlen = 0; | ||
876 | up(&this->lock); | ||
877 | return -EIO; | ||
878 | } | ||
879 | |||
880 | DoC_Command(this, NAND_CMD_SEQIN, 0); | ||
881 | DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, | ||
882 | CDSN_CTRL_ECC_IO); | ||
883 | } | ||
884 | |||
885 | DoC_WriteBuf(this, &buf[len256], len - len256); | ||
886 | |||
887 | if (eccbuf) { | ||
888 | WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, | ||
889 | CDSNControl); | ||
890 | |||
891 | if (DoC_is_Millennium(this)) { | ||
892 | WriteDOC(0, docptr, NOP); | ||
893 | WriteDOC(0, docptr, NOP); | ||
894 | WriteDOC(0, docptr, NOP); | ||
895 | } else { | ||
896 | WriteDOC_(0, docptr, this->ioreg); | ||
897 | WriteDOC_(0, docptr, this->ioreg); | ||
898 | WriteDOC_(0, docptr, this->ioreg); | ||
899 | } | ||
900 | |||
901 | WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr, | ||
902 | CDSNControl); | ||
903 | |||
904 | /* Read the ECC data through the DiskOnChip ECC logic */ | ||
905 | for (di = 0; di < 6; di++) { | ||
906 | eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); | ||
907 | } | ||
908 | |||
909 | /* Reset the ECC engine */ | ||
910 | WriteDOC(DOC_ECC_DIS, docptr, ECCConf); | ||
911 | |||
912 | #ifdef PSYCHO_DEBUG | ||
913 | printk | ||
914 | ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", | ||
915 | (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], | ||
916 | eccbuf[4], eccbuf[5]); | ||
917 | #endif | ||
918 | } | ||
919 | |||
920 | DoC_Command(this, NAND_CMD_PAGEPROG, 0); | ||
921 | |||
922 | DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); | ||
923 | /* There's an implicit DoC_WaitReady() in DoC_Command */ | ||
924 | |||
925 | if (DoC_is_Millennium(this)) { | ||
926 | ReadDOC(docptr, ReadPipeInit); | ||
927 | status = ReadDOC(docptr, LastDataRead); | ||
928 | } else { | ||
929 | dummy = ReadDOC(docptr, CDSNSlowIO); | ||
930 | DoC_Delay(this, 2); | ||
931 | status = ReadDOC_(docptr, this->ioreg); | ||
932 | } | ||
933 | |||
934 | if (status & 1) { | ||
935 | printk(KERN_ERR "Error programming flash\n"); | ||
936 | /* Error in programming */ | ||
937 | *retlen = 0; | ||
938 | up(&this->lock); | ||
939 | return -EIO; | ||
940 | } | ||
941 | |||
942 | /* Let the caller know we completed it */ | ||
943 | *retlen += len; | ||
944 | |||
945 | if (eccbuf) { | ||
946 | unsigned char x[8]; | ||
947 | size_t dummy; | ||
948 | int ret; | ||
949 | |||
950 | /* Write the ECC data to flash */ | ||
951 | for (di=0; di<6; di++) | ||
952 | x[di] = eccbuf[di]; | ||
953 | |||
954 | x[6]=0x55; | ||
955 | x[7]=0x55; | ||
956 | |||
957 | ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x); | ||
958 | if (ret) { | ||
959 | up(&this->lock); | ||
960 | return ret; | ||
961 | } | ||
962 | } | ||
963 | |||
964 | to += len; | ||
965 | left -= len; | ||
966 | buf += len; | ||
967 | } | ||
968 | |||
969 | up(&this->lock); | ||
970 | return 0; | ||
971 | } | ||
972 | |||
973 | static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, | ||
974 | unsigned long count, loff_t to, size_t *retlen, | ||
975 | u_char *eccbuf, struct nand_oobinfo *oobsel) | ||
976 | { | ||
977 | static char static_buf[512]; | ||
978 | static DECLARE_MUTEX(writev_buf_sem); | ||
979 | |||
980 | size_t totretlen = 0; | ||
981 | size_t thisvecofs = 0; | ||
982 | int ret= 0; | ||
983 | |||
984 | down(&writev_buf_sem); | ||
985 | |||
986 | while(count) { | ||
987 | size_t thislen, thisretlen; | ||
988 | unsigned char *buf; | ||
989 | |||
990 | buf = vecs->iov_base + thisvecofs; | ||
991 | thislen = vecs->iov_len - thisvecofs; | ||
992 | |||
993 | |||
994 | if (thislen >= 512) { | ||
995 | thislen = thislen & ~(512-1); | ||
996 | thisvecofs += thislen; | ||
997 | } else { | ||
998 | /* Not enough to fill a page. Copy into buf */ | ||
999 | memcpy(static_buf, buf, thislen); | ||
1000 | buf = &static_buf[thislen]; | ||
1001 | |||
1002 | while(count && thislen < 512) { | ||
1003 | vecs++; | ||
1004 | count--; | ||
1005 | thisvecofs = min((512-thislen), vecs->iov_len); | ||
1006 | memcpy(buf, vecs->iov_base, thisvecofs); | ||
1007 | thislen += thisvecofs; | ||
1008 | buf += thisvecofs; | ||
1009 | } | ||
1010 | buf = static_buf; | ||
1011 | } | ||
1012 | if (count && thisvecofs == vecs->iov_len) { | ||
1013 | thisvecofs = 0; | ||
1014 | vecs++; | ||
1015 | count--; | ||
1016 | } | ||
1017 | ret = doc_write_ecc(mtd, to, thislen, &thisretlen, buf, eccbuf, oobsel); | ||
1018 | |||
1019 | totretlen += thisretlen; | ||
1020 | |||
1021 | if (ret || thisretlen != thislen) | ||
1022 | break; | ||
1023 | |||
1024 | to += thislen; | ||
1025 | } | ||
1026 | |||
1027 | up(&writev_buf_sem); | ||
1028 | *retlen = totretlen; | ||
1029 | return ret; | ||
1030 | } | ||
1031 | |||
1032 | |||
1033 | static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len, | ||
1034 | size_t * retlen, u_char * buf) | ||
1035 | { | ||
1036 | struct DiskOnChip *this = mtd->priv; | ||
1037 | int len256 = 0, ret; | ||
1038 | struct Nand *mychip; | ||
1039 | |||
1040 | down(&this->lock); | ||
1041 | |||
1042 | mychip = &this->chips[ofs >> this->chipshift]; | ||
1043 | |||
1044 | if (this->curfloor != mychip->floor) { | ||
1045 | DoC_SelectFloor(this, mychip->floor); | ||
1046 | DoC_SelectChip(this, mychip->chip); | ||
1047 | } else if (this->curchip != mychip->chip) { | ||
1048 | DoC_SelectChip(this, mychip->chip); | ||
1049 | } | ||
1050 | this->curfloor = mychip->floor; | ||
1051 | this->curchip = mychip->chip; | ||
1052 | |||
1053 | /* update address for 2M x 8bit devices. OOB starts on the second */ | ||
1054 | /* page to maintain compatibility with doc_read_ecc. */ | ||
1055 | if (this->page256) { | ||
1056 | if (!(ofs & 0x8)) | ||
1057 | ofs += 0x100; | ||
1058 | else | ||
1059 | ofs -= 0x8; | ||
1060 | } | ||
1061 | |||
1062 | DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); | ||
1063 | DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); | ||
1064 | |||
1065 | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ | ||
1066 | /* Note: datasheet says it should automaticaly wrap to the */ | ||
1067 | /* next OOB block, but it didn't work here. mf. */ | ||
1068 | if (this->page256 && ofs + len > (ofs | 0x7) + 1) { | ||
1069 | len256 = (ofs | 0x7) + 1 - ofs; | ||
1070 | DoC_ReadBuf(this, buf, len256); | ||
1071 | |||
1072 | DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); | ||
1073 | DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), | ||
1074 | CDSN_CTRL_WP, 0); | ||
1075 | } | ||
1076 | |||
1077 | DoC_ReadBuf(this, &buf[len256], len - len256); | ||
1078 | |||
1079 | *retlen = len; | ||
1080 | /* Reading the full OOB data drops us off of the end of the page, | ||
1081 | * causing the flash device to go into busy mode, so we need | ||
1082 | * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ | ||
1083 | |||
1084 | ret = DoC_WaitReady(this); | ||
1085 | |||
1086 | up(&this->lock); | ||
1087 | return ret; | ||
1088 | |||
1089 | } | ||
1090 | |||
1091 | static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, | ||
1092 | size_t * retlen, const u_char * buf) | ||
1093 | { | ||
1094 | struct DiskOnChip *this = mtd->priv; | ||
1095 | int len256 = 0; | ||
1096 | void __iomem *docptr = this->virtadr; | ||
1097 | struct Nand *mychip = &this->chips[ofs >> this->chipshift]; | ||
1098 | volatile int dummy; | ||
1099 | int status; | ||
1100 | |||
1101 | // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len, | ||
1102 | // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]); | ||
1103 | |||
1104 | /* Find the chip which is to be used and select it */ | ||
1105 | if (this->curfloor != mychip->floor) { | ||
1106 | DoC_SelectFloor(this, mychip->floor); | ||
1107 | DoC_SelectChip(this, mychip->chip); | ||
1108 | } else if (this->curchip != mychip->chip) { | ||
1109 | DoC_SelectChip(this, mychip->chip); | ||
1110 | } | ||
1111 | this->curfloor = mychip->floor; | ||
1112 | this->curchip = mychip->chip; | ||
1113 | |||
1114 | /* disable the ECC engine */ | ||
1115 | WriteDOC (DOC_ECC_RESET, docptr, ECCConf); | ||
1116 | WriteDOC (DOC_ECC_DIS, docptr, ECCConf); | ||
1117 | |||
1118 | /* Reset the chip, see Software Requirement 11.4 item 1. */ | ||
1119 | DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); | ||
1120 | |||
1121 | /* issue the Read2 command to set the pointer to the Spare Data Area. */ | ||
1122 | DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); | ||
1123 | |||
1124 | /* update address for 2M x 8bit devices. OOB starts on the second */ | ||
1125 | /* page to maintain compatibility with doc_read_ecc. */ | ||
1126 | if (this->page256) { | ||
1127 | if (!(ofs & 0x8)) | ||
1128 | ofs += 0x100; | ||
1129 | else | ||
1130 | ofs -= 0x8; | ||
1131 | } | ||
1132 | |||
1133 | /* issue the Serial Data In command to initial the Page Program process */ | ||
1134 | DoC_Command(this, NAND_CMD_SEQIN, 0); | ||
1135 | DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); | ||
1136 | |||
1137 | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ | ||
1138 | /* Note: datasheet says it should automaticaly wrap to the */ | ||
1139 | /* next OOB block, but it didn't work here. mf. */ | ||
1140 | if (this->page256 && ofs + len > (ofs | 0x7) + 1) { | ||
1141 | len256 = (ofs | 0x7) + 1 - ofs; | ||
1142 | DoC_WriteBuf(this, buf, len256); | ||
1143 | |||
1144 | DoC_Command(this, NAND_CMD_PAGEPROG, 0); | ||
1145 | DoC_Command(this, NAND_CMD_STATUS, 0); | ||
1146 | /* DoC_WaitReady() is implicit in DoC_Command */ | ||
1147 | |||
1148 | if (DoC_is_Millennium(this)) { | ||
1149 | ReadDOC(docptr, ReadPipeInit); | ||
1150 | status = ReadDOC(docptr, LastDataRead); | ||
1151 | } else { | ||
1152 | dummy = ReadDOC(docptr, CDSNSlowIO); | ||
1153 | DoC_Delay(this, 2); | ||
1154 | status = ReadDOC_(docptr, this->ioreg); | ||
1155 | } | ||
1156 | |||
1157 | if (status & 1) { | ||
1158 | printk(KERN_ERR "Error programming oob data\n"); | ||
1159 | /* There was an error */ | ||
1160 | *retlen = 0; | ||
1161 | return -EIO; | ||
1162 | } | ||
1163 | DoC_Command(this, NAND_CMD_SEQIN, 0); | ||
1164 | DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); | ||
1165 | } | ||
1166 | |||
1167 | DoC_WriteBuf(this, &buf[len256], len - len256); | ||
1168 | |||
1169 | DoC_Command(this, NAND_CMD_PAGEPROG, 0); | ||
1170 | DoC_Command(this, NAND_CMD_STATUS, 0); | ||
1171 | /* DoC_WaitReady() is implicit in DoC_Command */ | ||
1172 | |||
1173 | if (DoC_is_Millennium(this)) { | ||
1174 | ReadDOC(docptr, ReadPipeInit); | ||
1175 | status = ReadDOC(docptr, LastDataRead); | ||
1176 | } else { | ||
1177 | dummy = ReadDOC(docptr, CDSNSlowIO); | ||
1178 | DoC_Delay(this, 2); | ||
1179 | status = ReadDOC_(docptr, this->ioreg); | ||
1180 | } | ||
1181 | |||
1182 | if (status & 1) { | ||
1183 | printk(KERN_ERR "Error programming oob data\n"); | ||
1184 | /* There was an error */ | ||
1185 | *retlen = 0; | ||
1186 | return -EIO; | ||
1187 | } | ||
1188 | |||
1189 | *retlen = len; | ||
1190 | return 0; | ||
1191 | |||
1192 | } | ||
1193 | |||
1194 | static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len, | ||
1195 | size_t * retlen, const u_char * buf) | ||
1196 | { | ||
1197 | struct DiskOnChip *this = mtd->priv; | ||
1198 | int ret; | ||
1199 | |||
1200 | down(&this->lock); | ||
1201 | ret = doc_write_oob_nolock(mtd, ofs, len, retlen, buf); | ||
1202 | |||
1203 | up(&this->lock); | ||
1204 | return ret; | ||
1205 | } | ||
1206 | |||
1207 | static int doc_erase(struct mtd_info *mtd, struct erase_info *instr) | ||
1208 | { | ||
1209 | struct DiskOnChip *this = mtd->priv; | ||
1210 | __u32 ofs = instr->addr; | ||
1211 | __u32 len = instr->len; | ||
1212 | volatile int dummy; | ||
1213 | void __iomem *docptr = this->virtadr; | ||
1214 | struct Nand *mychip; | ||
1215 | int status; | ||
1216 | |||
1217 | down(&this->lock); | ||
1218 | |||
1219 | if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) { | ||
1220 | up(&this->lock); | ||
1221 | return -EINVAL; | ||
1222 | } | ||
1223 | |||
1224 | instr->state = MTD_ERASING; | ||
1225 | |||
1226 | /* FIXME: Do this in the background. Use timers or schedule_task() */ | ||
1227 | while(len) { | ||
1228 | mychip = &this->chips[ofs >> this->chipshift]; | ||
1229 | |||
1230 | if (this->curfloor != mychip->floor) { | ||
1231 | DoC_SelectFloor(this, mychip->floor); | ||
1232 | DoC_SelectChip(this, mychip->chip); | ||
1233 | } else if (this->curchip != mychip->chip) { | ||
1234 | DoC_SelectChip(this, mychip->chip); | ||
1235 | } | ||
1236 | this->curfloor = mychip->floor; | ||
1237 | this->curchip = mychip->chip; | ||
1238 | |||
1239 | DoC_Command(this, NAND_CMD_ERASE1, 0); | ||
1240 | DoC_Address(this, ADDR_PAGE, ofs, 0, 0); | ||
1241 | DoC_Command(this, NAND_CMD_ERASE2, 0); | ||
1242 | |||
1243 | DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); | ||
1244 | |||
1245 | if (DoC_is_Millennium(this)) { | ||
1246 | ReadDOC(docptr, ReadPipeInit); | ||
1247 | status = ReadDOC(docptr, LastDataRead); | ||
1248 | } else { | ||
1249 | dummy = ReadDOC(docptr, CDSNSlowIO); | ||
1250 | DoC_Delay(this, 2); | ||
1251 | status = ReadDOC_(docptr, this->ioreg); | ||
1252 | } | ||
1253 | |||
1254 | if (status & 1) { | ||
1255 | printk(KERN_ERR "Error erasing at 0x%x\n", ofs); | ||
1256 | /* There was an error */ | ||
1257 | instr->state = MTD_ERASE_FAILED; | ||
1258 | goto callback; | ||
1259 | } | ||
1260 | ofs += mtd->erasesize; | ||
1261 | len -= mtd->erasesize; | ||
1262 | } | ||
1263 | instr->state = MTD_ERASE_DONE; | ||
1264 | |||
1265 | callback: | ||
1266 | mtd_erase_callback(instr); | ||
1267 | |||
1268 | up(&this->lock); | ||
1269 | return 0; | ||
1270 | } | ||
1271 | |||
1272 | |||
1273 | /**************************************************************************** | ||
1274 | * | ||
1275 | * Module stuff | ||
1276 | * | ||
1277 | ****************************************************************************/ | ||
1278 | |||
1279 | static int __init init_doc2000(void) | ||
1280 | { | ||
1281 | inter_module_register(im_name, THIS_MODULE, &DoC2k_init); | ||
1282 | return 0; | ||
1283 | } | ||
1284 | |||
1285 | static void __exit cleanup_doc2000(void) | ||
1286 | { | ||
1287 | struct mtd_info *mtd; | ||
1288 | struct DiskOnChip *this; | ||
1289 | |||
1290 | while ((mtd = doc2klist)) { | ||
1291 | this = mtd->priv; | ||
1292 | doc2klist = this->nextdoc; | ||
1293 | |||
1294 | del_mtd_device(mtd); | ||
1295 | |||
1296 | iounmap(this->virtadr); | ||
1297 | kfree(this->chips); | ||
1298 | kfree(mtd); | ||
1299 | } | ||
1300 | inter_module_unregister(im_name); | ||
1301 | } | ||
1302 | |||
1303 | module_exit(cleanup_doc2000); | ||
1304 | module_init(init_doc2000); | ||
1305 | |||
1306 | MODULE_LICENSE("GPL"); | ||
1307 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); | ||
1308 | MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium"); | ||
1309 | |||