diff options
Diffstat (limited to 'drivers/misc')
-rw-r--r-- | drivers/misc/Kconfig | 66 | ||||
-rw-r--r-- | drivers/misc/Makefile | 6 | ||||
-rw-r--r-- | drivers/misc/atmel_tclib.c | 161 | ||||
-rw-r--r-- | drivers/misc/eeepc-laptop.c | 666 | ||||
-rw-r--r-- | drivers/misc/enclosure.c | 202 | ||||
-rw-r--r-- | drivers/misc/intel_menlow.c | 30 | ||||
-rw-r--r-- | drivers/misc/kgdbts.c | 1090 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/Makefile | 11 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xp.h | 463 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xp_main.c | 279 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xp_nofault.S | 35 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpc.h | 1187 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpc_channel.c | 2243 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpc_main.c | 1323 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpc_partition.c | 1174 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpnet.c | 677 | ||||
-rw-r--r-- | drivers/misc/thinkpad_acpi.c | 765 |
17 files changed, 10088 insertions, 290 deletions
diff --git a/drivers/misc/Kconfig b/drivers/misc/Kconfig index 962817e49fba..636af2862308 100644 --- a/drivers/misc/Kconfig +++ b/drivers/misc/Kconfig | |||
@@ -22,6 +22,39 @@ config ATMEL_PWM | |||
22 | purposes including software controlled power-efficent backlights | 22 | purposes including software controlled power-efficent backlights |
23 | on LCD displays, motor control, and waveform generation. | 23 | on LCD displays, motor control, and waveform generation. |
24 | 24 | ||
25 | config ATMEL_TCLIB | ||
26 | bool "Atmel AT32/AT91 Timer/Counter Library" | ||
27 | depends on (AVR32 || ARCH_AT91) | ||
28 | help | ||
29 | Select this if you want a library to allocate the Timer/Counter | ||
30 | blocks found on many Atmel processors. This facilitates using | ||
31 | these blocks by different drivers despite processor differences. | ||
32 | |||
33 | config ATMEL_TCB_CLKSRC | ||
34 | bool "TC Block Clocksource" | ||
35 | depends on ATMEL_TCLIB && GENERIC_TIME | ||
36 | default y | ||
37 | help | ||
38 | Select this to get a high precision clocksource based on a | ||
39 | TC block with a 5+ MHz base clock rate. Two timer channels | ||
40 | are combined to make a single 32-bit timer. | ||
41 | |||
42 | When GENERIC_CLOCKEVENTS is defined, the third timer channel | ||
43 | may be used as a clock event device supporting oneshot mode | ||
44 | (delays of up to two seconds) based on the 32 KiHz clock. | ||
45 | |||
46 | config ATMEL_TCB_CLKSRC_BLOCK | ||
47 | int | ||
48 | depends on ATMEL_TCB_CLKSRC | ||
49 | prompt "TC Block" if ARCH_AT91RM9200 || ARCH_AT91SAM9260 || CPU_AT32AP700X | ||
50 | default 0 | ||
51 | range 0 1 | ||
52 | help | ||
53 | Some chips provide more than one TC block, so you have the | ||
54 | choice of which one to use for the clock framework. The other | ||
55 | TC can be used for other purposes, such as PWM generation and | ||
56 | interval timing. | ||
57 | |||
25 | config IBM_ASM | 58 | config IBM_ASM |
26 | tristate "Device driver for IBM RSA service processor" | 59 | tristate "Device driver for IBM RSA service processor" |
27 | depends on X86 && PCI && INPUT && EXPERIMENTAL | 60 | depends on X86 && PCI && INPUT && EXPERIMENTAL |
@@ -107,6 +140,7 @@ config ACER_WMI | |||
107 | depends on EXPERIMENTAL | 140 | depends on EXPERIMENTAL |
108 | depends on ACPI | 141 | depends on ACPI |
109 | depends on LEDS_CLASS | 142 | depends on LEDS_CLASS |
143 | depends on NEW_LEDS | ||
110 | depends on BACKLIGHT_CLASS_DEVICE | 144 | depends on BACKLIGHT_CLASS_DEVICE |
111 | depends on SERIO_I8042 | 145 | depends on SERIO_I8042 |
112 | select ACPI_WMI | 146 | select ACPI_WMI |
@@ -127,6 +161,7 @@ config ASUS_LAPTOP | |||
127 | depends on ACPI | 161 | depends on ACPI |
128 | depends on EXPERIMENTAL && !ACPI_ASUS | 162 | depends on EXPERIMENTAL && !ACPI_ASUS |
129 | depends on LEDS_CLASS | 163 | depends on LEDS_CLASS |
164 | depends on NEW_LEDS | ||
130 | depends on BACKLIGHT_CLASS_DEVICE | 165 | depends on BACKLIGHT_CLASS_DEVICE |
131 | ---help--- | 166 | ---help--- |
132 | This is the new Linux driver for Asus laptops. It may also support some | 167 | This is the new Linux driver for Asus laptops. It may also support some |
@@ -208,10 +243,13 @@ config SONYPI_COMPAT | |||
208 | config THINKPAD_ACPI | 243 | config THINKPAD_ACPI |
209 | tristate "ThinkPad ACPI Laptop Extras" | 244 | tristate "ThinkPad ACPI Laptop Extras" |
210 | depends on X86 && ACPI | 245 | depends on X86 && ACPI |
246 | select BACKLIGHT_LCD_SUPPORT | ||
211 | select BACKLIGHT_CLASS_DEVICE | 247 | select BACKLIGHT_CLASS_DEVICE |
212 | select HWMON | 248 | select HWMON |
213 | select NVRAM | 249 | select NVRAM |
214 | depends on INPUT | 250 | select INPUT |
251 | select NEW_LEDS | ||
252 | select LEDS_CLASS | ||
215 | ---help--- | 253 | ---help--- |
216 | This is a driver for the IBM and Lenovo ThinkPad laptops. It adds | 254 | This is a driver for the IBM and Lenovo ThinkPad laptops. It adds |
217 | support for Fn-Fx key combinations, Bluetooth control, video | 255 | support for Fn-Fx key combinations, Bluetooth control, video |
@@ -311,6 +349,7 @@ config ATMEL_SSC | |||
311 | config INTEL_MENLOW | 349 | config INTEL_MENLOW |
312 | tristate "Thermal Management driver for Intel menlow platform" | 350 | tristate "Thermal Management driver for Intel menlow platform" |
313 | depends on ACPI_THERMAL | 351 | depends on ACPI_THERMAL |
352 | select THERMAL | ||
314 | depends on X86 | 353 | depends on X86 |
315 | ---help--- | 354 | ---help--- |
316 | ACPI thermal management enhancement driver on | 355 | ACPI thermal management enhancement driver on |
@@ -318,6 +357,19 @@ config INTEL_MENLOW | |||
318 | 357 | ||
319 | If unsure, say N. | 358 | If unsure, say N. |
320 | 359 | ||
360 | config EEEPC_LAPTOP | ||
361 | tristate "Eee PC Hotkey Driver (EXPERIMENTAL)" | ||
362 | depends on X86 | ||
363 | depends on ACPI | ||
364 | depends on BACKLIGHT_CLASS_DEVICE | ||
365 | depends on HWMON | ||
366 | depends on EXPERIMENTAL | ||
367 | ---help--- | ||
368 | This driver supports the Fn-Fx keys on Eee PC laptops. | ||
369 | It also adds the ability to switch camera/wlan on/off. | ||
370 | |||
371 | If you have an Eee PC laptop, say Y or M here. | ||
372 | |||
321 | config ENCLOSURE_SERVICES | 373 | config ENCLOSURE_SERVICES |
322 | tristate "Enclosure Services" | 374 | tristate "Enclosure Services" |
323 | default n | 375 | default n |
@@ -327,4 +379,16 @@ config ENCLOSURE_SERVICES | |||
327 | driver (SCSI/ATA) which supports enclosures | 379 | driver (SCSI/ATA) which supports enclosures |
328 | or a SCSI enclosure device (SES) to use these services. | 380 | or a SCSI enclosure device (SES) to use these services. |
329 | 381 | ||
382 | config SGI_XP | ||
383 | tristate "Support communication between SGI SSIs" | ||
384 | depends on IA64_GENERIC || IA64_SGI_SN2 | ||
385 | select IA64_UNCACHED_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2 | ||
386 | select GENERIC_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2 | ||
387 | ---help--- | ||
388 | An SGI machine can be divided into multiple Single System | ||
389 | Images which act independently of each other and have | ||
390 | hardware based memory protection from the others. Enabling | ||
391 | this feature will allow for direct communication between SSIs | ||
392 | based on a network adapter and DMA messaging. | ||
393 | |||
330 | endif # MISC_DEVICES | 394 | endif # MISC_DEVICES |
diff --git a/drivers/misc/Makefile b/drivers/misc/Makefile index 3b12f5da8562..1952875a272e 100644 --- a/drivers/misc/Makefile +++ b/drivers/misc/Makefile | |||
@@ -7,9 +7,11 @@ obj-$(CONFIG_IBM_ASM) += ibmasm/ | |||
7 | obj-$(CONFIG_HDPU_FEATURES) += hdpuftrs/ | 7 | obj-$(CONFIG_HDPU_FEATURES) += hdpuftrs/ |
8 | obj-$(CONFIG_MSI_LAPTOP) += msi-laptop.o | 8 | obj-$(CONFIG_MSI_LAPTOP) += msi-laptop.o |
9 | obj-$(CONFIG_ACER_WMI) += acer-wmi.o | 9 | obj-$(CONFIG_ACER_WMI) += acer-wmi.o |
10 | obj-$(CONFIG_ASUS_LAPTOP) += asus-laptop.o | 10 | obj-$(CONFIG_ASUS_LAPTOP) += asus-laptop.o |
11 | obj-$(CONFIG_EEEPC_LAPTOP) += eeepc-laptop.o | ||
11 | obj-$(CONFIG_ATMEL_PWM) += atmel_pwm.o | 12 | obj-$(CONFIG_ATMEL_PWM) += atmel_pwm.o |
12 | obj-$(CONFIG_ATMEL_SSC) += atmel-ssc.o | 13 | obj-$(CONFIG_ATMEL_SSC) += atmel-ssc.o |
14 | obj-$(CONFIG_ATMEL_TCLIB) += atmel_tclib.o | ||
13 | obj-$(CONFIG_TC1100_WMI) += tc1100-wmi.o | 15 | obj-$(CONFIG_TC1100_WMI) += tc1100-wmi.o |
14 | obj-$(CONFIG_LKDTM) += lkdtm.o | 16 | obj-$(CONFIG_LKDTM) += lkdtm.o |
15 | obj-$(CONFIG_TIFM_CORE) += tifm_core.o | 17 | obj-$(CONFIG_TIFM_CORE) += tifm_core.o |
@@ -22,3 +24,5 @@ obj-$(CONFIG_FUJITSU_LAPTOP) += fujitsu-laptop.o | |||
22 | obj-$(CONFIG_EEPROM_93CX6) += eeprom_93cx6.o | 24 | obj-$(CONFIG_EEPROM_93CX6) += eeprom_93cx6.o |
23 | obj-$(CONFIG_INTEL_MENLOW) += intel_menlow.o | 25 | obj-$(CONFIG_INTEL_MENLOW) += intel_menlow.o |
24 | obj-$(CONFIG_ENCLOSURE_SERVICES) += enclosure.o | 26 | obj-$(CONFIG_ENCLOSURE_SERVICES) += enclosure.o |
27 | obj-$(CONFIG_KGDB_TESTS) += kgdbts.o | ||
28 | obj-$(CONFIG_SGI_XP) += sgi-xp/ | ||
diff --git a/drivers/misc/atmel_tclib.c b/drivers/misc/atmel_tclib.c new file mode 100644 index 000000000000..05dc8a31f280 --- /dev/null +++ b/drivers/misc/atmel_tclib.c | |||
@@ -0,0 +1,161 @@ | |||
1 | #include <linux/atmel_tc.h> | ||
2 | #include <linux/clk.h> | ||
3 | #include <linux/err.h> | ||
4 | #include <linux/init.h> | ||
5 | #include <linux/io.h> | ||
6 | #include <linux/ioport.h> | ||
7 | #include <linux/kernel.h> | ||
8 | #include <linux/platform_device.h> | ||
9 | |||
10 | /* Number of bytes to reserve for the iomem resource */ | ||
11 | #define ATMEL_TC_IOMEM_SIZE 256 | ||
12 | |||
13 | |||
14 | /* | ||
15 | * This is a thin library to solve the problem of how to portably allocate | ||
16 | * one of the TC blocks. For simplicity, it doesn't currently expect to | ||
17 | * share individual timers between different drivers. | ||
18 | */ | ||
19 | |||
20 | #if defined(CONFIG_AVR32) | ||
21 | /* AVR32 has these divide PBB */ | ||
22 | const u8 atmel_tc_divisors[5] = { 0, 4, 8, 16, 32, }; | ||
23 | EXPORT_SYMBOL(atmel_tc_divisors); | ||
24 | |||
25 | #elif defined(CONFIG_ARCH_AT91) | ||
26 | /* AT91 has these divide MCK */ | ||
27 | const u8 atmel_tc_divisors[5] = { 2, 8, 32, 128, 0, }; | ||
28 | EXPORT_SYMBOL(atmel_tc_divisors); | ||
29 | |||
30 | #endif | ||
31 | |||
32 | static DEFINE_SPINLOCK(tc_list_lock); | ||
33 | static LIST_HEAD(tc_list); | ||
34 | |||
35 | /** | ||
36 | * atmel_tc_alloc - allocate a specified TC block | ||
37 | * @block: which block to allocate | ||
38 | * @name: name to be associated with the iomem resource | ||
39 | * | ||
40 | * Caller allocates a block. If it is available, a pointer to a | ||
41 | * pre-initialized struct atmel_tc is returned. The caller can access | ||
42 | * the registers directly through the "regs" field. | ||
43 | */ | ||
44 | struct atmel_tc *atmel_tc_alloc(unsigned block, const char *name) | ||
45 | { | ||
46 | struct atmel_tc *tc; | ||
47 | struct platform_device *pdev = NULL; | ||
48 | struct resource *r; | ||
49 | |||
50 | spin_lock(&tc_list_lock); | ||
51 | list_for_each_entry(tc, &tc_list, node) { | ||
52 | if (tc->pdev->id == block) { | ||
53 | pdev = tc->pdev; | ||
54 | break; | ||
55 | } | ||
56 | } | ||
57 | |||
58 | if (!pdev || tc->iomem) | ||
59 | goto fail; | ||
60 | |||
61 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
62 | r = request_mem_region(r->start, ATMEL_TC_IOMEM_SIZE, name); | ||
63 | if (!r) | ||
64 | goto fail; | ||
65 | |||
66 | tc->regs = ioremap(r->start, ATMEL_TC_IOMEM_SIZE); | ||
67 | if (!tc->regs) | ||
68 | goto fail_ioremap; | ||
69 | |||
70 | tc->iomem = r; | ||
71 | |||
72 | out: | ||
73 | spin_unlock(&tc_list_lock); | ||
74 | return tc; | ||
75 | |||
76 | fail_ioremap: | ||
77 | release_resource(r); | ||
78 | fail: | ||
79 | tc = NULL; | ||
80 | goto out; | ||
81 | } | ||
82 | EXPORT_SYMBOL_GPL(atmel_tc_alloc); | ||
83 | |||
84 | /** | ||
85 | * atmel_tc_free - release a specified TC block | ||
86 | * @tc: Timer/counter block that was returned by atmel_tc_alloc() | ||
87 | * | ||
88 | * This reverses the effect of atmel_tc_alloc(), unmapping the I/O | ||
89 | * registers, invalidating the resource returned by that routine and | ||
90 | * making the TC available to other drivers. | ||
91 | */ | ||
92 | void atmel_tc_free(struct atmel_tc *tc) | ||
93 | { | ||
94 | spin_lock(&tc_list_lock); | ||
95 | if (tc->regs) { | ||
96 | iounmap(tc->regs); | ||
97 | release_resource(tc->iomem); | ||
98 | tc->regs = NULL; | ||
99 | tc->iomem = NULL; | ||
100 | } | ||
101 | spin_unlock(&tc_list_lock); | ||
102 | } | ||
103 | EXPORT_SYMBOL_GPL(atmel_tc_free); | ||
104 | |||
105 | static int __init tc_probe(struct platform_device *pdev) | ||
106 | { | ||
107 | struct atmel_tc *tc; | ||
108 | struct clk *clk; | ||
109 | int irq; | ||
110 | |||
111 | if (!platform_get_resource(pdev, IORESOURCE_MEM, 0)) | ||
112 | return -EINVAL; | ||
113 | |||
114 | irq = platform_get_irq(pdev, 0); | ||
115 | if (irq < 0) | ||
116 | return -EINVAL; | ||
117 | |||
118 | tc = kzalloc(sizeof(struct atmel_tc), GFP_KERNEL); | ||
119 | if (!tc) | ||
120 | return -ENOMEM; | ||
121 | |||
122 | tc->pdev = pdev; | ||
123 | |||
124 | clk = clk_get(&pdev->dev, "t0_clk"); | ||
125 | if (IS_ERR(clk)) { | ||
126 | kfree(tc); | ||
127 | return -EINVAL; | ||
128 | } | ||
129 | |||
130 | tc->clk[0] = clk; | ||
131 | tc->clk[1] = clk_get(&pdev->dev, "t1_clk"); | ||
132 | if (IS_ERR(tc->clk[1])) | ||
133 | tc->clk[1] = clk; | ||
134 | tc->clk[2] = clk_get(&pdev->dev, "t2_clk"); | ||
135 | if (IS_ERR(tc->clk[2])) | ||
136 | tc->clk[2] = clk; | ||
137 | |||
138 | tc->irq[0] = irq; | ||
139 | tc->irq[1] = platform_get_irq(pdev, 1); | ||
140 | if (tc->irq[1] < 0) | ||
141 | tc->irq[1] = irq; | ||
142 | tc->irq[2] = platform_get_irq(pdev, 2); | ||
143 | if (tc->irq[2] < 0) | ||
144 | tc->irq[2] = irq; | ||
145 | |||
146 | spin_lock(&tc_list_lock); | ||
147 | list_add_tail(&tc->node, &tc_list); | ||
148 | spin_unlock(&tc_list_lock); | ||
149 | |||
150 | return 0; | ||
151 | } | ||
152 | |||
153 | static struct platform_driver tc_driver = { | ||
154 | .driver.name = "atmel_tcb", | ||
155 | }; | ||
156 | |||
157 | static int __init tc_init(void) | ||
158 | { | ||
159 | return platform_driver_probe(&tc_driver, tc_probe); | ||
160 | } | ||
161 | arch_initcall(tc_init); | ||
diff --git a/drivers/misc/eeepc-laptop.c b/drivers/misc/eeepc-laptop.c new file mode 100644 index 000000000000..6d727609097f --- /dev/null +++ b/drivers/misc/eeepc-laptop.c | |||
@@ -0,0 +1,666 @@ | |||
1 | /* | ||
2 | * eepc-laptop.c - Asus Eee PC extras | ||
3 | * | ||
4 | * Based on asus_acpi.c as patched for the Eee PC by Asus: | ||
5 | * ftp://ftp.asus.com/pub/ASUS/EeePC/701/ASUS_ACPI_071126.rar | ||
6 | * Based on eee.c from eeepc-linux | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify | ||
9 | * it under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, | ||
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | * GNU General Public License for more details. | ||
17 | */ | ||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/module.h> | ||
21 | #include <linux/init.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/platform_device.h> | ||
24 | #include <linux/backlight.h> | ||
25 | #include <linux/fb.h> | ||
26 | #include <linux/hwmon.h> | ||
27 | #include <linux/hwmon-sysfs.h> | ||
28 | #include <acpi/acpi_drivers.h> | ||
29 | #include <acpi/acpi_bus.h> | ||
30 | #include <linux/uaccess.h> | ||
31 | |||
32 | #define EEEPC_LAPTOP_VERSION "0.1" | ||
33 | |||
34 | #define EEEPC_HOTK_NAME "Eee PC Hotkey Driver" | ||
35 | #define EEEPC_HOTK_FILE "eeepc" | ||
36 | #define EEEPC_HOTK_CLASS "hotkey" | ||
37 | #define EEEPC_HOTK_DEVICE_NAME "Hotkey" | ||
38 | #define EEEPC_HOTK_HID "ASUS010" | ||
39 | |||
40 | #define EEEPC_LOG EEEPC_HOTK_FILE ": " | ||
41 | #define EEEPC_ERR KERN_ERR EEEPC_LOG | ||
42 | #define EEEPC_WARNING KERN_WARNING EEEPC_LOG | ||
43 | #define EEEPC_NOTICE KERN_NOTICE EEEPC_LOG | ||
44 | #define EEEPC_INFO KERN_INFO EEEPC_LOG | ||
45 | |||
46 | /* | ||
47 | * Definitions for Asus EeePC | ||
48 | */ | ||
49 | #define NOTIFY_WLAN_ON 0x10 | ||
50 | #define NOTIFY_BRN_MIN 0x20 | ||
51 | #define NOTIFY_BRN_MAX 0x2f | ||
52 | |||
53 | enum { | ||
54 | DISABLE_ASL_WLAN = 0x0001, | ||
55 | DISABLE_ASL_BLUETOOTH = 0x0002, | ||
56 | DISABLE_ASL_IRDA = 0x0004, | ||
57 | DISABLE_ASL_CAMERA = 0x0008, | ||
58 | DISABLE_ASL_TV = 0x0010, | ||
59 | DISABLE_ASL_GPS = 0x0020, | ||
60 | DISABLE_ASL_DISPLAYSWITCH = 0x0040, | ||
61 | DISABLE_ASL_MODEM = 0x0080, | ||
62 | DISABLE_ASL_CARDREADER = 0x0100 | ||
63 | }; | ||
64 | |||
65 | enum { | ||
66 | CM_ASL_WLAN = 0, | ||
67 | CM_ASL_BLUETOOTH, | ||
68 | CM_ASL_IRDA, | ||
69 | CM_ASL_1394, | ||
70 | CM_ASL_CAMERA, | ||
71 | CM_ASL_TV, | ||
72 | CM_ASL_GPS, | ||
73 | CM_ASL_DVDROM, | ||
74 | CM_ASL_DISPLAYSWITCH, | ||
75 | CM_ASL_PANELBRIGHT, | ||
76 | CM_ASL_BIOSFLASH, | ||
77 | CM_ASL_ACPIFLASH, | ||
78 | CM_ASL_CPUFV, | ||
79 | CM_ASL_CPUTEMPERATURE, | ||
80 | CM_ASL_FANCPU, | ||
81 | CM_ASL_FANCHASSIS, | ||
82 | CM_ASL_USBPORT1, | ||
83 | CM_ASL_USBPORT2, | ||
84 | CM_ASL_USBPORT3, | ||
85 | CM_ASL_MODEM, | ||
86 | CM_ASL_CARDREADER, | ||
87 | CM_ASL_LID | ||
88 | }; | ||
89 | |||
90 | const char *cm_getv[] = { | ||
91 | "WLDG", NULL, NULL, NULL, | ||
92 | "CAMG", NULL, NULL, NULL, | ||
93 | NULL, "PBLG", NULL, NULL, | ||
94 | "CFVG", NULL, NULL, NULL, | ||
95 | "USBG", NULL, NULL, "MODG", | ||
96 | "CRDG", "LIDG" | ||
97 | }; | ||
98 | |||
99 | const char *cm_setv[] = { | ||
100 | "WLDS", NULL, NULL, NULL, | ||
101 | "CAMS", NULL, NULL, NULL, | ||
102 | "SDSP", "PBLS", "HDPS", NULL, | ||
103 | "CFVS", NULL, NULL, NULL, | ||
104 | "USBG", NULL, NULL, "MODS", | ||
105 | "CRDS", NULL | ||
106 | }; | ||
107 | |||
108 | #define EEEPC_EC "\\_SB.PCI0.SBRG.EC0." | ||
109 | |||
110 | #define EEEPC_EC_FAN_PWM EEEPC_EC "SC02" /* Fan PWM duty cycle (%) */ | ||
111 | #define EEEPC_EC_SC02 0x63 | ||
112 | #define EEEPC_EC_FAN_HRPM EEEPC_EC "SC05" /* High byte, fan speed (RPM) */ | ||
113 | #define EEEPC_EC_FAN_LRPM EEEPC_EC "SC06" /* Low byte, fan speed (RPM) */ | ||
114 | #define EEEPC_EC_FAN_CTRL EEEPC_EC "SFB3" /* Byte containing SF25 */ | ||
115 | #define EEEPC_EC_SFB3 0xD3 | ||
116 | |||
117 | /* | ||
118 | * This is the main structure, we can use it to store useful information | ||
119 | * about the hotk device | ||
120 | */ | ||
121 | struct eeepc_hotk { | ||
122 | struct acpi_device *device; /* the device we are in */ | ||
123 | acpi_handle handle; /* the handle of the hotk device */ | ||
124 | u32 cm_supported; /* the control methods supported | ||
125 | by this BIOS */ | ||
126 | uint init_flag; /* Init flags */ | ||
127 | u16 event_count[128]; /* count for each event */ | ||
128 | }; | ||
129 | |||
130 | /* The actual device the driver binds to */ | ||
131 | static struct eeepc_hotk *ehotk; | ||
132 | |||
133 | /* Platform device/driver */ | ||
134 | static struct platform_driver platform_driver = { | ||
135 | .driver = { | ||
136 | .name = EEEPC_HOTK_FILE, | ||
137 | .owner = THIS_MODULE, | ||
138 | } | ||
139 | }; | ||
140 | |||
141 | static struct platform_device *platform_device; | ||
142 | |||
143 | /* | ||
144 | * The hotkey driver declaration | ||
145 | */ | ||
146 | static int eeepc_hotk_add(struct acpi_device *device); | ||
147 | static int eeepc_hotk_remove(struct acpi_device *device, int type); | ||
148 | |||
149 | static const struct acpi_device_id eeepc_device_ids[] = { | ||
150 | {EEEPC_HOTK_HID, 0}, | ||
151 | {"", 0}, | ||
152 | }; | ||
153 | MODULE_DEVICE_TABLE(acpi, eeepc_device_ids); | ||
154 | |||
155 | static struct acpi_driver eeepc_hotk_driver = { | ||
156 | .name = EEEPC_HOTK_NAME, | ||
157 | .class = EEEPC_HOTK_CLASS, | ||
158 | .ids = eeepc_device_ids, | ||
159 | .ops = { | ||
160 | .add = eeepc_hotk_add, | ||
161 | .remove = eeepc_hotk_remove, | ||
162 | }, | ||
163 | }; | ||
164 | |||
165 | /* The backlight device /sys/class/backlight */ | ||
166 | static struct backlight_device *eeepc_backlight_device; | ||
167 | |||
168 | /* The hwmon device */ | ||
169 | static struct device *eeepc_hwmon_device; | ||
170 | |||
171 | /* | ||
172 | * The backlight class declaration | ||
173 | */ | ||
174 | static int read_brightness(struct backlight_device *bd); | ||
175 | static int update_bl_status(struct backlight_device *bd); | ||
176 | static struct backlight_ops eeepcbl_ops = { | ||
177 | .get_brightness = read_brightness, | ||
178 | .update_status = update_bl_status, | ||
179 | }; | ||
180 | |||
181 | MODULE_AUTHOR("Corentin Chary, Eric Cooper"); | ||
182 | MODULE_DESCRIPTION(EEEPC_HOTK_NAME); | ||
183 | MODULE_LICENSE("GPL"); | ||
184 | |||
185 | /* | ||
186 | * ACPI Helpers | ||
187 | */ | ||
188 | static int write_acpi_int(acpi_handle handle, const char *method, int val, | ||
189 | struct acpi_buffer *output) | ||
190 | { | ||
191 | struct acpi_object_list params; | ||
192 | union acpi_object in_obj; | ||
193 | acpi_status status; | ||
194 | |||
195 | params.count = 1; | ||
196 | params.pointer = &in_obj; | ||
197 | in_obj.type = ACPI_TYPE_INTEGER; | ||
198 | in_obj.integer.value = val; | ||
199 | |||
200 | status = acpi_evaluate_object(handle, (char *)method, ¶ms, output); | ||
201 | return (status == AE_OK ? 0 : -1); | ||
202 | } | ||
203 | |||
204 | static int read_acpi_int(acpi_handle handle, const char *method, int *val) | ||
205 | { | ||
206 | acpi_status status; | ||
207 | ulong result; | ||
208 | |||
209 | status = acpi_evaluate_integer(handle, (char *)method, NULL, &result); | ||
210 | if (ACPI_FAILURE(status)) { | ||
211 | *val = -1; | ||
212 | return -1; | ||
213 | } else { | ||
214 | *val = result; | ||
215 | return 0; | ||
216 | } | ||
217 | } | ||
218 | |||
219 | static int set_acpi(int cm, int value) | ||
220 | { | ||
221 | if (ehotk->cm_supported & (0x1 << cm)) { | ||
222 | const char *method = cm_setv[cm]; | ||
223 | if (method == NULL) | ||
224 | return -ENODEV; | ||
225 | if (write_acpi_int(ehotk->handle, method, value, NULL)) | ||
226 | printk(EEEPC_WARNING "Error writing %s\n", method); | ||
227 | } | ||
228 | return 0; | ||
229 | } | ||
230 | |||
231 | static int get_acpi(int cm) | ||
232 | { | ||
233 | int value = -1; | ||
234 | if ((ehotk->cm_supported & (0x1 << cm))) { | ||
235 | const char *method = cm_getv[cm]; | ||
236 | if (method == NULL) | ||
237 | return -ENODEV; | ||
238 | if (read_acpi_int(ehotk->handle, method, &value)) | ||
239 | printk(EEEPC_WARNING "Error reading %s\n", method); | ||
240 | } | ||
241 | return value; | ||
242 | } | ||
243 | |||
244 | /* | ||
245 | * Backlight | ||
246 | */ | ||
247 | static int read_brightness(struct backlight_device *bd) | ||
248 | { | ||
249 | return get_acpi(CM_ASL_PANELBRIGHT); | ||
250 | } | ||
251 | |||
252 | static int set_brightness(struct backlight_device *bd, int value) | ||
253 | { | ||
254 | value = max(0, min(15, value)); | ||
255 | return set_acpi(CM_ASL_PANELBRIGHT, value); | ||
256 | } | ||
257 | |||
258 | static int update_bl_status(struct backlight_device *bd) | ||
259 | { | ||
260 | return set_brightness(bd, bd->props.brightness); | ||
261 | } | ||
262 | |||
263 | /* | ||
264 | * Sys helpers | ||
265 | */ | ||
266 | static int parse_arg(const char *buf, unsigned long count, int *val) | ||
267 | { | ||
268 | if (!count) | ||
269 | return 0; | ||
270 | if (sscanf(buf, "%i", val) != 1) | ||
271 | return -EINVAL; | ||
272 | return count; | ||
273 | } | ||
274 | |||
275 | static ssize_t store_sys_acpi(int cm, const char *buf, size_t count) | ||
276 | { | ||
277 | int rv, value; | ||
278 | |||
279 | rv = parse_arg(buf, count, &value); | ||
280 | if (rv > 0) | ||
281 | set_acpi(cm, value); | ||
282 | return rv; | ||
283 | } | ||
284 | |||
285 | static ssize_t show_sys_acpi(int cm, char *buf) | ||
286 | { | ||
287 | return sprintf(buf, "%d\n", get_acpi(cm)); | ||
288 | } | ||
289 | |||
290 | #define EEEPC_CREATE_DEVICE_ATTR(_name, _cm) \ | ||
291 | static ssize_t show_##_name(struct device *dev, \ | ||
292 | struct device_attribute *attr, \ | ||
293 | char *buf) \ | ||
294 | { \ | ||
295 | return show_sys_acpi(_cm, buf); \ | ||
296 | } \ | ||
297 | static ssize_t store_##_name(struct device *dev, \ | ||
298 | struct device_attribute *attr, \ | ||
299 | const char *buf, size_t count) \ | ||
300 | { \ | ||
301 | return store_sys_acpi(_cm, buf, count); \ | ||
302 | } \ | ||
303 | static struct device_attribute dev_attr_##_name = { \ | ||
304 | .attr = { \ | ||
305 | .name = __stringify(_name), \ | ||
306 | .mode = 0644 }, \ | ||
307 | .show = show_##_name, \ | ||
308 | .store = store_##_name, \ | ||
309 | } | ||
310 | |||
311 | EEEPC_CREATE_DEVICE_ATTR(camera, CM_ASL_CAMERA); | ||
312 | EEEPC_CREATE_DEVICE_ATTR(cardr, CM_ASL_CARDREADER); | ||
313 | EEEPC_CREATE_DEVICE_ATTR(disp, CM_ASL_DISPLAYSWITCH); | ||
314 | EEEPC_CREATE_DEVICE_ATTR(wlan, CM_ASL_WLAN); | ||
315 | |||
316 | static struct attribute *platform_attributes[] = { | ||
317 | &dev_attr_camera.attr, | ||
318 | &dev_attr_cardr.attr, | ||
319 | &dev_attr_disp.attr, | ||
320 | &dev_attr_wlan.attr, | ||
321 | NULL | ||
322 | }; | ||
323 | |||
324 | static struct attribute_group platform_attribute_group = { | ||
325 | .attrs = platform_attributes | ||
326 | }; | ||
327 | |||
328 | /* | ||
329 | * Hotkey functions | ||
330 | */ | ||
331 | static int eeepc_hotk_check(void) | ||
332 | { | ||
333 | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; | ||
334 | int result; | ||
335 | |||
336 | result = acpi_bus_get_status(ehotk->device); | ||
337 | if (result) | ||
338 | return result; | ||
339 | if (ehotk->device->status.present) { | ||
340 | if (write_acpi_int(ehotk->handle, "INIT", ehotk->init_flag, | ||
341 | &buffer)) { | ||
342 | printk(EEEPC_ERR "Hotkey initialization failed\n"); | ||
343 | return -ENODEV; | ||
344 | } else { | ||
345 | printk(EEEPC_NOTICE "Hotkey init flags 0x%x\n", | ||
346 | ehotk->init_flag); | ||
347 | } | ||
348 | /* get control methods supported */ | ||
349 | if (read_acpi_int(ehotk->handle, "CMSG" | ||
350 | , &ehotk->cm_supported)) { | ||
351 | printk(EEEPC_ERR | ||
352 | "Get control methods supported failed\n"); | ||
353 | return -ENODEV; | ||
354 | } else { | ||
355 | printk(EEEPC_INFO | ||
356 | "Get control methods supported: 0x%x\n", | ||
357 | ehotk->cm_supported); | ||
358 | } | ||
359 | } else { | ||
360 | printk(EEEPC_ERR "Hotkey device not present, aborting\n"); | ||
361 | return -EINVAL; | ||
362 | } | ||
363 | return 0; | ||
364 | } | ||
365 | |||
366 | static void notify_wlan(u32 *event) | ||
367 | { | ||
368 | /* if DISABLE_ASL_WLAN is set, the notify code for fn+f2 | ||
369 | will always be 0x10 */ | ||
370 | if (ehotk->cm_supported & (0x1 << CM_ASL_WLAN)) { | ||
371 | const char *method = cm_getv[CM_ASL_WLAN]; | ||
372 | int value; | ||
373 | if (read_acpi_int(ehotk->handle, method, &value)) | ||
374 | printk(EEEPC_WARNING "Error reading %s\n", | ||
375 | method); | ||
376 | else if (value == 1) | ||
377 | *event = 0x11; | ||
378 | } | ||
379 | } | ||
380 | |||
381 | static void notify_brn(void) | ||
382 | { | ||
383 | struct backlight_device *bd = eeepc_backlight_device; | ||
384 | bd->props.brightness = read_brightness(bd); | ||
385 | } | ||
386 | |||
387 | static void eeepc_hotk_notify(acpi_handle handle, u32 event, void *data) | ||
388 | { | ||
389 | if (!ehotk) | ||
390 | return; | ||
391 | if (event == NOTIFY_WLAN_ON && (DISABLE_ASL_WLAN & ehotk->init_flag)) | ||
392 | notify_wlan(&event); | ||
393 | if (event >= NOTIFY_BRN_MIN && event <= NOTIFY_BRN_MAX) | ||
394 | notify_brn(); | ||
395 | acpi_bus_generate_proc_event(ehotk->device, event, | ||
396 | ehotk->event_count[event % 128]++); | ||
397 | } | ||
398 | |||
399 | static int eeepc_hotk_add(struct acpi_device *device) | ||
400 | { | ||
401 | acpi_status status = AE_OK; | ||
402 | int result; | ||
403 | |||
404 | if (!device) | ||
405 | return -EINVAL; | ||
406 | printk(EEEPC_NOTICE EEEPC_HOTK_NAME "\n"); | ||
407 | ehotk = kzalloc(sizeof(struct eeepc_hotk), GFP_KERNEL); | ||
408 | if (!ehotk) | ||
409 | return -ENOMEM; | ||
410 | ehotk->init_flag = DISABLE_ASL_WLAN | DISABLE_ASL_DISPLAYSWITCH; | ||
411 | ehotk->handle = device->handle; | ||
412 | strcpy(acpi_device_name(device), EEEPC_HOTK_DEVICE_NAME); | ||
413 | strcpy(acpi_device_class(device), EEEPC_HOTK_CLASS); | ||
414 | acpi_driver_data(device) = ehotk; | ||
415 | ehotk->device = device; | ||
416 | result = eeepc_hotk_check(); | ||
417 | if (result) | ||
418 | goto end; | ||
419 | status = acpi_install_notify_handler(ehotk->handle, ACPI_SYSTEM_NOTIFY, | ||
420 | eeepc_hotk_notify, ehotk); | ||
421 | if (ACPI_FAILURE(status)) | ||
422 | printk(EEEPC_ERR "Error installing notify handler\n"); | ||
423 | end: | ||
424 | if (result) { | ||
425 | kfree(ehotk); | ||
426 | ehotk = NULL; | ||
427 | } | ||
428 | return result; | ||
429 | } | ||
430 | |||
431 | static int eeepc_hotk_remove(struct acpi_device *device, int type) | ||
432 | { | ||
433 | acpi_status status = 0; | ||
434 | |||
435 | if (!device || !acpi_driver_data(device)) | ||
436 | return -EINVAL; | ||
437 | status = acpi_remove_notify_handler(ehotk->handle, ACPI_SYSTEM_NOTIFY, | ||
438 | eeepc_hotk_notify); | ||
439 | if (ACPI_FAILURE(status)) | ||
440 | printk(EEEPC_ERR "Error removing notify handler\n"); | ||
441 | kfree(ehotk); | ||
442 | return 0; | ||
443 | } | ||
444 | |||
445 | /* | ||
446 | * Hwmon | ||
447 | */ | ||
448 | static int eeepc_get_fan_pwm(void) | ||
449 | { | ||
450 | int value = 0; | ||
451 | |||
452 | read_acpi_int(NULL, EEEPC_EC_FAN_PWM, &value); | ||
453 | return (value); | ||
454 | } | ||
455 | |||
456 | static void eeepc_set_fan_pwm(int value) | ||
457 | { | ||
458 | value = SENSORS_LIMIT(value, 0, 100); | ||
459 | ec_write(EEEPC_EC_SC02, value); | ||
460 | } | ||
461 | |||
462 | static int eeepc_get_fan_rpm(void) | ||
463 | { | ||
464 | int high = 0; | ||
465 | int low = 0; | ||
466 | |||
467 | read_acpi_int(NULL, EEEPC_EC_FAN_HRPM, &high); | ||
468 | read_acpi_int(NULL, EEEPC_EC_FAN_LRPM, &low); | ||
469 | return (high << 8 | low); | ||
470 | } | ||
471 | |||
472 | static int eeepc_get_fan_ctrl(void) | ||
473 | { | ||
474 | int value = 0; | ||
475 | |||
476 | read_acpi_int(NULL, EEEPC_EC_FAN_CTRL, &value); | ||
477 | return ((value & 0x02 ? 1 : 0)); | ||
478 | } | ||
479 | |||
480 | static void eeepc_set_fan_ctrl(int manual) | ||
481 | { | ||
482 | int value = 0; | ||
483 | |||
484 | read_acpi_int(NULL, EEEPC_EC_FAN_CTRL, &value); | ||
485 | if (manual) | ||
486 | value |= 0x02; | ||
487 | else | ||
488 | value &= ~0x02; | ||
489 | ec_write(EEEPC_EC_SFB3, value); | ||
490 | } | ||
491 | |||
492 | static ssize_t store_sys_hwmon(void (*set)(int), const char *buf, size_t count) | ||
493 | { | ||
494 | int rv, value; | ||
495 | |||
496 | rv = parse_arg(buf, count, &value); | ||
497 | if (rv > 0) | ||
498 | set(value); | ||
499 | return rv; | ||
500 | } | ||
501 | |||
502 | static ssize_t show_sys_hwmon(int (*get)(void), char *buf) | ||
503 | { | ||
504 | return sprintf(buf, "%d\n", get()); | ||
505 | } | ||
506 | |||
507 | #define EEEPC_CREATE_SENSOR_ATTR(_name, _mode, _set, _get) \ | ||
508 | static ssize_t show_##_name(struct device *dev, \ | ||
509 | struct device_attribute *attr, \ | ||
510 | char *buf) \ | ||
511 | { \ | ||
512 | return show_sys_hwmon(_set, buf); \ | ||
513 | } \ | ||
514 | static ssize_t store_##_name(struct device *dev, \ | ||
515 | struct device_attribute *attr, \ | ||
516 | const char *buf, size_t count) \ | ||
517 | { \ | ||
518 | return store_sys_hwmon(_get, buf, count); \ | ||
519 | } \ | ||
520 | static SENSOR_DEVICE_ATTR(_name, _mode, show_##_name, store_##_name, 0); | ||
521 | |||
522 | EEEPC_CREATE_SENSOR_ATTR(fan1_input, S_IRUGO, eeepc_get_fan_rpm, NULL); | ||
523 | EEEPC_CREATE_SENSOR_ATTR(fan1_pwm, S_IRUGO | S_IWUSR, | ||
524 | eeepc_get_fan_pwm, eeepc_set_fan_pwm); | ||
525 | EEEPC_CREATE_SENSOR_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, | ||
526 | eeepc_get_fan_ctrl, eeepc_set_fan_ctrl); | ||
527 | |||
528 | static struct attribute *hwmon_attributes[] = { | ||
529 | &sensor_dev_attr_fan1_pwm.dev_attr.attr, | ||
530 | &sensor_dev_attr_fan1_input.dev_attr.attr, | ||
531 | &sensor_dev_attr_pwm1_enable.dev_attr.attr, | ||
532 | NULL | ||
533 | }; | ||
534 | |||
535 | static struct attribute_group hwmon_attribute_group = { | ||
536 | .attrs = hwmon_attributes | ||
537 | }; | ||
538 | |||
539 | /* | ||
540 | * exit/init | ||
541 | */ | ||
542 | static void eeepc_backlight_exit(void) | ||
543 | { | ||
544 | if (eeepc_backlight_device) | ||
545 | backlight_device_unregister(eeepc_backlight_device); | ||
546 | eeepc_backlight_device = NULL; | ||
547 | } | ||
548 | |||
549 | static void eeepc_hwmon_exit(void) | ||
550 | { | ||
551 | struct device *hwmon; | ||
552 | |||
553 | hwmon = eeepc_hwmon_device; | ||
554 | if (!hwmon) | ||
555 | return ; | ||
556 | hwmon_device_unregister(hwmon); | ||
557 | sysfs_remove_group(&hwmon->kobj, | ||
558 | &hwmon_attribute_group); | ||
559 | eeepc_hwmon_device = NULL; | ||
560 | } | ||
561 | |||
562 | static void __exit eeepc_laptop_exit(void) | ||
563 | { | ||
564 | eeepc_backlight_exit(); | ||
565 | eeepc_hwmon_exit(); | ||
566 | acpi_bus_unregister_driver(&eeepc_hotk_driver); | ||
567 | sysfs_remove_group(&platform_device->dev.kobj, | ||
568 | &platform_attribute_group); | ||
569 | platform_device_unregister(platform_device); | ||
570 | platform_driver_unregister(&platform_driver); | ||
571 | } | ||
572 | |||
573 | static int eeepc_backlight_init(struct device *dev) | ||
574 | { | ||
575 | struct backlight_device *bd; | ||
576 | |||
577 | bd = backlight_device_register(EEEPC_HOTK_FILE, dev, | ||
578 | NULL, &eeepcbl_ops); | ||
579 | if (IS_ERR(bd)) { | ||
580 | printk(EEEPC_ERR | ||
581 | "Could not register eeepc backlight device\n"); | ||
582 | eeepc_backlight_device = NULL; | ||
583 | return PTR_ERR(bd); | ||
584 | } | ||
585 | eeepc_backlight_device = bd; | ||
586 | bd->props.max_brightness = 15; | ||
587 | bd->props.brightness = read_brightness(NULL); | ||
588 | bd->props.power = FB_BLANK_UNBLANK; | ||
589 | backlight_update_status(bd); | ||
590 | return 0; | ||
591 | } | ||
592 | |||
593 | static int eeepc_hwmon_init(struct device *dev) | ||
594 | { | ||
595 | struct device *hwmon; | ||
596 | int result; | ||
597 | |||
598 | hwmon = hwmon_device_register(dev); | ||
599 | if (IS_ERR(hwmon)) { | ||
600 | printk(EEEPC_ERR | ||
601 | "Could not register eeepc hwmon device\n"); | ||
602 | eeepc_hwmon_device = NULL; | ||
603 | return PTR_ERR(hwmon); | ||
604 | } | ||
605 | eeepc_hwmon_device = hwmon; | ||
606 | result = sysfs_create_group(&hwmon->kobj, | ||
607 | &hwmon_attribute_group); | ||
608 | if (result) | ||
609 | eeepc_hwmon_exit(); | ||
610 | return result; | ||
611 | } | ||
612 | |||
613 | static int __init eeepc_laptop_init(void) | ||
614 | { | ||
615 | struct device *dev; | ||
616 | int result; | ||
617 | |||
618 | if (acpi_disabled) | ||
619 | return -ENODEV; | ||
620 | result = acpi_bus_register_driver(&eeepc_hotk_driver); | ||
621 | if (result < 0) | ||
622 | return result; | ||
623 | if (!ehotk) { | ||
624 | acpi_bus_unregister_driver(&eeepc_hotk_driver); | ||
625 | return -ENODEV; | ||
626 | } | ||
627 | dev = acpi_get_physical_device(ehotk->device->handle); | ||
628 | result = eeepc_backlight_init(dev); | ||
629 | if (result) | ||
630 | goto fail_backlight; | ||
631 | result = eeepc_hwmon_init(dev); | ||
632 | if (result) | ||
633 | goto fail_hwmon; | ||
634 | /* Register platform stuff */ | ||
635 | result = platform_driver_register(&platform_driver); | ||
636 | if (result) | ||
637 | goto fail_platform_driver; | ||
638 | platform_device = platform_device_alloc(EEEPC_HOTK_FILE, -1); | ||
639 | if (!platform_device) { | ||
640 | result = -ENOMEM; | ||
641 | goto fail_platform_device1; | ||
642 | } | ||
643 | result = platform_device_add(platform_device); | ||
644 | if (result) | ||
645 | goto fail_platform_device2; | ||
646 | result = sysfs_create_group(&platform_device->dev.kobj, | ||
647 | &platform_attribute_group); | ||
648 | if (result) | ||
649 | goto fail_sysfs; | ||
650 | return 0; | ||
651 | fail_sysfs: | ||
652 | platform_device_del(platform_device); | ||
653 | fail_platform_device2: | ||
654 | platform_device_put(platform_device); | ||
655 | fail_platform_device1: | ||
656 | platform_driver_unregister(&platform_driver); | ||
657 | fail_platform_driver: | ||
658 | eeepc_hwmon_exit(); | ||
659 | fail_hwmon: | ||
660 | eeepc_backlight_exit(); | ||
661 | fail_backlight: | ||
662 | return result; | ||
663 | } | ||
664 | |||
665 | module_init(eeepc_laptop_init); | ||
666 | module_exit(eeepc_laptop_exit); | ||
diff --git a/drivers/misc/enclosure.c b/drivers/misc/enclosure.c index 6fcb0e96adf4..0736cff9d97a 100644 --- a/drivers/misc/enclosure.c +++ b/drivers/misc/enclosure.c | |||
@@ -31,7 +31,6 @@ | |||
31 | static LIST_HEAD(container_list); | 31 | static LIST_HEAD(container_list); |
32 | static DEFINE_MUTEX(container_list_lock); | 32 | static DEFINE_MUTEX(container_list_lock); |
33 | static struct class enclosure_class; | 33 | static struct class enclosure_class; |
34 | static struct class enclosure_component_class; | ||
35 | 34 | ||
36 | /** | 35 | /** |
37 | * enclosure_find - find an enclosure given a device | 36 | * enclosure_find - find an enclosure given a device |
@@ -40,16 +39,16 @@ static struct class enclosure_component_class; | |||
40 | * Looks through the list of registered enclosures to see | 39 | * Looks through the list of registered enclosures to see |
41 | * if it can find a match for a device. Returns NULL if no | 40 | * if it can find a match for a device. Returns NULL if no |
42 | * enclosure is found. Obtains a reference to the enclosure class | 41 | * enclosure is found. Obtains a reference to the enclosure class |
43 | * device which must be released with class_device_put(). | 42 | * device which must be released with device_put(). |
44 | */ | 43 | */ |
45 | struct enclosure_device *enclosure_find(struct device *dev) | 44 | struct enclosure_device *enclosure_find(struct device *dev) |
46 | { | 45 | { |
47 | struct enclosure_device *edev = NULL; | 46 | struct enclosure_device *edev; |
48 | 47 | ||
49 | mutex_lock(&container_list_lock); | 48 | mutex_lock(&container_list_lock); |
50 | list_for_each_entry(edev, &container_list, node) { | 49 | list_for_each_entry(edev, &container_list, node) { |
51 | if (edev->cdev.dev == dev) { | 50 | if (edev->edev.parent == dev) { |
52 | class_device_get(&edev->cdev); | 51 | get_device(&edev->edev); |
53 | mutex_unlock(&container_list_lock); | 52 | mutex_unlock(&container_list_lock); |
54 | return edev; | 53 | return edev; |
55 | } | 54 | } |
@@ -117,11 +116,11 @@ enclosure_register(struct device *dev, const char *name, int components, | |||
117 | 116 | ||
118 | edev->components = components; | 117 | edev->components = components; |
119 | 118 | ||
120 | edev->cdev.class = &enclosure_class; | 119 | edev->edev.class = &enclosure_class; |
121 | edev->cdev.dev = get_device(dev); | 120 | edev->edev.parent = get_device(dev); |
122 | edev->cb = cb; | 121 | edev->cb = cb; |
123 | snprintf(edev->cdev.class_id, BUS_ID_SIZE, "%s", name); | 122 | snprintf(edev->edev.bus_id, BUS_ID_SIZE, "%s", name); |
124 | err = class_device_register(&edev->cdev); | 123 | err = device_register(&edev->edev); |
125 | if (err) | 124 | if (err) |
126 | goto err; | 125 | goto err; |
127 | 126 | ||
@@ -135,7 +134,7 @@ enclosure_register(struct device *dev, const char *name, int components, | |||
135 | return edev; | 134 | return edev; |
136 | 135 | ||
137 | err: | 136 | err: |
138 | put_device(edev->cdev.dev); | 137 | put_device(edev->edev.parent); |
139 | kfree(edev); | 138 | kfree(edev); |
140 | return ERR_PTR(err); | 139 | return ERR_PTR(err); |
141 | } | 140 | } |
@@ -158,29 +157,69 @@ void enclosure_unregister(struct enclosure_device *edev) | |||
158 | 157 | ||
159 | for (i = 0; i < edev->components; i++) | 158 | for (i = 0; i < edev->components; i++) |
160 | if (edev->component[i].number != -1) | 159 | if (edev->component[i].number != -1) |
161 | class_device_unregister(&edev->component[i].cdev); | 160 | device_unregister(&edev->component[i].cdev); |
162 | 161 | ||
163 | /* prevent any callbacks into service user */ | 162 | /* prevent any callbacks into service user */ |
164 | edev->cb = &enclosure_null_callbacks; | 163 | edev->cb = &enclosure_null_callbacks; |
165 | class_device_unregister(&edev->cdev); | 164 | device_unregister(&edev->edev); |
166 | } | 165 | } |
167 | EXPORT_SYMBOL_GPL(enclosure_unregister); | 166 | EXPORT_SYMBOL_GPL(enclosure_unregister); |
168 | 167 | ||
169 | static void enclosure_release(struct class_device *cdev) | 168 | #define ENCLOSURE_NAME_SIZE 64 |
169 | |||
170 | static void enclosure_link_name(struct enclosure_component *cdev, char *name) | ||
171 | { | ||
172 | strcpy(name, "enclosure_device:"); | ||
173 | strcat(name, cdev->cdev.bus_id); | ||
174 | } | ||
175 | |||
176 | static void enclosure_remove_links(struct enclosure_component *cdev) | ||
177 | { | ||
178 | char name[ENCLOSURE_NAME_SIZE]; | ||
179 | |||
180 | enclosure_link_name(cdev, name); | ||
181 | sysfs_remove_link(&cdev->dev->kobj, name); | ||
182 | sysfs_remove_link(&cdev->cdev.kobj, "device"); | ||
183 | } | ||
184 | |||
185 | static int enclosure_add_links(struct enclosure_component *cdev) | ||
186 | { | ||
187 | int error; | ||
188 | char name[ENCLOSURE_NAME_SIZE]; | ||
189 | |||
190 | error = sysfs_create_link(&cdev->cdev.kobj, &cdev->dev->kobj, "device"); | ||
191 | if (error) | ||
192 | return error; | ||
193 | |||
194 | enclosure_link_name(cdev, name); | ||
195 | error = sysfs_create_link(&cdev->dev->kobj, &cdev->cdev.kobj, name); | ||
196 | if (error) | ||
197 | sysfs_remove_link(&cdev->cdev.kobj, "device"); | ||
198 | |||
199 | return error; | ||
200 | } | ||
201 | |||
202 | static void enclosure_release(struct device *cdev) | ||
170 | { | 203 | { |
171 | struct enclosure_device *edev = to_enclosure_device(cdev); | 204 | struct enclosure_device *edev = to_enclosure_device(cdev); |
172 | 205 | ||
173 | put_device(cdev->dev); | 206 | put_device(cdev->parent); |
174 | kfree(edev); | 207 | kfree(edev); |
175 | } | 208 | } |
176 | 209 | ||
177 | static void enclosure_component_release(struct class_device *cdev) | 210 | static void enclosure_component_release(struct device *dev) |
178 | { | 211 | { |
179 | if (cdev->dev) | 212 | struct enclosure_component *cdev = to_enclosure_component(dev); |
213 | |||
214 | if (cdev->dev) { | ||
215 | enclosure_remove_links(cdev); | ||
180 | put_device(cdev->dev); | 216 | put_device(cdev->dev); |
181 | class_device_put(cdev->parent); | 217 | } |
218 | put_device(dev->parent); | ||
182 | } | 219 | } |
183 | 220 | ||
221 | static struct attribute_group *enclosure_groups[]; | ||
222 | |||
184 | /** | 223 | /** |
185 | * enclosure_component_register - add a particular component to an enclosure | 224 | * enclosure_component_register - add a particular component to an enclosure |
186 | * @edev: the enclosure to add the component | 225 | * @edev: the enclosure to add the component |
@@ -201,7 +240,7 @@ enclosure_component_register(struct enclosure_device *edev, | |||
201 | const char *name) | 240 | const char *name) |
202 | { | 241 | { |
203 | struct enclosure_component *ecomp; | 242 | struct enclosure_component *ecomp; |
204 | struct class_device *cdev; | 243 | struct device *cdev; |
205 | int err; | 244 | int err; |
206 | 245 | ||
207 | if (number >= edev->components) | 246 | if (number >= edev->components) |
@@ -215,14 +254,16 @@ enclosure_component_register(struct enclosure_device *edev, | |||
215 | ecomp->type = type; | 254 | ecomp->type = type; |
216 | ecomp->number = number; | 255 | ecomp->number = number; |
217 | cdev = &ecomp->cdev; | 256 | cdev = &ecomp->cdev; |
218 | cdev->parent = class_device_get(&edev->cdev); | 257 | cdev->parent = get_device(&edev->edev); |
219 | cdev->class = &enclosure_component_class; | ||
220 | if (name) | 258 | if (name) |
221 | snprintf(cdev->class_id, BUS_ID_SIZE, "%s", name); | 259 | snprintf(cdev->bus_id, BUS_ID_SIZE, "%s", name); |
222 | else | 260 | else |
223 | snprintf(cdev->class_id, BUS_ID_SIZE, "%u", number); | 261 | snprintf(cdev->bus_id, BUS_ID_SIZE, "%u", number); |
224 | 262 | ||
225 | err = class_device_register(cdev); | 263 | cdev->release = enclosure_component_release; |
264 | cdev->groups = enclosure_groups; | ||
265 | |||
266 | err = device_register(cdev); | ||
226 | if (err) | 267 | if (err) |
227 | ERR_PTR(err); | 268 | ERR_PTR(err); |
228 | 269 | ||
@@ -247,18 +288,19 @@ EXPORT_SYMBOL_GPL(enclosure_component_register); | |||
247 | int enclosure_add_device(struct enclosure_device *edev, int component, | 288 | int enclosure_add_device(struct enclosure_device *edev, int component, |
248 | struct device *dev) | 289 | struct device *dev) |
249 | { | 290 | { |
250 | struct class_device *cdev; | 291 | struct enclosure_component *cdev; |
251 | 292 | ||
252 | if (!edev || component >= edev->components) | 293 | if (!edev || component >= edev->components) |
253 | return -EINVAL; | 294 | return -EINVAL; |
254 | 295 | ||
255 | cdev = &edev->component[component].cdev; | 296 | cdev = &edev->component[component]; |
256 | 297 | ||
257 | class_device_del(cdev); | ||
258 | if (cdev->dev) | 298 | if (cdev->dev) |
259 | put_device(cdev->dev); | 299 | enclosure_remove_links(cdev); |
300 | |||
301 | put_device(cdev->dev); | ||
260 | cdev->dev = get_device(dev); | 302 | cdev->dev = get_device(dev); |
261 | return class_device_add(cdev); | 303 | return enclosure_add_links(cdev); |
262 | } | 304 | } |
263 | EXPORT_SYMBOL_GPL(enclosure_add_device); | 305 | EXPORT_SYMBOL_GPL(enclosure_add_device); |
264 | 306 | ||
@@ -272,18 +314,17 @@ EXPORT_SYMBOL_GPL(enclosure_add_device); | |||
272 | */ | 314 | */ |
273 | int enclosure_remove_device(struct enclosure_device *edev, int component) | 315 | int enclosure_remove_device(struct enclosure_device *edev, int component) |
274 | { | 316 | { |
275 | struct class_device *cdev; | 317 | struct enclosure_component *cdev; |
276 | 318 | ||
277 | if (!edev || component >= edev->components) | 319 | if (!edev || component >= edev->components) |
278 | return -EINVAL; | 320 | return -EINVAL; |
279 | 321 | ||
280 | cdev = &edev->component[component].cdev; | 322 | cdev = &edev->component[component]; |
281 | 323 | ||
282 | class_device_del(cdev); | 324 | device_del(&cdev->cdev); |
283 | if (cdev->dev) | 325 | put_device(cdev->dev); |
284 | put_device(cdev->dev); | ||
285 | cdev->dev = NULL; | 326 | cdev->dev = NULL; |
286 | return class_device_add(cdev); | 327 | return device_add(&cdev->cdev); |
287 | } | 328 | } |
288 | EXPORT_SYMBOL_GPL(enclosure_remove_device); | 329 | EXPORT_SYMBOL_GPL(enclosure_remove_device); |
289 | 330 | ||
@@ -291,14 +332,16 @@ EXPORT_SYMBOL_GPL(enclosure_remove_device); | |||
291 | * sysfs pieces below | 332 | * sysfs pieces below |
292 | */ | 333 | */ |
293 | 334 | ||
294 | static ssize_t enclosure_show_components(struct class_device *cdev, char *buf) | 335 | static ssize_t enclosure_show_components(struct device *cdev, |
336 | struct device_attribute *attr, | ||
337 | char *buf) | ||
295 | { | 338 | { |
296 | struct enclosure_device *edev = to_enclosure_device(cdev); | 339 | struct enclosure_device *edev = to_enclosure_device(cdev); |
297 | 340 | ||
298 | return snprintf(buf, 40, "%d\n", edev->components); | 341 | return snprintf(buf, 40, "%d\n", edev->components); |
299 | } | 342 | } |
300 | 343 | ||
301 | static struct class_device_attribute enclosure_attrs[] = { | 344 | static struct device_attribute enclosure_attrs[] = { |
302 | __ATTR(components, S_IRUGO, enclosure_show_components, NULL), | 345 | __ATTR(components, S_IRUGO, enclosure_show_components, NULL), |
303 | __ATTR_NULL | 346 | __ATTR_NULL |
304 | }; | 347 | }; |
@@ -306,8 +349,8 @@ static struct class_device_attribute enclosure_attrs[] = { | |||
306 | static struct class enclosure_class = { | 349 | static struct class enclosure_class = { |
307 | .name = "enclosure", | 350 | .name = "enclosure", |
308 | .owner = THIS_MODULE, | 351 | .owner = THIS_MODULE, |
309 | .release = enclosure_release, | 352 | .dev_release = enclosure_release, |
310 | .class_dev_attrs = enclosure_attrs, | 353 | .dev_attrs = enclosure_attrs, |
311 | }; | 354 | }; |
312 | 355 | ||
313 | static const char *const enclosure_status [] = { | 356 | static const char *const enclosure_status [] = { |
@@ -326,7 +369,8 @@ static const char *const enclosure_type [] = { | |||
326 | [ENCLOSURE_COMPONENT_ARRAY_DEVICE] = "array device", | 369 | [ENCLOSURE_COMPONENT_ARRAY_DEVICE] = "array device", |
327 | }; | 370 | }; |
328 | 371 | ||
329 | static ssize_t get_component_fault(struct class_device *cdev, char *buf) | 372 | static ssize_t get_component_fault(struct device *cdev, |
373 | struct device_attribute *attr, char *buf) | ||
330 | { | 374 | { |
331 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); | 375 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); |
332 | struct enclosure_component *ecomp = to_enclosure_component(cdev); | 376 | struct enclosure_component *ecomp = to_enclosure_component(cdev); |
@@ -336,8 +380,9 @@ static ssize_t get_component_fault(struct class_device *cdev, char *buf) | |||
336 | return snprintf(buf, 40, "%d\n", ecomp->fault); | 380 | return snprintf(buf, 40, "%d\n", ecomp->fault); |
337 | } | 381 | } |
338 | 382 | ||
339 | static ssize_t set_component_fault(struct class_device *cdev, const char *buf, | 383 | static ssize_t set_component_fault(struct device *cdev, |
340 | size_t count) | 384 | struct device_attribute *attr, |
385 | const char *buf, size_t count) | ||
341 | { | 386 | { |
342 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); | 387 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); |
343 | struct enclosure_component *ecomp = to_enclosure_component(cdev); | 388 | struct enclosure_component *ecomp = to_enclosure_component(cdev); |
@@ -348,7 +393,8 @@ static ssize_t set_component_fault(struct class_device *cdev, const char *buf, | |||
348 | return count; | 393 | return count; |
349 | } | 394 | } |
350 | 395 | ||
351 | static ssize_t get_component_status(struct class_device *cdev, char *buf) | 396 | static ssize_t get_component_status(struct device *cdev, |
397 | struct device_attribute *attr,char *buf) | ||
352 | { | 398 | { |
353 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); | 399 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); |
354 | struct enclosure_component *ecomp = to_enclosure_component(cdev); | 400 | struct enclosure_component *ecomp = to_enclosure_component(cdev); |
@@ -358,8 +404,9 @@ static ssize_t get_component_status(struct class_device *cdev, char *buf) | |||
358 | return snprintf(buf, 40, "%s\n", enclosure_status[ecomp->status]); | 404 | return snprintf(buf, 40, "%s\n", enclosure_status[ecomp->status]); |
359 | } | 405 | } |
360 | 406 | ||
361 | static ssize_t set_component_status(struct class_device *cdev, const char *buf, | 407 | static ssize_t set_component_status(struct device *cdev, |
362 | size_t count) | 408 | struct device_attribute *attr, |
409 | const char *buf, size_t count) | ||
363 | { | 410 | { |
364 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); | 411 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); |
365 | struct enclosure_component *ecomp = to_enclosure_component(cdev); | 412 | struct enclosure_component *ecomp = to_enclosure_component(cdev); |
@@ -380,7 +427,8 @@ static ssize_t set_component_status(struct class_device *cdev, const char *buf, | |||
380 | return -EINVAL; | 427 | return -EINVAL; |
381 | } | 428 | } |
382 | 429 | ||
383 | static ssize_t get_component_active(struct class_device *cdev, char *buf) | 430 | static ssize_t get_component_active(struct device *cdev, |
431 | struct device_attribute *attr, char *buf) | ||
384 | { | 432 | { |
385 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); | 433 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); |
386 | struct enclosure_component *ecomp = to_enclosure_component(cdev); | 434 | struct enclosure_component *ecomp = to_enclosure_component(cdev); |
@@ -390,8 +438,9 @@ static ssize_t get_component_active(struct class_device *cdev, char *buf) | |||
390 | return snprintf(buf, 40, "%d\n", ecomp->active); | 438 | return snprintf(buf, 40, "%d\n", ecomp->active); |
391 | } | 439 | } |
392 | 440 | ||
393 | static ssize_t set_component_active(struct class_device *cdev, const char *buf, | 441 | static ssize_t set_component_active(struct device *cdev, |
394 | size_t count) | 442 | struct device_attribute *attr, |
443 | const char *buf, size_t count) | ||
395 | { | 444 | { |
396 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); | 445 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); |
397 | struct enclosure_component *ecomp = to_enclosure_component(cdev); | 446 | struct enclosure_component *ecomp = to_enclosure_component(cdev); |
@@ -402,7 +451,8 @@ static ssize_t set_component_active(struct class_device *cdev, const char *buf, | |||
402 | return count; | 451 | return count; |
403 | } | 452 | } |
404 | 453 | ||
405 | static ssize_t get_component_locate(struct class_device *cdev, char *buf) | 454 | static ssize_t get_component_locate(struct device *cdev, |
455 | struct device_attribute *attr, char *buf) | ||
406 | { | 456 | { |
407 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); | 457 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); |
408 | struct enclosure_component *ecomp = to_enclosure_component(cdev); | 458 | struct enclosure_component *ecomp = to_enclosure_component(cdev); |
@@ -412,8 +462,9 @@ static ssize_t get_component_locate(struct class_device *cdev, char *buf) | |||
412 | return snprintf(buf, 40, "%d\n", ecomp->locate); | 462 | return snprintf(buf, 40, "%d\n", ecomp->locate); |
413 | } | 463 | } |
414 | 464 | ||
415 | static ssize_t set_component_locate(struct class_device *cdev, const char *buf, | 465 | static ssize_t set_component_locate(struct device *cdev, |
416 | size_t count) | 466 | struct device_attribute *attr, |
467 | const char *buf, size_t count) | ||
417 | { | 468 | { |
418 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); | 469 | struct enclosure_device *edev = to_enclosure_device(cdev->parent); |
419 | struct enclosure_component *ecomp = to_enclosure_component(cdev); | 470 | struct enclosure_component *ecomp = to_enclosure_component(cdev); |
@@ -424,7 +475,8 @@ static ssize_t set_component_locate(struct class_device *cdev, const char *buf, | |||
424 | return count; | 475 | return count; |
425 | } | 476 | } |
426 | 477 | ||
427 | static ssize_t get_component_type(struct class_device *cdev, char *buf) | 478 | static ssize_t get_component_type(struct device *cdev, |
479 | struct device_attribute *attr, char *buf) | ||
428 | { | 480 | { |
429 | struct enclosure_component *ecomp = to_enclosure_component(cdev); | 481 | struct enclosure_component *ecomp = to_enclosure_component(cdev); |
430 | 482 | ||
@@ -432,24 +484,32 @@ static ssize_t get_component_type(struct class_device *cdev, char *buf) | |||
432 | } | 484 | } |
433 | 485 | ||
434 | 486 | ||
435 | static struct class_device_attribute enclosure_component_attrs[] = { | 487 | static DEVICE_ATTR(fault, S_IRUGO | S_IWUSR, get_component_fault, |
436 | __ATTR(fault, S_IRUGO | S_IWUSR, get_component_fault, | 488 | set_component_fault); |
437 | set_component_fault), | 489 | static DEVICE_ATTR(status, S_IRUGO | S_IWUSR, get_component_status, |
438 | __ATTR(status, S_IRUGO | S_IWUSR, get_component_status, | 490 | set_component_status); |
439 | set_component_status), | 491 | static DEVICE_ATTR(active, S_IRUGO | S_IWUSR, get_component_active, |
440 | __ATTR(active, S_IRUGO | S_IWUSR, get_component_active, | 492 | set_component_active); |
441 | set_component_active), | 493 | static DEVICE_ATTR(locate, S_IRUGO | S_IWUSR, get_component_locate, |
442 | __ATTR(locate, S_IRUGO | S_IWUSR, get_component_locate, | 494 | set_component_locate); |
443 | set_component_locate), | 495 | static DEVICE_ATTR(type, S_IRUGO, get_component_type, NULL); |
444 | __ATTR(type, S_IRUGO, get_component_type, NULL), | 496 | |
445 | __ATTR_NULL | 497 | static struct attribute *enclosure_component_attrs[] = { |
498 | &dev_attr_fault.attr, | ||
499 | &dev_attr_status.attr, | ||
500 | &dev_attr_active.attr, | ||
501 | &dev_attr_locate.attr, | ||
502 | &dev_attr_type.attr, | ||
503 | NULL | ||
446 | }; | 504 | }; |
447 | 505 | ||
448 | static struct class enclosure_component_class = { | 506 | static struct attribute_group enclosure_group = { |
449 | .name = "enclosure_component", | 507 | .attrs = enclosure_component_attrs, |
450 | .owner = THIS_MODULE, | 508 | }; |
451 | .class_dev_attrs = enclosure_component_attrs, | 509 | |
452 | .release = enclosure_component_release, | 510 | static struct attribute_group *enclosure_groups[] = { |
511 | &enclosure_group, | ||
512 | NULL | ||
453 | }; | 513 | }; |
454 | 514 | ||
455 | static int __init enclosure_init(void) | 515 | static int __init enclosure_init(void) |
@@ -459,20 +519,12 @@ static int __init enclosure_init(void) | |||
459 | err = class_register(&enclosure_class); | 519 | err = class_register(&enclosure_class); |
460 | if (err) | 520 | if (err) |
461 | return err; | 521 | return err; |
462 | err = class_register(&enclosure_component_class); | ||
463 | if (err) | ||
464 | goto err_out; | ||
465 | 522 | ||
466 | return 0; | 523 | return 0; |
467 | err_out: | ||
468 | class_unregister(&enclosure_class); | ||
469 | |||
470 | return err; | ||
471 | } | 524 | } |
472 | 525 | ||
473 | static void __exit enclosure_exit(void) | 526 | static void __exit enclosure_exit(void) |
474 | { | 527 | { |
475 | class_unregister(&enclosure_component_class); | ||
476 | class_unregister(&enclosure_class); | 528 | class_unregister(&enclosure_class); |
477 | } | 529 | } |
478 | 530 | ||
diff --git a/drivers/misc/intel_menlow.c b/drivers/misc/intel_menlow.c index de16e88eb8d3..5bb8816c9126 100644 --- a/drivers/misc/intel_menlow.c +++ b/drivers/misc/intel_menlow.c | |||
@@ -175,28 +175,18 @@ static int intel_menlow_memory_add(struct acpi_device *device) | |||
175 | goto end; | 175 | goto end; |
176 | } | 176 | } |
177 | 177 | ||
178 | if (cdev) { | 178 | acpi_driver_data(device) = cdev; |
179 | acpi_driver_data(device) = cdev; | 179 | result = sysfs_create_link(&device->dev.kobj, |
180 | result = sysfs_create_link(&device->dev.kobj, | 180 | &cdev->device.kobj, "thermal_cooling"); |
181 | &cdev->device.kobj, "thermal_cooling"); | 181 | if (result) |
182 | if (result) | 182 | printk(KERN_ERR PREFIX "Create sysfs link\n"); |
183 | goto unregister; | 183 | result = sysfs_create_link(&cdev->device.kobj, |
184 | 184 | &device->dev.kobj, "device"); | |
185 | result = sysfs_create_link(&cdev->device.kobj, | 185 | if (result) |
186 | &device->dev.kobj, "device"); | 186 | printk(KERN_ERR PREFIX "Create sysfs link\n"); |
187 | if (result) { | ||
188 | sysfs_remove_link(&device->dev.kobj, "thermal_cooling"); | ||
189 | goto unregister; | ||
190 | } | ||
191 | } | ||
192 | 187 | ||
193 | end: | 188 | end: |
194 | return result; | 189 | return result; |
195 | |||
196 | unregister: | ||
197 | thermal_cooling_device_unregister(cdev); | ||
198 | return result; | ||
199 | |||
200 | } | 190 | } |
201 | 191 | ||
202 | static int intel_menlow_memory_remove(struct acpi_device *device, int type) | 192 | static int intel_menlow_memory_remove(struct acpi_device *device, int type) |
@@ -213,7 +203,7 @@ static int intel_menlow_memory_remove(struct acpi_device *device, int type) | |||
213 | return 0; | 203 | return 0; |
214 | } | 204 | } |
215 | 205 | ||
216 | const static struct acpi_device_id intel_menlow_memory_ids[] = { | 206 | static const struct acpi_device_id intel_menlow_memory_ids[] = { |
217 | {"INT0002", 0}, | 207 | {"INT0002", 0}, |
218 | {"", 0}, | 208 | {"", 0}, |
219 | }; | 209 | }; |
diff --git a/drivers/misc/kgdbts.c b/drivers/misc/kgdbts.c new file mode 100644 index 000000000000..6d6286c4eeac --- /dev/null +++ b/drivers/misc/kgdbts.c | |||
@@ -0,0 +1,1090 @@ | |||
1 | /* | ||
2 | * kgdbts is a test suite for kgdb for the sole purpose of validating | ||
3 | * that key pieces of the kgdb internals are working properly such as | ||
4 | * HW/SW breakpoints, single stepping, and NMI. | ||
5 | * | ||
6 | * Created by: Jason Wessel <jason.wessel@windriver.com> | ||
7 | * | ||
8 | * Copyright (c) 2008 Wind River Systems, Inc. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of the GNU General Public License version 2 as | ||
12 | * published by the Free Software Foundation. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, | ||
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | ||
17 | * See the GNU General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
22 | */ | ||
23 | /* Information about the kgdb test suite. | ||
24 | * ------------------------------------- | ||
25 | * | ||
26 | * The kgdb test suite is designed as a KGDB I/O module which | ||
27 | * simulates the communications that a debugger would have with kgdb. | ||
28 | * The tests are broken up in to a line by line and referenced here as | ||
29 | * a "get" which is kgdb requesting input and "put" which is kgdb | ||
30 | * sending a response. | ||
31 | * | ||
32 | * The kgdb suite can be invoked from the kernel command line | ||
33 | * arguments system or executed dynamically at run time. The test | ||
34 | * suite uses the variable "kgdbts" to obtain the information about | ||
35 | * which tests to run and to configure the verbosity level. The | ||
36 | * following are the various characters you can use with the kgdbts= | ||
37 | * line: | ||
38 | * | ||
39 | * When using the "kgdbts=" you only choose one of the following core | ||
40 | * test types: | ||
41 | * A = Run all the core tests silently | ||
42 | * V1 = Run all the core tests with minimal output | ||
43 | * V2 = Run all the core tests in debug mode | ||
44 | * | ||
45 | * You can also specify optional tests: | ||
46 | * N## = Go to sleep with interrupts of for ## seconds | ||
47 | * to test the HW NMI watchdog | ||
48 | * F## = Break at do_fork for ## iterations | ||
49 | * S## = Break at sys_open for ## iterations | ||
50 | * | ||
51 | * NOTE: that the do_fork and sys_open tests are mutually exclusive. | ||
52 | * | ||
53 | * To invoke the kgdb test suite from boot you use a kernel start | ||
54 | * argument as follows: | ||
55 | * kgdbts=V1 kgdbwait | ||
56 | * Or if you wanted to perform the NMI test for 6 seconds and do_fork | ||
57 | * test for 100 forks, you could use: | ||
58 | * kgdbts=V1N6F100 kgdbwait | ||
59 | * | ||
60 | * The test suite can also be invoked at run time with: | ||
61 | * echo kgdbts=V1N6F100 > /sys/module/kgdbts/parameters/kgdbts | ||
62 | * Or as another example: | ||
63 | * echo kgdbts=V2 > /sys/module/kgdbts/parameters/kgdbts | ||
64 | * | ||
65 | * When developing a new kgdb arch specific implementation or | ||
66 | * using these tests for the purpose of regression testing, | ||
67 | * several invocations are required. | ||
68 | * | ||
69 | * 1) Boot with the test suite enabled by using the kernel arguments | ||
70 | * "kgdbts=V1F100 kgdbwait" | ||
71 | * ## If kgdb arch specific implementation has NMI use | ||
72 | * "kgdbts=V1N6F100 | ||
73 | * | ||
74 | * 2) After the system boot run the basic test. | ||
75 | * echo kgdbts=V1 > /sys/module/kgdbts/parameters/kgdbts | ||
76 | * | ||
77 | * 3) Run the concurrency tests. It is best to use n+1 | ||
78 | * while loops where n is the number of cpus you have | ||
79 | * in your system. The example below uses only two | ||
80 | * loops. | ||
81 | * | ||
82 | * ## This tests break points on sys_open | ||
83 | * while [ 1 ] ; do find / > /dev/null 2>&1 ; done & | ||
84 | * while [ 1 ] ; do find / > /dev/null 2>&1 ; done & | ||
85 | * echo kgdbts=V1S10000 > /sys/module/kgdbts/parameters/kgdbts | ||
86 | * fg # and hit control-c | ||
87 | * fg # and hit control-c | ||
88 | * ## This tests break points on do_fork | ||
89 | * while [ 1 ] ; do date > /dev/null ; done & | ||
90 | * while [ 1 ] ; do date > /dev/null ; done & | ||
91 | * echo kgdbts=V1F1000 > /sys/module/kgdbts/parameters/kgdbts | ||
92 | * fg # and hit control-c | ||
93 | * | ||
94 | */ | ||
95 | |||
96 | #include <linux/kernel.h> | ||
97 | #include <linux/kgdb.h> | ||
98 | #include <linux/ctype.h> | ||
99 | #include <linux/uaccess.h> | ||
100 | #include <linux/syscalls.h> | ||
101 | #include <linux/nmi.h> | ||
102 | #include <linux/delay.h> | ||
103 | #include <linux/kthread.h> | ||
104 | #include <linux/delay.h> | ||
105 | |||
106 | #define v1printk(a...) do { \ | ||
107 | if (verbose) \ | ||
108 | printk(KERN_INFO a); \ | ||
109 | } while (0) | ||
110 | #define v2printk(a...) do { \ | ||
111 | if (verbose > 1) \ | ||
112 | printk(KERN_INFO a); \ | ||
113 | touch_nmi_watchdog(); \ | ||
114 | } while (0) | ||
115 | #define eprintk(a...) do { \ | ||
116 | printk(KERN_ERR a); \ | ||
117 | WARN_ON(1); \ | ||
118 | } while (0) | ||
119 | #define MAX_CONFIG_LEN 40 | ||
120 | |||
121 | static const char hexchars[] = "0123456789abcdef"; | ||
122 | static struct kgdb_io kgdbts_io_ops; | ||
123 | static char get_buf[BUFMAX]; | ||
124 | static int get_buf_cnt; | ||
125 | static char put_buf[BUFMAX]; | ||
126 | static int put_buf_cnt; | ||
127 | static char scratch_buf[BUFMAX]; | ||
128 | static int verbose; | ||
129 | static int repeat_test; | ||
130 | static int test_complete; | ||
131 | static int send_ack; | ||
132 | static int final_ack; | ||
133 | static int hw_break_val; | ||
134 | static int hw_break_val2; | ||
135 | #if defined(CONFIG_ARM) || defined(CONFIG_MIPS) | ||
136 | static int arch_needs_sstep_emulation = 1; | ||
137 | #else | ||
138 | static int arch_needs_sstep_emulation; | ||
139 | #endif | ||
140 | static unsigned long sstep_addr; | ||
141 | static int sstep_state; | ||
142 | |||
143 | /* Storage for the registers, in GDB format. */ | ||
144 | static unsigned long kgdbts_gdb_regs[(NUMREGBYTES + | ||
145 | sizeof(unsigned long) - 1) / | ||
146 | sizeof(unsigned long)]; | ||
147 | static struct pt_regs kgdbts_regs; | ||
148 | |||
149 | /* -1 = init not run yet, 0 = unconfigured, 1 = configured. */ | ||
150 | static int configured = -1; | ||
151 | |||
152 | #ifdef CONFIG_KGDB_TESTS_BOOT_STRING | ||
153 | static char config[MAX_CONFIG_LEN] = CONFIG_KGDB_TESTS_BOOT_STRING; | ||
154 | #else | ||
155 | static char config[MAX_CONFIG_LEN]; | ||
156 | #endif | ||
157 | static struct kparam_string kps = { | ||
158 | .string = config, | ||
159 | .maxlen = MAX_CONFIG_LEN, | ||
160 | }; | ||
161 | |||
162 | static void fill_get_buf(char *buf); | ||
163 | |||
164 | struct test_struct { | ||
165 | char *get; | ||
166 | char *put; | ||
167 | void (*get_handler)(char *); | ||
168 | int (*put_handler)(char *, char *); | ||
169 | }; | ||
170 | |||
171 | struct test_state { | ||
172 | char *name; | ||
173 | struct test_struct *tst; | ||
174 | int idx; | ||
175 | int (*run_test) (int, int); | ||
176 | int (*validate_put) (char *); | ||
177 | }; | ||
178 | |||
179 | static struct test_state ts; | ||
180 | |||
181 | static int kgdbts_unreg_thread(void *ptr) | ||
182 | { | ||
183 | /* Wait until the tests are complete and then ungresiter the I/O | ||
184 | * driver. | ||
185 | */ | ||
186 | while (!final_ack) | ||
187 | msleep_interruptible(1500); | ||
188 | |||
189 | if (configured) | ||
190 | kgdb_unregister_io_module(&kgdbts_io_ops); | ||
191 | configured = 0; | ||
192 | |||
193 | return 0; | ||
194 | } | ||
195 | |||
196 | /* This is noinline such that it can be used for a single location to | ||
197 | * place a breakpoint | ||
198 | */ | ||
199 | static noinline void kgdbts_break_test(void) | ||
200 | { | ||
201 | v2printk("kgdbts: breakpoint complete\n"); | ||
202 | } | ||
203 | |||
204 | /* Lookup symbol info in the kernel */ | ||
205 | static unsigned long lookup_addr(char *arg) | ||
206 | { | ||
207 | unsigned long addr = 0; | ||
208 | |||
209 | if (!strcmp(arg, "kgdbts_break_test")) | ||
210 | addr = (unsigned long)kgdbts_break_test; | ||
211 | else if (!strcmp(arg, "sys_open")) | ||
212 | addr = (unsigned long)sys_open; | ||
213 | else if (!strcmp(arg, "do_fork")) | ||
214 | addr = (unsigned long)do_fork; | ||
215 | else if (!strcmp(arg, "hw_break_val")) | ||
216 | addr = (unsigned long)&hw_break_val; | ||
217 | return addr; | ||
218 | } | ||
219 | |||
220 | static void break_helper(char *bp_type, char *arg, unsigned long vaddr) | ||
221 | { | ||
222 | unsigned long addr; | ||
223 | |||
224 | if (arg) | ||
225 | addr = lookup_addr(arg); | ||
226 | else | ||
227 | addr = vaddr; | ||
228 | |||
229 | sprintf(scratch_buf, "%s,%lx,%i", bp_type, addr, | ||
230 | BREAK_INSTR_SIZE); | ||
231 | fill_get_buf(scratch_buf); | ||
232 | } | ||
233 | |||
234 | static void sw_break(char *arg) | ||
235 | { | ||
236 | break_helper("Z0", arg, 0); | ||
237 | } | ||
238 | |||
239 | static void sw_rem_break(char *arg) | ||
240 | { | ||
241 | break_helper("z0", arg, 0); | ||
242 | } | ||
243 | |||
244 | static void hw_break(char *arg) | ||
245 | { | ||
246 | break_helper("Z1", arg, 0); | ||
247 | } | ||
248 | |||
249 | static void hw_rem_break(char *arg) | ||
250 | { | ||
251 | break_helper("z1", arg, 0); | ||
252 | } | ||
253 | |||
254 | static void hw_write_break(char *arg) | ||
255 | { | ||
256 | break_helper("Z2", arg, 0); | ||
257 | } | ||
258 | |||
259 | static void hw_rem_write_break(char *arg) | ||
260 | { | ||
261 | break_helper("z2", arg, 0); | ||
262 | } | ||
263 | |||
264 | static void hw_access_break(char *arg) | ||
265 | { | ||
266 | break_helper("Z4", arg, 0); | ||
267 | } | ||
268 | |||
269 | static void hw_rem_access_break(char *arg) | ||
270 | { | ||
271 | break_helper("z4", arg, 0); | ||
272 | } | ||
273 | |||
274 | static void hw_break_val_access(void) | ||
275 | { | ||
276 | hw_break_val2 = hw_break_val; | ||
277 | } | ||
278 | |||
279 | static void hw_break_val_write(void) | ||
280 | { | ||
281 | hw_break_val++; | ||
282 | } | ||
283 | |||
284 | static int check_and_rewind_pc(char *put_str, char *arg) | ||
285 | { | ||
286 | unsigned long addr = lookup_addr(arg); | ||
287 | int offset = 0; | ||
288 | |||
289 | kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, | ||
290 | NUMREGBYTES); | ||
291 | gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); | ||
292 | v2printk("Stopped at IP: %lx\n", instruction_pointer(&kgdbts_regs)); | ||
293 | #ifdef CONFIG_X86 | ||
294 | /* On x86 a breakpoint stop requires it to be decremented */ | ||
295 | if (addr + 1 == kgdbts_regs.ip) | ||
296 | offset = -1; | ||
297 | #endif | ||
298 | if (strcmp(arg, "silent") && | ||
299 | instruction_pointer(&kgdbts_regs) + offset != addr) { | ||
300 | eprintk("kgdbts: BP mismatch %lx expected %lx\n", | ||
301 | instruction_pointer(&kgdbts_regs) + offset, addr); | ||
302 | return 1; | ||
303 | } | ||
304 | #ifdef CONFIG_X86 | ||
305 | /* On x86 adjust the instruction pointer if needed */ | ||
306 | kgdbts_regs.ip += offset; | ||
307 | #endif | ||
308 | return 0; | ||
309 | } | ||
310 | |||
311 | static int check_single_step(char *put_str, char *arg) | ||
312 | { | ||
313 | unsigned long addr = lookup_addr(arg); | ||
314 | /* | ||
315 | * From an arch indepent point of view the instruction pointer | ||
316 | * should be on a different instruction | ||
317 | */ | ||
318 | kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, | ||
319 | NUMREGBYTES); | ||
320 | gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); | ||
321 | v2printk("Singlestep stopped at IP: %lx\n", | ||
322 | instruction_pointer(&kgdbts_regs)); | ||
323 | if (instruction_pointer(&kgdbts_regs) == addr) { | ||
324 | eprintk("kgdbts: SingleStep failed at %lx\n", | ||
325 | instruction_pointer(&kgdbts_regs)); | ||
326 | return 1; | ||
327 | } | ||
328 | |||
329 | return 0; | ||
330 | } | ||
331 | |||
332 | static void write_regs(char *arg) | ||
333 | { | ||
334 | memset(scratch_buf, 0, sizeof(scratch_buf)); | ||
335 | scratch_buf[0] = 'G'; | ||
336 | pt_regs_to_gdb_regs(kgdbts_gdb_regs, &kgdbts_regs); | ||
337 | kgdb_mem2hex((char *)kgdbts_gdb_regs, &scratch_buf[1], NUMREGBYTES); | ||
338 | fill_get_buf(scratch_buf); | ||
339 | } | ||
340 | |||
341 | static void skip_back_repeat_test(char *arg) | ||
342 | { | ||
343 | int go_back = simple_strtol(arg, NULL, 10); | ||
344 | |||
345 | repeat_test--; | ||
346 | if (repeat_test <= 0) | ||
347 | ts.idx++; | ||
348 | else | ||
349 | ts.idx -= go_back; | ||
350 | fill_get_buf(ts.tst[ts.idx].get); | ||
351 | } | ||
352 | |||
353 | static int got_break(char *put_str, char *arg) | ||
354 | { | ||
355 | test_complete = 1; | ||
356 | if (!strncmp(put_str+1, arg, 2)) { | ||
357 | if (!strncmp(arg, "T0", 2)) | ||
358 | test_complete = 2; | ||
359 | return 0; | ||
360 | } | ||
361 | return 1; | ||
362 | } | ||
363 | |||
364 | static void emul_sstep_get(char *arg) | ||
365 | { | ||
366 | if (!arch_needs_sstep_emulation) { | ||
367 | fill_get_buf(arg); | ||
368 | return; | ||
369 | } | ||
370 | switch (sstep_state) { | ||
371 | case 0: | ||
372 | v2printk("Emulate single step\n"); | ||
373 | /* Start by looking at the current PC */ | ||
374 | fill_get_buf("g"); | ||
375 | break; | ||
376 | case 1: | ||
377 | /* set breakpoint */ | ||
378 | break_helper("Z0", 0, sstep_addr); | ||
379 | break; | ||
380 | case 2: | ||
381 | /* Continue */ | ||
382 | fill_get_buf("c"); | ||
383 | break; | ||
384 | case 3: | ||
385 | /* Clear breakpoint */ | ||
386 | break_helper("z0", 0, sstep_addr); | ||
387 | break; | ||
388 | default: | ||
389 | eprintk("kgdbts: ERROR failed sstep get emulation\n"); | ||
390 | } | ||
391 | sstep_state++; | ||
392 | } | ||
393 | |||
394 | static int emul_sstep_put(char *put_str, char *arg) | ||
395 | { | ||
396 | if (!arch_needs_sstep_emulation) { | ||
397 | if (!strncmp(put_str+1, arg, 2)) | ||
398 | return 0; | ||
399 | return 1; | ||
400 | } | ||
401 | switch (sstep_state) { | ||
402 | case 1: | ||
403 | /* validate the "g" packet to get the IP */ | ||
404 | kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, | ||
405 | NUMREGBYTES); | ||
406 | gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); | ||
407 | v2printk("Stopped at IP: %lx\n", | ||
408 | instruction_pointer(&kgdbts_regs)); | ||
409 | /* Want to stop at IP + break instruction size by default */ | ||
410 | sstep_addr = instruction_pointer(&kgdbts_regs) + | ||
411 | BREAK_INSTR_SIZE; | ||
412 | break; | ||
413 | case 2: | ||
414 | if (strncmp(put_str, "$OK", 3)) { | ||
415 | eprintk("kgdbts: failed sstep break set\n"); | ||
416 | return 1; | ||
417 | } | ||
418 | break; | ||
419 | case 3: | ||
420 | if (strncmp(put_str, "$T0", 3)) { | ||
421 | eprintk("kgdbts: failed continue sstep\n"); | ||
422 | return 1; | ||
423 | } | ||
424 | break; | ||
425 | case 4: | ||
426 | if (strncmp(put_str, "$OK", 3)) { | ||
427 | eprintk("kgdbts: failed sstep break unset\n"); | ||
428 | return 1; | ||
429 | } | ||
430 | /* Single step is complete so continue on! */ | ||
431 | sstep_state = 0; | ||
432 | return 0; | ||
433 | default: | ||
434 | eprintk("kgdbts: ERROR failed sstep put emulation\n"); | ||
435 | } | ||
436 | |||
437 | /* Continue on the same test line until emulation is complete */ | ||
438 | ts.idx--; | ||
439 | return 0; | ||
440 | } | ||
441 | |||
442 | static int final_ack_set(char *put_str, char *arg) | ||
443 | { | ||
444 | if (strncmp(put_str+1, arg, 2)) | ||
445 | return 1; | ||
446 | final_ack = 1; | ||
447 | return 0; | ||
448 | } | ||
449 | /* | ||
450 | * Test to plant a breakpoint and detach, which should clear out the | ||
451 | * breakpoint and restore the original instruction. | ||
452 | */ | ||
453 | static struct test_struct plant_and_detach_test[] = { | ||
454 | { "?", "S0*" }, /* Clear break points */ | ||
455 | { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ | ||
456 | { "D", "OK" }, /* Detach */ | ||
457 | { "", "" }, | ||
458 | }; | ||
459 | |||
460 | /* | ||
461 | * Simple test to write in a software breakpoint, check for the | ||
462 | * correct stop location and detach. | ||
463 | */ | ||
464 | static struct test_struct sw_breakpoint_test[] = { | ||
465 | { "?", "S0*" }, /* Clear break points */ | ||
466 | { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ | ||
467 | { "c", "T0*", }, /* Continue */ | ||
468 | { "g", "kgdbts_break_test", 0, check_and_rewind_pc }, | ||
469 | { "write", "OK", write_regs }, | ||
470 | { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */ | ||
471 | { "D", "OK" }, /* Detach */ | ||
472 | { "D", "OK", 0, got_break }, /* If the test worked we made it here */ | ||
473 | { "", "" }, | ||
474 | }; | ||
475 | |||
476 | /* | ||
477 | * Test a known bad memory read location to test the fault handler and | ||
478 | * read bytes 1-8 at the bad address | ||
479 | */ | ||
480 | static struct test_struct bad_read_test[] = { | ||
481 | { "?", "S0*" }, /* Clear break points */ | ||
482 | { "m0,1", "E*" }, /* read 1 byte at address 1 */ | ||
483 | { "m0,2", "E*" }, /* read 1 byte at address 2 */ | ||
484 | { "m0,3", "E*" }, /* read 1 byte at address 3 */ | ||
485 | { "m0,4", "E*" }, /* read 1 byte at address 4 */ | ||
486 | { "m0,5", "E*" }, /* read 1 byte at address 5 */ | ||
487 | { "m0,6", "E*" }, /* read 1 byte at address 6 */ | ||
488 | { "m0,7", "E*" }, /* read 1 byte at address 7 */ | ||
489 | { "m0,8", "E*" }, /* read 1 byte at address 8 */ | ||
490 | { "D", "OK" }, /* Detach which removes all breakpoints and continues */ | ||
491 | { "", "" }, | ||
492 | }; | ||
493 | |||
494 | /* | ||
495 | * Test for hitting a breakpoint, remove it, single step, plant it | ||
496 | * again and detach. | ||
497 | */ | ||
498 | static struct test_struct singlestep_break_test[] = { | ||
499 | { "?", "S0*" }, /* Clear break points */ | ||
500 | { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ | ||
501 | { "c", "T0*", }, /* Continue */ | ||
502 | { "g", "kgdbts_break_test", 0, check_and_rewind_pc }, | ||
503 | { "write", "OK", write_regs }, /* Write registers */ | ||
504 | { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */ | ||
505 | { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ | ||
506 | { "g", "kgdbts_break_test", 0, check_single_step }, | ||
507 | { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ | ||
508 | { "c", "T0*", }, /* Continue */ | ||
509 | { "g", "kgdbts_break_test", 0, check_and_rewind_pc }, | ||
510 | { "write", "OK", write_regs }, /* Write registers */ | ||
511 | { "D", "OK" }, /* Remove all breakpoints and continues */ | ||
512 | { "", "" }, | ||
513 | }; | ||
514 | |||
515 | /* | ||
516 | * Test for hitting a breakpoint at do_fork for what ever the number | ||
517 | * of iterations required by the variable repeat_test. | ||
518 | */ | ||
519 | static struct test_struct do_fork_test[] = { | ||
520 | { "?", "S0*" }, /* Clear break points */ | ||
521 | { "do_fork", "OK", sw_break, }, /* set sw breakpoint */ | ||
522 | { "c", "T0*", }, /* Continue */ | ||
523 | { "g", "do_fork", 0, check_and_rewind_pc }, /* check location */ | ||
524 | { "write", "OK", write_regs }, /* Write registers */ | ||
525 | { "do_fork", "OK", sw_rem_break }, /*remove breakpoint */ | ||
526 | { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ | ||
527 | { "g", "do_fork", 0, check_single_step }, | ||
528 | { "do_fork", "OK", sw_break, }, /* set sw breakpoint */ | ||
529 | { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */ | ||
530 | { "D", "OK", 0, final_ack_set }, /* detach and unregister I/O */ | ||
531 | { "", "" }, | ||
532 | }; | ||
533 | |||
534 | /* Test for hitting a breakpoint at sys_open for what ever the number | ||
535 | * of iterations required by the variable repeat_test. | ||
536 | */ | ||
537 | static struct test_struct sys_open_test[] = { | ||
538 | { "?", "S0*" }, /* Clear break points */ | ||
539 | { "sys_open", "OK", sw_break, }, /* set sw breakpoint */ | ||
540 | { "c", "T0*", }, /* Continue */ | ||
541 | { "g", "sys_open", 0, check_and_rewind_pc }, /* check location */ | ||
542 | { "write", "OK", write_regs }, /* Write registers */ | ||
543 | { "sys_open", "OK", sw_rem_break }, /*remove breakpoint */ | ||
544 | { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ | ||
545 | { "g", "sys_open", 0, check_single_step }, | ||
546 | { "sys_open", "OK", sw_break, }, /* set sw breakpoint */ | ||
547 | { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */ | ||
548 | { "D", "OK", 0, final_ack_set }, /* detach and unregister I/O */ | ||
549 | { "", "" }, | ||
550 | }; | ||
551 | |||
552 | /* | ||
553 | * Test for hitting a simple hw breakpoint | ||
554 | */ | ||
555 | static struct test_struct hw_breakpoint_test[] = { | ||
556 | { "?", "S0*" }, /* Clear break points */ | ||
557 | { "kgdbts_break_test", "OK", hw_break, }, /* set hw breakpoint */ | ||
558 | { "c", "T0*", }, /* Continue */ | ||
559 | { "g", "kgdbts_break_test", 0, check_and_rewind_pc }, | ||
560 | { "write", "OK", write_regs }, | ||
561 | { "kgdbts_break_test", "OK", hw_rem_break }, /*remove breakpoint */ | ||
562 | { "D", "OK" }, /* Detach */ | ||
563 | { "D", "OK", 0, got_break }, /* If the test worked we made it here */ | ||
564 | { "", "" }, | ||
565 | }; | ||
566 | |||
567 | /* | ||
568 | * Test for hitting a hw write breakpoint | ||
569 | */ | ||
570 | static struct test_struct hw_write_break_test[] = { | ||
571 | { "?", "S0*" }, /* Clear break points */ | ||
572 | { "hw_break_val", "OK", hw_write_break, }, /* set hw breakpoint */ | ||
573 | { "c", "T0*", 0, got_break }, /* Continue */ | ||
574 | { "g", "silent", 0, check_and_rewind_pc }, | ||
575 | { "write", "OK", write_regs }, | ||
576 | { "hw_break_val", "OK", hw_rem_write_break }, /*remove breakpoint */ | ||
577 | { "D", "OK" }, /* Detach */ | ||
578 | { "D", "OK", 0, got_break }, /* If the test worked we made it here */ | ||
579 | { "", "" }, | ||
580 | }; | ||
581 | |||
582 | /* | ||
583 | * Test for hitting a hw access breakpoint | ||
584 | */ | ||
585 | static struct test_struct hw_access_break_test[] = { | ||
586 | { "?", "S0*" }, /* Clear break points */ | ||
587 | { "hw_break_val", "OK", hw_access_break, }, /* set hw breakpoint */ | ||
588 | { "c", "T0*", 0, got_break }, /* Continue */ | ||
589 | { "g", "silent", 0, check_and_rewind_pc }, | ||
590 | { "write", "OK", write_regs }, | ||
591 | { "hw_break_val", "OK", hw_rem_access_break }, /*remove breakpoint */ | ||
592 | { "D", "OK" }, /* Detach */ | ||
593 | { "D", "OK", 0, got_break }, /* If the test worked we made it here */ | ||
594 | { "", "" }, | ||
595 | }; | ||
596 | |||
597 | /* | ||
598 | * Test for hitting a hw access breakpoint | ||
599 | */ | ||
600 | static struct test_struct nmi_sleep_test[] = { | ||
601 | { "?", "S0*" }, /* Clear break points */ | ||
602 | { "c", "T0*", 0, got_break }, /* Continue */ | ||
603 | { "D", "OK" }, /* Detach */ | ||
604 | { "D", "OK", 0, got_break }, /* If the test worked we made it here */ | ||
605 | { "", "" }, | ||
606 | }; | ||
607 | |||
608 | static void fill_get_buf(char *buf) | ||
609 | { | ||
610 | unsigned char checksum = 0; | ||
611 | int count = 0; | ||
612 | char ch; | ||
613 | |||
614 | strcpy(get_buf, "$"); | ||
615 | strcat(get_buf, buf); | ||
616 | while ((ch = buf[count])) { | ||
617 | checksum += ch; | ||
618 | count++; | ||
619 | } | ||
620 | strcat(get_buf, "#"); | ||
621 | get_buf[count + 2] = hexchars[checksum >> 4]; | ||
622 | get_buf[count + 3] = hexchars[checksum & 0xf]; | ||
623 | get_buf[count + 4] = '\0'; | ||
624 | v2printk("get%i: %s\n", ts.idx, get_buf); | ||
625 | } | ||
626 | |||
627 | static int validate_simple_test(char *put_str) | ||
628 | { | ||
629 | char *chk_str; | ||
630 | |||
631 | if (ts.tst[ts.idx].put_handler) | ||
632 | return ts.tst[ts.idx].put_handler(put_str, | ||
633 | ts.tst[ts.idx].put); | ||
634 | |||
635 | chk_str = ts.tst[ts.idx].put; | ||
636 | if (*put_str == '$') | ||
637 | put_str++; | ||
638 | |||
639 | while (*chk_str != '\0' && *put_str != '\0') { | ||
640 | /* If someone does a * to match the rest of the string, allow | ||
641 | * it, or stop if the recieved string is complete. | ||
642 | */ | ||
643 | if (*put_str == '#' || *chk_str == '*') | ||
644 | return 0; | ||
645 | if (*put_str != *chk_str) | ||
646 | return 1; | ||
647 | |||
648 | chk_str++; | ||
649 | put_str++; | ||
650 | } | ||
651 | if (*chk_str == '\0' && (*put_str == '\0' || *put_str == '#')) | ||
652 | return 0; | ||
653 | |||
654 | return 1; | ||
655 | } | ||
656 | |||
657 | static int run_simple_test(int is_get_char, int chr) | ||
658 | { | ||
659 | int ret = 0; | ||
660 | if (is_get_char) { | ||
661 | /* Send an ACK on the get if a prior put completed and set the | ||
662 | * send ack variable | ||
663 | */ | ||
664 | if (send_ack) { | ||
665 | send_ack = 0; | ||
666 | return '+'; | ||
667 | } | ||
668 | /* On the first get char, fill the transmit buffer and then | ||
669 | * take from the get_string. | ||
670 | */ | ||
671 | if (get_buf_cnt == 0) { | ||
672 | if (ts.tst[ts.idx].get_handler) | ||
673 | ts.tst[ts.idx].get_handler(ts.tst[ts.idx].get); | ||
674 | else | ||
675 | fill_get_buf(ts.tst[ts.idx].get); | ||
676 | } | ||
677 | |||
678 | if (get_buf[get_buf_cnt] == '\0') { | ||
679 | eprintk("kgdbts: ERROR GET: EOB on '%s' at %i\n", | ||
680 | ts.name, ts.idx); | ||
681 | get_buf_cnt = 0; | ||
682 | fill_get_buf("D"); | ||
683 | } | ||
684 | ret = get_buf[get_buf_cnt]; | ||
685 | get_buf_cnt++; | ||
686 | return ret; | ||
687 | } | ||
688 | |||
689 | /* This callback is a put char which is when kgdb sends data to | ||
690 | * this I/O module. | ||
691 | */ | ||
692 | if (ts.tst[ts.idx].get[0] == '\0' && | ||
693 | ts.tst[ts.idx].put[0] == '\0') { | ||
694 | eprintk("kgdbts: ERROR: beyond end of test on" | ||
695 | " '%s' line %i\n", ts.name, ts.idx); | ||
696 | return 0; | ||
697 | } | ||
698 | |||
699 | if (put_buf_cnt >= BUFMAX) { | ||
700 | eprintk("kgdbts: ERROR: put buffer overflow on" | ||
701 | " '%s' line %i\n", ts.name, ts.idx); | ||
702 | put_buf_cnt = 0; | ||
703 | return 0; | ||
704 | } | ||
705 | /* Ignore everything until the first valid packet start '$' */ | ||
706 | if (put_buf_cnt == 0 && chr != '$') | ||
707 | return 0; | ||
708 | |||
709 | put_buf[put_buf_cnt] = chr; | ||
710 | put_buf_cnt++; | ||
711 | |||
712 | /* End of packet == #XX so look for the '#' */ | ||
713 | if (put_buf_cnt > 3 && put_buf[put_buf_cnt - 3] == '#') { | ||
714 | put_buf[put_buf_cnt] = '\0'; | ||
715 | v2printk("put%i: %s\n", ts.idx, put_buf); | ||
716 | /* Trigger check here */ | ||
717 | if (ts.validate_put && ts.validate_put(put_buf)) { | ||
718 | eprintk("kgdbts: ERROR PUT: end of test " | ||
719 | "buffer on '%s' line %i expected %s got %s\n", | ||
720 | ts.name, ts.idx, ts.tst[ts.idx].put, put_buf); | ||
721 | } | ||
722 | ts.idx++; | ||
723 | put_buf_cnt = 0; | ||
724 | get_buf_cnt = 0; | ||
725 | send_ack = 1; | ||
726 | } | ||
727 | return 0; | ||
728 | } | ||
729 | |||
730 | static void init_simple_test(void) | ||
731 | { | ||
732 | memset(&ts, 0, sizeof(ts)); | ||
733 | ts.run_test = run_simple_test; | ||
734 | ts.validate_put = validate_simple_test; | ||
735 | } | ||
736 | |||
737 | static void run_plant_and_detach_test(int is_early) | ||
738 | { | ||
739 | char before[BREAK_INSTR_SIZE]; | ||
740 | char after[BREAK_INSTR_SIZE]; | ||
741 | |||
742 | probe_kernel_read(before, (char *)kgdbts_break_test, | ||
743 | BREAK_INSTR_SIZE); | ||
744 | init_simple_test(); | ||
745 | ts.tst = plant_and_detach_test; | ||
746 | ts.name = "plant_and_detach_test"; | ||
747 | /* Activate test with initial breakpoint */ | ||
748 | if (!is_early) | ||
749 | kgdb_breakpoint(); | ||
750 | probe_kernel_read(after, (char *)kgdbts_break_test, | ||
751 | BREAK_INSTR_SIZE); | ||
752 | if (memcmp(before, after, BREAK_INSTR_SIZE)) { | ||
753 | printk(KERN_CRIT "kgdbts: ERROR kgdb corrupted memory\n"); | ||
754 | panic("kgdb memory corruption"); | ||
755 | } | ||
756 | |||
757 | /* complete the detach test */ | ||
758 | if (!is_early) | ||
759 | kgdbts_break_test(); | ||
760 | } | ||
761 | |||
762 | static void run_breakpoint_test(int is_hw_breakpoint) | ||
763 | { | ||
764 | test_complete = 0; | ||
765 | init_simple_test(); | ||
766 | if (is_hw_breakpoint) { | ||
767 | ts.tst = hw_breakpoint_test; | ||
768 | ts.name = "hw_breakpoint_test"; | ||
769 | } else { | ||
770 | ts.tst = sw_breakpoint_test; | ||
771 | ts.name = "sw_breakpoint_test"; | ||
772 | } | ||
773 | /* Activate test with initial breakpoint */ | ||
774 | kgdb_breakpoint(); | ||
775 | /* run code with the break point in it */ | ||
776 | kgdbts_break_test(); | ||
777 | kgdb_breakpoint(); | ||
778 | |||
779 | if (test_complete) | ||
780 | return; | ||
781 | |||
782 | eprintk("kgdbts: ERROR %s test failed\n", ts.name); | ||
783 | } | ||
784 | |||
785 | static void run_hw_break_test(int is_write_test) | ||
786 | { | ||
787 | test_complete = 0; | ||
788 | init_simple_test(); | ||
789 | if (is_write_test) { | ||
790 | ts.tst = hw_write_break_test; | ||
791 | ts.name = "hw_write_break_test"; | ||
792 | } else { | ||
793 | ts.tst = hw_access_break_test; | ||
794 | ts.name = "hw_access_break_test"; | ||
795 | } | ||
796 | /* Activate test with initial breakpoint */ | ||
797 | kgdb_breakpoint(); | ||
798 | hw_break_val_access(); | ||
799 | if (is_write_test) { | ||
800 | if (test_complete == 2) | ||
801 | eprintk("kgdbts: ERROR %s broke on access\n", | ||
802 | ts.name); | ||
803 | hw_break_val_write(); | ||
804 | } | ||
805 | kgdb_breakpoint(); | ||
806 | |||
807 | if (test_complete == 1) | ||
808 | return; | ||
809 | |||
810 | eprintk("kgdbts: ERROR %s test failed\n", ts.name); | ||
811 | } | ||
812 | |||
813 | static void run_nmi_sleep_test(int nmi_sleep) | ||
814 | { | ||
815 | unsigned long flags; | ||
816 | |||
817 | init_simple_test(); | ||
818 | ts.tst = nmi_sleep_test; | ||
819 | ts.name = "nmi_sleep_test"; | ||
820 | /* Activate test with initial breakpoint */ | ||
821 | kgdb_breakpoint(); | ||
822 | local_irq_save(flags); | ||
823 | mdelay(nmi_sleep*1000); | ||
824 | touch_nmi_watchdog(); | ||
825 | local_irq_restore(flags); | ||
826 | if (test_complete != 2) | ||
827 | eprintk("kgdbts: ERROR nmi_test did not hit nmi\n"); | ||
828 | kgdb_breakpoint(); | ||
829 | if (test_complete == 1) | ||
830 | return; | ||
831 | |||
832 | eprintk("kgdbts: ERROR %s test failed\n", ts.name); | ||
833 | } | ||
834 | |||
835 | static void run_bad_read_test(void) | ||
836 | { | ||
837 | init_simple_test(); | ||
838 | ts.tst = bad_read_test; | ||
839 | ts.name = "bad_read_test"; | ||
840 | /* Activate test with initial breakpoint */ | ||
841 | kgdb_breakpoint(); | ||
842 | } | ||
843 | |||
844 | static void run_do_fork_test(void) | ||
845 | { | ||
846 | init_simple_test(); | ||
847 | ts.tst = do_fork_test; | ||
848 | ts.name = "do_fork_test"; | ||
849 | /* Activate test with initial breakpoint */ | ||
850 | kgdb_breakpoint(); | ||
851 | } | ||
852 | |||
853 | static void run_sys_open_test(void) | ||
854 | { | ||
855 | init_simple_test(); | ||
856 | ts.tst = sys_open_test; | ||
857 | ts.name = "sys_open_test"; | ||
858 | /* Activate test with initial breakpoint */ | ||
859 | kgdb_breakpoint(); | ||
860 | } | ||
861 | |||
862 | static void run_singlestep_break_test(void) | ||
863 | { | ||
864 | init_simple_test(); | ||
865 | ts.tst = singlestep_break_test; | ||
866 | ts.name = "singlestep_breakpoint_test"; | ||
867 | /* Activate test with initial breakpoint */ | ||
868 | kgdb_breakpoint(); | ||
869 | kgdbts_break_test(); | ||
870 | kgdbts_break_test(); | ||
871 | } | ||
872 | |||
873 | static void kgdbts_run_tests(void) | ||
874 | { | ||
875 | char *ptr; | ||
876 | int fork_test = 0; | ||
877 | int sys_open_test = 0; | ||
878 | int nmi_sleep = 0; | ||
879 | |||
880 | ptr = strstr(config, "F"); | ||
881 | if (ptr) | ||
882 | fork_test = simple_strtol(ptr+1, NULL, 10); | ||
883 | ptr = strstr(config, "S"); | ||
884 | if (ptr) | ||
885 | sys_open_test = simple_strtol(ptr+1, NULL, 10); | ||
886 | ptr = strstr(config, "N"); | ||
887 | if (ptr) | ||
888 | nmi_sleep = simple_strtol(ptr+1, NULL, 10); | ||
889 | |||
890 | /* required internal KGDB tests */ | ||
891 | v1printk("kgdbts:RUN plant and detach test\n"); | ||
892 | run_plant_and_detach_test(0); | ||
893 | v1printk("kgdbts:RUN sw breakpoint test\n"); | ||
894 | run_breakpoint_test(0); | ||
895 | v1printk("kgdbts:RUN bad memory access test\n"); | ||
896 | run_bad_read_test(); | ||
897 | v1printk("kgdbts:RUN singlestep breakpoint test\n"); | ||
898 | run_singlestep_break_test(); | ||
899 | |||
900 | /* ===Optional tests=== */ | ||
901 | |||
902 | /* All HW break point tests */ | ||
903 | if (arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT) { | ||
904 | v1printk("kgdbts:RUN hw breakpoint test\n"); | ||
905 | run_breakpoint_test(1); | ||
906 | v1printk("kgdbts:RUN hw write breakpoint test\n"); | ||
907 | run_hw_break_test(1); | ||
908 | v1printk("kgdbts:RUN access write breakpoint test\n"); | ||
909 | run_hw_break_test(0); | ||
910 | } | ||
911 | |||
912 | if (nmi_sleep) { | ||
913 | v1printk("kgdbts:RUN NMI sleep %i seconds test\n", nmi_sleep); | ||
914 | run_nmi_sleep_test(nmi_sleep); | ||
915 | } | ||
916 | |||
917 | /* If the do_fork test is run it will be the last test that is | ||
918 | * executed because a kernel thread will be spawned at the very | ||
919 | * end to unregister the debug hooks. | ||
920 | */ | ||
921 | if (fork_test) { | ||
922 | repeat_test = fork_test; | ||
923 | printk(KERN_INFO "kgdbts:RUN do_fork for %i breakpoints\n", | ||
924 | repeat_test); | ||
925 | kthread_run(kgdbts_unreg_thread, 0, "kgdbts_unreg"); | ||
926 | run_do_fork_test(); | ||
927 | return; | ||
928 | } | ||
929 | |||
930 | /* If the sys_open test is run it will be the last test that is | ||
931 | * executed because a kernel thread will be spawned at the very | ||
932 | * end to unregister the debug hooks. | ||
933 | */ | ||
934 | if (sys_open_test) { | ||
935 | repeat_test = sys_open_test; | ||
936 | printk(KERN_INFO "kgdbts:RUN sys_open for %i breakpoints\n", | ||
937 | repeat_test); | ||
938 | kthread_run(kgdbts_unreg_thread, 0, "kgdbts_unreg"); | ||
939 | run_sys_open_test(); | ||
940 | return; | ||
941 | } | ||
942 | /* Shutdown and unregister */ | ||
943 | kgdb_unregister_io_module(&kgdbts_io_ops); | ||
944 | configured = 0; | ||
945 | } | ||
946 | |||
947 | static int kgdbts_option_setup(char *opt) | ||
948 | { | ||
949 | if (strlen(opt) > MAX_CONFIG_LEN) { | ||
950 | printk(KERN_ERR "kgdbts: config string too long\n"); | ||
951 | return -ENOSPC; | ||
952 | } | ||
953 | strcpy(config, opt); | ||
954 | |||
955 | verbose = 0; | ||
956 | if (strstr(config, "V1")) | ||
957 | verbose = 1; | ||
958 | if (strstr(config, "V2")) | ||
959 | verbose = 2; | ||
960 | |||
961 | return 0; | ||
962 | } | ||
963 | |||
964 | __setup("kgdbts=", kgdbts_option_setup); | ||
965 | |||
966 | static int configure_kgdbts(void) | ||
967 | { | ||
968 | int err = 0; | ||
969 | |||
970 | if (!strlen(config) || isspace(config[0])) | ||
971 | goto noconfig; | ||
972 | err = kgdbts_option_setup(config); | ||
973 | if (err) | ||
974 | goto noconfig; | ||
975 | |||
976 | final_ack = 0; | ||
977 | run_plant_and_detach_test(1); | ||
978 | |||
979 | err = kgdb_register_io_module(&kgdbts_io_ops); | ||
980 | if (err) { | ||
981 | configured = 0; | ||
982 | return err; | ||
983 | } | ||
984 | configured = 1; | ||
985 | kgdbts_run_tests(); | ||
986 | |||
987 | return err; | ||
988 | |||
989 | noconfig: | ||
990 | config[0] = 0; | ||
991 | configured = 0; | ||
992 | |||
993 | return err; | ||
994 | } | ||
995 | |||
996 | static int __init init_kgdbts(void) | ||
997 | { | ||
998 | /* Already configured? */ | ||
999 | if (configured == 1) | ||
1000 | return 0; | ||
1001 | |||
1002 | return configure_kgdbts(); | ||
1003 | } | ||
1004 | |||
1005 | static void cleanup_kgdbts(void) | ||
1006 | { | ||
1007 | if (configured == 1) | ||
1008 | kgdb_unregister_io_module(&kgdbts_io_ops); | ||
1009 | } | ||
1010 | |||
1011 | static int kgdbts_get_char(void) | ||
1012 | { | ||
1013 | int val = 0; | ||
1014 | |||
1015 | if (ts.run_test) | ||
1016 | val = ts.run_test(1, 0); | ||
1017 | |||
1018 | return val; | ||
1019 | } | ||
1020 | |||
1021 | static void kgdbts_put_char(u8 chr) | ||
1022 | { | ||
1023 | if (ts.run_test) | ||
1024 | ts.run_test(0, chr); | ||
1025 | } | ||
1026 | |||
1027 | static int param_set_kgdbts_var(const char *kmessage, struct kernel_param *kp) | ||
1028 | { | ||
1029 | int len = strlen(kmessage); | ||
1030 | |||
1031 | if (len >= MAX_CONFIG_LEN) { | ||
1032 | printk(KERN_ERR "kgdbts: config string too long\n"); | ||
1033 | return -ENOSPC; | ||
1034 | } | ||
1035 | |||
1036 | /* Only copy in the string if the init function has not run yet */ | ||
1037 | if (configured < 0) { | ||
1038 | strcpy(config, kmessage); | ||
1039 | return 0; | ||
1040 | } | ||
1041 | |||
1042 | if (kgdb_connected) { | ||
1043 | printk(KERN_ERR | ||
1044 | "kgdbts: Cannot reconfigure while KGDB is connected.\n"); | ||
1045 | |||
1046 | return -EBUSY; | ||
1047 | } | ||
1048 | |||
1049 | strcpy(config, kmessage); | ||
1050 | /* Chop out \n char as a result of echo */ | ||
1051 | if (config[len - 1] == '\n') | ||
1052 | config[len - 1] = '\0'; | ||
1053 | |||
1054 | if (configured == 1) | ||
1055 | cleanup_kgdbts(); | ||
1056 | |||
1057 | /* Go and configure with the new params. */ | ||
1058 | return configure_kgdbts(); | ||
1059 | } | ||
1060 | |||
1061 | static void kgdbts_pre_exp_handler(void) | ||
1062 | { | ||
1063 | /* Increment the module count when the debugger is active */ | ||
1064 | if (!kgdb_connected) | ||
1065 | try_module_get(THIS_MODULE); | ||
1066 | } | ||
1067 | |||
1068 | static void kgdbts_post_exp_handler(void) | ||
1069 | { | ||
1070 | /* decrement the module count when the debugger detaches */ | ||
1071 | if (!kgdb_connected) | ||
1072 | module_put(THIS_MODULE); | ||
1073 | } | ||
1074 | |||
1075 | static struct kgdb_io kgdbts_io_ops = { | ||
1076 | .name = "kgdbts", | ||
1077 | .read_char = kgdbts_get_char, | ||
1078 | .write_char = kgdbts_put_char, | ||
1079 | .pre_exception = kgdbts_pre_exp_handler, | ||
1080 | .post_exception = kgdbts_post_exp_handler, | ||
1081 | }; | ||
1082 | |||
1083 | module_init(init_kgdbts); | ||
1084 | module_exit(cleanup_kgdbts); | ||
1085 | module_param_call(kgdbts, param_set_kgdbts_var, param_get_string, &kps, 0644); | ||
1086 | MODULE_PARM_DESC(kgdbts, "<A|V1|V2>[F#|S#][N#]"); | ||
1087 | MODULE_DESCRIPTION("KGDB Test Suite"); | ||
1088 | MODULE_LICENSE("GPL"); | ||
1089 | MODULE_AUTHOR("Wind River Systems, Inc."); | ||
1090 | |||
diff --git a/drivers/misc/sgi-xp/Makefile b/drivers/misc/sgi-xp/Makefile new file mode 100644 index 000000000000..b6e40a7958ce --- /dev/null +++ b/drivers/misc/sgi-xp/Makefile | |||
@@ -0,0 +1,11 @@ | |||
1 | # | ||
2 | # Makefile for SGI's XP devices. | ||
3 | # | ||
4 | |||
5 | obj-$(CONFIG_SGI_XP) += xp.o | ||
6 | xp-y := xp_main.o xp_nofault.o | ||
7 | |||
8 | obj-$(CONFIG_SGI_XP) += xpc.o | ||
9 | xpc-y := xpc_main.o xpc_channel.o xpc_partition.o | ||
10 | |||
11 | obj-$(CONFIG_SGI_XP) += xpnet.o | ||
diff --git a/drivers/misc/sgi-xp/xp.h b/drivers/misc/sgi-xp/xp.h new file mode 100644 index 000000000000..5515234be86a --- /dev/null +++ b/drivers/misc/sgi-xp/xp.h | |||
@@ -0,0 +1,463 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 2004-2008 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * External Cross Partition (XP) structures and defines. | ||
11 | */ | ||
12 | |||
13 | #ifndef _DRIVERS_MISC_SGIXP_XP_H | ||
14 | #define _DRIVERS_MISC_SGIXP_XP_H | ||
15 | |||
16 | #include <linux/cache.h> | ||
17 | #include <linux/hardirq.h> | ||
18 | #include <linux/mutex.h> | ||
19 | #include <asm/sn/types.h> | ||
20 | #include <asm/sn/bte.h> | ||
21 | |||
22 | #ifdef USE_DBUG_ON | ||
23 | #define DBUG_ON(condition) BUG_ON(condition) | ||
24 | #else | ||
25 | #define DBUG_ON(condition) | ||
26 | #endif | ||
27 | |||
28 | /* | ||
29 | * Define the maximum number of logically defined partitions the system | ||
30 | * can support. It is constrained by the maximum number of hardware | ||
31 | * partitionable regions. The term 'region' in this context refers to the | ||
32 | * minimum number of nodes that can comprise an access protection grouping. | ||
33 | * The access protection is in regards to memory, IPI and IOI. | ||
34 | * | ||
35 | * The maximum number of hardware partitionable regions is equal to the | ||
36 | * maximum number of nodes in the entire system divided by the minimum number | ||
37 | * of nodes that comprise an access protection grouping. | ||
38 | */ | ||
39 | #define XP_MAX_PARTITIONS 64 | ||
40 | |||
41 | /* | ||
42 | * Define the number of u64s required to represent all the C-brick nasids | ||
43 | * as a bitmap. The cross-partition kernel modules deal only with | ||
44 | * C-brick nasids, thus the need for bitmaps which don't account for | ||
45 | * odd-numbered (non C-brick) nasids. | ||
46 | */ | ||
47 | #define XP_MAX_PHYSNODE_ID (MAX_NUMALINK_NODES / 2) | ||
48 | #define XP_NASID_MASK_BYTES ((XP_MAX_PHYSNODE_ID + 7) / 8) | ||
49 | #define XP_NASID_MASK_WORDS ((XP_MAX_PHYSNODE_ID + 63) / 64) | ||
50 | |||
51 | /* | ||
52 | * Wrapper for bte_copy() that should it return a failure status will retry | ||
53 | * the bte_copy() once in the hope that the failure was due to a temporary | ||
54 | * aberration (i.e., the link going down temporarily). | ||
55 | * | ||
56 | * src - physical address of the source of the transfer. | ||
57 | * vdst - virtual address of the destination of the transfer. | ||
58 | * len - number of bytes to transfer from source to destination. | ||
59 | * mode - see bte_copy() for definition. | ||
60 | * notification - see bte_copy() for definition. | ||
61 | * | ||
62 | * Note: xp_bte_copy() should never be called while holding a spinlock. | ||
63 | */ | ||
64 | static inline bte_result_t | ||
65 | xp_bte_copy(u64 src, u64 vdst, u64 len, u64 mode, void *notification) | ||
66 | { | ||
67 | bte_result_t ret; | ||
68 | u64 pdst = ia64_tpa(vdst); | ||
69 | |||
70 | /* | ||
71 | * Ensure that the physically mapped memory is contiguous. | ||
72 | * | ||
73 | * We do this by ensuring that the memory is from region 7 only. | ||
74 | * If the need should arise to use memory from one of the other | ||
75 | * regions, then modify the BUG_ON() statement to ensure that the | ||
76 | * memory from that region is always physically contiguous. | ||
77 | */ | ||
78 | BUG_ON(REGION_NUMBER(vdst) != RGN_KERNEL); | ||
79 | |||
80 | ret = bte_copy(src, pdst, len, mode, notification); | ||
81 | if ((ret != BTE_SUCCESS) && BTE_ERROR_RETRY(ret)) { | ||
82 | if (!in_interrupt()) | ||
83 | cond_resched(); | ||
84 | |||
85 | ret = bte_copy(src, pdst, len, mode, notification); | ||
86 | } | ||
87 | |||
88 | return ret; | ||
89 | } | ||
90 | |||
91 | /* | ||
92 | * XPC establishes channel connections between the local partition and any | ||
93 | * other partition that is currently up. Over these channels, kernel-level | ||
94 | * `users' can communicate with their counterparts on the other partitions. | ||
95 | * | ||
96 | * The maxinum number of channels is limited to eight. For performance reasons, | ||
97 | * the internal cross partition structures require sixteen bytes per channel, | ||
98 | * and eight allows all of this interface-shared info to fit in one cache line. | ||
99 | * | ||
100 | * XPC_NCHANNELS reflects the total number of channels currently defined. | ||
101 | * If the need for additional channels arises, one can simply increase | ||
102 | * XPC_NCHANNELS accordingly. If the day should come where that number | ||
103 | * exceeds the MAXIMUM number of channels allowed (eight), then one will need | ||
104 | * to make changes to the XPC code to allow for this. | ||
105 | */ | ||
106 | #define XPC_MEM_CHANNEL 0 /* memory channel number */ | ||
107 | #define XPC_NET_CHANNEL 1 /* network channel number */ | ||
108 | |||
109 | #define XPC_NCHANNELS 2 /* #of defined channels */ | ||
110 | #define XPC_MAX_NCHANNELS 8 /* max #of channels allowed */ | ||
111 | |||
112 | #if XPC_NCHANNELS > XPC_MAX_NCHANNELS | ||
113 | #error XPC_NCHANNELS exceeds MAXIMUM allowed. | ||
114 | #endif | ||
115 | |||
116 | /* | ||
117 | * The format of an XPC message is as follows: | ||
118 | * | ||
119 | * +-------+--------------------------------+ | ||
120 | * | flags |////////////////////////////////| | ||
121 | * +-------+--------------------------------+ | ||
122 | * | message # | | ||
123 | * +----------------------------------------+ | ||
124 | * | payload (user-defined message) | | ||
125 | * | | | ||
126 | * : | ||
127 | * | | | ||
128 | * +----------------------------------------+ | ||
129 | * | ||
130 | * The size of the payload is defined by the user via xpc_connect(). A user- | ||
131 | * defined message resides in the payload area. | ||
132 | * | ||
133 | * The user should have no dealings with the message header, but only the | ||
134 | * message's payload. When a message entry is allocated (via xpc_allocate()) | ||
135 | * a pointer to the payload area is returned and not the actual beginning of | ||
136 | * the XPC message. The user then constructs a message in the payload area | ||
137 | * and passes that pointer as an argument on xpc_send() or xpc_send_notify(). | ||
138 | * | ||
139 | * The size of a message entry (within a message queue) must be a cacheline | ||
140 | * sized multiple in order to facilitate the BTE transfer of messages from one | ||
141 | * message queue to another. A macro, XPC_MSG_SIZE(), is provided for the user | ||
142 | * that wants to fit as many msg entries as possible in a given memory size | ||
143 | * (e.g. a memory page). | ||
144 | */ | ||
145 | struct xpc_msg { | ||
146 | u8 flags; /* FOR XPC INTERNAL USE ONLY */ | ||
147 | u8 reserved[7]; /* FOR XPC INTERNAL USE ONLY */ | ||
148 | s64 number; /* FOR XPC INTERNAL USE ONLY */ | ||
149 | |||
150 | u64 payload; /* user defined portion of message */ | ||
151 | }; | ||
152 | |||
153 | #define XPC_MSG_PAYLOAD_OFFSET (u64) (&((struct xpc_msg *)0)->payload) | ||
154 | #define XPC_MSG_SIZE(_payload_size) \ | ||
155 | L1_CACHE_ALIGN(XPC_MSG_PAYLOAD_OFFSET + (_payload_size)) | ||
156 | |||
157 | /* | ||
158 | * Define the return values and values passed to user's callout functions. | ||
159 | * (It is important to add new value codes at the end just preceding | ||
160 | * xpcUnknownReason, which must have the highest numerical value.) | ||
161 | */ | ||
162 | enum xpc_retval { | ||
163 | xpcSuccess = 0, | ||
164 | |||
165 | xpcNotConnected, /* 1: channel is not connected */ | ||
166 | xpcConnected, /* 2: channel connected (opened) */ | ||
167 | xpcRETIRED1, /* 3: (formerly xpcDisconnected) */ | ||
168 | |||
169 | xpcMsgReceived, /* 4: message received */ | ||
170 | xpcMsgDelivered, /* 5: message delivered and acknowledged */ | ||
171 | |||
172 | xpcRETIRED2, /* 6: (formerly xpcTransferFailed) */ | ||
173 | |||
174 | xpcNoWait, /* 7: operation would require wait */ | ||
175 | xpcRetry, /* 8: retry operation */ | ||
176 | xpcTimeout, /* 9: timeout in xpc_allocate_msg_wait() */ | ||
177 | xpcInterrupted, /* 10: interrupted wait */ | ||
178 | |||
179 | xpcUnequalMsgSizes, /* 11: message size disparity between sides */ | ||
180 | xpcInvalidAddress, /* 12: invalid address */ | ||
181 | |||
182 | xpcNoMemory, /* 13: no memory available for XPC structures */ | ||
183 | xpcLackOfResources, /* 14: insufficient resources for operation */ | ||
184 | xpcUnregistered, /* 15: channel is not registered */ | ||
185 | xpcAlreadyRegistered, /* 16: channel is already registered */ | ||
186 | |||
187 | xpcPartitionDown, /* 17: remote partition is down */ | ||
188 | xpcNotLoaded, /* 18: XPC module is not loaded */ | ||
189 | xpcUnloading, /* 19: this side is unloading XPC module */ | ||
190 | |||
191 | xpcBadMagic, /* 20: XPC MAGIC string not found */ | ||
192 | |||
193 | xpcReactivating, /* 21: remote partition was reactivated */ | ||
194 | |||
195 | xpcUnregistering, /* 22: this side is unregistering channel */ | ||
196 | xpcOtherUnregistering, /* 23: other side is unregistering channel */ | ||
197 | |||
198 | xpcCloneKThread, /* 24: cloning kernel thread */ | ||
199 | xpcCloneKThreadFailed, /* 25: cloning kernel thread failed */ | ||
200 | |||
201 | xpcNoHeartbeat, /* 26: remote partition has no heartbeat */ | ||
202 | |||
203 | xpcPioReadError, /* 27: PIO read error */ | ||
204 | xpcPhysAddrRegFailed, /* 28: registration of phys addr range failed */ | ||
205 | |||
206 | xpcBteDirectoryError, /* 29: maps to BTEFAIL_DIR */ | ||
207 | xpcBtePoisonError, /* 30: maps to BTEFAIL_POISON */ | ||
208 | xpcBteWriteError, /* 31: maps to BTEFAIL_WERR */ | ||
209 | xpcBteAccessError, /* 32: maps to BTEFAIL_ACCESS */ | ||
210 | xpcBtePWriteError, /* 33: maps to BTEFAIL_PWERR */ | ||
211 | xpcBtePReadError, /* 34: maps to BTEFAIL_PRERR */ | ||
212 | xpcBteTimeOutError, /* 35: maps to BTEFAIL_TOUT */ | ||
213 | xpcBteXtalkError, /* 36: maps to BTEFAIL_XTERR */ | ||
214 | xpcBteNotAvailable, /* 37: maps to BTEFAIL_NOTAVAIL */ | ||
215 | xpcBteUnmappedError, /* 38: unmapped BTEFAIL_ error */ | ||
216 | |||
217 | xpcBadVersion, /* 39: bad version number */ | ||
218 | xpcVarsNotSet, /* 40: the XPC variables are not set up */ | ||
219 | xpcNoRsvdPageAddr, /* 41: unable to get rsvd page's phys addr */ | ||
220 | xpcInvalidPartid, /* 42: invalid partition ID */ | ||
221 | xpcLocalPartid, /* 43: local partition ID */ | ||
222 | |||
223 | xpcOtherGoingDown, /* 44: other side going down, reason unknown */ | ||
224 | xpcSystemGoingDown, /* 45: system is going down, reason unknown */ | ||
225 | xpcSystemHalt, /* 46: system is being halted */ | ||
226 | xpcSystemReboot, /* 47: system is being rebooted */ | ||
227 | xpcSystemPoweroff, /* 48: system is being powered off */ | ||
228 | |||
229 | xpcDisconnecting, /* 49: channel disconnecting (closing) */ | ||
230 | |||
231 | xpcOpenCloseError, /* 50: channel open/close protocol error */ | ||
232 | |||
233 | xpcDisconnected, /* 51: channel disconnected (closed) */ | ||
234 | |||
235 | xpcBteSh2Start, /* 52: BTE CRB timeout */ | ||
236 | |||
237 | /* 53: 0x1 BTE Error Response Short */ | ||
238 | xpcBteSh2RspShort = xpcBteSh2Start + BTEFAIL_SH2_RESP_SHORT, | ||
239 | |||
240 | /* 54: 0x2 BTE Error Response Long */ | ||
241 | xpcBteSh2RspLong = xpcBteSh2Start + BTEFAIL_SH2_RESP_LONG, | ||
242 | |||
243 | /* 56: 0x4 BTE Error Response DSB */ | ||
244 | xpcBteSh2RspDSB = xpcBteSh2Start + BTEFAIL_SH2_RESP_DSP, | ||
245 | |||
246 | /* 60: 0x8 BTE Error Response Access */ | ||
247 | xpcBteSh2RspAccess = xpcBteSh2Start + BTEFAIL_SH2_RESP_ACCESS, | ||
248 | |||
249 | /* 68: 0x10 BTE Error CRB timeout */ | ||
250 | xpcBteSh2CRBTO = xpcBteSh2Start + BTEFAIL_SH2_CRB_TO, | ||
251 | |||
252 | /* 84: 0x20 BTE Error NACK limit */ | ||
253 | xpcBteSh2NACKLimit = xpcBteSh2Start + BTEFAIL_SH2_NACK_LIMIT, | ||
254 | |||
255 | /* 115: BTE end */ | ||
256 | xpcBteSh2End = xpcBteSh2Start + BTEFAIL_SH2_ALL, | ||
257 | |||
258 | xpcUnknownReason /* 116: unknown reason - must be last in enum */ | ||
259 | }; | ||
260 | |||
261 | /* | ||
262 | * Define the callout function types used by XPC to update the user on | ||
263 | * connection activity and state changes (via the user function registered by | ||
264 | * xpc_connect()) and to notify them of messages received and delivered (via | ||
265 | * the user function registered by xpc_send_notify()). | ||
266 | * | ||
267 | * The two function types are xpc_channel_func and xpc_notify_func and | ||
268 | * both share the following arguments, with the exception of "data", which | ||
269 | * only xpc_channel_func has. | ||
270 | * | ||
271 | * Arguments: | ||
272 | * | ||
273 | * reason - reason code. (See following table.) | ||
274 | * partid - partition ID associated with condition. | ||
275 | * ch_number - channel # associated with condition. | ||
276 | * data - pointer to optional data. (See following table.) | ||
277 | * key - pointer to optional user-defined value provided as the "key" | ||
278 | * argument to xpc_connect() or xpc_send_notify(). | ||
279 | * | ||
280 | * In the following table the "Optional Data" column applies to callouts made | ||
281 | * to functions registered by xpc_connect(). A "NA" in that column indicates | ||
282 | * that this reason code can be passed to functions registered by | ||
283 | * xpc_send_notify() (i.e. they don't have data arguments). | ||
284 | * | ||
285 | * Also, the first three reason codes in the following table indicate | ||
286 | * success, whereas the others indicate failure. When a failure reason code | ||
287 | * is received, one can assume that the channel is not connected. | ||
288 | * | ||
289 | * | ||
290 | * Reason Code | Cause | Optional Data | ||
291 | * =====================+================================+===================== | ||
292 | * xpcConnected | connection has been established| max #of entries | ||
293 | * | to the specified partition on | allowed in message | ||
294 | * | the specified channel | queue | ||
295 | * ---------------------+--------------------------------+--------------------- | ||
296 | * xpcMsgReceived | an XPC message arrived from | address of payload | ||
297 | * | the specified partition on the | | ||
298 | * | specified channel | [the user must call | ||
299 | * | | xpc_received() when | ||
300 | * | | finished with the | ||
301 | * | | payload] | ||
302 | * ---------------------+--------------------------------+--------------------- | ||
303 | * xpcMsgDelivered | notification that the message | NA | ||
304 | * | was delivered to the intended | | ||
305 | * | recipient and that they have | | ||
306 | * | acknowledged its receipt by | | ||
307 | * | calling xpc_received() | | ||
308 | * =====================+================================+===================== | ||
309 | * xpcUnequalMsgSizes | can't connect to the specified | NULL | ||
310 | * | partition on the specified | | ||
311 | * | channel because of mismatched | | ||
312 | * | message sizes | | ||
313 | * ---------------------+--------------------------------+--------------------- | ||
314 | * xpcNoMemory | insufficient memory avaiable | NULL | ||
315 | * | to allocate message queue | | ||
316 | * ---------------------+--------------------------------+--------------------- | ||
317 | * xpcLackOfResources | lack of resources to create | NULL | ||
318 | * | the necessary kthreads to | | ||
319 | * | support the channel | | ||
320 | * ---------------------+--------------------------------+--------------------- | ||
321 | * xpcUnregistering | this side's user has | NULL or NA | ||
322 | * | unregistered by calling | | ||
323 | * | xpc_disconnect() | | ||
324 | * ---------------------+--------------------------------+--------------------- | ||
325 | * xpcOtherUnregistering| the other side's user has | NULL or NA | ||
326 | * | unregistered by calling | | ||
327 | * | xpc_disconnect() | | ||
328 | * ---------------------+--------------------------------+--------------------- | ||
329 | * xpcNoHeartbeat | the other side's XPC is no | NULL or NA | ||
330 | * | longer heartbeating | | ||
331 | * | | | ||
332 | * ---------------------+--------------------------------+--------------------- | ||
333 | * xpcUnloading | this side's XPC module is | NULL or NA | ||
334 | * | being unloaded | | ||
335 | * | | | ||
336 | * ---------------------+--------------------------------+--------------------- | ||
337 | * xpcOtherUnloading | the other side's XPC module is | NULL or NA | ||
338 | * | is being unloaded | | ||
339 | * | | | ||
340 | * ---------------------+--------------------------------+--------------------- | ||
341 | * xpcPioReadError | xp_nofault_PIOR() returned an | NULL or NA | ||
342 | * | error while sending an IPI | | ||
343 | * | | | ||
344 | * ---------------------+--------------------------------+--------------------- | ||
345 | * xpcInvalidAddress | the address either received or | NULL or NA | ||
346 | * | sent by the specified partition| | ||
347 | * | is invalid | | ||
348 | * ---------------------+--------------------------------+--------------------- | ||
349 | * xpcBteNotAvailable | attempt to pull data from the | NULL or NA | ||
350 | * xpcBtePoisonError | specified partition over the | | ||
351 | * xpcBteWriteError | specified channel via a | | ||
352 | * xpcBteAccessError | bte_copy() failed | | ||
353 | * xpcBteTimeOutError | | | ||
354 | * xpcBteXtalkError | | | ||
355 | * xpcBteDirectoryError | | | ||
356 | * xpcBteGenericError | | | ||
357 | * xpcBteUnmappedError | | | ||
358 | * ---------------------+--------------------------------+--------------------- | ||
359 | * xpcUnknownReason | the specified channel to the | NULL or NA | ||
360 | * | specified partition was | | ||
361 | * | unavailable for unknown reasons| | ||
362 | * =====================+================================+===================== | ||
363 | */ | ||
364 | |||
365 | typedef void (*xpc_channel_func) (enum xpc_retval reason, partid_t partid, | ||
366 | int ch_number, void *data, void *key); | ||
367 | |||
368 | typedef void (*xpc_notify_func) (enum xpc_retval reason, partid_t partid, | ||
369 | int ch_number, void *key); | ||
370 | |||
371 | /* | ||
372 | * The following is a registration entry. There is a global array of these, | ||
373 | * one per channel. It is used to record the connection registration made | ||
374 | * by the users of XPC. As long as a registration entry exists, for any | ||
375 | * partition that comes up, XPC will attempt to establish a connection on | ||
376 | * that channel. Notification that a connection has been made will occur via | ||
377 | * the xpc_channel_func function. | ||
378 | * | ||
379 | * The 'func' field points to the function to call when aynchronous | ||
380 | * notification is required for such events as: a connection established/lost, | ||
381 | * or an incoming message received, or an error condition encountered. A | ||
382 | * non-NULL 'func' field indicates that there is an active registration for | ||
383 | * the channel. | ||
384 | */ | ||
385 | struct xpc_registration { | ||
386 | struct mutex mutex; | ||
387 | xpc_channel_func func; /* function to call */ | ||
388 | void *key; /* pointer to user's key */ | ||
389 | u16 nentries; /* #of msg entries in local msg queue */ | ||
390 | u16 msg_size; /* message queue's message size */ | ||
391 | u32 assigned_limit; /* limit on #of assigned kthreads */ | ||
392 | u32 idle_limit; /* limit on #of idle kthreads */ | ||
393 | } ____cacheline_aligned; | ||
394 | |||
395 | #define XPC_CHANNEL_REGISTERED(_c) (xpc_registrations[_c].func != NULL) | ||
396 | |||
397 | /* the following are valid xpc_allocate() flags */ | ||
398 | #define XPC_WAIT 0 /* wait flag */ | ||
399 | #define XPC_NOWAIT 1 /* no wait flag */ | ||
400 | |||
401 | struct xpc_interface { | ||
402 | void (*connect) (int); | ||
403 | void (*disconnect) (int); | ||
404 | enum xpc_retval (*allocate) (partid_t, int, u32, void **); | ||
405 | enum xpc_retval (*send) (partid_t, int, void *); | ||
406 | enum xpc_retval (*send_notify) (partid_t, int, void *, | ||
407 | xpc_notify_func, void *); | ||
408 | void (*received) (partid_t, int, void *); | ||
409 | enum xpc_retval (*partid_to_nasids) (partid_t, void *); | ||
410 | }; | ||
411 | |||
412 | extern struct xpc_interface xpc_interface; | ||
413 | |||
414 | extern void xpc_set_interface(void (*)(int), | ||
415 | void (*)(int), | ||
416 | enum xpc_retval (*)(partid_t, int, u32, void **), | ||
417 | enum xpc_retval (*)(partid_t, int, void *), | ||
418 | enum xpc_retval (*)(partid_t, int, void *, | ||
419 | xpc_notify_func, void *), | ||
420 | void (*)(partid_t, int, void *), | ||
421 | enum xpc_retval (*)(partid_t, void *)); | ||
422 | extern void xpc_clear_interface(void); | ||
423 | |||
424 | extern enum xpc_retval xpc_connect(int, xpc_channel_func, void *, u16, | ||
425 | u16, u32, u32); | ||
426 | extern void xpc_disconnect(int); | ||
427 | |||
428 | static inline enum xpc_retval | ||
429 | xpc_allocate(partid_t partid, int ch_number, u32 flags, void **payload) | ||
430 | { | ||
431 | return xpc_interface.allocate(partid, ch_number, flags, payload); | ||
432 | } | ||
433 | |||
434 | static inline enum xpc_retval | ||
435 | xpc_send(partid_t partid, int ch_number, void *payload) | ||
436 | { | ||
437 | return xpc_interface.send(partid, ch_number, payload); | ||
438 | } | ||
439 | |||
440 | static inline enum xpc_retval | ||
441 | xpc_send_notify(partid_t partid, int ch_number, void *payload, | ||
442 | xpc_notify_func func, void *key) | ||
443 | { | ||
444 | return xpc_interface.send_notify(partid, ch_number, payload, func, key); | ||
445 | } | ||
446 | |||
447 | static inline void | ||
448 | xpc_received(partid_t partid, int ch_number, void *payload) | ||
449 | { | ||
450 | return xpc_interface.received(partid, ch_number, payload); | ||
451 | } | ||
452 | |||
453 | static inline enum xpc_retval | ||
454 | xpc_partid_to_nasids(partid_t partid, void *nasids) | ||
455 | { | ||
456 | return xpc_interface.partid_to_nasids(partid, nasids); | ||
457 | } | ||
458 | |||
459 | extern u64 xp_nofault_PIOR_target; | ||
460 | extern int xp_nofault_PIOR(void *); | ||
461 | extern int xp_error_PIOR(void); | ||
462 | |||
463 | #endif /* _DRIVERS_MISC_SGIXP_XP_H */ | ||
diff --git a/drivers/misc/sgi-xp/xp_main.c b/drivers/misc/sgi-xp/xp_main.c new file mode 100644 index 000000000000..1fbf99bae963 --- /dev/null +++ b/drivers/misc/sgi-xp/xp_main.c | |||
@@ -0,0 +1,279 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition (XP) base. | ||
11 | * | ||
12 | * XP provides a base from which its users can interact | ||
13 | * with XPC, yet not be dependent on XPC. | ||
14 | * | ||
15 | */ | ||
16 | |||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/module.h> | ||
20 | #include <linux/mutex.h> | ||
21 | #include <asm/sn/intr.h> | ||
22 | #include <asm/sn/sn_sal.h> | ||
23 | #include "xp.h" | ||
24 | |||
25 | /* | ||
26 | * The export of xp_nofault_PIOR needs to happen here since it is defined | ||
27 | * in drivers/misc/sgi-xp/xp_nofault.S. The target of the nofault read is | ||
28 | * defined here. | ||
29 | */ | ||
30 | EXPORT_SYMBOL_GPL(xp_nofault_PIOR); | ||
31 | |||
32 | u64 xp_nofault_PIOR_target; | ||
33 | EXPORT_SYMBOL_GPL(xp_nofault_PIOR_target); | ||
34 | |||
35 | /* | ||
36 | * xpc_registrations[] keeps track of xpc_connect()'s done by the kernel-level | ||
37 | * users of XPC. | ||
38 | */ | ||
39 | struct xpc_registration xpc_registrations[XPC_NCHANNELS]; | ||
40 | EXPORT_SYMBOL_GPL(xpc_registrations); | ||
41 | |||
42 | /* | ||
43 | * Initialize the XPC interface to indicate that XPC isn't loaded. | ||
44 | */ | ||
45 | static enum xpc_retval | ||
46 | xpc_notloaded(void) | ||
47 | { | ||
48 | return xpcNotLoaded; | ||
49 | } | ||
50 | |||
51 | struct xpc_interface xpc_interface = { | ||
52 | (void (*)(int))xpc_notloaded, | ||
53 | (void (*)(int))xpc_notloaded, | ||
54 | (enum xpc_retval(*)(partid_t, int, u32, void **))xpc_notloaded, | ||
55 | (enum xpc_retval(*)(partid_t, int, void *))xpc_notloaded, | ||
56 | (enum xpc_retval(*)(partid_t, int, void *, xpc_notify_func, void *)) | ||
57 | xpc_notloaded, | ||
58 | (void (*)(partid_t, int, void *))xpc_notloaded, | ||
59 | (enum xpc_retval(*)(partid_t, void *))xpc_notloaded | ||
60 | }; | ||
61 | EXPORT_SYMBOL_GPL(xpc_interface); | ||
62 | |||
63 | /* | ||
64 | * XPC calls this when it (the XPC module) has been loaded. | ||
65 | */ | ||
66 | void | ||
67 | xpc_set_interface(void (*connect) (int), | ||
68 | void (*disconnect) (int), | ||
69 | enum xpc_retval (*allocate) (partid_t, int, u32, void **), | ||
70 | enum xpc_retval (*send) (partid_t, int, void *), | ||
71 | enum xpc_retval (*send_notify) (partid_t, int, void *, | ||
72 | xpc_notify_func, void *), | ||
73 | void (*received) (partid_t, int, void *), | ||
74 | enum xpc_retval (*partid_to_nasids) (partid_t, void *)) | ||
75 | { | ||
76 | xpc_interface.connect = connect; | ||
77 | xpc_interface.disconnect = disconnect; | ||
78 | xpc_interface.allocate = allocate; | ||
79 | xpc_interface.send = send; | ||
80 | xpc_interface.send_notify = send_notify; | ||
81 | xpc_interface.received = received; | ||
82 | xpc_interface.partid_to_nasids = partid_to_nasids; | ||
83 | } | ||
84 | EXPORT_SYMBOL_GPL(xpc_set_interface); | ||
85 | |||
86 | /* | ||
87 | * XPC calls this when it (the XPC module) is being unloaded. | ||
88 | */ | ||
89 | void | ||
90 | xpc_clear_interface(void) | ||
91 | { | ||
92 | xpc_interface.connect = (void (*)(int))xpc_notloaded; | ||
93 | xpc_interface.disconnect = (void (*)(int))xpc_notloaded; | ||
94 | xpc_interface.allocate = (enum xpc_retval(*)(partid_t, int, u32, | ||
95 | void **))xpc_notloaded; | ||
96 | xpc_interface.send = (enum xpc_retval(*)(partid_t, int, void *)) | ||
97 | xpc_notloaded; | ||
98 | xpc_interface.send_notify = (enum xpc_retval(*)(partid_t, int, void *, | ||
99 | xpc_notify_func, | ||
100 | void *))xpc_notloaded; | ||
101 | xpc_interface.received = (void (*)(partid_t, int, void *)) | ||
102 | xpc_notloaded; | ||
103 | xpc_interface.partid_to_nasids = (enum xpc_retval(*)(partid_t, void *)) | ||
104 | xpc_notloaded; | ||
105 | } | ||
106 | EXPORT_SYMBOL_GPL(xpc_clear_interface); | ||
107 | |||
108 | /* | ||
109 | * Register for automatic establishment of a channel connection whenever | ||
110 | * a partition comes up. | ||
111 | * | ||
112 | * Arguments: | ||
113 | * | ||
114 | * ch_number - channel # to register for connection. | ||
115 | * func - function to call for asynchronous notification of channel | ||
116 | * state changes (i.e., connection, disconnection, error) and | ||
117 | * the arrival of incoming messages. | ||
118 | * key - pointer to optional user-defined value that gets passed back | ||
119 | * to the user on any callouts made to func. | ||
120 | * payload_size - size in bytes of the XPC message's payload area which | ||
121 | * contains a user-defined message. The user should make | ||
122 | * this large enough to hold their largest message. | ||
123 | * nentries - max #of XPC message entries a message queue can contain. | ||
124 | * The actual number, which is determined when a connection | ||
125 | * is established and may be less then requested, will be | ||
126 | * passed to the user via the xpcConnected callout. | ||
127 | * assigned_limit - max number of kthreads allowed to be processing | ||
128 | * messages (per connection) at any given instant. | ||
129 | * idle_limit - max number of kthreads allowed to be idle at any given | ||
130 | * instant. | ||
131 | */ | ||
132 | enum xpc_retval | ||
133 | xpc_connect(int ch_number, xpc_channel_func func, void *key, u16 payload_size, | ||
134 | u16 nentries, u32 assigned_limit, u32 idle_limit) | ||
135 | { | ||
136 | struct xpc_registration *registration; | ||
137 | |||
138 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
139 | DBUG_ON(payload_size == 0 || nentries == 0); | ||
140 | DBUG_ON(func == NULL); | ||
141 | DBUG_ON(assigned_limit == 0 || idle_limit > assigned_limit); | ||
142 | |||
143 | registration = &xpc_registrations[ch_number]; | ||
144 | |||
145 | if (mutex_lock_interruptible(®istration->mutex) != 0) | ||
146 | return xpcInterrupted; | ||
147 | |||
148 | /* if XPC_CHANNEL_REGISTERED(ch_number) */ | ||
149 | if (registration->func != NULL) { | ||
150 | mutex_unlock(®istration->mutex); | ||
151 | return xpcAlreadyRegistered; | ||
152 | } | ||
153 | |||
154 | /* register the channel for connection */ | ||
155 | registration->msg_size = XPC_MSG_SIZE(payload_size); | ||
156 | registration->nentries = nentries; | ||
157 | registration->assigned_limit = assigned_limit; | ||
158 | registration->idle_limit = idle_limit; | ||
159 | registration->key = key; | ||
160 | registration->func = func; | ||
161 | |||
162 | mutex_unlock(®istration->mutex); | ||
163 | |||
164 | xpc_interface.connect(ch_number); | ||
165 | |||
166 | return xpcSuccess; | ||
167 | } | ||
168 | EXPORT_SYMBOL_GPL(xpc_connect); | ||
169 | |||
170 | /* | ||
171 | * Remove the registration for automatic connection of the specified channel | ||
172 | * when a partition comes up. | ||
173 | * | ||
174 | * Before returning this xpc_disconnect() will wait for all connections on the | ||
175 | * specified channel have been closed/torndown. So the caller can be assured | ||
176 | * that they will not be receiving any more callouts from XPC to their | ||
177 | * function registered via xpc_connect(). | ||
178 | * | ||
179 | * Arguments: | ||
180 | * | ||
181 | * ch_number - channel # to unregister. | ||
182 | */ | ||
183 | void | ||
184 | xpc_disconnect(int ch_number) | ||
185 | { | ||
186 | struct xpc_registration *registration; | ||
187 | |||
188 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
189 | |||
190 | registration = &xpc_registrations[ch_number]; | ||
191 | |||
192 | /* | ||
193 | * We've decided not to make this a down_interruptible(), since we | ||
194 | * figured XPC's users will just turn around and call xpc_disconnect() | ||
195 | * again anyways, so we might as well wait, if need be. | ||
196 | */ | ||
197 | mutex_lock(®istration->mutex); | ||
198 | |||
199 | /* if !XPC_CHANNEL_REGISTERED(ch_number) */ | ||
200 | if (registration->func == NULL) { | ||
201 | mutex_unlock(®istration->mutex); | ||
202 | return; | ||
203 | } | ||
204 | |||
205 | /* remove the connection registration for the specified channel */ | ||
206 | registration->func = NULL; | ||
207 | registration->key = NULL; | ||
208 | registration->nentries = 0; | ||
209 | registration->msg_size = 0; | ||
210 | registration->assigned_limit = 0; | ||
211 | registration->idle_limit = 0; | ||
212 | |||
213 | xpc_interface.disconnect(ch_number); | ||
214 | |||
215 | mutex_unlock(®istration->mutex); | ||
216 | |||
217 | return; | ||
218 | } | ||
219 | EXPORT_SYMBOL_GPL(xpc_disconnect); | ||
220 | |||
221 | int __init | ||
222 | xp_init(void) | ||
223 | { | ||
224 | int ret, ch_number; | ||
225 | u64 func_addr = *(u64 *)xp_nofault_PIOR; | ||
226 | u64 err_func_addr = *(u64 *)xp_error_PIOR; | ||
227 | |||
228 | if (!ia64_platform_is("sn2")) | ||
229 | return -ENODEV; | ||
230 | |||
231 | /* | ||
232 | * Register a nofault code region which performs a cross-partition | ||
233 | * PIO read. If the PIO read times out, the MCA handler will consume | ||
234 | * the error and return to a kernel-provided instruction to indicate | ||
235 | * an error. This PIO read exists because it is guaranteed to timeout | ||
236 | * if the destination is down (AMO operations do not timeout on at | ||
237 | * least some CPUs on Shubs <= v1.2, which unfortunately we have to | ||
238 | * work around). | ||
239 | */ | ||
240 | ret = sn_register_nofault_code(func_addr, err_func_addr, err_func_addr, | ||
241 | 1, 1); | ||
242 | if (ret != 0) { | ||
243 | printk(KERN_ERR "XP: can't register nofault code, error=%d\n", | ||
244 | ret); | ||
245 | } | ||
246 | /* | ||
247 | * Setup the nofault PIO read target. (There is no special reason why | ||
248 | * SH_IPI_ACCESS was selected.) | ||
249 | */ | ||
250 | if (is_shub2()) | ||
251 | xp_nofault_PIOR_target = SH2_IPI_ACCESS0; | ||
252 | else | ||
253 | xp_nofault_PIOR_target = SH1_IPI_ACCESS; | ||
254 | |||
255 | /* initialize the connection registration mutex */ | ||
256 | for (ch_number = 0; ch_number < XPC_NCHANNELS; ch_number++) | ||
257 | mutex_init(&xpc_registrations[ch_number].mutex); | ||
258 | |||
259 | return 0; | ||
260 | } | ||
261 | |||
262 | module_init(xp_init); | ||
263 | |||
264 | void __exit | ||
265 | xp_exit(void) | ||
266 | { | ||
267 | u64 func_addr = *(u64 *)xp_nofault_PIOR; | ||
268 | u64 err_func_addr = *(u64 *)xp_error_PIOR; | ||
269 | |||
270 | /* unregister the PIO read nofault code region */ | ||
271 | (void)sn_register_nofault_code(func_addr, err_func_addr, | ||
272 | err_func_addr, 1, 0); | ||
273 | } | ||
274 | |||
275 | module_exit(xp_exit); | ||
276 | |||
277 | MODULE_AUTHOR("Silicon Graphics, Inc."); | ||
278 | MODULE_DESCRIPTION("Cross Partition (XP) base"); | ||
279 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/misc/sgi-xp/xp_nofault.S b/drivers/misc/sgi-xp/xp_nofault.S new file mode 100644 index 000000000000..e38d43319429 --- /dev/null +++ b/drivers/misc/sgi-xp/xp_nofault.S | |||
@@ -0,0 +1,35 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * The xp_nofault_PIOR function takes a pointer to a remote PIO register | ||
11 | * and attempts to load and consume a value from it. This function | ||
12 | * will be registered as a nofault code block. In the event that the | ||
13 | * PIO read fails, the MCA handler will force the error to look | ||
14 | * corrected and vector to the xp_error_PIOR which will return an error. | ||
15 | * | ||
16 | * The definition of "consumption" and the time it takes for an MCA | ||
17 | * to surface is processor implementation specific. This code | ||
18 | * is sufficient on Itanium through the Montvale processor family. | ||
19 | * It may need to be adjusted for future processor implementations. | ||
20 | * | ||
21 | * extern int xp_nofault_PIOR(void *remote_register); | ||
22 | */ | ||
23 | |||
24 | .global xp_nofault_PIOR | ||
25 | xp_nofault_PIOR: | ||
26 | mov r8=r0 // Stage a success return value | ||
27 | ld8.acq r9=[r32];; // PIO Read the specified register | ||
28 | adds r9=1,r9;; // Add to force consumption | ||
29 | srlz.i;; // Allow time for MCA to surface | ||
30 | br.ret.sptk.many b0;; // Return success | ||
31 | |||
32 | .global xp_error_PIOR | ||
33 | xp_error_PIOR: | ||
34 | mov r8=1 // Return value of 1 | ||
35 | br.ret.sptk.many b0;; // Return failure | ||
diff --git a/drivers/misc/sgi-xp/xpc.h b/drivers/misc/sgi-xp/xpc.h new file mode 100644 index 000000000000..9eb6d4a3269c --- /dev/null +++ b/drivers/misc/sgi-xp/xpc.h | |||
@@ -0,0 +1,1187 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition Communication (XPC) structures and macros. | ||
11 | */ | ||
12 | |||
13 | #ifndef _DRIVERS_MISC_SGIXP_XPC_H | ||
14 | #define _DRIVERS_MISC_SGIXP_XPC_H | ||
15 | |||
16 | #include <linux/interrupt.h> | ||
17 | #include <linux/sysctl.h> | ||
18 | #include <linux/device.h> | ||
19 | #include <linux/mutex.h> | ||
20 | #include <linux/completion.h> | ||
21 | #include <asm/pgtable.h> | ||
22 | #include <asm/processor.h> | ||
23 | #include <asm/sn/bte.h> | ||
24 | #include <asm/sn/clksupport.h> | ||
25 | #include <asm/sn/addrs.h> | ||
26 | #include <asm/sn/mspec.h> | ||
27 | #include <asm/sn/shub_mmr.h> | ||
28 | #include "xp.h" | ||
29 | |||
30 | /* | ||
31 | * XPC Version numbers consist of a major and minor number. XPC can always | ||
32 | * talk to versions with same major #, and never talk to versions with a | ||
33 | * different major #. | ||
34 | */ | ||
35 | #define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf)) | ||
36 | #define XPC_VERSION_MAJOR(_v) ((_v) >> 4) | ||
37 | #define XPC_VERSION_MINOR(_v) ((_v) & 0xf) | ||
38 | |||
39 | /* | ||
40 | * The next macros define word or bit representations for given | ||
41 | * C-brick nasid in either the SAL provided bit array representing | ||
42 | * nasids in the partition/machine or the AMO_t array used for | ||
43 | * inter-partition initiation communications. | ||
44 | * | ||
45 | * For SN2 machines, C-Bricks are alway even numbered NASIDs. As | ||
46 | * such, some space will be saved by insisting that nasid information | ||
47 | * passed from SAL always be packed for C-Bricks and the | ||
48 | * cross-partition interrupts use the same packing scheme. | ||
49 | */ | ||
50 | #define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2) | ||
51 | #define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1)) | ||
52 | #define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \ | ||
53 | (1UL << XPC_NASID_B_INDEX(_n))) | ||
54 | #define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2) | ||
55 | |||
56 | #define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */ | ||
57 | #define XPC_HB_CHECK_DEFAULT_INTERVAL 20 /* check HB every x secs */ | ||
58 | |||
59 | /* define the process name of HB checker and the CPU it is pinned to */ | ||
60 | #define XPC_HB_CHECK_THREAD_NAME "xpc_hb" | ||
61 | #define XPC_HB_CHECK_CPU 0 | ||
62 | |||
63 | /* define the process name of the discovery thread */ | ||
64 | #define XPC_DISCOVERY_THREAD_NAME "xpc_discovery" | ||
65 | |||
66 | /* | ||
67 | * the reserved page | ||
68 | * | ||
69 | * SAL reserves one page of memory per partition for XPC. Though a full page | ||
70 | * in length (16384 bytes), its starting address is not page aligned, but it | ||
71 | * is cacheline aligned. The reserved page consists of the following: | ||
72 | * | ||
73 | * reserved page header | ||
74 | * | ||
75 | * The first cacheline of the reserved page contains the header | ||
76 | * (struct xpc_rsvd_page). Before SAL initialization has completed, | ||
77 | * SAL has set up the following fields of the reserved page header: | ||
78 | * SAL_signature, SAL_version, partid, and nasids_size. The other | ||
79 | * fields are set up by XPC. (xpc_rsvd_page points to the local | ||
80 | * partition's reserved page.) | ||
81 | * | ||
82 | * part_nasids mask | ||
83 | * mach_nasids mask | ||
84 | * | ||
85 | * SAL also sets up two bitmaps (or masks), one that reflects the actual | ||
86 | * nasids in this partition (part_nasids), and the other that reflects | ||
87 | * the actual nasids in the entire machine (mach_nasids). We're only | ||
88 | * interested in the even numbered nasids (which contain the processors | ||
89 | * and/or memory), so we only need half as many bits to represent the | ||
90 | * nasids. The part_nasids mask is located starting at the first cacheline | ||
91 | * following the reserved page header. The mach_nasids mask follows right | ||
92 | * after the part_nasids mask. The size in bytes of each mask is reflected | ||
93 | * by the reserved page header field 'nasids_size'. (Local partition's | ||
94 | * mask pointers are xpc_part_nasids and xpc_mach_nasids.) | ||
95 | * | ||
96 | * vars | ||
97 | * vars part | ||
98 | * | ||
99 | * Immediately following the mach_nasids mask are the XPC variables | ||
100 | * required by other partitions. First are those that are generic to all | ||
101 | * partitions (vars), followed on the next available cacheline by those | ||
102 | * which are partition specific (vars part). These are setup by XPC. | ||
103 | * (Local partition's vars pointers are xpc_vars and xpc_vars_part.) | ||
104 | * | ||
105 | * Note: Until vars_pa is set, the partition XPC code has not been initialized. | ||
106 | */ | ||
107 | struct xpc_rsvd_page { | ||
108 | u64 SAL_signature; /* SAL: unique signature */ | ||
109 | u64 SAL_version; /* SAL: version */ | ||
110 | u8 partid; /* SAL: partition ID */ | ||
111 | u8 version; | ||
112 | u8 pad1[6]; /* align to next u64 in cacheline */ | ||
113 | u64 vars_pa; /* physical address of struct xpc_vars */ | ||
114 | struct timespec stamp; /* time when reserved page was setup by XPC */ | ||
115 | u64 pad2[9]; /* align to last u64 in cacheline */ | ||
116 | u64 nasids_size; /* SAL: size of each nasid mask in bytes */ | ||
117 | }; | ||
118 | |||
119 | #define XPC_RP_VERSION _XPC_VERSION(1, 1) /* version 1.1 of the reserved page */ | ||
120 | |||
121 | #define XPC_SUPPORTS_RP_STAMP(_version) \ | ||
122 | (_version >= _XPC_VERSION(1, 1)) | ||
123 | |||
124 | /* | ||
125 | * compare stamps - the return value is: | ||
126 | * | ||
127 | * < 0, if stamp1 < stamp2 | ||
128 | * = 0, if stamp1 == stamp2 | ||
129 | * > 0, if stamp1 > stamp2 | ||
130 | */ | ||
131 | static inline int | ||
132 | xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2) | ||
133 | { | ||
134 | int ret; | ||
135 | |||
136 | ret = stamp1->tv_sec - stamp2->tv_sec; | ||
137 | if (ret == 0) | ||
138 | ret = stamp1->tv_nsec - stamp2->tv_nsec; | ||
139 | |||
140 | return ret; | ||
141 | } | ||
142 | |||
143 | /* | ||
144 | * Define the structures by which XPC variables can be exported to other | ||
145 | * partitions. (There are two: struct xpc_vars and struct xpc_vars_part) | ||
146 | */ | ||
147 | |||
148 | /* | ||
149 | * The following structure describes the partition generic variables | ||
150 | * needed by other partitions in order to properly initialize. | ||
151 | * | ||
152 | * struct xpc_vars version number also applies to struct xpc_vars_part. | ||
153 | * Changes to either structure and/or related functionality should be | ||
154 | * reflected by incrementing either the major or minor version numbers | ||
155 | * of struct xpc_vars. | ||
156 | */ | ||
157 | struct xpc_vars { | ||
158 | u8 version; | ||
159 | u64 heartbeat; | ||
160 | u64 heartbeating_to_mask; | ||
161 | u64 heartbeat_offline; /* if 0, heartbeat should be changing */ | ||
162 | int act_nasid; | ||
163 | int act_phys_cpuid; | ||
164 | u64 vars_part_pa; | ||
165 | u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */ | ||
166 | AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */ | ||
167 | }; | ||
168 | |||
169 | #define XPC_V_VERSION _XPC_VERSION(3, 1) /* version 3.1 of the cross vars */ | ||
170 | |||
171 | #define XPC_SUPPORTS_DISENGAGE_REQUEST(_version) \ | ||
172 | (_version >= _XPC_VERSION(3, 1)) | ||
173 | |||
174 | static inline int | ||
175 | xpc_hb_allowed(partid_t partid, struct xpc_vars *vars) | ||
176 | { | ||
177 | return ((vars->heartbeating_to_mask & (1UL << partid)) != 0); | ||
178 | } | ||
179 | |||
180 | static inline void | ||
181 | xpc_allow_hb(partid_t partid, struct xpc_vars *vars) | ||
182 | { | ||
183 | u64 old_mask, new_mask; | ||
184 | |||
185 | do { | ||
186 | old_mask = vars->heartbeating_to_mask; | ||
187 | new_mask = (old_mask | (1UL << partid)); | ||
188 | } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != | ||
189 | old_mask); | ||
190 | } | ||
191 | |||
192 | static inline void | ||
193 | xpc_disallow_hb(partid_t partid, struct xpc_vars *vars) | ||
194 | { | ||
195 | u64 old_mask, new_mask; | ||
196 | |||
197 | do { | ||
198 | old_mask = vars->heartbeating_to_mask; | ||
199 | new_mask = (old_mask & ~(1UL << partid)); | ||
200 | } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != | ||
201 | old_mask); | ||
202 | } | ||
203 | |||
204 | /* | ||
205 | * The AMOs page consists of a number of AMO variables which are divided into | ||
206 | * four groups, The first two groups are used to identify an IRQ's sender. | ||
207 | * These two groups consist of 64 and 128 AMO variables respectively. The last | ||
208 | * two groups, consisting of just one AMO variable each, are used to identify | ||
209 | * the remote partitions that are currently engaged (from the viewpoint of | ||
210 | * the XPC running on the remote partition). | ||
211 | */ | ||
212 | #define XPC_NOTIFY_IRQ_AMOS 0 | ||
213 | #define XPC_ACTIVATE_IRQ_AMOS (XPC_NOTIFY_IRQ_AMOS + XP_MAX_PARTITIONS) | ||
214 | #define XPC_ENGAGED_PARTITIONS_AMO (XPC_ACTIVATE_IRQ_AMOS + XP_NASID_MASK_WORDS) | ||
215 | #define XPC_DISENGAGE_REQUEST_AMO (XPC_ENGAGED_PARTITIONS_AMO + 1) | ||
216 | |||
217 | /* | ||
218 | * The following structure describes the per partition specific variables. | ||
219 | * | ||
220 | * An array of these structures, one per partition, will be defined. As a | ||
221 | * partition becomes active XPC will copy the array entry corresponding to | ||
222 | * itself from that partition. It is desirable that the size of this | ||
223 | * structure evenly divide into a cacheline, such that none of the entries | ||
224 | * in this array crosses a cacheline boundary. As it is now, each entry | ||
225 | * occupies half a cacheline. | ||
226 | */ | ||
227 | struct xpc_vars_part { | ||
228 | u64 magic; | ||
229 | |||
230 | u64 openclose_args_pa; /* physical address of open and close args */ | ||
231 | u64 GPs_pa; /* physical address of Get/Put values */ | ||
232 | |||
233 | u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */ | ||
234 | int IPI_nasid; /* nasid of where to send IPIs */ | ||
235 | int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */ | ||
236 | |||
237 | u8 nchannels; /* #of defined channels supported */ | ||
238 | |||
239 | u8 reserved[23]; /* pad to a full 64 bytes */ | ||
240 | }; | ||
241 | |||
242 | /* | ||
243 | * The vars_part MAGIC numbers play a part in the first contact protocol. | ||
244 | * | ||
245 | * MAGIC1 indicates that the per partition specific variables for a remote | ||
246 | * partition have been initialized by this partition. | ||
247 | * | ||
248 | * MAGIC2 indicates that this partition has pulled the remote partititions | ||
249 | * per partition variables that pertain to this partition. | ||
250 | */ | ||
251 | #define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */ | ||
252 | #define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */ | ||
253 | |||
254 | /* the reserved page sizes and offsets */ | ||
255 | |||
256 | #define XPC_RP_HEADER_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page)) | ||
257 | #define XPC_RP_VARS_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_vars)) | ||
258 | |||
259 | #define XPC_RP_PART_NASIDS(_rp) ((u64 *)((u8 *)(_rp) + XPC_RP_HEADER_SIZE)) | ||
260 | #define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + xp_nasid_mask_words) | ||
261 | #define XPC_RP_VARS(_rp) ((struct xpc_vars *)(XPC_RP_MACH_NASIDS(_rp) + \ | ||
262 | xp_nasid_mask_words)) | ||
263 | #define XPC_RP_VARS_PART(_rp) ((struct xpc_vars_part *) \ | ||
264 | ((u8 *)XPC_RP_VARS(_rp) + XPC_RP_VARS_SIZE)) | ||
265 | |||
266 | /* | ||
267 | * Functions registered by add_timer() or called by kernel_thread() only | ||
268 | * allow for a single 64-bit argument. The following macros can be used to | ||
269 | * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from | ||
270 | * the passed argument. | ||
271 | */ | ||
272 | #define XPC_PACK_ARGS(_arg1, _arg2) \ | ||
273 | ((((u64) _arg1) & 0xffffffff) | \ | ||
274 | ((((u64) _arg2) & 0xffffffff) << 32)) | ||
275 | |||
276 | #define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff) | ||
277 | #define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff) | ||
278 | |||
279 | /* | ||
280 | * Define a Get/Put value pair (pointers) used with a message queue. | ||
281 | */ | ||
282 | struct xpc_gp { | ||
283 | s64 get; /* Get value */ | ||
284 | s64 put; /* Put value */ | ||
285 | }; | ||
286 | |||
287 | #define XPC_GP_SIZE \ | ||
288 | L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS) | ||
289 | |||
290 | /* | ||
291 | * Define a structure that contains arguments associated with opening and | ||
292 | * closing a channel. | ||
293 | */ | ||
294 | struct xpc_openclose_args { | ||
295 | u16 reason; /* reason why channel is closing */ | ||
296 | u16 msg_size; /* sizeof each message entry */ | ||
297 | u16 remote_nentries; /* #of message entries in remote msg queue */ | ||
298 | u16 local_nentries; /* #of message entries in local msg queue */ | ||
299 | u64 local_msgqueue_pa; /* physical address of local message queue */ | ||
300 | }; | ||
301 | |||
302 | #define XPC_OPENCLOSE_ARGS_SIZE \ | ||
303 | L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS) | ||
304 | |||
305 | /* struct xpc_msg flags */ | ||
306 | |||
307 | #define XPC_M_DONE 0x01 /* msg has been received/consumed */ | ||
308 | #define XPC_M_READY 0x02 /* msg is ready to be sent */ | ||
309 | #define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */ | ||
310 | |||
311 | #define XPC_MSG_ADDRESS(_payload) \ | ||
312 | ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET)) | ||
313 | |||
314 | /* | ||
315 | * Defines notify entry. | ||
316 | * | ||
317 | * This is used to notify a message's sender that their message was received | ||
318 | * and consumed by the intended recipient. | ||
319 | */ | ||
320 | struct xpc_notify { | ||
321 | u8 type; /* type of notification */ | ||
322 | |||
323 | /* the following two fields are only used if type == XPC_N_CALL */ | ||
324 | xpc_notify_func func; /* user's notify function */ | ||
325 | void *key; /* pointer to user's key */ | ||
326 | }; | ||
327 | |||
328 | /* struct xpc_notify type of notification */ | ||
329 | |||
330 | #define XPC_N_CALL 0x01 /* notify function provided by user */ | ||
331 | |||
332 | /* | ||
333 | * Define the structure that manages all the stuff required by a channel. In | ||
334 | * particular, they are used to manage the messages sent across the channel. | ||
335 | * | ||
336 | * This structure is private to a partition, and is NOT shared across the | ||
337 | * partition boundary. | ||
338 | * | ||
339 | * There is an array of these structures for each remote partition. It is | ||
340 | * allocated at the time a partition becomes active. The array contains one | ||
341 | * of these structures for each potential channel connection to that partition. | ||
342 | * | ||
343 | * Each of these structures manages two message queues (circular buffers). | ||
344 | * They are allocated at the time a channel connection is made. One of | ||
345 | * these message queues (local_msgqueue) holds the locally created messages | ||
346 | * that are destined for the remote partition. The other of these message | ||
347 | * queues (remote_msgqueue) is a locally cached copy of the remote partition's | ||
348 | * own local_msgqueue. | ||
349 | * | ||
350 | * The following is a description of the Get/Put pointers used to manage these | ||
351 | * two message queues. Consider the local_msgqueue to be on one partition | ||
352 | * and the remote_msgqueue to be its cached copy on another partition. A | ||
353 | * description of what each of the lettered areas contains is included. | ||
354 | * | ||
355 | * | ||
356 | * local_msgqueue remote_msgqueue | ||
357 | * | ||
358 | * |/////////| |/////////| | ||
359 | * w_remote_GP.get --> +---------+ |/////////| | ||
360 | * | F | |/////////| | ||
361 | * remote_GP.get --> +---------+ +---------+ <-- local_GP->get | ||
362 | * | | | | | ||
363 | * | | | E | | ||
364 | * | | | | | ||
365 | * | | +---------+ <-- w_local_GP.get | ||
366 | * | B | |/////////| | ||
367 | * | | |////D////| | ||
368 | * | | |/////////| | ||
369 | * | | +---------+ <-- w_remote_GP.put | ||
370 | * | | |////C////| | ||
371 | * local_GP->put --> +---------+ +---------+ <-- remote_GP.put | ||
372 | * | | |/////////| | ||
373 | * | A | |/////////| | ||
374 | * | | |/////////| | ||
375 | * w_local_GP.put --> +---------+ |/////////| | ||
376 | * |/////////| |/////////| | ||
377 | * | ||
378 | * | ||
379 | * ( remote_GP.[get|put] are cached copies of the remote | ||
380 | * partition's local_GP->[get|put], and thus their values can | ||
381 | * lag behind their counterparts on the remote partition. ) | ||
382 | * | ||
383 | * | ||
384 | * A - Messages that have been allocated, but have not yet been sent to the | ||
385 | * remote partition. | ||
386 | * | ||
387 | * B - Messages that have been sent, but have not yet been acknowledged by the | ||
388 | * remote partition as having been received. | ||
389 | * | ||
390 | * C - Area that needs to be prepared for the copying of sent messages, by | ||
391 | * the clearing of the message flags of any previously received messages. | ||
392 | * | ||
393 | * D - Area into which sent messages are to be copied from the remote | ||
394 | * partition's local_msgqueue and then delivered to their intended | ||
395 | * recipients. [ To allow for a multi-message copy, another pointer | ||
396 | * (next_msg_to_pull) has been added to keep track of the next message | ||
397 | * number needing to be copied (pulled). It chases after w_remote_GP.put. | ||
398 | * Any messages lying between w_local_GP.get and next_msg_to_pull have | ||
399 | * been copied and are ready to be delivered. ] | ||
400 | * | ||
401 | * E - Messages that have been copied and delivered, but have not yet been | ||
402 | * acknowledged by the recipient as having been received. | ||
403 | * | ||
404 | * F - Messages that have been acknowledged, but XPC has not yet notified the | ||
405 | * sender that the message was received by its intended recipient. | ||
406 | * This is also an area that needs to be prepared for the allocating of | ||
407 | * new messages, by the clearing of the message flags of the acknowledged | ||
408 | * messages. | ||
409 | */ | ||
410 | struct xpc_channel { | ||
411 | partid_t partid; /* ID of remote partition connected */ | ||
412 | spinlock_t lock; /* lock for updating this structure */ | ||
413 | u32 flags; /* general flags */ | ||
414 | |||
415 | enum xpc_retval reason; /* reason why channel is disconnect'g */ | ||
416 | int reason_line; /* line# disconnect initiated from */ | ||
417 | |||
418 | u16 number; /* channel # */ | ||
419 | |||
420 | u16 msg_size; /* sizeof each msg entry */ | ||
421 | u16 local_nentries; /* #of msg entries in local msg queue */ | ||
422 | u16 remote_nentries; /* #of msg entries in remote msg queue */ | ||
423 | |||
424 | void *local_msgqueue_base; /* base address of kmalloc'd space */ | ||
425 | struct xpc_msg *local_msgqueue; /* local message queue */ | ||
426 | void *remote_msgqueue_base; /* base address of kmalloc'd space */ | ||
427 | struct xpc_msg *remote_msgqueue; /* cached copy of remote partition's */ | ||
428 | /* local message queue */ | ||
429 | u64 remote_msgqueue_pa; /* phys addr of remote partition's */ | ||
430 | /* local message queue */ | ||
431 | |||
432 | atomic_t references; /* #of external references to queues */ | ||
433 | |||
434 | atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */ | ||
435 | wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */ | ||
436 | |||
437 | u8 delayed_IPI_flags; /* IPI flags received, but delayed */ | ||
438 | /* action until channel disconnected */ | ||
439 | |||
440 | /* queue of msg senders who want to be notified when msg received */ | ||
441 | |||
442 | atomic_t n_to_notify; /* #of msg senders to notify */ | ||
443 | struct xpc_notify *notify_queue; /* notify queue for messages sent */ | ||
444 | |||
445 | xpc_channel_func func; /* user's channel function */ | ||
446 | void *key; /* pointer to user's key */ | ||
447 | |||
448 | struct mutex msg_to_pull_mutex; /* next msg to pull serialization */ | ||
449 | struct completion wdisconnect_wait; /* wait for channel disconnect */ | ||
450 | |||
451 | struct xpc_openclose_args *local_openclose_args; /* args passed on */ | ||
452 | /* opening or closing of channel */ | ||
453 | |||
454 | /* various flavors of local and remote Get/Put values */ | ||
455 | |||
456 | struct xpc_gp *local_GP; /* local Get/Put values */ | ||
457 | struct xpc_gp remote_GP; /* remote Get/Put values */ | ||
458 | struct xpc_gp w_local_GP; /* working local Get/Put values */ | ||
459 | struct xpc_gp w_remote_GP; /* working remote Get/Put values */ | ||
460 | s64 next_msg_to_pull; /* Put value of next msg to pull */ | ||
461 | |||
462 | /* kthread management related fields */ | ||
463 | |||
464 | atomic_t kthreads_assigned; /* #of kthreads assigned to channel */ | ||
465 | u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */ | ||
466 | atomic_t kthreads_idle; /* #of kthreads idle waiting for work */ | ||
467 | u32 kthreads_idle_limit; /* limit on #of kthreads idle */ | ||
468 | atomic_t kthreads_active; /* #of kthreads actively working */ | ||
469 | |||
470 | wait_queue_head_t idle_wq; /* idle kthread wait queue */ | ||
471 | |||
472 | } ____cacheline_aligned; | ||
473 | |||
474 | /* struct xpc_channel flags */ | ||
475 | |||
476 | #define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */ | ||
477 | |||
478 | #define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */ | ||
479 | #define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */ | ||
480 | #define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */ | ||
481 | #define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */ | ||
482 | |||
483 | #define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */ | ||
484 | #define XPC_C_CONNECTEDCALLOUT 0x00000040 /* connected callout initiated */ | ||
485 | #define XPC_C_CONNECTEDCALLOUT_MADE \ | ||
486 | 0x00000080 /* connected callout completed */ | ||
487 | #define XPC_C_CONNECTED 0x00000100 /* local channel is connected */ | ||
488 | #define XPC_C_CONNECTING 0x00000200 /* channel is being connected */ | ||
489 | |||
490 | #define XPC_C_RCLOSEREPLY 0x00000400 /* remote close channel reply */ | ||
491 | #define XPC_C_CLOSEREPLY 0x00000800 /* local close channel reply */ | ||
492 | #define XPC_C_RCLOSEREQUEST 0x00001000 /* remote close channel request */ | ||
493 | #define XPC_C_CLOSEREQUEST 0x00002000 /* local close channel request */ | ||
494 | |||
495 | #define XPC_C_DISCONNECTED 0x00004000 /* channel is disconnected */ | ||
496 | #define XPC_C_DISCONNECTING 0x00008000 /* channel is being disconnected */ | ||
497 | #define XPC_C_DISCONNECTINGCALLOUT \ | ||
498 | 0x00010000 /* disconnecting callout initiated */ | ||
499 | #define XPC_C_DISCONNECTINGCALLOUT_MADE \ | ||
500 | 0x00020000 /* disconnecting callout completed */ | ||
501 | #define XPC_C_WDISCONNECT 0x00040000 /* waiting for channel disconnect */ | ||
502 | |||
503 | /* | ||
504 | * Manages channels on a partition basis. There is one of these structures | ||
505 | * for each partition (a partition will never utilize the structure that | ||
506 | * represents itself). | ||
507 | */ | ||
508 | struct xpc_partition { | ||
509 | |||
510 | /* XPC HB infrastructure */ | ||
511 | |||
512 | u8 remote_rp_version; /* version# of partition's rsvd pg */ | ||
513 | struct timespec remote_rp_stamp; /* time when rsvd pg was initialized */ | ||
514 | u64 remote_rp_pa; /* phys addr of partition's rsvd pg */ | ||
515 | u64 remote_vars_pa; /* phys addr of partition's vars */ | ||
516 | u64 remote_vars_part_pa; /* phys addr of partition's vars part */ | ||
517 | u64 last_heartbeat; /* HB at last read */ | ||
518 | u64 remote_amos_page_pa; /* phys addr of partition's amos page */ | ||
519 | int remote_act_nasid; /* active part's act/deact nasid */ | ||
520 | int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */ | ||
521 | u32 act_IRQ_rcvd; /* IRQs since activation */ | ||
522 | spinlock_t act_lock; /* protect updating of act_state */ | ||
523 | u8 act_state; /* from XPC HB viewpoint */ | ||
524 | u8 remote_vars_version; /* version# of partition's vars */ | ||
525 | enum xpc_retval reason; /* reason partition is deactivating */ | ||
526 | int reason_line; /* line# deactivation initiated from */ | ||
527 | int reactivate_nasid; /* nasid in partition to reactivate */ | ||
528 | |||
529 | unsigned long disengage_request_timeout; /* timeout in jiffies */ | ||
530 | struct timer_list disengage_request_timer; | ||
531 | |||
532 | /* XPC infrastructure referencing and teardown control */ | ||
533 | |||
534 | u8 setup_state; /* infrastructure setup state */ | ||
535 | wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */ | ||
536 | atomic_t references; /* #of references to infrastructure */ | ||
537 | |||
538 | /* | ||
539 | * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN | ||
540 | * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION | ||
541 | * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE | ||
542 | * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.) | ||
543 | */ | ||
544 | |||
545 | u8 nchannels; /* #of defined channels supported */ | ||
546 | atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */ | ||
547 | atomic_t nchannels_engaged; /* #of channels engaged with remote part */ | ||
548 | struct xpc_channel *channels; /* array of channel structures */ | ||
549 | |||
550 | void *local_GPs_base; /* base address of kmalloc'd space */ | ||
551 | struct xpc_gp *local_GPs; /* local Get/Put values */ | ||
552 | void *remote_GPs_base; /* base address of kmalloc'd space */ | ||
553 | struct xpc_gp *remote_GPs; /* copy of remote partition's local */ | ||
554 | /* Get/Put values */ | ||
555 | u64 remote_GPs_pa; /* phys address of remote partition's local */ | ||
556 | /* Get/Put values */ | ||
557 | |||
558 | /* fields used to pass args when opening or closing a channel */ | ||
559 | |||
560 | void *local_openclose_args_base; /* base address of kmalloc'd space */ | ||
561 | struct xpc_openclose_args *local_openclose_args; /* local's args */ | ||
562 | void *remote_openclose_args_base; /* base address of kmalloc'd space */ | ||
563 | struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */ | ||
564 | /* args */ | ||
565 | u64 remote_openclose_args_pa; /* phys addr of remote's args */ | ||
566 | |||
567 | /* IPI sending, receiving and handling related fields */ | ||
568 | |||
569 | int remote_IPI_nasid; /* nasid of where to send IPIs */ | ||
570 | int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */ | ||
571 | AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */ | ||
572 | |||
573 | AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */ | ||
574 | u64 local_IPI_amo; /* IPI amo flags yet to be handled */ | ||
575 | char IPI_owner[8]; /* IPI owner's name */ | ||
576 | struct timer_list dropped_IPI_timer; /* dropped IPI timer */ | ||
577 | |||
578 | spinlock_t IPI_lock; /* IPI handler lock */ | ||
579 | |||
580 | /* channel manager related fields */ | ||
581 | |||
582 | atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */ | ||
583 | wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */ | ||
584 | |||
585 | } ____cacheline_aligned; | ||
586 | |||
587 | /* struct xpc_partition act_state values (for XPC HB) */ | ||
588 | |||
589 | #define XPC_P_INACTIVE 0x00 /* partition is not active */ | ||
590 | #define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */ | ||
591 | #define XPC_P_ACTIVATING 0x02 /* activation thread started */ | ||
592 | #define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */ | ||
593 | #define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */ | ||
594 | |||
595 | #define XPC_DEACTIVATE_PARTITION(_p, _reason) \ | ||
596 | xpc_deactivate_partition(__LINE__, (_p), (_reason)) | ||
597 | |||
598 | /* struct xpc_partition setup_state values */ | ||
599 | |||
600 | #define XPC_P_UNSET 0x00 /* infrastructure was never setup */ | ||
601 | #define XPC_P_SETUP 0x01 /* infrastructure is setup */ | ||
602 | #define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */ | ||
603 | #define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */ | ||
604 | |||
605 | /* | ||
606 | * struct xpc_partition IPI_timer #of seconds to wait before checking for | ||
607 | * dropped IPIs. These occur whenever an IPI amo write doesn't complete until | ||
608 | * after the IPI was received. | ||
609 | */ | ||
610 | #define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ) | ||
611 | |||
612 | /* number of seconds to wait for other partitions to disengage */ | ||
613 | #define XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT 90 | ||
614 | |||
615 | /* interval in seconds to print 'waiting disengagement' messages */ | ||
616 | #define XPC_DISENGAGE_PRINTMSG_INTERVAL 10 | ||
617 | |||
618 | #define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0])) | ||
619 | |||
620 | /* found in xp_main.c */ | ||
621 | extern struct xpc_registration xpc_registrations[]; | ||
622 | |||
623 | /* found in xpc_main.c */ | ||
624 | extern struct device *xpc_part; | ||
625 | extern struct device *xpc_chan; | ||
626 | extern int xpc_disengage_request_timelimit; | ||
627 | extern int xpc_disengage_request_timedout; | ||
628 | extern irqreturn_t xpc_notify_IRQ_handler(int, void *); | ||
629 | extern void xpc_dropped_IPI_check(struct xpc_partition *); | ||
630 | extern void xpc_activate_partition(struct xpc_partition *); | ||
631 | extern void xpc_activate_kthreads(struct xpc_channel *, int); | ||
632 | extern void xpc_create_kthreads(struct xpc_channel *, int, int); | ||
633 | extern void xpc_disconnect_wait(int); | ||
634 | |||
635 | /* found in xpc_partition.c */ | ||
636 | extern int xpc_exiting; | ||
637 | extern struct xpc_vars *xpc_vars; | ||
638 | extern struct xpc_rsvd_page *xpc_rsvd_page; | ||
639 | extern struct xpc_vars_part *xpc_vars_part; | ||
640 | extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; | ||
641 | extern char *xpc_remote_copy_buffer; | ||
642 | extern void *xpc_remote_copy_buffer_base; | ||
643 | extern void *xpc_kmalloc_cacheline_aligned(size_t, gfp_t, void **); | ||
644 | extern struct xpc_rsvd_page *xpc_rsvd_page_init(void); | ||
645 | extern void xpc_allow_IPI_ops(void); | ||
646 | extern void xpc_restrict_IPI_ops(void); | ||
647 | extern int xpc_identify_act_IRQ_sender(void); | ||
648 | extern int xpc_partition_disengaged(struct xpc_partition *); | ||
649 | extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *); | ||
650 | extern void xpc_mark_partition_inactive(struct xpc_partition *); | ||
651 | extern void xpc_discovery(void); | ||
652 | extern void xpc_check_remote_hb(void); | ||
653 | extern void xpc_deactivate_partition(const int, struct xpc_partition *, | ||
654 | enum xpc_retval); | ||
655 | extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *); | ||
656 | |||
657 | /* found in xpc_channel.c */ | ||
658 | extern void xpc_initiate_connect(int); | ||
659 | extern void xpc_initiate_disconnect(int); | ||
660 | extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **); | ||
661 | extern enum xpc_retval xpc_initiate_send(partid_t, int, void *); | ||
662 | extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *, | ||
663 | xpc_notify_func, void *); | ||
664 | extern void xpc_initiate_received(partid_t, int, void *); | ||
665 | extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *); | ||
666 | extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *); | ||
667 | extern void xpc_process_channel_activity(struct xpc_partition *); | ||
668 | extern void xpc_connected_callout(struct xpc_channel *); | ||
669 | extern void xpc_deliver_msg(struct xpc_channel *); | ||
670 | extern void xpc_disconnect_channel(const int, struct xpc_channel *, | ||
671 | enum xpc_retval, unsigned long *); | ||
672 | extern void xpc_disconnect_callout(struct xpc_channel *, enum xpc_retval); | ||
673 | extern void xpc_partition_going_down(struct xpc_partition *, enum xpc_retval); | ||
674 | extern void xpc_teardown_infrastructure(struct xpc_partition *); | ||
675 | |||
676 | static inline void | ||
677 | xpc_wakeup_channel_mgr(struct xpc_partition *part) | ||
678 | { | ||
679 | if (atomic_inc_return(&part->channel_mgr_requests) == 1) | ||
680 | wake_up(&part->channel_mgr_wq); | ||
681 | } | ||
682 | |||
683 | /* | ||
684 | * These next two inlines are used to keep us from tearing down a channel's | ||
685 | * msg queues while a thread may be referencing them. | ||
686 | */ | ||
687 | static inline void | ||
688 | xpc_msgqueue_ref(struct xpc_channel *ch) | ||
689 | { | ||
690 | atomic_inc(&ch->references); | ||
691 | } | ||
692 | |||
693 | static inline void | ||
694 | xpc_msgqueue_deref(struct xpc_channel *ch) | ||
695 | { | ||
696 | s32 refs = atomic_dec_return(&ch->references); | ||
697 | |||
698 | DBUG_ON(refs < 0); | ||
699 | if (refs == 0) | ||
700 | xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]); | ||
701 | } | ||
702 | |||
703 | #define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \ | ||
704 | xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs) | ||
705 | |||
706 | /* | ||
707 | * These two inlines are used to keep us from tearing down a partition's | ||
708 | * setup infrastructure while a thread may be referencing it. | ||
709 | */ | ||
710 | static inline void | ||
711 | xpc_part_deref(struct xpc_partition *part) | ||
712 | { | ||
713 | s32 refs = atomic_dec_return(&part->references); | ||
714 | |||
715 | DBUG_ON(refs < 0); | ||
716 | if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) | ||
717 | wake_up(&part->teardown_wq); | ||
718 | } | ||
719 | |||
720 | static inline int | ||
721 | xpc_part_ref(struct xpc_partition *part) | ||
722 | { | ||
723 | int setup; | ||
724 | |||
725 | atomic_inc(&part->references); | ||
726 | setup = (part->setup_state == XPC_P_SETUP); | ||
727 | if (!setup) | ||
728 | xpc_part_deref(part); | ||
729 | |||
730 | return setup; | ||
731 | } | ||
732 | |||
733 | /* | ||
734 | * The following macro is to be used for the setting of the reason and | ||
735 | * reason_line fields in both the struct xpc_channel and struct xpc_partition | ||
736 | * structures. | ||
737 | */ | ||
738 | #define XPC_SET_REASON(_p, _reason, _line) \ | ||
739 | { \ | ||
740 | (_p)->reason = _reason; \ | ||
741 | (_p)->reason_line = _line; \ | ||
742 | } | ||
743 | |||
744 | /* | ||
745 | * This next set of inlines are used to keep track of when a partition is | ||
746 | * potentially engaged in accessing memory belonging to another partition. | ||
747 | */ | ||
748 | |||
749 | static inline void | ||
750 | xpc_mark_partition_engaged(struct xpc_partition *part) | ||
751 | { | ||
752 | unsigned long irq_flags; | ||
753 | AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + | ||
754 | (XPC_ENGAGED_PARTITIONS_AMO * | ||
755 | sizeof(AMO_t))); | ||
756 | |||
757 | local_irq_save(irq_flags); | ||
758 | |||
759 | /* set bit corresponding to our partid in remote partition's AMO */ | ||
760 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, | ||
761 | (1UL << sn_partition_id)); | ||
762 | /* | ||
763 | * We must always use the nofault function regardless of whether we | ||
764 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
765 | * didn't, we'd never know that the other partition is down and would | ||
766 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
767 | */ | ||
768 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
769 | variable), | ||
770 | xp_nofault_PIOR_target)); | ||
771 | |||
772 | local_irq_restore(irq_flags); | ||
773 | } | ||
774 | |||
775 | static inline void | ||
776 | xpc_mark_partition_disengaged(struct xpc_partition *part) | ||
777 | { | ||
778 | unsigned long irq_flags; | ||
779 | AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + | ||
780 | (XPC_ENGAGED_PARTITIONS_AMO * | ||
781 | sizeof(AMO_t))); | ||
782 | |||
783 | local_irq_save(irq_flags); | ||
784 | |||
785 | /* clear bit corresponding to our partid in remote partition's AMO */ | ||
786 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
787 | ~(1UL << sn_partition_id)); | ||
788 | /* | ||
789 | * We must always use the nofault function regardless of whether we | ||
790 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
791 | * didn't, we'd never know that the other partition is down and would | ||
792 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
793 | */ | ||
794 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
795 | variable), | ||
796 | xp_nofault_PIOR_target)); | ||
797 | |||
798 | local_irq_restore(irq_flags); | ||
799 | } | ||
800 | |||
801 | static inline void | ||
802 | xpc_request_partition_disengage(struct xpc_partition *part) | ||
803 | { | ||
804 | unsigned long irq_flags; | ||
805 | AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + | ||
806 | (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); | ||
807 | |||
808 | local_irq_save(irq_flags); | ||
809 | |||
810 | /* set bit corresponding to our partid in remote partition's AMO */ | ||
811 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, | ||
812 | (1UL << sn_partition_id)); | ||
813 | /* | ||
814 | * We must always use the nofault function regardless of whether we | ||
815 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
816 | * didn't, we'd never know that the other partition is down and would | ||
817 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
818 | */ | ||
819 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
820 | variable), | ||
821 | xp_nofault_PIOR_target)); | ||
822 | |||
823 | local_irq_restore(irq_flags); | ||
824 | } | ||
825 | |||
826 | static inline void | ||
827 | xpc_cancel_partition_disengage_request(struct xpc_partition *part) | ||
828 | { | ||
829 | unsigned long irq_flags; | ||
830 | AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + | ||
831 | (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); | ||
832 | |||
833 | local_irq_save(irq_flags); | ||
834 | |||
835 | /* clear bit corresponding to our partid in remote partition's AMO */ | ||
836 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
837 | ~(1UL << sn_partition_id)); | ||
838 | /* | ||
839 | * We must always use the nofault function regardless of whether we | ||
840 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
841 | * didn't, we'd never know that the other partition is down and would | ||
842 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
843 | */ | ||
844 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
845 | variable), | ||
846 | xp_nofault_PIOR_target)); | ||
847 | |||
848 | local_irq_restore(irq_flags); | ||
849 | } | ||
850 | |||
851 | static inline u64 | ||
852 | xpc_partition_engaged(u64 partid_mask) | ||
853 | { | ||
854 | AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; | ||
855 | |||
856 | /* return our partition's AMO variable ANDed with partid_mask */ | ||
857 | return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & | ||
858 | partid_mask); | ||
859 | } | ||
860 | |||
861 | static inline u64 | ||
862 | xpc_partition_disengage_requested(u64 partid_mask) | ||
863 | { | ||
864 | AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; | ||
865 | |||
866 | /* return our partition's AMO variable ANDed with partid_mask */ | ||
867 | return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & | ||
868 | partid_mask); | ||
869 | } | ||
870 | |||
871 | static inline void | ||
872 | xpc_clear_partition_engaged(u64 partid_mask) | ||
873 | { | ||
874 | AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; | ||
875 | |||
876 | /* clear bit(s) based on partid_mask in our partition's AMO */ | ||
877 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
878 | ~partid_mask); | ||
879 | } | ||
880 | |||
881 | static inline void | ||
882 | xpc_clear_partition_disengage_request(u64 partid_mask) | ||
883 | { | ||
884 | AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; | ||
885 | |||
886 | /* clear bit(s) based on partid_mask in our partition's AMO */ | ||
887 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
888 | ~partid_mask); | ||
889 | } | ||
890 | |||
891 | /* | ||
892 | * The following set of macros and inlines are used for the sending and | ||
893 | * receiving of IPIs (also known as IRQs). There are two flavors of IPIs, | ||
894 | * one that is associated with partition activity (SGI_XPC_ACTIVATE) and | ||
895 | * the other that is associated with channel activity (SGI_XPC_NOTIFY). | ||
896 | */ | ||
897 | |||
898 | static inline u64 | ||
899 | xpc_IPI_receive(AMO_t *amo) | ||
900 | { | ||
901 | return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR); | ||
902 | } | ||
903 | |||
904 | static inline enum xpc_retval | ||
905 | xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector) | ||
906 | { | ||
907 | int ret = 0; | ||
908 | unsigned long irq_flags; | ||
909 | |||
910 | local_irq_save(irq_flags); | ||
911 | |||
912 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag); | ||
913 | sn_send_IPI_phys(nasid, phys_cpuid, vector, 0); | ||
914 | |||
915 | /* | ||
916 | * We must always use the nofault function regardless of whether we | ||
917 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
918 | * didn't, we'd never know that the other partition is down and would | ||
919 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
920 | */ | ||
921 | ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable), | ||
922 | xp_nofault_PIOR_target)); | ||
923 | |||
924 | local_irq_restore(irq_flags); | ||
925 | |||
926 | return ((ret == 0) ? xpcSuccess : xpcPioReadError); | ||
927 | } | ||
928 | |||
929 | /* | ||
930 | * IPIs associated with SGI_XPC_ACTIVATE IRQ. | ||
931 | */ | ||
932 | |||
933 | /* | ||
934 | * Flag the appropriate AMO variable and send an IPI to the specified node. | ||
935 | */ | ||
936 | static inline void | ||
937 | xpc_activate_IRQ_send(u64 amos_page_pa, int from_nasid, int to_nasid, | ||
938 | int to_phys_cpuid) | ||
939 | { | ||
940 | int w_index = XPC_NASID_W_INDEX(from_nasid); | ||
941 | int b_index = XPC_NASID_B_INDEX(from_nasid); | ||
942 | AMO_t *amos = (AMO_t *)__va(amos_page_pa + | ||
943 | (XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t))); | ||
944 | |||
945 | (void)xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid, | ||
946 | to_phys_cpuid, SGI_XPC_ACTIVATE); | ||
947 | } | ||
948 | |||
949 | static inline void | ||
950 | xpc_IPI_send_activate(struct xpc_vars *vars) | ||
951 | { | ||
952 | xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0), | ||
953 | vars->act_nasid, vars->act_phys_cpuid); | ||
954 | } | ||
955 | |||
956 | static inline void | ||
957 | xpc_IPI_send_activated(struct xpc_partition *part) | ||
958 | { | ||
959 | xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), | ||
960 | part->remote_act_nasid, | ||
961 | part->remote_act_phys_cpuid); | ||
962 | } | ||
963 | |||
964 | static inline void | ||
965 | xpc_IPI_send_reactivate(struct xpc_partition *part) | ||
966 | { | ||
967 | xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid, | ||
968 | xpc_vars->act_nasid, xpc_vars->act_phys_cpuid); | ||
969 | } | ||
970 | |||
971 | static inline void | ||
972 | xpc_IPI_send_disengage(struct xpc_partition *part) | ||
973 | { | ||
974 | xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), | ||
975 | part->remote_act_nasid, | ||
976 | part->remote_act_phys_cpuid); | ||
977 | } | ||
978 | |||
979 | /* | ||
980 | * IPIs associated with SGI_XPC_NOTIFY IRQ. | ||
981 | */ | ||
982 | |||
983 | /* | ||
984 | * Send an IPI to the remote partition that is associated with the | ||
985 | * specified channel. | ||
986 | */ | ||
987 | #define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \ | ||
988 | xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f) | ||
989 | |||
990 | static inline void | ||
991 | xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string, | ||
992 | unsigned long *irq_flags) | ||
993 | { | ||
994 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
995 | enum xpc_retval ret; | ||
996 | |||
997 | if (likely(part->act_state != XPC_P_DEACTIVATING)) { | ||
998 | ret = xpc_IPI_send(part->remote_IPI_amo_va, | ||
999 | (u64)ipi_flag << (ch->number * 8), | ||
1000 | part->remote_IPI_nasid, | ||
1001 | part->remote_IPI_phys_cpuid, SGI_XPC_NOTIFY); | ||
1002 | dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n", | ||
1003 | ipi_flag_string, ch->partid, ch->number, ret); | ||
1004 | if (unlikely(ret != xpcSuccess)) { | ||
1005 | if (irq_flags != NULL) | ||
1006 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
1007 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1008 | if (irq_flags != NULL) | ||
1009 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
1010 | } | ||
1011 | } | ||
1012 | } | ||
1013 | |||
1014 | /* | ||
1015 | * Make it look like the remote partition, which is associated with the | ||
1016 | * specified channel, sent us an IPI. This faked IPI will be handled | ||
1017 | * by xpc_dropped_IPI_check(). | ||
1018 | */ | ||
1019 | #define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \ | ||
1020 | xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f) | ||
1021 | |||
1022 | static inline void | ||
1023 | xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag, | ||
1024 | char *ipi_flag_string) | ||
1025 | { | ||
1026 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
1027 | |||
1028 | FETCHOP_STORE_OP(TO_AMO((u64)&part->local_IPI_amo_va->variable), | ||
1029 | FETCHOP_OR, ((u64)ipi_flag << (ch->number * 8))); | ||
1030 | dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n", | ||
1031 | ipi_flag_string, ch->partid, ch->number); | ||
1032 | } | ||
1033 | |||
1034 | /* | ||
1035 | * The sending and receiving of IPIs includes the setting of an AMO variable | ||
1036 | * to indicate the reason the IPI was sent. The 64-bit variable is divided | ||
1037 | * up into eight bytes, ordered from right to left. Byte zero pertains to | ||
1038 | * channel 0, byte one to channel 1, and so on. Each byte is described by | ||
1039 | * the following IPI flags. | ||
1040 | */ | ||
1041 | |||
1042 | #define XPC_IPI_CLOSEREQUEST 0x01 | ||
1043 | #define XPC_IPI_CLOSEREPLY 0x02 | ||
1044 | #define XPC_IPI_OPENREQUEST 0x04 | ||
1045 | #define XPC_IPI_OPENREPLY 0x08 | ||
1046 | #define XPC_IPI_MSGREQUEST 0x10 | ||
1047 | |||
1048 | /* given an AMO variable and a channel#, get its associated IPI flags */ | ||
1049 | #define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff)) | ||
1050 | #define XPC_SET_IPI_FLAGS(_amo, _c, _f) (_amo) |= ((u64) (_f) << ((_c) * 8)) | ||
1051 | |||
1052 | #define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0fUL) | ||
1053 | #define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010UL) | ||
1054 | |||
1055 | static inline void | ||
1056 | xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1057 | { | ||
1058 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
1059 | |||
1060 | args->reason = ch->reason; | ||
1061 | |||
1062 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags); | ||
1063 | } | ||
1064 | |||
1065 | static inline void | ||
1066 | xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1067 | { | ||
1068 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags); | ||
1069 | } | ||
1070 | |||
1071 | static inline void | ||
1072 | xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1073 | { | ||
1074 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
1075 | |||
1076 | args->msg_size = ch->msg_size; | ||
1077 | args->local_nentries = ch->local_nentries; | ||
1078 | |||
1079 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags); | ||
1080 | } | ||
1081 | |||
1082 | static inline void | ||
1083 | xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1084 | { | ||
1085 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
1086 | |||
1087 | args->remote_nentries = ch->remote_nentries; | ||
1088 | args->local_nentries = ch->local_nentries; | ||
1089 | args->local_msgqueue_pa = __pa(ch->local_msgqueue); | ||
1090 | |||
1091 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags); | ||
1092 | } | ||
1093 | |||
1094 | static inline void | ||
1095 | xpc_IPI_send_msgrequest(struct xpc_channel *ch) | ||
1096 | { | ||
1097 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL); | ||
1098 | } | ||
1099 | |||
1100 | static inline void | ||
1101 | xpc_IPI_send_local_msgrequest(struct xpc_channel *ch) | ||
1102 | { | ||
1103 | XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST); | ||
1104 | } | ||
1105 | |||
1106 | /* | ||
1107 | * Memory for XPC's AMO variables is allocated by the MSPEC driver. These | ||
1108 | * pages are located in the lowest granule. The lowest granule uses 4k pages | ||
1109 | * for cached references and an alternate TLB handler to never provide a | ||
1110 | * cacheable mapping for the entire region. This will prevent speculative | ||
1111 | * reading of cached copies of our lines from being issued which will cause | ||
1112 | * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64 | ||
1113 | * AMO variables (based on XP_MAX_PARTITIONS) for message notification and an | ||
1114 | * additional 128 AMO variables (based on XP_NASID_MASK_WORDS) for partition | ||
1115 | * activation and 2 AMO variables for partition deactivation. | ||
1116 | */ | ||
1117 | static inline AMO_t * | ||
1118 | xpc_IPI_init(int index) | ||
1119 | { | ||
1120 | AMO_t *amo = xpc_vars->amos_page + index; | ||
1121 | |||
1122 | (void)xpc_IPI_receive(amo); /* clear AMO variable */ | ||
1123 | return amo; | ||
1124 | } | ||
1125 | |||
1126 | static inline enum xpc_retval | ||
1127 | xpc_map_bte_errors(bte_result_t error) | ||
1128 | { | ||
1129 | if (error == BTE_SUCCESS) | ||
1130 | return xpcSuccess; | ||
1131 | |||
1132 | if (is_shub2()) { | ||
1133 | if (BTE_VALID_SH2_ERROR(error)) | ||
1134 | return xpcBteSh2Start + error; | ||
1135 | return xpcBteUnmappedError; | ||
1136 | } | ||
1137 | switch (error) { | ||
1138 | case BTE_SUCCESS: | ||
1139 | return xpcSuccess; | ||
1140 | case BTEFAIL_DIR: | ||
1141 | return xpcBteDirectoryError; | ||
1142 | case BTEFAIL_POISON: | ||
1143 | return xpcBtePoisonError; | ||
1144 | case BTEFAIL_WERR: | ||
1145 | return xpcBteWriteError; | ||
1146 | case BTEFAIL_ACCESS: | ||
1147 | return xpcBteAccessError; | ||
1148 | case BTEFAIL_PWERR: | ||
1149 | return xpcBtePWriteError; | ||
1150 | case BTEFAIL_PRERR: | ||
1151 | return xpcBtePReadError; | ||
1152 | case BTEFAIL_TOUT: | ||
1153 | return xpcBteTimeOutError; | ||
1154 | case BTEFAIL_XTERR: | ||
1155 | return xpcBteXtalkError; | ||
1156 | case BTEFAIL_NOTAVAIL: | ||
1157 | return xpcBteNotAvailable; | ||
1158 | default: | ||
1159 | return xpcBteUnmappedError; | ||
1160 | } | ||
1161 | } | ||
1162 | |||
1163 | /* | ||
1164 | * Check to see if there is any channel activity to/from the specified | ||
1165 | * partition. | ||
1166 | */ | ||
1167 | static inline void | ||
1168 | xpc_check_for_channel_activity(struct xpc_partition *part) | ||
1169 | { | ||
1170 | u64 IPI_amo; | ||
1171 | unsigned long irq_flags; | ||
1172 | |||
1173 | IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va); | ||
1174 | if (IPI_amo == 0) | ||
1175 | return; | ||
1176 | |||
1177 | spin_lock_irqsave(&part->IPI_lock, irq_flags); | ||
1178 | part->local_IPI_amo |= IPI_amo; | ||
1179 | spin_unlock_irqrestore(&part->IPI_lock, irq_flags); | ||
1180 | |||
1181 | dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n", | ||
1182 | XPC_PARTID(part), IPI_amo); | ||
1183 | |||
1184 | xpc_wakeup_channel_mgr(part); | ||
1185 | } | ||
1186 | |||
1187 | #endif /* _DRIVERS_MISC_SGIXP_XPC_H */ | ||
diff --git a/drivers/misc/sgi-xp/xpc_channel.c b/drivers/misc/sgi-xp/xpc_channel.c new file mode 100644 index 000000000000..bfcb9ea968e9 --- /dev/null +++ b/drivers/misc/sgi-xp/xpc_channel.c | |||
@@ -0,0 +1,2243 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition Communication (XPC) channel support. | ||
11 | * | ||
12 | * This is the part of XPC that manages the channels and | ||
13 | * sends/receives messages across them to/from other partitions. | ||
14 | * | ||
15 | */ | ||
16 | |||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/sched.h> | ||
20 | #include <linux/cache.h> | ||
21 | #include <linux/interrupt.h> | ||
22 | #include <linux/mutex.h> | ||
23 | #include <linux/completion.h> | ||
24 | #include <asm/sn/bte.h> | ||
25 | #include <asm/sn/sn_sal.h> | ||
26 | #include "xpc.h" | ||
27 | |||
28 | /* | ||
29 | * Guarantee that the kzalloc'd memory is cacheline aligned. | ||
30 | */ | ||
31 | static void * | ||
32 | xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) | ||
33 | { | ||
34 | /* see if kzalloc will give us cachline aligned memory by default */ | ||
35 | *base = kzalloc(size, flags); | ||
36 | if (*base == NULL) | ||
37 | return NULL; | ||
38 | |||
39 | if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) | ||
40 | return *base; | ||
41 | |||
42 | kfree(*base); | ||
43 | |||
44 | /* nope, we'll have to do it ourselves */ | ||
45 | *base = kzalloc(size + L1_CACHE_BYTES, flags); | ||
46 | if (*base == NULL) | ||
47 | return NULL; | ||
48 | |||
49 | return (void *)L1_CACHE_ALIGN((u64)*base); | ||
50 | } | ||
51 | |||
52 | /* | ||
53 | * Set up the initial values for the XPartition Communication channels. | ||
54 | */ | ||
55 | static void | ||
56 | xpc_initialize_channels(struct xpc_partition *part, partid_t partid) | ||
57 | { | ||
58 | int ch_number; | ||
59 | struct xpc_channel *ch; | ||
60 | |||
61 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
62 | ch = &part->channels[ch_number]; | ||
63 | |||
64 | ch->partid = partid; | ||
65 | ch->number = ch_number; | ||
66 | ch->flags = XPC_C_DISCONNECTED; | ||
67 | |||
68 | ch->local_GP = &part->local_GPs[ch_number]; | ||
69 | ch->local_openclose_args = | ||
70 | &part->local_openclose_args[ch_number]; | ||
71 | |||
72 | atomic_set(&ch->kthreads_assigned, 0); | ||
73 | atomic_set(&ch->kthreads_idle, 0); | ||
74 | atomic_set(&ch->kthreads_active, 0); | ||
75 | |||
76 | atomic_set(&ch->references, 0); | ||
77 | atomic_set(&ch->n_to_notify, 0); | ||
78 | |||
79 | spin_lock_init(&ch->lock); | ||
80 | mutex_init(&ch->msg_to_pull_mutex); | ||
81 | init_completion(&ch->wdisconnect_wait); | ||
82 | |||
83 | atomic_set(&ch->n_on_msg_allocate_wq, 0); | ||
84 | init_waitqueue_head(&ch->msg_allocate_wq); | ||
85 | init_waitqueue_head(&ch->idle_wq); | ||
86 | } | ||
87 | } | ||
88 | |||
89 | /* | ||
90 | * Setup the infrastructure necessary to support XPartition Communication | ||
91 | * between the specified remote partition and the local one. | ||
92 | */ | ||
93 | enum xpc_retval | ||
94 | xpc_setup_infrastructure(struct xpc_partition *part) | ||
95 | { | ||
96 | int ret, cpuid; | ||
97 | struct timer_list *timer; | ||
98 | partid_t partid = XPC_PARTID(part); | ||
99 | |||
100 | /* | ||
101 | * Zero out MOST of the entry for this partition. Only the fields | ||
102 | * starting with `nchannels' will be zeroed. The preceding fields must | ||
103 | * remain `viable' across partition ups and downs, since they may be | ||
104 | * referenced during this memset() operation. | ||
105 | */ | ||
106 | memset(&part->nchannels, 0, sizeof(struct xpc_partition) - | ||
107 | offsetof(struct xpc_partition, nchannels)); | ||
108 | |||
109 | /* | ||
110 | * Allocate all of the channel structures as a contiguous chunk of | ||
111 | * memory. | ||
112 | */ | ||
113 | part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_NCHANNELS, | ||
114 | GFP_KERNEL); | ||
115 | if (part->channels == NULL) { | ||
116 | dev_err(xpc_chan, "can't get memory for channels\n"); | ||
117 | return xpcNoMemory; | ||
118 | } | ||
119 | |||
120 | part->nchannels = XPC_NCHANNELS; | ||
121 | |||
122 | /* allocate all the required GET/PUT values */ | ||
123 | |||
124 | part->local_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, | ||
125 | GFP_KERNEL, | ||
126 | &part->local_GPs_base); | ||
127 | if (part->local_GPs == NULL) { | ||
128 | kfree(part->channels); | ||
129 | part->channels = NULL; | ||
130 | dev_err(xpc_chan, "can't get memory for local get/put " | ||
131 | "values\n"); | ||
132 | return xpcNoMemory; | ||
133 | } | ||
134 | |||
135 | part->remote_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, | ||
136 | GFP_KERNEL, | ||
137 | &part-> | ||
138 | remote_GPs_base); | ||
139 | if (part->remote_GPs == NULL) { | ||
140 | dev_err(xpc_chan, "can't get memory for remote get/put " | ||
141 | "values\n"); | ||
142 | kfree(part->local_GPs_base); | ||
143 | part->local_GPs = NULL; | ||
144 | kfree(part->channels); | ||
145 | part->channels = NULL; | ||
146 | return xpcNoMemory; | ||
147 | } | ||
148 | |||
149 | /* allocate all the required open and close args */ | ||
150 | |||
151 | part->local_openclose_args = | ||
152 | xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, | ||
153 | &part->local_openclose_args_base); | ||
154 | if (part->local_openclose_args == NULL) { | ||
155 | dev_err(xpc_chan, "can't get memory for local connect args\n"); | ||
156 | kfree(part->remote_GPs_base); | ||
157 | part->remote_GPs = NULL; | ||
158 | kfree(part->local_GPs_base); | ||
159 | part->local_GPs = NULL; | ||
160 | kfree(part->channels); | ||
161 | part->channels = NULL; | ||
162 | return xpcNoMemory; | ||
163 | } | ||
164 | |||
165 | part->remote_openclose_args = | ||
166 | xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, | ||
167 | &part->remote_openclose_args_base); | ||
168 | if (part->remote_openclose_args == NULL) { | ||
169 | dev_err(xpc_chan, "can't get memory for remote connect args\n"); | ||
170 | kfree(part->local_openclose_args_base); | ||
171 | part->local_openclose_args = NULL; | ||
172 | kfree(part->remote_GPs_base); | ||
173 | part->remote_GPs = NULL; | ||
174 | kfree(part->local_GPs_base); | ||
175 | part->local_GPs = NULL; | ||
176 | kfree(part->channels); | ||
177 | part->channels = NULL; | ||
178 | return xpcNoMemory; | ||
179 | } | ||
180 | |||
181 | xpc_initialize_channels(part, partid); | ||
182 | |||
183 | atomic_set(&part->nchannels_active, 0); | ||
184 | atomic_set(&part->nchannels_engaged, 0); | ||
185 | |||
186 | /* local_IPI_amo were set to 0 by an earlier memset() */ | ||
187 | |||
188 | /* Initialize this partitions AMO_t structure */ | ||
189 | part->local_IPI_amo_va = xpc_IPI_init(partid); | ||
190 | |||
191 | spin_lock_init(&part->IPI_lock); | ||
192 | |||
193 | atomic_set(&part->channel_mgr_requests, 1); | ||
194 | init_waitqueue_head(&part->channel_mgr_wq); | ||
195 | |||
196 | sprintf(part->IPI_owner, "xpc%02d", partid); | ||
197 | ret = request_irq(SGI_XPC_NOTIFY, xpc_notify_IRQ_handler, IRQF_SHARED, | ||
198 | part->IPI_owner, (void *)(u64)partid); | ||
199 | if (ret != 0) { | ||
200 | dev_err(xpc_chan, "can't register NOTIFY IRQ handler, " | ||
201 | "errno=%d\n", -ret); | ||
202 | kfree(part->remote_openclose_args_base); | ||
203 | part->remote_openclose_args = NULL; | ||
204 | kfree(part->local_openclose_args_base); | ||
205 | part->local_openclose_args = NULL; | ||
206 | kfree(part->remote_GPs_base); | ||
207 | part->remote_GPs = NULL; | ||
208 | kfree(part->local_GPs_base); | ||
209 | part->local_GPs = NULL; | ||
210 | kfree(part->channels); | ||
211 | part->channels = NULL; | ||
212 | return xpcLackOfResources; | ||
213 | } | ||
214 | |||
215 | /* Setup a timer to check for dropped IPIs */ | ||
216 | timer = &part->dropped_IPI_timer; | ||
217 | init_timer(timer); | ||
218 | timer->function = (void (*)(unsigned long))xpc_dropped_IPI_check; | ||
219 | timer->data = (unsigned long)part; | ||
220 | timer->expires = jiffies + XPC_P_DROPPED_IPI_WAIT; | ||
221 | add_timer(timer); | ||
222 | |||
223 | /* | ||
224 | * With the setting of the partition setup_state to XPC_P_SETUP, we're | ||
225 | * declaring that this partition is ready to go. | ||
226 | */ | ||
227 | part->setup_state = XPC_P_SETUP; | ||
228 | |||
229 | /* | ||
230 | * Setup the per partition specific variables required by the | ||
231 | * remote partition to establish channel connections with us. | ||
232 | * | ||
233 | * The setting of the magic # indicates that these per partition | ||
234 | * specific variables are ready to be used. | ||
235 | */ | ||
236 | xpc_vars_part[partid].GPs_pa = __pa(part->local_GPs); | ||
237 | xpc_vars_part[partid].openclose_args_pa = | ||
238 | __pa(part->local_openclose_args); | ||
239 | xpc_vars_part[partid].IPI_amo_pa = __pa(part->local_IPI_amo_va); | ||
240 | cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */ | ||
241 | xpc_vars_part[partid].IPI_nasid = cpuid_to_nasid(cpuid); | ||
242 | xpc_vars_part[partid].IPI_phys_cpuid = cpu_physical_id(cpuid); | ||
243 | xpc_vars_part[partid].nchannels = part->nchannels; | ||
244 | xpc_vars_part[partid].magic = XPC_VP_MAGIC1; | ||
245 | |||
246 | return xpcSuccess; | ||
247 | } | ||
248 | |||
249 | /* | ||
250 | * Create a wrapper that hides the underlying mechanism for pulling a cacheline | ||
251 | * (or multiple cachelines) from a remote partition. | ||
252 | * | ||
253 | * src must be a cacheline aligned physical address on the remote partition. | ||
254 | * dst must be a cacheline aligned virtual address on this partition. | ||
255 | * cnt must be an cacheline sized | ||
256 | */ | ||
257 | static enum xpc_retval | ||
258 | xpc_pull_remote_cachelines(struct xpc_partition *part, void *dst, | ||
259 | const void *src, size_t cnt) | ||
260 | { | ||
261 | bte_result_t bte_ret; | ||
262 | |||
263 | DBUG_ON((u64)src != L1_CACHE_ALIGN((u64)src)); | ||
264 | DBUG_ON((u64)dst != L1_CACHE_ALIGN((u64)dst)); | ||
265 | DBUG_ON(cnt != L1_CACHE_ALIGN(cnt)); | ||
266 | |||
267 | if (part->act_state == XPC_P_DEACTIVATING) | ||
268 | return part->reason; | ||
269 | |||
270 | bte_ret = xp_bte_copy((u64)src, (u64)dst, (u64)cnt, | ||
271 | (BTE_NORMAL | BTE_WACQUIRE), NULL); | ||
272 | if (bte_ret == BTE_SUCCESS) | ||
273 | return xpcSuccess; | ||
274 | |||
275 | dev_dbg(xpc_chan, "xp_bte_copy() from partition %d failed, ret=%d\n", | ||
276 | XPC_PARTID(part), bte_ret); | ||
277 | |||
278 | return xpc_map_bte_errors(bte_ret); | ||
279 | } | ||
280 | |||
281 | /* | ||
282 | * Pull the remote per partition specific variables from the specified | ||
283 | * partition. | ||
284 | */ | ||
285 | enum xpc_retval | ||
286 | xpc_pull_remote_vars_part(struct xpc_partition *part) | ||
287 | { | ||
288 | u8 buffer[L1_CACHE_BYTES * 2]; | ||
289 | struct xpc_vars_part *pulled_entry_cacheline = | ||
290 | (struct xpc_vars_part *)L1_CACHE_ALIGN((u64)buffer); | ||
291 | struct xpc_vars_part *pulled_entry; | ||
292 | u64 remote_entry_cacheline_pa, remote_entry_pa; | ||
293 | partid_t partid = XPC_PARTID(part); | ||
294 | enum xpc_retval ret; | ||
295 | |||
296 | /* pull the cacheline that contains the variables we're interested in */ | ||
297 | |||
298 | DBUG_ON(part->remote_vars_part_pa != | ||
299 | L1_CACHE_ALIGN(part->remote_vars_part_pa)); | ||
300 | DBUG_ON(sizeof(struct xpc_vars_part) != L1_CACHE_BYTES / 2); | ||
301 | |||
302 | remote_entry_pa = part->remote_vars_part_pa + | ||
303 | sn_partition_id * sizeof(struct xpc_vars_part); | ||
304 | |||
305 | remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1)); | ||
306 | |||
307 | pulled_entry = (struct xpc_vars_part *)((u64)pulled_entry_cacheline + | ||
308 | (remote_entry_pa & | ||
309 | (L1_CACHE_BYTES - 1))); | ||
310 | |||
311 | ret = xpc_pull_remote_cachelines(part, pulled_entry_cacheline, | ||
312 | (void *)remote_entry_cacheline_pa, | ||
313 | L1_CACHE_BYTES); | ||
314 | if (ret != xpcSuccess) { | ||
315 | dev_dbg(xpc_chan, "failed to pull XPC vars_part from " | ||
316 | "partition %d, ret=%d\n", partid, ret); | ||
317 | return ret; | ||
318 | } | ||
319 | |||
320 | /* see if they've been set up yet */ | ||
321 | |||
322 | if (pulled_entry->magic != XPC_VP_MAGIC1 && | ||
323 | pulled_entry->magic != XPC_VP_MAGIC2) { | ||
324 | |||
325 | if (pulled_entry->magic != 0) { | ||
326 | dev_dbg(xpc_chan, "partition %d's XPC vars_part for " | ||
327 | "partition %d has bad magic value (=0x%lx)\n", | ||
328 | partid, sn_partition_id, pulled_entry->magic); | ||
329 | return xpcBadMagic; | ||
330 | } | ||
331 | |||
332 | /* they've not been initialized yet */ | ||
333 | return xpcRetry; | ||
334 | } | ||
335 | |||
336 | if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) { | ||
337 | |||
338 | /* validate the variables */ | ||
339 | |||
340 | if (pulled_entry->GPs_pa == 0 || | ||
341 | pulled_entry->openclose_args_pa == 0 || | ||
342 | pulled_entry->IPI_amo_pa == 0) { | ||
343 | |||
344 | dev_err(xpc_chan, "partition %d's XPC vars_part for " | ||
345 | "partition %d are not valid\n", partid, | ||
346 | sn_partition_id); | ||
347 | return xpcInvalidAddress; | ||
348 | } | ||
349 | |||
350 | /* the variables we imported look to be valid */ | ||
351 | |||
352 | part->remote_GPs_pa = pulled_entry->GPs_pa; | ||
353 | part->remote_openclose_args_pa = | ||
354 | pulled_entry->openclose_args_pa; | ||
355 | part->remote_IPI_amo_va = | ||
356 | (AMO_t *)__va(pulled_entry->IPI_amo_pa); | ||
357 | part->remote_IPI_nasid = pulled_entry->IPI_nasid; | ||
358 | part->remote_IPI_phys_cpuid = pulled_entry->IPI_phys_cpuid; | ||
359 | |||
360 | if (part->nchannels > pulled_entry->nchannels) | ||
361 | part->nchannels = pulled_entry->nchannels; | ||
362 | |||
363 | /* let the other side know that we've pulled their variables */ | ||
364 | |||
365 | xpc_vars_part[partid].magic = XPC_VP_MAGIC2; | ||
366 | } | ||
367 | |||
368 | if (pulled_entry->magic == XPC_VP_MAGIC1) | ||
369 | return xpcRetry; | ||
370 | |||
371 | return xpcSuccess; | ||
372 | } | ||
373 | |||
374 | /* | ||
375 | * Get the IPI flags and pull the openclose args and/or remote GPs as needed. | ||
376 | */ | ||
377 | static u64 | ||
378 | xpc_get_IPI_flags(struct xpc_partition *part) | ||
379 | { | ||
380 | unsigned long irq_flags; | ||
381 | u64 IPI_amo; | ||
382 | enum xpc_retval ret; | ||
383 | |||
384 | /* | ||
385 | * See if there are any IPI flags to be handled. | ||
386 | */ | ||
387 | |||
388 | spin_lock_irqsave(&part->IPI_lock, irq_flags); | ||
389 | IPI_amo = part->local_IPI_amo; | ||
390 | if (IPI_amo != 0) | ||
391 | part->local_IPI_amo = 0; | ||
392 | |||
393 | spin_unlock_irqrestore(&part->IPI_lock, irq_flags); | ||
394 | |||
395 | if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_amo)) { | ||
396 | ret = xpc_pull_remote_cachelines(part, | ||
397 | part->remote_openclose_args, | ||
398 | (void *)part-> | ||
399 | remote_openclose_args_pa, | ||
400 | XPC_OPENCLOSE_ARGS_SIZE); | ||
401 | if (ret != xpcSuccess) { | ||
402 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
403 | |||
404 | dev_dbg(xpc_chan, "failed to pull openclose args from " | ||
405 | "partition %d, ret=%d\n", XPC_PARTID(part), | ||
406 | ret); | ||
407 | |||
408 | /* don't bother processing IPIs anymore */ | ||
409 | IPI_amo = 0; | ||
410 | } | ||
411 | } | ||
412 | |||
413 | if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_amo)) { | ||
414 | ret = xpc_pull_remote_cachelines(part, part->remote_GPs, | ||
415 | (void *)part->remote_GPs_pa, | ||
416 | XPC_GP_SIZE); | ||
417 | if (ret != xpcSuccess) { | ||
418 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
419 | |||
420 | dev_dbg(xpc_chan, "failed to pull GPs from partition " | ||
421 | "%d, ret=%d\n", XPC_PARTID(part), ret); | ||
422 | |||
423 | /* don't bother processing IPIs anymore */ | ||
424 | IPI_amo = 0; | ||
425 | } | ||
426 | } | ||
427 | |||
428 | return IPI_amo; | ||
429 | } | ||
430 | |||
431 | /* | ||
432 | * Allocate the local message queue and the notify queue. | ||
433 | */ | ||
434 | static enum xpc_retval | ||
435 | xpc_allocate_local_msgqueue(struct xpc_channel *ch) | ||
436 | { | ||
437 | unsigned long irq_flags; | ||
438 | int nentries; | ||
439 | size_t nbytes; | ||
440 | |||
441 | for (nentries = ch->local_nentries; nentries > 0; nentries--) { | ||
442 | |||
443 | nbytes = nentries * ch->msg_size; | ||
444 | ch->local_msgqueue = xpc_kzalloc_cacheline_aligned(nbytes, | ||
445 | GFP_KERNEL, | ||
446 | &ch->local_msgqueue_base); | ||
447 | if (ch->local_msgqueue == NULL) | ||
448 | continue; | ||
449 | |||
450 | nbytes = nentries * sizeof(struct xpc_notify); | ||
451 | ch->notify_queue = kzalloc(nbytes, GFP_KERNEL); | ||
452 | if (ch->notify_queue == NULL) { | ||
453 | kfree(ch->local_msgqueue_base); | ||
454 | ch->local_msgqueue = NULL; | ||
455 | continue; | ||
456 | } | ||
457 | |||
458 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
459 | if (nentries < ch->local_nentries) { | ||
460 | dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, " | ||
461 | "partid=%d, channel=%d\n", nentries, | ||
462 | ch->local_nentries, ch->partid, ch->number); | ||
463 | |||
464 | ch->local_nentries = nentries; | ||
465 | } | ||
466 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
467 | return xpcSuccess; | ||
468 | } | ||
469 | |||
470 | dev_dbg(xpc_chan, "can't get memory for local message queue and notify " | ||
471 | "queue, partid=%d, channel=%d\n", ch->partid, ch->number); | ||
472 | return xpcNoMemory; | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * Allocate the cached remote message queue. | ||
477 | */ | ||
478 | static enum xpc_retval | ||
479 | xpc_allocate_remote_msgqueue(struct xpc_channel *ch) | ||
480 | { | ||
481 | unsigned long irq_flags; | ||
482 | int nentries; | ||
483 | size_t nbytes; | ||
484 | |||
485 | DBUG_ON(ch->remote_nentries <= 0); | ||
486 | |||
487 | for (nentries = ch->remote_nentries; nentries > 0; nentries--) { | ||
488 | |||
489 | nbytes = nentries * ch->msg_size; | ||
490 | ch->remote_msgqueue = xpc_kzalloc_cacheline_aligned(nbytes, | ||
491 | GFP_KERNEL, | ||
492 | &ch->remote_msgqueue_base); | ||
493 | if (ch->remote_msgqueue == NULL) | ||
494 | continue; | ||
495 | |||
496 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
497 | if (nentries < ch->remote_nentries) { | ||
498 | dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, " | ||
499 | "partid=%d, channel=%d\n", nentries, | ||
500 | ch->remote_nentries, ch->partid, ch->number); | ||
501 | |||
502 | ch->remote_nentries = nentries; | ||
503 | } | ||
504 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
505 | return xpcSuccess; | ||
506 | } | ||
507 | |||
508 | dev_dbg(xpc_chan, "can't get memory for cached remote message queue, " | ||
509 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
510 | return xpcNoMemory; | ||
511 | } | ||
512 | |||
513 | /* | ||
514 | * Allocate message queues and other stuff associated with a channel. | ||
515 | * | ||
516 | * Note: Assumes all of the channel sizes are filled in. | ||
517 | */ | ||
518 | static enum xpc_retval | ||
519 | xpc_allocate_msgqueues(struct xpc_channel *ch) | ||
520 | { | ||
521 | unsigned long irq_flags; | ||
522 | enum xpc_retval ret; | ||
523 | |||
524 | DBUG_ON(ch->flags & XPC_C_SETUP); | ||
525 | |||
526 | ret = xpc_allocate_local_msgqueue(ch); | ||
527 | if (ret != xpcSuccess) | ||
528 | return ret; | ||
529 | |||
530 | ret = xpc_allocate_remote_msgqueue(ch); | ||
531 | if (ret != xpcSuccess) { | ||
532 | kfree(ch->local_msgqueue_base); | ||
533 | ch->local_msgqueue = NULL; | ||
534 | kfree(ch->notify_queue); | ||
535 | ch->notify_queue = NULL; | ||
536 | return ret; | ||
537 | } | ||
538 | |||
539 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
540 | ch->flags |= XPC_C_SETUP; | ||
541 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
542 | |||
543 | return xpcSuccess; | ||
544 | } | ||
545 | |||
546 | /* | ||
547 | * Process a connect message from a remote partition. | ||
548 | * | ||
549 | * Note: xpc_process_connect() is expecting to be called with the | ||
550 | * spin_lock_irqsave held and will leave it locked upon return. | ||
551 | */ | ||
552 | static void | ||
553 | xpc_process_connect(struct xpc_channel *ch, unsigned long *irq_flags) | ||
554 | { | ||
555 | enum xpc_retval ret; | ||
556 | |||
557 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
558 | |||
559 | if (!(ch->flags & XPC_C_OPENREQUEST) || | ||
560 | !(ch->flags & XPC_C_ROPENREQUEST)) { | ||
561 | /* nothing more to do for now */ | ||
562 | return; | ||
563 | } | ||
564 | DBUG_ON(!(ch->flags & XPC_C_CONNECTING)); | ||
565 | |||
566 | if (!(ch->flags & XPC_C_SETUP)) { | ||
567 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
568 | ret = xpc_allocate_msgqueues(ch); | ||
569 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
570 | |||
571 | if (ret != xpcSuccess) | ||
572 | XPC_DISCONNECT_CHANNEL(ch, ret, irq_flags); | ||
573 | |||
574 | if (ch->flags & (XPC_C_CONNECTED | XPC_C_DISCONNECTING)) | ||
575 | return; | ||
576 | |||
577 | DBUG_ON(!(ch->flags & XPC_C_SETUP)); | ||
578 | DBUG_ON(ch->local_msgqueue == NULL); | ||
579 | DBUG_ON(ch->remote_msgqueue == NULL); | ||
580 | } | ||
581 | |||
582 | if (!(ch->flags & XPC_C_OPENREPLY)) { | ||
583 | ch->flags |= XPC_C_OPENREPLY; | ||
584 | xpc_IPI_send_openreply(ch, irq_flags); | ||
585 | } | ||
586 | |||
587 | if (!(ch->flags & XPC_C_ROPENREPLY)) | ||
588 | return; | ||
589 | |||
590 | DBUG_ON(ch->remote_msgqueue_pa == 0); | ||
591 | |||
592 | ch->flags = (XPC_C_CONNECTED | XPC_C_SETUP); /* clear all else */ | ||
593 | |||
594 | dev_info(xpc_chan, "channel %d to partition %d connected\n", | ||
595 | ch->number, ch->partid); | ||
596 | |||
597 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
598 | xpc_create_kthreads(ch, 1, 0); | ||
599 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
600 | } | ||
601 | |||
602 | /* | ||
603 | * Notify those who wanted to be notified upon delivery of their message. | ||
604 | */ | ||
605 | static void | ||
606 | xpc_notify_senders(struct xpc_channel *ch, enum xpc_retval reason, s64 put) | ||
607 | { | ||
608 | struct xpc_notify *notify; | ||
609 | u8 notify_type; | ||
610 | s64 get = ch->w_remote_GP.get - 1; | ||
611 | |||
612 | while (++get < put && atomic_read(&ch->n_to_notify) > 0) { | ||
613 | |||
614 | notify = &ch->notify_queue[get % ch->local_nentries]; | ||
615 | |||
616 | /* | ||
617 | * See if the notify entry indicates it was associated with | ||
618 | * a message who's sender wants to be notified. It is possible | ||
619 | * that it is, but someone else is doing or has done the | ||
620 | * notification. | ||
621 | */ | ||
622 | notify_type = notify->type; | ||
623 | if (notify_type == 0 || | ||
624 | cmpxchg(¬ify->type, notify_type, 0) != notify_type) { | ||
625 | continue; | ||
626 | } | ||
627 | |||
628 | DBUG_ON(notify_type != XPC_N_CALL); | ||
629 | |||
630 | atomic_dec(&ch->n_to_notify); | ||
631 | |||
632 | if (notify->func != NULL) { | ||
633 | dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, " | ||
634 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
635 | (void *)notify, get, ch->partid, ch->number); | ||
636 | |||
637 | notify->func(reason, ch->partid, ch->number, | ||
638 | notify->key); | ||
639 | |||
640 | dev_dbg(xpc_chan, "notify->func() returned, " | ||
641 | "notify=0x%p, msg_number=%ld, partid=%d, " | ||
642 | "channel=%d\n", (void *)notify, get, | ||
643 | ch->partid, ch->number); | ||
644 | } | ||
645 | } | ||
646 | } | ||
647 | |||
648 | /* | ||
649 | * Free up message queues and other stuff that were allocated for the specified | ||
650 | * channel. | ||
651 | * | ||
652 | * Note: ch->reason and ch->reason_line are left set for debugging purposes, | ||
653 | * they're cleared when XPC_C_DISCONNECTED is cleared. | ||
654 | */ | ||
655 | static void | ||
656 | xpc_free_msgqueues(struct xpc_channel *ch) | ||
657 | { | ||
658 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
659 | DBUG_ON(atomic_read(&ch->n_to_notify) != 0); | ||
660 | |||
661 | ch->remote_msgqueue_pa = 0; | ||
662 | ch->func = NULL; | ||
663 | ch->key = NULL; | ||
664 | ch->msg_size = 0; | ||
665 | ch->local_nentries = 0; | ||
666 | ch->remote_nentries = 0; | ||
667 | ch->kthreads_assigned_limit = 0; | ||
668 | ch->kthreads_idle_limit = 0; | ||
669 | |||
670 | ch->local_GP->get = 0; | ||
671 | ch->local_GP->put = 0; | ||
672 | ch->remote_GP.get = 0; | ||
673 | ch->remote_GP.put = 0; | ||
674 | ch->w_local_GP.get = 0; | ||
675 | ch->w_local_GP.put = 0; | ||
676 | ch->w_remote_GP.get = 0; | ||
677 | ch->w_remote_GP.put = 0; | ||
678 | ch->next_msg_to_pull = 0; | ||
679 | |||
680 | if (ch->flags & XPC_C_SETUP) { | ||
681 | ch->flags &= ~XPC_C_SETUP; | ||
682 | |||
683 | dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n", | ||
684 | ch->flags, ch->partid, ch->number); | ||
685 | |||
686 | kfree(ch->local_msgqueue_base); | ||
687 | ch->local_msgqueue = NULL; | ||
688 | kfree(ch->remote_msgqueue_base); | ||
689 | ch->remote_msgqueue = NULL; | ||
690 | kfree(ch->notify_queue); | ||
691 | ch->notify_queue = NULL; | ||
692 | } | ||
693 | } | ||
694 | |||
695 | /* | ||
696 | * spin_lock_irqsave() is expected to be held on entry. | ||
697 | */ | ||
698 | static void | ||
699 | xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) | ||
700 | { | ||
701 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
702 | u32 channel_was_connected = (ch->flags & XPC_C_WASCONNECTED); | ||
703 | |||
704 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
705 | |||
706 | if (!(ch->flags & XPC_C_DISCONNECTING)) | ||
707 | return; | ||
708 | |||
709 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | ||
710 | |||
711 | /* make sure all activity has settled down first */ | ||
712 | |||
713 | if (atomic_read(&ch->kthreads_assigned) > 0 || | ||
714 | atomic_read(&ch->references) > 0) { | ||
715 | return; | ||
716 | } | ||
717 | DBUG_ON((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && | ||
718 | !(ch->flags & XPC_C_DISCONNECTINGCALLOUT_MADE)); | ||
719 | |||
720 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
721 | /* can't proceed until the other side disengages from us */ | ||
722 | if (xpc_partition_engaged(1UL << ch->partid)) | ||
723 | return; | ||
724 | |||
725 | } else { | ||
726 | |||
727 | /* as long as the other side is up do the full protocol */ | ||
728 | |||
729 | if (!(ch->flags & XPC_C_RCLOSEREQUEST)) | ||
730 | return; | ||
731 | |||
732 | if (!(ch->flags & XPC_C_CLOSEREPLY)) { | ||
733 | ch->flags |= XPC_C_CLOSEREPLY; | ||
734 | xpc_IPI_send_closereply(ch, irq_flags); | ||
735 | } | ||
736 | |||
737 | if (!(ch->flags & XPC_C_RCLOSEREPLY)) | ||
738 | return; | ||
739 | } | ||
740 | |||
741 | /* wake those waiting for notify completion */ | ||
742 | if (atomic_read(&ch->n_to_notify) > 0) { | ||
743 | /* >>> we do callout while holding ch->lock */ | ||
744 | xpc_notify_senders(ch, ch->reason, ch->w_local_GP.put); | ||
745 | } | ||
746 | |||
747 | /* both sides are disconnected now */ | ||
748 | |||
749 | if (ch->flags & XPC_C_DISCONNECTINGCALLOUT_MADE) { | ||
750 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
751 | xpc_disconnect_callout(ch, xpcDisconnected); | ||
752 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
753 | } | ||
754 | |||
755 | /* it's now safe to free the channel's message queues */ | ||
756 | xpc_free_msgqueues(ch); | ||
757 | |||
758 | /* mark disconnected, clear all other flags except XPC_C_WDISCONNECT */ | ||
759 | ch->flags = (XPC_C_DISCONNECTED | (ch->flags & XPC_C_WDISCONNECT)); | ||
760 | |||
761 | atomic_dec(&part->nchannels_active); | ||
762 | |||
763 | if (channel_was_connected) { | ||
764 | dev_info(xpc_chan, "channel %d to partition %d disconnected, " | ||
765 | "reason=%d\n", ch->number, ch->partid, ch->reason); | ||
766 | } | ||
767 | |||
768 | if (ch->flags & XPC_C_WDISCONNECT) { | ||
769 | /* we won't lose the CPU since we're holding ch->lock */ | ||
770 | complete(&ch->wdisconnect_wait); | ||
771 | } else if (ch->delayed_IPI_flags) { | ||
772 | if (part->act_state != XPC_P_DEACTIVATING) { | ||
773 | /* time to take action on any delayed IPI flags */ | ||
774 | spin_lock(&part->IPI_lock); | ||
775 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, ch->number, | ||
776 | ch->delayed_IPI_flags); | ||
777 | spin_unlock(&part->IPI_lock); | ||
778 | } | ||
779 | ch->delayed_IPI_flags = 0; | ||
780 | } | ||
781 | } | ||
782 | |||
783 | /* | ||
784 | * Process a change in the channel's remote connection state. | ||
785 | */ | ||
786 | static void | ||
787 | xpc_process_openclose_IPI(struct xpc_partition *part, int ch_number, | ||
788 | u8 IPI_flags) | ||
789 | { | ||
790 | unsigned long irq_flags; | ||
791 | struct xpc_openclose_args *args = | ||
792 | &part->remote_openclose_args[ch_number]; | ||
793 | struct xpc_channel *ch = &part->channels[ch_number]; | ||
794 | enum xpc_retval reason; | ||
795 | |||
796 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
797 | |||
798 | again: | ||
799 | |||
800 | if ((ch->flags & XPC_C_DISCONNECTED) && | ||
801 | (ch->flags & XPC_C_WDISCONNECT)) { | ||
802 | /* | ||
803 | * Delay processing IPI flags until thread waiting disconnect | ||
804 | * has had a chance to see that the channel is disconnected. | ||
805 | */ | ||
806 | ch->delayed_IPI_flags |= IPI_flags; | ||
807 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
808 | return; | ||
809 | } | ||
810 | |||
811 | if (IPI_flags & XPC_IPI_CLOSEREQUEST) { | ||
812 | |||
813 | dev_dbg(xpc_chan, "XPC_IPI_CLOSEREQUEST (reason=%d) received " | ||
814 | "from partid=%d, channel=%d\n", args->reason, | ||
815 | ch->partid, ch->number); | ||
816 | |||
817 | /* | ||
818 | * If RCLOSEREQUEST is set, we're probably waiting for | ||
819 | * RCLOSEREPLY. We should find it and a ROPENREQUEST packed | ||
820 | * with this RCLOSEREQUEST in the IPI_flags. | ||
821 | */ | ||
822 | |||
823 | if (ch->flags & XPC_C_RCLOSEREQUEST) { | ||
824 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTING)); | ||
825 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | ||
826 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREPLY)); | ||
827 | DBUG_ON(ch->flags & XPC_C_RCLOSEREPLY); | ||
828 | |||
829 | DBUG_ON(!(IPI_flags & XPC_IPI_CLOSEREPLY)); | ||
830 | IPI_flags &= ~XPC_IPI_CLOSEREPLY; | ||
831 | ch->flags |= XPC_C_RCLOSEREPLY; | ||
832 | |||
833 | /* both sides have finished disconnecting */ | ||
834 | xpc_process_disconnect(ch, &irq_flags); | ||
835 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); | ||
836 | goto again; | ||
837 | } | ||
838 | |||
839 | if (ch->flags & XPC_C_DISCONNECTED) { | ||
840 | if (!(IPI_flags & XPC_IPI_OPENREQUEST)) { | ||
841 | if ((XPC_GET_IPI_FLAGS(part->local_IPI_amo, | ||
842 | ch_number) & | ||
843 | XPC_IPI_OPENREQUEST)) { | ||
844 | |||
845 | DBUG_ON(ch->delayed_IPI_flags != 0); | ||
846 | spin_lock(&part->IPI_lock); | ||
847 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, | ||
848 | ch_number, | ||
849 | XPC_IPI_CLOSEREQUEST); | ||
850 | spin_unlock(&part->IPI_lock); | ||
851 | } | ||
852 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
853 | return; | ||
854 | } | ||
855 | |||
856 | XPC_SET_REASON(ch, 0, 0); | ||
857 | ch->flags &= ~XPC_C_DISCONNECTED; | ||
858 | |||
859 | atomic_inc(&part->nchannels_active); | ||
860 | ch->flags |= (XPC_C_CONNECTING | XPC_C_ROPENREQUEST); | ||
861 | } | ||
862 | |||
863 | IPI_flags &= ~(XPC_IPI_OPENREQUEST | XPC_IPI_OPENREPLY); | ||
864 | |||
865 | /* | ||
866 | * The meaningful CLOSEREQUEST connection state fields are: | ||
867 | * reason = reason connection is to be closed | ||
868 | */ | ||
869 | |||
870 | ch->flags |= XPC_C_RCLOSEREQUEST; | ||
871 | |||
872 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
873 | reason = args->reason; | ||
874 | if (reason <= xpcSuccess || reason > xpcUnknownReason) | ||
875 | reason = xpcUnknownReason; | ||
876 | else if (reason == xpcUnregistering) | ||
877 | reason = xpcOtherUnregistering; | ||
878 | |||
879 | XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); | ||
880 | |||
881 | DBUG_ON(IPI_flags & XPC_IPI_CLOSEREPLY); | ||
882 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
883 | return; | ||
884 | } | ||
885 | |||
886 | xpc_process_disconnect(ch, &irq_flags); | ||
887 | } | ||
888 | |||
889 | if (IPI_flags & XPC_IPI_CLOSEREPLY) { | ||
890 | |||
891 | dev_dbg(xpc_chan, "XPC_IPI_CLOSEREPLY received from partid=%d," | ||
892 | " channel=%d\n", ch->partid, ch->number); | ||
893 | |||
894 | if (ch->flags & XPC_C_DISCONNECTED) { | ||
895 | DBUG_ON(part->act_state != XPC_P_DEACTIVATING); | ||
896 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
897 | return; | ||
898 | } | ||
899 | |||
900 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | ||
901 | |||
902 | if (!(ch->flags & XPC_C_RCLOSEREQUEST)) { | ||
903 | if ((XPC_GET_IPI_FLAGS(part->local_IPI_amo, ch_number) | ||
904 | & XPC_IPI_CLOSEREQUEST)) { | ||
905 | |||
906 | DBUG_ON(ch->delayed_IPI_flags != 0); | ||
907 | spin_lock(&part->IPI_lock); | ||
908 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, | ||
909 | ch_number, | ||
910 | XPC_IPI_CLOSEREPLY); | ||
911 | spin_unlock(&part->IPI_lock); | ||
912 | } | ||
913 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
914 | return; | ||
915 | } | ||
916 | |||
917 | ch->flags |= XPC_C_RCLOSEREPLY; | ||
918 | |||
919 | if (ch->flags & XPC_C_CLOSEREPLY) { | ||
920 | /* both sides have finished disconnecting */ | ||
921 | xpc_process_disconnect(ch, &irq_flags); | ||
922 | } | ||
923 | } | ||
924 | |||
925 | if (IPI_flags & XPC_IPI_OPENREQUEST) { | ||
926 | |||
927 | dev_dbg(xpc_chan, "XPC_IPI_OPENREQUEST (msg_size=%d, " | ||
928 | "local_nentries=%d) received from partid=%d, " | ||
929 | "channel=%d\n", args->msg_size, args->local_nentries, | ||
930 | ch->partid, ch->number); | ||
931 | |||
932 | if (part->act_state == XPC_P_DEACTIVATING || | ||
933 | (ch->flags & XPC_C_ROPENREQUEST)) { | ||
934 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
935 | return; | ||
936 | } | ||
937 | |||
938 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_WDISCONNECT)) { | ||
939 | ch->delayed_IPI_flags |= XPC_IPI_OPENREQUEST; | ||
940 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
941 | return; | ||
942 | } | ||
943 | DBUG_ON(!(ch->flags & (XPC_C_DISCONNECTED | | ||
944 | XPC_C_OPENREQUEST))); | ||
945 | DBUG_ON(ch->flags & (XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | | ||
946 | XPC_C_OPENREPLY | XPC_C_CONNECTED)); | ||
947 | |||
948 | /* | ||
949 | * The meaningful OPENREQUEST connection state fields are: | ||
950 | * msg_size = size of channel's messages in bytes | ||
951 | * local_nentries = remote partition's local_nentries | ||
952 | */ | ||
953 | if (args->msg_size == 0 || args->local_nentries == 0) { | ||
954 | /* assume OPENREQUEST was delayed by mistake */ | ||
955 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
956 | return; | ||
957 | } | ||
958 | |||
959 | ch->flags |= (XPC_C_ROPENREQUEST | XPC_C_CONNECTING); | ||
960 | ch->remote_nentries = args->local_nentries; | ||
961 | |||
962 | if (ch->flags & XPC_C_OPENREQUEST) { | ||
963 | if (args->msg_size != ch->msg_size) { | ||
964 | XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes, | ||
965 | &irq_flags); | ||
966 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
967 | return; | ||
968 | } | ||
969 | } else { | ||
970 | ch->msg_size = args->msg_size; | ||
971 | |||
972 | XPC_SET_REASON(ch, 0, 0); | ||
973 | ch->flags &= ~XPC_C_DISCONNECTED; | ||
974 | |||
975 | atomic_inc(&part->nchannels_active); | ||
976 | } | ||
977 | |||
978 | xpc_process_connect(ch, &irq_flags); | ||
979 | } | ||
980 | |||
981 | if (IPI_flags & XPC_IPI_OPENREPLY) { | ||
982 | |||
983 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY (local_msgqueue_pa=0x%lx, " | ||
984 | "local_nentries=%d, remote_nentries=%d) received from " | ||
985 | "partid=%d, channel=%d\n", args->local_msgqueue_pa, | ||
986 | args->local_nentries, args->remote_nentries, | ||
987 | ch->partid, ch->number); | ||
988 | |||
989 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) { | ||
990 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
991 | return; | ||
992 | } | ||
993 | if (!(ch->flags & XPC_C_OPENREQUEST)) { | ||
994 | XPC_DISCONNECT_CHANNEL(ch, xpcOpenCloseError, | ||
995 | &irq_flags); | ||
996 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
997 | return; | ||
998 | } | ||
999 | |||
1000 | DBUG_ON(!(ch->flags & XPC_C_ROPENREQUEST)); | ||
1001 | DBUG_ON(ch->flags & XPC_C_CONNECTED); | ||
1002 | |||
1003 | /* | ||
1004 | * The meaningful OPENREPLY connection state fields are: | ||
1005 | * local_msgqueue_pa = physical address of remote | ||
1006 | * partition's local_msgqueue | ||
1007 | * local_nentries = remote partition's local_nentries | ||
1008 | * remote_nentries = remote partition's remote_nentries | ||
1009 | */ | ||
1010 | DBUG_ON(args->local_msgqueue_pa == 0); | ||
1011 | DBUG_ON(args->local_nentries == 0); | ||
1012 | DBUG_ON(args->remote_nentries == 0); | ||
1013 | |||
1014 | ch->flags |= XPC_C_ROPENREPLY; | ||
1015 | ch->remote_msgqueue_pa = args->local_msgqueue_pa; | ||
1016 | |||
1017 | if (args->local_nentries < ch->remote_nentries) { | ||
1018 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " | ||
1019 | "remote_nentries=%d, old remote_nentries=%d, " | ||
1020 | "partid=%d, channel=%d\n", | ||
1021 | args->local_nentries, ch->remote_nentries, | ||
1022 | ch->partid, ch->number); | ||
1023 | |||
1024 | ch->remote_nentries = args->local_nentries; | ||
1025 | } | ||
1026 | if (args->remote_nentries < ch->local_nentries) { | ||
1027 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " | ||
1028 | "local_nentries=%d, old local_nentries=%d, " | ||
1029 | "partid=%d, channel=%d\n", | ||
1030 | args->remote_nentries, ch->local_nentries, | ||
1031 | ch->partid, ch->number); | ||
1032 | |||
1033 | ch->local_nentries = args->remote_nentries; | ||
1034 | } | ||
1035 | |||
1036 | xpc_process_connect(ch, &irq_flags); | ||
1037 | } | ||
1038 | |||
1039 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1040 | } | ||
1041 | |||
1042 | /* | ||
1043 | * Attempt to establish a channel connection to a remote partition. | ||
1044 | */ | ||
1045 | static enum xpc_retval | ||
1046 | xpc_connect_channel(struct xpc_channel *ch) | ||
1047 | { | ||
1048 | unsigned long irq_flags; | ||
1049 | struct xpc_registration *registration = &xpc_registrations[ch->number]; | ||
1050 | |||
1051 | if (mutex_trylock(®istration->mutex) == 0) | ||
1052 | return xpcRetry; | ||
1053 | |||
1054 | if (!XPC_CHANNEL_REGISTERED(ch->number)) { | ||
1055 | mutex_unlock(®istration->mutex); | ||
1056 | return xpcUnregistered; | ||
1057 | } | ||
1058 | |||
1059 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1060 | |||
1061 | DBUG_ON(ch->flags & XPC_C_CONNECTED); | ||
1062 | DBUG_ON(ch->flags & XPC_C_OPENREQUEST); | ||
1063 | |||
1064 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1065 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1066 | mutex_unlock(®istration->mutex); | ||
1067 | return ch->reason; | ||
1068 | } | ||
1069 | |||
1070 | /* add info from the channel connect registration to the channel */ | ||
1071 | |||
1072 | ch->kthreads_assigned_limit = registration->assigned_limit; | ||
1073 | ch->kthreads_idle_limit = registration->idle_limit; | ||
1074 | DBUG_ON(atomic_read(&ch->kthreads_assigned) != 0); | ||
1075 | DBUG_ON(atomic_read(&ch->kthreads_idle) != 0); | ||
1076 | DBUG_ON(atomic_read(&ch->kthreads_active) != 0); | ||
1077 | |||
1078 | ch->func = registration->func; | ||
1079 | DBUG_ON(registration->func == NULL); | ||
1080 | ch->key = registration->key; | ||
1081 | |||
1082 | ch->local_nentries = registration->nentries; | ||
1083 | |||
1084 | if (ch->flags & XPC_C_ROPENREQUEST) { | ||
1085 | if (registration->msg_size != ch->msg_size) { | ||
1086 | /* the local and remote sides aren't the same */ | ||
1087 | |||
1088 | /* | ||
1089 | * Because XPC_DISCONNECT_CHANNEL() can block we're | ||
1090 | * forced to up the registration sema before we unlock | ||
1091 | * the channel lock. But that's okay here because we're | ||
1092 | * done with the part that required the registration | ||
1093 | * sema. XPC_DISCONNECT_CHANNEL() requires that the | ||
1094 | * channel lock be locked and will unlock and relock | ||
1095 | * the channel lock as needed. | ||
1096 | */ | ||
1097 | mutex_unlock(®istration->mutex); | ||
1098 | XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes, | ||
1099 | &irq_flags); | ||
1100 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1101 | return xpcUnequalMsgSizes; | ||
1102 | } | ||
1103 | } else { | ||
1104 | ch->msg_size = registration->msg_size; | ||
1105 | |||
1106 | XPC_SET_REASON(ch, 0, 0); | ||
1107 | ch->flags &= ~XPC_C_DISCONNECTED; | ||
1108 | |||
1109 | atomic_inc(&xpc_partitions[ch->partid].nchannels_active); | ||
1110 | } | ||
1111 | |||
1112 | mutex_unlock(®istration->mutex); | ||
1113 | |||
1114 | /* initiate the connection */ | ||
1115 | |||
1116 | ch->flags |= (XPC_C_OPENREQUEST | XPC_C_CONNECTING); | ||
1117 | xpc_IPI_send_openrequest(ch, &irq_flags); | ||
1118 | |||
1119 | xpc_process_connect(ch, &irq_flags); | ||
1120 | |||
1121 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1122 | |||
1123 | return xpcSuccess; | ||
1124 | } | ||
1125 | |||
1126 | /* | ||
1127 | * Clear some of the msg flags in the local message queue. | ||
1128 | */ | ||
1129 | static inline void | ||
1130 | xpc_clear_local_msgqueue_flags(struct xpc_channel *ch) | ||
1131 | { | ||
1132 | struct xpc_msg *msg; | ||
1133 | s64 get; | ||
1134 | |||
1135 | get = ch->w_remote_GP.get; | ||
1136 | do { | ||
1137 | msg = (struct xpc_msg *)((u64)ch->local_msgqueue + | ||
1138 | (get % ch->local_nentries) * | ||
1139 | ch->msg_size); | ||
1140 | msg->flags = 0; | ||
1141 | } while (++get < ch->remote_GP.get); | ||
1142 | } | ||
1143 | |||
1144 | /* | ||
1145 | * Clear some of the msg flags in the remote message queue. | ||
1146 | */ | ||
1147 | static inline void | ||
1148 | xpc_clear_remote_msgqueue_flags(struct xpc_channel *ch) | ||
1149 | { | ||
1150 | struct xpc_msg *msg; | ||
1151 | s64 put; | ||
1152 | |||
1153 | put = ch->w_remote_GP.put; | ||
1154 | do { | ||
1155 | msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + | ||
1156 | (put % ch->remote_nentries) * | ||
1157 | ch->msg_size); | ||
1158 | msg->flags = 0; | ||
1159 | } while (++put < ch->remote_GP.put); | ||
1160 | } | ||
1161 | |||
1162 | static void | ||
1163 | xpc_process_msg_IPI(struct xpc_partition *part, int ch_number) | ||
1164 | { | ||
1165 | struct xpc_channel *ch = &part->channels[ch_number]; | ||
1166 | int nmsgs_sent; | ||
1167 | |||
1168 | ch->remote_GP = part->remote_GPs[ch_number]; | ||
1169 | |||
1170 | /* See what, if anything, has changed for each connected channel */ | ||
1171 | |||
1172 | xpc_msgqueue_ref(ch); | ||
1173 | |||
1174 | if (ch->w_remote_GP.get == ch->remote_GP.get && | ||
1175 | ch->w_remote_GP.put == ch->remote_GP.put) { | ||
1176 | /* nothing changed since GPs were last pulled */ | ||
1177 | xpc_msgqueue_deref(ch); | ||
1178 | return; | ||
1179 | } | ||
1180 | |||
1181 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1182 | xpc_msgqueue_deref(ch); | ||
1183 | return; | ||
1184 | } | ||
1185 | |||
1186 | /* | ||
1187 | * First check to see if messages recently sent by us have been | ||
1188 | * received by the other side. (The remote GET value will have | ||
1189 | * changed since we last looked at it.) | ||
1190 | */ | ||
1191 | |||
1192 | if (ch->w_remote_GP.get != ch->remote_GP.get) { | ||
1193 | |||
1194 | /* | ||
1195 | * We need to notify any senders that want to be notified | ||
1196 | * that their sent messages have been received by their | ||
1197 | * intended recipients. We need to do this before updating | ||
1198 | * w_remote_GP.get so that we don't allocate the same message | ||
1199 | * queue entries prematurely (see xpc_allocate_msg()). | ||
1200 | */ | ||
1201 | if (atomic_read(&ch->n_to_notify) > 0) { | ||
1202 | /* | ||
1203 | * Notify senders that messages sent have been | ||
1204 | * received and delivered by the other side. | ||
1205 | */ | ||
1206 | xpc_notify_senders(ch, xpcMsgDelivered, | ||
1207 | ch->remote_GP.get); | ||
1208 | } | ||
1209 | |||
1210 | /* | ||
1211 | * Clear msg->flags in previously sent messages, so that | ||
1212 | * they're ready for xpc_allocate_msg(). | ||
1213 | */ | ||
1214 | xpc_clear_local_msgqueue_flags(ch); | ||
1215 | |||
1216 | ch->w_remote_GP.get = ch->remote_GP.get; | ||
1217 | |||
1218 | dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, " | ||
1219 | "channel=%d\n", ch->w_remote_GP.get, ch->partid, | ||
1220 | ch->number); | ||
1221 | |||
1222 | /* | ||
1223 | * If anyone was waiting for message queue entries to become | ||
1224 | * available, wake them up. | ||
1225 | */ | ||
1226 | if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) | ||
1227 | wake_up(&ch->msg_allocate_wq); | ||
1228 | } | ||
1229 | |||
1230 | /* | ||
1231 | * Now check for newly sent messages by the other side. (The remote | ||
1232 | * PUT value will have changed since we last looked at it.) | ||
1233 | */ | ||
1234 | |||
1235 | if (ch->w_remote_GP.put != ch->remote_GP.put) { | ||
1236 | /* | ||
1237 | * Clear msg->flags in previously received messages, so that | ||
1238 | * they're ready for xpc_get_deliverable_msg(). | ||
1239 | */ | ||
1240 | xpc_clear_remote_msgqueue_flags(ch); | ||
1241 | |||
1242 | ch->w_remote_GP.put = ch->remote_GP.put; | ||
1243 | |||
1244 | dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, " | ||
1245 | "channel=%d\n", ch->w_remote_GP.put, ch->partid, | ||
1246 | ch->number); | ||
1247 | |||
1248 | nmsgs_sent = ch->w_remote_GP.put - ch->w_local_GP.get; | ||
1249 | if (nmsgs_sent > 0) { | ||
1250 | dev_dbg(xpc_chan, "msgs waiting to be copied and " | ||
1251 | "delivered=%d, partid=%d, channel=%d\n", | ||
1252 | nmsgs_sent, ch->partid, ch->number); | ||
1253 | |||
1254 | if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) | ||
1255 | xpc_activate_kthreads(ch, nmsgs_sent); | ||
1256 | } | ||
1257 | } | ||
1258 | |||
1259 | xpc_msgqueue_deref(ch); | ||
1260 | } | ||
1261 | |||
1262 | void | ||
1263 | xpc_process_channel_activity(struct xpc_partition *part) | ||
1264 | { | ||
1265 | unsigned long irq_flags; | ||
1266 | u64 IPI_amo, IPI_flags; | ||
1267 | struct xpc_channel *ch; | ||
1268 | int ch_number; | ||
1269 | u32 ch_flags; | ||
1270 | |||
1271 | IPI_amo = xpc_get_IPI_flags(part); | ||
1272 | |||
1273 | /* | ||
1274 | * Initiate channel connections for registered channels. | ||
1275 | * | ||
1276 | * For each connected channel that has pending messages activate idle | ||
1277 | * kthreads and/or create new kthreads as needed. | ||
1278 | */ | ||
1279 | |||
1280 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
1281 | ch = &part->channels[ch_number]; | ||
1282 | |||
1283 | /* | ||
1284 | * Process any open or close related IPI flags, and then deal | ||
1285 | * with connecting or disconnecting the channel as required. | ||
1286 | */ | ||
1287 | |||
1288 | IPI_flags = XPC_GET_IPI_FLAGS(IPI_amo, ch_number); | ||
1289 | |||
1290 | if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_flags)) | ||
1291 | xpc_process_openclose_IPI(part, ch_number, IPI_flags); | ||
1292 | |||
1293 | ch_flags = ch->flags; /* need an atomic snapshot of flags */ | ||
1294 | |||
1295 | if (ch_flags & XPC_C_DISCONNECTING) { | ||
1296 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1297 | xpc_process_disconnect(ch, &irq_flags); | ||
1298 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1299 | continue; | ||
1300 | } | ||
1301 | |||
1302 | if (part->act_state == XPC_P_DEACTIVATING) | ||
1303 | continue; | ||
1304 | |||
1305 | if (!(ch_flags & XPC_C_CONNECTED)) { | ||
1306 | if (!(ch_flags & XPC_C_OPENREQUEST)) { | ||
1307 | DBUG_ON(ch_flags & XPC_C_SETUP); | ||
1308 | (void)xpc_connect_channel(ch); | ||
1309 | } else { | ||
1310 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1311 | xpc_process_connect(ch, &irq_flags); | ||
1312 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1313 | } | ||
1314 | continue; | ||
1315 | } | ||
1316 | |||
1317 | /* | ||
1318 | * Process any message related IPI flags, this may involve the | ||
1319 | * activation of kthreads to deliver any pending messages sent | ||
1320 | * from the other partition. | ||
1321 | */ | ||
1322 | |||
1323 | if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_flags)) | ||
1324 | xpc_process_msg_IPI(part, ch_number); | ||
1325 | } | ||
1326 | } | ||
1327 | |||
1328 | /* | ||
1329 | * XPC's heartbeat code calls this function to inform XPC that a partition is | ||
1330 | * going down. XPC responds by tearing down the XPartition Communication | ||
1331 | * infrastructure used for the just downed partition. | ||
1332 | * | ||
1333 | * XPC's heartbeat code will never call this function and xpc_partition_up() | ||
1334 | * at the same time. Nor will it ever make multiple calls to either function | ||
1335 | * at the same time. | ||
1336 | */ | ||
1337 | void | ||
1338 | xpc_partition_going_down(struct xpc_partition *part, enum xpc_retval reason) | ||
1339 | { | ||
1340 | unsigned long irq_flags; | ||
1341 | int ch_number; | ||
1342 | struct xpc_channel *ch; | ||
1343 | |||
1344 | dev_dbg(xpc_chan, "deactivating partition %d, reason=%d\n", | ||
1345 | XPC_PARTID(part), reason); | ||
1346 | |||
1347 | if (!xpc_part_ref(part)) { | ||
1348 | /* infrastructure for this partition isn't currently set up */ | ||
1349 | return; | ||
1350 | } | ||
1351 | |||
1352 | /* disconnect channels associated with the partition going down */ | ||
1353 | |||
1354 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
1355 | ch = &part->channels[ch_number]; | ||
1356 | |||
1357 | xpc_msgqueue_ref(ch); | ||
1358 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1359 | |||
1360 | XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); | ||
1361 | |||
1362 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1363 | xpc_msgqueue_deref(ch); | ||
1364 | } | ||
1365 | |||
1366 | xpc_wakeup_channel_mgr(part); | ||
1367 | |||
1368 | xpc_part_deref(part); | ||
1369 | } | ||
1370 | |||
1371 | /* | ||
1372 | * Teardown the infrastructure necessary to support XPartition Communication | ||
1373 | * between the specified remote partition and the local one. | ||
1374 | */ | ||
1375 | void | ||
1376 | xpc_teardown_infrastructure(struct xpc_partition *part) | ||
1377 | { | ||
1378 | partid_t partid = XPC_PARTID(part); | ||
1379 | |||
1380 | /* | ||
1381 | * We start off by making this partition inaccessible to local | ||
1382 | * processes by marking it as no longer setup. Then we make it | ||
1383 | * inaccessible to remote processes by clearing the XPC per partition | ||
1384 | * specific variable's magic # (which indicates that these variables | ||
1385 | * are no longer valid) and by ignoring all XPC notify IPIs sent to | ||
1386 | * this partition. | ||
1387 | */ | ||
1388 | |||
1389 | DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); | ||
1390 | DBUG_ON(atomic_read(&part->nchannels_active) != 0); | ||
1391 | DBUG_ON(part->setup_state != XPC_P_SETUP); | ||
1392 | part->setup_state = XPC_P_WTEARDOWN; | ||
1393 | |||
1394 | xpc_vars_part[partid].magic = 0; | ||
1395 | |||
1396 | free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid); | ||
1397 | |||
1398 | /* | ||
1399 | * Before proceeding with the teardown we have to wait until all | ||
1400 | * existing references cease. | ||
1401 | */ | ||
1402 | wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); | ||
1403 | |||
1404 | /* now we can begin tearing down the infrastructure */ | ||
1405 | |||
1406 | part->setup_state = XPC_P_TORNDOWN; | ||
1407 | |||
1408 | /* in case we've still got outstanding timers registered... */ | ||
1409 | del_timer_sync(&part->dropped_IPI_timer); | ||
1410 | |||
1411 | kfree(part->remote_openclose_args_base); | ||
1412 | part->remote_openclose_args = NULL; | ||
1413 | kfree(part->local_openclose_args_base); | ||
1414 | part->local_openclose_args = NULL; | ||
1415 | kfree(part->remote_GPs_base); | ||
1416 | part->remote_GPs = NULL; | ||
1417 | kfree(part->local_GPs_base); | ||
1418 | part->local_GPs = NULL; | ||
1419 | kfree(part->channels); | ||
1420 | part->channels = NULL; | ||
1421 | part->local_IPI_amo_va = NULL; | ||
1422 | } | ||
1423 | |||
1424 | /* | ||
1425 | * Called by XP at the time of channel connection registration to cause | ||
1426 | * XPC to establish connections to all currently active partitions. | ||
1427 | */ | ||
1428 | void | ||
1429 | xpc_initiate_connect(int ch_number) | ||
1430 | { | ||
1431 | partid_t partid; | ||
1432 | struct xpc_partition *part; | ||
1433 | struct xpc_channel *ch; | ||
1434 | |||
1435 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
1436 | |||
1437 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1438 | part = &xpc_partitions[partid]; | ||
1439 | |||
1440 | if (xpc_part_ref(part)) { | ||
1441 | ch = &part->channels[ch_number]; | ||
1442 | |||
1443 | /* | ||
1444 | * Initiate the establishment of a connection on the | ||
1445 | * newly registered channel to the remote partition. | ||
1446 | */ | ||
1447 | xpc_wakeup_channel_mgr(part); | ||
1448 | xpc_part_deref(part); | ||
1449 | } | ||
1450 | } | ||
1451 | } | ||
1452 | |||
1453 | void | ||
1454 | xpc_connected_callout(struct xpc_channel *ch) | ||
1455 | { | ||
1456 | /* let the registerer know that a connection has been established */ | ||
1457 | |||
1458 | if (ch->func != NULL) { | ||
1459 | dev_dbg(xpc_chan, "ch->func() called, reason=xpcConnected, " | ||
1460 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
1461 | |||
1462 | ch->func(xpcConnected, ch->partid, ch->number, | ||
1463 | (void *)(u64)ch->local_nentries, ch->key); | ||
1464 | |||
1465 | dev_dbg(xpc_chan, "ch->func() returned, reason=xpcConnected, " | ||
1466 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
1467 | } | ||
1468 | } | ||
1469 | |||
1470 | /* | ||
1471 | * Called by XP at the time of channel connection unregistration to cause | ||
1472 | * XPC to teardown all current connections for the specified channel. | ||
1473 | * | ||
1474 | * Before returning xpc_initiate_disconnect() will wait until all connections | ||
1475 | * on the specified channel have been closed/torndown. So the caller can be | ||
1476 | * assured that they will not be receiving any more callouts from XPC to the | ||
1477 | * function they registered via xpc_connect(). | ||
1478 | * | ||
1479 | * Arguments: | ||
1480 | * | ||
1481 | * ch_number - channel # to unregister. | ||
1482 | */ | ||
1483 | void | ||
1484 | xpc_initiate_disconnect(int ch_number) | ||
1485 | { | ||
1486 | unsigned long irq_flags; | ||
1487 | partid_t partid; | ||
1488 | struct xpc_partition *part; | ||
1489 | struct xpc_channel *ch; | ||
1490 | |||
1491 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
1492 | |||
1493 | /* initiate the channel disconnect for every active partition */ | ||
1494 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1495 | part = &xpc_partitions[partid]; | ||
1496 | |||
1497 | if (xpc_part_ref(part)) { | ||
1498 | ch = &part->channels[ch_number]; | ||
1499 | xpc_msgqueue_ref(ch); | ||
1500 | |||
1501 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1502 | |||
1503 | if (!(ch->flags & XPC_C_DISCONNECTED)) { | ||
1504 | ch->flags |= XPC_C_WDISCONNECT; | ||
1505 | |||
1506 | XPC_DISCONNECT_CHANNEL(ch, xpcUnregistering, | ||
1507 | &irq_flags); | ||
1508 | } | ||
1509 | |||
1510 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1511 | |||
1512 | xpc_msgqueue_deref(ch); | ||
1513 | xpc_part_deref(part); | ||
1514 | } | ||
1515 | } | ||
1516 | |||
1517 | xpc_disconnect_wait(ch_number); | ||
1518 | } | ||
1519 | |||
1520 | /* | ||
1521 | * To disconnect a channel, and reflect it back to all who may be waiting. | ||
1522 | * | ||
1523 | * An OPEN is not allowed until XPC_C_DISCONNECTING is cleared by | ||
1524 | * xpc_process_disconnect(), and if set, XPC_C_WDISCONNECT is cleared by | ||
1525 | * xpc_disconnect_wait(). | ||
1526 | * | ||
1527 | * THE CHANNEL IS TO BE LOCKED BY THE CALLER AND WILL REMAIN LOCKED UPON RETURN. | ||
1528 | */ | ||
1529 | void | ||
1530 | xpc_disconnect_channel(const int line, struct xpc_channel *ch, | ||
1531 | enum xpc_retval reason, unsigned long *irq_flags) | ||
1532 | { | ||
1533 | u32 channel_was_connected = (ch->flags & XPC_C_CONNECTED); | ||
1534 | |||
1535 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
1536 | |||
1537 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) | ||
1538 | return; | ||
1539 | |||
1540 | DBUG_ON(!(ch->flags & (XPC_C_CONNECTING | XPC_C_CONNECTED))); | ||
1541 | |||
1542 | dev_dbg(xpc_chan, "reason=%d, line=%d, partid=%d, channel=%d\n", | ||
1543 | reason, line, ch->partid, ch->number); | ||
1544 | |||
1545 | XPC_SET_REASON(ch, reason, line); | ||
1546 | |||
1547 | ch->flags |= (XPC_C_CLOSEREQUEST | XPC_C_DISCONNECTING); | ||
1548 | /* some of these may not have been set */ | ||
1549 | ch->flags &= ~(XPC_C_OPENREQUEST | XPC_C_OPENREPLY | | ||
1550 | XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | | ||
1551 | XPC_C_CONNECTING | XPC_C_CONNECTED); | ||
1552 | |||
1553 | xpc_IPI_send_closerequest(ch, irq_flags); | ||
1554 | |||
1555 | if (channel_was_connected) | ||
1556 | ch->flags |= XPC_C_WASCONNECTED; | ||
1557 | |||
1558 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
1559 | |||
1560 | /* wake all idle kthreads so they can exit */ | ||
1561 | if (atomic_read(&ch->kthreads_idle) > 0) { | ||
1562 | wake_up_all(&ch->idle_wq); | ||
1563 | |||
1564 | } else if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && | ||
1565 | !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { | ||
1566 | /* start a kthread that will do the xpcDisconnecting callout */ | ||
1567 | xpc_create_kthreads(ch, 1, 1); | ||
1568 | } | ||
1569 | |||
1570 | /* wake those waiting to allocate an entry from the local msg queue */ | ||
1571 | if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) | ||
1572 | wake_up(&ch->msg_allocate_wq); | ||
1573 | |||
1574 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
1575 | } | ||
1576 | |||
1577 | void | ||
1578 | xpc_disconnect_callout(struct xpc_channel *ch, enum xpc_retval reason) | ||
1579 | { | ||
1580 | /* | ||
1581 | * Let the channel's registerer know that the channel is being | ||
1582 | * disconnected. We don't want to do this if the registerer was never | ||
1583 | * informed of a connection being made. | ||
1584 | */ | ||
1585 | |||
1586 | if (ch->func != NULL) { | ||
1587 | dev_dbg(xpc_chan, "ch->func() called, reason=%d, partid=%d, " | ||
1588 | "channel=%d\n", reason, ch->partid, ch->number); | ||
1589 | |||
1590 | ch->func(reason, ch->partid, ch->number, NULL, ch->key); | ||
1591 | |||
1592 | dev_dbg(xpc_chan, "ch->func() returned, reason=%d, partid=%d, " | ||
1593 | "channel=%d\n", reason, ch->partid, ch->number); | ||
1594 | } | ||
1595 | } | ||
1596 | |||
1597 | /* | ||
1598 | * Wait for a message entry to become available for the specified channel, | ||
1599 | * but don't wait any longer than 1 jiffy. | ||
1600 | */ | ||
1601 | static enum xpc_retval | ||
1602 | xpc_allocate_msg_wait(struct xpc_channel *ch) | ||
1603 | { | ||
1604 | enum xpc_retval ret; | ||
1605 | |||
1606 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1607 | DBUG_ON(ch->reason == xpcInterrupted); | ||
1608 | return ch->reason; | ||
1609 | } | ||
1610 | |||
1611 | atomic_inc(&ch->n_on_msg_allocate_wq); | ||
1612 | ret = interruptible_sleep_on_timeout(&ch->msg_allocate_wq, 1); | ||
1613 | atomic_dec(&ch->n_on_msg_allocate_wq); | ||
1614 | |||
1615 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1616 | ret = ch->reason; | ||
1617 | DBUG_ON(ch->reason == xpcInterrupted); | ||
1618 | } else if (ret == 0) { | ||
1619 | ret = xpcTimeout; | ||
1620 | } else { | ||
1621 | ret = xpcInterrupted; | ||
1622 | } | ||
1623 | |||
1624 | return ret; | ||
1625 | } | ||
1626 | |||
1627 | /* | ||
1628 | * Allocate an entry for a message from the message queue associated with the | ||
1629 | * specified channel. | ||
1630 | */ | ||
1631 | static enum xpc_retval | ||
1632 | xpc_allocate_msg(struct xpc_channel *ch, u32 flags, | ||
1633 | struct xpc_msg **address_of_msg) | ||
1634 | { | ||
1635 | struct xpc_msg *msg; | ||
1636 | enum xpc_retval ret; | ||
1637 | s64 put; | ||
1638 | |||
1639 | /* this reference will be dropped in xpc_send_msg() */ | ||
1640 | xpc_msgqueue_ref(ch); | ||
1641 | |||
1642 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1643 | xpc_msgqueue_deref(ch); | ||
1644 | return ch->reason; | ||
1645 | } | ||
1646 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1647 | xpc_msgqueue_deref(ch); | ||
1648 | return xpcNotConnected; | ||
1649 | } | ||
1650 | |||
1651 | /* | ||
1652 | * Get the next available message entry from the local message queue. | ||
1653 | * If none are available, we'll make sure that we grab the latest | ||
1654 | * GP values. | ||
1655 | */ | ||
1656 | ret = xpcTimeout; | ||
1657 | |||
1658 | while (1) { | ||
1659 | |||
1660 | put = ch->w_local_GP.put; | ||
1661 | rmb(); /* guarantee that .put loads before .get */ | ||
1662 | if (put - ch->w_remote_GP.get < ch->local_nentries) { | ||
1663 | |||
1664 | /* There are available message entries. We need to try | ||
1665 | * to secure one for ourselves. We'll do this by trying | ||
1666 | * to increment w_local_GP.put as long as someone else | ||
1667 | * doesn't beat us to it. If they do, we'll have to | ||
1668 | * try again. | ||
1669 | */ | ||
1670 | if (cmpxchg(&ch->w_local_GP.put, put, put + 1) == put) { | ||
1671 | /* we got the entry referenced by put */ | ||
1672 | break; | ||
1673 | } | ||
1674 | continue; /* try again */ | ||
1675 | } | ||
1676 | |||
1677 | /* | ||
1678 | * There aren't any available msg entries at this time. | ||
1679 | * | ||
1680 | * In waiting for a message entry to become available, | ||
1681 | * we set a timeout in case the other side is not | ||
1682 | * sending completion IPIs. This lets us fake an IPI | ||
1683 | * that will cause the IPI handler to fetch the latest | ||
1684 | * GP values as if an IPI was sent by the other side. | ||
1685 | */ | ||
1686 | if (ret == xpcTimeout) | ||
1687 | xpc_IPI_send_local_msgrequest(ch); | ||
1688 | |||
1689 | if (flags & XPC_NOWAIT) { | ||
1690 | xpc_msgqueue_deref(ch); | ||
1691 | return xpcNoWait; | ||
1692 | } | ||
1693 | |||
1694 | ret = xpc_allocate_msg_wait(ch); | ||
1695 | if (ret != xpcInterrupted && ret != xpcTimeout) { | ||
1696 | xpc_msgqueue_deref(ch); | ||
1697 | return ret; | ||
1698 | } | ||
1699 | } | ||
1700 | |||
1701 | /* get the message's address and initialize it */ | ||
1702 | msg = (struct xpc_msg *)((u64)ch->local_msgqueue + | ||
1703 | (put % ch->local_nentries) * ch->msg_size); | ||
1704 | |||
1705 | DBUG_ON(msg->flags != 0); | ||
1706 | msg->number = put; | ||
1707 | |||
1708 | dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, " | ||
1709 | "msg_number=%ld, partid=%d, channel=%d\n", put + 1, | ||
1710 | (void *)msg, msg->number, ch->partid, ch->number); | ||
1711 | |||
1712 | *address_of_msg = msg; | ||
1713 | |||
1714 | return xpcSuccess; | ||
1715 | } | ||
1716 | |||
1717 | /* | ||
1718 | * Allocate an entry for a message from the message queue associated with the | ||
1719 | * specified channel. NOTE that this routine can sleep waiting for a message | ||
1720 | * entry to become available. To not sleep, pass in the XPC_NOWAIT flag. | ||
1721 | * | ||
1722 | * Arguments: | ||
1723 | * | ||
1724 | * partid - ID of partition to which the channel is connected. | ||
1725 | * ch_number - channel #. | ||
1726 | * flags - see xpc.h for valid flags. | ||
1727 | * payload - address of the allocated payload area pointer (filled in on | ||
1728 | * return) in which the user-defined message is constructed. | ||
1729 | */ | ||
1730 | enum xpc_retval | ||
1731 | xpc_initiate_allocate(partid_t partid, int ch_number, u32 flags, void **payload) | ||
1732 | { | ||
1733 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
1734 | enum xpc_retval ret = xpcUnknownReason; | ||
1735 | struct xpc_msg *msg = NULL; | ||
1736 | |||
1737 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
1738 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
1739 | |||
1740 | *payload = NULL; | ||
1741 | |||
1742 | if (xpc_part_ref(part)) { | ||
1743 | ret = xpc_allocate_msg(&part->channels[ch_number], flags, &msg); | ||
1744 | xpc_part_deref(part); | ||
1745 | |||
1746 | if (msg != NULL) | ||
1747 | *payload = &msg->payload; | ||
1748 | } | ||
1749 | |||
1750 | return ret; | ||
1751 | } | ||
1752 | |||
1753 | /* | ||
1754 | * Now we actually send the messages that are ready to be sent by advancing | ||
1755 | * the local message queue's Put value and then send an IPI to the recipient | ||
1756 | * partition. | ||
1757 | */ | ||
1758 | static void | ||
1759 | xpc_send_msgs(struct xpc_channel *ch, s64 initial_put) | ||
1760 | { | ||
1761 | struct xpc_msg *msg; | ||
1762 | s64 put = initial_put + 1; | ||
1763 | int send_IPI = 0; | ||
1764 | |||
1765 | while (1) { | ||
1766 | |||
1767 | while (1) { | ||
1768 | if (put == ch->w_local_GP.put) | ||
1769 | break; | ||
1770 | |||
1771 | msg = (struct xpc_msg *)((u64)ch->local_msgqueue + | ||
1772 | (put % ch->local_nentries) * | ||
1773 | ch->msg_size); | ||
1774 | |||
1775 | if (!(msg->flags & XPC_M_READY)) | ||
1776 | break; | ||
1777 | |||
1778 | put++; | ||
1779 | } | ||
1780 | |||
1781 | if (put == initial_put) { | ||
1782 | /* nothing's changed */ | ||
1783 | break; | ||
1784 | } | ||
1785 | |||
1786 | if (cmpxchg_rel(&ch->local_GP->put, initial_put, put) != | ||
1787 | initial_put) { | ||
1788 | /* someone else beat us to it */ | ||
1789 | DBUG_ON(ch->local_GP->put < initial_put); | ||
1790 | break; | ||
1791 | } | ||
1792 | |||
1793 | /* we just set the new value of local_GP->put */ | ||
1794 | |||
1795 | dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, " | ||
1796 | "channel=%d\n", put, ch->partid, ch->number); | ||
1797 | |||
1798 | send_IPI = 1; | ||
1799 | |||
1800 | /* | ||
1801 | * We need to ensure that the message referenced by | ||
1802 | * local_GP->put is not XPC_M_READY or that local_GP->put | ||
1803 | * equals w_local_GP.put, so we'll go have a look. | ||
1804 | */ | ||
1805 | initial_put = put; | ||
1806 | } | ||
1807 | |||
1808 | if (send_IPI) | ||
1809 | xpc_IPI_send_msgrequest(ch); | ||
1810 | } | ||
1811 | |||
1812 | /* | ||
1813 | * Common code that does the actual sending of the message by advancing the | ||
1814 | * local message queue's Put value and sends an IPI to the partition the | ||
1815 | * message is being sent to. | ||
1816 | */ | ||
1817 | static enum xpc_retval | ||
1818 | xpc_send_msg(struct xpc_channel *ch, struct xpc_msg *msg, u8 notify_type, | ||
1819 | xpc_notify_func func, void *key) | ||
1820 | { | ||
1821 | enum xpc_retval ret = xpcSuccess; | ||
1822 | struct xpc_notify *notify = notify; | ||
1823 | s64 put, msg_number = msg->number; | ||
1824 | |||
1825 | DBUG_ON(notify_type == XPC_N_CALL && func == NULL); | ||
1826 | DBUG_ON((((u64)msg - (u64)ch->local_msgqueue) / ch->msg_size) != | ||
1827 | msg_number % ch->local_nentries); | ||
1828 | DBUG_ON(msg->flags & XPC_M_READY); | ||
1829 | |||
1830 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1831 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1832 | xpc_msgqueue_deref(ch); | ||
1833 | return ch->reason; | ||
1834 | } | ||
1835 | |||
1836 | if (notify_type != 0) { | ||
1837 | /* | ||
1838 | * Tell the remote side to send an ACK interrupt when the | ||
1839 | * message has been delivered. | ||
1840 | */ | ||
1841 | msg->flags |= XPC_M_INTERRUPT; | ||
1842 | |||
1843 | atomic_inc(&ch->n_to_notify); | ||
1844 | |||
1845 | notify = &ch->notify_queue[msg_number % ch->local_nentries]; | ||
1846 | notify->func = func; | ||
1847 | notify->key = key; | ||
1848 | notify->type = notify_type; | ||
1849 | |||
1850 | /* >>> is a mb() needed here? */ | ||
1851 | |||
1852 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1853 | /* | ||
1854 | * An error occurred between our last error check and | ||
1855 | * this one. We will try to clear the type field from | ||
1856 | * the notify entry. If we succeed then | ||
1857 | * xpc_disconnect_channel() didn't already process | ||
1858 | * the notify entry. | ||
1859 | */ | ||
1860 | if (cmpxchg(¬ify->type, notify_type, 0) == | ||
1861 | notify_type) { | ||
1862 | atomic_dec(&ch->n_to_notify); | ||
1863 | ret = ch->reason; | ||
1864 | } | ||
1865 | |||
1866 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1867 | xpc_msgqueue_deref(ch); | ||
1868 | return ret; | ||
1869 | } | ||
1870 | } | ||
1871 | |||
1872 | msg->flags |= XPC_M_READY; | ||
1873 | |||
1874 | /* | ||
1875 | * The preceding store of msg->flags must occur before the following | ||
1876 | * load of ch->local_GP->put. | ||
1877 | */ | ||
1878 | mb(); | ||
1879 | |||
1880 | /* see if the message is next in line to be sent, if so send it */ | ||
1881 | |||
1882 | put = ch->local_GP->put; | ||
1883 | if (put == msg_number) | ||
1884 | xpc_send_msgs(ch, put); | ||
1885 | |||
1886 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1887 | xpc_msgqueue_deref(ch); | ||
1888 | return ret; | ||
1889 | } | ||
1890 | |||
1891 | /* | ||
1892 | * Send a message previously allocated using xpc_initiate_allocate() on the | ||
1893 | * specified channel connected to the specified partition. | ||
1894 | * | ||
1895 | * This routine will not wait for the message to be received, nor will | ||
1896 | * notification be given when it does happen. Once this routine has returned | ||
1897 | * the message entry allocated via xpc_initiate_allocate() is no longer | ||
1898 | * accessable to the caller. | ||
1899 | * | ||
1900 | * This routine, although called by users, does not call xpc_part_ref() to | ||
1901 | * ensure that the partition infrastructure is in place. It relies on the | ||
1902 | * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). | ||
1903 | * | ||
1904 | * Arguments: | ||
1905 | * | ||
1906 | * partid - ID of partition to which the channel is connected. | ||
1907 | * ch_number - channel # to send message on. | ||
1908 | * payload - pointer to the payload area allocated via | ||
1909 | * xpc_initiate_allocate(). | ||
1910 | */ | ||
1911 | enum xpc_retval | ||
1912 | xpc_initiate_send(partid_t partid, int ch_number, void *payload) | ||
1913 | { | ||
1914 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
1915 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
1916 | enum xpc_retval ret; | ||
1917 | |||
1918 | dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *)msg, | ||
1919 | partid, ch_number); | ||
1920 | |||
1921 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
1922 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
1923 | DBUG_ON(msg == NULL); | ||
1924 | |||
1925 | ret = xpc_send_msg(&part->channels[ch_number], msg, 0, NULL, NULL); | ||
1926 | |||
1927 | return ret; | ||
1928 | } | ||
1929 | |||
1930 | /* | ||
1931 | * Send a message previously allocated using xpc_initiate_allocate on the | ||
1932 | * specified channel connected to the specified partition. | ||
1933 | * | ||
1934 | * This routine will not wait for the message to be sent. Once this routine | ||
1935 | * has returned the message entry allocated via xpc_initiate_allocate() is no | ||
1936 | * longer accessable to the caller. | ||
1937 | * | ||
1938 | * Once the remote end of the channel has received the message, the function | ||
1939 | * passed as an argument to xpc_initiate_send_notify() will be called. This | ||
1940 | * allows the sender to free up or re-use any buffers referenced by the | ||
1941 | * message, but does NOT mean the message has been processed at the remote | ||
1942 | * end by a receiver. | ||
1943 | * | ||
1944 | * If this routine returns an error, the caller's function will NOT be called. | ||
1945 | * | ||
1946 | * This routine, although called by users, does not call xpc_part_ref() to | ||
1947 | * ensure that the partition infrastructure is in place. It relies on the | ||
1948 | * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). | ||
1949 | * | ||
1950 | * Arguments: | ||
1951 | * | ||
1952 | * partid - ID of partition to which the channel is connected. | ||
1953 | * ch_number - channel # to send message on. | ||
1954 | * payload - pointer to the payload area allocated via | ||
1955 | * xpc_initiate_allocate(). | ||
1956 | * func - function to call with asynchronous notification of message | ||
1957 | * receipt. THIS FUNCTION MUST BE NON-BLOCKING. | ||
1958 | * key - user-defined key to be passed to the function when it's called. | ||
1959 | */ | ||
1960 | enum xpc_retval | ||
1961 | xpc_initiate_send_notify(partid_t partid, int ch_number, void *payload, | ||
1962 | xpc_notify_func func, void *key) | ||
1963 | { | ||
1964 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
1965 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
1966 | enum xpc_retval ret; | ||
1967 | |||
1968 | dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *)msg, | ||
1969 | partid, ch_number); | ||
1970 | |||
1971 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
1972 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
1973 | DBUG_ON(msg == NULL); | ||
1974 | DBUG_ON(func == NULL); | ||
1975 | |||
1976 | ret = xpc_send_msg(&part->channels[ch_number], msg, XPC_N_CALL, | ||
1977 | func, key); | ||
1978 | return ret; | ||
1979 | } | ||
1980 | |||
1981 | static struct xpc_msg * | ||
1982 | xpc_pull_remote_msg(struct xpc_channel *ch, s64 get) | ||
1983 | { | ||
1984 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
1985 | struct xpc_msg *remote_msg, *msg; | ||
1986 | u32 msg_index, nmsgs; | ||
1987 | u64 msg_offset; | ||
1988 | enum xpc_retval ret; | ||
1989 | |||
1990 | if (mutex_lock_interruptible(&ch->msg_to_pull_mutex) != 0) { | ||
1991 | /* we were interrupted by a signal */ | ||
1992 | return NULL; | ||
1993 | } | ||
1994 | |||
1995 | while (get >= ch->next_msg_to_pull) { | ||
1996 | |||
1997 | /* pull as many messages as are ready and able to be pulled */ | ||
1998 | |||
1999 | msg_index = ch->next_msg_to_pull % ch->remote_nentries; | ||
2000 | |||
2001 | DBUG_ON(ch->next_msg_to_pull >= ch->w_remote_GP.put); | ||
2002 | nmsgs = ch->w_remote_GP.put - ch->next_msg_to_pull; | ||
2003 | if (msg_index + nmsgs > ch->remote_nentries) { | ||
2004 | /* ignore the ones that wrap the msg queue for now */ | ||
2005 | nmsgs = ch->remote_nentries - msg_index; | ||
2006 | } | ||
2007 | |||
2008 | msg_offset = msg_index * ch->msg_size; | ||
2009 | msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset); | ||
2010 | remote_msg = (struct xpc_msg *)(ch->remote_msgqueue_pa + | ||
2011 | msg_offset); | ||
2012 | |||
2013 | ret = xpc_pull_remote_cachelines(part, msg, remote_msg, | ||
2014 | nmsgs * ch->msg_size); | ||
2015 | if (ret != xpcSuccess) { | ||
2016 | |||
2017 | dev_dbg(xpc_chan, "failed to pull %d msgs starting with" | ||
2018 | " msg %ld from partition %d, channel=%d, " | ||
2019 | "ret=%d\n", nmsgs, ch->next_msg_to_pull, | ||
2020 | ch->partid, ch->number, ret); | ||
2021 | |||
2022 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
2023 | |||
2024 | mutex_unlock(&ch->msg_to_pull_mutex); | ||
2025 | return NULL; | ||
2026 | } | ||
2027 | |||
2028 | ch->next_msg_to_pull += nmsgs; | ||
2029 | } | ||
2030 | |||
2031 | mutex_unlock(&ch->msg_to_pull_mutex); | ||
2032 | |||
2033 | /* return the message we were looking for */ | ||
2034 | msg_offset = (get % ch->remote_nentries) * ch->msg_size; | ||
2035 | msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset); | ||
2036 | |||
2037 | return msg; | ||
2038 | } | ||
2039 | |||
2040 | /* | ||
2041 | * Get a message to be delivered. | ||
2042 | */ | ||
2043 | static struct xpc_msg * | ||
2044 | xpc_get_deliverable_msg(struct xpc_channel *ch) | ||
2045 | { | ||
2046 | struct xpc_msg *msg = NULL; | ||
2047 | s64 get; | ||
2048 | |||
2049 | do { | ||
2050 | if (ch->flags & XPC_C_DISCONNECTING) | ||
2051 | break; | ||
2052 | |||
2053 | get = ch->w_local_GP.get; | ||
2054 | rmb(); /* guarantee that .get loads before .put */ | ||
2055 | if (get == ch->w_remote_GP.put) | ||
2056 | break; | ||
2057 | |||
2058 | /* There are messages waiting to be pulled and delivered. | ||
2059 | * We need to try to secure one for ourselves. We'll do this | ||
2060 | * by trying to increment w_local_GP.get and hope that no one | ||
2061 | * else beats us to it. If they do, we'll we'll simply have | ||
2062 | * to try again for the next one. | ||
2063 | */ | ||
2064 | |||
2065 | if (cmpxchg(&ch->w_local_GP.get, get, get + 1) == get) { | ||
2066 | /* we got the entry referenced by get */ | ||
2067 | |||
2068 | dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, " | ||
2069 | "partid=%d, channel=%d\n", get + 1, | ||
2070 | ch->partid, ch->number); | ||
2071 | |||
2072 | /* pull the message from the remote partition */ | ||
2073 | |||
2074 | msg = xpc_pull_remote_msg(ch, get); | ||
2075 | |||
2076 | DBUG_ON(msg != NULL && msg->number != get); | ||
2077 | DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE)); | ||
2078 | DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY)); | ||
2079 | |||
2080 | break; | ||
2081 | } | ||
2082 | |||
2083 | } while (1); | ||
2084 | |||
2085 | return msg; | ||
2086 | } | ||
2087 | |||
2088 | /* | ||
2089 | * Deliver a message to its intended recipient. | ||
2090 | */ | ||
2091 | void | ||
2092 | xpc_deliver_msg(struct xpc_channel *ch) | ||
2093 | { | ||
2094 | struct xpc_msg *msg; | ||
2095 | |||
2096 | msg = xpc_get_deliverable_msg(ch); | ||
2097 | if (msg != NULL) { | ||
2098 | |||
2099 | /* | ||
2100 | * This ref is taken to protect the payload itself from being | ||
2101 | * freed before the user is finished with it, which the user | ||
2102 | * indicates by calling xpc_initiate_received(). | ||
2103 | */ | ||
2104 | xpc_msgqueue_ref(ch); | ||
2105 | |||
2106 | atomic_inc(&ch->kthreads_active); | ||
2107 | |||
2108 | if (ch->func != NULL) { | ||
2109 | dev_dbg(xpc_chan, "ch->func() called, msg=0x%p, " | ||
2110 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
2111 | (void *)msg, msg->number, ch->partid, | ||
2112 | ch->number); | ||
2113 | |||
2114 | /* deliver the message to its intended recipient */ | ||
2115 | ch->func(xpcMsgReceived, ch->partid, ch->number, | ||
2116 | &msg->payload, ch->key); | ||
2117 | |||
2118 | dev_dbg(xpc_chan, "ch->func() returned, msg=0x%p, " | ||
2119 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
2120 | (void *)msg, msg->number, ch->partid, | ||
2121 | ch->number); | ||
2122 | } | ||
2123 | |||
2124 | atomic_dec(&ch->kthreads_active); | ||
2125 | } | ||
2126 | } | ||
2127 | |||
2128 | /* | ||
2129 | * Now we actually acknowledge the messages that have been delivered and ack'd | ||
2130 | * by advancing the cached remote message queue's Get value and if requested | ||
2131 | * send an IPI to the message sender's partition. | ||
2132 | */ | ||
2133 | static void | ||
2134 | xpc_acknowledge_msgs(struct xpc_channel *ch, s64 initial_get, u8 msg_flags) | ||
2135 | { | ||
2136 | struct xpc_msg *msg; | ||
2137 | s64 get = initial_get + 1; | ||
2138 | int send_IPI = 0; | ||
2139 | |||
2140 | while (1) { | ||
2141 | |||
2142 | while (1) { | ||
2143 | if (get == ch->w_local_GP.get) | ||
2144 | break; | ||
2145 | |||
2146 | msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + | ||
2147 | (get % ch->remote_nentries) * | ||
2148 | ch->msg_size); | ||
2149 | |||
2150 | if (!(msg->flags & XPC_M_DONE)) | ||
2151 | break; | ||
2152 | |||
2153 | msg_flags |= msg->flags; | ||
2154 | get++; | ||
2155 | } | ||
2156 | |||
2157 | if (get == initial_get) { | ||
2158 | /* nothing's changed */ | ||
2159 | break; | ||
2160 | } | ||
2161 | |||
2162 | if (cmpxchg_rel(&ch->local_GP->get, initial_get, get) != | ||
2163 | initial_get) { | ||
2164 | /* someone else beat us to it */ | ||
2165 | DBUG_ON(ch->local_GP->get <= initial_get); | ||
2166 | break; | ||
2167 | } | ||
2168 | |||
2169 | /* we just set the new value of local_GP->get */ | ||
2170 | |||
2171 | dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, " | ||
2172 | "channel=%d\n", get, ch->partid, ch->number); | ||
2173 | |||
2174 | send_IPI = (msg_flags & XPC_M_INTERRUPT); | ||
2175 | |||
2176 | /* | ||
2177 | * We need to ensure that the message referenced by | ||
2178 | * local_GP->get is not XPC_M_DONE or that local_GP->get | ||
2179 | * equals w_local_GP.get, so we'll go have a look. | ||
2180 | */ | ||
2181 | initial_get = get; | ||
2182 | } | ||
2183 | |||
2184 | if (send_IPI) | ||
2185 | xpc_IPI_send_msgrequest(ch); | ||
2186 | } | ||
2187 | |||
2188 | /* | ||
2189 | * Acknowledge receipt of a delivered message. | ||
2190 | * | ||
2191 | * If a message has XPC_M_INTERRUPT set, send an interrupt to the partition | ||
2192 | * that sent the message. | ||
2193 | * | ||
2194 | * This function, although called by users, does not call xpc_part_ref() to | ||
2195 | * ensure that the partition infrastructure is in place. It relies on the | ||
2196 | * fact that we called xpc_msgqueue_ref() in xpc_deliver_msg(). | ||
2197 | * | ||
2198 | * Arguments: | ||
2199 | * | ||
2200 | * partid - ID of partition to which the channel is connected. | ||
2201 | * ch_number - channel # message received on. | ||
2202 | * payload - pointer to the payload area allocated via | ||
2203 | * xpc_initiate_allocate(). | ||
2204 | */ | ||
2205 | void | ||
2206 | xpc_initiate_received(partid_t partid, int ch_number, void *payload) | ||
2207 | { | ||
2208 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
2209 | struct xpc_channel *ch; | ||
2210 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
2211 | s64 get, msg_number = msg->number; | ||
2212 | |||
2213 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
2214 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
2215 | |||
2216 | ch = &part->channels[ch_number]; | ||
2217 | |||
2218 | dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n", | ||
2219 | (void *)msg, msg_number, ch->partid, ch->number); | ||
2220 | |||
2221 | DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) != | ||
2222 | msg_number % ch->remote_nentries); | ||
2223 | DBUG_ON(msg->flags & XPC_M_DONE); | ||
2224 | |||
2225 | msg->flags |= XPC_M_DONE; | ||
2226 | |||
2227 | /* | ||
2228 | * The preceding store of msg->flags must occur before the following | ||
2229 | * load of ch->local_GP->get. | ||
2230 | */ | ||
2231 | mb(); | ||
2232 | |||
2233 | /* | ||
2234 | * See if this message is next in line to be acknowledged as having | ||
2235 | * been delivered. | ||
2236 | */ | ||
2237 | get = ch->local_GP->get; | ||
2238 | if (get == msg_number) | ||
2239 | xpc_acknowledge_msgs(ch, get, msg->flags); | ||
2240 | |||
2241 | /* the call to xpc_msgqueue_ref() was done by xpc_deliver_msg() */ | ||
2242 | xpc_msgqueue_deref(ch); | ||
2243 | } | ||
diff --git a/drivers/misc/sgi-xp/xpc_main.c b/drivers/misc/sgi-xp/xpc_main.c new file mode 100644 index 000000000000..f673ba90eb0e --- /dev/null +++ b/drivers/misc/sgi-xp/xpc_main.c | |||
@@ -0,0 +1,1323 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition Communication (XPC) support - standard version. | ||
11 | * | ||
12 | * XPC provides a message passing capability that crosses partition | ||
13 | * boundaries. This module is made up of two parts: | ||
14 | * | ||
15 | * partition This part detects the presence/absence of other | ||
16 | * partitions. It provides a heartbeat and monitors | ||
17 | * the heartbeats of other partitions. | ||
18 | * | ||
19 | * channel This part manages the channels and sends/receives | ||
20 | * messages across them to/from other partitions. | ||
21 | * | ||
22 | * There are a couple of additional functions residing in XP, which | ||
23 | * provide an interface to XPC for its users. | ||
24 | * | ||
25 | * | ||
26 | * Caveats: | ||
27 | * | ||
28 | * . We currently have no way to determine which nasid an IPI came | ||
29 | * from. Thus, xpc_IPI_send() does a remote AMO write followed by | ||
30 | * an IPI. The AMO indicates where data is to be pulled from, so | ||
31 | * after the IPI arrives, the remote partition checks the AMO word. | ||
32 | * The IPI can actually arrive before the AMO however, so other code | ||
33 | * must periodically check for this case. Also, remote AMO operations | ||
34 | * do not reliably time out. Thus we do a remote PIO read solely to | ||
35 | * know whether the remote partition is down and whether we should | ||
36 | * stop sending IPIs to it. This remote PIO read operation is set up | ||
37 | * in a special nofault region so SAL knows to ignore (and cleanup) | ||
38 | * any errors due to the remote AMO write, PIO read, and/or PIO | ||
39 | * write operations. | ||
40 | * | ||
41 | * If/when new hardware solves this IPI problem, we should abandon | ||
42 | * the current approach. | ||
43 | * | ||
44 | */ | ||
45 | |||
46 | #include <linux/kernel.h> | ||
47 | #include <linux/module.h> | ||
48 | #include <linux/init.h> | ||
49 | #include <linux/cache.h> | ||
50 | #include <linux/interrupt.h> | ||
51 | #include <linux/delay.h> | ||
52 | #include <linux/reboot.h> | ||
53 | #include <linux/completion.h> | ||
54 | #include <linux/kdebug.h> | ||
55 | #include <linux/kthread.h> | ||
56 | #include <linux/uaccess.h> | ||
57 | #include <asm/sn/intr.h> | ||
58 | #include <asm/sn/sn_sal.h> | ||
59 | #include "xpc.h" | ||
60 | |||
61 | /* define two XPC debug device structures to be used with dev_dbg() et al */ | ||
62 | |||
63 | struct device_driver xpc_dbg_name = { | ||
64 | .name = "xpc" | ||
65 | }; | ||
66 | |||
67 | struct device xpc_part_dbg_subname = { | ||
68 | .bus_id = {0}, /* set to "part" at xpc_init() time */ | ||
69 | .driver = &xpc_dbg_name | ||
70 | }; | ||
71 | |||
72 | struct device xpc_chan_dbg_subname = { | ||
73 | .bus_id = {0}, /* set to "chan" at xpc_init() time */ | ||
74 | .driver = &xpc_dbg_name | ||
75 | }; | ||
76 | |||
77 | struct device *xpc_part = &xpc_part_dbg_subname; | ||
78 | struct device *xpc_chan = &xpc_chan_dbg_subname; | ||
79 | |||
80 | static int xpc_kdebug_ignore; | ||
81 | |||
82 | /* systune related variables for /proc/sys directories */ | ||
83 | |||
84 | static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; | ||
85 | static int xpc_hb_min_interval = 1; | ||
86 | static int xpc_hb_max_interval = 10; | ||
87 | |||
88 | static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; | ||
89 | static int xpc_hb_check_min_interval = 10; | ||
90 | static int xpc_hb_check_max_interval = 120; | ||
91 | |||
92 | int xpc_disengage_request_timelimit = XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT; | ||
93 | static int xpc_disengage_request_min_timelimit; /* = 0 */ | ||
94 | static int xpc_disengage_request_max_timelimit = 120; | ||
95 | |||
96 | static ctl_table xpc_sys_xpc_hb_dir[] = { | ||
97 | { | ||
98 | .ctl_name = CTL_UNNUMBERED, | ||
99 | .procname = "hb_interval", | ||
100 | .data = &xpc_hb_interval, | ||
101 | .maxlen = sizeof(int), | ||
102 | .mode = 0644, | ||
103 | .proc_handler = &proc_dointvec_minmax, | ||
104 | .strategy = &sysctl_intvec, | ||
105 | .extra1 = &xpc_hb_min_interval, | ||
106 | .extra2 = &xpc_hb_max_interval}, | ||
107 | { | ||
108 | .ctl_name = CTL_UNNUMBERED, | ||
109 | .procname = "hb_check_interval", | ||
110 | .data = &xpc_hb_check_interval, | ||
111 | .maxlen = sizeof(int), | ||
112 | .mode = 0644, | ||
113 | .proc_handler = &proc_dointvec_minmax, | ||
114 | .strategy = &sysctl_intvec, | ||
115 | .extra1 = &xpc_hb_check_min_interval, | ||
116 | .extra2 = &xpc_hb_check_max_interval}, | ||
117 | {} | ||
118 | }; | ||
119 | static ctl_table xpc_sys_xpc_dir[] = { | ||
120 | { | ||
121 | .ctl_name = CTL_UNNUMBERED, | ||
122 | .procname = "hb", | ||
123 | .mode = 0555, | ||
124 | .child = xpc_sys_xpc_hb_dir}, | ||
125 | { | ||
126 | .ctl_name = CTL_UNNUMBERED, | ||
127 | .procname = "disengage_request_timelimit", | ||
128 | .data = &xpc_disengage_request_timelimit, | ||
129 | .maxlen = sizeof(int), | ||
130 | .mode = 0644, | ||
131 | .proc_handler = &proc_dointvec_minmax, | ||
132 | .strategy = &sysctl_intvec, | ||
133 | .extra1 = &xpc_disengage_request_min_timelimit, | ||
134 | .extra2 = &xpc_disengage_request_max_timelimit}, | ||
135 | {} | ||
136 | }; | ||
137 | static ctl_table xpc_sys_dir[] = { | ||
138 | { | ||
139 | .ctl_name = CTL_UNNUMBERED, | ||
140 | .procname = "xpc", | ||
141 | .mode = 0555, | ||
142 | .child = xpc_sys_xpc_dir}, | ||
143 | {} | ||
144 | }; | ||
145 | static struct ctl_table_header *xpc_sysctl; | ||
146 | |||
147 | /* non-zero if any remote partition disengage request was timed out */ | ||
148 | int xpc_disengage_request_timedout; | ||
149 | |||
150 | /* #of IRQs received */ | ||
151 | static atomic_t xpc_act_IRQ_rcvd; | ||
152 | |||
153 | /* IRQ handler notifies this wait queue on receipt of an IRQ */ | ||
154 | static DECLARE_WAIT_QUEUE_HEAD(xpc_act_IRQ_wq); | ||
155 | |||
156 | static unsigned long xpc_hb_check_timeout; | ||
157 | |||
158 | /* notification that the xpc_hb_checker thread has exited */ | ||
159 | static DECLARE_COMPLETION(xpc_hb_checker_exited); | ||
160 | |||
161 | /* notification that the xpc_discovery thread has exited */ | ||
162 | static DECLARE_COMPLETION(xpc_discovery_exited); | ||
163 | |||
164 | static struct timer_list xpc_hb_timer; | ||
165 | |||
166 | static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); | ||
167 | |||
168 | static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); | ||
169 | static struct notifier_block xpc_reboot_notifier = { | ||
170 | .notifier_call = xpc_system_reboot, | ||
171 | }; | ||
172 | |||
173 | static int xpc_system_die(struct notifier_block *, unsigned long, void *); | ||
174 | static struct notifier_block xpc_die_notifier = { | ||
175 | .notifier_call = xpc_system_die, | ||
176 | }; | ||
177 | |||
178 | /* | ||
179 | * Timer function to enforce the timelimit on the partition disengage request. | ||
180 | */ | ||
181 | static void | ||
182 | xpc_timeout_partition_disengage_request(unsigned long data) | ||
183 | { | ||
184 | struct xpc_partition *part = (struct xpc_partition *)data; | ||
185 | |||
186 | DBUG_ON(time_before(jiffies, part->disengage_request_timeout)); | ||
187 | |||
188 | (void)xpc_partition_disengaged(part); | ||
189 | |||
190 | DBUG_ON(part->disengage_request_timeout != 0); | ||
191 | DBUG_ON(xpc_partition_engaged(1UL << XPC_PARTID(part)) != 0); | ||
192 | } | ||
193 | |||
194 | /* | ||
195 | * Notify the heartbeat check thread that an IRQ has been received. | ||
196 | */ | ||
197 | static irqreturn_t | ||
198 | xpc_act_IRQ_handler(int irq, void *dev_id) | ||
199 | { | ||
200 | atomic_inc(&xpc_act_IRQ_rcvd); | ||
201 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
202 | return IRQ_HANDLED; | ||
203 | } | ||
204 | |||
205 | /* | ||
206 | * Timer to produce the heartbeat. The timer structures function is | ||
207 | * already set when this is initially called. A tunable is used to | ||
208 | * specify when the next timeout should occur. | ||
209 | */ | ||
210 | static void | ||
211 | xpc_hb_beater(unsigned long dummy) | ||
212 | { | ||
213 | xpc_vars->heartbeat++; | ||
214 | |||
215 | if (time_after_eq(jiffies, xpc_hb_check_timeout)) | ||
216 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
217 | |||
218 | xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); | ||
219 | add_timer(&xpc_hb_timer); | ||
220 | } | ||
221 | |||
222 | /* | ||
223 | * This thread is responsible for nearly all of the partition | ||
224 | * activation/deactivation. | ||
225 | */ | ||
226 | static int | ||
227 | xpc_hb_checker(void *ignore) | ||
228 | { | ||
229 | int last_IRQ_count = 0; | ||
230 | int new_IRQ_count; | ||
231 | int force_IRQ = 0; | ||
232 | |||
233 | /* this thread was marked active by xpc_hb_init() */ | ||
234 | |||
235 | set_cpus_allowed(current, cpumask_of_cpu(XPC_HB_CHECK_CPU)); | ||
236 | |||
237 | /* set our heartbeating to other partitions into motion */ | ||
238 | xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); | ||
239 | xpc_hb_beater(0); | ||
240 | |||
241 | while (!xpc_exiting) { | ||
242 | |||
243 | dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " | ||
244 | "been received\n", | ||
245 | (int)(xpc_hb_check_timeout - jiffies), | ||
246 | atomic_read(&xpc_act_IRQ_rcvd) - last_IRQ_count); | ||
247 | |||
248 | /* checking of remote heartbeats is skewed by IRQ handling */ | ||
249 | if (time_after_eq(jiffies, xpc_hb_check_timeout)) { | ||
250 | dev_dbg(xpc_part, "checking remote heartbeats\n"); | ||
251 | xpc_check_remote_hb(); | ||
252 | |||
253 | /* | ||
254 | * We need to periodically recheck to ensure no | ||
255 | * IPI/AMO pairs have been missed. That check | ||
256 | * must always reset xpc_hb_check_timeout. | ||
257 | */ | ||
258 | force_IRQ = 1; | ||
259 | } | ||
260 | |||
261 | /* check for outstanding IRQs */ | ||
262 | new_IRQ_count = atomic_read(&xpc_act_IRQ_rcvd); | ||
263 | if (last_IRQ_count < new_IRQ_count || force_IRQ != 0) { | ||
264 | force_IRQ = 0; | ||
265 | |||
266 | dev_dbg(xpc_part, "found an IRQ to process; will be " | ||
267 | "resetting xpc_hb_check_timeout\n"); | ||
268 | |||
269 | last_IRQ_count += xpc_identify_act_IRQ_sender(); | ||
270 | if (last_IRQ_count < new_IRQ_count) { | ||
271 | /* retry once to help avoid missing AMO */ | ||
272 | (void)xpc_identify_act_IRQ_sender(); | ||
273 | } | ||
274 | last_IRQ_count = new_IRQ_count; | ||
275 | |||
276 | xpc_hb_check_timeout = jiffies + | ||
277 | (xpc_hb_check_interval * HZ); | ||
278 | } | ||
279 | |||
280 | /* wait for IRQ or timeout */ | ||
281 | (void)wait_event_interruptible(xpc_act_IRQ_wq, | ||
282 | (last_IRQ_count < | ||
283 | atomic_read(&xpc_act_IRQ_rcvd) | ||
284 | || time_after_eq(jiffies, | ||
285 | xpc_hb_check_timeout) || | ||
286 | xpc_exiting)); | ||
287 | } | ||
288 | |||
289 | dev_dbg(xpc_part, "heartbeat checker is exiting\n"); | ||
290 | |||
291 | /* mark this thread as having exited */ | ||
292 | complete(&xpc_hb_checker_exited); | ||
293 | return 0; | ||
294 | } | ||
295 | |||
296 | /* | ||
297 | * This thread will attempt to discover other partitions to activate | ||
298 | * based on info provided by SAL. This new thread is short lived and | ||
299 | * will exit once discovery is complete. | ||
300 | */ | ||
301 | static int | ||
302 | xpc_initiate_discovery(void *ignore) | ||
303 | { | ||
304 | xpc_discovery(); | ||
305 | |||
306 | dev_dbg(xpc_part, "discovery thread is exiting\n"); | ||
307 | |||
308 | /* mark this thread as having exited */ | ||
309 | complete(&xpc_discovery_exited); | ||
310 | return 0; | ||
311 | } | ||
312 | |||
313 | /* | ||
314 | * Establish first contact with the remote partititon. This involves pulling | ||
315 | * the XPC per partition variables from the remote partition and waiting for | ||
316 | * the remote partition to pull ours. | ||
317 | */ | ||
318 | static enum xpc_retval | ||
319 | xpc_make_first_contact(struct xpc_partition *part) | ||
320 | { | ||
321 | enum xpc_retval ret; | ||
322 | |||
323 | while ((ret = xpc_pull_remote_vars_part(part)) != xpcSuccess) { | ||
324 | if (ret != xpcRetry) { | ||
325 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
326 | return ret; | ||
327 | } | ||
328 | |||
329 | dev_dbg(xpc_chan, "waiting to make first contact with " | ||
330 | "partition %d\n", XPC_PARTID(part)); | ||
331 | |||
332 | /* wait a 1/4 of a second or so */ | ||
333 | (void)msleep_interruptible(250); | ||
334 | |||
335 | if (part->act_state == XPC_P_DEACTIVATING) | ||
336 | return part->reason; | ||
337 | } | ||
338 | |||
339 | return xpc_mark_partition_active(part); | ||
340 | } | ||
341 | |||
342 | /* | ||
343 | * The first kthread assigned to a newly activated partition is the one | ||
344 | * created by XPC HB with which it calls xpc_partition_up(). XPC hangs on to | ||
345 | * that kthread until the partition is brought down, at which time that kthread | ||
346 | * returns back to XPC HB. (The return of that kthread will signify to XPC HB | ||
347 | * that XPC has dismantled all communication infrastructure for the associated | ||
348 | * partition.) This kthread becomes the channel manager for that partition. | ||
349 | * | ||
350 | * Each active partition has a channel manager, who, besides connecting and | ||
351 | * disconnecting channels, will ensure that each of the partition's connected | ||
352 | * channels has the required number of assigned kthreads to get the work done. | ||
353 | */ | ||
354 | static void | ||
355 | xpc_channel_mgr(struct xpc_partition *part) | ||
356 | { | ||
357 | while (part->act_state != XPC_P_DEACTIVATING || | ||
358 | atomic_read(&part->nchannels_active) > 0 || | ||
359 | !xpc_partition_disengaged(part)) { | ||
360 | |||
361 | xpc_process_channel_activity(part); | ||
362 | |||
363 | /* | ||
364 | * Wait until we've been requested to activate kthreads or | ||
365 | * all of the channel's message queues have been torn down or | ||
366 | * a signal is pending. | ||
367 | * | ||
368 | * The channel_mgr_requests is set to 1 after being awakened, | ||
369 | * This is done to prevent the channel mgr from making one pass | ||
370 | * through the loop for each request, since he will | ||
371 | * be servicing all the requests in one pass. The reason it's | ||
372 | * set to 1 instead of 0 is so that other kthreads will know | ||
373 | * that the channel mgr is running and won't bother trying to | ||
374 | * wake him up. | ||
375 | */ | ||
376 | atomic_dec(&part->channel_mgr_requests); | ||
377 | (void)wait_event_interruptible(part->channel_mgr_wq, | ||
378 | (atomic_read(&part->channel_mgr_requests) > 0 || | ||
379 | part->local_IPI_amo != 0 || | ||
380 | (part->act_state == XPC_P_DEACTIVATING && | ||
381 | atomic_read(&part->nchannels_active) == 0 && | ||
382 | xpc_partition_disengaged(part)))); | ||
383 | atomic_set(&part->channel_mgr_requests, 1); | ||
384 | } | ||
385 | } | ||
386 | |||
387 | /* | ||
388 | * When XPC HB determines that a partition has come up, it will create a new | ||
389 | * kthread and that kthread will call this function to attempt to set up the | ||
390 | * basic infrastructure used for Cross Partition Communication with the newly | ||
391 | * upped partition. | ||
392 | * | ||
393 | * The kthread that was created by XPC HB and which setup the XPC | ||
394 | * infrastructure will remain assigned to the partition until the partition | ||
395 | * goes down. At which time the kthread will teardown the XPC infrastructure | ||
396 | * and then exit. | ||
397 | * | ||
398 | * XPC HB will put the remote partition's XPC per partition specific variables | ||
399 | * physical address into xpc_partitions[partid].remote_vars_part_pa prior to | ||
400 | * calling xpc_partition_up(). | ||
401 | */ | ||
402 | static void | ||
403 | xpc_partition_up(struct xpc_partition *part) | ||
404 | { | ||
405 | DBUG_ON(part->channels != NULL); | ||
406 | |||
407 | dev_dbg(xpc_chan, "activating partition %d\n", XPC_PARTID(part)); | ||
408 | |||
409 | if (xpc_setup_infrastructure(part) != xpcSuccess) | ||
410 | return; | ||
411 | |||
412 | /* | ||
413 | * The kthread that XPC HB called us with will become the | ||
414 | * channel manager for this partition. It will not return | ||
415 | * back to XPC HB until the partition's XPC infrastructure | ||
416 | * has been dismantled. | ||
417 | */ | ||
418 | |||
419 | (void)xpc_part_ref(part); /* this will always succeed */ | ||
420 | |||
421 | if (xpc_make_first_contact(part) == xpcSuccess) | ||
422 | xpc_channel_mgr(part); | ||
423 | |||
424 | xpc_part_deref(part); | ||
425 | |||
426 | xpc_teardown_infrastructure(part); | ||
427 | } | ||
428 | |||
429 | static int | ||
430 | xpc_activating(void *__partid) | ||
431 | { | ||
432 | partid_t partid = (u64)__partid; | ||
433 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
434 | unsigned long irq_flags; | ||
435 | |||
436 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
437 | |||
438 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
439 | |||
440 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
441 | part->act_state = XPC_P_INACTIVE; | ||
442 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
443 | part->remote_rp_pa = 0; | ||
444 | return 0; | ||
445 | } | ||
446 | |||
447 | /* indicate the thread is activating */ | ||
448 | DBUG_ON(part->act_state != XPC_P_ACTIVATION_REQ); | ||
449 | part->act_state = XPC_P_ACTIVATING; | ||
450 | |||
451 | XPC_SET_REASON(part, 0, 0); | ||
452 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
453 | |||
454 | dev_dbg(xpc_part, "bringing partition %d up\n", partid); | ||
455 | |||
456 | /* | ||
457 | * Register the remote partition's AMOs with SAL so it can handle | ||
458 | * and cleanup errors within that address range should the remote | ||
459 | * partition go down. We don't unregister this range because it is | ||
460 | * difficult to tell when outstanding writes to the remote partition | ||
461 | * are finished and thus when it is safe to unregister. This should | ||
462 | * not result in wasted space in the SAL xp_addr_region table because | ||
463 | * we should get the same page for remote_amos_page_pa after module | ||
464 | * reloads and system reboots. | ||
465 | */ | ||
466 | if (sn_register_xp_addr_region(part->remote_amos_page_pa, | ||
467 | PAGE_SIZE, 1) < 0) { | ||
468 | dev_warn(xpc_part, "xpc_partition_up(%d) failed to register " | ||
469 | "xp_addr region\n", partid); | ||
470 | |||
471 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
472 | part->act_state = XPC_P_INACTIVE; | ||
473 | XPC_SET_REASON(part, xpcPhysAddrRegFailed, __LINE__); | ||
474 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
475 | part->remote_rp_pa = 0; | ||
476 | return 0; | ||
477 | } | ||
478 | |||
479 | xpc_allow_hb(partid, xpc_vars); | ||
480 | xpc_IPI_send_activated(part); | ||
481 | |||
482 | /* | ||
483 | * xpc_partition_up() holds this thread and marks this partition as | ||
484 | * XPC_P_ACTIVE by calling xpc_hb_mark_active(). | ||
485 | */ | ||
486 | (void)xpc_partition_up(part); | ||
487 | |||
488 | xpc_disallow_hb(partid, xpc_vars); | ||
489 | xpc_mark_partition_inactive(part); | ||
490 | |||
491 | if (part->reason == xpcReactivating) { | ||
492 | /* interrupting ourselves results in activating partition */ | ||
493 | xpc_IPI_send_reactivate(part); | ||
494 | } | ||
495 | |||
496 | return 0; | ||
497 | } | ||
498 | |||
499 | void | ||
500 | xpc_activate_partition(struct xpc_partition *part) | ||
501 | { | ||
502 | partid_t partid = XPC_PARTID(part); | ||
503 | unsigned long irq_flags; | ||
504 | struct task_struct *kthread; | ||
505 | |||
506 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
507 | |||
508 | DBUG_ON(part->act_state != XPC_P_INACTIVE); | ||
509 | |||
510 | part->act_state = XPC_P_ACTIVATION_REQ; | ||
511 | XPC_SET_REASON(part, xpcCloneKThread, __LINE__); | ||
512 | |||
513 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
514 | |||
515 | kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d", | ||
516 | partid); | ||
517 | if (IS_ERR(kthread)) { | ||
518 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
519 | part->act_state = XPC_P_INACTIVE; | ||
520 | XPC_SET_REASON(part, xpcCloneKThreadFailed, __LINE__); | ||
521 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
522 | } | ||
523 | } | ||
524 | |||
525 | /* | ||
526 | * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified | ||
527 | * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more | ||
528 | * than one partition, we use an AMO_t structure per partition to indicate | ||
529 | * whether a partition has sent an IPI or not. If it has, then wake up the | ||
530 | * associated kthread to handle it. | ||
531 | * | ||
532 | * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC | ||
533 | * running on other partitions. | ||
534 | * | ||
535 | * Noteworthy Arguments: | ||
536 | * | ||
537 | * irq - Interrupt ReQuest number. NOT USED. | ||
538 | * | ||
539 | * dev_id - partid of IPI's potential sender. | ||
540 | */ | ||
541 | irqreturn_t | ||
542 | xpc_notify_IRQ_handler(int irq, void *dev_id) | ||
543 | { | ||
544 | partid_t partid = (partid_t) (u64)dev_id; | ||
545 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
546 | |||
547 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
548 | |||
549 | if (xpc_part_ref(part)) { | ||
550 | xpc_check_for_channel_activity(part); | ||
551 | |||
552 | xpc_part_deref(part); | ||
553 | } | ||
554 | return IRQ_HANDLED; | ||
555 | } | ||
556 | |||
557 | /* | ||
558 | * Check to see if xpc_notify_IRQ_handler() dropped any IPIs on the floor | ||
559 | * because the write to their associated IPI amo completed after the IRQ/IPI | ||
560 | * was received. | ||
561 | */ | ||
562 | void | ||
563 | xpc_dropped_IPI_check(struct xpc_partition *part) | ||
564 | { | ||
565 | if (xpc_part_ref(part)) { | ||
566 | xpc_check_for_channel_activity(part); | ||
567 | |||
568 | part->dropped_IPI_timer.expires = jiffies + | ||
569 | XPC_P_DROPPED_IPI_WAIT; | ||
570 | add_timer(&part->dropped_IPI_timer); | ||
571 | xpc_part_deref(part); | ||
572 | } | ||
573 | } | ||
574 | |||
575 | void | ||
576 | xpc_activate_kthreads(struct xpc_channel *ch, int needed) | ||
577 | { | ||
578 | int idle = atomic_read(&ch->kthreads_idle); | ||
579 | int assigned = atomic_read(&ch->kthreads_assigned); | ||
580 | int wakeup; | ||
581 | |||
582 | DBUG_ON(needed <= 0); | ||
583 | |||
584 | if (idle > 0) { | ||
585 | wakeup = (needed > idle) ? idle : needed; | ||
586 | needed -= wakeup; | ||
587 | |||
588 | dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " | ||
589 | "channel=%d\n", wakeup, ch->partid, ch->number); | ||
590 | |||
591 | /* only wakeup the requested number of kthreads */ | ||
592 | wake_up_nr(&ch->idle_wq, wakeup); | ||
593 | } | ||
594 | |||
595 | if (needed <= 0) | ||
596 | return; | ||
597 | |||
598 | if (needed + assigned > ch->kthreads_assigned_limit) { | ||
599 | needed = ch->kthreads_assigned_limit - assigned; | ||
600 | if (needed <= 0) | ||
601 | return; | ||
602 | } | ||
603 | |||
604 | dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", | ||
605 | needed, ch->partid, ch->number); | ||
606 | |||
607 | xpc_create_kthreads(ch, needed, 0); | ||
608 | } | ||
609 | |||
610 | /* | ||
611 | * This function is where XPC's kthreads wait for messages to deliver. | ||
612 | */ | ||
613 | static void | ||
614 | xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) | ||
615 | { | ||
616 | do { | ||
617 | /* deliver messages to their intended recipients */ | ||
618 | |||
619 | while (ch->w_local_GP.get < ch->w_remote_GP.put && | ||
620 | !(ch->flags & XPC_C_DISCONNECTING)) { | ||
621 | xpc_deliver_msg(ch); | ||
622 | } | ||
623 | |||
624 | if (atomic_inc_return(&ch->kthreads_idle) > | ||
625 | ch->kthreads_idle_limit) { | ||
626 | /* too many idle kthreads on this channel */ | ||
627 | atomic_dec(&ch->kthreads_idle); | ||
628 | break; | ||
629 | } | ||
630 | |||
631 | dev_dbg(xpc_chan, "idle kthread calling " | ||
632 | "wait_event_interruptible_exclusive()\n"); | ||
633 | |||
634 | (void)wait_event_interruptible_exclusive(ch->idle_wq, | ||
635 | (ch->w_local_GP.get < ch->w_remote_GP.put || | ||
636 | (ch->flags & XPC_C_DISCONNECTING))); | ||
637 | |||
638 | atomic_dec(&ch->kthreads_idle); | ||
639 | |||
640 | } while (!(ch->flags & XPC_C_DISCONNECTING)); | ||
641 | } | ||
642 | |||
643 | static int | ||
644 | xpc_kthread_start(void *args) | ||
645 | { | ||
646 | partid_t partid = XPC_UNPACK_ARG1(args); | ||
647 | u16 ch_number = XPC_UNPACK_ARG2(args); | ||
648 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
649 | struct xpc_channel *ch; | ||
650 | int n_needed; | ||
651 | unsigned long irq_flags; | ||
652 | |||
653 | dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", | ||
654 | partid, ch_number); | ||
655 | |||
656 | ch = &part->channels[ch_number]; | ||
657 | |||
658 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
659 | |||
660 | /* let registerer know that connection has been established */ | ||
661 | |||
662 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
663 | if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { | ||
664 | ch->flags |= XPC_C_CONNECTEDCALLOUT; | ||
665 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
666 | |||
667 | xpc_connected_callout(ch); | ||
668 | |||
669 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
670 | ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; | ||
671 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
672 | |||
673 | /* | ||
674 | * It is possible that while the callout was being | ||
675 | * made that the remote partition sent some messages. | ||
676 | * If that is the case, we may need to activate | ||
677 | * additional kthreads to help deliver them. We only | ||
678 | * need one less than total #of messages to deliver. | ||
679 | */ | ||
680 | n_needed = ch->w_remote_GP.put - ch->w_local_GP.get - 1; | ||
681 | if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) | ||
682 | xpc_activate_kthreads(ch, n_needed); | ||
683 | |||
684 | } else { | ||
685 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
686 | } | ||
687 | |||
688 | xpc_kthread_waitmsgs(part, ch); | ||
689 | } | ||
690 | |||
691 | /* let registerer know that connection is disconnecting */ | ||
692 | |||
693 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
694 | if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && | ||
695 | !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { | ||
696 | ch->flags |= XPC_C_DISCONNECTINGCALLOUT; | ||
697 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
698 | |||
699 | xpc_disconnect_callout(ch, xpcDisconnecting); | ||
700 | |||
701 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
702 | ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; | ||
703 | } | ||
704 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
705 | |||
706 | if (atomic_dec_return(&ch->kthreads_assigned) == 0) { | ||
707 | if (atomic_dec_return(&part->nchannels_engaged) == 0) { | ||
708 | xpc_mark_partition_disengaged(part); | ||
709 | xpc_IPI_send_disengage(part); | ||
710 | } | ||
711 | } | ||
712 | |||
713 | xpc_msgqueue_deref(ch); | ||
714 | |||
715 | dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", | ||
716 | partid, ch_number); | ||
717 | |||
718 | xpc_part_deref(part); | ||
719 | return 0; | ||
720 | } | ||
721 | |||
722 | /* | ||
723 | * For each partition that XPC has established communications with, there is | ||
724 | * a minimum of one kernel thread assigned to perform any operation that | ||
725 | * may potentially sleep or block (basically the callouts to the asynchronous | ||
726 | * functions registered via xpc_connect()). | ||
727 | * | ||
728 | * Additional kthreads are created and destroyed by XPC as the workload | ||
729 | * demands. | ||
730 | * | ||
731 | * A kthread is assigned to one of the active channels that exists for a given | ||
732 | * partition. | ||
733 | */ | ||
734 | void | ||
735 | xpc_create_kthreads(struct xpc_channel *ch, int needed, | ||
736 | int ignore_disconnecting) | ||
737 | { | ||
738 | unsigned long irq_flags; | ||
739 | u64 args = XPC_PACK_ARGS(ch->partid, ch->number); | ||
740 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
741 | struct task_struct *kthread; | ||
742 | |||
743 | while (needed-- > 0) { | ||
744 | |||
745 | /* | ||
746 | * The following is done on behalf of the newly created | ||
747 | * kthread. That kthread is responsible for doing the | ||
748 | * counterpart to the following before it exits. | ||
749 | */ | ||
750 | if (ignore_disconnecting) { | ||
751 | if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { | ||
752 | /* kthreads assigned had gone to zero */ | ||
753 | BUG_ON(!(ch->flags & | ||
754 | XPC_C_DISCONNECTINGCALLOUT_MADE)); | ||
755 | break; | ||
756 | } | ||
757 | |||
758 | } else if (ch->flags & XPC_C_DISCONNECTING) { | ||
759 | break; | ||
760 | |||
761 | } else if (atomic_inc_return(&ch->kthreads_assigned) == 1) { | ||
762 | if (atomic_inc_return(&part->nchannels_engaged) == 1) | ||
763 | xpc_mark_partition_engaged(part); | ||
764 | } | ||
765 | (void)xpc_part_ref(part); | ||
766 | xpc_msgqueue_ref(ch); | ||
767 | |||
768 | kthread = kthread_run(xpc_kthread_start, (void *)args, | ||
769 | "xpc%02dc%d", ch->partid, ch->number); | ||
770 | if (IS_ERR(kthread)) { | ||
771 | /* the fork failed */ | ||
772 | |||
773 | /* | ||
774 | * NOTE: if (ignore_disconnecting && | ||
775 | * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, | ||
776 | * then we'll deadlock if all other kthreads assigned | ||
777 | * to this channel are blocked in the channel's | ||
778 | * registerer, because the only thing that will unblock | ||
779 | * them is the xpcDisconnecting callout that this | ||
780 | * failed kthread_run() would have made. | ||
781 | */ | ||
782 | |||
783 | if (atomic_dec_return(&ch->kthreads_assigned) == 0 && | ||
784 | atomic_dec_return(&part->nchannels_engaged) == 0) { | ||
785 | xpc_mark_partition_disengaged(part); | ||
786 | xpc_IPI_send_disengage(part); | ||
787 | } | ||
788 | xpc_msgqueue_deref(ch); | ||
789 | xpc_part_deref(part); | ||
790 | |||
791 | if (atomic_read(&ch->kthreads_assigned) < | ||
792 | ch->kthreads_idle_limit) { | ||
793 | /* | ||
794 | * Flag this as an error only if we have an | ||
795 | * insufficient #of kthreads for the channel | ||
796 | * to function. | ||
797 | */ | ||
798 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
799 | XPC_DISCONNECT_CHANNEL(ch, xpcLackOfResources, | ||
800 | &irq_flags); | ||
801 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
802 | } | ||
803 | break; | ||
804 | } | ||
805 | } | ||
806 | } | ||
807 | |||
808 | void | ||
809 | xpc_disconnect_wait(int ch_number) | ||
810 | { | ||
811 | unsigned long irq_flags; | ||
812 | partid_t partid; | ||
813 | struct xpc_partition *part; | ||
814 | struct xpc_channel *ch; | ||
815 | int wakeup_channel_mgr; | ||
816 | |||
817 | /* now wait for all callouts to the caller's function to cease */ | ||
818 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
819 | part = &xpc_partitions[partid]; | ||
820 | |||
821 | if (!xpc_part_ref(part)) | ||
822 | continue; | ||
823 | |||
824 | ch = &part->channels[ch_number]; | ||
825 | |||
826 | if (!(ch->flags & XPC_C_WDISCONNECT)) { | ||
827 | xpc_part_deref(part); | ||
828 | continue; | ||
829 | } | ||
830 | |||
831 | wait_for_completion(&ch->wdisconnect_wait); | ||
832 | |||
833 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
834 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); | ||
835 | wakeup_channel_mgr = 0; | ||
836 | |||
837 | if (ch->delayed_IPI_flags) { | ||
838 | if (part->act_state != XPC_P_DEACTIVATING) { | ||
839 | spin_lock(&part->IPI_lock); | ||
840 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, | ||
841 | ch->number, | ||
842 | ch->delayed_IPI_flags); | ||
843 | spin_unlock(&part->IPI_lock); | ||
844 | wakeup_channel_mgr = 1; | ||
845 | } | ||
846 | ch->delayed_IPI_flags = 0; | ||
847 | } | ||
848 | |||
849 | ch->flags &= ~XPC_C_WDISCONNECT; | ||
850 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
851 | |||
852 | if (wakeup_channel_mgr) | ||
853 | xpc_wakeup_channel_mgr(part); | ||
854 | |||
855 | xpc_part_deref(part); | ||
856 | } | ||
857 | } | ||
858 | |||
859 | static void | ||
860 | xpc_do_exit(enum xpc_retval reason) | ||
861 | { | ||
862 | partid_t partid; | ||
863 | int active_part_count, printed_waiting_msg = 0; | ||
864 | struct xpc_partition *part; | ||
865 | unsigned long printmsg_time, disengage_request_timeout = 0; | ||
866 | |||
867 | /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ | ||
868 | DBUG_ON(xpc_exiting == 1); | ||
869 | |||
870 | /* | ||
871 | * Let the heartbeat checker thread and the discovery thread | ||
872 | * (if one is running) know that they should exit. Also wake up | ||
873 | * the heartbeat checker thread in case it's sleeping. | ||
874 | */ | ||
875 | xpc_exiting = 1; | ||
876 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
877 | |||
878 | /* ignore all incoming interrupts */ | ||
879 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
880 | |||
881 | /* wait for the discovery thread to exit */ | ||
882 | wait_for_completion(&xpc_discovery_exited); | ||
883 | |||
884 | /* wait for the heartbeat checker thread to exit */ | ||
885 | wait_for_completion(&xpc_hb_checker_exited); | ||
886 | |||
887 | /* sleep for a 1/3 of a second or so */ | ||
888 | (void)msleep_interruptible(300); | ||
889 | |||
890 | /* wait for all partitions to become inactive */ | ||
891 | |||
892 | printmsg_time = jiffies + (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ); | ||
893 | xpc_disengage_request_timedout = 0; | ||
894 | |||
895 | do { | ||
896 | active_part_count = 0; | ||
897 | |||
898 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
899 | part = &xpc_partitions[partid]; | ||
900 | |||
901 | if (xpc_partition_disengaged(part) && | ||
902 | part->act_state == XPC_P_INACTIVE) { | ||
903 | continue; | ||
904 | } | ||
905 | |||
906 | active_part_count++; | ||
907 | |||
908 | XPC_DEACTIVATE_PARTITION(part, reason); | ||
909 | |||
910 | if (part->disengage_request_timeout > | ||
911 | disengage_request_timeout) { | ||
912 | disengage_request_timeout = | ||
913 | part->disengage_request_timeout; | ||
914 | } | ||
915 | } | ||
916 | |||
917 | if (xpc_partition_engaged(-1UL)) { | ||
918 | if (time_after(jiffies, printmsg_time)) { | ||
919 | dev_info(xpc_part, "waiting for remote " | ||
920 | "partitions to disengage, timeout in " | ||
921 | "%ld seconds\n", | ||
922 | (disengage_request_timeout - jiffies) | ||
923 | / HZ); | ||
924 | printmsg_time = jiffies + | ||
925 | (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ); | ||
926 | printed_waiting_msg = 1; | ||
927 | } | ||
928 | |||
929 | } else if (active_part_count > 0) { | ||
930 | if (printed_waiting_msg) { | ||
931 | dev_info(xpc_part, "waiting for local partition" | ||
932 | " to disengage\n"); | ||
933 | printed_waiting_msg = 0; | ||
934 | } | ||
935 | |||
936 | } else { | ||
937 | if (!xpc_disengage_request_timedout) { | ||
938 | dev_info(xpc_part, "all partitions have " | ||
939 | "disengaged\n"); | ||
940 | } | ||
941 | break; | ||
942 | } | ||
943 | |||
944 | /* sleep for a 1/3 of a second or so */ | ||
945 | (void)msleep_interruptible(300); | ||
946 | |||
947 | } while (1); | ||
948 | |||
949 | DBUG_ON(xpc_partition_engaged(-1UL)); | ||
950 | |||
951 | /* indicate to others that our reserved page is uninitialized */ | ||
952 | xpc_rsvd_page->vars_pa = 0; | ||
953 | |||
954 | /* now it's time to eliminate our heartbeat */ | ||
955 | del_timer_sync(&xpc_hb_timer); | ||
956 | DBUG_ON(xpc_vars->heartbeating_to_mask != 0); | ||
957 | |||
958 | if (reason == xpcUnloading) { | ||
959 | /* take ourselves off of the reboot_notifier_list */ | ||
960 | (void)unregister_reboot_notifier(&xpc_reboot_notifier); | ||
961 | |||
962 | /* take ourselves off of the die_notifier list */ | ||
963 | (void)unregister_die_notifier(&xpc_die_notifier); | ||
964 | } | ||
965 | |||
966 | /* close down protections for IPI operations */ | ||
967 | xpc_restrict_IPI_ops(); | ||
968 | |||
969 | /* clear the interface to XPC's functions */ | ||
970 | xpc_clear_interface(); | ||
971 | |||
972 | if (xpc_sysctl) | ||
973 | unregister_sysctl_table(xpc_sysctl); | ||
974 | |||
975 | kfree(xpc_remote_copy_buffer_base); | ||
976 | } | ||
977 | |||
978 | /* | ||
979 | * This function is called when the system is being rebooted. | ||
980 | */ | ||
981 | static int | ||
982 | xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) | ||
983 | { | ||
984 | enum xpc_retval reason; | ||
985 | |||
986 | switch (event) { | ||
987 | case SYS_RESTART: | ||
988 | reason = xpcSystemReboot; | ||
989 | break; | ||
990 | case SYS_HALT: | ||
991 | reason = xpcSystemHalt; | ||
992 | break; | ||
993 | case SYS_POWER_OFF: | ||
994 | reason = xpcSystemPoweroff; | ||
995 | break; | ||
996 | default: | ||
997 | reason = xpcSystemGoingDown; | ||
998 | } | ||
999 | |||
1000 | xpc_do_exit(reason); | ||
1001 | return NOTIFY_DONE; | ||
1002 | } | ||
1003 | |||
1004 | /* | ||
1005 | * Notify other partitions to disengage from all references to our memory. | ||
1006 | */ | ||
1007 | static void | ||
1008 | xpc_die_disengage(void) | ||
1009 | { | ||
1010 | struct xpc_partition *part; | ||
1011 | partid_t partid; | ||
1012 | unsigned long engaged; | ||
1013 | long time, printmsg_time, disengage_request_timeout; | ||
1014 | |||
1015 | /* keep xpc_hb_checker thread from doing anything (just in case) */ | ||
1016 | xpc_exiting = 1; | ||
1017 | |||
1018 | xpc_vars->heartbeating_to_mask = 0; /* indicate we're deactivated */ | ||
1019 | |||
1020 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1021 | part = &xpc_partitions[partid]; | ||
1022 | |||
1023 | if (!XPC_SUPPORTS_DISENGAGE_REQUEST(part-> | ||
1024 | remote_vars_version)) { | ||
1025 | |||
1026 | /* just in case it was left set by an earlier XPC */ | ||
1027 | xpc_clear_partition_engaged(1UL << partid); | ||
1028 | continue; | ||
1029 | } | ||
1030 | |||
1031 | if (xpc_partition_engaged(1UL << partid) || | ||
1032 | part->act_state != XPC_P_INACTIVE) { | ||
1033 | xpc_request_partition_disengage(part); | ||
1034 | xpc_mark_partition_disengaged(part); | ||
1035 | xpc_IPI_send_disengage(part); | ||
1036 | } | ||
1037 | } | ||
1038 | |||
1039 | time = rtc_time(); | ||
1040 | printmsg_time = time + | ||
1041 | (XPC_DISENGAGE_PRINTMSG_INTERVAL * sn_rtc_cycles_per_second); | ||
1042 | disengage_request_timeout = time + | ||
1043 | (xpc_disengage_request_timelimit * sn_rtc_cycles_per_second); | ||
1044 | |||
1045 | /* wait for all other partitions to disengage from us */ | ||
1046 | |||
1047 | while (1) { | ||
1048 | engaged = xpc_partition_engaged(-1UL); | ||
1049 | if (!engaged) { | ||
1050 | dev_info(xpc_part, "all partitions have disengaged\n"); | ||
1051 | break; | ||
1052 | } | ||
1053 | |||
1054 | time = rtc_time(); | ||
1055 | if (time >= disengage_request_timeout) { | ||
1056 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1057 | if (engaged & (1UL << partid)) { | ||
1058 | dev_info(xpc_part, "disengage from " | ||
1059 | "remote partition %d timed " | ||
1060 | "out\n", partid); | ||
1061 | } | ||
1062 | } | ||
1063 | break; | ||
1064 | } | ||
1065 | |||
1066 | if (time >= printmsg_time) { | ||
1067 | dev_info(xpc_part, "waiting for remote partitions to " | ||
1068 | "disengage, timeout in %ld seconds\n", | ||
1069 | (disengage_request_timeout - time) / | ||
1070 | sn_rtc_cycles_per_second); | ||
1071 | printmsg_time = time + | ||
1072 | (XPC_DISENGAGE_PRINTMSG_INTERVAL * | ||
1073 | sn_rtc_cycles_per_second); | ||
1074 | } | ||
1075 | } | ||
1076 | } | ||
1077 | |||
1078 | /* | ||
1079 | * This function is called when the system is being restarted or halted due | ||
1080 | * to some sort of system failure. If this is the case we need to notify the | ||
1081 | * other partitions to disengage from all references to our memory. | ||
1082 | * This function can also be called when our heartbeater could be offlined | ||
1083 | * for a time. In this case we need to notify other partitions to not worry | ||
1084 | * about the lack of a heartbeat. | ||
1085 | */ | ||
1086 | static int | ||
1087 | xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) | ||
1088 | { | ||
1089 | switch (event) { | ||
1090 | case DIE_MACHINE_RESTART: | ||
1091 | case DIE_MACHINE_HALT: | ||
1092 | xpc_die_disengage(); | ||
1093 | break; | ||
1094 | |||
1095 | case DIE_KDEBUG_ENTER: | ||
1096 | /* Should lack of heartbeat be ignored by other partitions? */ | ||
1097 | if (!xpc_kdebug_ignore) | ||
1098 | break; | ||
1099 | |||
1100 | /* fall through */ | ||
1101 | case DIE_MCA_MONARCH_ENTER: | ||
1102 | case DIE_INIT_MONARCH_ENTER: | ||
1103 | xpc_vars->heartbeat++; | ||
1104 | xpc_vars->heartbeat_offline = 1; | ||
1105 | break; | ||
1106 | |||
1107 | case DIE_KDEBUG_LEAVE: | ||
1108 | /* Is lack of heartbeat being ignored by other partitions? */ | ||
1109 | if (!xpc_kdebug_ignore) | ||
1110 | break; | ||
1111 | |||
1112 | /* fall through */ | ||
1113 | case DIE_MCA_MONARCH_LEAVE: | ||
1114 | case DIE_INIT_MONARCH_LEAVE: | ||
1115 | xpc_vars->heartbeat++; | ||
1116 | xpc_vars->heartbeat_offline = 0; | ||
1117 | break; | ||
1118 | } | ||
1119 | |||
1120 | return NOTIFY_DONE; | ||
1121 | } | ||
1122 | |||
1123 | int __init | ||
1124 | xpc_init(void) | ||
1125 | { | ||
1126 | int ret; | ||
1127 | partid_t partid; | ||
1128 | struct xpc_partition *part; | ||
1129 | struct task_struct *kthread; | ||
1130 | size_t buf_size; | ||
1131 | |||
1132 | if (!ia64_platform_is("sn2")) | ||
1133 | return -ENODEV; | ||
1134 | |||
1135 | buf_size = max(XPC_RP_VARS_SIZE, | ||
1136 | XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES); | ||
1137 | xpc_remote_copy_buffer = xpc_kmalloc_cacheline_aligned(buf_size, | ||
1138 | GFP_KERNEL, | ||
1139 | &xpc_remote_copy_buffer_base); | ||
1140 | if (xpc_remote_copy_buffer == NULL) | ||
1141 | return -ENOMEM; | ||
1142 | |||
1143 | snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part"); | ||
1144 | snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan"); | ||
1145 | |||
1146 | xpc_sysctl = register_sysctl_table(xpc_sys_dir); | ||
1147 | |||
1148 | /* | ||
1149 | * The first few fields of each entry of xpc_partitions[] need to | ||
1150 | * be initialized now so that calls to xpc_connect() and | ||
1151 | * xpc_disconnect() can be made prior to the activation of any remote | ||
1152 | * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE | ||
1153 | * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING | ||
1154 | * PARTITION HAS BEEN ACTIVATED. | ||
1155 | */ | ||
1156 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1157 | part = &xpc_partitions[partid]; | ||
1158 | |||
1159 | DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); | ||
1160 | |||
1161 | part->act_IRQ_rcvd = 0; | ||
1162 | spin_lock_init(&part->act_lock); | ||
1163 | part->act_state = XPC_P_INACTIVE; | ||
1164 | XPC_SET_REASON(part, 0, 0); | ||
1165 | |||
1166 | init_timer(&part->disengage_request_timer); | ||
1167 | part->disengage_request_timer.function = | ||
1168 | xpc_timeout_partition_disengage_request; | ||
1169 | part->disengage_request_timer.data = (unsigned long)part; | ||
1170 | |||
1171 | part->setup_state = XPC_P_UNSET; | ||
1172 | init_waitqueue_head(&part->teardown_wq); | ||
1173 | atomic_set(&part->references, 0); | ||
1174 | } | ||
1175 | |||
1176 | /* | ||
1177 | * Open up protections for IPI operations (and AMO operations on | ||
1178 | * Shub 1.1 systems). | ||
1179 | */ | ||
1180 | xpc_allow_IPI_ops(); | ||
1181 | |||
1182 | /* | ||
1183 | * Interrupts being processed will increment this atomic variable and | ||
1184 | * awaken the heartbeat thread which will process the interrupts. | ||
1185 | */ | ||
1186 | atomic_set(&xpc_act_IRQ_rcvd, 0); | ||
1187 | |||
1188 | /* | ||
1189 | * This is safe to do before the xpc_hb_checker thread has started | ||
1190 | * because the handler releases a wait queue. If an interrupt is | ||
1191 | * received before the thread is waiting, it will not go to sleep, | ||
1192 | * but rather immediately process the interrupt. | ||
1193 | */ | ||
1194 | ret = request_irq(SGI_XPC_ACTIVATE, xpc_act_IRQ_handler, 0, | ||
1195 | "xpc hb", NULL); | ||
1196 | if (ret != 0) { | ||
1197 | dev_err(xpc_part, "can't register ACTIVATE IRQ handler, " | ||
1198 | "errno=%d\n", -ret); | ||
1199 | |||
1200 | xpc_restrict_IPI_ops(); | ||
1201 | |||
1202 | if (xpc_sysctl) | ||
1203 | unregister_sysctl_table(xpc_sysctl); | ||
1204 | |||
1205 | kfree(xpc_remote_copy_buffer_base); | ||
1206 | return -EBUSY; | ||
1207 | } | ||
1208 | |||
1209 | /* | ||
1210 | * Fill the partition reserved page with the information needed by | ||
1211 | * other partitions to discover we are alive and establish initial | ||
1212 | * communications. | ||
1213 | */ | ||
1214 | xpc_rsvd_page = xpc_rsvd_page_init(); | ||
1215 | if (xpc_rsvd_page == NULL) { | ||
1216 | dev_err(xpc_part, "could not setup our reserved page\n"); | ||
1217 | |||
1218 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
1219 | xpc_restrict_IPI_ops(); | ||
1220 | |||
1221 | if (xpc_sysctl) | ||
1222 | unregister_sysctl_table(xpc_sysctl); | ||
1223 | |||
1224 | kfree(xpc_remote_copy_buffer_base); | ||
1225 | return -EBUSY; | ||
1226 | } | ||
1227 | |||
1228 | /* add ourselves to the reboot_notifier_list */ | ||
1229 | ret = register_reboot_notifier(&xpc_reboot_notifier); | ||
1230 | if (ret != 0) | ||
1231 | dev_warn(xpc_part, "can't register reboot notifier\n"); | ||
1232 | |||
1233 | /* add ourselves to the die_notifier list */ | ||
1234 | ret = register_die_notifier(&xpc_die_notifier); | ||
1235 | if (ret != 0) | ||
1236 | dev_warn(xpc_part, "can't register die notifier\n"); | ||
1237 | |||
1238 | init_timer(&xpc_hb_timer); | ||
1239 | xpc_hb_timer.function = xpc_hb_beater; | ||
1240 | |||
1241 | /* | ||
1242 | * The real work-horse behind xpc. This processes incoming | ||
1243 | * interrupts and monitors remote heartbeats. | ||
1244 | */ | ||
1245 | kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); | ||
1246 | if (IS_ERR(kthread)) { | ||
1247 | dev_err(xpc_part, "failed while forking hb check thread\n"); | ||
1248 | |||
1249 | /* indicate to others that our reserved page is uninitialized */ | ||
1250 | xpc_rsvd_page->vars_pa = 0; | ||
1251 | |||
1252 | /* take ourselves off of the reboot_notifier_list */ | ||
1253 | (void)unregister_reboot_notifier(&xpc_reboot_notifier); | ||
1254 | |||
1255 | /* take ourselves off of the die_notifier list */ | ||
1256 | (void)unregister_die_notifier(&xpc_die_notifier); | ||
1257 | |||
1258 | del_timer_sync(&xpc_hb_timer); | ||
1259 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
1260 | xpc_restrict_IPI_ops(); | ||
1261 | |||
1262 | if (xpc_sysctl) | ||
1263 | unregister_sysctl_table(xpc_sysctl); | ||
1264 | |||
1265 | kfree(xpc_remote_copy_buffer_base); | ||
1266 | return -EBUSY; | ||
1267 | } | ||
1268 | |||
1269 | /* | ||
1270 | * Startup a thread that will attempt to discover other partitions to | ||
1271 | * activate based on info provided by SAL. This new thread is short | ||
1272 | * lived and will exit once discovery is complete. | ||
1273 | */ | ||
1274 | kthread = kthread_run(xpc_initiate_discovery, NULL, | ||
1275 | XPC_DISCOVERY_THREAD_NAME); | ||
1276 | if (IS_ERR(kthread)) { | ||
1277 | dev_err(xpc_part, "failed while forking discovery thread\n"); | ||
1278 | |||
1279 | /* mark this new thread as a non-starter */ | ||
1280 | complete(&xpc_discovery_exited); | ||
1281 | |||
1282 | xpc_do_exit(xpcUnloading); | ||
1283 | return -EBUSY; | ||
1284 | } | ||
1285 | |||
1286 | /* set the interface to point at XPC's functions */ | ||
1287 | xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, | ||
1288 | xpc_initiate_allocate, xpc_initiate_send, | ||
1289 | xpc_initiate_send_notify, xpc_initiate_received, | ||
1290 | xpc_initiate_partid_to_nasids); | ||
1291 | |||
1292 | return 0; | ||
1293 | } | ||
1294 | |||
1295 | module_init(xpc_init); | ||
1296 | |||
1297 | void __exit | ||
1298 | xpc_exit(void) | ||
1299 | { | ||
1300 | xpc_do_exit(xpcUnloading); | ||
1301 | } | ||
1302 | |||
1303 | module_exit(xpc_exit); | ||
1304 | |||
1305 | MODULE_AUTHOR("Silicon Graphics, Inc."); | ||
1306 | MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); | ||
1307 | MODULE_LICENSE("GPL"); | ||
1308 | |||
1309 | module_param(xpc_hb_interval, int, 0); | ||
1310 | MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " | ||
1311 | "heartbeat increments."); | ||
1312 | |||
1313 | module_param(xpc_hb_check_interval, int, 0); | ||
1314 | MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " | ||
1315 | "heartbeat checks."); | ||
1316 | |||
1317 | module_param(xpc_disengage_request_timelimit, int, 0); | ||
1318 | MODULE_PARM_DESC(xpc_disengage_request_timelimit, "Number of seconds to wait " | ||
1319 | "for disengage request to complete."); | ||
1320 | |||
1321 | module_param(xpc_kdebug_ignore, int, 0); | ||
1322 | MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " | ||
1323 | "other partitions when dropping into kdebug."); | ||
diff --git a/drivers/misc/sgi-xp/xpc_partition.c b/drivers/misc/sgi-xp/xpc_partition.c new file mode 100644 index 000000000000..27e200ec5826 --- /dev/null +++ b/drivers/misc/sgi-xp/xpc_partition.c | |||
@@ -0,0 +1,1174 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition Communication (XPC) partition support. | ||
11 | * | ||
12 | * This is the part of XPC that detects the presence/absence of | ||
13 | * other partitions. It provides a heartbeat and monitors the | ||
14 | * heartbeats of other partitions. | ||
15 | * | ||
16 | */ | ||
17 | |||
18 | #include <linux/kernel.h> | ||
19 | #include <linux/sysctl.h> | ||
20 | #include <linux/cache.h> | ||
21 | #include <linux/mmzone.h> | ||
22 | #include <linux/nodemask.h> | ||
23 | #include <asm/uncached.h> | ||
24 | #include <asm/sn/bte.h> | ||
25 | #include <asm/sn/intr.h> | ||
26 | #include <asm/sn/sn_sal.h> | ||
27 | #include <asm/sn/nodepda.h> | ||
28 | #include <asm/sn/addrs.h> | ||
29 | #include "xpc.h" | ||
30 | |||
31 | /* XPC is exiting flag */ | ||
32 | int xpc_exiting; | ||
33 | |||
34 | /* SH_IPI_ACCESS shub register value on startup */ | ||
35 | static u64 xpc_sh1_IPI_access; | ||
36 | static u64 xpc_sh2_IPI_access0; | ||
37 | static u64 xpc_sh2_IPI_access1; | ||
38 | static u64 xpc_sh2_IPI_access2; | ||
39 | static u64 xpc_sh2_IPI_access3; | ||
40 | |||
41 | /* original protection values for each node */ | ||
42 | u64 xpc_prot_vec[MAX_NUMNODES]; | ||
43 | |||
44 | /* this partition's reserved page pointers */ | ||
45 | struct xpc_rsvd_page *xpc_rsvd_page; | ||
46 | static u64 *xpc_part_nasids; | ||
47 | static u64 *xpc_mach_nasids; | ||
48 | struct xpc_vars *xpc_vars; | ||
49 | struct xpc_vars_part *xpc_vars_part; | ||
50 | |||
51 | static int xp_nasid_mask_bytes; /* actual size in bytes of nasid mask */ | ||
52 | static int xp_nasid_mask_words; /* actual size in words of nasid mask */ | ||
53 | |||
54 | /* | ||
55 | * For performance reasons, each entry of xpc_partitions[] is cacheline | ||
56 | * aligned. And xpc_partitions[] is padded with an additional entry at the | ||
57 | * end so that the last legitimate entry doesn't share its cacheline with | ||
58 | * another variable. | ||
59 | */ | ||
60 | struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; | ||
61 | |||
62 | /* | ||
63 | * Generic buffer used to store a local copy of portions of a remote | ||
64 | * partition's reserved page (either its header and part_nasids mask, | ||
65 | * or its vars). | ||
66 | */ | ||
67 | char *xpc_remote_copy_buffer; | ||
68 | void *xpc_remote_copy_buffer_base; | ||
69 | |||
70 | /* | ||
71 | * Guarantee that the kmalloc'd memory is cacheline aligned. | ||
72 | */ | ||
73 | void * | ||
74 | xpc_kmalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) | ||
75 | { | ||
76 | /* see if kmalloc will give us cachline aligned memory by default */ | ||
77 | *base = kmalloc(size, flags); | ||
78 | if (*base == NULL) | ||
79 | return NULL; | ||
80 | |||
81 | if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) | ||
82 | return *base; | ||
83 | |||
84 | kfree(*base); | ||
85 | |||
86 | /* nope, we'll have to do it ourselves */ | ||
87 | *base = kmalloc(size + L1_CACHE_BYTES, flags); | ||
88 | if (*base == NULL) | ||
89 | return NULL; | ||
90 | |||
91 | return (void *)L1_CACHE_ALIGN((u64)*base); | ||
92 | } | ||
93 | |||
94 | /* | ||
95 | * Given a nasid, get the physical address of the partition's reserved page | ||
96 | * for that nasid. This function returns 0 on any error. | ||
97 | */ | ||
98 | static u64 | ||
99 | xpc_get_rsvd_page_pa(int nasid) | ||
100 | { | ||
101 | bte_result_t bte_res; | ||
102 | s64 status; | ||
103 | u64 cookie = 0; | ||
104 | u64 rp_pa = nasid; /* seed with nasid */ | ||
105 | u64 len = 0; | ||
106 | u64 buf = buf; | ||
107 | u64 buf_len = 0; | ||
108 | void *buf_base = NULL; | ||
109 | |||
110 | while (1) { | ||
111 | |||
112 | status = sn_partition_reserved_page_pa(buf, &cookie, &rp_pa, | ||
113 | &len); | ||
114 | |||
115 | dev_dbg(xpc_part, "SAL returned with status=%li, cookie=" | ||
116 | "0x%016lx, address=0x%016lx, len=0x%016lx\n", | ||
117 | status, cookie, rp_pa, len); | ||
118 | |||
119 | if (status != SALRET_MORE_PASSES) | ||
120 | break; | ||
121 | |||
122 | if (L1_CACHE_ALIGN(len) > buf_len) { | ||
123 | kfree(buf_base); | ||
124 | buf_len = L1_CACHE_ALIGN(len); | ||
125 | buf = (u64)xpc_kmalloc_cacheline_aligned(buf_len, | ||
126 | GFP_KERNEL, | ||
127 | &buf_base); | ||
128 | if (buf_base == NULL) { | ||
129 | dev_err(xpc_part, "unable to kmalloc " | ||
130 | "len=0x%016lx\n", buf_len); | ||
131 | status = SALRET_ERROR; | ||
132 | break; | ||
133 | } | ||
134 | } | ||
135 | |||
136 | bte_res = xp_bte_copy(rp_pa, buf, buf_len, | ||
137 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
138 | if (bte_res != BTE_SUCCESS) { | ||
139 | dev_dbg(xpc_part, "xp_bte_copy failed %i\n", bte_res); | ||
140 | status = SALRET_ERROR; | ||
141 | break; | ||
142 | } | ||
143 | } | ||
144 | |||
145 | kfree(buf_base); | ||
146 | |||
147 | if (status != SALRET_OK) | ||
148 | rp_pa = 0; | ||
149 | |||
150 | dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa); | ||
151 | return rp_pa; | ||
152 | } | ||
153 | |||
154 | /* | ||
155 | * Fill the partition reserved page with the information needed by | ||
156 | * other partitions to discover we are alive and establish initial | ||
157 | * communications. | ||
158 | */ | ||
159 | struct xpc_rsvd_page * | ||
160 | xpc_rsvd_page_init(void) | ||
161 | { | ||
162 | struct xpc_rsvd_page *rp; | ||
163 | AMO_t *amos_page; | ||
164 | u64 rp_pa, nasid_array = 0; | ||
165 | int i, ret; | ||
166 | |||
167 | /* get the local reserved page's address */ | ||
168 | |||
169 | preempt_disable(); | ||
170 | rp_pa = xpc_get_rsvd_page_pa(cpuid_to_nasid(smp_processor_id())); | ||
171 | preempt_enable(); | ||
172 | if (rp_pa == 0) { | ||
173 | dev_err(xpc_part, "SAL failed to locate the reserved page\n"); | ||
174 | return NULL; | ||
175 | } | ||
176 | rp = (struct xpc_rsvd_page *)__va(rp_pa); | ||
177 | |||
178 | if (rp->partid != sn_partition_id) { | ||
179 | dev_err(xpc_part, "the reserved page's partid of %d should be " | ||
180 | "%d\n", rp->partid, sn_partition_id); | ||
181 | return NULL; | ||
182 | } | ||
183 | |||
184 | rp->version = XPC_RP_VERSION; | ||
185 | |||
186 | /* establish the actual sizes of the nasid masks */ | ||
187 | if (rp->SAL_version == 1) { | ||
188 | /* SAL_version 1 didn't set the nasids_size field */ | ||
189 | rp->nasids_size = 128; | ||
190 | } | ||
191 | xp_nasid_mask_bytes = rp->nasids_size; | ||
192 | xp_nasid_mask_words = xp_nasid_mask_bytes / 8; | ||
193 | |||
194 | /* setup the pointers to the various items in the reserved page */ | ||
195 | xpc_part_nasids = XPC_RP_PART_NASIDS(rp); | ||
196 | xpc_mach_nasids = XPC_RP_MACH_NASIDS(rp); | ||
197 | xpc_vars = XPC_RP_VARS(rp); | ||
198 | xpc_vars_part = XPC_RP_VARS_PART(rp); | ||
199 | |||
200 | /* | ||
201 | * Before clearing xpc_vars, see if a page of AMOs had been previously | ||
202 | * allocated. If not we'll need to allocate one and set permissions | ||
203 | * so that cross-partition AMOs are allowed. | ||
204 | * | ||
205 | * The allocated AMO page needs MCA reporting to remain disabled after | ||
206 | * XPC has unloaded. To make this work, we keep a copy of the pointer | ||
207 | * to this page (i.e., amos_page) in the struct xpc_vars structure, | ||
208 | * which is pointed to by the reserved page, and re-use that saved copy | ||
209 | * on subsequent loads of XPC. This AMO page is never freed, and its | ||
210 | * memory protections are never restricted. | ||
211 | */ | ||
212 | amos_page = xpc_vars->amos_page; | ||
213 | if (amos_page == NULL) { | ||
214 | amos_page = (AMO_t *)TO_AMO(uncached_alloc_page(0)); | ||
215 | if (amos_page == NULL) { | ||
216 | dev_err(xpc_part, "can't allocate page of AMOs\n"); | ||
217 | return NULL; | ||
218 | } | ||
219 | |||
220 | /* | ||
221 | * Open up AMO-R/W to cpu. This is done for Shub 1.1 systems | ||
222 | * when xpc_allow_IPI_ops() is called via xpc_hb_init(). | ||
223 | */ | ||
224 | if (!enable_shub_wars_1_1()) { | ||
225 | ret = sn_change_memprotect(ia64_tpa((u64)amos_page), | ||
226 | PAGE_SIZE, | ||
227 | SN_MEMPROT_ACCESS_CLASS_1, | ||
228 | &nasid_array); | ||
229 | if (ret != 0) { | ||
230 | dev_err(xpc_part, "can't change memory " | ||
231 | "protections\n"); | ||
232 | uncached_free_page(__IA64_UNCACHED_OFFSET | | ||
233 | TO_PHYS((u64)amos_page)); | ||
234 | return NULL; | ||
235 | } | ||
236 | } | ||
237 | } else if (!IS_AMO_ADDRESS((u64)amos_page)) { | ||
238 | /* | ||
239 | * EFI's XPBOOT can also set amos_page in the reserved page, | ||
240 | * but it happens to leave it as an uncached physical address | ||
241 | * and we need it to be an uncached virtual, so we'll have to | ||
242 | * convert it. | ||
243 | */ | ||
244 | if (!IS_AMO_PHYS_ADDRESS((u64)amos_page)) { | ||
245 | dev_err(xpc_part, "previously used amos_page address " | ||
246 | "is bad = 0x%p\n", (void *)amos_page); | ||
247 | return NULL; | ||
248 | } | ||
249 | amos_page = (AMO_t *)TO_AMO((u64)amos_page); | ||
250 | } | ||
251 | |||
252 | /* clear xpc_vars */ | ||
253 | memset(xpc_vars, 0, sizeof(struct xpc_vars)); | ||
254 | |||
255 | xpc_vars->version = XPC_V_VERSION; | ||
256 | xpc_vars->act_nasid = cpuid_to_nasid(0); | ||
257 | xpc_vars->act_phys_cpuid = cpu_physical_id(0); | ||
258 | xpc_vars->vars_part_pa = __pa(xpc_vars_part); | ||
259 | xpc_vars->amos_page_pa = ia64_tpa((u64)amos_page); | ||
260 | xpc_vars->amos_page = amos_page; /* save for next load of XPC */ | ||
261 | |||
262 | /* clear xpc_vars_part */ | ||
263 | memset((u64 *)xpc_vars_part, 0, sizeof(struct xpc_vars_part) * | ||
264 | XP_MAX_PARTITIONS); | ||
265 | |||
266 | /* initialize the activate IRQ related AMO variables */ | ||
267 | for (i = 0; i < xp_nasid_mask_words; i++) | ||
268 | (void)xpc_IPI_init(XPC_ACTIVATE_IRQ_AMOS + i); | ||
269 | |||
270 | /* initialize the engaged remote partitions related AMO variables */ | ||
271 | (void)xpc_IPI_init(XPC_ENGAGED_PARTITIONS_AMO); | ||
272 | (void)xpc_IPI_init(XPC_DISENGAGE_REQUEST_AMO); | ||
273 | |||
274 | /* timestamp of when reserved page was setup by XPC */ | ||
275 | rp->stamp = CURRENT_TIME; | ||
276 | |||
277 | /* | ||
278 | * This signifies to the remote partition that our reserved | ||
279 | * page is initialized. | ||
280 | */ | ||
281 | rp->vars_pa = __pa(xpc_vars); | ||
282 | |||
283 | return rp; | ||
284 | } | ||
285 | |||
286 | /* | ||
287 | * Change protections to allow IPI operations (and AMO operations on | ||
288 | * Shub 1.1 systems). | ||
289 | */ | ||
290 | void | ||
291 | xpc_allow_IPI_ops(void) | ||
292 | { | ||
293 | int node; | ||
294 | int nasid; | ||
295 | |||
296 | /* >>> Change SH_IPI_ACCESS code to use SAL call once it is available */ | ||
297 | |||
298 | if (is_shub2()) { | ||
299 | xpc_sh2_IPI_access0 = | ||
300 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0)); | ||
301 | xpc_sh2_IPI_access1 = | ||
302 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1)); | ||
303 | xpc_sh2_IPI_access2 = | ||
304 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2)); | ||
305 | xpc_sh2_IPI_access3 = | ||
306 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3)); | ||
307 | |||
308 | for_each_online_node(node) { | ||
309 | nasid = cnodeid_to_nasid(node); | ||
310 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
311 | -1UL); | ||
312 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
313 | -1UL); | ||
314 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
315 | -1UL); | ||
316 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
317 | -1UL); | ||
318 | } | ||
319 | |||
320 | } else { | ||
321 | xpc_sh1_IPI_access = | ||
322 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS)); | ||
323 | |||
324 | for_each_online_node(node) { | ||
325 | nasid = cnodeid_to_nasid(node); | ||
326 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
327 | -1UL); | ||
328 | |||
329 | /* | ||
330 | * Since the BIST collides with memory operations on | ||
331 | * SHUB 1.1 sn_change_memprotect() cannot be used. | ||
332 | */ | ||
333 | if (enable_shub_wars_1_1()) { | ||
334 | /* open up everything */ | ||
335 | xpc_prot_vec[node] = (u64)HUB_L((u64 *) | ||
336 | GLOBAL_MMR_ADDR | ||
337 | (nasid, | ||
338 | SH1_MD_DQLP_MMR_DIR_PRIVEC0)); | ||
339 | HUB_S((u64 *) | ||
340 | GLOBAL_MMR_ADDR(nasid, | ||
341 | SH1_MD_DQLP_MMR_DIR_PRIVEC0), | ||
342 | -1UL); | ||
343 | HUB_S((u64 *) | ||
344 | GLOBAL_MMR_ADDR(nasid, | ||
345 | SH1_MD_DQRP_MMR_DIR_PRIVEC0), | ||
346 | -1UL); | ||
347 | } | ||
348 | } | ||
349 | } | ||
350 | } | ||
351 | |||
352 | /* | ||
353 | * Restrict protections to disallow IPI operations (and AMO operations on | ||
354 | * Shub 1.1 systems). | ||
355 | */ | ||
356 | void | ||
357 | xpc_restrict_IPI_ops(void) | ||
358 | { | ||
359 | int node; | ||
360 | int nasid; | ||
361 | |||
362 | /* >>> Change SH_IPI_ACCESS code to use SAL call once it is available */ | ||
363 | |||
364 | if (is_shub2()) { | ||
365 | |||
366 | for_each_online_node(node) { | ||
367 | nasid = cnodeid_to_nasid(node); | ||
368 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
369 | xpc_sh2_IPI_access0); | ||
370 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
371 | xpc_sh2_IPI_access1); | ||
372 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
373 | xpc_sh2_IPI_access2); | ||
374 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
375 | xpc_sh2_IPI_access3); | ||
376 | } | ||
377 | |||
378 | } else { | ||
379 | |||
380 | for_each_online_node(node) { | ||
381 | nasid = cnodeid_to_nasid(node); | ||
382 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
383 | xpc_sh1_IPI_access); | ||
384 | |||
385 | if (enable_shub_wars_1_1()) { | ||
386 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, | ||
387 | SH1_MD_DQLP_MMR_DIR_PRIVEC0), | ||
388 | xpc_prot_vec[node]); | ||
389 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, | ||
390 | SH1_MD_DQRP_MMR_DIR_PRIVEC0), | ||
391 | xpc_prot_vec[node]); | ||
392 | } | ||
393 | } | ||
394 | } | ||
395 | } | ||
396 | |||
397 | /* | ||
398 | * At periodic intervals, scan through all active partitions and ensure | ||
399 | * their heartbeat is still active. If not, the partition is deactivated. | ||
400 | */ | ||
401 | void | ||
402 | xpc_check_remote_hb(void) | ||
403 | { | ||
404 | struct xpc_vars *remote_vars; | ||
405 | struct xpc_partition *part; | ||
406 | partid_t partid; | ||
407 | bte_result_t bres; | ||
408 | |||
409 | remote_vars = (struct xpc_vars *)xpc_remote_copy_buffer; | ||
410 | |||
411 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
412 | |||
413 | if (xpc_exiting) | ||
414 | break; | ||
415 | |||
416 | if (partid == sn_partition_id) | ||
417 | continue; | ||
418 | |||
419 | part = &xpc_partitions[partid]; | ||
420 | |||
421 | if (part->act_state == XPC_P_INACTIVE || | ||
422 | part->act_state == XPC_P_DEACTIVATING) { | ||
423 | continue; | ||
424 | } | ||
425 | |||
426 | /* pull the remote_hb cache line */ | ||
427 | bres = xp_bte_copy(part->remote_vars_pa, | ||
428 | (u64)remote_vars, | ||
429 | XPC_RP_VARS_SIZE, | ||
430 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
431 | if (bres != BTE_SUCCESS) { | ||
432 | XPC_DEACTIVATE_PARTITION(part, | ||
433 | xpc_map_bte_errors(bres)); | ||
434 | continue; | ||
435 | } | ||
436 | |||
437 | dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat" | ||
438 | " = %ld, heartbeat_offline = %ld, HB_mask = 0x%lx\n", | ||
439 | partid, remote_vars->heartbeat, part->last_heartbeat, | ||
440 | remote_vars->heartbeat_offline, | ||
441 | remote_vars->heartbeating_to_mask); | ||
442 | |||
443 | if (((remote_vars->heartbeat == part->last_heartbeat) && | ||
444 | (remote_vars->heartbeat_offline == 0)) || | ||
445 | !xpc_hb_allowed(sn_partition_id, remote_vars)) { | ||
446 | |||
447 | XPC_DEACTIVATE_PARTITION(part, xpcNoHeartbeat); | ||
448 | continue; | ||
449 | } | ||
450 | |||
451 | part->last_heartbeat = remote_vars->heartbeat; | ||
452 | } | ||
453 | } | ||
454 | |||
455 | /* | ||
456 | * Get a copy of a portion of the remote partition's rsvd page. | ||
457 | * | ||
458 | * remote_rp points to a buffer that is cacheline aligned for BTE copies and | ||
459 | * is large enough to contain a copy of their reserved page header and | ||
460 | * part_nasids mask. | ||
461 | */ | ||
462 | static enum xpc_retval | ||
463 | xpc_get_remote_rp(int nasid, u64 *discovered_nasids, | ||
464 | struct xpc_rsvd_page *remote_rp, u64 *remote_rp_pa) | ||
465 | { | ||
466 | int bres, i; | ||
467 | |||
468 | /* get the reserved page's physical address */ | ||
469 | |||
470 | *remote_rp_pa = xpc_get_rsvd_page_pa(nasid); | ||
471 | if (*remote_rp_pa == 0) | ||
472 | return xpcNoRsvdPageAddr; | ||
473 | |||
474 | /* pull over the reserved page header and part_nasids mask */ | ||
475 | bres = xp_bte_copy(*remote_rp_pa, (u64)remote_rp, | ||
476 | XPC_RP_HEADER_SIZE + xp_nasid_mask_bytes, | ||
477 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
478 | if (bres != BTE_SUCCESS) | ||
479 | return xpc_map_bte_errors(bres); | ||
480 | |||
481 | if (discovered_nasids != NULL) { | ||
482 | u64 *remote_part_nasids = XPC_RP_PART_NASIDS(remote_rp); | ||
483 | |||
484 | for (i = 0; i < xp_nasid_mask_words; i++) | ||
485 | discovered_nasids[i] |= remote_part_nasids[i]; | ||
486 | } | ||
487 | |||
488 | /* check that the partid is for another partition */ | ||
489 | |||
490 | if (remote_rp->partid < 1 || | ||
491 | remote_rp->partid > (XP_MAX_PARTITIONS - 1)) { | ||
492 | return xpcInvalidPartid; | ||
493 | } | ||
494 | |||
495 | if (remote_rp->partid == sn_partition_id) | ||
496 | return xpcLocalPartid; | ||
497 | |||
498 | if (XPC_VERSION_MAJOR(remote_rp->version) != | ||
499 | XPC_VERSION_MAJOR(XPC_RP_VERSION)) { | ||
500 | return xpcBadVersion; | ||
501 | } | ||
502 | |||
503 | return xpcSuccess; | ||
504 | } | ||
505 | |||
506 | /* | ||
507 | * Get a copy of the remote partition's XPC variables from the reserved page. | ||
508 | * | ||
509 | * remote_vars points to a buffer that is cacheline aligned for BTE copies and | ||
510 | * assumed to be of size XPC_RP_VARS_SIZE. | ||
511 | */ | ||
512 | static enum xpc_retval | ||
513 | xpc_get_remote_vars(u64 remote_vars_pa, struct xpc_vars *remote_vars) | ||
514 | { | ||
515 | int bres; | ||
516 | |||
517 | if (remote_vars_pa == 0) | ||
518 | return xpcVarsNotSet; | ||
519 | |||
520 | /* pull over the cross partition variables */ | ||
521 | bres = xp_bte_copy(remote_vars_pa, (u64)remote_vars, XPC_RP_VARS_SIZE, | ||
522 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
523 | if (bres != BTE_SUCCESS) | ||
524 | return xpc_map_bte_errors(bres); | ||
525 | |||
526 | if (XPC_VERSION_MAJOR(remote_vars->version) != | ||
527 | XPC_VERSION_MAJOR(XPC_V_VERSION)) { | ||
528 | return xpcBadVersion; | ||
529 | } | ||
530 | |||
531 | return xpcSuccess; | ||
532 | } | ||
533 | |||
534 | /* | ||
535 | * Update the remote partition's info. | ||
536 | */ | ||
537 | static void | ||
538 | xpc_update_partition_info(struct xpc_partition *part, u8 remote_rp_version, | ||
539 | struct timespec *remote_rp_stamp, u64 remote_rp_pa, | ||
540 | u64 remote_vars_pa, struct xpc_vars *remote_vars) | ||
541 | { | ||
542 | part->remote_rp_version = remote_rp_version; | ||
543 | dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n", | ||
544 | part->remote_rp_version); | ||
545 | |||
546 | part->remote_rp_stamp = *remote_rp_stamp; | ||
547 | dev_dbg(xpc_part, " remote_rp_stamp (tv_sec = 0x%lx tv_nsec = 0x%lx\n", | ||
548 | part->remote_rp_stamp.tv_sec, part->remote_rp_stamp.tv_nsec); | ||
549 | |||
550 | part->remote_rp_pa = remote_rp_pa; | ||
551 | dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa); | ||
552 | |||
553 | part->remote_vars_pa = remote_vars_pa; | ||
554 | dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n", | ||
555 | part->remote_vars_pa); | ||
556 | |||
557 | part->last_heartbeat = remote_vars->heartbeat; | ||
558 | dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n", | ||
559 | part->last_heartbeat); | ||
560 | |||
561 | part->remote_vars_part_pa = remote_vars->vars_part_pa; | ||
562 | dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n", | ||
563 | part->remote_vars_part_pa); | ||
564 | |||
565 | part->remote_act_nasid = remote_vars->act_nasid; | ||
566 | dev_dbg(xpc_part, " remote_act_nasid = 0x%x\n", | ||
567 | part->remote_act_nasid); | ||
568 | |||
569 | part->remote_act_phys_cpuid = remote_vars->act_phys_cpuid; | ||
570 | dev_dbg(xpc_part, " remote_act_phys_cpuid = 0x%x\n", | ||
571 | part->remote_act_phys_cpuid); | ||
572 | |||
573 | part->remote_amos_page_pa = remote_vars->amos_page_pa; | ||
574 | dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n", | ||
575 | part->remote_amos_page_pa); | ||
576 | |||
577 | part->remote_vars_version = remote_vars->version; | ||
578 | dev_dbg(xpc_part, " remote_vars_version = 0x%x\n", | ||
579 | part->remote_vars_version); | ||
580 | } | ||
581 | |||
582 | /* | ||
583 | * Prior code has determined the nasid which generated an IPI. Inspect | ||
584 | * that nasid to determine if its partition needs to be activated or | ||
585 | * deactivated. | ||
586 | * | ||
587 | * A partition is consider "awaiting activation" if our partition | ||
588 | * flags indicate it is not active and it has a heartbeat. A | ||
589 | * partition is considered "awaiting deactivation" if our partition | ||
590 | * flags indicate it is active but it has no heartbeat or it is not | ||
591 | * sending its heartbeat to us. | ||
592 | * | ||
593 | * To determine the heartbeat, the remote nasid must have a properly | ||
594 | * initialized reserved page. | ||
595 | */ | ||
596 | static void | ||
597 | xpc_identify_act_IRQ_req(int nasid) | ||
598 | { | ||
599 | struct xpc_rsvd_page *remote_rp; | ||
600 | struct xpc_vars *remote_vars; | ||
601 | u64 remote_rp_pa; | ||
602 | u64 remote_vars_pa; | ||
603 | int remote_rp_version; | ||
604 | int reactivate = 0; | ||
605 | int stamp_diff; | ||
606 | struct timespec remote_rp_stamp = { 0, 0 }; | ||
607 | partid_t partid; | ||
608 | struct xpc_partition *part; | ||
609 | enum xpc_retval ret; | ||
610 | |||
611 | /* pull over the reserved page structure */ | ||
612 | |||
613 | remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer; | ||
614 | |||
615 | ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa); | ||
616 | if (ret != xpcSuccess) { | ||
617 | dev_warn(xpc_part, "unable to get reserved page from nasid %d, " | ||
618 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
619 | return; | ||
620 | } | ||
621 | |||
622 | remote_vars_pa = remote_rp->vars_pa; | ||
623 | remote_rp_version = remote_rp->version; | ||
624 | if (XPC_SUPPORTS_RP_STAMP(remote_rp_version)) | ||
625 | remote_rp_stamp = remote_rp->stamp; | ||
626 | |||
627 | partid = remote_rp->partid; | ||
628 | part = &xpc_partitions[partid]; | ||
629 | |||
630 | /* pull over the cross partition variables */ | ||
631 | |||
632 | remote_vars = (struct xpc_vars *)xpc_remote_copy_buffer; | ||
633 | |||
634 | ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); | ||
635 | if (ret != xpcSuccess) { | ||
636 | |||
637 | dev_warn(xpc_part, "unable to get XPC variables from nasid %d, " | ||
638 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
639 | |||
640 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
641 | return; | ||
642 | } | ||
643 | |||
644 | part->act_IRQ_rcvd++; | ||
645 | |||
646 | dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = " | ||
647 | "%ld:0x%lx\n", (int)nasid, (int)partid, part->act_IRQ_rcvd, | ||
648 | remote_vars->heartbeat, remote_vars->heartbeating_to_mask); | ||
649 | |||
650 | if (xpc_partition_disengaged(part) && | ||
651 | part->act_state == XPC_P_INACTIVE) { | ||
652 | |||
653 | xpc_update_partition_info(part, remote_rp_version, | ||
654 | &remote_rp_stamp, remote_rp_pa, | ||
655 | remote_vars_pa, remote_vars); | ||
656 | |||
657 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) { | ||
658 | if (xpc_partition_disengage_requested(1UL << partid)) { | ||
659 | /* | ||
660 | * Other side is waiting on us to disengage, | ||
661 | * even though we already have. | ||
662 | */ | ||
663 | return; | ||
664 | } | ||
665 | } else { | ||
666 | /* other side doesn't support disengage requests */ | ||
667 | xpc_clear_partition_disengage_request(1UL << partid); | ||
668 | } | ||
669 | |||
670 | xpc_activate_partition(part); | ||
671 | return; | ||
672 | } | ||
673 | |||
674 | DBUG_ON(part->remote_rp_version == 0); | ||
675 | DBUG_ON(part->remote_vars_version == 0); | ||
676 | |||
677 | if (!XPC_SUPPORTS_RP_STAMP(part->remote_rp_version)) { | ||
678 | DBUG_ON(XPC_SUPPORTS_DISENGAGE_REQUEST(part-> | ||
679 | remote_vars_version)); | ||
680 | |||
681 | if (!XPC_SUPPORTS_RP_STAMP(remote_rp_version)) { | ||
682 | DBUG_ON(XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars-> | ||
683 | version)); | ||
684 | /* see if the other side rebooted */ | ||
685 | if (part->remote_amos_page_pa == | ||
686 | remote_vars->amos_page_pa && | ||
687 | xpc_hb_allowed(sn_partition_id, remote_vars)) { | ||
688 | /* doesn't look that way, so ignore the IPI */ | ||
689 | return; | ||
690 | } | ||
691 | } | ||
692 | |||
693 | /* | ||
694 | * Other side rebooted and previous XPC didn't support the | ||
695 | * disengage request, so we don't need to do anything special. | ||
696 | */ | ||
697 | |||
698 | xpc_update_partition_info(part, remote_rp_version, | ||
699 | &remote_rp_stamp, remote_rp_pa, | ||
700 | remote_vars_pa, remote_vars); | ||
701 | part->reactivate_nasid = nasid; | ||
702 | XPC_DEACTIVATE_PARTITION(part, xpcReactivating); | ||
703 | return; | ||
704 | } | ||
705 | |||
706 | DBUG_ON(!XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)); | ||
707 | |||
708 | if (!XPC_SUPPORTS_RP_STAMP(remote_rp_version)) { | ||
709 | DBUG_ON(!XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars->version)); | ||
710 | |||
711 | /* | ||
712 | * Other side rebooted and previous XPC did support the | ||
713 | * disengage request, but the new one doesn't. | ||
714 | */ | ||
715 | |||
716 | xpc_clear_partition_engaged(1UL << partid); | ||
717 | xpc_clear_partition_disengage_request(1UL << partid); | ||
718 | |||
719 | xpc_update_partition_info(part, remote_rp_version, | ||
720 | &remote_rp_stamp, remote_rp_pa, | ||
721 | remote_vars_pa, remote_vars); | ||
722 | reactivate = 1; | ||
723 | |||
724 | } else { | ||
725 | DBUG_ON(!XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars->version)); | ||
726 | |||
727 | stamp_diff = xpc_compare_stamps(&part->remote_rp_stamp, | ||
728 | &remote_rp_stamp); | ||
729 | if (stamp_diff != 0) { | ||
730 | DBUG_ON(stamp_diff >= 0); | ||
731 | |||
732 | /* | ||
733 | * Other side rebooted and the previous XPC did support | ||
734 | * the disengage request, as does the new one. | ||
735 | */ | ||
736 | |||
737 | DBUG_ON(xpc_partition_engaged(1UL << partid)); | ||
738 | DBUG_ON(xpc_partition_disengage_requested(1UL << | ||
739 | partid)); | ||
740 | |||
741 | xpc_update_partition_info(part, remote_rp_version, | ||
742 | &remote_rp_stamp, | ||
743 | remote_rp_pa, remote_vars_pa, | ||
744 | remote_vars); | ||
745 | reactivate = 1; | ||
746 | } | ||
747 | } | ||
748 | |||
749 | if (part->disengage_request_timeout > 0 && | ||
750 | !xpc_partition_disengaged(part)) { | ||
751 | /* still waiting on other side to disengage from us */ | ||
752 | return; | ||
753 | } | ||
754 | |||
755 | if (reactivate) { | ||
756 | part->reactivate_nasid = nasid; | ||
757 | XPC_DEACTIVATE_PARTITION(part, xpcReactivating); | ||
758 | |||
759 | } else if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version) && | ||
760 | xpc_partition_disengage_requested(1UL << partid)) { | ||
761 | XPC_DEACTIVATE_PARTITION(part, xpcOtherGoingDown); | ||
762 | } | ||
763 | } | ||
764 | |||
765 | /* | ||
766 | * Loop through the activation AMO variables and process any bits | ||
767 | * which are set. Each bit indicates a nasid sending a partition | ||
768 | * activation or deactivation request. | ||
769 | * | ||
770 | * Return #of IRQs detected. | ||
771 | */ | ||
772 | int | ||
773 | xpc_identify_act_IRQ_sender(void) | ||
774 | { | ||
775 | int word, bit; | ||
776 | u64 nasid_mask; | ||
777 | u64 nasid; /* remote nasid */ | ||
778 | int n_IRQs_detected = 0; | ||
779 | AMO_t *act_amos; | ||
780 | |||
781 | act_amos = xpc_vars->amos_page + XPC_ACTIVATE_IRQ_AMOS; | ||
782 | |||
783 | /* scan through act AMO variable looking for non-zero entries */ | ||
784 | for (word = 0; word < xp_nasid_mask_words; word++) { | ||
785 | |||
786 | if (xpc_exiting) | ||
787 | break; | ||
788 | |||
789 | nasid_mask = xpc_IPI_receive(&act_amos[word]); | ||
790 | if (nasid_mask == 0) { | ||
791 | /* no IRQs from nasids in this variable */ | ||
792 | continue; | ||
793 | } | ||
794 | |||
795 | dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word, | ||
796 | nasid_mask); | ||
797 | |||
798 | /* | ||
799 | * If this nasid has been added to the machine since | ||
800 | * our partition was reset, this will retain the | ||
801 | * remote nasid in our reserved pages machine mask. | ||
802 | * This is used in the event of module reload. | ||
803 | */ | ||
804 | xpc_mach_nasids[word] |= nasid_mask; | ||
805 | |||
806 | /* locate the nasid(s) which sent interrupts */ | ||
807 | |||
808 | for (bit = 0; bit < (8 * sizeof(u64)); bit++) { | ||
809 | if (nasid_mask & (1UL << bit)) { | ||
810 | n_IRQs_detected++; | ||
811 | nasid = XPC_NASID_FROM_W_B(word, bit); | ||
812 | dev_dbg(xpc_part, "interrupt from nasid %ld\n", | ||
813 | nasid); | ||
814 | xpc_identify_act_IRQ_req(nasid); | ||
815 | } | ||
816 | } | ||
817 | } | ||
818 | return n_IRQs_detected; | ||
819 | } | ||
820 | |||
821 | /* | ||
822 | * See if the other side has responded to a partition disengage request | ||
823 | * from us. | ||
824 | */ | ||
825 | int | ||
826 | xpc_partition_disengaged(struct xpc_partition *part) | ||
827 | { | ||
828 | partid_t partid = XPC_PARTID(part); | ||
829 | int disengaged; | ||
830 | |||
831 | disengaged = (xpc_partition_engaged(1UL << partid) == 0); | ||
832 | if (part->disengage_request_timeout) { | ||
833 | if (!disengaged) { | ||
834 | if (time_before(jiffies, | ||
835 | part->disengage_request_timeout)) { | ||
836 | /* timelimit hasn't been reached yet */ | ||
837 | return 0; | ||
838 | } | ||
839 | |||
840 | /* | ||
841 | * Other side hasn't responded to our disengage | ||
842 | * request in a timely fashion, so assume it's dead. | ||
843 | */ | ||
844 | |||
845 | dev_info(xpc_part, "disengage from remote partition %d " | ||
846 | "timed out\n", partid); | ||
847 | xpc_disengage_request_timedout = 1; | ||
848 | xpc_clear_partition_engaged(1UL << partid); | ||
849 | disengaged = 1; | ||
850 | } | ||
851 | part->disengage_request_timeout = 0; | ||
852 | |||
853 | /* cancel the timer function, provided it's not us */ | ||
854 | if (!in_interrupt()) { | ||
855 | del_singleshot_timer_sync(&part-> | ||
856 | disengage_request_timer); | ||
857 | } | ||
858 | |||
859 | DBUG_ON(part->act_state != XPC_P_DEACTIVATING && | ||
860 | part->act_state != XPC_P_INACTIVE); | ||
861 | if (part->act_state != XPC_P_INACTIVE) | ||
862 | xpc_wakeup_channel_mgr(part); | ||
863 | |||
864 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) | ||
865 | xpc_cancel_partition_disengage_request(part); | ||
866 | } | ||
867 | return disengaged; | ||
868 | } | ||
869 | |||
870 | /* | ||
871 | * Mark specified partition as active. | ||
872 | */ | ||
873 | enum xpc_retval | ||
874 | xpc_mark_partition_active(struct xpc_partition *part) | ||
875 | { | ||
876 | unsigned long irq_flags; | ||
877 | enum xpc_retval ret; | ||
878 | |||
879 | dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part)); | ||
880 | |||
881 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
882 | if (part->act_state == XPC_P_ACTIVATING) { | ||
883 | part->act_state = XPC_P_ACTIVE; | ||
884 | ret = xpcSuccess; | ||
885 | } else { | ||
886 | DBUG_ON(part->reason == xpcSuccess); | ||
887 | ret = part->reason; | ||
888 | } | ||
889 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
890 | |||
891 | return ret; | ||
892 | } | ||
893 | |||
894 | /* | ||
895 | * Notify XPC that the partition is down. | ||
896 | */ | ||
897 | void | ||
898 | xpc_deactivate_partition(const int line, struct xpc_partition *part, | ||
899 | enum xpc_retval reason) | ||
900 | { | ||
901 | unsigned long irq_flags; | ||
902 | |||
903 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
904 | |||
905 | if (part->act_state == XPC_P_INACTIVE) { | ||
906 | XPC_SET_REASON(part, reason, line); | ||
907 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
908 | if (reason == xpcReactivating) { | ||
909 | /* we interrupt ourselves to reactivate partition */ | ||
910 | xpc_IPI_send_reactivate(part); | ||
911 | } | ||
912 | return; | ||
913 | } | ||
914 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
915 | if ((part->reason == xpcUnloading && reason != xpcUnloading) || | ||
916 | reason == xpcReactivating) { | ||
917 | XPC_SET_REASON(part, reason, line); | ||
918 | } | ||
919 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
920 | return; | ||
921 | } | ||
922 | |||
923 | part->act_state = XPC_P_DEACTIVATING; | ||
924 | XPC_SET_REASON(part, reason, line); | ||
925 | |||
926 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
927 | |||
928 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) { | ||
929 | xpc_request_partition_disengage(part); | ||
930 | xpc_IPI_send_disengage(part); | ||
931 | |||
932 | /* set a timelimit on the disengage request */ | ||
933 | part->disengage_request_timeout = jiffies + | ||
934 | (xpc_disengage_request_timelimit * HZ); | ||
935 | part->disengage_request_timer.expires = | ||
936 | part->disengage_request_timeout; | ||
937 | add_timer(&part->disengage_request_timer); | ||
938 | } | ||
939 | |||
940 | dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", | ||
941 | XPC_PARTID(part), reason); | ||
942 | |||
943 | xpc_partition_going_down(part, reason); | ||
944 | } | ||
945 | |||
946 | /* | ||
947 | * Mark specified partition as inactive. | ||
948 | */ | ||
949 | void | ||
950 | xpc_mark_partition_inactive(struct xpc_partition *part) | ||
951 | { | ||
952 | unsigned long irq_flags; | ||
953 | |||
954 | dev_dbg(xpc_part, "setting partition %d to INACTIVE\n", | ||
955 | XPC_PARTID(part)); | ||
956 | |||
957 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
958 | part->act_state = XPC_P_INACTIVE; | ||
959 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
960 | part->remote_rp_pa = 0; | ||
961 | } | ||
962 | |||
963 | /* | ||
964 | * SAL has provided a partition and machine mask. The partition mask | ||
965 | * contains a bit for each even nasid in our partition. The machine | ||
966 | * mask contains a bit for each even nasid in the entire machine. | ||
967 | * | ||
968 | * Using those two bit arrays, we can determine which nasids are | ||
969 | * known in the machine. Each should also have a reserved page | ||
970 | * initialized if they are available for partitioning. | ||
971 | */ | ||
972 | void | ||
973 | xpc_discovery(void) | ||
974 | { | ||
975 | void *remote_rp_base; | ||
976 | struct xpc_rsvd_page *remote_rp; | ||
977 | struct xpc_vars *remote_vars; | ||
978 | u64 remote_rp_pa; | ||
979 | u64 remote_vars_pa; | ||
980 | int region; | ||
981 | int region_size; | ||
982 | int max_regions; | ||
983 | int nasid; | ||
984 | struct xpc_rsvd_page *rp; | ||
985 | partid_t partid; | ||
986 | struct xpc_partition *part; | ||
987 | u64 *discovered_nasids; | ||
988 | enum xpc_retval ret; | ||
989 | |||
990 | remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RP_HEADER_SIZE + | ||
991 | xp_nasid_mask_bytes, | ||
992 | GFP_KERNEL, &remote_rp_base); | ||
993 | if (remote_rp == NULL) | ||
994 | return; | ||
995 | |||
996 | remote_vars = (struct xpc_vars *)remote_rp; | ||
997 | |||
998 | discovered_nasids = kzalloc(sizeof(u64) * xp_nasid_mask_words, | ||
999 | GFP_KERNEL); | ||
1000 | if (discovered_nasids == NULL) { | ||
1001 | kfree(remote_rp_base); | ||
1002 | return; | ||
1003 | } | ||
1004 | |||
1005 | rp = (struct xpc_rsvd_page *)xpc_rsvd_page; | ||
1006 | |||
1007 | /* | ||
1008 | * The term 'region' in this context refers to the minimum number of | ||
1009 | * nodes that can comprise an access protection grouping. The access | ||
1010 | * protection is in regards to memory, IOI and IPI. | ||
1011 | */ | ||
1012 | max_regions = 64; | ||
1013 | region_size = sn_region_size; | ||
1014 | |||
1015 | switch (region_size) { | ||
1016 | case 128: | ||
1017 | max_regions *= 2; | ||
1018 | case 64: | ||
1019 | max_regions *= 2; | ||
1020 | case 32: | ||
1021 | max_regions *= 2; | ||
1022 | region_size = 16; | ||
1023 | DBUG_ON(!is_shub2()); | ||
1024 | } | ||
1025 | |||
1026 | for (region = 0; region < max_regions; region++) { | ||
1027 | |||
1028 | if (xpc_exiting) | ||
1029 | break; | ||
1030 | |||
1031 | dev_dbg(xpc_part, "searching region %d\n", region); | ||
1032 | |||
1033 | for (nasid = (region * region_size * 2); | ||
1034 | nasid < ((region + 1) * region_size * 2); nasid += 2) { | ||
1035 | |||
1036 | if (xpc_exiting) | ||
1037 | break; | ||
1038 | |||
1039 | dev_dbg(xpc_part, "checking nasid %d\n", nasid); | ||
1040 | |||
1041 | if (XPC_NASID_IN_ARRAY(nasid, xpc_part_nasids)) { | ||
1042 | dev_dbg(xpc_part, "PROM indicates Nasid %d is " | ||
1043 | "part of the local partition; skipping " | ||
1044 | "region\n", nasid); | ||
1045 | break; | ||
1046 | } | ||
1047 | |||
1048 | if (!(XPC_NASID_IN_ARRAY(nasid, xpc_mach_nasids))) { | ||
1049 | dev_dbg(xpc_part, "PROM indicates Nasid %d was " | ||
1050 | "not on Numa-Link network at reset\n", | ||
1051 | nasid); | ||
1052 | continue; | ||
1053 | } | ||
1054 | |||
1055 | if (XPC_NASID_IN_ARRAY(nasid, discovered_nasids)) { | ||
1056 | dev_dbg(xpc_part, "Nasid %d is part of a " | ||
1057 | "partition which was previously " | ||
1058 | "discovered\n", nasid); | ||
1059 | continue; | ||
1060 | } | ||
1061 | |||
1062 | /* pull over the reserved page structure */ | ||
1063 | |||
1064 | ret = xpc_get_remote_rp(nasid, discovered_nasids, | ||
1065 | remote_rp, &remote_rp_pa); | ||
1066 | if (ret != xpcSuccess) { | ||
1067 | dev_dbg(xpc_part, "unable to get reserved page " | ||
1068 | "from nasid %d, reason=%d\n", nasid, | ||
1069 | ret); | ||
1070 | |||
1071 | if (ret == xpcLocalPartid) | ||
1072 | break; | ||
1073 | |||
1074 | continue; | ||
1075 | } | ||
1076 | |||
1077 | remote_vars_pa = remote_rp->vars_pa; | ||
1078 | |||
1079 | partid = remote_rp->partid; | ||
1080 | part = &xpc_partitions[partid]; | ||
1081 | |||
1082 | /* pull over the cross partition variables */ | ||
1083 | |||
1084 | ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); | ||
1085 | if (ret != xpcSuccess) { | ||
1086 | dev_dbg(xpc_part, "unable to get XPC variables " | ||
1087 | "from nasid %d, reason=%d\n", nasid, | ||
1088 | ret); | ||
1089 | |||
1090 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1091 | continue; | ||
1092 | } | ||
1093 | |||
1094 | if (part->act_state != XPC_P_INACTIVE) { | ||
1095 | dev_dbg(xpc_part, "partition %d on nasid %d is " | ||
1096 | "already activating\n", partid, nasid); | ||
1097 | break; | ||
1098 | } | ||
1099 | |||
1100 | /* | ||
1101 | * Register the remote partition's AMOs with SAL so it | ||
1102 | * can handle and cleanup errors within that address | ||
1103 | * range should the remote partition go down. We don't | ||
1104 | * unregister this range because it is difficult to | ||
1105 | * tell when outstanding writes to the remote partition | ||
1106 | * are finished and thus when it is thus safe to | ||
1107 | * unregister. This should not result in wasted space | ||
1108 | * in the SAL xp_addr_region table because we should | ||
1109 | * get the same page for remote_act_amos_pa after | ||
1110 | * module reloads and system reboots. | ||
1111 | */ | ||
1112 | if (sn_register_xp_addr_region | ||
1113 | (remote_vars->amos_page_pa, PAGE_SIZE, 1) < 0) { | ||
1114 | dev_dbg(xpc_part, | ||
1115 | "partition %d failed to " | ||
1116 | "register xp_addr region 0x%016lx\n", | ||
1117 | partid, remote_vars->amos_page_pa); | ||
1118 | |||
1119 | XPC_SET_REASON(part, xpcPhysAddrRegFailed, | ||
1120 | __LINE__); | ||
1121 | break; | ||
1122 | } | ||
1123 | |||
1124 | /* | ||
1125 | * The remote nasid is valid and available. | ||
1126 | * Send an interrupt to that nasid to notify | ||
1127 | * it that we are ready to begin activation. | ||
1128 | */ | ||
1129 | dev_dbg(xpc_part, "sending an interrupt to AMO 0x%lx, " | ||
1130 | "nasid %d, phys_cpuid 0x%x\n", | ||
1131 | remote_vars->amos_page_pa, | ||
1132 | remote_vars->act_nasid, | ||
1133 | remote_vars->act_phys_cpuid); | ||
1134 | |||
1135 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars-> | ||
1136 | version)) { | ||
1137 | part->remote_amos_page_pa = | ||
1138 | remote_vars->amos_page_pa; | ||
1139 | xpc_mark_partition_disengaged(part); | ||
1140 | xpc_cancel_partition_disengage_request(part); | ||
1141 | } | ||
1142 | xpc_IPI_send_activate(remote_vars); | ||
1143 | } | ||
1144 | } | ||
1145 | |||
1146 | kfree(discovered_nasids); | ||
1147 | kfree(remote_rp_base); | ||
1148 | } | ||
1149 | |||
1150 | /* | ||
1151 | * Given a partid, get the nasids owned by that partition from the | ||
1152 | * remote partition's reserved page. | ||
1153 | */ | ||
1154 | enum xpc_retval | ||
1155 | xpc_initiate_partid_to_nasids(partid_t partid, void *nasid_mask) | ||
1156 | { | ||
1157 | struct xpc_partition *part; | ||
1158 | u64 part_nasid_pa; | ||
1159 | int bte_res; | ||
1160 | |||
1161 | part = &xpc_partitions[partid]; | ||
1162 | if (part->remote_rp_pa == 0) | ||
1163 | return xpcPartitionDown; | ||
1164 | |||
1165 | memset(nasid_mask, 0, XP_NASID_MASK_BYTES); | ||
1166 | |||
1167 | part_nasid_pa = (u64)XPC_RP_PART_NASIDS(part->remote_rp_pa); | ||
1168 | |||
1169 | bte_res = xp_bte_copy(part_nasid_pa, (u64)nasid_mask, | ||
1170 | xp_nasid_mask_bytes, (BTE_NOTIFY | BTE_WACQUIRE), | ||
1171 | NULL); | ||
1172 | |||
1173 | return xpc_map_bte_errors(bte_res); | ||
1174 | } | ||
diff --git a/drivers/misc/sgi-xp/xpnet.c b/drivers/misc/sgi-xp/xpnet.c new file mode 100644 index 000000000000..a9543c65814d --- /dev/null +++ b/drivers/misc/sgi-xp/xpnet.c | |||
@@ -0,0 +1,677 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1999-2008 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition Network Interface (XPNET) support | ||
11 | * | ||
12 | * XPNET provides a virtual network layered on top of the Cross | ||
13 | * Partition communication layer. | ||
14 | * | ||
15 | * XPNET provides direct point-to-point and broadcast-like support | ||
16 | * for an ethernet-like device. The ethernet broadcast medium is | ||
17 | * replaced with a point-to-point message structure which passes | ||
18 | * pointers to a DMA-capable block that a remote partition should | ||
19 | * retrieve and pass to the upper level networking layer. | ||
20 | * | ||
21 | */ | ||
22 | |||
23 | #include <linux/module.h> | ||
24 | #include <linux/types.h> | ||
25 | #include <linux/kernel.h> | ||
26 | #include <linux/init.h> | ||
27 | #include <linux/ioport.h> | ||
28 | #include <linux/netdevice.h> | ||
29 | #include <linux/etherdevice.h> | ||
30 | #include <linux/delay.h> | ||
31 | #include <linux/ethtool.h> | ||
32 | #include <linux/mii.h> | ||
33 | #include <linux/smp.h> | ||
34 | #include <linux/string.h> | ||
35 | #include <asm/sn/bte.h> | ||
36 | #include <asm/sn/io.h> | ||
37 | #include <asm/sn/sn_sal.h> | ||
38 | #include <asm/atomic.h> | ||
39 | #include "xp.h" | ||
40 | |||
41 | /* | ||
42 | * The message payload transferred by XPC. | ||
43 | * | ||
44 | * buf_pa is the physical address where the DMA should pull from. | ||
45 | * | ||
46 | * NOTE: for performance reasons, buf_pa should _ALWAYS_ begin on a | ||
47 | * cacheline boundary. To accomplish this, we record the number of | ||
48 | * bytes from the beginning of the first cacheline to the first useful | ||
49 | * byte of the skb (leadin_ignore) and the number of bytes from the | ||
50 | * last useful byte of the skb to the end of the last cacheline | ||
51 | * (tailout_ignore). | ||
52 | * | ||
53 | * size is the number of bytes to transfer which includes the skb->len | ||
54 | * (useful bytes of the senders skb) plus the leadin and tailout | ||
55 | */ | ||
56 | struct xpnet_message { | ||
57 | u16 version; /* Version for this message */ | ||
58 | u16 embedded_bytes; /* #of bytes embedded in XPC message */ | ||
59 | u32 magic; /* Special number indicating this is xpnet */ | ||
60 | u64 buf_pa; /* phys address of buffer to retrieve */ | ||
61 | u32 size; /* #of bytes in buffer */ | ||
62 | u8 leadin_ignore; /* #of bytes to ignore at the beginning */ | ||
63 | u8 tailout_ignore; /* #of bytes to ignore at the end */ | ||
64 | unsigned char data; /* body of small packets */ | ||
65 | }; | ||
66 | |||
67 | /* | ||
68 | * Determine the size of our message, the cacheline aligned size, | ||
69 | * and then the number of message will request from XPC. | ||
70 | * | ||
71 | * XPC expects each message to exist in an individual cacheline. | ||
72 | */ | ||
73 | #define XPNET_MSG_SIZE (L1_CACHE_BYTES - XPC_MSG_PAYLOAD_OFFSET) | ||
74 | #define XPNET_MSG_DATA_MAX \ | ||
75 | (XPNET_MSG_SIZE - (u64)(&((struct xpnet_message *)0)->data)) | ||
76 | #define XPNET_MSG_ALIGNED_SIZE (L1_CACHE_ALIGN(XPNET_MSG_SIZE)) | ||
77 | #define XPNET_MSG_NENTRIES (PAGE_SIZE / XPNET_MSG_ALIGNED_SIZE) | ||
78 | |||
79 | #define XPNET_MAX_KTHREADS (XPNET_MSG_NENTRIES + 1) | ||
80 | #define XPNET_MAX_IDLE_KTHREADS (XPNET_MSG_NENTRIES + 1) | ||
81 | |||
82 | /* | ||
83 | * Version number of XPNET implementation. XPNET can always talk to versions | ||
84 | * with same major #, and never talk to versions with a different version. | ||
85 | */ | ||
86 | #define _XPNET_VERSION(_major, _minor) (((_major) << 4) | (_minor)) | ||
87 | #define XPNET_VERSION_MAJOR(_v) ((_v) >> 4) | ||
88 | #define XPNET_VERSION_MINOR(_v) ((_v) & 0xf) | ||
89 | |||
90 | #define XPNET_VERSION _XPNET_VERSION(1, 0) /* version 1.0 */ | ||
91 | #define XPNET_VERSION_EMBED _XPNET_VERSION(1, 1) /* version 1.1 */ | ||
92 | #define XPNET_MAGIC 0x88786984 /* "XNET" */ | ||
93 | |||
94 | #define XPNET_VALID_MSG(_m) \ | ||
95 | ((XPNET_VERSION_MAJOR(_m->version) == XPNET_VERSION_MAJOR(XPNET_VERSION)) \ | ||
96 | && (msg->magic == XPNET_MAGIC)) | ||
97 | |||
98 | #define XPNET_DEVICE_NAME "xp0" | ||
99 | |||
100 | /* | ||
101 | * When messages are queued with xpc_send_notify, a kmalloc'd buffer | ||
102 | * of the following type is passed as a notification cookie. When the | ||
103 | * notification function is called, we use the cookie to decide | ||
104 | * whether all outstanding message sends have completed. The skb can | ||
105 | * then be released. | ||
106 | */ | ||
107 | struct xpnet_pending_msg { | ||
108 | struct list_head free_list; | ||
109 | struct sk_buff *skb; | ||
110 | atomic_t use_count; | ||
111 | }; | ||
112 | |||
113 | /* driver specific structure pointed to by the device structure */ | ||
114 | struct xpnet_dev_private { | ||
115 | struct net_device_stats stats; | ||
116 | }; | ||
117 | |||
118 | struct net_device *xpnet_device; | ||
119 | |||
120 | /* | ||
121 | * When we are notified of other partitions activating, we add them to | ||
122 | * our bitmask of partitions to which we broadcast. | ||
123 | */ | ||
124 | static u64 xpnet_broadcast_partitions; | ||
125 | /* protect above */ | ||
126 | static DEFINE_SPINLOCK(xpnet_broadcast_lock); | ||
127 | |||
128 | /* | ||
129 | * Since the Block Transfer Engine (BTE) is being used for the transfer | ||
130 | * and it relies upon cache-line size transfers, we need to reserve at | ||
131 | * least one cache-line for head and tail alignment. The BTE is | ||
132 | * limited to 8MB transfers. | ||
133 | * | ||
134 | * Testing has shown that changing MTU to greater than 64KB has no effect | ||
135 | * on TCP as the two sides negotiate a Max Segment Size that is limited | ||
136 | * to 64K. Other protocols May use packets greater than this, but for | ||
137 | * now, the default is 64KB. | ||
138 | */ | ||
139 | #define XPNET_MAX_MTU (0x800000UL - L1_CACHE_BYTES) | ||
140 | /* 32KB has been determined to be the ideal */ | ||
141 | #define XPNET_DEF_MTU (0x8000UL) | ||
142 | |||
143 | /* | ||
144 | * The partition id is encapsulated in the MAC address. The following | ||
145 | * define locates the octet the partid is in. | ||
146 | */ | ||
147 | #define XPNET_PARTID_OCTET 1 | ||
148 | #define XPNET_LICENSE_OCTET 2 | ||
149 | |||
150 | /* | ||
151 | * Define the XPNET debug device structure that is to be used with dev_dbg(), | ||
152 | * dev_err(), dev_warn(), and dev_info(). | ||
153 | */ | ||
154 | struct device_driver xpnet_dbg_name = { | ||
155 | .name = "xpnet" | ||
156 | }; | ||
157 | |||
158 | struct device xpnet_dbg_subname = { | ||
159 | .bus_id = {0}, /* set to "" */ | ||
160 | .driver = &xpnet_dbg_name | ||
161 | }; | ||
162 | |||
163 | struct device *xpnet = &xpnet_dbg_subname; | ||
164 | |||
165 | /* | ||
166 | * Packet was recevied by XPC and forwarded to us. | ||
167 | */ | ||
168 | static void | ||
169 | xpnet_receive(partid_t partid, int channel, struct xpnet_message *msg) | ||
170 | { | ||
171 | struct sk_buff *skb; | ||
172 | bte_result_t bret; | ||
173 | struct xpnet_dev_private *priv = | ||
174 | (struct xpnet_dev_private *)xpnet_device->priv; | ||
175 | |||
176 | if (!XPNET_VALID_MSG(msg)) { | ||
177 | /* | ||
178 | * Packet with a different XPC version. Ignore. | ||
179 | */ | ||
180 | xpc_received(partid, channel, (void *)msg); | ||
181 | |||
182 | priv->stats.rx_errors++; | ||
183 | |||
184 | return; | ||
185 | } | ||
186 | dev_dbg(xpnet, "received 0x%lx, %d, %d, %d\n", msg->buf_pa, msg->size, | ||
187 | msg->leadin_ignore, msg->tailout_ignore); | ||
188 | |||
189 | /* reserve an extra cache line */ | ||
190 | skb = dev_alloc_skb(msg->size + L1_CACHE_BYTES); | ||
191 | if (!skb) { | ||
192 | dev_err(xpnet, "failed on dev_alloc_skb(%d)\n", | ||
193 | msg->size + L1_CACHE_BYTES); | ||
194 | |||
195 | xpc_received(partid, channel, (void *)msg); | ||
196 | |||
197 | priv->stats.rx_errors++; | ||
198 | |||
199 | return; | ||
200 | } | ||
201 | |||
202 | /* | ||
203 | * The allocated skb has some reserved space. | ||
204 | * In order to use bte_copy, we need to get the | ||
205 | * skb->data pointer moved forward. | ||
206 | */ | ||
207 | skb_reserve(skb, (L1_CACHE_BYTES - ((u64)skb->data & | ||
208 | (L1_CACHE_BYTES - 1)) + | ||
209 | msg->leadin_ignore)); | ||
210 | |||
211 | /* | ||
212 | * Update the tail pointer to indicate data actually | ||
213 | * transferred. | ||
214 | */ | ||
215 | skb_put(skb, (msg->size - msg->leadin_ignore - msg->tailout_ignore)); | ||
216 | |||
217 | /* | ||
218 | * Move the data over from the other side. | ||
219 | */ | ||
220 | if ((XPNET_VERSION_MINOR(msg->version) == 1) && | ||
221 | (msg->embedded_bytes != 0)) { | ||
222 | dev_dbg(xpnet, "copying embedded message. memcpy(0x%p, 0x%p, " | ||
223 | "%lu)\n", skb->data, &msg->data, | ||
224 | (size_t)msg->embedded_bytes); | ||
225 | |||
226 | skb_copy_to_linear_data(skb, &msg->data, | ||
227 | (size_t)msg->embedded_bytes); | ||
228 | } else { | ||
229 | dev_dbg(xpnet, "transferring buffer to the skb->data area;\n\t" | ||
230 | "bte_copy(0x%p, 0x%p, %hu)\n", (void *)msg->buf_pa, | ||
231 | (void *)__pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)), | ||
232 | msg->size); | ||
233 | |||
234 | bret = bte_copy(msg->buf_pa, | ||
235 | __pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)), | ||
236 | msg->size, (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
237 | |||
238 | if (bret != BTE_SUCCESS) { | ||
239 | /* | ||
240 | * >>> Need better way of cleaning skb. Currently skb | ||
241 | * >>> appears in_use and we can't just call | ||
242 | * >>> dev_kfree_skb. | ||
243 | */ | ||
244 | dev_err(xpnet, "bte_copy(0x%p, 0x%p, 0x%hx) returned " | ||
245 | "error=0x%x\n", (void *)msg->buf_pa, | ||
246 | (void *)__pa((u64)skb->data & | ||
247 | ~(L1_CACHE_BYTES - 1)), | ||
248 | msg->size, bret); | ||
249 | |||
250 | xpc_received(partid, channel, (void *)msg); | ||
251 | |||
252 | priv->stats.rx_errors++; | ||
253 | |||
254 | return; | ||
255 | } | ||
256 | } | ||
257 | |||
258 | dev_dbg(xpnet, "<skb->head=0x%p skb->data=0x%p skb->tail=0x%p " | ||
259 | "skb->end=0x%p skb->len=%d\n", (void *)skb->head, | ||
260 | (void *)skb->data, skb_tail_pointer(skb), skb_end_pointer(skb), | ||
261 | skb->len); | ||
262 | |||
263 | skb->protocol = eth_type_trans(skb, xpnet_device); | ||
264 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
265 | |||
266 | dev_dbg(xpnet, "passing skb to network layer\n" | ||
267 | KERN_DEBUG "\tskb->head=0x%p skb->data=0x%p skb->tail=0x%p " | ||
268 | "skb->end=0x%p skb->len=%d\n", | ||
269 | (void *)skb->head, (void *)skb->data, skb_tail_pointer(skb), | ||
270 | skb_end_pointer(skb), skb->len); | ||
271 | |||
272 | xpnet_device->last_rx = jiffies; | ||
273 | priv->stats.rx_packets++; | ||
274 | priv->stats.rx_bytes += skb->len + ETH_HLEN; | ||
275 | |||
276 | netif_rx_ni(skb); | ||
277 | xpc_received(partid, channel, (void *)msg); | ||
278 | } | ||
279 | |||
280 | /* | ||
281 | * This is the handler which XPC calls during any sort of change in | ||
282 | * state or message reception on a connection. | ||
283 | */ | ||
284 | static void | ||
285 | xpnet_connection_activity(enum xpc_retval reason, partid_t partid, int channel, | ||
286 | void *data, void *key) | ||
287 | { | ||
288 | long bp; | ||
289 | |||
290 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
291 | DBUG_ON(channel != XPC_NET_CHANNEL); | ||
292 | |||
293 | switch (reason) { | ||
294 | case xpcMsgReceived: /* message received */ | ||
295 | DBUG_ON(data == NULL); | ||
296 | |||
297 | xpnet_receive(partid, channel, (struct xpnet_message *)data); | ||
298 | break; | ||
299 | |||
300 | case xpcConnected: /* connection completed to a partition */ | ||
301 | spin_lock_bh(&xpnet_broadcast_lock); | ||
302 | xpnet_broadcast_partitions |= 1UL << (partid - 1); | ||
303 | bp = xpnet_broadcast_partitions; | ||
304 | spin_unlock_bh(&xpnet_broadcast_lock); | ||
305 | |||
306 | netif_carrier_on(xpnet_device); | ||
307 | |||
308 | dev_dbg(xpnet, "%s connection created to partition %d; " | ||
309 | "xpnet_broadcast_partitions=0x%lx\n", | ||
310 | xpnet_device->name, partid, bp); | ||
311 | break; | ||
312 | |||
313 | default: | ||
314 | spin_lock_bh(&xpnet_broadcast_lock); | ||
315 | xpnet_broadcast_partitions &= ~(1UL << (partid - 1)); | ||
316 | bp = xpnet_broadcast_partitions; | ||
317 | spin_unlock_bh(&xpnet_broadcast_lock); | ||
318 | |||
319 | if (bp == 0) | ||
320 | netif_carrier_off(xpnet_device); | ||
321 | |||
322 | dev_dbg(xpnet, "%s disconnected from partition %d; " | ||
323 | "xpnet_broadcast_partitions=0x%lx\n", | ||
324 | xpnet_device->name, partid, bp); | ||
325 | break; | ||
326 | |||
327 | } | ||
328 | } | ||
329 | |||
330 | static int | ||
331 | xpnet_dev_open(struct net_device *dev) | ||
332 | { | ||
333 | enum xpc_retval ret; | ||
334 | |||
335 | dev_dbg(xpnet, "calling xpc_connect(%d, 0x%p, NULL, %ld, %ld, %ld, " | ||
336 | "%ld)\n", XPC_NET_CHANNEL, xpnet_connection_activity, | ||
337 | XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, XPNET_MAX_KTHREADS, | ||
338 | XPNET_MAX_IDLE_KTHREADS); | ||
339 | |||
340 | ret = xpc_connect(XPC_NET_CHANNEL, xpnet_connection_activity, NULL, | ||
341 | XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, | ||
342 | XPNET_MAX_KTHREADS, XPNET_MAX_IDLE_KTHREADS); | ||
343 | if (ret != xpcSuccess) { | ||
344 | dev_err(xpnet, "ifconfig up of %s failed on XPC connect, " | ||
345 | "ret=%d\n", dev->name, ret); | ||
346 | |||
347 | return -ENOMEM; | ||
348 | } | ||
349 | |||
350 | dev_dbg(xpnet, "ifconfig up of %s; XPC connected\n", dev->name); | ||
351 | |||
352 | return 0; | ||
353 | } | ||
354 | |||
355 | static int | ||
356 | xpnet_dev_stop(struct net_device *dev) | ||
357 | { | ||
358 | xpc_disconnect(XPC_NET_CHANNEL); | ||
359 | |||
360 | dev_dbg(xpnet, "ifconfig down of %s; XPC disconnected\n", dev->name); | ||
361 | |||
362 | return 0; | ||
363 | } | ||
364 | |||
365 | static int | ||
366 | xpnet_dev_change_mtu(struct net_device *dev, int new_mtu) | ||
367 | { | ||
368 | /* 68 comes from min TCP+IP+MAC header */ | ||
369 | if ((new_mtu < 68) || (new_mtu > XPNET_MAX_MTU)) { | ||
370 | dev_err(xpnet, "ifconfig %s mtu %d failed; value must be " | ||
371 | "between 68 and %ld\n", dev->name, new_mtu, | ||
372 | XPNET_MAX_MTU); | ||
373 | return -EINVAL; | ||
374 | } | ||
375 | |||
376 | dev->mtu = new_mtu; | ||
377 | dev_dbg(xpnet, "ifconfig %s mtu set to %d\n", dev->name, new_mtu); | ||
378 | return 0; | ||
379 | } | ||
380 | |||
381 | /* | ||
382 | * Required for the net_device structure. | ||
383 | */ | ||
384 | static int | ||
385 | xpnet_dev_set_config(struct net_device *dev, struct ifmap *new_map) | ||
386 | { | ||
387 | return 0; | ||
388 | } | ||
389 | |||
390 | /* | ||
391 | * Return statistics to the caller. | ||
392 | */ | ||
393 | static struct net_device_stats * | ||
394 | xpnet_dev_get_stats(struct net_device *dev) | ||
395 | { | ||
396 | struct xpnet_dev_private *priv; | ||
397 | |||
398 | priv = (struct xpnet_dev_private *)dev->priv; | ||
399 | |||
400 | return &priv->stats; | ||
401 | } | ||
402 | |||
403 | /* | ||
404 | * Notification that the other end has received the message and | ||
405 | * DMA'd the skb information. At this point, they are done with | ||
406 | * our side. When all recipients are done processing, we | ||
407 | * release the skb and then release our pending message structure. | ||
408 | */ | ||
409 | static void | ||
410 | xpnet_send_completed(enum xpc_retval reason, partid_t partid, int channel, | ||
411 | void *__qm) | ||
412 | { | ||
413 | struct xpnet_pending_msg *queued_msg = (struct xpnet_pending_msg *)__qm; | ||
414 | |||
415 | DBUG_ON(queued_msg == NULL); | ||
416 | |||
417 | dev_dbg(xpnet, "message to %d notified with reason %d\n", | ||
418 | partid, reason); | ||
419 | |||
420 | if (atomic_dec_return(&queued_msg->use_count) == 0) { | ||
421 | dev_dbg(xpnet, "all acks for skb->head=-x%p\n", | ||
422 | (void *)queued_msg->skb->head); | ||
423 | |||
424 | dev_kfree_skb_any(queued_msg->skb); | ||
425 | kfree(queued_msg); | ||
426 | } | ||
427 | } | ||
428 | |||
429 | /* | ||
430 | * Network layer has formatted a packet (skb) and is ready to place it | ||
431 | * "on the wire". Prepare and send an xpnet_message to all partitions | ||
432 | * which have connected with us and are targets of this packet. | ||
433 | * | ||
434 | * MAC-NOTE: For the XPNET driver, the MAC address contains the | ||
435 | * destination partition_id. If the destination partition id word | ||
436 | * is 0xff, this packet is to broadcast to all partitions. | ||
437 | */ | ||
438 | static int | ||
439 | xpnet_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | ||
440 | { | ||
441 | struct xpnet_pending_msg *queued_msg; | ||
442 | enum xpc_retval ret; | ||
443 | struct xpnet_message *msg; | ||
444 | u64 start_addr, end_addr; | ||
445 | long dp; | ||
446 | u8 second_mac_octet; | ||
447 | partid_t dest_partid; | ||
448 | struct xpnet_dev_private *priv; | ||
449 | u16 embedded_bytes; | ||
450 | |||
451 | priv = (struct xpnet_dev_private *)dev->priv; | ||
452 | |||
453 | dev_dbg(xpnet, ">skb->head=0x%p skb->data=0x%p skb->tail=0x%p " | ||
454 | "skb->end=0x%p skb->len=%d\n", (void *)skb->head, | ||
455 | (void *)skb->data, skb_tail_pointer(skb), skb_end_pointer(skb), | ||
456 | skb->len); | ||
457 | |||
458 | /* | ||
459 | * The xpnet_pending_msg tracks how many outstanding | ||
460 | * xpc_send_notifies are relying on this skb. When none | ||
461 | * remain, release the skb. | ||
462 | */ | ||
463 | queued_msg = kmalloc(sizeof(struct xpnet_pending_msg), GFP_ATOMIC); | ||
464 | if (queued_msg == NULL) { | ||
465 | dev_warn(xpnet, "failed to kmalloc %ld bytes; dropping " | ||
466 | "packet\n", sizeof(struct xpnet_pending_msg)); | ||
467 | |||
468 | priv->stats.tx_errors++; | ||
469 | |||
470 | return -ENOMEM; | ||
471 | } | ||
472 | |||
473 | /* get the beginning of the first cacheline and end of last */ | ||
474 | start_addr = ((u64)skb->data & ~(L1_CACHE_BYTES - 1)); | ||
475 | end_addr = L1_CACHE_ALIGN((u64)skb_tail_pointer(skb)); | ||
476 | |||
477 | /* calculate how many bytes to embed in the XPC message */ | ||
478 | embedded_bytes = 0; | ||
479 | if (unlikely(skb->len <= XPNET_MSG_DATA_MAX)) { | ||
480 | /* skb->data does fit so embed */ | ||
481 | embedded_bytes = skb->len; | ||
482 | } | ||
483 | |||
484 | /* | ||
485 | * Since the send occurs asynchronously, we set the count to one | ||
486 | * and begin sending. Any sends that happen to complete before | ||
487 | * we are done sending will not free the skb. We will be left | ||
488 | * with that task during exit. This also handles the case of | ||
489 | * a packet destined for a partition which is no longer up. | ||
490 | */ | ||
491 | atomic_set(&queued_msg->use_count, 1); | ||
492 | queued_msg->skb = skb; | ||
493 | |||
494 | second_mac_octet = skb->data[XPNET_PARTID_OCTET]; | ||
495 | if (second_mac_octet == 0xff) { | ||
496 | /* we are being asked to broadcast to all partitions */ | ||
497 | dp = xpnet_broadcast_partitions; | ||
498 | } else if (second_mac_octet != 0) { | ||
499 | dp = xpnet_broadcast_partitions & | ||
500 | (1UL << (second_mac_octet - 1)); | ||
501 | } else { | ||
502 | /* 0 is an invalid partid. Ignore */ | ||
503 | dp = 0; | ||
504 | } | ||
505 | dev_dbg(xpnet, "destination Partitions mask (dp) = 0x%lx\n", dp); | ||
506 | |||
507 | /* | ||
508 | * If we wanted to allow promiscuous mode to work like an | ||
509 | * unswitched network, this would be a good point to OR in a | ||
510 | * mask of partitions which should be receiving all packets. | ||
511 | */ | ||
512 | |||
513 | /* | ||
514 | * Main send loop. | ||
515 | */ | ||
516 | for (dest_partid = 1; dp && dest_partid < XP_MAX_PARTITIONS; | ||
517 | dest_partid++) { | ||
518 | |||
519 | if (!(dp & (1UL << (dest_partid - 1)))) { | ||
520 | /* not destined for this partition */ | ||
521 | continue; | ||
522 | } | ||
523 | |||
524 | /* remove this partition from the destinations mask */ | ||
525 | dp &= ~(1UL << (dest_partid - 1)); | ||
526 | |||
527 | /* found a partition to send to */ | ||
528 | |||
529 | ret = xpc_allocate(dest_partid, XPC_NET_CHANNEL, | ||
530 | XPC_NOWAIT, (void **)&msg); | ||
531 | if (unlikely(ret != xpcSuccess)) | ||
532 | continue; | ||
533 | |||
534 | msg->embedded_bytes = embedded_bytes; | ||
535 | if (unlikely(embedded_bytes != 0)) { | ||
536 | msg->version = XPNET_VERSION_EMBED; | ||
537 | dev_dbg(xpnet, "calling memcpy(0x%p, 0x%p, 0x%lx)\n", | ||
538 | &msg->data, skb->data, (size_t)embedded_bytes); | ||
539 | skb_copy_from_linear_data(skb, &msg->data, | ||
540 | (size_t)embedded_bytes); | ||
541 | } else { | ||
542 | msg->version = XPNET_VERSION; | ||
543 | } | ||
544 | msg->magic = XPNET_MAGIC; | ||
545 | msg->size = end_addr - start_addr; | ||
546 | msg->leadin_ignore = (u64)skb->data - start_addr; | ||
547 | msg->tailout_ignore = end_addr - (u64)skb_tail_pointer(skb); | ||
548 | msg->buf_pa = __pa(start_addr); | ||
549 | |||
550 | dev_dbg(xpnet, "sending XPC message to %d:%d\n" | ||
551 | KERN_DEBUG "msg->buf_pa=0x%lx, msg->size=%u, " | ||
552 | "msg->leadin_ignore=%u, msg->tailout_ignore=%u\n", | ||
553 | dest_partid, XPC_NET_CHANNEL, msg->buf_pa, msg->size, | ||
554 | msg->leadin_ignore, msg->tailout_ignore); | ||
555 | |||
556 | atomic_inc(&queued_msg->use_count); | ||
557 | |||
558 | ret = xpc_send_notify(dest_partid, XPC_NET_CHANNEL, msg, | ||
559 | xpnet_send_completed, queued_msg); | ||
560 | if (unlikely(ret != xpcSuccess)) { | ||
561 | atomic_dec(&queued_msg->use_count); | ||
562 | continue; | ||
563 | } | ||
564 | } | ||
565 | |||
566 | if (atomic_dec_return(&queued_msg->use_count) == 0) { | ||
567 | dev_dbg(xpnet, "no partitions to receive packet destined for " | ||
568 | "%d\n", dest_partid); | ||
569 | |||
570 | dev_kfree_skb(skb); | ||
571 | kfree(queued_msg); | ||
572 | } | ||
573 | |||
574 | priv->stats.tx_packets++; | ||
575 | priv->stats.tx_bytes += skb->len; | ||
576 | |||
577 | return 0; | ||
578 | } | ||
579 | |||
580 | /* | ||
581 | * Deal with transmit timeouts coming from the network layer. | ||
582 | */ | ||
583 | static void | ||
584 | xpnet_dev_tx_timeout(struct net_device *dev) | ||
585 | { | ||
586 | struct xpnet_dev_private *priv; | ||
587 | |||
588 | priv = (struct xpnet_dev_private *)dev->priv; | ||
589 | |||
590 | priv->stats.tx_errors++; | ||
591 | return; | ||
592 | } | ||
593 | |||
594 | static int __init | ||
595 | xpnet_init(void) | ||
596 | { | ||
597 | int i; | ||
598 | u32 license_num; | ||
599 | int result = -ENOMEM; | ||
600 | |||
601 | if (!ia64_platform_is("sn2")) | ||
602 | return -ENODEV; | ||
603 | |||
604 | dev_info(xpnet, "registering network device %s\n", XPNET_DEVICE_NAME); | ||
605 | |||
606 | /* | ||
607 | * use ether_setup() to init the majority of our device | ||
608 | * structure and then override the necessary pieces. | ||
609 | */ | ||
610 | xpnet_device = alloc_netdev(sizeof(struct xpnet_dev_private), | ||
611 | XPNET_DEVICE_NAME, ether_setup); | ||
612 | if (xpnet_device == NULL) | ||
613 | return -ENOMEM; | ||
614 | |||
615 | netif_carrier_off(xpnet_device); | ||
616 | |||
617 | xpnet_device->mtu = XPNET_DEF_MTU; | ||
618 | xpnet_device->change_mtu = xpnet_dev_change_mtu; | ||
619 | xpnet_device->open = xpnet_dev_open; | ||
620 | xpnet_device->get_stats = xpnet_dev_get_stats; | ||
621 | xpnet_device->stop = xpnet_dev_stop; | ||
622 | xpnet_device->hard_start_xmit = xpnet_dev_hard_start_xmit; | ||
623 | xpnet_device->tx_timeout = xpnet_dev_tx_timeout; | ||
624 | xpnet_device->set_config = xpnet_dev_set_config; | ||
625 | |||
626 | /* | ||
627 | * Multicast assumes the LSB of the first octet is set for multicast | ||
628 | * MAC addresses. We chose the first octet of the MAC to be unlikely | ||
629 | * to collide with any vendor's officially issued MAC. | ||
630 | */ | ||
631 | xpnet_device->dev_addr[0] = 0xfe; | ||
632 | xpnet_device->dev_addr[XPNET_PARTID_OCTET] = sn_partition_id; | ||
633 | license_num = sn_partition_serial_number_val(); | ||
634 | for (i = 3; i >= 0; i--) { | ||
635 | xpnet_device->dev_addr[XPNET_LICENSE_OCTET + i] = | ||
636 | license_num & 0xff; | ||
637 | license_num = license_num >> 8; | ||
638 | } | ||
639 | |||
640 | /* | ||
641 | * ether_setup() sets this to a multicast device. We are | ||
642 | * really not supporting multicast at this time. | ||
643 | */ | ||
644 | xpnet_device->flags &= ~IFF_MULTICAST; | ||
645 | |||
646 | /* | ||
647 | * No need to checksum as it is a DMA transfer. The BTE will | ||
648 | * report an error if the data is not retrievable and the | ||
649 | * packet will be dropped. | ||
650 | */ | ||
651 | xpnet_device->features = NETIF_F_NO_CSUM; | ||
652 | |||
653 | result = register_netdev(xpnet_device); | ||
654 | if (result != 0) | ||
655 | free_netdev(xpnet_device); | ||
656 | |||
657 | return result; | ||
658 | } | ||
659 | |||
660 | module_init(xpnet_init); | ||
661 | |||
662 | static void __exit | ||
663 | xpnet_exit(void) | ||
664 | { | ||
665 | dev_info(xpnet, "unregistering network device %s\n", | ||
666 | xpnet_device[0].name); | ||
667 | |||
668 | unregister_netdev(xpnet_device); | ||
669 | |||
670 | free_netdev(xpnet_device); | ||
671 | } | ||
672 | |||
673 | module_exit(xpnet_exit); | ||
674 | |||
675 | MODULE_AUTHOR("Silicon Graphics, Inc."); | ||
676 | MODULE_DESCRIPTION("Cross Partition Network adapter (XPNET)"); | ||
677 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/misc/thinkpad_acpi.c b/drivers/misc/thinkpad_acpi.c index 6cb781262f94..3f28f6eabdbf 100644 --- a/drivers/misc/thinkpad_acpi.c +++ b/drivers/misc/thinkpad_acpi.c | |||
@@ -21,7 +21,7 @@ | |||
21 | * 02110-1301, USA. | 21 | * 02110-1301, USA. |
22 | */ | 22 | */ |
23 | 23 | ||
24 | #define TPACPI_VERSION "0.19" | 24 | #define TPACPI_VERSION "0.20" |
25 | #define TPACPI_SYSFS_VERSION 0x020200 | 25 | #define TPACPI_SYSFS_VERSION 0x020200 |
26 | 26 | ||
27 | /* | 27 | /* |
@@ -67,6 +67,7 @@ | |||
67 | #include <linux/hwmon.h> | 67 | #include <linux/hwmon.h> |
68 | #include <linux/hwmon-sysfs.h> | 68 | #include <linux/hwmon-sysfs.h> |
69 | #include <linux/input.h> | 69 | #include <linux/input.h> |
70 | #include <linux/leds.h> | ||
70 | #include <asm/uaccess.h> | 71 | #include <asm/uaccess.h> |
71 | 72 | ||
72 | #include <linux/dmi.h> | 73 | #include <linux/dmi.h> |
@@ -85,6 +86,8 @@ | |||
85 | #define TP_CMOS_VOLUME_MUTE 2 | 86 | #define TP_CMOS_VOLUME_MUTE 2 |
86 | #define TP_CMOS_BRIGHTNESS_UP 4 | 87 | #define TP_CMOS_BRIGHTNESS_UP 4 |
87 | #define TP_CMOS_BRIGHTNESS_DOWN 5 | 88 | #define TP_CMOS_BRIGHTNESS_DOWN 5 |
89 | #define TP_CMOS_THINKLIGHT_ON 12 | ||
90 | #define TP_CMOS_THINKLIGHT_OFF 13 | ||
88 | 91 | ||
89 | /* NVRAM Addresses */ | 92 | /* NVRAM Addresses */ |
90 | enum tp_nvram_addr { | 93 | enum tp_nvram_addr { |
@@ -133,8 +136,12 @@ enum { | |||
133 | #define TPACPI_PROC_DIR "ibm" | 136 | #define TPACPI_PROC_DIR "ibm" |
134 | #define TPACPI_ACPI_EVENT_PREFIX "ibm" | 137 | #define TPACPI_ACPI_EVENT_PREFIX "ibm" |
135 | #define TPACPI_DRVR_NAME TPACPI_FILE | 138 | #define TPACPI_DRVR_NAME TPACPI_FILE |
139 | #define TPACPI_DRVR_SHORTNAME "tpacpi" | ||
136 | #define TPACPI_HWMON_DRVR_NAME TPACPI_NAME "_hwmon" | 140 | #define TPACPI_HWMON_DRVR_NAME TPACPI_NAME "_hwmon" |
137 | 141 | ||
142 | #define TPACPI_NVRAM_KTHREAD_NAME "ktpacpi_nvramd" | ||
143 | #define TPACPI_WORKQUEUE_NAME "ktpacpid" | ||
144 | |||
138 | #define TPACPI_MAX_ACPI_ARGS 3 | 145 | #define TPACPI_MAX_ACPI_ARGS 3 |
139 | 146 | ||
140 | /* Debugging */ | 147 | /* Debugging */ |
@@ -225,6 +232,7 @@ static struct { | |||
225 | u32 light:1; | 232 | u32 light:1; |
226 | u32 light_status:1; | 233 | u32 light_status:1; |
227 | u32 bright_16levels:1; | 234 | u32 bright_16levels:1; |
235 | u32 bright_acpimode:1; | ||
228 | u32 wan:1; | 236 | u32 wan:1; |
229 | u32 fan_ctrl_status_undef:1; | 237 | u32 fan_ctrl_status_undef:1; |
230 | u32 input_device_registered:1; | 238 | u32 input_device_registered:1; |
@@ -236,6 +244,11 @@ static struct { | |||
236 | u32 hotkey_poll_active:1; | 244 | u32 hotkey_poll_active:1; |
237 | } tp_features; | 245 | } tp_features; |
238 | 246 | ||
247 | static struct { | ||
248 | u16 hotkey_mask_ff:1; | ||
249 | u16 bright_cmos_ec_unsync:1; | ||
250 | } tp_warned; | ||
251 | |||
239 | struct thinkpad_id_data { | 252 | struct thinkpad_id_data { |
240 | unsigned int vendor; /* ThinkPad vendor: | 253 | unsigned int vendor; /* ThinkPad vendor: |
241 | * PCI_VENDOR_ID_IBM/PCI_VENDOR_ID_LENOVO */ | 254 | * PCI_VENDOR_ID_IBM/PCI_VENDOR_ID_LENOVO */ |
@@ -246,7 +259,8 @@ struct thinkpad_id_data { | |||
246 | u16 bios_model; /* Big Endian, TP-1Y = 0x5931, 0 = unknown */ | 259 | u16 bios_model; /* Big Endian, TP-1Y = 0x5931, 0 = unknown */ |
247 | u16 ec_model; | 260 | u16 ec_model; |
248 | 261 | ||
249 | char *model_str; | 262 | char *model_str; /* ThinkPad T43 */ |
263 | char *nummodel_str; /* 9384A9C for a 9384-A9C model */ | ||
250 | }; | 264 | }; |
251 | static struct thinkpad_id_data thinkpad_id; | 265 | static struct thinkpad_id_data thinkpad_id; |
252 | 266 | ||
@@ -259,6 +273,16 @@ static enum { | |||
259 | static int experimental; | 273 | static int experimental; |
260 | static u32 dbg_level; | 274 | static u32 dbg_level; |
261 | 275 | ||
276 | static struct workqueue_struct *tpacpi_wq; | ||
277 | |||
278 | /* Special LED class that can defer work */ | ||
279 | struct tpacpi_led_classdev { | ||
280 | struct led_classdev led_classdev; | ||
281 | struct work_struct work; | ||
282 | enum led_brightness new_brightness; | ||
283 | unsigned int led; | ||
284 | }; | ||
285 | |||
262 | /**************************************************************************** | 286 | /**************************************************************************** |
263 | **************************************************************************** | 287 | **************************************************************************** |
264 | * | 288 | * |
@@ -807,6 +831,80 @@ static int parse_strtoul(const char *buf, | |||
807 | return 0; | 831 | return 0; |
808 | } | 832 | } |
809 | 833 | ||
834 | static int __init tpacpi_query_bcl_levels(acpi_handle handle) | ||
835 | { | ||
836 | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; | ||
837 | union acpi_object *obj; | ||
838 | int rc; | ||
839 | |||
840 | if (ACPI_SUCCESS(acpi_evaluate_object(handle, NULL, NULL, &buffer))) { | ||
841 | obj = (union acpi_object *)buffer.pointer; | ||
842 | if (!obj || (obj->type != ACPI_TYPE_PACKAGE)) { | ||
843 | printk(TPACPI_ERR "Unknown _BCL data, " | ||
844 | "please report this to %s\n", TPACPI_MAIL); | ||
845 | rc = 0; | ||
846 | } else { | ||
847 | rc = obj->package.count; | ||
848 | } | ||
849 | } else { | ||
850 | return 0; | ||
851 | } | ||
852 | |||
853 | kfree(buffer.pointer); | ||
854 | return rc; | ||
855 | } | ||
856 | |||
857 | static acpi_status __init tpacpi_acpi_walk_find_bcl(acpi_handle handle, | ||
858 | u32 lvl, void *context, void **rv) | ||
859 | { | ||
860 | char name[ACPI_PATH_SEGMENT_LENGTH]; | ||
861 | struct acpi_buffer buffer = { sizeof(name), &name }; | ||
862 | |||
863 | if (ACPI_SUCCESS(acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer)) && | ||
864 | !strncmp("_BCL", name, sizeof(name) - 1)) { | ||
865 | BUG_ON(!rv || !*rv); | ||
866 | **(int **)rv = tpacpi_query_bcl_levels(handle); | ||
867 | return AE_CTRL_TERMINATE; | ||
868 | } else { | ||
869 | return AE_OK; | ||
870 | } | ||
871 | } | ||
872 | |||
873 | /* | ||
874 | * Returns 0 (no ACPI _BCL or _BCL invalid), or size of brightness map | ||
875 | */ | ||
876 | static int __init tpacpi_check_std_acpi_brightness_support(void) | ||
877 | { | ||
878 | int status; | ||
879 | int bcl_levels = 0; | ||
880 | void *bcl_ptr = &bcl_levels; | ||
881 | |||
882 | if (!vid_handle) { | ||
883 | TPACPI_ACPIHANDLE_INIT(vid); | ||
884 | } | ||
885 | if (!vid_handle) | ||
886 | return 0; | ||
887 | |||
888 | /* | ||
889 | * Search for a _BCL method, and execute it. This is safe on all | ||
890 | * ThinkPads, and as a side-effect, _BCL will place a Lenovo Vista | ||
891 | * BIOS in ACPI backlight control mode. We do NOT have to care | ||
892 | * about calling the _BCL method in an enabled video device, any | ||
893 | * will do for our purposes. | ||
894 | */ | ||
895 | |||
896 | status = acpi_walk_namespace(ACPI_TYPE_METHOD, vid_handle, 3, | ||
897 | tpacpi_acpi_walk_find_bcl, NULL, | ||
898 | &bcl_ptr); | ||
899 | |||
900 | if (ACPI_SUCCESS(status) && bcl_levels > 2) { | ||
901 | tp_features.bright_acpimode = 1; | ||
902 | return (bcl_levels - 2); | ||
903 | } | ||
904 | |||
905 | return 0; | ||
906 | } | ||
907 | |||
810 | /************************************************************************* | 908 | /************************************************************************* |
811 | * thinkpad-acpi driver attributes | 909 | * thinkpad-acpi driver attributes |
812 | */ | 910 | */ |
@@ -909,12 +1007,14 @@ static int __init thinkpad_acpi_driver_init(struct ibm_init_struct *iibm) | |||
909 | thinkpad_id.ec_version_str : "unknown"); | 1007 | thinkpad_id.ec_version_str : "unknown"); |
910 | 1008 | ||
911 | if (thinkpad_id.vendor && thinkpad_id.model_str) | 1009 | if (thinkpad_id.vendor && thinkpad_id.model_str) |
912 | printk(TPACPI_INFO "%s %s\n", | 1010 | printk(TPACPI_INFO "%s %s, model %s\n", |
913 | (thinkpad_id.vendor == PCI_VENDOR_ID_IBM) ? | 1011 | (thinkpad_id.vendor == PCI_VENDOR_ID_IBM) ? |
914 | "IBM" : ((thinkpad_id.vendor == | 1012 | "IBM" : ((thinkpad_id.vendor == |
915 | PCI_VENDOR_ID_LENOVO) ? | 1013 | PCI_VENDOR_ID_LENOVO) ? |
916 | "Lenovo" : "Unknown vendor"), | 1014 | "Lenovo" : "Unknown vendor"), |
917 | thinkpad_id.model_str); | 1015 | thinkpad_id.model_str, |
1016 | (thinkpad_id.nummodel_str) ? | ||
1017 | thinkpad_id.nummodel_str : "unknown"); | ||
918 | 1018 | ||
919 | return 0; | 1019 | return 0; |
920 | } | 1020 | } |
@@ -1107,6 +1207,19 @@ static int hotkey_mask_set(u32 mask) | |||
1107 | int rc = 0; | 1207 | int rc = 0; |
1108 | 1208 | ||
1109 | if (tp_features.hotkey_mask) { | 1209 | if (tp_features.hotkey_mask) { |
1210 | if (!tp_warned.hotkey_mask_ff && | ||
1211 | (mask == 0xffff || mask == 0xffffff || | ||
1212 | mask == 0xffffffff)) { | ||
1213 | tp_warned.hotkey_mask_ff = 1; | ||
1214 | printk(TPACPI_NOTICE | ||
1215 | "setting the hotkey mask to 0x%08x is likely " | ||
1216 | "not the best way to go about it\n", mask); | ||
1217 | printk(TPACPI_NOTICE | ||
1218 | "please consider using the driver defaults, " | ||
1219 | "and refer to up-to-date thinkpad-acpi " | ||
1220 | "documentation\n"); | ||
1221 | } | ||
1222 | |||
1110 | HOTKEY_CONFIG_CRITICAL_START | 1223 | HOTKEY_CONFIG_CRITICAL_START |
1111 | for (i = 0; i < 32; i++) { | 1224 | for (i = 0; i < 32; i++) { |
1112 | u32 m = 1 << i; | 1225 | u32 m = 1 << i; |
@@ -1427,8 +1540,7 @@ static void hotkey_poll_setup(int may_warn) | |||
1427 | (tpacpi_inputdev->users > 0 || hotkey_report_mode < 2)) { | 1540 | (tpacpi_inputdev->users > 0 || hotkey_report_mode < 2)) { |
1428 | if (!tpacpi_hotkey_task) { | 1541 | if (!tpacpi_hotkey_task) { |
1429 | tpacpi_hotkey_task = kthread_run(hotkey_kthread, | 1542 | tpacpi_hotkey_task = kthread_run(hotkey_kthread, |
1430 | NULL, | 1543 | NULL, TPACPI_NVRAM_KTHREAD_NAME); |
1431 | TPACPI_FILE "d"); | ||
1432 | if (IS_ERR(tpacpi_hotkey_task)) { | 1544 | if (IS_ERR(tpacpi_hotkey_task)) { |
1433 | tpacpi_hotkey_task = NULL; | 1545 | tpacpi_hotkey_task = NULL; |
1434 | printk(TPACPI_ERR | 1546 | printk(TPACPI_ERR |
@@ -1887,6 +1999,9 @@ static int __init hotkey_init(struct ibm_init_struct *iibm) | |||
1887 | KEY_UNKNOWN, /* 0x0D: FN+INSERT */ | 1999 | KEY_UNKNOWN, /* 0x0D: FN+INSERT */ |
1888 | KEY_UNKNOWN, /* 0x0E: FN+DELETE */ | 2000 | KEY_UNKNOWN, /* 0x0E: FN+DELETE */ |
1889 | 2001 | ||
2002 | /* These either have to go through ACPI video, or | ||
2003 | * act like in the IBM ThinkPads, so don't ever | ||
2004 | * enable them by default */ | ||
1890 | KEY_RESERVED, /* 0x0F: FN+HOME (brightness up) */ | 2005 | KEY_RESERVED, /* 0x0F: FN+HOME (brightness up) */ |
1891 | KEY_RESERVED, /* 0x10: FN+END (brightness down) */ | 2006 | KEY_RESERVED, /* 0x10: FN+END (brightness down) */ |
1892 | 2007 | ||
@@ -2091,6 +2206,32 @@ static int __init hotkey_init(struct ibm_init_struct *iibm) | |||
2091 | set_bit(SW_TABLET_MODE, tpacpi_inputdev->swbit); | 2206 | set_bit(SW_TABLET_MODE, tpacpi_inputdev->swbit); |
2092 | } | 2207 | } |
2093 | 2208 | ||
2209 | /* Do not issue duplicate brightness change events to | ||
2210 | * userspace */ | ||
2211 | if (!tp_features.bright_acpimode) | ||
2212 | /* update bright_acpimode... */ | ||
2213 | tpacpi_check_std_acpi_brightness_support(); | ||
2214 | |||
2215 | if (tp_features.bright_acpimode) { | ||
2216 | printk(TPACPI_INFO | ||
2217 | "This ThinkPad has standard ACPI backlight " | ||
2218 | "brightness control, supported by the ACPI " | ||
2219 | "video driver\n"); | ||
2220 | printk(TPACPI_NOTICE | ||
2221 | "Disabling thinkpad-acpi brightness events " | ||
2222 | "by default...\n"); | ||
2223 | |||
2224 | /* The hotkey_reserved_mask change below is not | ||
2225 | * necessary while the keys are at KEY_RESERVED in the | ||
2226 | * default map, but better safe than sorry, leave it | ||
2227 | * here as a marker of what we have to do, especially | ||
2228 | * when we finally become able to set this at runtime | ||
2229 | * on response to X.org requests */ | ||
2230 | hotkey_reserved_mask |= | ||
2231 | (1 << TP_ACPI_HOTKEYSCAN_FNHOME) | ||
2232 | | (1 << TP_ACPI_HOTKEYSCAN_FNEND); | ||
2233 | } | ||
2234 | |||
2094 | dbg_printk(TPACPI_DBG_INIT, | 2235 | dbg_printk(TPACPI_DBG_INIT, |
2095 | "enabling hot key handling\n"); | 2236 | "enabling hot key handling\n"); |
2096 | res = hotkey_status_set(1); | 2237 | res = hotkey_status_set(1); |
@@ -3110,13 +3251,82 @@ static struct ibm_struct video_driver_data = { | |||
3110 | TPACPI_HANDLE(lght, root, "\\LGHT"); /* A21e, A2xm/p, T20-22, X20-21 */ | 3251 | TPACPI_HANDLE(lght, root, "\\LGHT"); /* A21e, A2xm/p, T20-22, X20-21 */ |
3111 | TPACPI_HANDLE(ledb, ec, "LEDB"); /* G4x */ | 3252 | TPACPI_HANDLE(ledb, ec, "LEDB"); /* G4x */ |
3112 | 3253 | ||
3254 | static int light_get_status(void) | ||
3255 | { | ||
3256 | int status = 0; | ||
3257 | |||
3258 | if (tp_features.light_status) { | ||
3259 | if (!acpi_evalf(ec_handle, &status, "KBLT", "d")) | ||
3260 | return -EIO; | ||
3261 | return (!!status); | ||
3262 | } | ||
3263 | |||
3264 | return -ENXIO; | ||
3265 | } | ||
3266 | |||
3267 | static int light_set_status(int status) | ||
3268 | { | ||
3269 | int rc; | ||
3270 | |||
3271 | if (tp_features.light) { | ||
3272 | if (cmos_handle) { | ||
3273 | rc = acpi_evalf(cmos_handle, NULL, NULL, "vd", | ||
3274 | (status)? | ||
3275 | TP_CMOS_THINKLIGHT_ON : | ||
3276 | TP_CMOS_THINKLIGHT_OFF); | ||
3277 | } else { | ||
3278 | rc = acpi_evalf(lght_handle, NULL, NULL, "vd", | ||
3279 | (status)? 1 : 0); | ||
3280 | } | ||
3281 | return (rc)? 0 : -EIO; | ||
3282 | } | ||
3283 | |||
3284 | return -ENXIO; | ||
3285 | } | ||
3286 | |||
3287 | static void light_set_status_worker(struct work_struct *work) | ||
3288 | { | ||
3289 | struct tpacpi_led_classdev *data = | ||
3290 | container_of(work, struct tpacpi_led_classdev, work); | ||
3291 | |||
3292 | if (likely(tpacpi_lifecycle == TPACPI_LIFE_RUNNING)) | ||
3293 | light_set_status((data->new_brightness != LED_OFF)); | ||
3294 | } | ||
3295 | |||
3296 | static void light_sysfs_set(struct led_classdev *led_cdev, | ||
3297 | enum led_brightness brightness) | ||
3298 | { | ||
3299 | struct tpacpi_led_classdev *data = | ||
3300 | container_of(led_cdev, | ||
3301 | struct tpacpi_led_classdev, | ||
3302 | led_classdev); | ||
3303 | data->new_brightness = brightness; | ||
3304 | queue_work(tpacpi_wq, &data->work); | ||
3305 | } | ||
3306 | |||
3307 | static enum led_brightness light_sysfs_get(struct led_classdev *led_cdev) | ||
3308 | { | ||
3309 | return (light_get_status() == 1)? LED_FULL : LED_OFF; | ||
3310 | } | ||
3311 | |||
3312 | static struct tpacpi_led_classdev tpacpi_led_thinklight = { | ||
3313 | .led_classdev = { | ||
3314 | .name = "tpacpi::thinklight", | ||
3315 | .brightness_set = &light_sysfs_set, | ||
3316 | .brightness_get = &light_sysfs_get, | ||
3317 | } | ||
3318 | }; | ||
3319 | |||
3113 | static int __init light_init(struct ibm_init_struct *iibm) | 3320 | static int __init light_init(struct ibm_init_struct *iibm) |
3114 | { | 3321 | { |
3322 | int rc = 0; | ||
3323 | |||
3115 | vdbg_printk(TPACPI_DBG_INIT, "initializing light subdriver\n"); | 3324 | vdbg_printk(TPACPI_DBG_INIT, "initializing light subdriver\n"); |
3116 | 3325 | ||
3117 | TPACPI_ACPIHANDLE_INIT(ledb); | 3326 | TPACPI_ACPIHANDLE_INIT(ledb); |
3118 | TPACPI_ACPIHANDLE_INIT(lght); | 3327 | TPACPI_ACPIHANDLE_INIT(lght); |
3119 | TPACPI_ACPIHANDLE_INIT(cmos); | 3328 | TPACPI_ACPIHANDLE_INIT(cmos); |
3329 | INIT_WORK(&tpacpi_led_thinklight.work, light_set_status_worker); | ||
3120 | 3330 | ||
3121 | /* light not supported on 570, 600e/x, 770e, 770x, G4x, R30, R31 */ | 3331 | /* light not supported on 570, 600e/x, 770e, 770x, G4x, R30, R31 */ |
3122 | tp_features.light = (cmos_handle || lght_handle) && !ledb_handle; | 3332 | tp_features.light = (cmos_handle || lght_handle) && !ledb_handle; |
@@ -3130,13 +3340,31 @@ static int __init light_init(struct ibm_init_struct *iibm) | |||
3130 | vdbg_printk(TPACPI_DBG_INIT, "light is %s\n", | 3340 | vdbg_printk(TPACPI_DBG_INIT, "light is %s\n", |
3131 | str_supported(tp_features.light)); | 3341 | str_supported(tp_features.light)); |
3132 | 3342 | ||
3133 | return (tp_features.light)? 0 : 1; | 3343 | if (tp_features.light) { |
3344 | rc = led_classdev_register(&tpacpi_pdev->dev, | ||
3345 | &tpacpi_led_thinklight.led_classdev); | ||
3346 | } | ||
3347 | |||
3348 | if (rc < 0) { | ||
3349 | tp_features.light = 0; | ||
3350 | tp_features.light_status = 0; | ||
3351 | } else { | ||
3352 | rc = (tp_features.light)? 0 : 1; | ||
3353 | } | ||
3354 | return rc; | ||
3355 | } | ||
3356 | |||
3357 | static void light_exit(void) | ||
3358 | { | ||
3359 | led_classdev_unregister(&tpacpi_led_thinklight.led_classdev); | ||
3360 | if (work_pending(&tpacpi_led_thinklight.work)) | ||
3361 | flush_workqueue(tpacpi_wq); | ||
3134 | } | 3362 | } |
3135 | 3363 | ||
3136 | static int light_read(char *p) | 3364 | static int light_read(char *p) |
3137 | { | 3365 | { |
3138 | int len = 0; | 3366 | int len = 0; |
3139 | int status = 0; | 3367 | int status; |
3140 | 3368 | ||
3141 | if (!tp_features.light) { | 3369 | if (!tp_features.light) { |
3142 | len += sprintf(p + len, "status:\t\tnot supported\n"); | 3370 | len += sprintf(p + len, "status:\t\tnot supported\n"); |
@@ -3144,8 +3372,9 @@ static int light_read(char *p) | |||
3144 | len += sprintf(p + len, "status:\t\tunknown\n"); | 3372 | len += sprintf(p + len, "status:\t\tunknown\n"); |
3145 | len += sprintf(p + len, "commands:\ton, off\n"); | 3373 | len += sprintf(p + len, "commands:\ton, off\n"); |
3146 | } else { | 3374 | } else { |
3147 | if (!acpi_evalf(ec_handle, &status, "KBLT", "d")) | 3375 | status = light_get_status(); |
3148 | return -EIO; | 3376 | if (status < 0) |
3377 | return status; | ||
3149 | len += sprintf(p + len, "status:\t\t%s\n", onoff(status, 0)); | 3378 | len += sprintf(p + len, "status:\t\t%s\n", onoff(status, 0)); |
3150 | len += sprintf(p + len, "commands:\ton, off\n"); | 3379 | len += sprintf(p + len, "commands:\ton, off\n"); |
3151 | } | 3380 | } |
@@ -3155,37 +3384,29 @@ static int light_read(char *p) | |||
3155 | 3384 | ||
3156 | static int light_write(char *buf) | 3385 | static int light_write(char *buf) |
3157 | { | 3386 | { |
3158 | int cmos_cmd, lght_cmd; | ||
3159 | char *cmd; | 3387 | char *cmd; |
3160 | int success; | 3388 | int newstatus = 0; |
3161 | 3389 | ||
3162 | if (!tp_features.light) | 3390 | if (!tp_features.light) |
3163 | return -ENODEV; | 3391 | return -ENODEV; |
3164 | 3392 | ||
3165 | while ((cmd = next_cmd(&buf))) { | 3393 | while ((cmd = next_cmd(&buf))) { |
3166 | if (strlencmp(cmd, "on") == 0) { | 3394 | if (strlencmp(cmd, "on") == 0) { |
3167 | cmos_cmd = 0x0c; | 3395 | newstatus = 1; |
3168 | lght_cmd = 1; | ||
3169 | } else if (strlencmp(cmd, "off") == 0) { | 3396 | } else if (strlencmp(cmd, "off") == 0) { |
3170 | cmos_cmd = 0x0d; | 3397 | newstatus = 0; |
3171 | lght_cmd = 0; | ||
3172 | } else | 3398 | } else |
3173 | return -EINVAL; | 3399 | return -EINVAL; |
3174 | |||
3175 | success = cmos_handle ? | ||
3176 | acpi_evalf(cmos_handle, NULL, NULL, "vd", cmos_cmd) : | ||
3177 | acpi_evalf(lght_handle, NULL, NULL, "vd", lght_cmd); | ||
3178 | if (!success) | ||
3179 | return -EIO; | ||
3180 | } | 3400 | } |
3181 | 3401 | ||
3182 | return 0; | 3402 | return light_set_status(newstatus); |
3183 | } | 3403 | } |
3184 | 3404 | ||
3185 | static struct ibm_struct light_driver_data = { | 3405 | static struct ibm_struct light_driver_data = { |
3186 | .name = "light", | 3406 | .name = "light", |
3187 | .read = light_read, | 3407 | .read = light_read, |
3188 | .write = light_write, | 3408 | .write = light_write, |
3409 | .exit = light_exit, | ||
3189 | }; | 3410 | }; |
3190 | 3411 | ||
3191 | /************************************************************************* | 3412 | /************************************************************************* |
@@ -3583,6 +3804,12 @@ enum { /* For TPACPI_LED_OLD */ | |||
3583 | TPACPI_LED_EC_HLMS = 0x0e, /* EC reg to select led to command */ | 3804 | TPACPI_LED_EC_HLMS = 0x0e, /* EC reg to select led to command */ |
3584 | }; | 3805 | }; |
3585 | 3806 | ||
3807 | enum led_status_t { | ||
3808 | TPACPI_LED_OFF = 0, | ||
3809 | TPACPI_LED_ON, | ||
3810 | TPACPI_LED_BLINK, | ||
3811 | }; | ||
3812 | |||
3586 | static enum led_access_mode led_supported; | 3813 | static enum led_access_mode led_supported; |
3587 | 3814 | ||
3588 | TPACPI_HANDLE(led, ec, "SLED", /* 570 */ | 3815 | TPACPI_HANDLE(led, ec, "SLED", /* 570 */ |
@@ -3591,8 +3818,174 @@ TPACPI_HANDLE(led, ec, "SLED", /* 570 */ | |||
3591 | "LED", /* all others */ | 3818 | "LED", /* all others */ |
3592 | ); /* R30, R31 */ | 3819 | ); /* R30, R31 */ |
3593 | 3820 | ||
3821 | #define TPACPI_LED_NUMLEDS 8 | ||
3822 | static struct tpacpi_led_classdev *tpacpi_leds; | ||
3823 | static enum led_status_t tpacpi_led_state_cache[TPACPI_LED_NUMLEDS]; | ||
3824 | static const char const *tpacpi_led_names[TPACPI_LED_NUMLEDS] = { | ||
3825 | /* there's a limit of 19 chars + NULL before 2.6.26 */ | ||
3826 | "tpacpi::power", | ||
3827 | "tpacpi:orange:batt", | ||
3828 | "tpacpi:green:batt", | ||
3829 | "tpacpi::dock_active", | ||
3830 | "tpacpi::bay_active", | ||
3831 | "tpacpi::dock_batt", | ||
3832 | "tpacpi::unknown_led", | ||
3833 | "tpacpi::standby", | ||
3834 | }; | ||
3835 | |||
3836 | static int led_get_status(unsigned int led) | ||
3837 | { | ||
3838 | int status; | ||
3839 | enum led_status_t led_s; | ||
3840 | |||
3841 | switch (led_supported) { | ||
3842 | case TPACPI_LED_570: | ||
3843 | if (!acpi_evalf(ec_handle, | ||
3844 | &status, "GLED", "dd", 1 << led)) | ||
3845 | return -EIO; | ||
3846 | led_s = (status == 0)? | ||
3847 | TPACPI_LED_OFF : | ||
3848 | ((status == 1)? | ||
3849 | TPACPI_LED_ON : | ||
3850 | TPACPI_LED_BLINK); | ||
3851 | tpacpi_led_state_cache[led] = led_s; | ||
3852 | return led_s; | ||
3853 | default: | ||
3854 | return -ENXIO; | ||
3855 | } | ||
3856 | |||
3857 | /* not reached */ | ||
3858 | } | ||
3859 | |||
3860 | static int led_set_status(unsigned int led, enum led_status_t ledstatus) | ||
3861 | { | ||
3862 | /* off, on, blink. Index is led_status_t */ | ||
3863 | static const int const led_sled_arg1[] = { 0, 1, 3 }; | ||
3864 | static const int const led_exp_hlbl[] = { 0, 0, 1 }; /* led# * */ | ||
3865 | static const int const led_exp_hlcl[] = { 0, 1, 1 }; /* led# * */ | ||
3866 | static const int const led_led_arg1[] = { 0, 0x80, 0xc0 }; | ||
3867 | |||
3868 | int rc = 0; | ||
3869 | |||
3870 | switch (led_supported) { | ||
3871 | case TPACPI_LED_570: | ||
3872 | /* 570 */ | ||
3873 | led = 1 << led; | ||
3874 | if (!acpi_evalf(led_handle, NULL, NULL, "vdd", | ||
3875 | led, led_sled_arg1[ledstatus])) | ||
3876 | rc = -EIO; | ||
3877 | break; | ||
3878 | case TPACPI_LED_OLD: | ||
3879 | /* 600e/x, 770e, 770x, A21e, A2xm/p, T20-22, X20 */ | ||
3880 | led = 1 << led; | ||
3881 | rc = ec_write(TPACPI_LED_EC_HLMS, led); | ||
3882 | if (rc >= 0) | ||
3883 | rc = ec_write(TPACPI_LED_EC_HLBL, | ||
3884 | led * led_exp_hlbl[ledstatus]); | ||
3885 | if (rc >= 0) | ||
3886 | rc = ec_write(TPACPI_LED_EC_HLCL, | ||
3887 | led * led_exp_hlcl[ledstatus]); | ||
3888 | break; | ||
3889 | case TPACPI_LED_NEW: | ||
3890 | /* all others */ | ||
3891 | if (!acpi_evalf(led_handle, NULL, NULL, "vdd", | ||
3892 | led, led_led_arg1[ledstatus])) | ||
3893 | rc = -EIO; | ||
3894 | break; | ||
3895 | default: | ||
3896 | rc = -ENXIO; | ||
3897 | } | ||
3898 | |||
3899 | if (!rc) | ||
3900 | tpacpi_led_state_cache[led] = ledstatus; | ||
3901 | |||
3902 | return rc; | ||
3903 | } | ||
3904 | |||
3905 | static void led_sysfs_set_status(unsigned int led, | ||
3906 | enum led_brightness brightness) | ||
3907 | { | ||
3908 | led_set_status(led, | ||
3909 | (brightness == LED_OFF) ? | ||
3910 | TPACPI_LED_OFF : | ||
3911 | (tpacpi_led_state_cache[led] == TPACPI_LED_BLINK) ? | ||
3912 | TPACPI_LED_BLINK : TPACPI_LED_ON); | ||
3913 | } | ||
3914 | |||
3915 | static void led_set_status_worker(struct work_struct *work) | ||
3916 | { | ||
3917 | struct tpacpi_led_classdev *data = | ||
3918 | container_of(work, struct tpacpi_led_classdev, work); | ||
3919 | |||
3920 | if (likely(tpacpi_lifecycle == TPACPI_LIFE_RUNNING)) | ||
3921 | led_sysfs_set_status(data->led, data->new_brightness); | ||
3922 | } | ||
3923 | |||
3924 | static void led_sysfs_set(struct led_classdev *led_cdev, | ||
3925 | enum led_brightness brightness) | ||
3926 | { | ||
3927 | struct tpacpi_led_classdev *data = container_of(led_cdev, | ||
3928 | struct tpacpi_led_classdev, led_classdev); | ||
3929 | |||
3930 | data->new_brightness = brightness; | ||
3931 | queue_work(tpacpi_wq, &data->work); | ||
3932 | } | ||
3933 | |||
3934 | static int led_sysfs_blink_set(struct led_classdev *led_cdev, | ||
3935 | unsigned long *delay_on, unsigned long *delay_off) | ||
3936 | { | ||
3937 | struct tpacpi_led_classdev *data = container_of(led_cdev, | ||
3938 | struct tpacpi_led_classdev, led_classdev); | ||
3939 | |||
3940 | /* Can we choose the flash rate? */ | ||
3941 | if (*delay_on == 0 && *delay_off == 0) { | ||
3942 | /* yes. set them to the hardware blink rate (1 Hz) */ | ||
3943 | *delay_on = 500; /* ms */ | ||
3944 | *delay_off = 500; /* ms */ | ||
3945 | } else if ((*delay_on != 500) || (*delay_off != 500)) | ||
3946 | return -EINVAL; | ||
3947 | |||
3948 | data->new_brightness = TPACPI_LED_BLINK; | ||
3949 | queue_work(tpacpi_wq, &data->work); | ||
3950 | |||
3951 | return 0; | ||
3952 | } | ||
3953 | |||
3954 | static enum led_brightness led_sysfs_get(struct led_classdev *led_cdev) | ||
3955 | { | ||
3956 | int rc; | ||
3957 | |||
3958 | struct tpacpi_led_classdev *data = container_of(led_cdev, | ||
3959 | struct tpacpi_led_classdev, led_classdev); | ||
3960 | |||
3961 | rc = led_get_status(data->led); | ||
3962 | |||
3963 | if (rc == TPACPI_LED_OFF || rc < 0) | ||
3964 | rc = LED_OFF; /* no error handling in led class :( */ | ||
3965 | else | ||
3966 | rc = LED_FULL; | ||
3967 | |||
3968 | return rc; | ||
3969 | } | ||
3970 | |||
3971 | static void led_exit(void) | ||
3972 | { | ||
3973 | unsigned int i; | ||
3974 | |||
3975 | for (i = 0; i < TPACPI_LED_NUMLEDS; i++) { | ||
3976 | if (tpacpi_leds[i].led_classdev.name) | ||
3977 | led_classdev_unregister(&tpacpi_leds[i].led_classdev); | ||
3978 | } | ||
3979 | |||
3980 | kfree(tpacpi_leds); | ||
3981 | tpacpi_leds = NULL; | ||
3982 | } | ||
3983 | |||
3594 | static int __init led_init(struct ibm_init_struct *iibm) | 3984 | static int __init led_init(struct ibm_init_struct *iibm) |
3595 | { | 3985 | { |
3986 | unsigned int i; | ||
3987 | int rc; | ||
3988 | |||
3596 | vdbg_printk(TPACPI_DBG_INIT, "initializing LED subdriver\n"); | 3989 | vdbg_printk(TPACPI_DBG_INIT, "initializing LED subdriver\n"); |
3597 | 3990 | ||
3598 | TPACPI_ACPIHANDLE_INIT(led); | 3991 | TPACPI_ACPIHANDLE_INIT(led); |
@@ -3613,10 +4006,41 @@ static int __init led_init(struct ibm_init_struct *iibm) | |||
3613 | vdbg_printk(TPACPI_DBG_INIT, "LED commands are %s, mode %d\n", | 4006 | vdbg_printk(TPACPI_DBG_INIT, "LED commands are %s, mode %d\n", |
3614 | str_supported(led_supported), led_supported); | 4007 | str_supported(led_supported), led_supported); |
3615 | 4008 | ||
4009 | tpacpi_leds = kzalloc(sizeof(*tpacpi_leds) * TPACPI_LED_NUMLEDS, | ||
4010 | GFP_KERNEL); | ||
4011 | if (!tpacpi_leds) { | ||
4012 | printk(TPACPI_ERR "Out of memory for LED data\n"); | ||
4013 | return -ENOMEM; | ||
4014 | } | ||
4015 | |||
4016 | for (i = 0; i < TPACPI_LED_NUMLEDS; i++) { | ||
4017 | tpacpi_leds[i].led = i; | ||
4018 | |||
4019 | tpacpi_leds[i].led_classdev.brightness_set = &led_sysfs_set; | ||
4020 | tpacpi_leds[i].led_classdev.blink_set = &led_sysfs_blink_set; | ||
4021 | if (led_supported == TPACPI_LED_570) | ||
4022 | tpacpi_leds[i].led_classdev.brightness_get = | ||
4023 | &led_sysfs_get; | ||
4024 | |||
4025 | tpacpi_leds[i].led_classdev.name = tpacpi_led_names[i]; | ||
4026 | |||
4027 | INIT_WORK(&tpacpi_leds[i].work, led_set_status_worker); | ||
4028 | |||
4029 | rc = led_classdev_register(&tpacpi_pdev->dev, | ||
4030 | &tpacpi_leds[i].led_classdev); | ||
4031 | if (rc < 0) { | ||
4032 | tpacpi_leds[i].led_classdev.name = NULL; | ||
4033 | led_exit(); | ||
4034 | return rc; | ||
4035 | } | ||
4036 | } | ||
4037 | |||
3616 | return (led_supported != TPACPI_LED_NONE)? 0 : 1; | 4038 | return (led_supported != TPACPI_LED_NONE)? 0 : 1; |
3617 | } | 4039 | } |
3618 | 4040 | ||
3619 | #define led_status(s) ((s) == 0 ? "off" : ((s) == 1 ? "on" : "blinking")) | 4041 | #define str_led_status(s) \ |
4042 | ((s) == TPACPI_LED_OFF ? "off" : \ | ||
4043 | ((s) == TPACPI_LED_ON ? "on" : "blinking")) | ||
3620 | 4044 | ||
3621 | static int led_read(char *p) | 4045 | static int led_read(char *p) |
3622 | { | 4046 | { |
@@ -3632,11 +4056,11 @@ static int led_read(char *p) | |||
3632 | /* 570 */ | 4056 | /* 570 */ |
3633 | int i, status; | 4057 | int i, status; |
3634 | for (i = 0; i < 8; i++) { | 4058 | for (i = 0; i < 8; i++) { |
3635 | if (!acpi_evalf(ec_handle, | 4059 | status = led_get_status(i); |
3636 | &status, "GLED", "dd", 1 << i)) | 4060 | if (status < 0) |
3637 | return -EIO; | 4061 | return -EIO; |
3638 | len += sprintf(p + len, "%d:\t\t%s\n", | 4062 | len += sprintf(p + len, "%d:\t\t%s\n", |
3639 | i, led_status(status)); | 4063 | i, str_led_status(status)); |
3640 | } | 4064 | } |
3641 | } | 4065 | } |
3642 | 4066 | ||
@@ -3646,16 +4070,11 @@ static int led_read(char *p) | |||
3646 | return len; | 4070 | return len; |
3647 | } | 4071 | } |
3648 | 4072 | ||
3649 | /* off, on, blink */ | ||
3650 | static const int led_sled_arg1[] = { 0, 1, 3 }; | ||
3651 | static const int led_exp_hlbl[] = { 0, 0, 1 }; /* led# * */ | ||
3652 | static const int led_exp_hlcl[] = { 0, 1, 1 }; /* led# * */ | ||
3653 | static const int led_led_arg1[] = { 0, 0x80, 0xc0 }; | ||
3654 | |||
3655 | static int led_write(char *buf) | 4073 | static int led_write(char *buf) |
3656 | { | 4074 | { |
3657 | char *cmd; | 4075 | char *cmd; |
3658 | int led, ind, ret; | 4076 | int led, rc; |
4077 | enum led_status_t s; | ||
3659 | 4078 | ||
3660 | if (!led_supported) | 4079 | if (!led_supported) |
3661 | return -ENODEV; | 4080 | return -ENODEV; |
@@ -3665,38 +4084,18 @@ static int led_write(char *buf) | |||
3665 | return -EINVAL; | 4084 | return -EINVAL; |
3666 | 4085 | ||
3667 | if (strstr(cmd, "off")) { | 4086 | if (strstr(cmd, "off")) { |
3668 | ind = 0; | 4087 | s = TPACPI_LED_OFF; |
3669 | } else if (strstr(cmd, "on")) { | 4088 | } else if (strstr(cmd, "on")) { |
3670 | ind = 1; | 4089 | s = TPACPI_LED_ON; |
3671 | } else if (strstr(cmd, "blink")) { | 4090 | } else if (strstr(cmd, "blink")) { |
3672 | ind = 2; | 4091 | s = TPACPI_LED_BLINK; |
3673 | } else | ||
3674 | return -EINVAL; | ||
3675 | |||
3676 | if (led_supported == TPACPI_LED_570) { | ||
3677 | /* 570 */ | ||
3678 | led = 1 << led; | ||
3679 | if (!acpi_evalf(led_handle, NULL, NULL, "vdd", | ||
3680 | led, led_sled_arg1[ind])) | ||
3681 | return -EIO; | ||
3682 | } else if (led_supported == TPACPI_LED_OLD) { | ||
3683 | /* 600e/x, 770e, 770x, A21e, A2xm/p, T20-22, X20 */ | ||
3684 | led = 1 << led; | ||
3685 | ret = ec_write(TPACPI_LED_EC_HLMS, led); | ||
3686 | if (ret >= 0) | ||
3687 | ret = ec_write(TPACPI_LED_EC_HLBL, | ||
3688 | led * led_exp_hlbl[ind]); | ||
3689 | if (ret >= 0) | ||
3690 | ret = ec_write(TPACPI_LED_EC_HLCL, | ||
3691 | led * led_exp_hlcl[ind]); | ||
3692 | if (ret < 0) | ||
3693 | return ret; | ||
3694 | } else { | 4092 | } else { |
3695 | /* all others */ | 4093 | return -EINVAL; |
3696 | if (!acpi_evalf(led_handle, NULL, NULL, "vdd", | ||
3697 | led, led_led_arg1[ind])) | ||
3698 | return -EIO; | ||
3699 | } | 4094 | } |
4095 | |||
4096 | rc = led_set_status(led, s); | ||
4097 | if (rc < 0) | ||
4098 | return rc; | ||
3700 | } | 4099 | } |
3701 | 4100 | ||
3702 | return 0; | 4101 | return 0; |
@@ -3706,6 +4105,7 @@ static struct ibm_struct led_driver_data = { | |||
3706 | .name = "led", | 4105 | .name = "led", |
3707 | .read = led_read, | 4106 | .read = led_read, |
3708 | .write = led_write, | 4107 | .write = led_write, |
4108 | .exit = led_exit, | ||
3709 | }; | 4109 | }; |
3710 | 4110 | ||
3711 | /************************************************************************* | 4111 | /************************************************************************* |
@@ -4170,8 +4570,16 @@ static struct ibm_struct ecdump_driver_data = { | |||
4170 | 4570 | ||
4171 | #define TPACPI_BACKLIGHT_DEV_NAME "thinkpad_screen" | 4571 | #define TPACPI_BACKLIGHT_DEV_NAME "thinkpad_screen" |
4172 | 4572 | ||
4573 | enum { | ||
4574 | TP_EC_BACKLIGHT = 0x31, | ||
4575 | |||
4576 | /* TP_EC_BACKLIGHT bitmasks */ | ||
4577 | TP_EC_BACKLIGHT_LVLMSK = 0x1F, | ||
4578 | TP_EC_BACKLIGHT_CMDMSK = 0xE0, | ||
4579 | TP_EC_BACKLIGHT_MAPSW = 0x20, | ||
4580 | }; | ||
4581 | |||
4173 | static struct backlight_device *ibm_backlight_device; | 4582 | static struct backlight_device *ibm_backlight_device; |
4174 | static int brightness_offset = 0x31; | ||
4175 | static int brightness_mode; | 4583 | static int brightness_mode; |
4176 | static unsigned int brightness_enable = 2; /* 2 = auto, 0 = no, 1 = yes */ | 4584 | static unsigned int brightness_enable = 2; /* 2 = auto, 0 = no, 1 = yes */ |
4177 | 4585 | ||
@@ -4180,16 +4588,24 @@ static struct mutex brightness_mutex; | |||
4180 | /* | 4588 | /* |
4181 | * ThinkPads can read brightness from two places: EC 0x31, or | 4589 | * ThinkPads can read brightness from two places: EC 0x31, or |
4182 | * CMOS NVRAM byte 0x5E, bits 0-3. | 4590 | * CMOS NVRAM byte 0x5E, bits 0-3. |
4591 | * | ||
4592 | * EC 0x31 has the following layout | ||
4593 | * Bit 7: unknown function | ||
4594 | * Bit 6: unknown function | ||
4595 | * Bit 5: Z: honour scale changes, NZ: ignore scale changes | ||
4596 | * Bit 4: must be set to zero to avoid problems | ||
4597 | * Bit 3-0: backlight brightness level | ||
4598 | * | ||
4599 | * brightness_get_raw returns status data in the EC 0x31 layout | ||
4183 | */ | 4600 | */ |
4184 | static int brightness_get(struct backlight_device *bd) | 4601 | static int brightness_get_raw(int *status) |
4185 | { | 4602 | { |
4186 | u8 lec = 0, lcmos = 0, level = 0; | 4603 | u8 lec = 0, lcmos = 0, level = 0; |
4187 | 4604 | ||
4188 | if (brightness_mode & 1) { | 4605 | if (brightness_mode & 1) { |
4189 | if (!acpi_ec_read(brightness_offset, &lec)) | 4606 | if (!acpi_ec_read(TP_EC_BACKLIGHT, &lec)) |
4190 | return -EIO; | 4607 | return -EIO; |
4191 | lec &= (tp_features.bright_16levels)? 0x0f : 0x07; | 4608 | level = lec & TP_EC_BACKLIGHT_LVLMSK; |
4192 | level = lec; | ||
4193 | }; | 4609 | }; |
4194 | if (brightness_mode & 2) { | 4610 | if (brightness_mode & 2) { |
4195 | lcmos = (nvram_read_byte(TP_NVRAM_ADDR_BRIGHTNESS) | 4611 | lcmos = (nvram_read_byte(TP_NVRAM_ADDR_BRIGHTNESS) |
@@ -4199,16 +4615,27 @@ static int brightness_get(struct backlight_device *bd) | |||
4199 | level = lcmos; | 4615 | level = lcmos; |
4200 | } | 4616 | } |
4201 | 4617 | ||
4202 | if (brightness_mode == 3 && lec != lcmos) { | 4618 | if (brightness_mode == 3) { |
4203 | printk(TPACPI_ERR | 4619 | *status = lec; /* Prefer EC, CMOS is just a backing store */ |
4204 | "CMOS NVRAM (%u) and EC (%u) do not agree " | 4620 | lec &= TP_EC_BACKLIGHT_LVLMSK; |
4205 | "on display brightness level\n", | 4621 | if (lec == lcmos) |
4206 | (unsigned int) lcmos, | 4622 | tp_warned.bright_cmos_ec_unsync = 0; |
4207 | (unsigned int) lec); | 4623 | else { |
4208 | return -EIO; | 4624 | if (!tp_warned.bright_cmos_ec_unsync) { |
4625 | printk(TPACPI_ERR | ||
4626 | "CMOS NVRAM (%u) and EC (%u) do not " | ||
4627 | "agree on display brightness level\n", | ||
4628 | (unsigned int) lcmos, | ||
4629 | (unsigned int) lec); | ||
4630 | tp_warned.bright_cmos_ec_unsync = 1; | ||
4631 | } | ||
4632 | return -EIO; | ||
4633 | } | ||
4634 | } else { | ||
4635 | *status = level; | ||
4209 | } | 4636 | } |
4210 | 4637 | ||
4211 | return level; | 4638 | return 0; |
4212 | } | 4639 | } |
4213 | 4640 | ||
4214 | /* May return EINTR which can always be mapped to ERESTARTSYS */ | 4641 | /* May return EINTR which can always be mapped to ERESTARTSYS */ |
@@ -4216,19 +4643,22 @@ static int brightness_set(int value) | |||
4216 | { | 4643 | { |
4217 | int cmos_cmd, inc, i, res; | 4644 | int cmos_cmd, inc, i, res; |
4218 | int current_value; | 4645 | int current_value; |
4646 | int command_bits; | ||
4219 | 4647 | ||
4220 | if (value > ((tp_features.bright_16levels)? 15 : 7)) | 4648 | if (value > ((tp_features.bright_16levels)? 15 : 7) || |
4649 | value < 0) | ||
4221 | return -EINVAL; | 4650 | return -EINVAL; |
4222 | 4651 | ||
4223 | res = mutex_lock_interruptible(&brightness_mutex); | 4652 | res = mutex_lock_interruptible(&brightness_mutex); |
4224 | if (res < 0) | 4653 | if (res < 0) |
4225 | return res; | 4654 | return res; |
4226 | 4655 | ||
4227 | current_value = brightness_get(NULL); | 4656 | res = brightness_get_raw(¤t_value); |
4228 | if (current_value < 0) { | 4657 | if (res < 0) |
4229 | res = current_value; | ||
4230 | goto errout; | 4658 | goto errout; |
4231 | } | 4659 | |
4660 | command_bits = current_value & TP_EC_BACKLIGHT_CMDMSK; | ||
4661 | current_value &= TP_EC_BACKLIGHT_LVLMSK; | ||
4232 | 4662 | ||
4233 | cmos_cmd = value > current_value ? | 4663 | cmos_cmd = value > current_value ? |
4234 | TP_CMOS_BRIGHTNESS_UP : | 4664 | TP_CMOS_BRIGHTNESS_UP : |
@@ -4243,7 +4673,8 @@ static int brightness_set(int value) | |||
4243 | goto errout; | 4673 | goto errout; |
4244 | } | 4674 | } |
4245 | if ((brightness_mode & 1) && | 4675 | if ((brightness_mode & 1) && |
4246 | !acpi_ec_write(brightness_offset, i + inc)) { | 4676 | !acpi_ec_write(TP_EC_BACKLIGHT, |
4677 | (i + inc) | command_bits)) { | ||
4247 | res = -EIO; | 4678 | res = -EIO; |
4248 | goto errout;; | 4679 | goto errout;; |
4249 | } | 4680 | } |
@@ -4266,106 +4697,23 @@ static int brightness_update_status(struct backlight_device *bd) | |||
4266 | bd->props.brightness : 0); | 4697 | bd->props.brightness : 0); |
4267 | } | 4698 | } |
4268 | 4699 | ||
4269 | static struct backlight_ops ibm_backlight_data = { | 4700 | static int brightness_get(struct backlight_device *bd) |
4270 | .get_brightness = brightness_get, | ||
4271 | .update_status = brightness_update_status, | ||
4272 | }; | ||
4273 | |||
4274 | /* --------------------------------------------------------------------- */ | ||
4275 | |||
4276 | static int __init tpacpi_query_bcll_levels(acpi_handle handle) | ||
4277 | { | ||
4278 | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; | ||
4279 | union acpi_object *obj; | ||
4280 | int rc; | ||
4281 | |||
4282 | if (ACPI_SUCCESS(acpi_evaluate_object(handle, NULL, NULL, &buffer))) { | ||
4283 | obj = (union acpi_object *)buffer.pointer; | ||
4284 | if (!obj || (obj->type != ACPI_TYPE_PACKAGE)) { | ||
4285 | printk(TPACPI_ERR "Unknown BCLL data, " | ||
4286 | "please report this to %s\n", TPACPI_MAIL); | ||
4287 | rc = 0; | ||
4288 | } else { | ||
4289 | rc = obj->package.count; | ||
4290 | } | ||
4291 | } else { | ||
4292 | return 0; | ||
4293 | } | ||
4294 | |||
4295 | kfree(buffer.pointer); | ||
4296 | return rc; | ||
4297 | } | ||
4298 | |||
4299 | static acpi_status __init brightness_find_bcll(acpi_handle handle, u32 lvl, | ||
4300 | void *context, void **rv) | ||
4301 | { | ||
4302 | char name[ACPI_PATH_SEGMENT_LENGTH]; | ||
4303 | struct acpi_buffer buffer = { sizeof(name), &name }; | ||
4304 | |||
4305 | if (ACPI_SUCCESS(acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer)) && | ||
4306 | !strncmp("BCLL", name, sizeof(name) - 1)) { | ||
4307 | if (tpacpi_query_bcll_levels(handle) == 16) { | ||
4308 | *rv = handle; | ||
4309 | return AE_CTRL_TERMINATE; | ||
4310 | } else { | ||
4311 | return AE_OK; | ||
4312 | } | ||
4313 | } else { | ||
4314 | return AE_OK; | ||
4315 | } | ||
4316 | } | ||
4317 | |||
4318 | static int __init brightness_check_levels(void) | ||
4319 | { | 4701 | { |
4320 | int status; | 4702 | int status, res; |
4321 | void *found_node = NULL; | ||
4322 | 4703 | ||
4323 | if (!vid_handle) { | 4704 | res = brightness_get_raw(&status); |
4324 | TPACPI_ACPIHANDLE_INIT(vid); | 4705 | if (res < 0) |
4325 | } | 4706 | return 0; /* FIXME: teach backlight about error handling */ |
4326 | if (!vid_handle) | ||
4327 | return 0; | ||
4328 | |||
4329 | /* Search for a BCLL package with 16 levels */ | ||
4330 | status = acpi_walk_namespace(ACPI_TYPE_PACKAGE, vid_handle, 3, | ||
4331 | brightness_find_bcll, NULL, | ||
4332 | &found_node); | ||
4333 | |||
4334 | return (ACPI_SUCCESS(status) && found_node != NULL); | ||
4335 | } | ||
4336 | |||
4337 | static acpi_status __init brightness_find_bcl(acpi_handle handle, u32 lvl, | ||
4338 | void *context, void **rv) | ||
4339 | { | ||
4340 | char name[ACPI_PATH_SEGMENT_LENGTH]; | ||
4341 | struct acpi_buffer buffer = { sizeof(name), &name }; | ||
4342 | 4707 | ||
4343 | if (ACPI_SUCCESS(acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer)) && | 4708 | return status & TP_EC_BACKLIGHT_LVLMSK; |
4344 | !strncmp("_BCL", name, sizeof(name) - 1)) { | ||
4345 | *rv = handle; | ||
4346 | return AE_CTRL_TERMINATE; | ||
4347 | } else { | ||
4348 | return AE_OK; | ||
4349 | } | ||
4350 | } | 4709 | } |
4351 | 4710 | ||
4352 | static int __init brightness_check_std_acpi_support(void) | 4711 | static struct backlight_ops ibm_backlight_data = { |
4353 | { | 4712 | .get_brightness = brightness_get, |
4354 | int status; | 4713 | .update_status = brightness_update_status, |
4355 | void *found_node = NULL; | 4714 | }; |
4356 | |||
4357 | if (!vid_handle) { | ||
4358 | TPACPI_ACPIHANDLE_INIT(vid); | ||
4359 | } | ||
4360 | if (!vid_handle) | ||
4361 | return 0; | ||
4362 | |||
4363 | /* Search for a _BCL method, but don't execute it */ | ||
4364 | status = acpi_walk_namespace(ACPI_TYPE_METHOD, vid_handle, 3, | ||
4365 | brightness_find_bcl, NULL, &found_node); | ||
4366 | 4715 | ||
4367 | return (ACPI_SUCCESS(status) && found_node != NULL); | 4716 | /* --------------------------------------------------------------------- */ |
4368 | } | ||
4369 | 4717 | ||
4370 | static int __init brightness_init(struct ibm_init_struct *iibm) | 4718 | static int __init brightness_init(struct ibm_init_struct *iibm) |
4371 | { | 4719 | { |
@@ -4375,13 +4723,19 @@ static int __init brightness_init(struct ibm_init_struct *iibm) | |||
4375 | 4723 | ||
4376 | mutex_init(&brightness_mutex); | 4724 | mutex_init(&brightness_mutex); |
4377 | 4725 | ||
4378 | if (!brightness_enable) { | 4726 | /* |
4379 | dbg_printk(TPACPI_DBG_INIT, | 4727 | * We always attempt to detect acpi support, so as to switch |
4380 | "brightness support disabled by " | 4728 | * Lenovo Vista BIOS to ACPI brightness mode even if we are not |
4381 | "module parameter\n"); | 4729 | * going to publish a backlight interface |
4382 | return 1; | 4730 | */ |
4383 | } else if (brightness_enable > 1) { | 4731 | b = tpacpi_check_std_acpi_brightness_support(); |
4384 | if (brightness_check_std_acpi_support()) { | 4732 | if (b > 0) { |
4733 | if (thinkpad_id.vendor == PCI_VENDOR_ID_LENOVO) { | ||
4734 | printk(TPACPI_NOTICE | ||
4735 | "Lenovo BIOS switched to ACPI backlight " | ||
4736 | "control mode\n"); | ||
4737 | } | ||
4738 | if (brightness_enable > 1) { | ||
4385 | printk(TPACPI_NOTICE | 4739 | printk(TPACPI_NOTICE |
4386 | "standard ACPI backlight interface " | 4740 | "standard ACPI backlight interface " |
4387 | "available, not loading native one...\n"); | 4741 | "available, not loading native one...\n"); |
@@ -4389,6 +4743,22 @@ static int __init brightness_init(struct ibm_init_struct *iibm) | |||
4389 | } | 4743 | } |
4390 | } | 4744 | } |
4391 | 4745 | ||
4746 | if (!brightness_enable) { | ||
4747 | dbg_printk(TPACPI_DBG_INIT, | ||
4748 | "brightness support disabled by " | ||
4749 | "module parameter\n"); | ||
4750 | return 1; | ||
4751 | } | ||
4752 | |||
4753 | if (b > 16) { | ||
4754 | printk(TPACPI_ERR | ||
4755 | "Unsupported brightness interface, " | ||
4756 | "please contact %s\n", TPACPI_MAIL); | ||
4757 | return 1; | ||
4758 | } | ||
4759 | if (b == 16) | ||
4760 | tp_features.bright_16levels = 1; | ||
4761 | |||
4392 | if (!brightness_mode) { | 4762 | if (!brightness_mode) { |
4393 | if (thinkpad_id.vendor == PCI_VENDOR_ID_LENOVO) | 4763 | if (thinkpad_id.vendor == PCI_VENDOR_ID_LENOVO) |
4394 | brightness_mode = 2; | 4764 | brightness_mode = 2; |
@@ -4402,12 +4772,7 @@ static int __init brightness_init(struct ibm_init_struct *iibm) | |||
4402 | if (brightness_mode > 3) | 4772 | if (brightness_mode > 3) |
4403 | return -EINVAL; | 4773 | return -EINVAL; |
4404 | 4774 | ||
4405 | tp_features.bright_16levels = | 4775 | if (brightness_get_raw(&b) < 0) |
4406 | thinkpad_id.vendor == PCI_VENDOR_ID_LENOVO && | ||
4407 | brightness_check_levels(); | ||
4408 | |||
4409 | b = brightness_get(NULL); | ||
4410 | if (b < 0) | ||
4411 | return 1; | 4776 | return 1; |
4412 | 4777 | ||
4413 | if (tp_features.bright_16levels) | 4778 | if (tp_features.bright_16levels) |
@@ -4425,7 +4790,7 @@ static int __init brightness_init(struct ibm_init_struct *iibm) | |||
4425 | 4790 | ||
4426 | ibm_backlight_device->props.max_brightness = | 4791 | ibm_backlight_device->props.max_brightness = |
4427 | (tp_features.bright_16levels)? 15 : 7; | 4792 | (tp_features.bright_16levels)? 15 : 7; |
4428 | ibm_backlight_device->props.brightness = b; | 4793 | ibm_backlight_device->props.brightness = b & TP_EC_BACKLIGHT_LVLMSK; |
4429 | backlight_update_status(ibm_backlight_device); | 4794 | backlight_update_status(ibm_backlight_device); |
4430 | 4795 | ||
4431 | return 0; | 4796 | return 0; |
@@ -5046,11 +5411,11 @@ static void fan_watchdog_reset(void) | |||
5046 | if (fan_watchdog_maxinterval > 0 && | 5411 | if (fan_watchdog_maxinterval > 0 && |
5047 | tpacpi_lifecycle != TPACPI_LIFE_EXITING) { | 5412 | tpacpi_lifecycle != TPACPI_LIFE_EXITING) { |
5048 | fan_watchdog_active = 1; | 5413 | fan_watchdog_active = 1; |
5049 | if (!schedule_delayed_work(&fan_watchdog_task, | 5414 | if (!queue_delayed_work(tpacpi_wq, &fan_watchdog_task, |
5050 | msecs_to_jiffies(fan_watchdog_maxinterval | 5415 | msecs_to_jiffies(fan_watchdog_maxinterval |
5051 | * 1000))) { | 5416 | * 1000))) { |
5052 | printk(TPACPI_ERR | 5417 | printk(TPACPI_ERR |
5053 | "failed to schedule the fan watchdog, " | 5418 | "failed to queue the fan watchdog, " |
5054 | "watchdog will not trigger\n"); | 5419 | "watchdog will not trigger\n"); |
5055 | } | 5420 | } |
5056 | } else | 5421 | } else |
@@ -5420,7 +5785,7 @@ static void fan_exit(void) | |||
5420 | &driver_attr_fan_watchdog); | 5785 | &driver_attr_fan_watchdog); |
5421 | 5786 | ||
5422 | cancel_delayed_work(&fan_watchdog_task); | 5787 | cancel_delayed_work(&fan_watchdog_task); |
5423 | flush_scheduled_work(); | 5788 | flush_workqueue(tpacpi_wq); |
5424 | } | 5789 | } |
5425 | 5790 | ||
5426 | static int fan_read(char *p) | 5791 | static int fan_read(char *p) |
@@ -5826,10 +6191,13 @@ static void __init get_thinkpad_model_data(struct thinkpad_id_data *tp) | |||
5826 | 6191 | ||
5827 | tp->model_str = kstrdup(dmi_get_system_info(DMI_PRODUCT_VERSION), | 6192 | tp->model_str = kstrdup(dmi_get_system_info(DMI_PRODUCT_VERSION), |
5828 | GFP_KERNEL); | 6193 | GFP_KERNEL); |
5829 | if (strnicmp(tp->model_str, "ThinkPad", 8) != 0) { | 6194 | if (tp->model_str && strnicmp(tp->model_str, "ThinkPad", 8) != 0) { |
5830 | kfree(tp->model_str); | 6195 | kfree(tp->model_str); |
5831 | tp->model_str = NULL; | 6196 | tp->model_str = NULL; |
5832 | } | 6197 | } |
6198 | |||
6199 | tp->nummodel_str = kstrdup(dmi_get_system_info(DMI_PRODUCT_NAME), | ||
6200 | GFP_KERNEL); | ||
5833 | } | 6201 | } |
5834 | 6202 | ||
5835 | static int __init probe_for_thinkpad(void) | 6203 | static int __init probe_for_thinkpad(void) |
@@ -6071,6 +6439,9 @@ static void thinkpad_acpi_module_exit(void) | |||
6071 | if (proc_dir) | 6439 | if (proc_dir) |
6072 | remove_proc_entry(TPACPI_PROC_DIR, acpi_root_dir); | 6440 | remove_proc_entry(TPACPI_PROC_DIR, acpi_root_dir); |
6073 | 6441 | ||
6442 | if (tpacpi_wq) | ||
6443 | destroy_workqueue(tpacpi_wq); | ||
6444 | |||
6074 | kfree(thinkpad_id.bios_version_str); | 6445 | kfree(thinkpad_id.bios_version_str); |
6075 | kfree(thinkpad_id.ec_version_str); | 6446 | kfree(thinkpad_id.ec_version_str); |
6076 | kfree(thinkpad_id.model_str); | 6447 | kfree(thinkpad_id.model_str); |
@@ -6101,6 +6472,12 @@ static int __init thinkpad_acpi_module_init(void) | |||
6101 | TPACPI_ACPIHANDLE_INIT(ecrd); | 6472 | TPACPI_ACPIHANDLE_INIT(ecrd); |
6102 | TPACPI_ACPIHANDLE_INIT(ecwr); | 6473 | TPACPI_ACPIHANDLE_INIT(ecwr); |
6103 | 6474 | ||
6475 | tpacpi_wq = create_singlethread_workqueue(TPACPI_WORKQUEUE_NAME); | ||
6476 | if (!tpacpi_wq) { | ||
6477 | thinkpad_acpi_module_exit(); | ||
6478 | return -ENOMEM; | ||
6479 | } | ||
6480 | |||
6104 | proc_dir = proc_mkdir(TPACPI_PROC_DIR, acpi_root_dir); | 6481 | proc_dir = proc_mkdir(TPACPI_PROC_DIR, acpi_root_dir); |
6105 | if (!proc_dir) { | 6482 | if (!proc_dir) { |
6106 | printk(TPACPI_ERR | 6483 | printk(TPACPI_ERR |
@@ -6223,6 +6600,8 @@ static int __init thinkpad_acpi_module_init(void) | |||
6223 | /* Please remove this in year 2009 */ | 6600 | /* Please remove this in year 2009 */ |
6224 | MODULE_ALIAS("ibm_acpi"); | 6601 | MODULE_ALIAS("ibm_acpi"); |
6225 | 6602 | ||
6603 | MODULE_ALIAS(TPACPI_DRVR_SHORTNAME); | ||
6604 | |||
6226 | /* | 6605 | /* |
6227 | * DMI matching for module autoloading | 6606 | * DMI matching for module autoloading |
6228 | * | 6607 | * |