diff options
Diffstat (limited to 'drivers/misc')
27 files changed, 11279 insertions, 3695 deletions
diff --git a/drivers/misc/Kconfig b/drivers/misc/Kconfig index f5ade1904aad..82af385460e4 100644 --- a/drivers/misc/Kconfig +++ b/drivers/misc/Kconfig | |||
@@ -426,9 +426,11 @@ config ENCLOSURE_SERVICES | |||
426 | 426 | ||
427 | config SGI_XP | 427 | config SGI_XP |
428 | tristate "Support communication between SGI SSIs" | 428 | tristate "Support communication between SGI SSIs" |
429 | depends on IA64_GENERIC || IA64_SGI_SN2 | 429 | depends on NET |
430 | depends on IA64_GENERIC || IA64_SGI_SN2 || IA64_SGI_UV || (X86_64 && SMP) | ||
430 | select IA64_UNCACHED_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2 | 431 | select IA64_UNCACHED_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2 |
431 | select GENERIC_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2 | 432 | select GENERIC_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2 |
433 | select SGI_GRU if IA64_GENERIC || IA64_SGI_UV || (X86_64 && SMP) | ||
432 | ---help--- | 434 | ---help--- |
433 | An SGI machine can be divided into multiple Single System | 435 | An SGI machine can be divided into multiple Single System |
434 | Images which act independently of each other and have | 436 | Images which act independently of each other and have |
@@ -450,4 +452,27 @@ config HP_ILO | |||
450 | To compile this driver as a module, choose M here: the | 452 | To compile this driver as a module, choose M here: the |
451 | module will be called hpilo. | 453 | module will be called hpilo. |
452 | 454 | ||
455 | config SGI_GRU | ||
456 | tristate "SGI GRU driver" | ||
457 | depends on (X86_64 || IA64_SGI_UV || IA64_GENERIC) && SMP | ||
458 | default n | ||
459 | select MMU_NOTIFIER | ||
460 | ---help--- | ||
461 | The GRU is a hardware resource located in the system chipset. The GRU | ||
462 | contains memory that can be mmapped into the user address space. This memory is | ||
463 | used to communicate with the GRU to perform functions such as load/store, | ||
464 | scatter/gather, bcopy, AMOs, etc. The GRU is directly accessed by user | ||
465 | instructions using user virtual addresses. GRU instructions (ex., bcopy) use | ||
466 | user virtual addresses for operands. | ||
467 | |||
468 | If you are not running on a SGI UV system, say N. | ||
469 | |||
470 | config SGI_GRU_DEBUG | ||
471 | bool "SGI GRU driver debug" | ||
472 | depends on SGI_GRU | ||
473 | default n | ||
474 | ---help--- | ||
475 | This option enables addition debugging code for the SGI GRU driver. If | ||
476 | you are unsure, say N. | ||
477 | |||
453 | endif # MISC_DEVICES | 478 | endif # MISC_DEVICES |
diff --git a/drivers/misc/Makefile b/drivers/misc/Makefile index f5e273420c09..c6c13f60b452 100644 --- a/drivers/misc/Makefile +++ b/drivers/misc/Makefile | |||
@@ -28,4 +28,5 @@ obj-$(CONFIG_INTEL_MENLOW) += intel_menlow.o | |||
28 | obj-$(CONFIG_ENCLOSURE_SERVICES) += enclosure.o | 28 | obj-$(CONFIG_ENCLOSURE_SERVICES) += enclosure.o |
29 | obj-$(CONFIG_KGDB_TESTS) += kgdbts.o | 29 | obj-$(CONFIG_KGDB_TESTS) += kgdbts.o |
30 | obj-$(CONFIG_SGI_XP) += sgi-xp/ | 30 | obj-$(CONFIG_SGI_XP) += sgi-xp/ |
31 | obj-$(CONFIG_SGI_GRU) += sgi-gru/ | ||
31 | obj-$(CONFIG_HP_ILO) += hpilo.o | 32 | obj-$(CONFIG_HP_ILO) += hpilo.o |
diff --git a/drivers/misc/sgi-gru/Makefile b/drivers/misc/sgi-gru/Makefile new file mode 100644 index 000000000000..d03597a521b0 --- /dev/null +++ b/drivers/misc/sgi-gru/Makefile | |||
@@ -0,0 +1,3 @@ | |||
1 | obj-$(CONFIG_SGI_GRU) := gru.o | ||
2 | gru-y := grufile.o grumain.o grufault.o grutlbpurge.o gruprocfs.o grukservices.o | ||
3 | |||
diff --git a/drivers/misc/sgi-gru/gru.h b/drivers/misc/sgi-gru/gru.h new file mode 100644 index 000000000000..40df7cb3f0a5 --- /dev/null +++ b/drivers/misc/sgi-gru/gru.h | |||
@@ -0,0 +1,67 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU Lesser General Public License as published by | ||
6 | * the Free Software Foundation; either version 2.1 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU Lesser General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU Lesser General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | */ | ||
18 | |||
19 | #ifndef __GRU_H__ | ||
20 | #define __GRU_H__ | ||
21 | |||
22 | /* | ||
23 | * GRU architectural definitions | ||
24 | */ | ||
25 | #define GRU_CACHE_LINE_BYTES 64 | ||
26 | #define GRU_HANDLE_STRIDE 256 | ||
27 | #define GRU_CB_BASE 0 | ||
28 | #define GRU_DS_BASE 0x20000 | ||
29 | |||
30 | /* | ||
31 | * Size used to map GRU GSeg | ||
32 | */ | ||
33 | #if defined CONFIG_IA64 | ||
34 | #define GRU_GSEG_PAGESIZE (256 * 1024UL) | ||
35 | #elif defined CONFIG_X86_64 | ||
36 | #define GRU_GSEG_PAGESIZE (256 * 1024UL) /* ZZZ 2MB ??? */ | ||
37 | #else | ||
38 | #error "Unsupported architecture" | ||
39 | #endif | ||
40 | |||
41 | /* | ||
42 | * Structure for obtaining GRU resource information | ||
43 | */ | ||
44 | struct gru_chiplet_info { | ||
45 | int node; | ||
46 | int chiplet; | ||
47 | int blade; | ||
48 | int total_dsr_bytes; | ||
49 | int total_cbr; | ||
50 | int total_user_dsr_bytes; | ||
51 | int total_user_cbr; | ||
52 | int free_user_dsr_bytes; | ||
53 | int free_user_cbr; | ||
54 | }; | ||
55 | |||
56 | /* Flags for GRU options on the gru_create_context() call */ | ||
57 | /* Select one of the follow 4 options to specify how TLB misses are handled */ | ||
58 | #define GRU_OPT_MISS_DEFAULT 0x0000 /* Use default mode */ | ||
59 | #define GRU_OPT_MISS_USER_POLL 0x0001 /* User will poll CB for faults */ | ||
60 | #define GRU_OPT_MISS_FMM_INTR 0x0002 /* Send interrupt to cpu to | ||
61 | handle fault */ | ||
62 | #define GRU_OPT_MISS_FMM_POLL 0x0003 /* Use system polling thread */ | ||
63 | #define GRU_OPT_MISS_MASK 0x0003 /* Mask for TLB MISS option */ | ||
64 | |||
65 | |||
66 | |||
67 | #endif /* __GRU_H__ */ | ||
diff --git a/drivers/misc/sgi-gru/gru_instructions.h b/drivers/misc/sgi-gru/gru_instructions.h new file mode 100644 index 000000000000..0dc36225c7c6 --- /dev/null +++ b/drivers/misc/sgi-gru/gru_instructions.h | |||
@@ -0,0 +1,669 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU Lesser General Public License as published by | ||
6 | * the Free Software Foundation; either version 2.1 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU Lesser General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU Lesser General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | */ | ||
18 | |||
19 | #ifndef __GRU_INSTRUCTIONS_H__ | ||
20 | #define __GRU_INSTRUCTIONS_H__ | ||
21 | |||
22 | #define gru_flush_cache_hook(p) | ||
23 | #define gru_emulator_wait_hook(p, w) | ||
24 | |||
25 | /* | ||
26 | * Architecture dependent functions | ||
27 | */ | ||
28 | |||
29 | #if defined CONFIG_IA64 | ||
30 | #include <linux/compiler.h> | ||
31 | #include <asm/intrinsics.h> | ||
32 | #define __flush_cache(p) ia64_fc(p) | ||
33 | /* Use volatile on IA64 to ensure ordering via st4.rel */ | ||
34 | #define gru_ordered_store_int(p,v) \ | ||
35 | do { \ | ||
36 | barrier(); \ | ||
37 | *((volatile int *)(p)) = v; /* force st.rel */ \ | ||
38 | } while (0) | ||
39 | #elif defined CONFIG_X86_64 | ||
40 | #define __flush_cache(p) clflush(p) | ||
41 | #define gru_ordered_store_int(p,v) \ | ||
42 | do { \ | ||
43 | barrier(); \ | ||
44 | *(int *)p = v; \ | ||
45 | } while (0) | ||
46 | #else | ||
47 | #error "Unsupported architecture" | ||
48 | #endif | ||
49 | |||
50 | /* | ||
51 | * Control block status and exception codes | ||
52 | */ | ||
53 | #define CBS_IDLE 0 | ||
54 | #define CBS_EXCEPTION 1 | ||
55 | #define CBS_ACTIVE 2 | ||
56 | #define CBS_CALL_OS 3 | ||
57 | |||
58 | /* CB substatus bitmasks */ | ||
59 | #define CBSS_MSG_QUEUE_MASK 7 | ||
60 | #define CBSS_IMPLICIT_ABORT_ACTIVE_MASK 8 | ||
61 | |||
62 | /* CB substatus message queue values (low 3 bits of substatus) */ | ||
63 | #define CBSS_NO_ERROR 0 | ||
64 | #define CBSS_LB_OVERFLOWED 1 | ||
65 | #define CBSS_QLIMIT_REACHED 2 | ||
66 | #define CBSS_PAGE_OVERFLOW 3 | ||
67 | #define CBSS_AMO_NACKED 4 | ||
68 | #define CBSS_PUT_NACKED 5 | ||
69 | |||
70 | /* | ||
71 | * Structure used to fetch exception detail for CBs that terminate with | ||
72 | * CBS_EXCEPTION | ||
73 | */ | ||
74 | struct control_block_extended_exc_detail { | ||
75 | unsigned long cb; | ||
76 | int opc; | ||
77 | int ecause; | ||
78 | int exopc; | ||
79 | long exceptdet0; | ||
80 | int exceptdet1; | ||
81 | }; | ||
82 | |||
83 | /* | ||
84 | * Instruction formats | ||
85 | */ | ||
86 | |||
87 | /* | ||
88 | * Generic instruction format. | ||
89 | * This definition has precise bit field definitions. | ||
90 | */ | ||
91 | struct gru_instruction_bits { | ||
92 | /* DW 0 - low */ | ||
93 | unsigned int icmd: 1; | ||
94 | unsigned char ima: 3; /* CB_DelRep, unmapped mode */ | ||
95 | unsigned char reserved0: 4; | ||
96 | unsigned int xtype: 3; | ||
97 | unsigned int iaa0: 2; | ||
98 | unsigned int iaa1: 2; | ||
99 | unsigned char reserved1: 1; | ||
100 | unsigned char opc: 8; /* opcode */ | ||
101 | unsigned char exopc: 8; /* extended opcode */ | ||
102 | /* DW 0 - high */ | ||
103 | unsigned int idef2: 22; /* TRi0 */ | ||
104 | unsigned char reserved2: 2; | ||
105 | unsigned char istatus: 2; | ||
106 | unsigned char isubstatus:4; | ||
107 | unsigned char reserved3: 2; | ||
108 | /* DW 1 */ | ||
109 | unsigned long idef4; /* 42 bits: TRi1, BufSize */ | ||
110 | /* DW 2-6 */ | ||
111 | unsigned long idef1; /* BAddr0 */ | ||
112 | unsigned long idef5; /* Nelem */ | ||
113 | unsigned long idef6; /* Stride, Operand1 */ | ||
114 | unsigned long idef3; /* BAddr1, Value, Operand2 */ | ||
115 | unsigned long reserved4; | ||
116 | /* DW 7 */ | ||
117 | unsigned long avalue; /* AValue */ | ||
118 | }; | ||
119 | |||
120 | /* | ||
121 | * Generic instruction with friendlier names. This format is used | ||
122 | * for inline instructions. | ||
123 | */ | ||
124 | struct gru_instruction { | ||
125 | /* DW 0 */ | ||
126 | unsigned int op32; /* icmd,xtype,iaa0,ima,opc */ | ||
127 | unsigned int tri0; | ||
128 | unsigned long tri1_bufsize; /* DW 1 */ | ||
129 | unsigned long baddr0; /* DW 2 */ | ||
130 | unsigned long nelem; /* DW 3 */ | ||
131 | unsigned long op1_stride; /* DW 4 */ | ||
132 | unsigned long op2_value_baddr1; /* DW 5 */ | ||
133 | unsigned long reserved0; /* DW 6 */ | ||
134 | unsigned long avalue; /* DW 7 */ | ||
135 | }; | ||
136 | |||
137 | /* Some shifts and masks for the low 32 bits of a GRU command */ | ||
138 | #define GRU_CB_ICMD_SHFT 0 | ||
139 | #define GRU_CB_ICMD_MASK 0x1 | ||
140 | #define GRU_CB_XTYPE_SHFT 8 | ||
141 | #define GRU_CB_XTYPE_MASK 0x7 | ||
142 | #define GRU_CB_IAA0_SHFT 11 | ||
143 | #define GRU_CB_IAA0_MASK 0x3 | ||
144 | #define GRU_CB_IAA1_SHFT 13 | ||
145 | #define GRU_CB_IAA1_MASK 0x3 | ||
146 | #define GRU_CB_IMA_SHFT 1 | ||
147 | #define GRU_CB_IMA_MASK 0x3 | ||
148 | #define GRU_CB_OPC_SHFT 16 | ||
149 | #define GRU_CB_OPC_MASK 0xff | ||
150 | #define GRU_CB_EXOPC_SHFT 24 | ||
151 | #define GRU_CB_EXOPC_MASK 0xff | ||
152 | |||
153 | /* GRU instruction opcodes (opc field) */ | ||
154 | #define OP_NOP 0x00 | ||
155 | #define OP_BCOPY 0x01 | ||
156 | #define OP_VLOAD 0x02 | ||
157 | #define OP_IVLOAD 0x03 | ||
158 | #define OP_VSTORE 0x04 | ||
159 | #define OP_IVSTORE 0x05 | ||
160 | #define OP_VSET 0x06 | ||
161 | #define OP_IVSET 0x07 | ||
162 | #define OP_MESQ 0x08 | ||
163 | #define OP_GAMXR 0x09 | ||
164 | #define OP_GAMIR 0x0a | ||
165 | #define OP_GAMIRR 0x0b | ||
166 | #define OP_GAMER 0x0c | ||
167 | #define OP_GAMERR 0x0d | ||
168 | #define OP_BSTORE 0x0e | ||
169 | #define OP_VFLUSH 0x0f | ||
170 | |||
171 | |||
172 | /* Extended opcodes values (exopc field) */ | ||
173 | |||
174 | /* GAMIR - AMOs with implicit operands */ | ||
175 | #define EOP_IR_FETCH 0x01 /* Plain fetch of memory */ | ||
176 | #define EOP_IR_CLR 0x02 /* Fetch and clear */ | ||
177 | #define EOP_IR_INC 0x05 /* Fetch and increment */ | ||
178 | #define EOP_IR_DEC 0x07 /* Fetch and decrement */ | ||
179 | #define EOP_IR_QCHK1 0x0d /* Queue check, 64 byte msg */ | ||
180 | #define EOP_IR_QCHK2 0x0e /* Queue check, 128 byte msg */ | ||
181 | |||
182 | /* GAMIRR - Registered AMOs with implicit operands */ | ||
183 | #define EOP_IRR_FETCH 0x01 /* Registered fetch of memory */ | ||
184 | #define EOP_IRR_CLR 0x02 /* Registered fetch and clear */ | ||
185 | #define EOP_IRR_INC 0x05 /* Registered fetch and increment */ | ||
186 | #define EOP_IRR_DEC 0x07 /* Registered fetch and decrement */ | ||
187 | #define EOP_IRR_DECZ 0x0f /* Registered fetch and decrement, update on zero*/ | ||
188 | |||
189 | /* GAMER - AMOs with explicit operands */ | ||
190 | #define EOP_ER_SWAP 0x00 /* Exchange argument and memory */ | ||
191 | #define EOP_ER_OR 0x01 /* Logical OR with memory */ | ||
192 | #define EOP_ER_AND 0x02 /* Logical AND with memory */ | ||
193 | #define EOP_ER_XOR 0x03 /* Logical XOR with memory */ | ||
194 | #define EOP_ER_ADD 0x04 /* Add value to memory */ | ||
195 | #define EOP_ER_CSWAP 0x08 /* Compare with operand2, write operand1 if match*/ | ||
196 | #define EOP_ER_CADD 0x0c /* Queue check, operand1*64 byte msg */ | ||
197 | |||
198 | /* GAMERR - Registered AMOs with explicit operands */ | ||
199 | #define EOP_ERR_SWAP 0x00 /* Exchange argument and memory */ | ||
200 | #define EOP_ERR_OR 0x01 /* Logical OR with memory */ | ||
201 | #define EOP_ERR_AND 0x02 /* Logical AND with memory */ | ||
202 | #define EOP_ERR_XOR 0x03 /* Logical XOR with memory */ | ||
203 | #define EOP_ERR_ADD 0x04 /* Add value to memory */ | ||
204 | #define EOP_ERR_CSWAP 0x08 /* Compare with operand2, write operand1 if match*/ | ||
205 | #define EOP_ERR_EPOLL 0x09 /* Poll for equality */ | ||
206 | #define EOP_ERR_NPOLL 0x0a /* Poll for inequality */ | ||
207 | |||
208 | /* GAMXR - SGI Arithmetic unit */ | ||
209 | #define EOP_XR_CSWAP 0x0b /* Masked compare exchange */ | ||
210 | |||
211 | |||
212 | /* Transfer types (xtype field) */ | ||
213 | #define XTYPE_B 0x0 /* byte */ | ||
214 | #define XTYPE_S 0x1 /* short (2-byte) */ | ||
215 | #define XTYPE_W 0x2 /* word (4-byte) */ | ||
216 | #define XTYPE_DW 0x3 /* doubleword (8-byte) */ | ||
217 | #define XTYPE_CL 0x6 /* cacheline (64-byte) */ | ||
218 | |||
219 | |||
220 | /* Instruction access attributes (iaa0, iaa1 fields) */ | ||
221 | #define IAA_RAM 0x0 /* normal cached RAM access */ | ||
222 | #define IAA_NCRAM 0x2 /* noncoherent RAM access */ | ||
223 | #define IAA_MMIO 0x1 /* noncoherent memory-mapped I/O space */ | ||
224 | #define IAA_REGISTER 0x3 /* memory-mapped registers, etc. */ | ||
225 | |||
226 | |||
227 | /* Instruction mode attributes (ima field) */ | ||
228 | #define IMA_MAPPED 0x0 /* Virtual mode */ | ||
229 | #define IMA_CB_DELAY 0x1 /* hold read responses until status changes */ | ||
230 | #define IMA_UNMAPPED 0x2 /* bypass the TLBs (OS only) */ | ||
231 | #define IMA_INTERRUPT 0x4 /* Interrupt when instruction completes */ | ||
232 | |||
233 | /* CBE ecause bits */ | ||
234 | #define CBE_CAUSE_RI (1 << 0) | ||
235 | #define CBE_CAUSE_INVALID_INSTRUCTION (1 << 1) | ||
236 | #define CBE_CAUSE_UNMAPPED_MODE_FORBIDDEN (1 << 2) | ||
237 | #define CBE_CAUSE_PE_CHECK_DATA_ERROR (1 << 3) | ||
238 | #define CBE_CAUSE_IAA_GAA_MISMATCH (1 << 4) | ||
239 | #define CBE_CAUSE_DATA_SEGMENT_LIMIT_EXCEPTION (1 << 5) | ||
240 | #define CBE_CAUSE_OS_FATAL_TLB_FAULT (1 << 6) | ||
241 | #define CBE_CAUSE_EXECUTION_HW_ERROR (1 << 7) | ||
242 | #define CBE_CAUSE_TLBHW_ERROR (1 << 8) | ||
243 | #define CBE_CAUSE_RA_REQUEST_TIMEOUT (1 << 9) | ||
244 | #define CBE_CAUSE_HA_REQUEST_TIMEOUT (1 << 10) | ||
245 | #define CBE_CAUSE_RA_RESPONSE_FATAL (1 << 11) | ||
246 | #define CBE_CAUSE_RA_RESPONSE_NON_FATAL (1 << 12) | ||
247 | #define CBE_CAUSE_HA_RESPONSE_FATAL (1 << 13) | ||
248 | #define CBE_CAUSE_HA_RESPONSE_NON_FATAL (1 << 14) | ||
249 | #define CBE_CAUSE_ADDRESS_SPACE_DECODE_ERROR (1 << 15) | ||
250 | #define CBE_CAUSE_RESPONSE_DATA_ERROR (1 << 16) | ||
251 | #define CBE_CAUSE_PROTOCOL_STATE_DATA_ERROR (1 << 17) | ||
252 | |||
253 | /* | ||
254 | * Exceptions are retried for the following cases. If any OTHER bits are set | ||
255 | * in ecause, the exception is not retryable. | ||
256 | */ | ||
257 | #define EXCEPTION_RETRY_BITS (CBE_CAUSE_RESPONSE_DATA_ERROR | \ | ||
258 | CBE_CAUSE_RA_REQUEST_TIMEOUT | \ | ||
259 | CBE_CAUSE_TLBHW_ERROR | \ | ||
260 | CBE_CAUSE_HA_REQUEST_TIMEOUT) | ||
261 | |||
262 | /* Message queue head structure */ | ||
263 | union gru_mesqhead { | ||
264 | unsigned long val; | ||
265 | struct { | ||
266 | unsigned int head; | ||
267 | unsigned int limit; | ||
268 | }; | ||
269 | }; | ||
270 | |||
271 | |||
272 | /* Generate the low word of a GRU instruction */ | ||
273 | static inline unsigned int | ||
274 | __opword(unsigned char opcode, unsigned char exopc, unsigned char xtype, | ||
275 | unsigned char iaa0, unsigned char iaa1, | ||
276 | unsigned char ima) | ||
277 | { | ||
278 | return (1 << GRU_CB_ICMD_SHFT) | | ||
279 | (iaa0 << GRU_CB_IAA0_SHFT) | | ||
280 | (iaa1 << GRU_CB_IAA1_SHFT) | | ||
281 | (ima << GRU_CB_IMA_SHFT) | | ||
282 | (xtype << GRU_CB_XTYPE_SHFT) | | ||
283 | (opcode << GRU_CB_OPC_SHFT) | | ||
284 | (exopc << GRU_CB_EXOPC_SHFT); | ||
285 | } | ||
286 | |||
287 | /* | ||
288 | * Architecture specific intrinsics | ||
289 | */ | ||
290 | static inline void gru_flush_cache(void *p) | ||
291 | { | ||
292 | __flush_cache(p); | ||
293 | } | ||
294 | |||
295 | /* | ||
296 | * Store the lower 32 bits of the command including the "start" bit. Then | ||
297 | * start the instruction executing. | ||
298 | */ | ||
299 | static inline void gru_start_instruction(struct gru_instruction *ins, int op32) | ||
300 | { | ||
301 | gru_ordered_store_int(ins, op32); | ||
302 | } | ||
303 | |||
304 | |||
305 | /* Convert "hints" to IMA */ | ||
306 | #define CB_IMA(h) ((h) | IMA_UNMAPPED) | ||
307 | |||
308 | /* Convert data segment cache line index into TRI0 / TRI1 value */ | ||
309 | #define GRU_DINDEX(i) ((i) * GRU_CACHE_LINE_BYTES) | ||
310 | |||
311 | /* Inline functions for GRU instructions. | ||
312 | * Note: | ||
313 | * - nelem and stride are in elements | ||
314 | * - tri0/tri1 is in bytes for the beginning of the data segment. | ||
315 | */ | ||
316 | static inline void gru_vload(void *cb, unsigned long mem_addr, | ||
317 | unsigned int tri0, unsigned char xtype, unsigned long nelem, | ||
318 | unsigned long stride, unsigned long hints) | ||
319 | { | ||
320 | struct gru_instruction *ins = (struct gru_instruction *)cb; | ||
321 | |||
322 | ins->baddr0 = (long)mem_addr; | ||
323 | ins->nelem = nelem; | ||
324 | ins->tri0 = tri0; | ||
325 | ins->op1_stride = stride; | ||
326 | gru_start_instruction(ins, __opword(OP_VLOAD, 0, xtype, IAA_RAM, 0, | ||
327 | CB_IMA(hints))); | ||
328 | } | ||
329 | |||
330 | static inline void gru_vstore(void *cb, unsigned long mem_addr, | ||
331 | unsigned int tri0, unsigned char xtype, unsigned long nelem, | ||
332 | unsigned long stride, unsigned long hints) | ||
333 | { | ||
334 | struct gru_instruction *ins = (void *)cb; | ||
335 | |||
336 | ins->baddr0 = (long)mem_addr; | ||
337 | ins->nelem = nelem; | ||
338 | ins->tri0 = tri0; | ||
339 | ins->op1_stride = stride; | ||
340 | gru_start_instruction(ins, __opword(OP_VSTORE, 0, xtype, IAA_RAM, 0, | ||
341 | CB_IMA(hints))); | ||
342 | } | ||
343 | |||
344 | static inline void gru_ivload(void *cb, unsigned long mem_addr, | ||
345 | unsigned int tri0, unsigned int tri1, unsigned char xtype, | ||
346 | unsigned long nelem, unsigned long hints) | ||
347 | { | ||
348 | struct gru_instruction *ins = (void *)cb; | ||
349 | |||
350 | ins->baddr0 = (long)mem_addr; | ||
351 | ins->nelem = nelem; | ||
352 | ins->tri0 = tri0; | ||
353 | ins->tri1_bufsize = tri1; | ||
354 | gru_start_instruction(ins, __opword(OP_IVLOAD, 0, xtype, IAA_RAM, 0, | ||
355 | CB_IMA(hints))); | ||
356 | } | ||
357 | |||
358 | static inline void gru_ivstore(void *cb, unsigned long mem_addr, | ||
359 | unsigned int tri0, unsigned int tri1, | ||
360 | unsigned char xtype, unsigned long nelem, unsigned long hints) | ||
361 | { | ||
362 | struct gru_instruction *ins = (void *)cb; | ||
363 | |||
364 | ins->baddr0 = (long)mem_addr; | ||
365 | ins->nelem = nelem; | ||
366 | ins->tri0 = tri0; | ||
367 | ins->tri1_bufsize = tri1; | ||
368 | gru_start_instruction(ins, __opword(OP_IVSTORE, 0, xtype, IAA_RAM, 0, | ||
369 | CB_IMA(hints))); | ||
370 | } | ||
371 | |||
372 | static inline void gru_vset(void *cb, unsigned long mem_addr, | ||
373 | unsigned long value, unsigned char xtype, unsigned long nelem, | ||
374 | unsigned long stride, unsigned long hints) | ||
375 | { | ||
376 | struct gru_instruction *ins = (void *)cb; | ||
377 | |||
378 | ins->baddr0 = (long)mem_addr; | ||
379 | ins->op2_value_baddr1 = value; | ||
380 | ins->nelem = nelem; | ||
381 | ins->op1_stride = stride; | ||
382 | gru_start_instruction(ins, __opword(OP_VSET, 0, xtype, IAA_RAM, 0, | ||
383 | CB_IMA(hints))); | ||
384 | } | ||
385 | |||
386 | static inline void gru_ivset(void *cb, unsigned long mem_addr, | ||
387 | unsigned int tri1, unsigned long value, unsigned char xtype, | ||
388 | unsigned long nelem, unsigned long hints) | ||
389 | { | ||
390 | struct gru_instruction *ins = (void *)cb; | ||
391 | |||
392 | ins->baddr0 = (long)mem_addr; | ||
393 | ins->op2_value_baddr1 = value; | ||
394 | ins->nelem = nelem; | ||
395 | ins->tri1_bufsize = tri1; | ||
396 | gru_start_instruction(ins, __opword(OP_IVSET, 0, xtype, IAA_RAM, 0, | ||
397 | CB_IMA(hints))); | ||
398 | } | ||
399 | |||
400 | static inline void gru_vflush(void *cb, unsigned long mem_addr, | ||
401 | unsigned long nelem, unsigned char xtype, unsigned long stride, | ||
402 | unsigned long hints) | ||
403 | { | ||
404 | struct gru_instruction *ins = (void *)cb; | ||
405 | |||
406 | ins->baddr0 = (long)mem_addr; | ||
407 | ins->op1_stride = stride; | ||
408 | ins->nelem = nelem; | ||
409 | gru_start_instruction(ins, __opword(OP_VFLUSH, 0, xtype, IAA_RAM, 0, | ||
410 | CB_IMA(hints))); | ||
411 | } | ||
412 | |||
413 | static inline void gru_nop(void *cb, int hints) | ||
414 | { | ||
415 | struct gru_instruction *ins = (void *)cb; | ||
416 | |||
417 | gru_start_instruction(ins, __opword(OP_NOP, 0, 0, 0, 0, CB_IMA(hints))); | ||
418 | } | ||
419 | |||
420 | |||
421 | static inline void gru_bcopy(void *cb, const unsigned long src, | ||
422 | unsigned long dest, | ||
423 | unsigned int tri0, unsigned int xtype, unsigned long nelem, | ||
424 | unsigned int bufsize, unsigned long hints) | ||
425 | { | ||
426 | struct gru_instruction *ins = (void *)cb; | ||
427 | |||
428 | ins->baddr0 = (long)src; | ||
429 | ins->op2_value_baddr1 = (long)dest; | ||
430 | ins->nelem = nelem; | ||
431 | ins->tri0 = tri0; | ||
432 | ins->tri1_bufsize = bufsize; | ||
433 | gru_start_instruction(ins, __opword(OP_BCOPY, 0, xtype, IAA_RAM, | ||
434 | IAA_RAM, CB_IMA(hints))); | ||
435 | } | ||
436 | |||
437 | static inline void gru_bstore(void *cb, const unsigned long src, | ||
438 | unsigned long dest, unsigned int tri0, unsigned int xtype, | ||
439 | unsigned long nelem, unsigned long hints) | ||
440 | { | ||
441 | struct gru_instruction *ins = (void *)cb; | ||
442 | |||
443 | ins->baddr0 = (long)src; | ||
444 | ins->op2_value_baddr1 = (long)dest; | ||
445 | ins->nelem = nelem; | ||
446 | ins->tri0 = tri0; | ||
447 | gru_start_instruction(ins, __opword(OP_BSTORE, 0, xtype, 0, IAA_RAM, | ||
448 | CB_IMA(hints))); | ||
449 | } | ||
450 | |||
451 | static inline void gru_gamir(void *cb, int exopc, unsigned long src, | ||
452 | unsigned int xtype, unsigned long hints) | ||
453 | { | ||
454 | struct gru_instruction *ins = (void *)cb; | ||
455 | |||
456 | ins->baddr0 = (long)src; | ||
457 | gru_start_instruction(ins, __opword(OP_GAMIR, exopc, xtype, IAA_RAM, 0, | ||
458 | CB_IMA(hints))); | ||
459 | } | ||
460 | |||
461 | static inline void gru_gamirr(void *cb, int exopc, unsigned long src, | ||
462 | unsigned int xtype, unsigned long hints) | ||
463 | { | ||
464 | struct gru_instruction *ins = (void *)cb; | ||
465 | |||
466 | ins->baddr0 = (long)src; | ||
467 | gru_start_instruction(ins, __opword(OP_GAMIRR, exopc, xtype, IAA_RAM, 0, | ||
468 | CB_IMA(hints))); | ||
469 | } | ||
470 | |||
471 | static inline void gru_gamer(void *cb, int exopc, unsigned long src, | ||
472 | unsigned int xtype, | ||
473 | unsigned long operand1, unsigned long operand2, | ||
474 | unsigned long hints) | ||
475 | { | ||
476 | struct gru_instruction *ins = (void *)cb; | ||
477 | |||
478 | ins->baddr0 = (long)src; | ||
479 | ins->op1_stride = operand1; | ||
480 | ins->op2_value_baddr1 = operand2; | ||
481 | gru_start_instruction(ins, __opword(OP_GAMER, exopc, xtype, IAA_RAM, 0, | ||
482 | CB_IMA(hints))); | ||
483 | } | ||
484 | |||
485 | static inline void gru_gamerr(void *cb, int exopc, unsigned long src, | ||
486 | unsigned int xtype, unsigned long operand1, | ||
487 | unsigned long operand2, unsigned long hints) | ||
488 | { | ||
489 | struct gru_instruction *ins = (void *)cb; | ||
490 | |||
491 | ins->baddr0 = (long)src; | ||
492 | ins->op1_stride = operand1; | ||
493 | ins->op2_value_baddr1 = operand2; | ||
494 | gru_start_instruction(ins, __opword(OP_GAMERR, exopc, xtype, IAA_RAM, 0, | ||
495 | CB_IMA(hints))); | ||
496 | } | ||
497 | |||
498 | static inline void gru_gamxr(void *cb, unsigned long src, | ||
499 | unsigned int tri0, unsigned long hints) | ||
500 | { | ||
501 | struct gru_instruction *ins = (void *)cb; | ||
502 | |||
503 | ins->baddr0 = (long)src; | ||
504 | ins->nelem = 4; | ||
505 | gru_start_instruction(ins, __opword(OP_GAMXR, EOP_XR_CSWAP, XTYPE_DW, | ||
506 | IAA_RAM, 0, CB_IMA(hints))); | ||
507 | } | ||
508 | |||
509 | static inline void gru_mesq(void *cb, unsigned long queue, | ||
510 | unsigned long tri0, unsigned long nelem, | ||
511 | unsigned long hints) | ||
512 | { | ||
513 | struct gru_instruction *ins = (void *)cb; | ||
514 | |||
515 | ins->baddr0 = (long)queue; | ||
516 | ins->nelem = nelem; | ||
517 | ins->tri0 = tri0; | ||
518 | gru_start_instruction(ins, __opword(OP_MESQ, 0, XTYPE_CL, IAA_RAM, 0, | ||
519 | CB_IMA(hints))); | ||
520 | } | ||
521 | |||
522 | static inline unsigned long gru_get_amo_value(void *cb) | ||
523 | { | ||
524 | struct gru_instruction *ins = (void *)cb; | ||
525 | |||
526 | return ins->avalue; | ||
527 | } | ||
528 | |||
529 | static inline int gru_get_amo_value_head(void *cb) | ||
530 | { | ||
531 | struct gru_instruction *ins = (void *)cb; | ||
532 | |||
533 | return ins->avalue & 0xffffffff; | ||
534 | } | ||
535 | |||
536 | static inline int gru_get_amo_value_limit(void *cb) | ||
537 | { | ||
538 | struct gru_instruction *ins = (void *)cb; | ||
539 | |||
540 | return ins->avalue >> 32; | ||
541 | } | ||
542 | |||
543 | static inline union gru_mesqhead gru_mesq_head(int head, int limit) | ||
544 | { | ||
545 | union gru_mesqhead mqh; | ||
546 | |||
547 | mqh.head = head; | ||
548 | mqh.limit = limit; | ||
549 | return mqh; | ||
550 | } | ||
551 | |||
552 | /* | ||
553 | * Get struct control_block_extended_exc_detail for CB. | ||
554 | */ | ||
555 | extern int gru_get_cb_exception_detail(void *cb, | ||
556 | struct control_block_extended_exc_detail *excdet); | ||
557 | |||
558 | #define GRU_EXC_STR_SIZE 256 | ||
559 | |||
560 | extern int gru_check_status_proc(void *cb); | ||
561 | extern int gru_wait_proc(void *cb); | ||
562 | extern void gru_wait_abort_proc(void *cb); | ||
563 | |||
564 | /* | ||
565 | * Control block definition for checking status | ||
566 | */ | ||
567 | struct gru_control_block_status { | ||
568 | unsigned int icmd :1; | ||
569 | unsigned int unused1 :31; | ||
570 | unsigned int unused2 :24; | ||
571 | unsigned int istatus :2; | ||
572 | unsigned int isubstatus :4; | ||
573 | unsigned int inused3 :2; | ||
574 | }; | ||
575 | |||
576 | /* Get CB status */ | ||
577 | static inline int gru_get_cb_status(void *cb) | ||
578 | { | ||
579 | struct gru_control_block_status *cbs = (void *)cb; | ||
580 | |||
581 | return cbs->istatus; | ||
582 | } | ||
583 | |||
584 | /* Get CB message queue substatus */ | ||
585 | static inline int gru_get_cb_message_queue_substatus(void *cb) | ||
586 | { | ||
587 | struct gru_control_block_status *cbs = (void *)cb; | ||
588 | |||
589 | return cbs->isubstatus & CBSS_MSG_QUEUE_MASK; | ||
590 | } | ||
591 | |||
592 | /* Get CB substatus */ | ||
593 | static inline int gru_get_cb_substatus(void *cb) | ||
594 | { | ||
595 | struct gru_control_block_status *cbs = (void *)cb; | ||
596 | |||
597 | return cbs->isubstatus; | ||
598 | } | ||
599 | |||
600 | /* Check the status of a CB. If the CB is in UPM mode, call the | ||
601 | * OS to handle the UPM status. | ||
602 | * Returns the CB status field value (0 for normal completion) | ||
603 | */ | ||
604 | static inline int gru_check_status(void *cb) | ||
605 | { | ||
606 | struct gru_control_block_status *cbs = (void *)cb; | ||
607 | int ret = cbs->istatus; | ||
608 | |||
609 | if (ret == CBS_CALL_OS) | ||
610 | ret = gru_check_status_proc(cb); | ||
611 | return ret; | ||
612 | } | ||
613 | |||
614 | /* Wait for CB to complete. | ||
615 | * Returns the CB status field value (0 for normal completion) | ||
616 | */ | ||
617 | static inline int gru_wait(void *cb) | ||
618 | { | ||
619 | struct gru_control_block_status *cbs = (void *)cb; | ||
620 | int ret = cbs->istatus;; | ||
621 | |||
622 | if (ret != CBS_IDLE) | ||
623 | ret = gru_wait_proc(cb); | ||
624 | return ret; | ||
625 | } | ||
626 | |||
627 | /* Wait for CB to complete. Aborts program if error. (Note: error does NOT | ||
628 | * mean TLB mis - only fatal errors such as memory parity error or user | ||
629 | * bugs will cause termination. | ||
630 | */ | ||
631 | static inline void gru_wait_abort(void *cb) | ||
632 | { | ||
633 | struct gru_control_block_status *cbs = (void *)cb; | ||
634 | |||
635 | if (cbs->istatus != CBS_IDLE) | ||
636 | gru_wait_abort_proc(cb); | ||
637 | } | ||
638 | |||
639 | |||
640 | /* | ||
641 | * Get a pointer to a control block | ||
642 | * gseg - GSeg address returned from gru_get_thread_gru_segment() | ||
643 | * index - index of desired CB | ||
644 | */ | ||
645 | static inline void *gru_get_cb_pointer(void *gseg, | ||
646 | int index) | ||
647 | { | ||
648 | return gseg + GRU_CB_BASE + index * GRU_HANDLE_STRIDE; | ||
649 | } | ||
650 | |||
651 | /* | ||
652 | * Get a pointer to a cacheline in the data segment portion of a GSeg | ||
653 | * gseg - GSeg address returned from gru_get_thread_gru_segment() | ||
654 | * index - index of desired cache line | ||
655 | */ | ||
656 | static inline void *gru_get_data_pointer(void *gseg, int index) | ||
657 | { | ||
658 | return gseg + GRU_DS_BASE + index * GRU_CACHE_LINE_BYTES; | ||
659 | } | ||
660 | |||
661 | /* | ||
662 | * Convert a vaddr into the tri index within the GSEG | ||
663 | * vaddr - virtual address of within gseg | ||
664 | */ | ||
665 | static inline int gru_get_tri(void *vaddr) | ||
666 | { | ||
667 | return ((unsigned long)vaddr & (GRU_GSEG_PAGESIZE - 1)) - GRU_DS_BASE; | ||
668 | } | ||
669 | #endif /* __GRU_INSTRUCTIONS_H__ */ | ||
diff --git a/drivers/misc/sgi-gru/grufault.c b/drivers/misc/sgi-gru/grufault.c new file mode 100644 index 000000000000..3d33015bbf31 --- /dev/null +++ b/drivers/misc/sgi-gru/grufault.c | |||
@@ -0,0 +1,633 @@ | |||
1 | /* | ||
2 | * SN Platform GRU Driver | ||
3 | * | ||
4 | * FAULT HANDLER FOR GRU DETECTED TLB MISSES | ||
5 | * | ||
6 | * This file contains code that handles TLB misses within the GRU. | ||
7 | * These misses are reported either via interrupts or user polling of | ||
8 | * the user CB. | ||
9 | * | ||
10 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
11 | * | ||
12 | * This program is free software; you can redistribute it and/or modify | ||
13 | * it under the terms of the GNU General Public License as published by | ||
14 | * the Free Software Foundation; either version 2 of the License, or | ||
15 | * (at your option) any later version. | ||
16 | * | ||
17 | * This program is distributed in the hope that it will be useful, | ||
18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
20 | * GNU General Public License for more details. | ||
21 | * | ||
22 | * You should have received a copy of the GNU General Public License | ||
23 | * along with this program; if not, write to the Free Software | ||
24 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
25 | */ | ||
26 | |||
27 | #include <linux/kernel.h> | ||
28 | #include <linux/errno.h> | ||
29 | #include <linux/spinlock.h> | ||
30 | #include <linux/mm.h> | ||
31 | #include <linux/hugetlb.h> | ||
32 | #include <linux/device.h> | ||
33 | #include <linux/io.h> | ||
34 | #include <linux/uaccess.h> | ||
35 | #include <asm/pgtable.h> | ||
36 | #include "gru.h" | ||
37 | #include "grutables.h" | ||
38 | #include "grulib.h" | ||
39 | #include "gru_instructions.h" | ||
40 | #include <asm/uv/uv_hub.h> | ||
41 | |||
42 | /* | ||
43 | * Test if a physical address is a valid GRU GSEG address | ||
44 | */ | ||
45 | static inline int is_gru_paddr(unsigned long paddr) | ||
46 | { | ||
47 | return paddr >= gru_start_paddr && paddr < gru_end_paddr; | ||
48 | } | ||
49 | |||
50 | /* | ||
51 | * Find the vma of a GRU segment. Caller must hold mmap_sem. | ||
52 | */ | ||
53 | struct vm_area_struct *gru_find_vma(unsigned long vaddr) | ||
54 | { | ||
55 | struct vm_area_struct *vma; | ||
56 | |||
57 | vma = find_vma(current->mm, vaddr); | ||
58 | if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops) | ||
59 | return vma; | ||
60 | return NULL; | ||
61 | } | ||
62 | |||
63 | /* | ||
64 | * Find and lock the gts that contains the specified user vaddr. | ||
65 | * | ||
66 | * Returns: | ||
67 | * - *gts with the mmap_sem locked for read and the GTS locked. | ||
68 | * - NULL if vaddr invalid OR is not a valid GSEG vaddr. | ||
69 | */ | ||
70 | |||
71 | static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr) | ||
72 | { | ||
73 | struct mm_struct *mm = current->mm; | ||
74 | struct vm_area_struct *vma; | ||
75 | struct gru_thread_state *gts = NULL; | ||
76 | |||
77 | down_read(&mm->mmap_sem); | ||
78 | vma = gru_find_vma(vaddr); | ||
79 | if (vma) | ||
80 | gts = gru_find_thread_state(vma, TSID(vaddr, vma)); | ||
81 | if (gts) | ||
82 | mutex_lock(>s->ts_ctxlock); | ||
83 | else | ||
84 | up_read(&mm->mmap_sem); | ||
85 | return gts; | ||
86 | } | ||
87 | |||
88 | static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr) | ||
89 | { | ||
90 | struct mm_struct *mm = current->mm; | ||
91 | struct vm_area_struct *vma; | ||
92 | struct gru_thread_state *gts = NULL; | ||
93 | |||
94 | down_write(&mm->mmap_sem); | ||
95 | vma = gru_find_vma(vaddr); | ||
96 | if (vma) | ||
97 | gts = gru_alloc_thread_state(vma, TSID(vaddr, vma)); | ||
98 | if (gts) { | ||
99 | mutex_lock(>s->ts_ctxlock); | ||
100 | downgrade_write(&mm->mmap_sem); | ||
101 | } else { | ||
102 | up_write(&mm->mmap_sem); | ||
103 | } | ||
104 | |||
105 | return gts; | ||
106 | } | ||
107 | |||
108 | /* | ||
109 | * Unlock a GTS that was previously locked with gru_find_lock_gts(). | ||
110 | */ | ||
111 | static void gru_unlock_gts(struct gru_thread_state *gts) | ||
112 | { | ||
113 | mutex_unlock(>s->ts_ctxlock); | ||
114 | up_read(¤t->mm->mmap_sem); | ||
115 | } | ||
116 | |||
117 | /* | ||
118 | * Set a CB.istatus to active using a user virtual address. This must be done | ||
119 | * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY. | ||
120 | * If the line is evicted, the status may be lost. The in-cache update | ||
121 | * is necessary to prevent the user from seeing a stale cb.istatus that will | ||
122 | * change as soon as the TFH restart is complete. Races may cause an | ||
123 | * occasional failure to clear the cb.istatus, but that is ok. | ||
124 | * | ||
125 | * If the cb address is not valid (should not happen, but...), nothing | ||
126 | * bad will happen.. The get_user()/put_user() will fail but there | ||
127 | * are no bad side-effects. | ||
128 | */ | ||
129 | static void gru_cb_set_istatus_active(unsigned long __user *cb) | ||
130 | { | ||
131 | union { | ||
132 | struct gru_instruction_bits bits; | ||
133 | unsigned long dw; | ||
134 | } u; | ||
135 | |||
136 | if (cb) { | ||
137 | get_user(u.dw, cb); | ||
138 | u.bits.istatus = CBS_ACTIVE; | ||
139 | put_user(u.dw, cb); | ||
140 | } | ||
141 | } | ||
142 | |||
143 | /* | ||
144 | * Convert a interrupt IRQ to a pointer to the GRU GTS that caused the | ||
145 | * interrupt. Interrupts are always sent to a cpu on the blade that contains the | ||
146 | * GRU (except for headless blades which are not currently supported). A blade | ||
147 | * has N grus; a block of N consecutive IRQs is assigned to the GRUs. The IRQ | ||
148 | * number uniquely identifies the GRU chiplet on the local blade that caused the | ||
149 | * interrupt. Always called in interrupt context. | ||
150 | */ | ||
151 | static inline struct gru_state *irq_to_gru(int irq) | ||
152 | { | ||
153 | return &gru_base[uv_numa_blade_id()]->bs_grus[irq - IRQ_GRU]; | ||
154 | } | ||
155 | |||
156 | /* | ||
157 | * Read & clear a TFM | ||
158 | * | ||
159 | * The GRU has an array of fault maps. A map is private to a cpu | ||
160 | * Only one cpu will be accessing a cpu's fault map. | ||
161 | * | ||
162 | * This function scans the cpu-private fault map & clears all bits that | ||
163 | * are set. The function returns a bitmap that indicates the bits that | ||
164 | * were cleared. Note that sense the maps may be updated asynchronously by | ||
165 | * the GRU, atomic operations must be used to clear bits. | ||
166 | */ | ||
167 | static void get_clear_fault_map(struct gru_state *gru, | ||
168 | struct gru_tlb_fault_map *map) | ||
169 | { | ||
170 | unsigned long i, k; | ||
171 | struct gru_tlb_fault_map *tfm; | ||
172 | |||
173 | tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id()); | ||
174 | prefetchw(tfm); /* Helps on hardware, required for emulator */ | ||
175 | for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) { | ||
176 | k = tfm->fault_bits[i]; | ||
177 | if (k) | ||
178 | k = xchg(&tfm->fault_bits[i], 0UL); | ||
179 | map->fault_bits[i] = k; | ||
180 | } | ||
181 | |||
182 | /* | ||
183 | * Not functionally required but helps performance. (Required | ||
184 | * on emulator) | ||
185 | */ | ||
186 | gru_flush_cache(tfm); | ||
187 | } | ||
188 | |||
189 | /* | ||
190 | * Atomic (interrupt context) & non-atomic (user context) functions to | ||
191 | * convert a vaddr into a physical address. The size of the page | ||
192 | * is returned in pageshift. | ||
193 | * returns: | ||
194 | * 0 - successful | ||
195 | * < 0 - error code | ||
196 | * 1 - (atomic only) try again in non-atomic context | ||
197 | */ | ||
198 | static int non_atomic_pte_lookup(struct vm_area_struct *vma, | ||
199 | unsigned long vaddr, int write, | ||
200 | unsigned long *paddr, int *pageshift) | ||
201 | { | ||
202 | struct page *page; | ||
203 | |||
204 | /* ZZZ Need to handle HUGE pages */ | ||
205 | if (is_vm_hugetlb_page(vma)) | ||
206 | return -EFAULT; | ||
207 | *pageshift = PAGE_SHIFT; | ||
208 | if (get_user_pages | ||
209 | (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0) | ||
210 | return -EFAULT; | ||
211 | *paddr = page_to_phys(page); | ||
212 | put_page(page); | ||
213 | return 0; | ||
214 | } | ||
215 | |||
216 | /* | ||
217 | * | ||
218 | * atomic_pte_lookup | ||
219 | * | ||
220 | * Convert a user virtual address to a physical address | ||
221 | * Only supports Intel large pages (2MB only) on x86_64. | ||
222 | * ZZZ - hugepage support is incomplete | ||
223 | */ | ||
224 | static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, | ||
225 | int write, unsigned long *paddr, int *pageshift) | ||
226 | { | ||
227 | pgd_t *pgdp; | ||
228 | pmd_t *pmdp; | ||
229 | pud_t *pudp; | ||
230 | pte_t pte; | ||
231 | |||
232 | WARN_ON(irqs_disabled()); /* ZZZ debug */ | ||
233 | |||
234 | local_irq_disable(); | ||
235 | pgdp = pgd_offset(vma->vm_mm, vaddr); | ||
236 | if (unlikely(pgd_none(*pgdp))) | ||
237 | goto err; | ||
238 | |||
239 | pudp = pud_offset(pgdp, vaddr); | ||
240 | if (unlikely(pud_none(*pudp))) | ||
241 | goto err; | ||
242 | |||
243 | pmdp = pmd_offset(pudp, vaddr); | ||
244 | if (unlikely(pmd_none(*pmdp))) | ||
245 | goto err; | ||
246 | #ifdef CONFIG_X86_64 | ||
247 | if (unlikely(pmd_large(*pmdp))) | ||
248 | pte = *(pte_t *) pmdp; | ||
249 | else | ||
250 | #endif | ||
251 | pte = *pte_offset_kernel(pmdp, vaddr); | ||
252 | |||
253 | local_irq_enable(); | ||
254 | |||
255 | if (unlikely(!pte_present(pte) || | ||
256 | (write && (!pte_write(pte) || !pte_dirty(pte))))) | ||
257 | return 1; | ||
258 | |||
259 | *paddr = pte_pfn(pte) << PAGE_SHIFT; | ||
260 | *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; | ||
261 | return 0; | ||
262 | |||
263 | err: | ||
264 | local_irq_enable(); | ||
265 | return 1; | ||
266 | } | ||
267 | |||
268 | /* | ||
269 | * Drop a TLB entry into the GRU. The fault is described by info in an TFH. | ||
270 | * Input: | ||
271 | * cb Address of user CBR. Null if not running in user context | ||
272 | * Return: | ||
273 | * 0 = dropin, exception, or switch to UPM successful | ||
274 | * 1 = range invalidate active | ||
275 | * < 0 = error code | ||
276 | * | ||
277 | */ | ||
278 | static int gru_try_dropin(struct gru_thread_state *gts, | ||
279 | struct gru_tlb_fault_handle *tfh, | ||
280 | unsigned long __user *cb) | ||
281 | { | ||
282 | struct mm_struct *mm = gts->ts_mm; | ||
283 | struct vm_area_struct *vma; | ||
284 | int pageshift, asid, write, ret; | ||
285 | unsigned long paddr, gpa, vaddr; | ||
286 | |||
287 | /* | ||
288 | * NOTE: The GRU contains magic hardware that eliminates races between | ||
289 | * TLB invalidates and TLB dropins. If an invalidate occurs | ||
290 | * in the window between reading the TFH and the subsequent TLB dropin, | ||
291 | * the dropin is ignored. This eliminates the need for additional locks. | ||
292 | */ | ||
293 | |||
294 | /* | ||
295 | * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call. | ||
296 | * Might be a hardware race OR a stupid user. Ignore FMM because FMM | ||
297 | * is a transient state. | ||
298 | */ | ||
299 | if (tfh->state == TFHSTATE_IDLE) | ||
300 | goto failidle; | ||
301 | if (tfh->state == TFHSTATE_MISS_FMM && cb) | ||
302 | goto failfmm; | ||
303 | |||
304 | write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0; | ||
305 | vaddr = tfh->missvaddr; | ||
306 | asid = tfh->missasid; | ||
307 | if (asid == 0) | ||
308 | goto failnoasid; | ||
309 | |||
310 | rmb(); /* TFH must be cache resident before reading ms_range_active */ | ||
311 | |||
312 | /* | ||
313 | * TFH is cache resident - at least briefly. Fail the dropin | ||
314 | * if a range invalidate is active. | ||
315 | */ | ||
316 | if (atomic_read(>s->ts_gms->ms_range_active)) | ||
317 | goto failactive; | ||
318 | |||
319 | vma = find_vma(mm, vaddr); | ||
320 | if (!vma) | ||
321 | goto failinval; | ||
322 | |||
323 | /* | ||
324 | * Atomic lookup is faster & usually works even if called in non-atomic | ||
325 | * context. | ||
326 | */ | ||
327 | ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &pageshift); | ||
328 | if (ret) { | ||
329 | if (!cb) | ||
330 | goto failupm; | ||
331 | if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, | ||
332 | &pageshift)) | ||
333 | goto failinval; | ||
334 | } | ||
335 | if (is_gru_paddr(paddr)) | ||
336 | goto failinval; | ||
337 | |||
338 | paddr = paddr & ~((1UL << pageshift) - 1); | ||
339 | gpa = uv_soc_phys_ram_to_gpa(paddr); | ||
340 | gru_cb_set_istatus_active(cb); | ||
341 | tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write, | ||
342 | GRU_PAGESIZE(pageshift)); | ||
343 | STAT(tlb_dropin); | ||
344 | gru_dbg(grudev, | ||
345 | "%s: tfh 0x%p, vaddr 0x%lx, asid 0x%x, ps %d, gpa 0x%lx\n", | ||
346 | ret ? "non-atomic" : "atomic", tfh, vaddr, asid, | ||
347 | pageshift, gpa); | ||
348 | return 0; | ||
349 | |||
350 | failnoasid: | ||
351 | /* No asid (delayed unload). */ | ||
352 | STAT(tlb_dropin_fail_no_asid); | ||
353 | gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); | ||
354 | if (!cb) | ||
355 | tfh_user_polling_mode(tfh); | ||
356 | else | ||
357 | gru_flush_cache(tfh); | ||
358 | return -EAGAIN; | ||
359 | |||
360 | failupm: | ||
361 | /* Atomic failure switch CBR to UPM */ | ||
362 | tfh_user_polling_mode(tfh); | ||
363 | STAT(tlb_dropin_fail_upm); | ||
364 | gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); | ||
365 | return 1; | ||
366 | |||
367 | failfmm: | ||
368 | /* FMM state on UPM call */ | ||
369 | STAT(tlb_dropin_fail_fmm); | ||
370 | gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state); | ||
371 | return 0; | ||
372 | |||
373 | failidle: | ||
374 | /* TFH was idle - no miss pending */ | ||
375 | gru_flush_cache(tfh); | ||
376 | if (cb) | ||
377 | gru_flush_cache(cb); | ||
378 | STAT(tlb_dropin_fail_idle); | ||
379 | gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state); | ||
380 | return 0; | ||
381 | |||
382 | failinval: | ||
383 | /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */ | ||
384 | tfh_exception(tfh); | ||
385 | STAT(tlb_dropin_fail_invalid); | ||
386 | gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); | ||
387 | return -EFAULT; | ||
388 | |||
389 | failactive: | ||
390 | /* Range invalidate active. Switch to UPM iff atomic */ | ||
391 | if (!cb) | ||
392 | tfh_user_polling_mode(tfh); | ||
393 | else | ||
394 | gru_flush_cache(tfh); | ||
395 | STAT(tlb_dropin_fail_range_active); | ||
396 | gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n", | ||
397 | tfh, vaddr); | ||
398 | return 1; | ||
399 | } | ||
400 | |||
401 | /* | ||
402 | * Process an external interrupt from the GRU. This interrupt is | ||
403 | * caused by a TLB miss. | ||
404 | * Note that this is the interrupt handler that is registered with linux | ||
405 | * interrupt handlers. | ||
406 | */ | ||
407 | irqreturn_t gru_intr(int irq, void *dev_id) | ||
408 | { | ||
409 | struct gru_state *gru; | ||
410 | struct gru_tlb_fault_map map; | ||
411 | struct gru_thread_state *gts; | ||
412 | struct gru_tlb_fault_handle *tfh = NULL; | ||
413 | int cbrnum, ctxnum; | ||
414 | |||
415 | STAT(intr); | ||
416 | |||
417 | gru = irq_to_gru(irq); | ||
418 | if (!gru) { | ||
419 | dev_err(grudev, "GRU: invalid interrupt: cpu %d, irq %d\n", | ||
420 | raw_smp_processor_id(), irq); | ||
421 | return IRQ_NONE; | ||
422 | } | ||
423 | get_clear_fault_map(gru, &map); | ||
424 | gru_dbg(grudev, "irq %d, gru %x, map 0x%lx\n", irq, gru->gs_gid, | ||
425 | map.fault_bits[0]); | ||
426 | |||
427 | for_each_cbr_in_tfm(cbrnum, map.fault_bits) { | ||
428 | tfh = get_tfh_by_index(gru, cbrnum); | ||
429 | prefetchw(tfh); /* Helps on hdw, required for emulator */ | ||
430 | |||
431 | /* | ||
432 | * When hardware sets a bit in the faultmap, it implicitly | ||
433 | * locks the GRU context so that it cannot be unloaded. | ||
434 | * The gts cannot change until a TFH start/writestart command | ||
435 | * is issued. | ||
436 | */ | ||
437 | ctxnum = tfh->ctxnum; | ||
438 | gts = gru->gs_gts[ctxnum]; | ||
439 | |||
440 | /* | ||
441 | * This is running in interrupt context. Trylock the mmap_sem. | ||
442 | * If it fails, retry the fault in user context. | ||
443 | */ | ||
444 | if (down_read_trylock(>s->ts_mm->mmap_sem)) { | ||
445 | gru_try_dropin(gts, tfh, NULL); | ||
446 | up_read(>s->ts_mm->mmap_sem); | ||
447 | } else { | ||
448 | tfh_user_polling_mode(tfh); | ||
449 | } | ||
450 | } | ||
451 | return IRQ_HANDLED; | ||
452 | } | ||
453 | |||
454 | |||
455 | static int gru_user_dropin(struct gru_thread_state *gts, | ||
456 | struct gru_tlb_fault_handle *tfh, | ||
457 | unsigned long __user *cb) | ||
458 | { | ||
459 | struct gru_mm_struct *gms = gts->ts_gms; | ||
460 | int ret; | ||
461 | |||
462 | while (1) { | ||
463 | wait_event(gms->ms_wait_queue, | ||
464 | atomic_read(&gms->ms_range_active) == 0); | ||
465 | prefetchw(tfh); /* Helps on hdw, required for emulator */ | ||
466 | ret = gru_try_dropin(gts, tfh, cb); | ||
467 | if (ret <= 0) | ||
468 | return ret; | ||
469 | STAT(call_os_wait_queue); | ||
470 | } | ||
471 | } | ||
472 | |||
473 | /* | ||
474 | * This interface is called as a result of a user detecting a "call OS" bit | ||
475 | * in a user CB. Normally means that a TLB fault has occurred. | ||
476 | * cb - user virtual address of the CB | ||
477 | */ | ||
478 | int gru_handle_user_call_os(unsigned long cb) | ||
479 | { | ||
480 | struct gru_tlb_fault_handle *tfh; | ||
481 | struct gru_thread_state *gts; | ||
482 | unsigned long __user *cbp; | ||
483 | int ucbnum, cbrnum, ret = -EINVAL; | ||
484 | |||
485 | STAT(call_os); | ||
486 | gru_dbg(grudev, "address 0x%lx\n", cb); | ||
487 | |||
488 | /* sanity check the cb pointer */ | ||
489 | ucbnum = get_cb_number((void *)cb); | ||
490 | if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB) | ||
491 | return -EINVAL; | ||
492 | cbp = (unsigned long *)cb; | ||
493 | |||
494 | gts = gru_find_lock_gts(cb); | ||
495 | if (!gts) | ||
496 | return -EINVAL; | ||
497 | |||
498 | if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) { | ||
499 | ret = -EINVAL; | ||
500 | goto exit; | ||
501 | } | ||
502 | |||
503 | /* | ||
504 | * If force_unload is set, the UPM TLB fault is phony. The task | ||
505 | * has migrated to another node and the GSEG must be moved. Just | ||
506 | * unload the context. The task will page fault and assign a new | ||
507 | * context. | ||
508 | */ | ||
509 | ret = -EAGAIN; | ||
510 | cbrnum = thread_cbr_number(gts, ucbnum); | ||
511 | if (gts->ts_force_unload) { | ||
512 | gru_unload_context(gts, 1); | ||
513 | } else if (gts->ts_gru) { | ||
514 | tfh = get_tfh_by_index(gts->ts_gru, cbrnum); | ||
515 | ret = gru_user_dropin(gts, tfh, cbp); | ||
516 | } | ||
517 | exit: | ||
518 | gru_unlock_gts(gts); | ||
519 | return ret; | ||
520 | } | ||
521 | |||
522 | /* | ||
523 | * Fetch the exception detail information for a CB that terminated with | ||
524 | * an exception. | ||
525 | */ | ||
526 | int gru_get_exception_detail(unsigned long arg) | ||
527 | { | ||
528 | struct control_block_extended_exc_detail excdet; | ||
529 | struct gru_control_block_extended *cbe; | ||
530 | struct gru_thread_state *gts; | ||
531 | int ucbnum, cbrnum, ret; | ||
532 | |||
533 | STAT(user_exception); | ||
534 | if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet))) | ||
535 | return -EFAULT; | ||
536 | |||
537 | gru_dbg(grudev, "address 0x%lx\n", excdet.cb); | ||
538 | gts = gru_find_lock_gts(excdet.cb); | ||
539 | if (!gts) | ||
540 | return -EINVAL; | ||
541 | |||
542 | if (gts->ts_gru) { | ||
543 | ucbnum = get_cb_number((void *)excdet.cb); | ||
544 | cbrnum = thread_cbr_number(gts, ucbnum); | ||
545 | cbe = get_cbe_by_index(gts->ts_gru, cbrnum); | ||
546 | excdet.opc = cbe->opccpy; | ||
547 | excdet.exopc = cbe->exopccpy; | ||
548 | excdet.ecause = cbe->ecause; | ||
549 | excdet.exceptdet0 = cbe->idef1upd; | ||
550 | excdet.exceptdet1 = cbe->idef3upd; | ||
551 | ret = 0; | ||
552 | } else { | ||
553 | ret = -EAGAIN; | ||
554 | } | ||
555 | gru_unlock_gts(gts); | ||
556 | |||
557 | gru_dbg(grudev, "address 0x%lx, ecause 0x%x\n", excdet.cb, | ||
558 | excdet.ecause); | ||
559 | if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet))) | ||
560 | ret = -EFAULT; | ||
561 | return ret; | ||
562 | } | ||
563 | |||
564 | /* | ||
565 | * User request to unload a context. Content is saved for possible reload. | ||
566 | */ | ||
567 | int gru_user_unload_context(unsigned long arg) | ||
568 | { | ||
569 | struct gru_thread_state *gts; | ||
570 | struct gru_unload_context_req req; | ||
571 | |||
572 | STAT(user_unload_context); | ||
573 | if (copy_from_user(&req, (void __user *)arg, sizeof(req))) | ||
574 | return -EFAULT; | ||
575 | |||
576 | gru_dbg(grudev, "gseg 0x%lx\n", req.gseg); | ||
577 | |||
578 | gts = gru_find_lock_gts(req.gseg); | ||
579 | if (!gts) | ||
580 | return -EINVAL; | ||
581 | |||
582 | if (gts->ts_gru) | ||
583 | gru_unload_context(gts, 1); | ||
584 | gru_unlock_gts(gts); | ||
585 | |||
586 | return 0; | ||
587 | } | ||
588 | |||
589 | /* | ||
590 | * User request to flush a range of virtual addresses from the GRU TLB | ||
591 | * (Mainly for testing). | ||
592 | */ | ||
593 | int gru_user_flush_tlb(unsigned long arg) | ||
594 | { | ||
595 | struct gru_thread_state *gts; | ||
596 | struct gru_flush_tlb_req req; | ||
597 | |||
598 | STAT(user_flush_tlb); | ||
599 | if (copy_from_user(&req, (void __user *)arg, sizeof(req))) | ||
600 | return -EFAULT; | ||
601 | |||
602 | gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg, | ||
603 | req.vaddr, req.len); | ||
604 | |||
605 | gts = gru_find_lock_gts(req.gseg); | ||
606 | if (!gts) | ||
607 | return -EINVAL; | ||
608 | |||
609 | gru_flush_tlb_range(gts->ts_gms, req.vaddr, req.vaddr + req.len); | ||
610 | gru_unlock_gts(gts); | ||
611 | |||
612 | return 0; | ||
613 | } | ||
614 | |||
615 | /* | ||
616 | * Register the current task as the user of the GSEG slice. | ||
617 | * Needed for TLB fault interrupt targeting. | ||
618 | */ | ||
619 | int gru_set_task_slice(long address) | ||
620 | { | ||
621 | struct gru_thread_state *gts; | ||
622 | |||
623 | STAT(set_task_slice); | ||
624 | gru_dbg(grudev, "address 0x%lx\n", address); | ||
625 | gts = gru_alloc_locked_gts(address); | ||
626 | if (!gts) | ||
627 | return -EINVAL; | ||
628 | |||
629 | gts->ts_tgid_owner = current->tgid; | ||
630 | gru_unlock_gts(gts); | ||
631 | |||
632 | return 0; | ||
633 | } | ||
diff --git a/drivers/misc/sgi-gru/grufile.c b/drivers/misc/sgi-gru/grufile.c new file mode 100644 index 000000000000..23c91f5f6b61 --- /dev/null +++ b/drivers/misc/sgi-gru/grufile.c | |||
@@ -0,0 +1,485 @@ | |||
1 | /* | ||
2 | * SN Platform GRU Driver | ||
3 | * | ||
4 | * FILE OPERATIONS & DRIVER INITIALIZATION | ||
5 | * | ||
6 | * This file supports the user system call for file open, close, mmap, etc. | ||
7 | * This also incudes the driver initialization code. | ||
8 | * | ||
9 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or modify | ||
12 | * it under the terms of the GNU General Public License as published by | ||
13 | * the Free Software Foundation; either version 2 of the License, or | ||
14 | * (at your option) any later version. | ||
15 | * | ||
16 | * This program is distributed in the hope that it will be useful, | ||
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
19 | * GNU General Public License for more details. | ||
20 | * | ||
21 | * You should have received a copy of the GNU General Public License | ||
22 | * along with this program; if not, write to the Free Software | ||
23 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
24 | */ | ||
25 | |||
26 | #include <linux/module.h> | ||
27 | #include <linux/kernel.h> | ||
28 | #include <linux/errno.h> | ||
29 | #include <linux/slab.h> | ||
30 | #include <linux/mm.h> | ||
31 | #include <linux/io.h> | ||
32 | #include <linux/smp_lock.h> | ||
33 | #include <linux/spinlock.h> | ||
34 | #include <linux/device.h> | ||
35 | #include <linux/miscdevice.h> | ||
36 | #include <linux/interrupt.h> | ||
37 | #include <linux/proc_fs.h> | ||
38 | #include <linux/uaccess.h> | ||
39 | #include "gru.h" | ||
40 | #include "grulib.h" | ||
41 | #include "grutables.h" | ||
42 | |||
43 | #if defined CONFIG_X86_64 | ||
44 | #include <asm/genapic.h> | ||
45 | #include <asm/irq.h> | ||
46 | #define IS_UV() is_uv_system() | ||
47 | #elif defined CONFIG_IA64 | ||
48 | #include <asm/system.h> | ||
49 | #include <asm/sn/simulator.h> | ||
50 | /* temp support for running on hardware simulator */ | ||
51 | #define IS_UV() IS_MEDUSA() || ia64_platform_is("uv") | ||
52 | #else | ||
53 | #define IS_UV() 0 | ||
54 | #endif | ||
55 | |||
56 | #include <asm/uv/uv_hub.h> | ||
57 | #include <asm/uv/uv_mmrs.h> | ||
58 | |||
59 | struct gru_blade_state *gru_base[GRU_MAX_BLADES] __read_mostly; | ||
60 | unsigned long gru_start_paddr, gru_end_paddr __read_mostly; | ||
61 | struct gru_stats_s gru_stats; | ||
62 | |||
63 | /* Guaranteed user available resources on each node */ | ||
64 | static int max_user_cbrs, max_user_dsr_bytes; | ||
65 | |||
66 | static struct file_operations gru_fops; | ||
67 | static struct miscdevice gru_miscdev; | ||
68 | |||
69 | |||
70 | /* | ||
71 | * gru_vma_close | ||
72 | * | ||
73 | * Called when unmapping a device mapping. Frees all gru resources | ||
74 | * and tables belonging to the vma. | ||
75 | */ | ||
76 | static void gru_vma_close(struct vm_area_struct *vma) | ||
77 | { | ||
78 | struct gru_vma_data *vdata; | ||
79 | struct gru_thread_state *gts; | ||
80 | struct list_head *entry, *next; | ||
81 | |||
82 | if (!vma->vm_private_data) | ||
83 | return; | ||
84 | |||
85 | vdata = vma->vm_private_data; | ||
86 | vma->vm_private_data = NULL; | ||
87 | gru_dbg(grudev, "vma %p, file %p, vdata %p\n", vma, vma->vm_file, | ||
88 | vdata); | ||
89 | list_for_each_safe(entry, next, &vdata->vd_head) { | ||
90 | gts = | ||
91 | list_entry(entry, struct gru_thread_state, ts_next); | ||
92 | list_del(>s->ts_next); | ||
93 | mutex_lock(>s->ts_ctxlock); | ||
94 | if (gts->ts_gru) | ||
95 | gru_unload_context(gts, 0); | ||
96 | mutex_unlock(>s->ts_ctxlock); | ||
97 | gts_drop(gts); | ||
98 | } | ||
99 | kfree(vdata); | ||
100 | STAT(vdata_free); | ||
101 | } | ||
102 | |||
103 | /* | ||
104 | * gru_file_mmap | ||
105 | * | ||
106 | * Called when mmaping the device. Initializes the vma with a fault handler | ||
107 | * and private data structure necessary to allocate, track, and free the | ||
108 | * underlying pages. | ||
109 | */ | ||
110 | static int gru_file_mmap(struct file *file, struct vm_area_struct *vma) | ||
111 | { | ||
112 | if ((vma->vm_flags & (VM_SHARED | VM_WRITE)) != (VM_SHARED | VM_WRITE)) | ||
113 | return -EPERM; | ||
114 | |||
115 | if (vma->vm_start & (GRU_GSEG_PAGESIZE - 1) || | ||
116 | vma->vm_end & (GRU_GSEG_PAGESIZE - 1)) | ||
117 | return -EINVAL; | ||
118 | |||
119 | vma->vm_flags |= | ||
120 | (VM_IO | VM_DONTCOPY | VM_LOCKED | VM_DONTEXPAND | VM_PFNMAP | | ||
121 | VM_RESERVED); | ||
122 | vma->vm_page_prot = PAGE_SHARED; | ||
123 | vma->vm_ops = &gru_vm_ops; | ||
124 | |||
125 | vma->vm_private_data = gru_alloc_vma_data(vma, 0); | ||
126 | if (!vma->vm_private_data) | ||
127 | return -ENOMEM; | ||
128 | |||
129 | gru_dbg(grudev, "file %p, vaddr 0x%lx, vma %p, vdata %p\n", | ||
130 | file, vma->vm_start, vma, vma->vm_private_data); | ||
131 | return 0; | ||
132 | } | ||
133 | |||
134 | /* | ||
135 | * Create a new GRU context | ||
136 | */ | ||
137 | static int gru_create_new_context(unsigned long arg) | ||
138 | { | ||
139 | struct gru_create_context_req req; | ||
140 | struct vm_area_struct *vma; | ||
141 | struct gru_vma_data *vdata; | ||
142 | int ret = -EINVAL; | ||
143 | |||
144 | |||
145 | if (copy_from_user(&req, (void __user *)arg, sizeof(req))) | ||
146 | return -EFAULT; | ||
147 | |||
148 | if (req.data_segment_bytes == 0 || | ||
149 | req.data_segment_bytes > max_user_dsr_bytes) | ||
150 | return -EINVAL; | ||
151 | if (!req.control_blocks || !req.maximum_thread_count || | ||
152 | req.control_blocks > max_user_cbrs) | ||
153 | return -EINVAL; | ||
154 | |||
155 | if (!(req.options & GRU_OPT_MISS_MASK)) | ||
156 | req.options |= GRU_OPT_MISS_FMM_INTR; | ||
157 | |||
158 | down_write(¤t->mm->mmap_sem); | ||
159 | vma = gru_find_vma(req.gseg); | ||
160 | if (vma) { | ||
161 | vdata = vma->vm_private_data; | ||
162 | vdata->vd_user_options = req.options; | ||
163 | vdata->vd_dsr_au_count = | ||
164 | GRU_DS_BYTES_TO_AU(req.data_segment_bytes); | ||
165 | vdata->vd_cbr_au_count = GRU_CB_COUNT_TO_AU(req.control_blocks); | ||
166 | ret = 0; | ||
167 | } | ||
168 | up_write(¤t->mm->mmap_sem); | ||
169 | |||
170 | return ret; | ||
171 | } | ||
172 | |||
173 | /* | ||
174 | * Get GRU configuration info (temp - for emulator testing) | ||
175 | */ | ||
176 | static long gru_get_config_info(unsigned long arg) | ||
177 | { | ||
178 | struct gru_config_info info; | ||
179 | int nodesperblade; | ||
180 | |||
181 | if (num_online_nodes() > 1 && | ||
182 | (uv_node_to_blade_id(1) == uv_node_to_blade_id(0))) | ||
183 | nodesperblade = 2; | ||
184 | else | ||
185 | nodesperblade = 1; | ||
186 | info.cpus = num_online_cpus(); | ||
187 | info.nodes = num_online_nodes(); | ||
188 | info.blades = info.nodes / nodesperblade; | ||
189 | info.chiplets = GRU_CHIPLETS_PER_BLADE * info.blades; | ||
190 | |||
191 | if (copy_to_user((void __user *)arg, &info, sizeof(info))) | ||
192 | return -EFAULT; | ||
193 | return 0; | ||
194 | } | ||
195 | |||
196 | /* | ||
197 | * Get GRU chiplet status | ||
198 | */ | ||
199 | static long gru_get_chiplet_status(unsigned long arg) | ||
200 | { | ||
201 | struct gru_state *gru; | ||
202 | struct gru_chiplet_info info; | ||
203 | |||
204 | if (copy_from_user(&info, (void __user *)arg, sizeof(info))) | ||
205 | return -EFAULT; | ||
206 | |||
207 | if (info.node == -1) | ||
208 | info.node = numa_node_id(); | ||
209 | if (info.node >= num_possible_nodes() || | ||
210 | info.chiplet >= GRU_CHIPLETS_PER_HUB || | ||
211 | info.node < 0 || info.chiplet < 0) | ||
212 | return -EINVAL; | ||
213 | |||
214 | info.blade = uv_node_to_blade_id(info.node); | ||
215 | gru = get_gru(info.blade, info.chiplet); | ||
216 | |||
217 | info.total_dsr_bytes = GRU_NUM_DSR_BYTES; | ||
218 | info.total_cbr = GRU_NUM_CB; | ||
219 | info.total_user_dsr_bytes = GRU_NUM_DSR_BYTES - | ||
220 | gru->gs_reserved_dsr_bytes; | ||
221 | info.total_user_cbr = GRU_NUM_CB - gru->gs_reserved_cbrs; | ||
222 | info.free_user_dsr_bytes = hweight64(gru->gs_dsr_map) * | ||
223 | GRU_DSR_AU_BYTES; | ||
224 | info.free_user_cbr = hweight64(gru->gs_cbr_map) * GRU_CBR_AU_SIZE; | ||
225 | |||
226 | if (copy_to_user((void __user *)arg, &info, sizeof(info))) | ||
227 | return -EFAULT; | ||
228 | return 0; | ||
229 | } | ||
230 | |||
231 | /* | ||
232 | * gru_file_unlocked_ioctl | ||
233 | * | ||
234 | * Called to update file attributes via IOCTL calls. | ||
235 | */ | ||
236 | static long gru_file_unlocked_ioctl(struct file *file, unsigned int req, | ||
237 | unsigned long arg) | ||
238 | { | ||
239 | int err = -EBADRQC; | ||
240 | |||
241 | gru_dbg(grudev, "file %p\n", file); | ||
242 | |||
243 | switch (req) { | ||
244 | case GRU_CREATE_CONTEXT: | ||
245 | err = gru_create_new_context(arg); | ||
246 | break; | ||
247 | case GRU_SET_TASK_SLICE: | ||
248 | err = gru_set_task_slice(arg); | ||
249 | break; | ||
250 | case GRU_USER_GET_EXCEPTION_DETAIL: | ||
251 | err = gru_get_exception_detail(arg); | ||
252 | break; | ||
253 | case GRU_USER_UNLOAD_CONTEXT: | ||
254 | err = gru_user_unload_context(arg); | ||
255 | break; | ||
256 | case GRU_GET_CHIPLET_STATUS: | ||
257 | err = gru_get_chiplet_status(arg); | ||
258 | break; | ||
259 | case GRU_USER_FLUSH_TLB: | ||
260 | err = gru_user_flush_tlb(arg); | ||
261 | break; | ||
262 | case GRU_USER_CALL_OS: | ||
263 | err = gru_handle_user_call_os(arg); | ||
264 | break; | ||
265 | case GRU_GET_CONFIG_INFO: | ||
266 | err = gru_get_config_info(arg); | ||
267 | break; | ||
268 | } | ||
269 | return err; | ||
270 | } | ||
271 | |||
272 | /* | ||
273 | * Called at init time to build tables for all GRUs that are present in the | ||
274 | * system. | ||
275 | */ | ||
276 | static void gru_init_chiplet(struct gru_state *gru, unsigned long paddr, | ||
277 | void *vaddr, int nid, int bid, int grunum) | ||
278 | { | ||
279 | spin_lock_init(&gru->gs_lock); | ||
280 | spin_lock_init(&gru->gs_asid_lock); | ||
281 | gru->gs_gru_base_paddr = paddr; | ||
282 | gru->gs_gru_base_vaddr = vaddr; | ||
283 | gru->gs_gid = bid * GRU_CHIPLETS_PER_BLADE + grunum; | ||
284 | gru->gs_blade = gru_base[bid]; | ||
285 | gru->gs_blade_id = bid; | ||
286 | gru->gs_cbr_map = (GRU_CBR_AU == 64) ? ~0 : (1UL << GRU_CBR_AU) - 1; | ||
287 | gru->gs_dsr_map = (1UL << GRU_DSR_AU) - 1; | ||
288 | gru_tgh_flush_init(gru); | ||
289 | gru_dbg(grudev, "bid %d, nid %d, gru %x, vaddr %p (0x%lx)\n", | ||
290 | bid, nid, gru->gs_gid, gru->gs_gru_base_vaddr, | ||
291 | gru->gs_gru_base_paddr); | ||
292 | gru_kservices_init(gru); | ||
293 | } | ||
294 | |||
295 | static int gru_init_tables(unsigned long gru_base_paddr, void *gru_base_vaddr) | ||
296 | { | ||
297 | int pnode, nid, bid, chip; | ||
298 | int cbrs, dsrbytes, n; | ||
299 | int order = get_order(sizeof(struct gru_blade_state)); | ||
300 | struct page *page; | ||
301 | struct gru_state *gru; | ||
302 | unsigned long paddr; | ||
303 | void *vaddr; | ||
304 | |||
305 | max_user_cbrs = GRU_NUM_CB; | ||
306 | max_user_dsr_bytes = GRU_NUM_DSR_BYTES; | ||
307 | for_each_online_node(nid) { | ||
308 | bid = uv_node_to_blade_id(nid); | ||
309 | pnode = uv_node_to_pnode(nid); | ||
310 | if (gru_base[bid]) | ||
311 | continue; | ||
312 | page = alloc_pages_node(nid, GFP_KERNEL, order); | ||
313 | if (!page) | ||
314 | goto fail; | ||
315 | gru_base[bid] = page_address(page); | ||
316 | memset(gru_base[bid], 0, sizeof(struct gru_blade_state)); | ||
317 | gru_base[bid]->bs_lru_gru = &gru_base[bid]->bs_grus[0]; | ||
318 | spin_lock_init(&gru_base[bid]->bs_lock); | ||
319 | |||
320 | dsrbytes = 0; | ||
321 | cbrs = 0; | ||
322 | for (gru = gru_base[bid]->bs_grus, chip = 0; | ||
323 | chip < GRU_CHIPLETS_PER_BLADE; | ||
324 | chip++, gru++) { | ||
325 | paddr = gru_chiplet_paddr(gru_base_paddr, pnode, chip); | ||
326 | vaddr = gru_chiplet_vaddr(gru_base_vaddr, pnode, chip); | ||
327 | gru_init_chiplet(gru, paddr, vaddr, bid, nid, chip); | ||
328 | n = hweight64(gru->gs_cbr_map) * GRU_CBR_AU_SIZE; | ||
329 | cbrs = max(cbrs, n); | ||
330 | n = hweight64(gru->gs_dsr_map) * GRU_DSR_AU_BYTES; | ||
331 | dsrbytes = max(dsrbytes, n); | ||
332 | } | ||
333 | max_user_cbrs = min(max_user_cbrs, cbrs); | ||
334 | max_user_dsr_bytes = min(max_user_dsr_bytes, dsrbytes); | ||
335 | } | ||
336 | |||
337 | return 0; | ||
338 | |||
339 | fail: | ||
340 | for (nid--; nid >= 0; nid--) | ||
341 | free_pages((unsigned long)gru_base[nid], order); | ||
342 | return -ENOMEM; | ||
343 | } | ||
344 | |||
345 | #ifdef CONFIG_IA64 | ||
346 | |||
347 | static int get_base_irq(void) | ||
348 | { | ||
349 | return IRQ_GRU; | ||
350 | } | ||
351 | |||
352 | #elif defined CONFIG_X86_64 | ||
353 | |||
354 | static void noop(unsigned int irq) | ||
355 | { | ||
356 | } | ||
357 | |||
358 | static struct irq_chip gru_chip = { | ||
359 | .name = "gru", | ||
360 | .mask = noop, | ||
361 | .unmask = noop, | ||
362 | .ack = noop, | ||
363 | }; | ||
364 | |||
365 | static int get_base_irq(void) | ||
366 | { | ||
367 | set_irq_chip(IRQ_GRU, &gru_chip); | ||
368 | set_irq_chip(IRQ_GRU + 1, &gru_chip); | ||
369 | return IRQ_GRU; | ||
370 | } | ||
371 | #endif | ||
372 | |||
373 | /* | ||
374 | * gru_init | ||
375 | * | ||
376 | * Called at boot or module load time to initialize the GRUs. | ||
377 | */ | ||
378 | static int __init gru_init(void) | ||
379 | { | ||
380 | int ret, irq, chip; | ||
381 | char id[10]; | ||
382 | void *gru_start_vaddr; | ||
383 | |||
384 | if (!IS_UV()) | ||
385 | return 0; | ||
386 | |||
387 | #if defined CONFIG_IA64 | ||
388 | gru_start_paddr = 0xd000000000UL; /* ZZZZZZZZZZZZZZZZZZZ fixme */ | ||
389 | #else | ||
390 | gru_start_paddr = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR) & | ||
391 | 0x7fffffffffffUL; | ||
392 | |||
393 | #endif | ||
394 | gru_start_vaddr = __va(gru_start_paddr); | ||
395 | gru_end_paddr = gru_start_paddr + MAX_NUMNODES * GRU_SIZE; | ||
396 | printk(KERN_INFO "GRU space: 0x%lx - 0x%lx\n", | ||
397 | gru_start_paddr, gru_end_paddr); | ||
398 | irq = get_base_irq(); | ||
399 | for (chip = 0; chip < GRU_CHIPLETS_PER_BLADE; chip++) { | ||
400 | ret = request_irq(irq + chip, gru_intr, 0, id, NULL); | ||
401 | if (ret) { | ||
402 | printk(KERN_ERR "%s: request_irq failed\n", | ||
403 | GRU_DRIVER_ID_STR); | ||
404 | goto exit1; | ||
405 | } | ||
406 | } | ||
407 | |||
408 | ret = misc_register(&gru_miscdev); | ||
409 | if (ret) { | ||
410 | printk(KERN_ERR "%s: misc_register failed\n", | ||
411 | GRU_DRIVER_ID_STR); | ||
412 | goto exit1; | ||
413 | } | ||
414 | |||
415 | ret = gru_proc_init(); | ||
416 | if (ret) { | ||
417 | printk(KERN_ERR "%s: proc init failed\n", GRU_DRIVER_ID_STR); | ||
418 | goto exit2; | ||
419 | } | ||
420 | |||
421 | ret = gru_init_tables(gru_start_paddr, gru_start_vaddr); | ||
422 | if (ret) { | ||
423 | printk(KERN_ERR "%s: init tables failed\n", GRU_DRIVER_ID_STR); | ||
424 | goto exit3; | ||
425 | } | ||
426 | |||
427 | printk(KERN_INFO "%s: v%s\n", GRU_DRIVER_ID_STR, | ||
428 | GRU_DRIVER_VERSION_STR); | ||
429 | return 0; | ||
430 | |||
431 | exit3: | ||
432 | gru_proc_exit(); | ||
433 | exit2: | ||
434 | misc_deregister(&gru_miscdev); | ||
435 | exit1: | ||
436 | for (--chip; chip >= 0; chip--) | ||
437 | free_irq(irq + chip, NULL); | ||
438 | return ret; | ||
439 | |||
440 | } | ||
441 | |||
442 | static void __exit gru_exit(void) | ||
443 | { | ||
444 | int i, bid; | ||
445 | int order = get_order(sizeof(struct gru_state) * | ||
446 | GRU_CHIPLETS_PER_BLADE); | ||
447 | |||
448 | for (i = 0; i < GRU_CHIPLETS_PER_BLADE; i++) | ||
449 | free_irq(IRQ_GRU + i, NULL); | ||
450 | |||
451 | for (bid = 0; bid < GRU_MAX_BLADES; bid++) | ||
452 | free_pages((unsigned long)gru_base[bid], order); | ||
453 | |||
454 | misc_deregister(&gru_miscdev); | ||
455 | gru_proc_exit(); | ||
456 | } | ||
457 | |||
458 | static struct file_operations gru_fops = { | ||
459 | .owner = THIS_MODULE, | ||
460 | .unlocked_ioctl = gru_file_unlocked_ioctl, | ||
461 | .mmap = gru_file_mmap, | ||
462 | }; | ||
463 | |||
464 | static struct miscdevice gru_miscdev = { | ||
465 | .minor = MISC_DYNAMIC_MINOR, | ||
466 | .name = "gru", | ||
467 | .fops = &gru_fops, | ||
468 | }; | ||
469 | |||
470 | struct vm_operations_struct gru_vm_ops = { | ||
471 | .close = gru_vma_close, | ||
472 | .fault = gru_fault, | ||
473 | }; | ||
474 | |||
475 | module_init(gru_init); | ||
476 | module_exit(gru_exit); | ||
477 | |||
478 | module_param(gru_options, ulong, 0644); | ||
479 | MODULE_PARM_DESC(gru_options, "Various debug options"); | ||
480 | |||
481 | MODULE_AUTHOR("Silicon Graphics, Inc."); | ||
482 | MODULE_LICENSE("GPL"); | ||
483 | MODULE_DESCRIPTION(GRU_DRIVER_ID_STR GRU_DRIVER_VERSION_STR); | ||
484 | MODULE_VERSION(GRU_DRIVER_VERSION_STR); | ||
485 | |||
diff --git a/drivers/misc/sgi-gru/gruhandles.h b/drivers/misc/sgi-gru/gruhandles.h new file mode 100644 index 000000000000..d16031d62673 --- /dev/null +++ b/drivers/misc/sgi-gru/gruhandles.h | |||
@@ -0,0 +1,663 @@ | |||
1 | /* | ||
2 | * SN Platform GRU Driver | ||
3 | * | ||
4 | * GRU HANDLE DEFINITION | ||
5 | * | ||
6 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify | ||
9 | * it under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, | ||
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | * GNU General Public License for more details. | ||
17 | * | ||
18 | * You should have received a copy of the GNU General Public License | ||
19 | * along with this program; if not, write to the Free Software | ||
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
21 | */ | ||
22 | |||
23 | #ifndef __GRUHANDLES_H__ | ||
24 | #define __GRUHANDLES_H__ | ||
25 | #include "gru_instructions.h" | ||
26 | |||
27 | /* | ||
28 | * Manifest constants for GRU Memory Map | ||
29 | */ | ||
30 | #define GRU_GSEG0_BASE 0 | ||
31 | #define GRU_MCS_BASE (64 * 1024 * 1024) | ||
32 | #define GRU_SIZE (128UL * 1024 * 1024) | ||
33 | |||
34 | /* Handle & resource counts */ | ||
35 | #define GRU_NUM_CB 128 | ||
36 | #define GRU_NUM_DSR_BYTES (32 * 1024) | ||
37 | #define GRU_NUM_TFM 16 | ||
38 | #define GRU_NUM_TGH 24 | ||
39 | #define GRU_NUM_CBE 128 | ||
40 | #define GRU_NUM_TFH 128 | ||
41 | #define GRU_NUM_CCH 16 | ||
42 | #define GRU_NUM_GSH 1 | ||
43 | |||
44 | /* Maximum resource counts that can be reserved by user programs */ | ||
45 | #define GRU_NUM_USER_CBR GRU_NUM_CBE | ||
46 | #define GRU_NUM_USER_DSR_BYTES GRU_NUM_DSR_BYTES | ||
47 | |||
48 | /* Bytes per handle & handle stride. Code assumes all cb, tfh, cbe handles | ||
49 | * are the same */ | ||
50 | #define GRU_HANDLE_BYTES 64 | ||
51 | #define GRU_HANDLE_STRIDE 256 | ||
52 | |||
53 | /* Base addresses of handles */ | ||
54 | #define GRU_TFM_BASE (GRU_MCS_BASE + 0x00000) | ||
55 | #define GRU_TGH_BASE (GRU_MCS_BASE + 0x08000) | ||
56 | #define GRU_CBE_BASE (GRU_MCS_BASE + 0x10000) | ||
57 | #define GRU_TFH_BASE (GRU_MCS_BASE + 0x18000) | ||
58 | #define GRU_CCH_BASE (GRU_MCS_BASE + 0x20000) | ||
59 | #define GRU_GSH_BASE (GRU_MCS_BASE + 0x30000) | ||
60 | |||
61 | /* User gseg constants */ | ||
62 | #define GRU_GSEG_STRIDE (4 * 1024 * 1024) | ||
63 | #define GSEG_BASE(a) ((a) & ~(GRU_GSEG_PAGESIZE - 1)) | ||
64 | |||
65 | /* Data segment constants */ | ||
66 | #define GRU_DSR_AU_BYTES 1024 | ||
67 | #define GRU_DSR_CL (GRU_NUM_DSR_BYTES / GRU_CACHE_LINE_BYTES) | ||
68 | #define GRU_DSR_AU_CL (GRU_DSR_AU_BYTES / GRU_CACHE_LINE_BYTES) | ||
69 | #define GRU_DSR_AU (GRU_NUM_DSR_BYTES / GRU_DSR_AU_BYTES) | ||
70 | |||
71 | /* Control block constants */ | ||
72 | #define GRU_CBR_AU_SIZE 2 | ||
73 | #define GRU_CBR_AU (GRU_NUM_CBE / GRU_CBR_AU_SIZE) | ||
74 | |||
75 | /* Convert resource counts to the number of AU */ | ||
76 | #define GRU_DS_BYTES_TO_AU(n) DIV_ROUND_UP(n, GRU_DSR_AU_BYTES) | ||
77 | #define GRU_CB_COUNT_TO_AU(n) DIV_ROUND_UP(n, GRU_CBR_AU_SIZE) | ||
78 | |||
79 | /* UV limits */ | ||
80 | #define GRU_CHIPLETS_PER_HUB 2 | ||
81 | #define GRU_HUBS_PER_BLADE 1 | ||
82 | #define GRU_CHIPLETS_PER_BLADE (GRU_HUBS_PER_BLADE * GRU_CHIPLETS_PER_HUB) | ||
83 | |||
84 | /* User GRU Gseg offsets */ | ||
85 | #define GRU_CB_BASE 0 | ||
86 | #define GRU_CB_LIMIT (GRU_CB_BASE + GRU_HANDLE_STRIDE * GRU_NUM_CBE) | ||
87 | #define GRU_DS_BASE 0x20000 | ||
88 | #define GRU_DS_LIMIT (GRU_DS_BASE + GRU_NUM_DSR_BYTES) | ||
89 | |||
90 | /* Convert a GRU physical address to the chiplet offset */ | ||
91 | #define GSEGPOFF(h) ((h) & (GRU_SIZE - 1)) | ||
92 | |||
93 | /* Convert an arbitrary handle address to the beginning of the GRU segment */ | ||
94 | #ifndef __PLUGIN__ | ||
95 | #define GRUBASE(h) ((void *)((unsigned long)(h) & ~(GRU_SIZE - 1))) | ||
96 | #else | ||
97 | extern void *gmu_grubase(void *h); | ||
98 | #define GRUBASE(h) gmu_grubase(h) | ||
99 | #endif | ||
100 | |||
101 | /* General addressing macros. */ | ||
102 | static inline void *get_gseg_base_address(void *base, int ctxnum) | ||
103 | { | ||
104 | return (void *)(base + GRU_GSEG0_BASE + GRU_GSEG_STRIDE * ctxnum); | ||
105 | } | ||
106 | |||
107 | static inline void *get_gseg_base_address_cb(void *base, int ctxnum, int line) | ||
108 | { | ||
109 | return (void *)(get_gseg_base_address(base, ctxnum) + | ||
110 | GRU_CB_BASE + GRU_HANDLE_STRIDE * line); | ||
111 | } | ||
112 | |||
113 | static inline void *get_gseg_base_address_ds(void *base, int ctxnum, int line) | ||
114 | { | ||
115 | return (void *)(get_gseg_base_address(base, ctxnum) + GRU_DS_BASE + | ||
116 | GRU_CACHE_LINE_BYTES * line); | ||
117 | } | ||
118 | |||
119 | static inline struct gru_tlb_fault_map *get_tfm(void *base, int ctxnum) | ||
120 | { | ||
121 | return (struct gru_tlb_fault_map *)(base + GRU_TFM_BASE + | ||
122 | ctxnum * GRU_HANDLE_STRIDE); | ||
123 | } | ||
124 | |||
125 | static inline struct gru_tlb_global_handle *get_tgh(void *base, int ctxnum) | ||
126 | { | ||
127 | return (struct gru_tlb_global_handle *)(base + GRU_TGH_BASE + | ||
128 | ctxnum * GRU_HANDLE_STRIDE); | ||
129 | } | ||
130 | |||
131 | static inline struct gru_control_block_extended *get_cbe(void *base, int ctxnum) | ||
132 | { | ||
133 | return (struct gru_control_block_extended *)(base + GRU_CBE_BASE + | ||
134 | ctxnum * GRU_HANDLE_STRIDE); | ||
135 | } | ||
136 | |||
137 | static inline struct gru_tlb_fault_handle *get_tfh(void *base, int ctxnum) | ||
138 | { | ||
139 | return (struct gru_tlb_fault_handle *)(base + GRU_TFH_BASE + | ||
140 | ctxnum * GRU_HANDLE_STRIDE); | ||
141 | } | ||
142 | |||
143 | static inline struct gru_context_configuration_handle *get_cch(void *base, | ||
144 | int ctxnum) | ||
145 | { | ||
146 | return (struct gru_context_configuration_handle *)(base + | ||
147 | GRU_CCH_BASE + ctxnum * GRU_HANDLE_STRIDE); | ||
148 | } | ||
149 | |||
150 | static inline unsigned long get_cb_number(void *cb) | ||
151 | { | ||
152 | return (((unsigned long)cb - GRU_CB_BASE) % GRU_GSEG_PAGESIZE) / | ||
153 | GRU_HANDLE_STRIDE; | ||
154 | } | ||
155 | |||
156 | /* byte offset to a specific GRU chiplet. (p=pnode, c=chiplet (0 or 1)*/ | ||
157 | static inline unsigned long gru_chiplet_paddr(unsigned long paddr, int pnode, | ||
158 | int chiplet) | ||
159 | { | ||
160 | return paddr + GRU_SIZE * (2 * pnode + chiplet); | ||
161 | } | ||
162 | |||
163 | static inline void *gru_chiplet_vaddr(void *vaddr, int pnode, int chiplet) | ||
164 | { | ||
165 | return vaddr + GRU_SIZE * (2 * pnode + chiplet); | ||
166 | } | ||
167 | |||
168 | |||
169 | |||
170 | /* | ||
171 | * Global TLB Fault Map | ||
172 | * Bitmap of outstanding TLB misses needing interrupt/polling service. | ||
173 | * | ||
174 | */ | ||
175 | struct gru_tlb_fault_map { | ||
176 | unsigned long fault_bits[BITS_TO_LONGS(GRU_NUM_CBE)]; | ||
177 | unsigned long fill0[2]; | ||
178 | unsigned long done_bits[BITS_TO_LONGS(GRU_NUM_CBE)]; | ||
179 | unsigned long fill1[2]; | ||
180 | }; | ||
181 | |||
182 | /* | ||
183 | * TGH - TLB Global Handle | ||
184 | * Used for TLB flushing. | ||
185 | * | ||
186 | */ | ||
187 | struct gru_tlb_global_handle { | ||
188 | unsigned int cmd:1; /* DW 0 */ | ||
189 | unsigned int delresp:1; | ||
190 | unsigned int opc:1; | ||
191 | unsigned int fill1:5; | ||
192 | |||
193 | unsigned int fill2:8; | ||
194 | |||
195 | unsigned int status:2; | ||
196 | unsigned long fill3:2; | ||
197 | unsigned int state:3; | ||
198 | unsigned long fill4:1; | ||
199 | |||
200 | unsigned int cause:3; | ||
201 | unsigned long fill5:37; | ||
202 | |||
203 | unsigned long vaddr:64; /* DW 1 */ | ||
204 | |||
205 | unsigned int asid:24; /* DW 2 */ | ||
206 | unsigned int fill6:8; | ||
207 | |||
208 | unsigned int pagesize:5; | ||
209 | unsigned int fill7:11; | ||
210 | |||
211 | unsigned int global:1; | ||
212 | unsigned int fill8:15; | ||
213 | |||
214 | unsigned long vaddrmask:39; /* DW 3 */ | ||
215 | unsigned int fill9:9; | ||
216 | unsigned int n:10; | ||
217 | unsigned int fill10:6; | ||
218 | |||
219 | unsigned int ctxbitmap:16; /* DW4 */ | ||
220 | unsigned long fill11[3]; | ||
221 | }; | ||
222 | |||
223 | enum gru_tgh_cmd { | ||
224 | TGHCMD_START | ||
225 | }; | ||
226 | |||
227 | enum gru_tgh_opc { | ||
228 | TGHOP_TLBNOP, | ||
229 | TGHOP_TLBINV | ||
230 | }; | ||
231 | |||
232 | enum gru_tgh_status { | ||
233 | TGHSTATUS_IDLE, | ||
234 | TGHSTATUS_EXCEPTION, | ||
235 | TGHSTATUS_ACTIVE | ||
236 | }; | ||
237 | |||
238 | enum gru_tgh_state { | ||
239 | TGHSTATE_IDLE, | ||
240 | TGHSTATE_PE_INVAL, | ||
241 | TGHSTATE_INTERRUPT_INVAL, | ||
242 | TGHSTATE_WAITDONE, | ||
243 | TGHSTATE_RESTART_CTX, | ||
244 | }; | ||
245 | |||
246 | /* | ||
247 | * TFH - TLB Global Handle | ||
248 | * Used for TLB dropins into the GRU TLB. | ||
249 | * | ||
250 | */ | ||
251 | struct gru_tlb_fault_handle { | ||
252 | unsigned int cmd:1; /* DW 0 - low 32*/ | ||
253 | unsigned int delresp:1; | ||
254 | unsigned int fill0:2; | ||
255 | unsigned int opc:3; | ||
256 | unsigned int fill1:9; | ||
257 | |||
258 | unsigned int status:2; | ||
259 | unsigned int fill2:1; | ||
260 | unsigned int color:1; | ||
261 | unsigned int state:3; | ||
262 | unsigned int fill3:1; | ||
263 | |||
264 | unsigned int cause:7; /* DW 0 - high 32 */ | ||
265 | unsigned int fill4:1; | ||
266 | |||
267 | unsigned int indexway:12; | ||
268 | unsigned int fill5:4; | ||
269 | |||
270 | unsigned int ctxnum:4; | ||
271 | unsigned int fill6:12; | ||
272 | |||
273 | unsigned long missvaddr:64; /* DW 1 */ | ||
274 | |||
275 | unsigned int missasid:24; /* DW 2 */ | ||
276 | unsigned int fill7:8; | ||
277 | unsigned int fillasid:24; | ||
278 | unsigned int dirty:1; | ||
279 | unsigned int gaa:2; | ||
280 | unsigned long fill8:5; | ||
281 | |||
282 | unsigned long pfn:41; /* DW 3 */ | ||
283 | unsigned int fill9:7; | ||
284 | unsigned int pagesize:5; | ||
285 | unsigned int fill10:11; | ||
286 | |||
287 | unsigned long fillvaddr:64; /* DW 4 */ | ||
288 | |||
289 | unsigned long fill11[3]; | ||
290 | }; | ||
291 | |||
292 | enum gru_tfh_opc { | ||
293 | TFHOP_NOOP, | ||
294 | TFHOP_RESTART, | ||
295 | TFHOP_WRITE_ONLY, | ||
296 | TFHOP_WRITE_RESTART, | ||
297 | TFHOP_EXCEPTION, | ||
298 | TFHOP_USER_POLLING_MODE = 7, | ||
299 | }; | ||
300 | |||
301 | enum tfh_status { | ||
302 | TFHSTATUS_IDLE, | ||
303 | TFHSTATUS_EXCEPTION, | ||
304 | TFHSTATUS_ACTIVE, | ||
305 | }; | ||
306 | |||
307 | enum tfh_state { | ||
308 | TFHSTATE_INACTIVE, | ||
309 | TFHSTATE_IDLE, | ||
310 | TFHSTATE_MISS_UPM, | ||
311 | TFHSTATE_MISS_FMM, | ||
312 | TFHSTATE_HW_ERR, | ||
313 | TFHSTATE_WRITE_TLB, | ||
314 | TFHSTATE_RESTART_CBR, | ||
315 | }; | ||
316 | |||
317 | /* TFH cause bits */ | ||
318 | enum tfh_cause { | ||
319 | TFHCAUSE_NONE, | ||
320 | TFHCAUSE_TLB_MISS, | ||
321 | TFHCAUSE_TLB_MOD, | ||
322 | TFHCAUSE_HW_ERROR_RR, | ||
323 | TFHCAUSE_HW_ERROR_MAIN_ARRAY, | ||
324 | TFHCAUSE_HW_ERROR_VALID, | ||
325 | TFHCAUSE_HW_ERROR_PAGESIZE, | ||
326 | TFHCAUSE_INSTRUCTION_EXCEPTION, | ||
327 | TFHCAUSE_UNCORRECTIBLE_ERROR, | ||
328 | }; | ||
329 | |||
330 | /* GAA values */ | ||
331 | #define GAA_RAM 0x0 | ||
332 | #define GAA_NCRAM 0x2 | ||
333 | #define GAA_MMIO 0x1 | ||
334 | #define GAA_REGISTER 0x3 | ||
335 | |||
336 | /* GRU paddr shift for pfn. (NOTE: shift is NOT by actual pagesize) */ | ||
337 | #define GRU_PADDR_SHIFT 12 | ||
338 | |||
339 | /* | ||
340 | * Context Configuration handle | ||
341 | * Used to allocate resources to a GSEG context. | ||
342 | * | ||
343 | */ | ||
344 | struct gru_context_configuration_handle { | ||
345 | unsigned int cmd:1; /* DW0 */ | ||
346 | unsigned int delresp:1; | ||
347 | unsigned int opc:3; | ||
348 | unsigned int unmap_enable:1; | ||
349 | unsigned int req_slice_set_enable:1; | ||
350 | unsigned int req_slice:2; | ||
351 | unsigned int cb_int_enable:1; | ||
352 | unsigned int tlb_int_enable:1; | ||
353 | unsigned int tfm_fault_bit_enable:1; | ||
354 | unsigned int tlb_int_select:4; | ||
355 | |||
356 | unsigned int status:2; | ||
357 | unsigned int state:2; | ||
358 | unsigned int reserved2:4; | ||
359 | |||
360 | unsigned int cause:4; | ||
361 | unsigned int tfm_done_bit_enable:1; | ||
362 | unsigned int unused:3; | ||
363 | |||
364 | unsigned int dsr_allocation_map; | ||
365 | |||
366 | unsigned long cbr_allocation_map; /* DW1 */ | ||
367 | |||
368 | unsigned int asid[8]; /* DW 2 - 5 */ | ||
369 | unsigned short sizeavail[8]; /* DW 6 - 7 */ | ||
370 | } __attribute__ ((packed)); | ||
371 | |||
372 | enum gru_cch_opc { | ||
373 | CCHOP_START = 1, | ||
374 | CCHOP_ALLOCATE, | ||
375 | CCHOP_INTERRUPT, | ||
376 | CCHOP_DEALLOCATE, | ||
377 | CCHOP_INTERRUPT_SYNC, | ||
378 | }; | ||
379 | |||
380 | enum gru_cch_status { | ||
381 | CCHSTATUS_IDLE, | ||
382 | CCHSTATUS_EXCEPTION, | ||
383 | CCHSTATUS_ACTIVE, | ||
384 | }; | ||
385 | |||
386 | enum gru_cch_state { | ||
387 | CCHSTATE_INACTIVE, | ||
388 | CCHSTATE_MAPPED, | ||
389 | CCHSTATE_ACTIVE, | ||
390 | CCHSTATE_INTERRUPTED, | ||
391 | }; | ||
392 | |||
393 | /* CCH Exception cause */ | ||
394 | enum gru_cch_cause { | ||
395 | CCHCAUSE_REGION_REGISTER_WRITE_ERROR = 1, | ||
396 | CCHCAUSE_ILLEGAL_OPCODE = 2, | ||
397 | CCHCAUSE_INVALID_START_REQUEST = 3, | ||
398 | CCHCAUSE_INVALID_ALLOCATION_REQUEST = 4, | ||
399 | CCHCAUSE_INVALID_DEALLOCATION_REQUEST = 5, | ||
400 | CCHCAUSE_INVALID_INTERRUPT_REQUEST = 6, | ||
401 | CCHCAUSE_CCH_BUSY = 7, | ||
402 | CCHCAUSE_NO_CBRS_TO_ALLOCATE = 8, | ||
403 | CCHCAUSE_BAD_TFM_CONFIG = 9, | ||
404 | CCHCAUSE_CBR_RESOURCES_OVERSUBSCRIPED = 10, | ||
405 | CCHCAUSE_DSR_RESOURCES_OVERSUBSCRIPED = 11, | ||
406 | CCHCAUSE_CBR_DEALLOCATION_ERROR = 12, | ||
407 | }; | ||
408 | /* | ||
409 | * CBE - Control Block Extended | ||
410 | * Maintains internal GRU state for active CBs. | ||
411 | * | ||
412 | */ | ||
413 | struct gru_control_block_extended { | ||
414 | unsigned int reserved0:1; /* DW 0 - low */ | ||
415 | unsigned int imacpy:3; | ||
416 | unsigned int reserved1:4; | ||
417 | unsigned int xtypecpy:3; | ||
418 | unsigned int iaa0cpy:2; | ||
419 | unsigned int iaa1cpy:2; | ||
420 | unsigned int reserved2:1; | ||
421 | unsigned int opccpy:8; | ||
422 | unsigned int exopccpy:8; | ||
423 | |||
424 | unsigned int idef2cpy:22; /* DW 0 - high */ | ||
425 | unsigned int reserved3:10; | ||
426 | |||
427 | unsigned int idef4cpy:22; /* DW 1 */ | ||
428 | unsigned int reserved4:10; | ||
429 | unsigned int idef4upd:22; | ||
430 | unsigned int reserved5:10; | ||
431 | |||
432 | unsigned long idef1upd:64; /* DW 2 */ | ||
433 | |||
434 | unsigned long idef5cpy:64; /* DW 3 */ | ||
435 | |||
436 | unsigned long idef6cpy:64; /* DW 4 */ | ||
437 | |||
438 | unsigned long idef3upd:64; /* DW 5 */ | ||
439 | |||
440 | unsigned long idef5upd:64; /* DW 6 */ | ||
441 | |||
442 | unsigned int idef2upd:22; /* DW 7 */ | ||
443 | unsigned int reserved6:10; | ||
444 | |||
445 | unsigned int ecause:20; | ||
446 | unsigned int cbrstate:4; | ||
447 | unsigned int cbrexecstatus:8; | ||
448 | }; | ||
449 | |||
450 | enum gru_cbr_state { | ||
451 | CBRSTATE_INACTIVE, | ||
452 | CBRSTATE_IDLE, | ||
453 | CBRSTATE_PE_CHECK, | ||
454 | CBRSTATE_QUEUED, | ||
455 | CBRSTATE_WAIT_RESPONSE, | ||
456 | CBRSTATE_INTERRUPTED, | ||
457 | CBRSTATE_INTERRUPTED_MISS_FMM, | ||
458 | CBRSTATE_BUSY_INTERRUPT_MISS_FMM, | ||
459 | CBRSTATE_INTERRUPTED_MISS_UPM, | ||
460 | CBRSTATE_BUSY_INTERRUPTED_MISS_UPM, | ||
461 | CBRSTATE_REQUEST_ISSUE, | ||
462 | CBRSTATE_BUSY_INTERRUPT, | ||
463 | }; | ||
464 | |||
465 | /* CBE cbrexecstatus bits */ | ||
466 | #define CBR_EXS_ABORT_OCC_BIT 0 | ||
467 | #define CBR_EXS_INT_OCC_BIT 1 | ||
468 | #define CBR_EXS_PENDING_BIT 2 | ||
469 | #define CBR_EXS_QUEUED_BIT 3 | ||
470 | #define CBR_EXS_TLBHW_BIT 4 | ||
471 | #define CBR_EXS_EXCEPTION_BIT 5 | ||
472 | |||
473 | #define CBR_EXS_ABORT_OCC (1 << CBR_EXS_ABORT_OCC_BIT) | ||
474 | #define CBR_EXS_INT_OCC (1 << CBR_EXS_INT_OCC_BIT) | ||
475 | #define CBR_EXS_PENDING (1 << CBR_EXS_PENDING_BIT) | ||
476 | #define CBR_EXS_QUEUED (1 << CBR_EXS_QUEUED_BIT) | ||
477 | #define CBR_EXS_TLBHW (1 << CBR_EXS_TLBHW_BIT) | ||
478 | #define CBR_EXS_EXCEPTION (1 << CBR_EXS_EXCEPTION_BIT) | ||
479 | |||
480 | /* CBE ecause bits - defined in gru_instructions.h */ | ||
481 | |||
482 | /* | ||
483 | * Convert a processor pagesize into the strange encoded pagesize used by the | ||
484 | * GRU. Processor pagesize is encoded as log of bytes per page. (or PAGE_SHIFT) | ||
485 | * pagesize log pagesize grupagesize | ||
486 | * 4k 12 0 | ||
487 | * 16k 14 1 | ||
488 | * 64k 16 2 | ||
489 | * 256k 18 3 | ||
490 | * 1m 20 4 | ||
491 | * 2m 21 5 | ||
492 | * 4m 22 6 | ||
493 | * 16m 24 7 | ||
494 | * 64m 26 8 | ||
495 | * ... | ||
496 | */ | ||
497 | #define GRU_PAGESIZE(sh) ((((sh) > 20 ? (sh) + 2: (sh)) >> 1) - 6) | ||
498 | #define GRU_SIZEAVAIL(sh) (1UL << GRU_PAGESIZE(sh)) | ||
499 | |||
500 | /* minimum TLB purge count to ensure a full purge */ | ||
501 | #define GRUMAXINVAL 1024UL | ||
502 | |||
503 | |||
504 | /* Extract the status field from a kernel handle */ | ||
505 | #define GET_MSEG_HANDLE_STATUS(h) (((*(unsigned long *)(h)) >> 16) & 3) | ||
506 | |||
507 | static inline void start_instruction(void *h) | ||
508 | { | ||
509 | unsigned long *w0 = h; | ||
510 | |||
511 | wmb(); /* setting CMD bit must be last */ | ||
512 | *w0 = *w0 | 1; | ||
513 | gru_flush_cache(h); | ||
514 | } | ||
515 | |||
516 | static inline int wait_instruction_complete(void *h) | ||
517 | { | ||
518 | int status; | ||
519 | |||
520 | do { | ||
521 | cpu_relax(); | ||
522 | barrier(); | ||
523 | status = GET_MSEG_HANDLE_STATUS(h); | ||
524 | } while (status == CCHSTATUS_ACTIVE); | ||
525 | return status; | ||
526 | } | ||
527 | |||
528 | #if defined CONFIG_IA64 | ||
529 | static inline void cch_allocate_set_asids( | ||
530 | struct gru_context_configuration_handle *cch, int asidval) | ||
531 | { | ||
532 | int i; | ||
533 | |||
534 | for (i = 0; i <= RGN_HPAGE; i++) { /* assume HPAGE is last region */ | ||
535 | cch->asid[i] = (asidval++); | ||
536 | #if 0 | ||
537 | /* ZZZ hugepages not supported yet */ | ||
538 | if (i == RGN_HPAGE) | ||
539 | cch->sizeavail[i] = GRU_SIZEAVAIL(hpage_shift); | ||
540 | else | ||
541 | #endif | ||
542 | cch->sizeavail[i] = GRU_SIZEAVAIL(PAGE_SHIFT); | ||
543 | } | ||
544 | } | ||
545 | #elif defined CONFIG_X86_64 | ||
546 | static inline void cch_allocate_set_asids( | ||
547 | struct gru_context_configuration_handle *cch, int asidval) | ||
548 | { | ||
549 | int i; | ||
550 | |||
551 | for (i = 0; i < 8; i++) { | ||
552 | cch->asid[i] = asidval++; | ||
553 | cch->sizeavail[i] = GRU_SIZEAVAIL(PAGE_SHIFT) | | ||
554 | GRU_SIZEAVAIL(21); | ||
555 | } | ||
556 | } | ||
557 | #endif | ||
558 | |||
559 | static inline int cch_allocate(struct gru_context_configuration_handle *cch, | ||
560 | int asidval, unsigned long cbrmap, | ||
561 | unsigned long dsrmap) | ||
562 | { | ||
563 | cch_allocate_set_asids(cch, asidval); | ||
564 | cch->dsr_allocation_map = dsrmap; | ||
565 | cch->cbr_allocation_map = cbrmap; | ||
566 | cch->opc = CCHOP_ALLOCATE; | ||
567 | start_instruction(cch); | ||
568 | return wait_instruction_complete(cch); | ||
569 | } | ||
570 | |||
571 | static inline int cch_start(struct gru_context_configuration_handle *cch) | ||
572 | { | ||
573 | cch->opc = CCHOP_START; | ||
574 | start_instruction(cch); | ||
575 | return wait_instruction_complete(cch); | ||
576 | } | ||
577 | |||
578 | static inline int cch_interrupt(struct gru_context_configuration_handle *cch) | ||
579 | { | ||
580 | cch->opc = CCHOP_INTERRUPT; | ||
581 | start_instruction(cch); | ||
582 | return wait_instruction_complete(cch); | ||
583 | } | ||
584 | |||
585 | static inline int cch_deallocate(struct gru_context_configuration_handle *cch) | ||
586 | { | ||
587 | cch->opc = CCHOP_DEALLOCATE; | ||
588 | start_instruction(cch); | ||
589 | return wait_instruction_complete(cch); | ||
590 | } | ||
591 | |||
592 | static inline int cch_interrupt_sync(struct gru_context_configuration_handle | ||
593 | *cch) | ||
594 | { | ||
595 | cch->opc = CCHOP_INTERRUPT_SYNC; | ||
596 | start_instruction(cch); | ||
597 | return wait_instruction_complete(cch); | ||
598 | } | ||
599 | |||
600 | static inline int tgh_invalidate(struct gru_tlb_global_handle *tgh, | ||
601 | unsigned long vaddr, unsigned long vaddrmask, | ||
602 | int asid, int pagesize, int global, int n, | ||
603 | unsigned short ctxbitmap) | ||
604 | { | ||
605 | tgh->vaddr = vaddr; | ||
606 | tgh->asid = asid; | ||
607 | tgh->pagesize = pagesize; | ||
608 | tgh->n = n; | ||
609 | tgh->global = global; | ||
610 | tgh->vaddrmask = vaddrmask; | ||
611 | tgh->ctxbitmap = ctxbitmap; | ||
612 | tgh->opc = TGHOP_TLBINV; | ||
613 | start_instruction(tgh); | ||
614 | return wait_instruction_complete(tgh); | ||
615 | } | ||
616 | |||
617 | static inline void tfh_write_only(struct gru_tlb_fault_handle *tfh, | ||
618 | unsigned long pfn, unsigned long vaddr, | ||
619 | int asid, int dirty, int pagesize) | ||
620 | { | ||
621 | tfh->fillasid = asid; | ||
622 | tfh->fillvaddr = vaddr; | ||
623 | tfh->pfn = pfn; | ||
624 | tfh->dirty = dirty; | ||
625 | tfh->pagesize = pagesize; | ||
626 | tfh->opc = TFHOP_WRITE_ONLY; | ||
627 | start_instruction(tfh); | ||
628 | } | ||
629 | |||
630 | static inline void tfh_write_restart(struct gru_tlb_fault_handle *tfh, | ||
631 | unsigned long paddr, int gaa, | ||
632 | unsigned long vaddr, int asid, int dirty, | ||
633 | int pagesize) | ||
634 | { | ||
635 | tfh->fillasid = asid; | ||
636 | tfh->fillvaddr = vaddr; | ||
637 | tfh->pfn = paddr >> GRU_PADDR_SHIFT; | ||
638 | tfh->gaa = gaa; | ||
639 | tfh->dirty = dirty; | ||
640 | tfh->pagesize = pagesize; | ||
641 | tfh->opc = TFHOP_WRITE_RESTART; | ||
642 | start_instruction(tfh); | ||
643 | } | ||
644 | |||
645 | static inline void tfh_restart(struct gru_tlb_fault_handle *tfh) | ||
646 | { | ||
647 | tfh->opc = TFHOP_RESTART; | ||
648 | start_instruction(tfh); | ||
649 | } | ||
650 | |||
651 | static inline void tfh_user_polling_mode(struct gru_tlb_fault_handle *tfh) | ||
652 | { | ||
653 | tfh->opc = TFHOP_USER_POLLING_MODE; | ||
654 | start_instruction(tfh); | ||
655 | } | ||
656 | |||
657 | static inline void tfh_exception(struct gru_tlb_fault_handle *tfh) | ||
658 | { | ||
659 | tfh->opc = TFHOP_EXCEPTION; | ||
660 | start_instruction(tfh); | ||
661 | } | ||
662 | |||
663 | #endif /* __GRUHANDLES_H__ */ | ||
diff --git a/drivers/misc/sgi-gru/grukservices.c b/drivers/misc/sgi-gru/grukservices.c new file mode 100644 index 000000000000..dfd49af0fe18 --- /dev/null +++ b/drivers/misc/sgi-gru/grukservices.c | |||
@@ -0,0 +1,679 @@ | |||
1 | /* | ||
2 | * SN Platform GRU Driver | ||
3 | * | ||
4 | * KERNEL SERVICES THAT USE THE GRU | ||
5 | * | ||
6 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify | ||
9 | * it under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, | ||
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | * GNU General Public License for more details. | ||
17 | * | ||
18 | * You should have received a copy of the GNU General Public License | ||
19 | * along with this program; if not, write to the Free Software | ||
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
21 | */ | ||
22 | |||
23 | #include <linux/kernel.h> | ||
24 | #include <linux/errno.h> | ||
25 | #include <linux/slab.h> | ||
26 | #include <linux/mm.h> | ||
27 | #include <linux/smp_lock.h> | ||
28 | #include <linux/spinlock.h> | ||
29 | #include <linux/device.h> | ||
30 | #include <linux/miscdevice.h> | ||
31 | #include <linux/proc_fs.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/uaccess.h> | ||
34 | #include "gru.h" | ||
35 | #include "grulib.h" | ||
36 | #include "grutables.h" | ||
37 | #include "grukservices.h" | ||
38 | #include "gru_instructions.h" | ||
39 | #include <asm/uv/uv_hub.h> | ||
40 | |||
41 | /* | ||
42 | * Kernel GRU Usage | ||
43 | * | ||
44 | * The following is an interim algorithm for management of kernel GRU | ||
45 | * resources. This will likely be replaced when we better understand the | ||
46 | * kernel/user requirements. | ||
47 | * | ||
48 | * At boot time, the kernel permanently reserves a fixed number of | ||
49 | * CBRs/DSRs for each cpu to use. The resources are all taken from | ||
50 | * the GRU chiplet 1 on the blade. This leaves the full set of resources | ||
51 | * of chiplet 0 available to be allocated to a single user. | ||
52 | */ | ||
53 | |||
54 | /* Blade percpu resources PERMANENTLY reserved for kernel use */ | ||
55 | #define GRU_NUM_KERNEL_CBR 1 | ||
56 | #define GRU_NUM_KERNEL_DSR_BYTES 256 | ||
57 | #define KERNEL_CTXNUM 15 | ||
58 | |||
59 | /* GRU instruction attributes for all instructions */ | ||
60 | #define IMA IMA_CB_DELAY | ||
61 | |||
62 | /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */ | ||
63 | #define __gru_cacheline_aligned__ \ | ||
64 | __attribute__((__aligned__(GRU_CACHE_LINE_BYTES))) | ||
65 | |||
66 | #define MAGIC 0x1234567887654321UL | ||
67 | |||
68 | /* Default retry count for GRU errors on kernel instructions */ | ||
69 | #define EXCEPTION_RETRY_LIMIT 3 | ||
70 | |||
71 | /* Status of message queue sections */ | ||
72 | #define MQS_EMPTY 0 | ||
73 | #define MQS_FULL 1 | ||
74 | #define MQS_NOOP 2 | ||
75 | |||
76 | /*----------------- RESOURCE MANAGEMENT -------------------------------------*/ | ||
77 | /* optimized for x86_64 */ | ||
78 | struct message_queue { | ||
79 | union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */ | ||
80 | int qlines; /* DW 1 */ | ||
81 | long hstatus[2]; | ||
82 | void *next __gru_cacheline_aligned__;/* CL 1 */ | ||
83 | void *limit; | ||
84 | void *start; | ||
85 | void *start2; | ||
86 | char data ____cacheline_aligned; /* CL 2 */ | ||
87 | }; | ||
88 | |||
89 | /* First word in every message - used by mesq interface */ | ||
90 | struct message_header { | ||
91 | char present; | ||
92 | char present2; | ||
93 | char lines; | ||
94 | char fill; | ||
95 | }; | ||
96 | |||
97 | #define QLINES(mq) ((mq) + offsetof(struct message_queue, qlines)) | ||
98 | #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h])) | ||
99 | |||
100 | static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr) | ||
101 | { | ||
102 | struct gru_blade_state *bs; | ||
103 | int lcpu; | ||
104 | |||
105 | BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES); | ||
106 | preempt_disable(); | ||
107 | bs = gru_base[uv_numa_blade_id()]; | ||
108 | lcpu = uv_blade_processor_id(); | ||
109 | *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE; | ||
110 | *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES; | ||
111 | return 0; | ||
112 | } | ||
113 | |||
114 | static void gru_free_cpu_resources(void *cb, void *dsr) | ||
115 | { | ||
116 | preempt_enable(); | ||
117 | } | ||
118 | |||
119 | int gru_get_cb_exception_detail(void *cb, | ||
120 | struct control_block_extended_exc_detail *excdet) | ||
121 | { | ||
122 | struct gru_control_block_extended *cbe; | ||
123 | |||
124 | cbe = get_cbe(GRUBASE(cb), get_cb_number(cb)); | ||
125 | excdet->opc = cbe->opccpy; | ||
126 | excdet->exopc = cbe->exopccpy; | ||
127 | excdet->ecause = cbe->ecause; | ||
128 | excdet->exceptdet0 = cbe->idef1upd; | ||
129 | excdet->exceptdet1 = cbe->idef3upd; | ||
130 | return 0; | ||
131 | } | ||
132 | |||
133 | char *gru_get_cb_exception_detail_str(int ret, void *cb, | ||
134 | char *buf, int size) | ||
135 | { | ||
136 | struct gru_control_block_status *gen = (void *)cb; | ||
137 | struct control_block_extended_exc_detail excdet; | ||
138 | |||
139 | if (ret > 0 && gen->istatus == CBS_EXCEPTION) { | ||
140 | gru_get_cb_exception_detail(cb, &excdet); | ||
141 | snprintf(buf, size, | ||
142 | "GRU exception: cb %p, opc %d, exopc %d, ecause 0x%x," | ||
143 | "excdet0 0x%lx, excdet1 0x%x", | ||
144 | gen, excdet.opc, excdet.exopc, excdet.ecause, | ||
145 | excdet.exceptdet0, excdet.exceptdet1); | ||
146 | } else { | ||
147 | snprintf(buf, size, "No exception"); | ||
148 | } | ||
149 | return buf; | ||
150 | } | ||
151 | |||
152 | static int gru_wait_idle_or_exception(struct gru_control_block_status *gen) | ||
153 | { | ||
154 | while (gen->istatus >= CBS_ACTIVE) { | ||
155 | cpu_relax(); | ||
156 | barrier(); | ||
157 | } | ||
158 | return gen->istatus; | ||
159 | } | ||
160 | |||
161 | static int gru_retry_exception(void *cb) | ||
162 | { | ||
163 | struct gru_control_block_status *gen = (void *)cb; | ||
164 | struct control_block_extended_exc_detail excdet; | ||
165 | int retry = EXCEPTION_RETRY_LIMIT; | ||
166 | |||
167 | while (1) { | ||
168 | if (gru_get_cb_message_queue_substatus(cb)) | ||
169 | break; | ||
170 | if (gru_wait_idle_or_exception(gen) == CBS_IDLE) | ||
171 | return CBS_IDLE; | ||
172 | |||
173 | gru_get_cb_exception_detail(cb, &excdet); | ||
174 | if (excdet.ecause & ~EXCEPTION_RETRY_BITS) | ||
175 | break; | ||
176 | if (retry-- == 0) | ||
177 | break; | ||
178 | gen->icmd = 1; | ||
179 | gru_flush_cache(gen); | ||
180 | } | ||
181 | return CBS_EXCEPTION; | ||
182 | } | ||
183 | |||
184 | int gru_check_status_proc(void *cb) | ||
185 | { | ||
186 | struct gru_control_block_status *gen = (void *)cb; | ||
187 | int ret; | ||
188 | |||
189 | ret = gen->istatus; | ||
190 | if (ret != CBS_EXCEPTION) | ||
191 | return ret; | ||
192 | return gru_retry_exception(cb); | ||
193 | |||
194 | } | ||
195 | |||
196 | int gru_wait_proc(void *cb) | ||
197 | { | ||
198 | struct gru_control_block_status *gen = (void *)cb; | ||
199 | int ret; | ||
200 | |||
201 | ret = gru_wait_idle_or_exception(gen); | ||
202 | if (ret == CBS_EXCEPTION) | ||
203 | ret = gru_retry_exception(cb); | ||
204 | |||
205 | return ret; | ||
206 | } | ||
207 | |||
208 | void gru_abort(int ret, void *cb, char *str) | ||
209 | { | ||
210 | char buf[GRU_EXC_STR_SIZE]; | ||
211 | |||
212 | panic("GRU FATAL ERROR: %s - %s\n", str, | ||
213 | gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf))); | ||
214 | } | ||
215 | |||
216 | void gru_wait_abort_proc(void *cb) | ||
217 | { | ||
218 | int ret; | ||
219 | |||
220 | ret = gru_wait_proc(cb); | ||
221 | if (ret) | ||
222 | gru_abort(ret, cb, "gru_wait_abort"); | ||
223 | } | ||
224 | |||
225 | |||
226 | /*------------------------------ MESSAGE QUEUES -----------------------------*/ | ||
227 | |||
228 | /* Internal status . These are NOT returned to the user. */ | ||
229 | #define MQIE_AGAIN -1 /* try again */ | ||
230 | |||
231 | |||
232 | /* | ||
233 | * Save/restore the "present" flag that is in the second line of 2-line | ||
234 | * messages | ||
235 | */ | ||
236 | static inline int get_present2(void *p) | ||
237 | { | ||
238 | struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; | ||
239 | return mhdr->present; | ||
240 | } | ||
241 | |||
242 | static inline void restore_present2(void *p, int val) | ||
243 | { | ||
244 | struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; | ||
245 | mhdr->present = val; | ||
246 | } | ||
247 | |||
248 | /* | ||
249 | * Create a message queue. | ||
250 | * qlines - message queue size in cache lines. Includes 2-line header. | ||
251 | */ | ||
252 | int gru_create_message_queue(void *p, unsigned int bytes) | ||
253 | { | ||
254 | struct message_queue *mq = p; | ||
255 | unsigned int qlines; | ||
256 | |||
257 | qlines = bytes / GRU_CACHE_LINE_BYTES - 2; | ||
258 | memset(mq, 0, bytes); | ||
259 | mq->start = &mq->data; | ||
260 | mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES; | ||
261 | mq->next = &mq->data; | ||
262 | mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES; | ||
263 | mq->qlines = qlines; | ||
264 | mq->hstatus[0] = 0; | ||
265 | mq->hstatus[1] = 1; | ||
266 | mq->head = gru_mesq_head(2, qlines / 2 + 1); | ||
267 | return 0; | ||
268 | } | ||
269 | EXPORT_SYMBOL_GPL(gru_create_message_queue); | ||
270 | |||
271 | /* | ||
272 | * Send a NOOP message to a message queue | ||
273 | * Returns: | ||
274 | * 0 - if queue is full after the send. This is the normal case | ||
275 | * but various races can change this. | ||
276 | * -1 - if mesq sent successfully but queue not full | ||
277 | * >0 - unexpected error. MQE_xxx returned | ||
278 | */ | ||
279 | static int send_noop_message(void *cb, | ||
280 | unsigned long mq, void *mesg) | ||
281 | { | ||
282 | const struct message_header noop_header = { | ||
283 | .present = MQS_NOOP, .lines = 1}; | ||
284 | unsigned long m; | ||
285 | int substatus, ret; | ||
286 | struct message_header save_mhdr, *mhdr = mesg; | ||
287 | |||
288 | STAT(mesq_noop); | ||
289 | save_mhdr = *mhdr; | ||
290 | *mhdr = noop_header; | ||
291 | gru_mesq(cb, mq, gru_get_tri(mhdr), 1, IMA); | ||
292 | ret = gru_wait(cb); | ||
293 | |||
294 | if (ret) { | ||
295 | substatus = gru_get_cb_message_queue_substatus(cb); | ||
296 | switch (substatus) { | ||
297 | case CBSS_NO_ERROR: | ||
298 | STAT(mesq_noop_unexpected_error); | ||
299 | ret = MQE_UNEXPECTED_CB_ERR; | ||
300 | break; | ||
301 | case CBSS_LB_OVERFLOWED: | ||
302 | STAT(mesq_noop_lb_overflow); | ||
303 | ret = MQE_CONGESTION; | ||
304 | break; | ||
305 | case CBSS_QLIMIT_REACHED: | ||
306 | STAT(mesq_noop_qlimit_reached); | ||
307 | ret = 0; | ||
308 | break; | ||
309 | case CBSS_AMO_NACKED: | ||
310 | STAT(mesq_noop_amo_nacked); | ||
311 | ret = MQE_CONGESTION; | ||
312 | break; | ||
313 | case CBSS_PUT_NACKED: | ||
314 | STAT(mesq_noop_put_nacked); | ||
315 | m = mq + (gru_get_amo_value_head(cb) << 6); | ||
316 | gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1, | ||
317 | IMA); | ||
318 | if (gru_wait(cb) == CBS_IDLE) | ||
319 | ret = MQIE_AGAIN; | ||
320 | else | ||
321 | ret = MQE_UNEXPECTED_CB_ERR; | ||
322 | break; | ||
323 | case CBSS_PAGE_OVERFLOW: | ||
324 | default: | ||
325 | BUG(); | ||
326 | } | ||
327 | } | ||
328 | *mhdr = save_mhdr; | ||
329 | return ret; | ||
330 | } | ||
331 | |||
332 | /* | ||
333 | * Handle a gru_mesq full. | ||
334 | */ | ||
335 | static int send_message_queue_full(void *cb, | ||
336 | unsigned long mq, void *mesg, int lines) | ||
337 | { | ||
338 | union gru_mesqhead mqh; | ||
339 | unsigned int limit, head; | ||
340 | unsigned long avalue; | ||
341 | int half, qlines, save; | ||
342 | |||
343 | /* Determine if switching to first/second half of q */ | ||
344 | avalue = gru_get_amo_value(cb); | ||
345 | head = gru_get_amo_value_head(cb); | ||
346 | limit = gru_get_amo_value_limit(cb); | ||
347 | |||
348 | /* | ||
349 | * Fetch "qlines" from the queue header. Since the queue may be | ||
350 | * in memory that can't be accessed using socket addresses, use | ||
351 | * the GRU to access the data. Use DSR space from the message. | ||
352 | */ | ||
353 | save = *(int *)mesg; | ||
354 | gru_vload(cb, QLINES(mq), gru_get_tri(mesg), XTYPE_W, 1, 1, IMA); | ||
355 | if (gru_wait(cb) != CBS_IDLE) | ||
356 | goto cberr; | ||
357 | qlines = *(int *)mesg; | ||
358 | *(int *)mesg = save; | ||
359 | half = (limit != qlines); | ||
360 | |||
361 | if (half) | ||
362 | mqh = gru_mesq_head(qlines / 2 + 1, qlines); | ||
363 | else | ||
364 | mqh = gru_mesq_head(2, qlines / 2 + 1); | ||
365 | |||
366 | /* Try to get lock for switching head pointer */ | ||
367 | gru_gamir(cb, EOP_IR_CLR, HSTATUS(mq, half), XTYPE_DW, IMA); | ||
368 | if (gru_wait(cb) != CBS_IDLE) | ||
369 | goto cberr; | ||
370 | if (!gru_get_amo_value(cb)) { | ||
371 | STAT(mesq_qf_locked); | ||
372 | return MQE_QUEUE_FULL; | ||
373 | } | ||
374 | |||
375 | /* Got the lock. Send optional NOP if queue not full, */ | ||
376 | if (head != limit) { | ||
377 | if (send_noop_message(cb, mq, mesg)) { | ||
378 | gru_gamir(cb, EOP_IR_INC, HSTATUS(mq, half), | ||
379 | XTYPE_DW, IMA); | ||
380 | if (gru_wait(cb) != CBS_IDLE) | ||
381 | goto cberr; | ||
382 | STAT(mesq_qf_noop_not_full); | ||
383 | return MQIE_AGAIN; | ||
384 | } | ||
385 | avalue++; | ||
386 | } | ||
387 | |||
388 | /* Then flip queuehead to other half of queue. */ | ||
389 | gru_gamer(cb, EOP_ERR_CSWAP, mq, XTYPE_DW, mqh.val, avalue, IMA); | ||
390 | if (gru_wait(cb) != CBS_IDLE) | ||
391 | goto cberr; | ||
392 | |||
393 | /* If not successfully in swapping queue head, clear the hstatus lock */ | ||
394 | if (gru_get_amo_value(cb) != avalue) { | ||
395 | STAT(mesq_qf_switch_head_failed); | ||
396 | gru_gamir(cb, EOP_IR_INC, HSTATUS(mq, half), XTYPE_DW, IMA); | ||
397 | if (gru_wait(cb) != CBS_IDLE) | ||
398 | goto cberr; | ||
399 | } | ||
400 | return MQIE_AGAIN; | ||
401 | cberr: | ||
402 | STAT(mesq_qf_unexpected_error); | ||
403 | return MQE_UNEXPECTED_CB_ERR; | ||
404 | } | ||
405 | |||
406 | |||
407 | /* | ||
408 | * Handle a gru_mesq failure. Some of these failures are software recoverable | ||
409 | * or retryable. | ||
410 | */ | ||
411 | static int send_message_failure(void *cb, | ||
412 | unsigned long mq, | ||
413 | void *mesg, | ||
414 | int lines) | ||
415 | { | ||
416 | int substatus, ret = 0; | ||
417 | unsigned long m; | ||
418 | |||
419 | substatus = gru_get_cb_message_queue_substatus(cb); | ||
420 | switch (substatus) { | ||
421 | case CBSS_NO_ERROR: | ||
422 | STAT(mesq_send_unexpected_error); | ||
423 | ret = MQE_UNEXPECTED_CB_ERR; | ||
424 | break; | ||
425 | case CBSS_LB_OVERFLOWED: | ||
426 | STAT(mesq_send_lb_overflow); | ||
427 | ret = MQE_CONGESTION; | ||
428 | break; | ||
429 | case CBSS_QLIMIT_REACHED: | ||
430 | STAT(mesq_send_qlimit_reached); | ||
431 | ret = send_message_queue_full(cb, mq, mesg, lines); | ||
432 | break; | ||
433 | case CBSS_AMO_NACKED: | ||
434 | STAT(mesq_send_amo_nacked); | ||
435 | ret = MQE_CONGESTION; | ||
436 | break; | ||
437 | case CBSS_PUT_NACKED: | ||
438 | STAT(mesq_send_put_nacked); | ||
439 | m =mq + (gru_get_amo_value_head(cb) << 6); | ||
440 | gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA); | ||
441 | if (gru_wait(cb) == CBS_IDLE) | ||
442 | ret = MQE_OK; | ||
443 | else | ||
444 | ret = MQE_UNEXPECTED_CB_ERR; | ||
445 | break; | ||
446 | default: | ||
447 | BUG(); | ||
448 | } | ||
449 | return ret; | ||
450 | } | ||
451 | |||
452 | /* | ||
453 | * Send a message to a message queue | ||
454 | * cb GRU control block to use to send message | ||
455 | * mq message queue | ||
456 | * mesg message. ust be vaddr within a GSEG | ||
457 | * bytes message size (<= 2 CL) | ||
458 | */ | ||
459 | int gru_send_message_gpa(unsigned long mq, void *mesg, unsigned int bytes) | ||
460 | { | ||
461 | struct message_header *mhdr; | ||
462 | void *cb; | ||
463 | void *dsr; | ||
464 | int istatus, clines, ret; | ||
465 | |||
466 | STAT(mesq_send); | ||
467 | BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES); | ||
468 | |||
469 | clines = (bytes + GRU_CACHE_LINE_BYTES - 1) / GRU_CACHE_LINE_BYTES; | ||
470 | if (gru_get_cpu_resources(bytes, &cb, &dsr)) | ||
471 | return MQE_BUG_NO_RESOURCES; | ||
472 | memcpy(dsr, mesg, bytes); | ||
473 | mhdr = dsr; | ||
474 | mhdr->present = MQS_FULL; | ||
475 | mhdr->lines = clines; | ||
476 | if (clines == 2) { | ||
477 | mhdr->present2 = get_present2(mhdr); | ||
478 | restore_present2(mhdr, MQS_FULL); | ||
479 | } | ||
480 | |||
481 | do { | ||
482 | ret = MQE_OK; | ||
483 | gru_mesq(cb, mq, gru_get_tri(mhdr), clines, IMA); | ||
484 | istatus = gru_wait(cb); | ||
485 | if (istatus != CBS_IDLE) | ||
486 | ret = send_message_failure(cb, mq, dsr, clines); | ||
487 | } while (ret == MQIE_AGAIN); | ||
488 | gru_free_cpu_resources(cb, dsr); | ||
489 | |||
490 | if (ret) | ||
491 | STAT(mesq_send_failed); | ||
492 | return ret; | ||
493 | } | ||
494 | EXPORT_SYMBOL_GPL(gru_send_message_gpa); | ||
495 | |||
496 | /* | ||
497 | * Advance the receive pointer for the queue to the next message. | ||
498 | */ | ||
499 | void gru_free_message(void *rmq, void *mesg) | ||
500 | { | ||
501 | struct message_queue *mq = rmq; | ||
502 | struct message_header *mhdr = mq->next; | ||
503 | void *next, *pnext; | ||
504 | int half = -1; | ||
505 | int lines = mhdr->lines; | ||
506 | |||
507 | if (lines == 2) | ||
508 | restore_present2(mhdr, MQS_EMPTY); | ||
509 | mhdr->present = MQS_EMPTY; | ||
510 | |||
511 | pnext = mq->next; | ||
512 | next = pnext + GRU_CACHE_LINE_BYTES * lines; | ||
513 | if (next == mq->limit) { | ||
514 | next = mq->start; | ||
515 | half = 1; | ||
516 | } else if (pnext < mq->start2 && next >= mq->start2) { | ||
517 | half = 0; | ||
518 | } | ||
519 | |||
520 | if (half >= 0) | ||
521 | mq->hstatus[half] = 1; | ||
522 | mq->next = next; | ||
523 | } | ||
524 | EXPORT_SYMBOL_GPL(gru_free_message); | ||
525 | |||
526 | /* | ||
527 | * Get next message from message queue. Return NULL if no message | ||
528 | * present. User must call next_message() to move to next message. | ||
529 | * rmq message queue | ||
530 | */ | ||
531 | void *gru_get_next_message(void *rmq) | ||
532 | { | ||
533 | struct message_queue *mq = rmq; | ||
534 | struct message_header *mhdr = mq->next; | ||
535 | int present = mhdr->present; | ||
536 | |||
537 | /* skip NOOP messages */ | ||
538 | STAT(mesq_receive); | ||
539 | while (present == MQS_NOOP) { | ||
540 | gru_free_message(rmq, mhdr); | ||
541 | mhdr = mq->next; | ||
542 | present = mhdr->present; | ||
543 | } | ||
544 | |||
545 | /* Wait for both halves of 2 line messages */ | ||
546 | if (present == MQS_FULL && mhdr->lines == 2 && | ||
547 | get_present2(mhdr) == MQS_EMPTY) | ||
548 | present = MQS_EMPTY; | ||
549 | |||
550 | if (!present) { | ||
551 | STAT(mesq_receive_none); | ||
552 | return NULL; | ||
553 | } | ||
554 | |||
555 | if (mhdr->lines == 2) | ||
556 | restore_present2(mhdr, mhdr->present2); | ||
557 | |||
558 | return mhdr; | ||
559 | } | ||
560 | EXPORT_SYMBOL_GPL(gru_get_next_message); | ||
561 | |||
562 | /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/ | ||
563 | |||
564 | /* | ||
565 | * Copy a block of data using the GRU resources | ||
566 | */ | ||
567 | int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa, | ||
568 | unsigned int bytes) | ||
569 | { | ||
570 | void *cb; | ||
571 | void *dsr; | ||
572 | int ret; | ||
573 | |||
574 | STAT(copy_gpa); | ||
575 | if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr)) | ||
576 | return MQE_BUG_NO_RESOURCES; | ||
577 | gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr), | ||
578 | XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_BYTES, IMA); | ||
579 | ret = gru_wait(cb); | ||
580 | gru_free_cpu_resources(cb, dsr); | ||
581 | return ret; | ||
582 | } | ||
583 | EXPORT_SYMBOL_GPL(gru_copy_gpa); | ||
584 | |||
585 | /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/ | ||
586 | /* Temp - will delete after we gain confidence in the GRU */ | ||
587 | static __cacheline_aligned unsigned long word0; | ||
588 | static __cacheline_aligned unsigned long word1; | ||
589 | |||
590 | static int quicktest(struct gru_state *gru) | ||
591 | { | ||
592 | void *cb; | ||
593 | void *ds; | ||
594 | unsigned long *p; | ||
595 | |||
596 | cb = get_gseg_base_address_cb(gru->gs_gru_base_vaddr, KERNEL_CTXNUM, 0); | ||
597 | ds = get_gseg_base_address_ds(gru->gs_gru_base_vaddr, KERNEL_CTXNUM, 0); | ||
598 | p = ds; | ||
599 | word0 = MAGIC; | ||
600 | |||
601 | gru_vload(cb, uv_gpa(&word0), 0, XTYPE_DW, 1, 1, IMA); | ||
602 | if (gru_wait(cb) != CBS_IDLE) | ||
603 | BUG(); | ||
604 | |||
605 | if (*(unsigned long *)ds != MAGIC) | ||
606 | BUG(); | ||
607 | gru_vstore(cb, uv_gpa(&word1), 0, XTYPE_DW, 1, 1, IMA); | ||
608 | if (gru_wait(cb) != CBS_IDLE) | ||
609 | BUG(); | ||
610 | |||
611 | if (word0 != word1 || word0 != MAGIC) { | ||
612 | printk | ||
613 | ("GRU quicktest err: gru %d, found 0x%lx, expected 0x%lx\n", | ||
614 | gru->gs_gid, word1, MAGIC); | ||
615 | BUG(); /* ZZZ should not be fatal */ | ||
616 | } | ||
617 | |||
618 | return 0; | ||
619 | } | ||
620 | |||
621 | |||
622 | int gru_kservices_init(struct gru_state *gru) | ||
623 | { | ||
624 | struct gru_blade_state *bs; | ||
625 | struct gru_context_configuration_handle *cch; | ||
626 | unsigned long cbr_map, dsr_map; | ||
627 | int err, num, cpus_possible; | ||
628 | |||
629 | /* | ||
630 | * Currently, resources are reserved ONLY on the second chiplet | ||
631 | * on each blade. This leaves ALL resources on chiplet 0 available | ||
632 | * for user code. | ||
633 | */ | ||
634 | bs = gru->gs_blade; | ||
635 | if (gru != &bs->bs_grus[1]) | ||
636 | return 0; | ||
637 | |||
638 | cpus_possible = uv_blade_nr_possible_cpus(gru->gs_blade_id); | ||
639 | |||
640 | num = GRU_NUM_KERNEL_CBR * cpus_possible; | ||
641 | cbr_map = gru_reserve_cb_resources(gru, GRU_CB_COUNT_TO_AU(num), NULL); | ||
642 | gru->gs_reserved_cbrs += num; | ||
643 | |||
644 | num = GRU_NUM_KERNEL_DSR_BYTES * cpus_possible; | ||
645 | dsr_map = gru_reserve_ds_resources(gru, GRU_DS_BYTES_TO_AU(num), NULL); | ||
646 | gru->gs_reserved_dsr_bytes += num; | ||
647 | |||
648 | gru->gs_active_contexts++; | ||
649 | __set_bit(KERNEL_CTXNUM, &gru->gs_context_map); | ||
650 | cch = get_cch(gru->gs_gru_base_vaddr, KERNEL_CTXNUM); | ||
651 | |||
652 | bs->kernel_cb = get_gseg_base_address_cb(gru->gs_gru_base_vaddr, | ||
653 | KERNEL_CTXNUM, 0); | ||
654 | bs->kernel_dsr = get_gseg_base_address_ds(gru->gs_gru_base_vaddr, | ||
655 | KERNEL_CTXNUM, 0); | ||
656 | |||
657 | lock_cch_handle(cch); | ||
658 | cch->tfm_fault_bit_enable = 0; | ||
659 | cch->tlb_int_enable = 0; | ||
660 | cch->tfm_done_bit_enable = 0; | ||
661 | cch->unmap_enable = 1; | ||
662 | err = cch_allocate(cch, 0, cbr_map, dsr_map); | ||
663 | if (err) { | ||
664 | gru_dbg(grudev, | ||
665 | "Unable to allocate kernel CCH: gru %d, err %d\n", | ||
666 | gru->gs_gid, err); | ||
667 | BUG(); | ||
668 | } | ||
669 | if (cch_start(cch)) { | ||
670 | gru_dbg(grudev, "Unable to start kernel CCH: gru %d, err %d\n", | ||
671 | gru->gs_gid, err); | ||
672 | BUG(); | ||
673 | } | ||
674 | unlock_cch_handle(cch); | ||
675 | |||
676 | if (gru_options & GRU_QUICKLOOK) | ||
677 | quicktest(gru); | ||
678 | return 0; | ||
679 | } | ||
diff --git a/drivers/misc/sgi-gru/grukservices.h b/drivers/misc/sgi-gru/grukservices.h new file mode 100644 index 000000000000..eb17e0a3ac61 --- /dev/null +++ b/drivers/misc/sgi-gru/grukservices.h | |||
@@ -0,0 +1,134 @@ | |||
1 | |||
2 | /* | ||
3 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation; either version 2 of the License, or | ||
8 | * (at your option) any later version. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
18 | */ | ||
19 | #ifndef __GRU_KSERVICES_H_ | ||
20 | #define __GRU_KSERVICES_H_ | ||
21 | |||
22 | |||
23 | /* | ||
24 | * Message queues using the GRU to send/receive messages. | ||
25 | * | ||
26 | * These function allow the user to create a message queue for | ||
27 | * sending/receiving 1 or 2 cacheline messages using the GRU. | ||
28 | * | ||
29 | * Processes SENDING messages will use a kernel CBR/DSR to send | ||
30 | * the message. This is transparent to the caller. | ||
31 | * | ||
32 | * The receiver does not use any GRU resources. | ||
33 | * | ||
34 | * The functions support: | ||
35 | * - single receiver | ||
36 | * - multiple senders | ||
37 | * - cross partition message | ||
38 | * | ||
39 | * Missing features ZZZ: | ||
40 | * - user options for dealing with timeouts, queue full, etc. | ||
41 | * - gru_create_message_queue() needs interrupt vector info | ||
42 | */ | ||
43 | |||
44 | /* | ||
45 | * Initialize a user allocated chunk of memory to be used as | ||
46 | * a message queue. The caller must ensure that the queue is | ||
47 | * in contiguous physical memory and is cacheline aligned. | ||
48 | * | ||
49 | * Message queue size is the total number of bytes allocated | ||
50 | * to the queue including a 2 cacheline header that is used | ||
51 | * to manage the queue. | ||
52 | * | ||
53 | * Input: | ||
54 | * p pointer to user allocated memory. | ||
55 | * bytes size of message queue in bytes | ||
56 | * | ||
57 | * Errors: | ||
58 | * 0 OK | ||
59 | * >0 error | ||
60 | */ | ||
61 | extern int gru_create_message_queue(void *p, unsigned int bytes); | ||
62 | |||
63 | /* | ||
64 | * Send a message to a message queue. | ||
65 | * | ||
66 | * Note: The message queue transport mechanism uses the first 32 | ||
67 | * bits of the message. Users should avoid using these bits. | ||
68 | * | ||
69 | * | ||
70 | * Input: | ||
71 | * xmq message queue - must be a UV global physical address | ||
72 | * mesg pointer to message. Must be 64-bit aligned | ||
73 | * bytes size of message in bytes | ||
74 | * | ||
75 | * Output: | ||
76 | * 0 message sent | ||
77 | * >0 Send failure - see error codes below | ||
78 | * | ||
79 | */ | ||
80 | extern int gru_send_message_gpa(unsigned long mq_gpa, void *mesg, | ||
81 | unsigned int bytes); | ||
82 | |||
83 | /* Status values for gru_send_message() */ | ||
84 | #define MQE_OK 0 /* message sent successfully */ | ||
85 | #define MQE_CONGESTION 1 /* temporary congestion, try again */ | ||
86 | #define MQE_QUEUE_FULL 2 /* queue is full */ | ||
87 | #define MQE_UNEXPECTED_CB_ERR 3 /* unexpected CB error */ | ||
88 | #define MQE_PAGE_OVERFLOW 10 /* BUG - queue overflowed a page */ | ||
89 | #define MQE_BUG_NO_RESOURCES 11 /* BUG - could not alloc GRU cb/dsr */ | ||
90 | |||
91 | /* | ||
92 | * Advance the receive pointer for the message queue to the next message. | ||
93 | * Note: current API requires messages to be gotten & freed in order. Future | ||
94 | * API extensions may allow for out-of-order freeing. | ||
95 | * | ||
96 | * Input | ||
97 | * mq message queue | ||
98 | * mesq message being freed | ||
99 | */ | ||
100 | extern void gru_free_message(void *mq, void *mesq); | ||
101 | |||
102 | /* | ||
103 | * Get next message from message queue. Returns pointer to | ||
104 | * message OR NULL if no message present. | ||
105 | * User must call gru_free_message() after message is processed | ||
106 | * in order to move the queue pointers to next message. | ||
107 | * | ||
108 | * Input | ||
109 | * mq message queue | ||
110 | * | ||
111 | * Output: | ||
112 | * p pointer to message | ||
113 | * NULL no message available | ||
114 | */ | ||
115 | extern void *gru_get_next_message(void *mq); | ||
116 | |||
117 | |||
118 | /* | ||
119 | * Copy data using the GRU. Source or destination can be located in a remote | ||
120 | * partition. | ||
121 | * | ||
122 | * Input: | ||
123 | * dest_gpa destination global physical address | ||
124 | * src_gpa source global physical address | ||
125 | * bytes number of bytes to copy | ||
126 | * | ||
127 | * Output: | ||
128 | * 0 OK | ||
129 | * >0 error | ||
130 | */ | ||
131 | extern int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa, | ||
132 | unsigned int bytes); | ||
133 | |||
134 | #endif /* __GRU_KSERVICES_H_ */ | ||
diff --git a/drivers/misc/sgi-gru/grulib.h b/drivers/misc/sgi-gru/grulib.h new file mode 100644 index 000000000000..e56e196a6998 --- /dev/null +++ b/drivers/misc/sgi-gru/grulib.h | |||
@@ -0,0 +1,97 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU Lesser General Public License as published by | ||
6 | * the Free Software Foundation; either version 2.1 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU Lesser General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU Lesser General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | */ | ||
18 | |||
19 | #ifndef __GRULIB_H__ | ||
20 | #define __GRULIB_H__ | ||
21 | |||
22 | #define GRU_BASENAME "gru" | ||
23 | #define GRU_FULLNAME "/dev/gru" | ||
24 | #define GRU_IOCTL_NUM 'G' | ||
25 | |||
26 | /* | ||
27 | * Maximum number of GRU segments that a user can have open | ||
28 | * ZZZ temp - set high for testing. Revisit. | ||
29 | */ | ||
30 | #define GRU_MAX_OPEN_CONTEXTS 32 | ||
31 | |||
32 | /* Set Number of Request Blocks */ | ||
33 | #define GRU_CREATE_CONTEXT _IOWR(GRU_IOCTL_NUM, 1, void *) | ||
34 | |||
35 | /* Register task as using the slice */ | ||
36 | #define GRU_SET_TASK_SLICE _IOWR(GRU_IOCTL_NUM, 5, void *) | ||
37 | |||
38 | /* Fetch exception detail */ | ||
39 | #define GRU_USER_GET_EXCEPTION_DETAIL _IOWR(GRU_IOCTL_NUM, 6, void *) | ||
40 | |||
41 | /* For user call_os handling - normally a TLB fault */ | ||
42 | #define GRU_USER_CALL_OS _IOWR(GRU_IOCTL_NUM, 8, void *) | ||
43 | |||
44 | /* For user unload context */ | ||
45 | #define GRU_USER_UNLOAD_CONTEXT _IOWR(GRU_IOCTL_NUM, 9, void *) | ||
46 | |||
47 | /* For fetching GRU chiplet status */ | ||
48 | #define GRU_GET_CHIPLET_STATUS _IOWR(GRU_IOCTL_NUM, 10, void *) | ||
49 | |||
50 | /* For user TLB flushing (primarily for tests) */ | ||
51 | #define GRU_USER_FLUSH_TLB _IOWR(GRU_IOCTL_NUM, 50, void *) | ||
52 | |||
53 | /* Get some config options (primarily for tests & emulator) */ | ||
54 | #define GRU_GET_CONFIG_INFO _IOWR(GRU_IOCTL_NUM, 51, void *) | ||
55 | |||
56 | #define CONTEXT_WINDOW_BYTES(th) (GRU_GSEG_PAGESIZE * (th)) | ||
57 | #define THREAD_POINTER(p, th) (p + GRU_GSEG_PAGESIZE * (th)) | ||
58 | |||
59 | /* | ||
60 | * Structure used to pass TLB flush parameters to the driver | ||
61 | */ | ||
62 | struct gru_create_context_req { | ||
63 | unsigned long gseg; | ||
64 | unsigned int data_segment_bytes; | ||
65 | unsigned int control_blocks; | ||
66 | unsigned int maximum_thread_count; | ||
67 | unsigned int options; | ||
68 | }; | ||
69 | |||
70 | /* | ||
71 | * Structure used to pass unload context parameters to the driver | ||
72 | */ | ||
73 | struct gru_unload_context_req { | ||
74 | unsigned long gseg; | ||
75 | }; | ||
76 | |||
77 | /* | ||
78 | * Structure used to pass TLB flush parameters to the driver | ||
79 | */ | ||
80 | struct gru_flush_tlb_req { | ||
81 | unsigned long gseg; | ||
82 | unsigned long vaddr; | ||
83 | size_t len; | ||
84 | }; | ||
85 | |||
86 | /* | ||
87 | * GRU configuration info (temp - for testing) | ||
88 | */ | ||
89 | struct gru_config_info { | ||
90 | int cpus; | ||
91 | int blades; | ||
92 | int nodes; | ||
93 | int chiplets; | ||
94 | int fill[16]; | ||
95 | }; | ||
96 | |||
97 | #endif /* __GRULIB_H__ */ | ||
diff --git a/drivers/misc/sgi-gru/grumain.c b/drivers/misc/sgi-gru/grumain.c new file mode 100644 index 000000000000..0eeb8dddd2f5 --- /dev/null +++ b/drivers/misc/sgi-gru/grumain.c | |||
@@ -0,0 +1,802 @@ | |||
1 | /* | ||
2 | * SN Platform GRU Driver | ||
3 | * | ||
4 | * DRIVER TABLE MANAGER + GRU CONTEXT LOAD/UNLOAD | ||
5 | * | ||
6 | * This file is subject to the terms and conditions of the GNU General Public | ||
7 | * License. See the file "COPYING" in the main directory of this archive | ||
8 | * for more details. | ||
9 | * | ||
10 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
11 | */ | ||
12 | |||
13 | #include <linux/kernel.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/spinlock.h> | ||
17 | #include <linux/sched.h> | ||
18 | #include <linux/device.h> | ||
19 | #include <linux/list.h> | ||
20 | #include <asm/uv/uv_hub.h> | ||
21 | #include "gru.h" | ||
22 | #include "grutables.h" | ||
23 | #include "gruhandles.h" | ||
24 | |||
25 | unsigned long gru_options __read_mostly; | ||
26 | |||
27 | static struct device_driver gru_driver = { | ||
28 | .name = "gru" | ||
29 | }; | ||
30 | |||
31 | static struct device gru_device = { | ||
32 | .bus_id = {0}, | ||
33 | .driver = &gru_driver, | ||
34 | }; | ||
35 | |||
36 | struct device *grudev = &gru_device; | ||
37 | |||
38 | /* | ||
39 | * Select a gru fault map to be used by the current cpu. Note that | ||
40 | * multiple cpus may be using the same map. | ||
41 | * ZZZ should "shift" be used?? Depends on HT cpu numbering | ||
42 | * ZZZ should be inline but did not work on emulator | ||
43 | */ | ||
44 | int gru_cpu_fault_map_id(void) | ||
45 | { | ||
46 | return uv_blade_processor_id() % GRU_NUM_TFM; | ||
47 | } | ||
48 | |||
49 | /*--------- ASID Management ------------------------------------------- | ||
50 | * | ||
51 | * Initially, assign asids sequentially from MIN_ASID .. MAX_ASID. | ||
52 | * Once MAX is reached, flush the TLB & start over. However, | ||
53 | * some asids may still be in use. There won't be many (percentage wise) still | ||
54 | * in use. Search active contexts & determine the value of the first | ||
55 | * asid in use ("x"s below). Set "limit" to this value. | ||
56 | * This defines a block of assignable asids. | ||
57 | * | ||
58 | * When "limit" is reached, search forward from limit+1 and determine the | ||
59 | * next block of assignable asids. | ||
60 | * | ||
61 | * Repeat until MAX_ASID is reached, then start over again. | ||
62 | * | ||
63 | * Each time MAX_ASID is reached, increment the asid generation. Since | ||
64 | * the search for in-use asids only checks contexts with GRUs currently | ||
65 | * assigned, asids in some contexts will be missed. Prior to loading | ||
66 | * a context, the asid generation of the GTS asid is rechecked. If it | ||
67 | * doesn't match the current generation, a new asid will be assigned. | ||
68 | * | ||
69 | * 0---------------x------------x---------------------x----| | ||
70 | * ^-next ^-limit ^-MAX_ASID | ||
71 | * | ||
72 | * All asid manipulation & context loading/unloading is protected by the | ||
73 | * gs_lock. | ||
74 | */ | ||
75 | |||
76 | /* Hit the asid limit. Start over */ | ||
77 | static int gru_wrap_asid(struct gru_state *gru) | ||
78 | { | ||
79 | gru_dbg(grudev, "gru %p\n", gru); | ||
80 | STAT(asid_wrap); | ||
81 | gru->gs_asid_gen++; | ||
82 | gru_flush_all_tlb(gru); | ||
83 | return MIN_ASID; | ||
84 | } | ||
85 | |||
86 | /* Find the next chunk of unused asids */ | ||
87 | static int gru_reset_asid_limit(struct gru_state *gru, int asid) | ||
88 | { | ||
89 | int i, gid, inuse_asid, limit; | ||
90 | |||
91 | gru_dbg(grudev, "gru %p, asid 0x%x\n", gru, asid); | ||
92 | STAT(asid_next); | ||
93 | limit = MAX_ASID; | ||
94 | if (asid >= limit) | ||
95 | asid = gru_wrap_asid(gru); | ||
96 | gid = gru->gs_gid; | ||
97 | again: | ||
98 | for (i = 0; i < GRU_NUM_CCH; i++) { | ||
99 | if (!gru->gs_gts[i]) | ||
100 | continue; | ||
101 | inuse_asid = gru->gs_gts[i]->ts_gms->ms_asids[gid].mt_asid; | ||
102 | gru_dbg(grudev, "gru %p, inuse_asid 0x%x, cxtnum %d, gts %p\n", | ||
103 | gru, inuse_asid, i, gru->gs_gts[i]); | ||
104 | if (inuse_asid == asid) { | ||
105 | asid += ASID_INC; | ||
106 | if (asid >= limit) { | ||
107 | /* | ||
108 | * empty range: reset the range limit and | ||
109 | * start over | ||
110 | */ | ||
111 | limit = MAX_ASID; | ||
112 | if (asid >= MAX_ASID) | ||
113 | asid = gru_wrap_asid(gru); | ||
114 | goto again; | ||
115 | } | ||
116 | } | ||
117 | |||
118 | if ((inuse_asid > asid) && (inuse_asid < limit)) | ||
119 | limit = inuse_asid; | ||
120 | } | ||
121 | gru->gs_asid_limit = limit; | ||
122 | gru->gs_asid = asid; | ||
123 | gru_dbg(grudev, "gru %p, new asid 0x%x, new_limit 0x%x\n", gru, asid, | ||
124 | limit); | ||
125 | return asid; | ||
126 | } | ||
127 | |||
128 | /* Assign a new ASID to a thread context. */ | ||
129 | static int gru_assign_asid(struct gru_state *gru) | ||
130 | { | ||
131 | int asid; | ||
132 | |||
133 | spin_lock(&gru->gs_asid_lock); | ||
134 | gru->gs_asid += ASID_INC; | ||
135 | asid = gru->gs_asid; | ||
136 | if (asid >= gru->gs_asid_limit) | ||
137 | asid = gru_reset_asid_limit(gru, asid); | ||
138 | spin_unlock(&gru->gs_asid_lock); | ||
139 | |||
140 | gru_dbg(grudev, "gru %p, asid 0x%x\n", gru, asid); | ||
141 | return asid; | ||
142 | } | ||
143 | |||
144 | /* | ||
145 | * Clear n bits in a word. Return a word indicating the bits that were cleared. | ||
146 | * Optionally, build an array of chars that contain the bit numbers allocated. | ||
147 | */ | ||
148 | static unsigned long reserve_resources(unsigned long *p, int n, int mmax, | ||
149 | char *idx) | ||
150 | { | ||
151 | unsigned long bits = 0; | ||
152 | int i; | ||
153 | |||
154 | do { | ||
155 | i = find_first_bit(p, mmax); | ||
156 | if (i == mmax) | ||
157 | BUG(); | ||
158 | __clear_bit(i, p); | ||
159 | __set_bit(i, &bits); | ||
160 | if (idx) | ||
161 | *idx++ = i; | ||
162 | } while (--n); | ||
163 | return bits; | ||
164 | } | ||
165 | |||
166 | unsigned long gru_reserve_cb_resources(struct gru_state *gru, int cbr_au_count, | ||
167 | char *cbmap) | ||
168 | { | ||
169 | return reserve_resources(&gru->gs_cbr_map, cbr_au_count, GRU_CBR_AU, | ||
170 | cbmap); | ||
171 | } | ||
172 | |||
173 | unsigned long gru_reserve_ds_resources(struct gru_state *gru, int dsr_au_count, | ||
174 | char *dsmap) | ||
175 | { | ||
176 | return reserve_resources(&gru->gs_dsr_map, dsr_au_count, GRU_DSR_AU, | ||
177 | dsmap); | ||
178 | } | ||
179 | |||
180 | static void reserve_gru_resources(struct gru_state *gru, | ||
181 | struct gru_thread_state *gts) | ||
182 | { | ||
183 | gru->gs_active_contexts++; | ||
184 | gts->ts_cbr_map = | ||
185 | gru_reserve_cb_resources(gru, gts->ts_cbr_au_count, | ||
186 | gts->ts_cbr_idx); | ||
187 | gts->ts_dsr_map = | ||
188 | gru_reserve_ds_resources(gru, gts->ts_dsr_au_count, NULL); | ||
189 | } | ||
190 | |||
191 | static void free_gru_resources(struct gru_state *gru, | ||
192 | struct gru_thread_state *gts) | ||
193 | { | ||
194 | gru->gs_active_contexts--; | ||
195 | gru->gs_cbr_map |= gts->ts_cbr_map; | ||
196 | gru->gs_dsr_map |= gts->ts_dsr_map; | ||
197 | } | ||
198 | |||
199 | /* | ||
200 | * Check if a GRU has sufficient free resources to satisfy an allocation | ||
201 | * request. Note: GRU locks may or may not be held when this is called. If | ||
202 | * not held, recheck after acquiring the appropriate locks. | ||
203 | * | ||
204 | * Returns 1 if sufficient resources, 0 if not | ||
205 | */ | ||
206 | static int check_gru_resources(struct gru_state *gru, int cbr_au_count, | ||
207 | int dsr_au_count, int max_active_contexts) | ||
208 | { | ||
209 | return hweight64(gru->gs_cbr_map) >= cbr_au_count | ||
210 | && hweight64(gru->gs_dsr_map) >= dsr_au_count | ||
211 | && gru->gs_active_contexts < max_active_contexts; | ||
212 | } | ||
213 | |||
214 | /* | ||
215 | * TLB manangment requires tracking all GRU chiplets that have loaded a GSEG | ||
216 | * context. | ||
217 | */ | ||
218 | static int gru_load_mm_tracker(struct gru_state *gru, struct gru_mm_struct *gms, | ||
219 | int ctxnum) | ||
220 | { | ||
221 | struct gru_mm_tracker *asids = &gms->ms_asids[gru->gs_gid]; | ||
222 | unsigned short ctxbitmap = (1 << ctxnum); | ||
223 | int asid; | ||
224 | |||
225 | spin_lock(&gms->ms_asid_lock); | ||
226 | asid = asids->mt_asid; | ||
227 | |||
228 | if (asid == 0 || asids->mt_asid_gen != gru->gs_asid_gen) { | ||
229 | asid = gru_assign_asid(gru); | ||
230 | asids->mt_asid = asid; | ||
231 | asids->mt_asid_gen = gru->gs_asid_gen; | ||
232 | STAT(asid_new); | ||
233 | } else { | ||
234 | STAT(asid_reuse); | ||
235 | } | ||
236 | |||
237 | BUG_ON(asids->mt_ctxbitmap & ctxbitmap); | ||
238 | asids->mt_ctxbitmap |= ctxbitmap; | ||
239 | if (!test_bit(gru->gs_gid, gms->ms_asidmap)) | ||
240 | __set_bit(gru->gs_gid, gms->ms_asidmap); | ||
241 | spin_unlock(&gms->ms_asid_lock); | ||
242 | |||
243 | gru_dbg(grudev, | ||
244 | "gru %x, gms %p, ctxnum 0x%d, asid 0x%x, asidmap 0x%lx\n", | ||
245 | gru->gs_gid, gms, ctxnum, asid, gms->ms_asidmap[0]); | ||
246 | return asid; | ||
247 | } | ||
248 | |||
249 | static void gru_unload_mm_tracker(struct gru_state *gru, | ||
250 | struct gru_mm_struct *gms, int ctxnum) | ||
251 | { | ||
252 | struct gru_mm_tracker *asids; | ||
253 | unsigned short ctxbitmap; | ||
254 | |||
255 | asids = &gms->ms_asids[gru->gs_gid]; | ||
256 | ctxbitmap = (1 << ctxnum); | ||
257 | spin_lock(&gms->ms_asid_lock); | ||
258 | BUG_ON((asids->mt_ctxbitmap & ctxbitmap) != ctxbitmap); | ||
259 | asids->mt_ctxbitmap ^= ctxbitmap; | ||
260 | gru_dbg(grudev, "gru %x, gms %p, ctxnum 0x%d, asidmap 0x%lx\n", | ||
261 | gru->gs_gid, gms, ctxnum, gms->ms_asidmap[0]); | ||
262 | spin_unlock(&gms->ms_asid_lock); | ||
263 | } | ||
264 | |||
265 | /* | ||
266 | * Decrement the reference count on a GTS structure. Free the structure | ||
267 | * if the reference count goes to zero. | ||
268 | */ | ||
269 | void gts_drop(struct gru_thread_state *gts) | ||
270 | { | ||
271 | if (gts && atomic_dec_return(>s->ts_refcnt) == 0) { | ||
272 | gru_drop_mmu_notifier(gts->ts_gms); | ||
273 | kfree(gts); | ||
274 | STAT(gts_free); | ||
275 | } | ||
276 | } | ||
277 | |||
278 | /* | ||
279 | * Locate the GTS structure for the current thread. | ||
280 | */ | ||
281 | static struct gru_thread_state *gru_find_current_gts_nolock(struct gru_vma_data | ||
282 | *vdata, int tsid) | ||
283 | { | ||
284 | struct gru_thread_state *gts; | ||
285 | |||
286 | list_for_each_entry(gts, &vdata->vd_head, ts_next) | ||
287 | if (gts->ts_tsid == tsid) | ||
288 | return gts; | ||
289 | return NULL; | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * Allocate a thread state structure. | ||
294 | */ | ||
295 | static struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma, | ||
296 | struct gru_vma_data *vdata, | ||
297 | int tsid) | ||
298 | { | ||
299 | struct gru_thread_state *gts; | ||
300 | int bytes; | ||
301 | |||
302 | bytes = DSR_BYTES(vdata->vd_dsr_au_count) + | ||
303 | CBR_BYTES(vdata->vd_cbr_au_count); | ||
304 | bytes += sizeof(struct gru_thread_state); | ||
305 | gts = kzalloc(bytes, GFP_KERNEL); | ||
306 | if (!gts) | ||
307 | return NULL; | ||
308 | |||
309 | STAT(gts_alloc); | ||
310 | atomic_set(>s->ts_refcnt, 1); | ||
311 | mutex_init(>s->ts_ctxlock); | ||
312 | gts->ts_cbr_au_count = vdata->vd_cbr_au_count; | ||
313 | gts->ts_dsr_au_count = vdata->vd_dsr_au_count; | ||
314 | gts->ts_user_options = vdata->vd_user_options; | ||
315 | gts->ts_tsid = tsid; | ||
316 | gts->ts_user_options = vdata->vd_user_options; | ||
317 | gts->ts_ctxnum = NULLCTX; | ||
318 | gts->ts_mm = current->mm; | ||
319 | gts->ts_vma = vma; | ||
320 | gts->ts_tlb_int_select = -1; | ||
321 | gts->ts_gms = gru_register_mmu_notifier(); | ||
322 | if (!gts->ts_gms) | ||
323 | goto err; | ||
324 | |||
325 | gru_dbg(grudev, "alloc vdata %p, new gts %p\n", vdata, gts); | ||
326 | return gts; | ||
327 | |||
328 | err: | ||
329 | gts_drop(gts); | ||
330 | return NULL; | ||
331 | } | ||
332 | |||
333 | /* | ||
334 | * Allocate a vma private data structure. | ||
335 | */ | ||
336 | struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, int tsid) | ||
337 | { | ||
338 | struct gru_vma_data *vdata = NULL; | ||
339 | |||
340 | vdata = kmalloc(sizeof(*vdata), GFP_KERNEL); | ||
341 | if (!vdata) | ||
342 | return NULL; | ||
343 | |||
344 | INIT_LIST_HEAD(&vdata->vd_head); | ||
345 | spin_lock_init(&vdata->vd_lock); | ||
346 | gru_dbg(grudev, "alloc vdata %p\n", vdata); | ||
347 | return vdata; | ||
348 | } | ||
349 | |||
350 | /* | ||
351 | * Find the thread state structure for the current thread. | ||
352 | */ | ||
353 | struct gru_thread_state *gru_find_thread_state(struct vm_area_struct *vma, | ||
354 | int tsid) | ||
355 | { | ||
356 | struct gru_vma_data *vdata = vma->vm_private_data; | ||
357 | struct gru_thread_state *gts; | ||
358 | |||
359 | spin_lock(&vdata->vd_lock); | ||
360 | gts = gru_find_current_gts_nolock(vdata, tsid); | ||
361 | spin_unlock(&vdata->vd_lock); | ||
362 | gru_dbg(grudev, "vma %p, gts %p\n", vma, gts); | ||
363 | return gts; | ||
364 | } | ||
365 | |||
366 | /* | ||
367 | * Allocate a new thread state for a GSEG. Note that races may allow | ||
368 | * another thread to race to create a gts. | ||
369 | */ | ||
370 | struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct *vma, | ||
371 | int tsid) | ||
372 | { | ||
373 | struct gru_vma_data *vdata = vma->vm_private_data; | ||
374 | struct gru_thread_state *gts, *ngts; | ||
375 | |||
376 | gts = gru_alloc_gts(vma, vdata, tsid); | ||
377 | if (!gts) | ||
378 | return NULL; | ||
379 | |||
380 | spin_lock(&vdata->vd_lock); | ||
381 | ngts = gru_find_current_gts_nolock(vdata, tsid); | ||
382 | if (ngts) { | ||
383 | gts_drop(gts); | ||
384 | gts = ngts; | ||
385 | STAT(gts_double_allocate); | ||
386 | } else { | ||
387 | list_add(>s->ts_next, &vdata->vd_head); | ||
388 | } | ||
389 | spin_unlock(&vdata->vd_lock); | ||
390 | gru_dbg(grudev, "vma %p, gts %p\n", vma, gts); | ||
391 | return gts; | ||
392 | } | ||
393 | |||
394 | /* | ||
395 | * Free the GRU context assigned to the thread state. | ||
396 | */ | ||
397 | static void gru_free_gru_context(struct gru_thread_state *gts) | ||
398 | { | ||
399 | struct gru_state *gru; | ||
400 | |||
401 | gru = gts->ts_gru; | ||
402 | gru_dbg(grudev, "gts %p, gru %p\n", gts, gru); | ||
403 | |||
404 | spin_lock(&gru->gs_lock); | ||
405 | gru->gs_gts[gts->ts_ctxnum] = NULL; | ||
406 | free_gru_resources(gru, gts); | ||
407 | BUG_ON(test_bit(gts->ts_ctxnum, &gru->gs_context_map) == 0); | ||
408 | __clear_bit(gts->ts_ctxnum, &gru->gs_context_map); | ||
409 | gts->ts_ctxnum = NULLCTX; | ||
410 | gts->ts_gru = NULL; | ||
411 | spin_unlock(&gru->gs_lock); | ||
412 | |||
413 | gts_drop(gts); | ||
414 | STAT(free_context); | ||
415 | } | ||
416 | |||
417 | /* | ||
418 | * Prefetching cachelines help hardware performance. | ||
419 | * (Strictly a performance enhancement. Not functionally required). | ||
420 | */ | ||
421 | static void prefetch_data(void *p, int num, int stride) | ||
422 | { | ||
423 | while (num-- > 0) { | ||
424 | prefetchw(p); | ||
425 | p += stride; | ||
426 | } | ||
427 | } | ||
428 | |||
429 | static inline long gru_copy_handle(void *d, void *s) | ||
430 | { | ||
431 | memcpy(d, s, GRU_HANDLE_BYTES); | ||
432 | return GRU_HANDLE_BYTES; | ||
433 | } | ||
434 | |||
435 | /* rewrite in assembly & use lots of prefetch */ | ||
436 | static void gru_load_context_data(void *save, void *grubase, int ctxnum, | ||
437 | unsigned long cbrmap, unsigned long dsrmap) | ||
438 | { | ||
439 | void *gseg, *cb, *cbe; | ||
440 | unsigned long length; | ||
441 | int i, scr; | ||
442 | |||
443 | gseg = grubase + ctxnum * GRU_GSEG_STRIDE; | ||
444 | length = hweight64(dsrmap) * GRU_DSR_AU_BYTES; | ||
445 | prefetch_data(gseg + GRU_DS_BASE, length / GRU_CACHE_LINE_BYTES, | ||
446 | GRU_CACHE_LINE_BYTES); | ||
447 | |||
448 | cb = gseg + GRU_CB_BASE; | ||
449 | cbe = grubase + GRU_CBE_BASE; | ||
450 | for_each_cbr_in_allocation_map(i, &cbrmap, scr) { | ||
451 | prefetch_data(cb, 1, GRU_CACHE_LINE_BYTES); | ||
452 | prefetch_data(cbe + i * GRU_HANDLE_STRIDE, 1, | ||
453 | GRU_CACHE_LINE_BYTES); | ||
454 | cb += GRU_HANDLE_STRIDE; | ||
455 | } | ||
456 | |||
457 | cb = gseg + GRU_CB_BASE; | ||
458 | for_each_cbr_in_allocation_map(i, &cbrmap, scr) { | ||
459 | save += gru_copy_handle(cb, save); | ||
460 | save += gru_copy_handle(cbe + i * GRU_HANDLE_STRIDE, save); | ||
461 | cb += GRU_HANDLE_STRIDE; | ||
462 | } | ||
463 | |||
464 | memcpy(gseg + GRU_DS_BASE, save, length); | ||
465 | } | ||
466 | |||
467 | static void gru_unload_context_data(void *save, void *grubase, int ctxnum, | ||
468 | unsigned long cbrmap, unsigned long dsrmap) | ||
469 | { | ||
470 | void *gseg, *cb, *cbe; | ||
471 | unsigned long length; | ||
472 | int i, scr; | ||
473 | |||
474 | gseg = grubase + ctxnum * GRU_GSEG_STRIDE; | ||
475 | |||
476 | cb = gseg + GRU_CB_BASE; | ||
477 | cbe = grubase + GRU_CBE_BASE; | ||
478 | for_each_cbr_in_allocation_map(i, &cbrmap, scr) { | ||
479 | save += gru_copy_handle(save, cb); | ||
480 | save += gru_copy_handle(save, cbe + i * GRU_HANDLE_STRIDE); | ||
481 | cb += GRU_HANDLE_STRIDE; | ||
482 | } | ||
483 | length = hweight64(dsrmap) * GRU_DSR_AU_BYTES; | ||
484 | memcpy(save, gseg + GRU_DS_BASE, length); | ||
485 | } | ||
486 | |||
487 | void gru_unload_context(struct gru_thread_state *gts, int savestate) | ||
488 | { | ||
489 | struct gru_state *gru = gts->ts_gru; | ||
490 | struct gru_context_configuration_handle *cch; | ||
491 | int ctxnum = gts->ts_ctxnum; | ||
492 | |||
493 | zap_vma_ptes(gts->ts_vma, UGRUADDR(gts), GRU_GSEG_PAGESIZE); | ||
494 | cch = get_cch(gru->gs_gru_base_vaddr, ctxnum); | ||
495 | |||
496 | lock_cch_handle(cch); | ||
497 | if (cch_interrupt_sync(cch)) | ||
498 | BUG(); | ||
499 | gru_dbg(grudev, "gts %p\n", gts); | ||
500 | |||
501 | gru_unload_mm_tracker(gru, gts->ts_gms, gts->ts_ctxnum); | ||
502 | if (savestate) | ||
503 | gru_unload_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr, | ||
504 | ctxnum, gts->ts_cbr_map, | ||
505 | gts->ts_dsr_map); | ||
506 | |||
507 | if (cch_deallocate(cch)) | ||
508 | BUG(); | ||
509 | gts->ts_force_unload = 0; /* ts_force_unload locked by CCH lock */ | ||
510 | unlock_cch_handle(cch); | ||
511 | |||
512 | gru_free_gru_context(gts); | ||
513 | STAT(unload_context); | ||
514 | } | ||
515 | |||
516 | /* | ||
517 | * Load a GRU context by copying it from the thread data structure in memory | ||
518 | * to the GRU. | ||
519 | */ | ||
520 | static void gru_load_context(struct gru_thread_state *gts) | ||
521 | { | ||
522 | struct gru_state *gru = gts->ts_gru; | ||
523 | struct gru_context_configuration_handle *cch; | ||
524 | int err, asid, ctxnum = gts->ts_ctxnum; | ||
525 | |||
526 | gru_dbg(grudev, "gts %p\n", gts); | ||
527 | cch = get_cch(gru->gs_gru_base_vaddr, ctxnum); | ||
528 | |||
529 | lock_cch_handle(cch); | ||
530 | asid = gru_load_mm_tracker(gru, gts->ts_gms, gts->ts_ctxnum); | ||
531 | cch->tfm_fault_bit_enable = | ||
532 | (gts->ts_user_options == GRU_OPT_MISS_FMM_POLL | ||
533 | || gts->ts_user_options == GRU_OPT_MISS_FMM_INTR); | ||
534 | cch->tlb_int_enable = (gts->ts_user_options == GRU_OPT_MISS_FMM_INTR); | ||
535 | if (cch->tlb_int_enable) { | ||
536 | gts->ts_tlb_int_select = gru_cpu_fault_map_id(); | ||
537 | cch->tlb_int_select = gts->ts_tlb_int_select; | ||
538 | } | ||
539 | cch->tfm_done_bit_enable = 0; | ||
540 | err = cch_allocate(cch, asid, gts->ts_cbr_map, gts->ts_dsr_map); | ||
541 | if (err) { | ||
542 | gru_dbg(grudev, | ||
543 | "err %d: cch %p, gts %p, cbr 0x%lx, dsr 0x%lx\n", | ||
544 | err, cch, gts, gts->ts_cbr_map, gts->ts_dsr_map); | ||
545 | BUG(); | ||
546 | } | ||
547 | |||
548 | gru_load_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr, ctxnum, | ||
549 | gts->ts_cbr_map, gts->ts_dsr_map); | ||
550 | |||
551 | if (cch_start(cch)) | ||
552 | BUG(); | ||
553 | unlock_cch_handle(cch); | ||
554 | |||
555 | STAT(load_context); | ||
556 | } | ||
557 | |||
558 | /* | ||
559 | * Update fields in an active CCH: | ||
560 | * - retarget interrupts on local blade | ||
561 | * - force a delayed context unload by clearing the CCH asids. This | ||
562 | * forces TLB misses for new GRU instructions. The context is unloaded | ||
563 | * when the next TLB miss occurs. | ||
564 | */ | ||
565 | static int gru_update_cch(struct gru_thread_state *gts, int int_select) | ||
566 | { | ||
567 | struct gru_context_configuration_handle *cch; | ||
568 | struct gru_state *gru = gts->ts_gru; | ||
569 | int i, ctxnum = gts->ts_ctxnum, ret = 0; | ||
570 | |||
571 | cch = get_cch(gru->gs_gru_base_vaddr, ctxnum); | ||
572 | |||
573 | lock_cch_handle(cch); | ||
574 | if (cch->state == CCHSTATE_ACTIVE) { | ||
575 | if (gru->gs_gts[gts->ts_ctxnum] != gts) | ||
576 | goto exit; | ||
577 | if (cch_interrupt(cch)) | ||
578 | BUG(); | ||
579 | if (int_select >= 0) { | ||
580 | gts->ts_tlb_int_select = int_select; | ||
581 | cch->tlb_int_select = int_select; | ||
582 | } else { | ||
583 | for (i = 0; i < 8; i++) | ||
584 | cch->asid[i] = 0; | ||
585 | cch->tfm_fault_bit_enable = 0; | ||
586 | cch->tlb_int_enable = 0; | ||
587 | gts->ts_force_unload = 1; | ||
588 | } | ||
589 | if (cch_start(cch)) | ||
590 | BUG(); | ||
591 | ret = 1; | ||
592 | } | ||
593 | exit: | ||
594 | unlock_cch_handle(cch); | ||
595 | return ret; | ||
596 | } | ||
597 | |||
598 | /* | ||
599 | * Update CCH tlb interrupt select. Required when all the following is true: | ||
600 | * - task's GRU context is loaded into a GRU | ||
601 | * - task is using interrupt notification for TLB faults | ||
602 | * - task has migrated to a different cpu on the same blade where | ||
603 | * it was previously running. | ||
604 | */ | ||
605 | static int gru_retarget_intr(struct gru_thread_state *gts) | ||
606 | { | ||
607 | if (gts->ts_tlb_int_select < 0 | ||
608 | || gts->ts_tlb_int_select == gru_cpu_fault_map_id()) | ||
609 | return 0; | ||
610 | |||
611 | gru_dbg(grudev, "retarget from %d to %d\n", gts->ts_tlb_int_select, | ||
612 | gru_cpu_fault_map_id()); | ||
613 | return gru_update_cch(gts, gru_cpu_fault_map_id()); | ||
614 | } | ||
615 | |||
616 | |||
617 | /* | ||
618 | * Insufficient GRU resources available on the local blade. Steal a context from | ||
619 | * a process. This is a hack until a _real_ resource scheduler is written.... | ||
620 | */ | ||
621 | #define next_ctxnum(n) ((n) < GRU_NUM_CCH - 2 ? (n) + 1 : 0) | ||
622 | #define next_gru(b, g) (((g) < &(b)->bs_grus[GRU_CHIPLETS_PER_BLADE - 1]) ? \ | ||
623 | ((g)+1) : &(b)->bs_grus[0]) | ||
624 | |||
625 | static void gru_steal_context(struct gru_thread_state *gts) | ||
626 | { | ||
627 | struct gru_blade_state *blade; | ||
628 | struct gru_state *gru, *gru0; | ||
629 | struct gru_thread_state *ngts = NULL; | ||
630 | int ctxnum, ctxnum0, flag = 0, cbr, dsr; | ||
631 | |||
632 | cbr = gts->ts_cbr_au_count; | ||
633 | dsr = gts->ts_dsr_au_count; | ||
634 | |||
635 | preempt_disable(); | ||
636 | blade = gru_base[uv_numa_blade_id()]; | ||
637 | spin_lock(&blade->bs_lock); | ||
638 | |||
639 | ctxnum = next_ctxnum(blade->bs_lru_ctxnum); | ||
640 | gru = blade->bs_lru_gru; | ||
641 | if (ctxnum == 0) | ||
642 | gru = next_gru(blade, gru); | ||
643 | ctxnum0 = ctxnum; | ||
644 | gru0 = gru; | ||
645 | while (1) { | ||
646 | if (check_gru_resources(gru, cbr, dsr, GRU_NUM_CCH)) | ||
647 | break; | ||
648 | spin_lock(&gru->gs_lock); | ||
649 | for (; ctxnum < GRU_NUM_CCH; ctxnum++) { | ||
650 | if (flag && gru == gru0 && ctxnum == ctxnum0) | ||
651 | break; | ||
652 | ngts = gru->gs_gts[ctxnum]; | ||
653 | /* | ||
654 | * We are grabbing locks out of order, so trylock is | ||
655 | * needed. GTSs are usually not locked, so the odds of | ||
656 | * success are high. If trylock fails, try to steal a | ||
657 | * different GSEG. | ||
658 | */ | ||
659 | if (ngts && mutex_trylock(&ngts->ts_ctxlock)) | ||
660 | break; | ||
661 | ngts = NULL; | ||
662 | flag = 1; | ||
663 | } | ||
664 | spin_unlock(&gru->gs_lock); | ||
665 | if (ngts || (flag && gru == gru0 && ctxnum == ctxnum0)) | ||
666 | break; | ||
667 | ctxnum = 0; | ||
668 | gru = next_gru(blade, gru); | ||
669 | } | ||
670 | blade->bs_lru_gru = gru; | ||
671 | blade->bs_lru_ctxnum = ctxnum; | ||
672 | spin_unlock(&blade->bs_lock); | ||
673 | preempt_enable(); | ||
674 | |||
675 | if (ngts) { | ||
676 | STAT(steal_context); | ||
677 | ngts->ts_steal_jiffies = jiffies; | ||
678 | gru_unload_context(ngts, 1); | ||
679 | mutex_unlock(&ngts->ts_ctxlock); | ||
680 | } else { | ||
681 | STAT(steal_context_failed); | ||
682 | } | ||
683 | gru_dbg(grudev, | ||
684 | "stole gru %x, ctxnum %d from gts %p. Need cb %d, ds %d;" | ||
685 | " avail cb %ld, ds %ld\n", | ||
686 | gru->gs_gid, ctxnum, ngts, cbr, dsr, hweight64(gru->gs_cbr_map), | ||
687 | hweight64(gru->gs_dsr_map)); | ||
688 | } | ||
689 | |||
690 | /* | ||
691 | * Scan the GRUs on the local blade & assign a GRU context. | ||
692 | */ | ||
693 | static struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts) | ||
694 | { | ||
695 | struct gru_state *gru, *grux; | ||
696 | int i, max_active_contexts; | ||
697 | |||
698 | preempt_disable(); | ||
699 | |||
700 | again: | ||
701 | gru = NULL; | ||
702 | max_active_contexts = GRU_NUM_CCH; | ||
703 | for_each_gru_on_blade(grux, uv_numa_blade_id(), i) { | ||
704 | if (check_gru_resources(grux, gts->ts_cbr_au_count, | ||
705 | gts->ts_dsr_au_count, | ||
706 | max_active_contexts)) { | ||
707 | gru = grux; | ||
708 | max_active_contexts = grux->gs_active_contexts; | ||
709 | if (max_active_contexts == 0) | ||
710 | break; | ||
711 | } | ||
712 | } | ||
713 | |||
714 | if (gru) { | ||
715 | spin_lock(&gru->gs_lock); | ||
716 | if (!check_gru_resources(gru, gts->ts_cbr_au_count, | ||
717 | gts->ts_dsr_au_count, GRU_NUM_CCH)) { | ||
718 | spin_unlock(&gru->gs_lock); | ||
719 | goto again; | ||
720 | } | ||
721 | reserve_gru_resources(gru, gts); | ||
722 | gts->ts_gru = gru; | ||
723 | gts->ts_ctxnum = | ||
724 | find_first_zero_bit(&gru->gs_context_map, GRU_NUM_CCH); | ||
725 | BUG_ON(gts->ts_ctxnum == GRU_NUM_CCH); | ||
726 | atomic_inc(>s->ts_refcnt); | ||
727 | gru->gs_gts[gts->ts_ctxnum] = gts; | ||
728 | __set_bit(gts->ts_ctxnum, &gru->gs_context_map); | ||
729 | spin_unlock(&gru->gs_lock); | ||
730 | |||
731 | STAT(assign_context); | ||
732 | gru_dbg(grudev, | ||
733 | "gseg %p, gts %p, gru %x, ctx %d, cbr %d, dsr %d\n", | ||
734 | gseg_virtual_address(gts->ts_gru, gts->ts_ctxnum), gts, | ||
735 | gts->ts_gru->gs_gid, gts->ts_ctxnum, | ||
736 | gts->ts_cbr_au_count, gts->ts_dsr_au_count); | ||
737 | } else { | ||
738 | gru_dbg(grudev, "failed to allocate a GTS %s\n", ""); | ||
739 | STAT(assign_context_failed); | ||
740 | } | ||
741 | |||
742 | preempt_enable(); | ||
743 | return gru; | ||
744 | } | ||
745 | |||
746 | /* | ||
747 | * gru_nopage | ||
748 | * | ||
749 | * Map the user's GRU segment | ||
750 | * | ||
751 | * Note: gru segments alway mmaped on GRU_GSEG_PAGESIZE boundaries. | ||
752 | */ | ||
753 | int gru_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
754 | { | ||
755 | struct gru_thread_state *gts; | ||
756 | unsigned long paddr, vaddr; | ||
757 | |||
758 | vaddr = (unsigned long)vmf->virtual_address; | ||
759 | gru_dbg(grudev, "vma %p, vaddr 0x%lx (0x%lx)\n", | ||
760 | vma, vaddr, GSEG_BASE(vaddr)); | ||
761 | STAT(nopfn); | ||
762 | |||
763 | /* The following check ensures vaddr is a valid address in the VMA */ | ||
764 | gts = gru_find_thread_state(vma, TSID(vaddr, vma)); | ||
765 | if (!gts) | ||
766 | return VM_FAULT_SIGBUS; | ||
767 | |||
768 | again: | ||
769 | preempt_disable(); | ||
770 | mutex_lock(>s->ts_ctxlock); | ||
771 | if (gts->ts_gru) { | ||
772 | if (gts->ts_gru->gs_blade_id != uv_numa_blade_id()) { | ||
773 | STAT(migrated_nopfn_unload); | ||
774 | gru_unload_context(gts, 1); | ||
775 | } else { | ||
776 | if (gru_retarget_intr(gts)) | ||
777 | STAT(migrated_nopfn_retarget); | ||
778 | } | ||
779 | } | ||
780 | |||
781 | if (!gts->ts_gru) { | ||
782 | if (!gru_assign_gru_context(gts)) { | ||
783 | mutex_unlock(>s->ts_ctxlock); | ||
784 | preempt_enable(); | ||
785 | schedule_timeout(GRU_ASSIGN_DELAY); /* true hack ZZZ */ | ||
786 | if (gts->ts_steal_jiffies + GRU_STEAL_DELAY < jiffies) | ||
787 | gru_steal_context(gts); | ||
788 | goto again; | ||
789 | } | ||
790 | gru_load_context(gts); | ||
791 | paddr = gseg_physical_address(gts->ts_gru, gts->ts_ctxnum); | ||
792 | remap_pfn_range(vma, vaddr & ~(GRU_GSEG_PAGESIZE - 1), | ||
793 | paddr >> PAGE_SHIFT, GRU_GSEG_PAGESIZE, | ||
794 | vma->vm_page_prot); | ||
795 | } | ||
796 | |||
797 | mutex_unlock(>s->ts_ctxlock); | ||
798 | preempt_enable(); | ||
799 | |||
800 | return VM_FAULT_NOPAGE; | ||
801 | } | ||
802 | |||
diff --git a/drivers/misc/sgi-gru/gruprocfs.c b/drivers/misc/sgi-gru/gruprocfs.c new file mode 100644 index 000000000000..533923f83f1a --- /dev/null +++ b/drivers/misc/sgi-gru/gruprocfs.c | |||
@@ -0,0 +1,336 @@ | |||
1 | /* | ||
2 | * SN Platform GRU Driver | ||
3 | * | ||
4 | * PROC INTERFACES | ||
5 | * | ||
6 | * This file supports the /proc interfaces for the GRU driver | ||
7 | * | ||
8 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of the GNU General Public License as published by | ||
12 | * the Free Software Foundation; either version 2 of the License, or | ||
13 | * (at your option) any later version. | ||
14 | * | ||
15 | * This program is distributed in the hope that it will be useful, | ||
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
18 | * GNU General Public License for more details. | ||
19 | * | ||
20 | * You should have received a copy of the GNU General Public License | ||
21 | * along with this program; if not, write to the Free Software | ||
22 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
23 | */ | ||
24 | |||
25 | #include <linux/proc_fs.h> | ||
26 | #include <linux/device.h> | ||
27 | #include <linux/seq_file.h> | ||
28 | #include <linux/uaccess.h> | ||
29 | #include "gru.h" | ||
30 | #include "grulib.h" | ||
31 | #include "grutables.h" | ||
32 | |||
33 | #define printstat(s, f) printstat_val(s, &gru_stats.f, #f) | ||
34 | |||
35 | static void printstat_val(struct seq_file *s, atomic_long_t *v, char *id) | ||
36 | { | ||
37 | unsigned long val = atomic_long_read(v); | ||
38 | |||
39 | if (val) | ||
40 | seq_printf(s, "%16lu %s\n", val, id); | ||
41 | } | ||
42 | |||
43 | static int statistics_show(struct seq_file *s, void *p) | ||
44 | { | ||
45 | printstat(s, vdata_alloc); | ||
46 | printstat(s, vdata_free); | ||
47 | printstat(s, gts_alloc); | ||
48 | printstat(s, gts_free); | ||
49 | printstat(s, vdata_double_alloc); | ||
50 | printstat(s, gts_double_allocate); | ||
51 | printstat(s, assign_context); | ||
52 | printstat(s, assign_context_failed); | ||
53 | printstat(s, free_context); | ||
54 | printstat(s, load_context); | ||
55 | printstat(s, unload_context); | ||
56 | printstat(s, steal_context); | ||
57 | printstat(s, steal_context_failed); | ||
58 | printstat(s, nopfn); | ||
59 | printstat(s, break_cow); | ||
60 | printstat(s, asid_new); | ||
61 | printstat(s, asid_next); | ||
62 | printstat(s, asid_wrap); | ||
63 | printstat(s, asid_reuse); | ||
64 | printstat(s, intr); | ||
65 | printstat(s, call_os); | ||
66 | printstat(s, call_os_check_for_bug); | ||
67 | printstat(s, call_os_wait_queue); | ||
68 | printstat(s, user_flush_tlb); | ||
69 | printstat(s, user_unload_context); | ||
70 | printstat(s, user_exception); | ||
71 | printstat(s, set_task_slice); | ||
72 | printstat(s, migrate_check); | ||
73 | printstat(s, migrated_retarget); | ||
74 | printstat(s, migrated_unload); | ||
75 | printstat(s, migrated_unload_delay); | ||
76 | printstat(s, migrated_nopfn_retarget); | ||
77 | printstat(s, migrated_nopfn_unload); | ||
78 | printstat(s, tlb_dropin); | ||
79 | printstat(s, tlb_dropin_fail_no_asid); | ||
80 | printstat(s, tlb_dropin_fail_upm); | ||
81 | printstat(s, tlb_dropin_fail_invalid); | ||
82 | printstat(s, tlb_dropin_fail_range_active); | ||
83 | printstat(s, tlb_dropin_fail_idle); | ||
84 | printstat(s, tlb_dropin_fail_fmm); | ||
85 | printstat(s, mmu_invalidate_range); | ||
86 | printstat(s, mmu_invalidate_page); | ||
87 | printstat(s, mmu_clear_flush_young); | ||
88 | printstat(s, flush_tlb); | ||
89 | printstat(s, flush_tlb_gru); | ||
90 | printstat(s, flush_tlb_gru_tgh); | ||
91 | printstat(s, flush_tlb_gru_zero_asid); | ||
92 | printstat(s, copy_gpa); | ||
93 | printstat(s, mesq_receive); | ||
94 | printstat(s, mesq_receive_none); | ||
95 | printstat(s, mesq_send); | ||
96 | printstat(s, mesq_send_failed); | ||
97 | printstat(s, mesq_noop); | ||
98 | printstat(s, mesq_send_unexpected_error); | ||
99 | printstat(s, mesq_send_lb_overflow); | ||
100 | printstat(s, mesq_send_qlimit_reached); | ||
101 | printstat(s, mesq_send_amo_nacked); | ||
102 | printstat(s, mesq_send_put_nacked); | ||
103 | printstat(s, mesq_qf_not_full); | ||
104 | printstat(s, mesq_qf_locked); | ||
105 | printstat(s, mesq_qf_noop_not_full); | ||
106 | printstat(s, mesq_qf_switch_head_failed); | ||
107 | printstat(s, mesq_qf_unexpected_error); | ||
108 | printstat(s, mesq_noop_unexpected_error); | ||
109 | printstat(s, mesq_noop_lb_overflow); | ||
110 | printstat(s, mesq_noop_qlimit_reached); | ||
111 | printstat(s, mesq_noop_amo_nacked); | ||
112 | printstat(s, mesq_noop_put_nacked); | ||
113 | return 0; | ||
114 | } | ||
115 | |||
116 | static ssize_t statistics_write(struct file *file, const char __user *userbuf, | ||
117 | size_t count, loff_t *data) | ||
118 | { | ||
119 | memset(&gru_stats, 0, sizeof(gru_stats)); | ||
120 | return count; | ||
121 | } | ||
122 | |||
123 | static int options_show(struct seq_file *s, void *p) | ||
124 | { | ||
125 | seq_printf(s, "0x%lx\n", gru_options); | ||
126 | return 0; | ||
127 | } | ||
128 | |||
129 | static ssize_t options_write(struct file *file, const char __user *userbuf, | ||
130 | size_t count, loff_t *data) | ||
131 | { | ||
132 | unsigned long val; | ||
133 | char buf[80]; | ||
134 | |||
135 | if (copy_from_user | ||
136 | (buf, userbuf, count < sizeof(buf) ? count : sizeof(buf))) | ||
137 | return -EFAULT; | ||
138 | if (!strict_strtoul(buf, 10, &val)) | ||
139 | gru_options = val; | ||
140 | |||
141 | return count; | ||
142 | } | ||
143 | |||
144 | static int cch_seq_show(struct seq_file *file, void *data) | ||
145 | { | ||
146 | long gid = *(long *)data; | ||
147 | int i; | ||
148 | struct gru_state *gru = GID_TO_GRU(gid); | ||
149 | struct gru_thread_state *ts; | ||
150 | const char *mode[] = { "??", "UPM", "INTR", "OS_POLL" }; | ||
151 | |||
152 | if (gid == 0) | ||
153 | seq_printf(file, "#%5s%5s%6s%9s%6s%8s%8s\n", "gid", "bid", | ||
154 | "ctx#", "pid", "cbrs", "dsbytes", "mode"); | ||
155 | if (gru) | ||
156 | for (i = 0; i < GRU_NUM_CCH; i++) { | ||
157 | ts = gru->gs_gts[i]; | ||
158 | if (!ts) | ||
159 | continue; | ||
160 | seq_printf(file, " %5d%5d%6d%9d%6d%8d%8s\n", | ||
161 | gru->gs_gid, gru->gs_blade_id, i, | ||
162 | ts->ts_tgid_owner, | ||
163 | ts->ts_cbr_au_count * GRU_CBR_AU_SIZE, | ||
164 | ts->ts_cbr_au_count * GRU_DSR_AU_BYTES, | ||
165 | mode[ts->ts_user_options & | ||
166 | GRU_OPT_MISS_MASK]); | ||
167 | } | ||
168 | |||
169 | return 0; | ||
170 | } | ||
171 | |||
172 | static int gru_seq_show(struct seq_file *file, void *data) | ||
173 | { | ||
174 | long gid = *(long *)data, ctxfree, cbrfree, dsrfree; | ||
175 | struct gru_state *gru = GID_TO_GRU(gid); | ||
176 | |||
177 | if (gid == 0) { | ||
178 | seq_printf(file, "#%5s%5s%7s%6s%6s%8s%6s%6s\n", "gid", "nid", | ||
179 | "ctx", "cbr", "dsr", "ctx", "cbr", "dsr"); | ||
180 | seq_printf(file, "#%5s%5s%7s%6s%6s%8s%6s%6s\n", "", "", "busy", | ||
181 | "busy", "busy", "free", "free", "free"); | ||
182 | } | ||
183 | if (gru) { | ||
184 | ctxfree = GRU_NUM_CCH - gru->gs_active_contexts; | ||
185 | cbrfree = hweight64(gru->gs_cbr_map) * GRU_CBR_AU_SIZE; | ||
186 | dsrfree = hweight64(gru->gs_dsr_map) * GRU_DSR_AU_BYTES; | ||
187 | seq_printf(file, " %5d%5d%7ld%6ld%6ld%8ld%6ld%6ld\n", | ||
188 | gru->gs_gid, gru->gs_blade_id, GRU_NUM_CCH - ctxfree, | ||
189 | GRU_NUM_CBE - cbrfree, GRU_NUM_DSR_BYTES - dsrfree, | ||
190 | ctxfree, cbrfree, dsrfree); | ||
191 | } | ||
192 | |||
193 | return 0; | ||
194 | } | ||
195 | |||
196 | static void seq_stop(struct seq_file *file, void *data) | ||
197 | { | ||
198 | } | ||
199 | |||
200 | static void *seq_start(struct seq_file *file, loff_t *gid) | ||
201 | { | ||
202 | if (*gid < GRU_MAX_GRUS) | ||
203 | return gid; | ||
204 | return NULL; | ||
205 | } | ||
206 | |||
207 | static void *seq_next(struct seq_file *file, void *data, loff_t *gid) | ||
208 | { | ||
209 | (*gid)++; | ||
210 | if (*gid < GRU_MAX_GRUS) | ||
211 | return gid; | ||
212 | return NULL; | ||
213 | } | ||
214 | |||
215 | static const struct seq_operations cch_seq_ops = { | ||
216 | .start = seq_start, | ||
217 | .next = seq_next, | ||
218 | .stop = seq_stop, | ||
219 | .show = cch_seq_show | ||
220 | }; | ||
221 | |||
222 | static const struct seq_operations gru_seq_ops = { | ||
223 | .start = seq_start, | ||
224 | .next = seq_next, | ||
225 | .stop = seq_stop, | ||
226 | .show = gru_seq_show | ||
227 | }; | ||
228 | |||
229 | static int statistics_open(struct inode *inode, struct file *file) | ||
230 | { | ||
231 | return single_open(file, statistics_show, NULL); | ||
232 | } | ||
233 | |||
234 | static int options_open(struct inode *inode, struct file *file) | ||
235 | { | ||
236 | return single_open(file, options_show, NULL); | ||
237 | } | ||
238 | |||
239 | static int cch_open(struct inode *inode, struct file *file) | ||
240 | { | ||
241 | return seq_open(file, &cch_seq_ops); | ||
242 | } | ||
243 | |||
244 | static int gru_open(struct inode *inode, struct file *file) | ||
245 | { | ||
246 | return seq_open(file, &gru_seq_ops); | ||
247 | } | ||
248 | |||
249 | /* *INDENT-OFF* */ | ||
250 | static const struct file_operations statistics_fops = { | ||
251 | .open = statistics_open, | ||
252 | .read = seq_read, | ||
253 | .write = statistics_write, | ||
254 | .llseek = seq_lseek, | ||
255 | .release = single_release, | ||
256 | }; | ||
257 | |||
258 | static const struct file_operations options_fops = { | ||
259 | .open = options_open, | ||
260 | .read = seq_read, | ||
261 | .write = options_write, | ||
262 | .llseek = seq_lseek, | ||
263 | .release = single_release, | ||
264 | }; | ||
265 | |||
266 | static const struct file_operations cch_fops = { | ||
267 | .open = cch_open, | ||
268 | .read = seq_read, | ||
269 | .llseek = seq_lseek, | ||
270 | .release = seq_release, | ||
271 | }; | ||
272 | static const struct file_operations gru_fops = { | ||
273 | .open = gru_open, | ||
274 | .read = seq_read, | ||
275 | .llseek = seq_lseek, | ||
276 | .release = seq_release, | ||
277 | }; | ||
278 | |||
279 | static struct proc_entry { | ||
280 | char *name; | ||
281 | int mode; | ||
282 | const struct file_operations *fops; | ||
283 | struct proc_dir_entry *entry; | ||
284 | } proc_files[] = { | ||
285 | {"statistics", 0644, &statistics_fops}, | ||
286 | {"debug_options", 0644, &options_fops}, | ||
287 | {"cch_status", 0444, &cch_fops}, | ||
288 | {"gru_status", 0444, &gru_fops}, | ||
289 | {NULL} | ||
290 | }; | ||
291 | /* *INDENT-ON* */ | ||
292 | |||
293 | static struct proc_dir_entry *proc_gru __read_mostly; | ||
294 | |||
295 | static int create_proc_file(struct proc_entry *p) | ||
296 | { | ||
297 | p->entry = create_proc_entry(p->name, p->mode, proc_gru); | ||
298 | if (!p->entry) | ||
299 | return -1; | ||
300 | p->entry->proc_fops = p->fops; | ||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | static void delete_proc_files(void) | ||
305 | { | ||
306 | struct proc_entry *p; | ||
307 | |||
308 | if (proc_gru) { | ||
309 | for (p = proc_files; p->name; p++) | ||
310 | if (p->entry) | ||
311 | remove_proc_entry(p->name, proc_gru); | ||
312 | remove_proc_entry("gru", NULL); | ||
313 | } | ||
314 | } | ||
315 | |||
316 | int gru_proc_init(void) | ||
317 | { | ||
318 | struct proc_entry *p; | ||
319 | |||
320 | proc_mkdir("sgi_uv", NULL); | ||
321 | proc_gru = proc_mkdir("sgi_uv/gru", NULL); | ||
322 | |||
323 | for (p = proc_files; p->name; p++) | ||
324 | if (create_proc_file(p)) | ||
325 | goto err; | ||
326 | return 0; | ||
327 | |||
328 | err: | ||
329 | delete_proc_files(); | ||
330 | return -1; | ||
331 | } | ||
332 | |||
333 | void gru_proc_exit(void) | ||
334 | { | ||
335 | delete_proc_files(); | ||
336 | } | ||
diff --git a/drivers/misc/sgi-gru/grutables.h b/drivers/misc/sgi-gru/grutables.h new file mode 100644 index 000000000000..4251018f70ff --- /dev/null +++ b/drivers/misc/sgi-gru/grutables.h | |||
@@ -0,0 +1,609 @@ | |||
1 | /* | ||
2 | * SN Platform GRU Driver | ||
3 | * | ||
4 | * GRU DRIVER TABLES, MACROS, externs, etc | ||
5 | * | ||
6 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify | ||
9 | * it under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, | ||
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | * GNU General Public License for more details. | ||
17 | * | ||
18 | * You should have received a copy of the GNU General Public License | ||
19 | * along with this program; if not, write to the Free Software | ||
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
21 | */ | ||
22 | |||
23 | #ifndef __GRUTABLES_H__ | ||
24 | #define __GRUTABLES_H__ | ||
25 | |||
26 | /* | ||
27 | * GRU Chiplet: | ||
28 | * The GRU is a user addressible memory accelerator. It provides | ||
29 | * several forms of load, store, memset, bcopy instructions. In addition, it | ||
30 | * contains special instructions for AMOs, sending messages to message | ||
31 | * queues, etc. | ||
32 | * | ||
33 | * The GRU is an integral part of the node controller. It connects | ||
34 | * directly to the cpu socket. In its current implementation, there are 2 | ||
35 | * GRU chiplets in the node controller on each blade (~node). | ||
36 | * | ||
37 | * The entire GRU memory space is fully coherent and cacheable by the cpus. | ||
38 | * | ||
39 | * Each GRU chiplet has a physical memory map that looks like the following: | ||
40 | * | ||
41 | * +-----------------+ | ||
42 | * |/////////////////| | ||
43 | * |/////////////////| | ||
44 | * |/////////////////| | ||
45 | * |/////////////////| | ||
46 | * |/////////////////| | ||
47 | * |/////////////////| | ||
48 | * |/////////////////| | ||
49 | * |/////////////////| | ||
50 | * +-----------------+ | ||
51 | * | system control | | ||
52 | * +-----------------+ _______ +-------------+ | ||
53 | * |/////////////////| / | | | ||
54 | * |/////////////////| / | | | ||
55 | * |/////////////////| / | instructions| | ||
56 | * |/////////////////| / | | | ||
57 | * |/////////////////| / | | | ||
58 | * |/////////////////| / |-------------| | ||
59 | * |/////////////////| / | | | ||
60 | * +-----------------+ | | | ||
61 | * | context 15 | | data | | ||
62 | * +-----------------+ | | | ||
63 | * | ...... | \ | | | ||
64 | * +-----------------+ \____________ +-------------+ | ||
65 | * | context 1 | | ||
66 | * +-----------------+ | ||
67 | * | context 0 | | ||
68 | * +-----------------+ | ||
69 | * | ||
70 | * Each of the "contexts" is a chunk of memory that can be mmaped into user | ||
71 | * space. The context consists of 2 parts: | ||
72 | * | ||
73 | * - an instruction space that can be directly accessed by the user | ||
74 | * to issue GRU instructions and to check instruction status. | ||
75 | * | ||
76 | * - a data area that acts as normal RAM. | ||
77 | * | ||
78 | * User instructions contain virtual addresses of data to be accessed by the | ||
79 | * GRU. The GRU contains a TLB that is used to convert these user virtual | ||
80 | * addresses to physical addresses. | ||
81 | * | ||
82 | * The "system control" area of the GRU chiplet is used by the kernel driver | ||
83 | * to manage user contexts and to perform functions such as TLB dropin and | ||
84 | * purging. | ||
85 | * | ||
86 | * One context may be reserved for the kernel and used for cross-partition | ||
87 | * communication. The GRU will also be used to asynchronously zero out | ||
88 | * large blocks of memory (not currently implemented). | ||
89 | * | ||
90 | * | ||
91 | * Tables: | ||
92 | * | ||
93 | * VDATA-VMA Data - Holds a few parameters. Head of linked list of | ||
94 | * GTS tables for threads using the GSEG | ||
95 | * GTS - Gru Thread State - contains info for managing a GSEG context. A | ||
96 | * GTS is allocated for each thread accessing a | ||
97 | * GSEG. | ||
98 | * GTD - GRU Thread Data - contains shadow copy of GRU data when GSEG is | ||
99 | * not loaded into a GRU | ||
100 | * GMS - GRU Memory Struct - Used to manage TLB shootdowns. Tracks GRUs | ||
101 | * where a GSEG has been loaded. Similar to | ||
102 | * an mm_struct but for GRU. | ||
103 | * | ||
104 | * GS - GRU State - Used to manage the state of a GRU chiplet | ||
105 | * BS - Blade State - Used to manage state of all GRU chiplets | ||
106 | * on a blade | ||
107 | * | ||
108 | * | ||
109 | * Normal task tables for task using GRU. | ||
110 | * - 2 threads in process | ||
111 | * - 2 GSEGs open in process | ||
112 | * - GSEG1 is being used by both threads | ||
113 | * - GSEG2 is used only by thread 2 | ||
114 | * | ||
115 | * task -->| | ||
116 | * task ---+---> mm ->------ (notifier) -------+-> gms | ||
117 | * | | | ||
118 | * |--> vma -> vdata ---> gts--->| GSEG1 (thread1) | ||
119 | * | | | | ||
120 | * | +-> gts--->| GSEG1 (thread2) | ||
121 | * | | | ||
122 | * |--> vma -> vdata ---> gts--->| GSEG2 (thread2) | ||
123 | * . | ||
124 | * . | ||
125 | * | ||
126 | * GSEGs are marked DONTCOPY on fork | ||
127 | * | ||
128 | * At open | ||
129 | * file.private_data -> NULL | ||
130 | * | ||
131 | * At mmap, | ||
132 | * vma -> vdata | ||
133 | * | ||
134 | * After gseg reference | ||
135 | * vma -> vdata ->gts | ||
136 | * | ||
137 | * After fork | ||
138 | * parent | ||
139 | * vma -> vdata -> gts | ||
140 | * child | ||
141 | * (vma is not copied) | ||
142 | * | ||
143 | */ | ||
144 | |||
145 | #include <linux/rmap.h> | ||
146 | #include <linux/interrupt.h> | ||
147 | #include <linux/mutex.h> | ||
148 | #include <linux/wait.h> | ||
149 | #include <linux/mmu_notifier.h> | ||
150 | #include "gru.h" | ||
151 | #include "gruhandles.h" | ||
152 | |||
153 | extern struct gru_stats_s gru_stats; | ||
154 | extern struct gru_blade_state *gru_base[]; | ||
155 | extern unsigned long gru_start_paddr, gru_end_paddr; | ||
156 | |||
157 | #define GRU_MAX_BLADES MAX_NUMNODES | ||
158 | #define GRU_MAX_GRUS (GRU_MAX_BLADES * GRU_CHIPLETS_PER_BLADE) | ||
159 | |||
160 | #define GRU_DRIVER_ID_STR "SGI GRU Device Driver" | ||
161 | #define GRU_DRIVER_VERSION_STR "0.80" | ||
162 | |||
163 | /* | ||
164 | * GRU statistics. | ||
165 | */ | ||
166 | struct gru_stats_s { | ||
167 | atomic_long_t vdata_alloc; | ||
168 | atomic_long_t vdata_free; | ||
169 | atomic_long_t gts_alloc; | ||
170 | atomic_long_t gts_free; | ||
171 | atomic_long_t vdata_double_alloc; | ||
172 | atomic_long_t gts_double_allocate; | ||
173 | atomic_long_t assign_context; | ||
174 | atomic_long_t assign_context_failed; | ||
175 | atomic_long_t free_context; | ||
176 | atomic_long_t load_context; | ||
177 | atomic_long_t unload_context; | ||
178 | atomic_long_t steal_context; | ||
179 | atomic_long_t steal_context_failed; | ||
180 | atomic_long_t nopfn; | ||
181 | atomic_long_t break_cow; | ||
182 | atomic_long_t asid_new; | ||
183 | atomic_long_t asid_next; | ||
184 | atomic_long_t asid_wrap; | ||
185 | atomic_long_t asid_reuse; | ||
186 | atomic_long_t intr; | ||
187 | atomic_long_t call_os; | ||
188 | atomic_long_t call_os_check_for_bug; | ||
189 | atomic_long_t call_os_wait_queue; | ||
190 | atomic_long_t user_flush_tlb; | ||
191 | atomic_long_t user_unload_context; | ||
192 | atomic_long_t user_exception; | ||
193 | atomic_long_t set_task_slice; | ||
194 | atomic_long_t migrate_check; | ||
195 | atomic_long_t migrated_retarget; | ||
196 | atomic_long_t migrated_unload; | ||
197 | atomic_long_t migrated_unload_delay; | ||
198 | atomic_long_t migrated_nopfn_retarget; | ||
199 | atomic_long_t migrated_nopfn_unload; | ||
200 | atomic_long_t tlb_dropin; | ||
201 | atomic_long_t tlb_dropin_fail_no_asid; | ||
202 | atomic_long_t tlb_dropin_fail_upm; | ||
203 | atomic_long_t tlb_dropin_fail_invalid; | ||
204 | atomic_long_t tlb_dropin_fail_range_active; | ||
205 | atomic_long_t tlb_dropin_fail_idle; | ||
206 | atomic_long_t tlb_dropin_fail_fmm; | ||
207 | atomic_long_t mmu_invalidate_range; | ||
208 | atomic_long_t mmu_invalidate_page; | ||
209 | atomic_long_t mmu_clear_flush_young; | ||
210 | atomic_long_t flush_tlb; | ||
211 | atomic_long_t flush_tlb_gru; | ||
212 | atomic_long_t flush_tlb_gru_tgh; | ||
213 | atomic_long_t flush_tlb_gru_zero_asid; | ||
214 | |||
215 | atomic_long_t copy_gpa; | ||
216 | |||
217 | atomic_long_t mesq_receive; | ||
218 | atomic_long_t mesq_receive_none; | ||
219 | atomic_long_t mesq_send; | ||
220 | atomic_long_t mesq_send_failed; | ||
221 | atomic_long_t mesq_noop; | ||
222 | atomic_long_t mesq_send_unexpected_error; | ||
223 | atomic_long_t mesq_send_lb_overflow; | ||
224 | atomic_long_t mesq_send_qlimit_reached; | ||
225 | atomic_long_t mesq_send_amo_nacked; | ||
226 | atomic_long_t mesq_send_put_nacked; | ||
227 | atomic_long_t mesq_qf_not_full; | ||
228 | atomic_long_t mesq_qf_locked; | ||
229 | atomic_long_t mesq_qf_noop_not_full; | ||
230 | atomic_long_t mesq_qf_switch_head_failed; | ||
231 | atomic_long_t mesq_qf_unexpected_error; | ||
232 | atomic_long_t mesq_noop_unexpected_error; | ||
233 | atomic_long_t mesq_noop_lb_overflow; | ||
234 | atomic_long_t mesq_noop_qlimit_reached; | ||
235 | atomic_long_t mesq_noop_amo_nacked; | ||
236 | atomic_long_t mesq_noop_put_nacked; | ||
237 | |||
238 | }; | ||
239 | |||
240 | #define OPT_DPRINT 1 | ||
241 | #define OPT_STATS 2 | ||
242 | #define GRU_QUICKLOOK 4 | ||
243 | |||
244 | |||
245 | #define IRQ_GRU 110 /* Starting IRQ number for interrupts */ | ||
246 | |||
247 | /* Delay in jiffies between attempts to assign a GRU context */ | ||
248 | #define GRU_ASSIGN_DELAY ((HZ * 20) / 1000) | ||
249 | |||
250 | /* | ||
251 | * If a process has it's context stolen, min delay in jiffies before trying to | ||
252 | * steal a context from another process. | ||
253 | */ | ||
254 | #define GRU_STEAL_DELAY ((HZ * 200) / 1000) | ||
255 | |||
256 | #define STAT(id) do { \ | ||
257 | if (gru_options & OPT_STATS) \ | ||
258 | atomic_long_inc(&gru_stats.id); \ | ||
259 | } while (0) | ||
260 | |||
261 | #ifdef CONFIG_SGI_GRU_DEBUG | ||
262 | #define gru_dbg(dev, fmt, x...) \ | ||
263 | do { \ | ||
264 | if (gru_options & OPT_DPRINT) \ | ||
265 | dev_dbg(dev, "%s: " fmt, __func__, x); \ | ||
266 | } while (0) | ||
267 | #else | ||
268 | #define gru_dbg(x...) | ||
269 | #endif | ||
270 | |||
271 | /*----------------------------------------------------------------------------- | ||
272 | * ASID management | ||
273 | */ | ||
274 | #define MAX_ASID 0xfffff0 | ||
275 | #define MIN_ASID 8 | ||
276 | #define ASID_INC 8 /* number of regions */ | ||
277 | |||
278 | /* Generate a GRU asid value from a GRU base asid & a virtual address. */ | ||
279 | #if defined CONFIG_IA64 | ||
280 | #define VADDR_HI_BIT 64 | ||
281 | #define GRUREGION(addr) ((addr) >> (VADDR_HI_BIT - 3) & 3) | ||
282 | #elif defined __x86_64 | ||
283 | #define VADDR_HI_BIT 48 | ||
284 | #define GRUREGION(addr) (0) /* ZZZ could do better */ | ||
285 | #else | ||
286 | #error "Unsupported architecture" | ||
287 | #endif | ||
288 | #define GRUASID(asid, addr) ((asid) + GRUREGION(addr)) | ||
289 | |||
290 | /*------------------------------------------------------------------------------ | ||
291 | * File & VMS Tables | ||
292 | */ | ||
293 | |||
294 | struct gru_state; | ||
295 | |||
296 | /* | ||
297 | * This structure is pointed to from the mmstruct via the notifier pointer. | ||
298 | * There is one of these per address space. | ||
299 | */ | ||
300 | struct gru_mm_tracker { | ||
301 | unsigned int mt_asid_gen; /* ASID wrap count */ | ||
302 | int mt_asid; /* current base ASID for gru */ | ||
303 | unsigned short mt_ctxbitmap; /* bitmap of contexts using | ||
304 | asid */ | ||
305 | }; | ||
306 | |||
307 | struct gru_mm_struct { | ||
308 | struct mmu_notifier ms_notifier; | ||
309 | atomic_t ms_refcnt; | ||
310 | spinlock_t ms_asid_lock; /* protects ASID assignment */ | ||
311 | atomic_t ms_range_active;/* num range_invals active */ | ||
312 | char ms_released; | ||
313 | wait_queue_head_t ms_wait_queue; | ||
314 | DECLARE_BITMAP(ms_asidmap, GRU_MAX_GRUS); | ||
315 | struct gru_mm_tracker ms_asids[GRU_MAX_GRUS]; | ||
316 | }; | ||
317 | |||
318 | /* | ||
319 | * One of these structures is allocated when a GSEG is mmaped. The | ||
320 | * structure is pointed to by the vma->vm_private_data field in the vma struct. | ||
321 | */ | ||
322 | struct gru_vma_data { | ||
323 | spinlock_t vd_lock; /* Serialize access to vma */ | ||
324 | struct list_head vd_head; /* head of linked list of gts */ | ||
325 | long vd_user_options;/* misc user option flags */ | ||
326 | int vd_cbr_au_count; | ||
327 | int vd_dsr_au_count; | ||
328 | }; | ||
329 | |||
330 | /* | ||
331 | * One of these is allocated for each thread accessing a mmaped GRU. A linked | ||
332 | * list of these structure is hung off the struct gru_vma_data in the mm_struct. | ||
333 | */ | ||
334 | struct gru_thread_state { | ||
335 | struct list_head ts_next; /* list - head at vma-private */ | ||
336 | struct mutex ts_ctxlock; /* load/unload CTX lock */ | ||
337 | struct mm_struct *ts_mm; /* mm currently mapped to | ||
338 | context */ | ||
339 | struct vm_area_struct *ts_vma; /* vma of GRU context */ | ||
340 | struct gru_state *ts_gru; /* GRU where the context is | ||
341 | loaded */ | ||
342 | struct gru_mm_struct *ts_gms; /* asid & ioproc struct */ | ||
343 | unsigned long ts_cbr_map; /* map of allocated CBRs */ | ||
344 | unsigned long ts_dsr_map; /* map of allocated DATA | ||
345 | resources */ | ||
346 | unsigned long ts_steal_jiffies;/* jiffies when context last | ||
347 | stolen */ | ||
348 | long ts_user_options;/* misc user option flags */ | ||
349 | pid_t ts_tgid_owner; /* task that is using the | ||
350 | context - for migration */ | ||
351 | int ts_tsid; /* thread that owns the | ||
352 | structure */ | ||
353 | int ts_tlb_int_select;/* target cpu if interrupts | ||
354 | enabled */ | ||
355 | int ts_ctxnum; /* context number where the | ||
356 | context is loaded */ | ||
357 | atomic_t ts_refcnt; /* reference count GTS */ | ||
358 | unsigned char ts_dsr_au_count;/* Number of DSR resources | ||
359 | required for contest */ | ||
360 | unsigned char ts_cbr_au_count;/* Number of CBR resources | ||
361 | required for contest */ | ||
362 | char ts_force_unload;/* force context to be unloaded | ||
363 | after migration */ | ||
364 | char ts_cbr_idx[GRU_CBR_AU];/* CBR numbers of each | ||
365 | allocated CB */ | ||
366 | unsigned long ts_gdata[0]; /* save area for GRU data (CB, | ||
367 | DS, CBE) */ | ||
368 | }; | ||
369 | |||
370 | /* | ||
371 | * Threaded programs actually allocate an array of GSEGs when a context is | ||
372 | * created. Each thread uses a separate GSEG. TSID is the index into the GSEG | ||
373 | * array. | ||
374 | */ | ||
375 | #define TSID(a, v) (((a) - (v)->vm_start) / GRU_GSEG_PAGESIZE) | ||
376 | #define UGRUADDR(gts) ((gts)->ts_vma->vm_start + \ | ||
377 | (gts)->ts_tsid * GRU_GSEG_PAGESIZE) | ||
378 | |||
379 | #define NULLCTX (-1) /* if context not loaded into GRU */ | ||
380 | |||
381 | /*----------------------------------------------------------------------------- | ||
382 | * GRU State Tables | ||
383 | */ | ||
384 | |||
385 | /* | ||
386 | * One of these exists for each GRU chiplet. | ||
387 | */ | ||
388 | struct gru_state { | ||
389 | struct gru_blade_state *gs_blade; /* GRU state for entire | ||
390 | blade */ | ||
391 | unsigned long gs_gru_base_paddr; /* Physical address of | ||
392 | gru segments (64) */ | ||
393 | void *gs_gru_base_vaddr; /* Virtual address of | ||
394 | gru segments (64) */ | ||
395 | unsigned char gs_gid; /* unique GRU number */ | ||
396 | unsigned char gs_tgh_local_shift; /* used to pick TGH for | ||
397 | local flush */ | ||
398 | unsigned char gs_tgh_first_remote; /* starting TGH# for | ||
399 | remote flush */ | ||
400 | unsigned short gs_blade_id; /* blade of GRU */ | ||
401 | spinlock_t gs_asid_lock; /* lock used for | ||
402 | assigning asids */ | ||
403 | spinlock_t gs_lock; /* lock used for | ||
404 | assigning contexts */ | ||
405 | |||
406 | /* -- the following are protected by the gs_asid_lock spinlock ---- */ | ||
407 | unsigned int gs_asid; /* Next availe ASID */ | ||
408 | unsigned int gs_asid_limit; /* Limit of available | ||
409 | ASIDs */ | ||
410 | unsigned int gs_asid_gen; /* asid generation. | ||
411 | Inc on wrap */ | ||
412 | |||
413 | /* --- the following fields are protected by the gs_lock spinlock --- */ | ||
414 | unsigned long gs_context_map; /* bitmap to manage | ||
415 | contexts in use */ | ||
416 | unsigned long gs_cbr_map; /* bitmap to manage CB | ||
417 | resources */ | ||
418 | unsigned long gs_dsr_map; /* bitmap used to manage | ||
419 | DATA resources */ | ||
420 | unsigned int gs_reserved_cbrs; /* Number of kernel- | ||
421 | reserved cbrs */ | ||
422 | unsigned int gs_reserved_dsr_bytes; /* Bytes of kernel- | ||
423 | reserved dsrs */ | ||
424 | unsigned short gs_active_contexts; /* number of contexts | ||
425 | in use */ | ||
426 | struct gru_thread_state *gs_gts[GRU_NUM_CCH]; /* GTS currently using | ||
427 | the context */ | ||
428 | }; | ||
429 | |||
430 | /* | ||
431 | * This structure contains the GRU state for all the GRUs on a blade. | ||
432 | */ | ||
433 | struct gru_blade_state { | ||
434 | void *kernel_cb; /* First kernel | ||
435 | reserved cb */ | ||
436 | void *kernel_dsr; /* First kernel | ||
437 | reserved DSR */ | ||
438 | /* ---- the following are protected by the bs_lock spinlock ---- */ | ||
439 | spinlock_t bs_lock; /* lock used for | ||
440 | stealing contexts */ | ||
441 | int bs_lru_ctxnum; /* STEAL - last context | ||
442 | stolen */ | ||
443 | struct gru_state *bs_lru_gru; /* STEAL - last gru | ||
444 | stolen */ | ||
445 | |||
446 | struct gru_state bs_grus[GRU_CHIPLETS_PER_BLADE]; | ||
447 | }; | ||
448 | |||
449 | /*----------------------------------------------------------------------------- | ||
450 | * Address Primitives | ||
451 | */ | ||
452 | #define get_tfm_for_cpu(g, c) \ | ||
453 | ((struct gru_tlb_fault_map *)get_tfm((g)->gs_gru_base_vaddr, (c))) | ||
454 | #define get_tfh_by_index(g, i) \ | ||
455 | ((struct gru_tlb_fault_handle *)get_tfh((g)->gs_gru_base_vaddr, (i))) | ||
456 | #define get_tgh_by_index(g, i) \ | ||
457 | ((struct gru_tlb_global_handle *)get_tgh((g)->gs_gru_base_vaddr, (i))) | ||
458 | #define get_cbe_by_index(g, i) \ | ||
459 | ((struct gru_control_block_extended *)get_cbe((g)->gs_gru_base_vaddr,\ | ||
460 | (i))) | ||
461 | |||
462 | /*----------------------------------------------------------------------------- | ||
463 | * Useful Macros | ||
464 | */ | ||
465 | |||
466 | /* Given a blade# & chiplet#, get a pointer to the GRU */ | ||
467 | #define get_gru(b, c) (&gru_base[b]->bs_grus[c]) | ||
468 | |||
469 | /* Number of bytes to save/restore when unloading/loading GRU contexts */ | ||
470 | #define DSR_BYTES(dsr) ((dsr) * GRU_DSR_AU_BYTES) | ||
471 | #define CBR_BYTES(cbr) ((cbr) * GRU_HANDLE_BYTES * GRU_CBR_AU_SIZE * 2) | ||
472 | |||
473 | /* Convert a user CB number to the actual CBRNUM */ | ||
474 | #define thread_cbr_number(gts, n) ((gts)->ts_cbr_idx[(n) / GRU_CBR_AU_SIZE] \ | ||
475 | * GRU_CBR_AU_SIZE + (n) % GRU_CBR_AU_SIZE) | ||
476 | |||
477 | /* Convert a gid to a pointer to the GRU */ | ||
478 | #define GID_TO_GRU(gid) \ | ||
479 | (gru_base[(gid) / GRU_CHIPLETS_PER_BLADE] ? \ | ||
480 | (&gru_base[(gid) / GRU_CHIPLETS_PER_BLADE]-> \ | ||
481 | bs_grus[(gid) % GRU_CHIPLETS_PER_BLADE]) : \ | ||
482 | NULL) | ||
483 | |||
484 | /* Scan all active GRUs in a GRU bitmap */ | ||
485 | #define for_each_gru_in_bitmap(gid, map) \ | ||
486 | for ((gid) = find_first_bit((map), GRU_MAX_GRUS); (gid) < GRU_MAX_GRUS;\ | ||
487 | (gid)++, (gid) = find_next_bit((map), GRU_MAX_GRUS, (gid))) | ||
488 | |||
489 | /* Scan all active GRUs on a specific blade */ | ||
490 | #define for_each_gru_on_blade(gru, nid, i) \ | ||
491 | for ((gru) = gru_base[nid]->bs_grus, (i) = 0; \ | ||
492 | (i) < GRU_CHIPLETS_PER_BLADE; \ | ||
493 | (i)++, (gru)++) | ||
494 | |||
495 | /* Scan all active GTSs on a gru. Note: must hold ss_lock to use this macro. */ | ||
496 | #define for_each_gts_on_gru(gts, gru, ctxnum) \ | ||
497 | for ((ctxnum) = 0; (ctxnum) < GRU_NUM_CCH; (ctxnum)++) \ | ||
498 | if (((gts) = (gru)->gs_gts[ctxnum])) | ||
499 | |||
500 | /* Scan each CBR whose bit is set in a TFM (or copy of) */ | ||
501 | #define for_each_cbr_in_tfm(i, map) \ | ||
502 | for ((i) = find_first_bit(map, GRU_NUM_CBE); \ | ||
503 | (i) < GRU_NUM_CBE; \ | ||
504 | (i)++, (i) = find_next_bit(map, GRU_NUM_CBE, i)) | ||
505 | |||
506 | /* Scan each CBR in a CBR bitmap. Note: multiple CBRs in an allocation unit */ | ||
507 | #define for_each_cbr_in_allocation_map(i, map, k) \ | ||
508 | for ((k) = find_first_bit(map, GRU_CBR_AU); (k) < GRU_CBR_AU; \ | ||
509 | (k) = find_next_bit(map, GRU_CBR_AU, (k) + 1)) \ | ||
510 | for ((i) = (k)*GRU_CBR_AU_SIZE; \ | ||
511 | (i) < ((k) + 1) * GRU_CBR_AU_SIZE; (i)++) | ||
512 | |||
513 | /* Scan each DSR in a DSR bitmap. Note: multiple DSRs in an allocation unit */ | ||
514 | #define for_each_dsr_in_allocation_map(i, map, k) \ | ||
515 | for ((k) = find_first_bit((const unsigned long *)map, GRU_DSR_AU);\ | ||
516 | (k) < GRU_DSR_AU; \ | ||
517 | (k) = find_next_bit((const unsigned long *)map, \ | ||
518 | GRU_DSR_AU, (k) + 1)) \ | ||
519 | for ((i) = (k) * GRU_DSR_AU_CL; \ | ||
520 | (i) < ((k) + 1) * GRU_DSR_AU_CL; (i)++) | ||
521 | |||
522 | #define gseg_physical_address(gru, ctxnum) \ | ||
523 | ((gru)->gs_gru_base_paddr + ctxnum * GRU_GSEG_STRIDE) | ||
524 | #define gseg_virtual_address(gru, ctxnum) \ | ||
525 | ((gru)->gs_gru_base_vaddr + ctxnum * GRU_GSEG_STRIDE) | ||
526 | |||
527 | /*----------------------------------------------------------------------------- | ||
528 | * Lock / Unlock GRU handles | ||
529 | * Use the "delresp" bit in the handle as a "lock" bit. | ||
530 | */ | ||
531 | |||
532 | /* Lock hierarchy checking enabled only in emulator */ | ||
533 | |||
534 | static inline void __lock_handle(void *h) | ||
535 | { | ||
536 | while (test_and_set_bit(1, h)) | ||
537 | cpu_relax(); | ||
538 | } | ||
539 | |||
540 | static inline void __unlock_handle(void *h) | ||
541 | { | ||
542 | clear_bit(1, h); | ||
543 | } | ||
544 | |||
545 | static inline void lock_cch_handle(struct gru_context_configuration_handle *cch) | ||
546 | { | ||
547 | __lock_handle(cch); | ||
548 | } | ||
549 | |||
550 | static inline void unlock_cch_handle(struct gru_context_configuration_handle | ||
551 | *cch) | ||
552 | { | ||
553 | __unlock_handle(cch); | ||
554 | } | ||
555 | |||
556 | static inline void lock_tgh_handle(struct gru_tlb_global_handle *tgh) | ||
557 | { | ||
558 | __lock_handle(tgh); | ||
559 | } | ||
560 | |||
561 | static inline void unlock_tgh_handle(struct gru_tlb_global_handle *tgh) | ||
562 | { | ||
563 | __unlock_handle(tgh); | ||
564 | } | ||
565 | |||
566 | /*----------------------------------------------------------------------------- | ||
567 | * Function prototypes & externs | ||
568 | */ | ||
569 | struct gru_unload_context_req; | ||
570 | |||
571 | extern struct vm_operations_struct gru_vm_ops; | ||
572 | extern struct device *grudev; | ||
573 | |||
574 | extern struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, | ||
575 | int tsid); | ||
576 | extern struct gru_thread_state *gru_find_thread_state(struct vm_area_struct | ||
577 | *vma, int tsid); | ||
578 | extern struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct | ||
579 | *vma, int tsid); | ||
580 | extern void gru_unload_context(struct gru_thread_state *gts, int savestate); | ||
581 | extern void gts_drop(struct gru_thread_state *gts); | ||
582 | extern void gru_tgh_flush_init(struct gru_state *gru); | ||
583 | extern int gru_kservices_init(struct gru_state *gru); | ||
584 | extern irqreturn_t gru_intr(int irq, void *dev_id); | ||
585 | extern int gru_handle_user_call_os(unsigned long address); | ||
586 | extern int gru_user_flush_tlb(unsigned long arg); | ||
587 | extern int gru_user_unload_context(unsigned long arg); | ||
588 | extern int gru_get_exception_detail(unsigned long arg); | ||
589 | extern int gru_set_task_slice(long address); | ||
590 | extern int gru_cpu_fault_map_id(void); | ||
591 | extern struct vm_area_struct *gru_find_vma(unsigned long vaddr); | ||
592 | extern void gru_flush_all_tlb(struct gru_state *gru); | ||
593 | extern int gru_proc_init(void); | ||
594 | extern void gru_proc_exit(void); | ||
595 | |||
596 | extern unsigned long gru_reserve_cb_resources(struct gru_state *gru, | ||
597 | int cbr_au_count, char *cbmap); | ||
598 | extern unsigned long gru_reserve_ds_resources(struct gru_state *gru, | ||
599 | int dsr_au_count, char *dsmap); | ||
600 | extern int gru_fault(struct vm_area_struct *, struct vm_fault *vmf); | ||
601 | extern struct gru_mm_struct *gru_register_mmu_notifier(void); | ||
602 | extern void gru_drop_mmu_notifier(struct gru_mm_struct *gms); | ||
603 | |||
604 | extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start, | ||
605 | unsigned long len); | ||
606 | |||
607 | extern unsigned long gru_options; | ||
608 | |||
609 | #endif /* __GRUTABLES_H__ */ | ||
diff --git a/drivers/misc/sgi-gru/grutlbpurge.c b/drivers/misc/sgi-gru/grutlbpurge.c new file mode 100644 index 000000000000..c84496a77691 --- /dev/null +++ b/drivers/misc/sgi-gru/grutlbpurge.c | |||
@@ -0,0 +1,371 @@ | |||
1 | /* | ||
2 | * SN Platform GRU Driver | ||
3 | * | ||
4 | * MMUOPS callbacks + TLB flushing | ||
5 | * | ||
6 | * This file handles emu notifier callbacks from the core kernel. The callbacks | ||
7 | * are used to update the TLB in the GRU as a result of changes in the | ||
8 | * state of a process address space. This file also handles TLB invalidates | ||
9 | * from the GRU driver. | ||
10 | * | ||
11 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
12 | * | ||
13 | * This program is free software; you can redistribute it and/or modify | ||
14 | * it under the terms of the GNU General Public License as published by | ||
15 | * the Free Software Foundation; either version 2 of the License, or | ||
16 | * (at your option) any later version. | ||
17 | * | ||
18 | * This program is distributed in the hope that it will be useful, | ||
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
21 | * GNU General Public License for more details. | ||
22 | * | ||
23 | * You should have received a copy of the GNU General Public License | ||
24 | * along with this program; if not, write to the Free Software | ||
25 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
26 | */ | ||
27 | |||
28 | #include <linux/kernel.h> | ||
29 | #include <linux/list.h> | ||
30 | #include <linux/spinlock.h> | ||
31 | #include <linux/mm.h> | ||
32 | #include <linux/slab.h> | ||
33 | #include <linux/device.h> | ||
34 | #include <linux/hugetlb.h> | ||
35 | #include <linux/delay.h> | ||
36 | #include <linux/timex.h> | ||
37 | #include <linux/srcu.h> | ||
38 | #include <asm/processor.h> | ||
39 | #include "gru.h" | ||
40 | #include "grutables.h" | ||
41 | #include <asm/uv/uv_hub.h> | ||
42 | |||
43 | #define gru_random() get_cycles() | ||
44 | |||
45 | /* ---------------------------------- TLB Invalidation functions -------- | ||
46 | * get_tgh_handle | ||
47 | * | ||
48 | * Find a TGH to use for issuing a TLB invalidate. For GRUs that are on the | ||
49 | * local blade, use a fixed TGH that is a function of the blade-local cpu | ||
50 | * number. Normally, this TGH is private to the cpu & no contention occurs for | ||
51 | * the TGH. For offblade GRUs, select a random TGH in the range above the | ||
52 | * private TGHs. A spinlock is required to access this TGH & the lock must be | ||
53 | * released when the invalidate is completes. This sucks, but it is the best we | ||
54 | * can do. | ||
55 | * | ||
56 | * Note that the spinlock is IN the TGH handle so locking does not involve | ||
57 | * additional cache lines. | ||
58 | * | ||
59 | */ | ||
60 | static inline int get_off_blade_tgh(struct gru_state *gru) | ||
61 | { | ||
62 | int n; | ||
63 | |||
64 | n = GRU_NUM_TGH - gru->gs_tgh_first_remote; | ||
65 | n = gru_random() % n; | ||
66 | n += gru->gs_tgh_first_remote; | ||
67 | return n; | ||
68 | } | ||
69 | |||
70 | static inline int get_on_blade_tgh(struct gru_state *gru) | ||
71 | { | ||
72 | return uv_blade_processor_id() >> gru->gs_tgh_local_shift; | ||
73 | } | ||
74 | |||
75 | static struct gru_tlb_global_handle *get_lock_tgh_handle(struct gru_state | ||
76 | *gru) | ||
77 | { | ||
78 | struct gru_tlb_global_handle *tgh; | ||
79 | int n; | ||
80 | |||
81 | preempt_disable(); | ||
82 | if (uv_numa_blade_id() == gru->gs_blade_id) | ||
83 | n = get_on_blade_tgh(gru); | ||
84 | else | ||
85 | n = get_off_blade_tgh(gru); | ||
86 | tgh = get_tgh_by_index(gru, n); | ||
87 | lock_tgh_handle(tgh); | ||
88 | |||
89 | return tgh; | ||
90 | } | ||
91 | |||
92 | static void get_unlock_tgh_handle(struct gru_tlb_global_handle *tgh) | ||
93 | { | ||
94 | unlock_tgh_handle(tgh); | ||
95 | preempt_enable(); | ||
96 | } | ||
97 | |||
98 | /* | ||
99 | * gru_flush_tlb_range | ||
100 | * | ||
101 | * General purpose TLB invalidation function. This function scans every GRU in | ||
102 | * the ENTIRE system (partition) looking for GRUs where the specified MM has | ||
103 | * been accessed by the GRU. For each GRU found, the TLB must be invalidated OR | ||
104 | * the ASID invalidated. Invalidating an ASID causes a new ASID to be assigned | ||
105 | * on the next fault. This effectively flushes the ENTIRE TLB for the MM at the | ||
106 | * cost of (possibly) a large number of future TLBmisses. | ||
107 | * | ||
108 | * The current algorithm is optimized based on the following (somewhat true) | ||
109 | * assumptions: | ||
110 | * - GRU contexts are not loaded into a GRU unless a reference is made to | ||
111 | * the data segment or control block (this is true, not an assumption). | ||
112 | * If a DS/CB is referenced, the user will also issue instructions that | ||
113 | * cause TLBmisses. It is not necessary to optimize for the case where | ||
114 | * contexts are loaded but no instructions cause TLB misses. (I know | ||
115 | * this will happen but I'm not optimizing for it). | ||
116 | * - GRU instructions to invalidate TLB entries are SLOOOOWWW - normally | ||
117 | * a few usec but in unusual cases, it could be longer. Avoid if | ||
118 | * possible. | ||
119 | * - intrablade process migration between cpus is not frequent but is | ||
120 | * common. | ||
121 | * - a GRU context is not typically migrated to a different GRU on the | ||
122 | * blade because of intrablade migration | ||
123 | * - interblade migration is rare. Processes migrate their GRU context to | ||
124 | * the new blade. | ||
125 | * - if interblade migration occurs, migration back to the original blade | ||
126 | * is very very rare (ie., no optimization for this case) | ||
127 | * - most GRU instruction operate on a subset of the user REGIONS. Code | ||
128 | * & shared library regions are not likely targets of GRU instructions. | ||
129 | * | ||
130 | * To help improve the efficiency of TLB invalidation, the GMS data | ||
131 | * structure is maintained for EACH address space (MM struct). The GMS is | ||
132 | * also the structure that contains the pointer to the mmu callout | ||
133 | * functions. This structure is linked to the mm_struct for the address space | ||
134 | * using the mmu "register" function. The mmu interfaces are used to | ||
135 | * provide the callbacks for TLB invalidation. The GMS contains: | ||
136 | * | ||
137 | * - asid[maxgrus] array. ASIDs are assigned to a GRU when a context is | ||
138 | * loaded into the GRU. | ||
139 | * - asidmap[maxgrus]. bitmap to make it easier to find non-zero asids in | ||
140 | * the above array | ||
141 | * - ctxbitmap[maxgrus]. Indicates the contexts that are currently active | ||
142 | * in the GRU for the address space. This bitmap must be passed to the | ||
143 | * GRU to do an invalidate. | ||
144 | * | ||
145 | * The current algorithm for invalidating TLBs is: | ||
146 | * - scan the asidmap for GRUs where the context has been loaded, ie, | ||
147 | * asid is non-zero. | ||
148 | * - for each gru found: | ||
149 | * - if the ctxtmap is non-zero, there are active contexts in the | ||
150 | * GRU. TLB invalidate instructions must be issued to the GRU. | ||
151 | * - if the ctxtmap is zero, no context is active. Set the ASID to | ||
152 | * zero to force a full TLB invalidation. This is fast but will | ||
153 | * cause a lot of TLB misses if the context is reloaded onto the | ||
154 | * GRU | ||
155 | * | ||
156 | */ | ||
157 | |||
158 | void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start, | ||
159 | unsigned long len) | ||
160 | { | ||
161 | struct gru_state *gru; | ||
162 | struct gru_mm_tracker *asids; | ||
163 | struct gru_tlb_global_handle *tgh; | ||
164 | unsigned long num; | ||
165 | int grupagesize, pagesize, pageshift, gid, asid; | ||
166 | |||
167 | /* ZZZ TODO - handle huge pages */ | ||
168 | pageshift = PAGE_SHIFT; | ||
169 | pagesize = (1UL << pageshift); | ||
170 | grupagesize = GRU_PAGESIZE(pageshift); | ||
171 | num = min(((len + pagesize - 1) >> pageshift), GRUMAXINVAL); | ||
172 | |||
173 | STAT(flush_tlb); | ||
174 | gru_dbg(grudev, "gms %p, start 0x%lx, len 0x%lx, asidmap 0x%lx\n", gms, | ||
175 | start, len, gms->ms_asidmap[0]); | ||
176 | |||
177 | spin_lock(&gms->ms_asid_lock); | ||
178 | for_each_gru_in_bitmap(gid, gms->ms_asidmap) { | ||
179 | STAT(flush_tlb_gru); | ||
180 | gru = GID_TO_GRU(gid); | ||
181 | asids = gms->ms_asids + gid; | ||
182 | asid = asids->mt_asid; | ||
183 | if (asids->mt_ctxbitmap && asid) { | ||
184 | STAT(flush_tlb_gru_tgh); | ||
185 | asid = GRUASID(asid, start); | ||
186 | gru_dbg(grudev, | ||
187 | " FLUSH gruid %d, asid 0x%x, num %ld, cbmap 0x%x\n", | ||
188 | gid, asid, num, asids->mt_ctxbitmap); | ||
189 | tgh = get_lock_tgh_handle(gru); | ||
190 | tgh_invalidate(tgh, start, 0, asid, grupagesize, 0, | ||
191 | num - 1, asids->mt_ctxbitmap); | ||
192 | get_unlock_tgh_handle(tgh); | ||
193 | } else { | ||
194 | STAT(flush_tlb_gru_zero_asid); | ||
195 | asids->mt_asid = 0; | ||
196 | __clear_bit(gru->gs_gid, gms->ms_asidmap); | ||
197 | gru_dbg(grudev, | ||
198 | " CLEARASID gruid %d, asid 0x%x, cbtmap 0x%x, asidmap 0x%lx\n", | ||
199 | gid, asid, asids->mt_ctxbitmap, | ||
200 | gms->ms_asidmap[0]); | ||
201 | } | ||
202 | } | ||
203 | spin_unlock(&gms->ms_asid_lock); | ||
204 | } | ||
205 | |||
206 | /* | ||
207 | * Flush the entire TLB on a chiplet. | ||
208 | */ | ||
209 | void gru_flush_all_tlb(struct gru_state *gru) | ||
210 | { | ||
211 | struct gru_tlb_global_handle *tgh; | ||
212 | |||
213 | gru_dbg(grudev, "gru %p, gid %d\n", gru, gru->gs_gid); | ||
214 | tgh = get_lock_tgh_handle(gru); | ||
215 | tgh_invalidate(tgh, 0, ~0, 0, 1, 1, GRUMAXINVAL - 1, 0); | ||
216 | get_unlock_tgh_handle(tgh); | ||
217 | preempt_enable(); | ||
218 | } | ||
219 | |||
220 | /* | ||
221 | * MMUOPS notifier callout functions | ||
222 | */ | ||
223 | static void gru_invalidate_range_start(struct mmu_notifier *mn, | ||
224 | struct mm_struct *mm, | ||
225 | unsigned long start, unsigned long end) | ||
226 | { | ||
227 | struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct, | ||
228 | ms_notifier); | ||
229 | |||
230 | STAT(mmu_invalidate_range); | ||
231 | atomic_inc(&gms->ms_range_active); | ||
232 | gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx, act %d\n", gms, | ||
233 | start, end, atomic_read(&gms->ms_range_active)); | ||
234 | gru_flush_tlb_range(gms, start, end - start); | ||
235 | } | ||
236 | |||
237 | static void gru_invalidate_range_end(struct mmu_notifier *mn, | ||
238 | struct mm_struct *mm, unsigned long start, | ||
239 | unsigned long end) | ||
240 | { | ||
241 | struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct, | ||
242 | ms_notifier); | ||
243 | |||
244 | /* ..._and_test() provides needed barrier */ | ||
245 | (void)atomic_dec_and_test(&gms->ms_range_active); | ||
246 | |||
247 | wake_up_all(&gms->ms_wait_queue); | ||
248 | gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx\n", gms, start, end); | ||
249 | } | ||
250 | |||
251 | static void gru_invalidate_page(struct mmu_notifier *mn, struct mm_struct *mm, | ||
252 | unsigned long address) | ||
253 | { | ||
254 | struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct, | ||
255 | ms_notifier); | ||
256 | |||
257 | STAT(mmu_invalidate_page); | ||
258 | gru_flush_tlb_range(gms, address, PAGE_SIZE); | ||
259 | gru_dbg(grudev, "gms %p, address 0x%lx\n", gms, address); | ||
260 | } | ||
261 | |||
262 | static void gru_release(struct mmu_notifier *mn, struct mm_struct *mm) | ||
263 | { | ||
264 | struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct, | ||
265 | ms_notifier); | ||
266 | |||
267 | gms->ms_released = 1; | ||
268 | gru_dbg(grudev, "gms %p\n", gms); | ||
269 | } | ||
270 | |||
271 | |||
272 | static const struct mmu_notifier_ops gru_mmuops = { | ||
273 | .invalidate_page = gru_invalidate_page, | ||
274 | .invalidate_range_start = gru_invalidate_range_start, | ||
275 | .invalidate_range_end = gru_invalidate_range_end, | ||
276 | .release = gru_release, | ||
277 | }; | ||
278 | |||
279 | /* Move this to the basic mmu_notifier file. But for now... */ | ||
280 | static struct mmu_notifier *mmu_find_ops(struct mm_struct *mm, | ||
281 | const struct mmu_notifier_ops *ops) | ||
282 | { | ||
283 | struct mmu_notifier *mn, *gru_mn = NULL; | ||
284 | struct hlist_node *n; | ||
285 | |||
286 | if (mm->mmu_notifier_mm) { | ||
287 | rcu_read_lock(); | ||
288 | hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, | ||
289 | hlist) | ||
290 | if (mn->ops == ops) { | ||
291 | gru_mn = mn; | ||
292 | break; | ||
293 | } | ||
294 | rcu_read_unlock(); | ||
295 | } | ||
296 | return gru_mn; | ||
297 | } | ||
298 | |||
299 | struct gru_mm_struct *gru_register_mmu_notifier(void) | ||
300 | { | ||
301 | struct gru_mm_struct *gms; | ||
302 | struct mmu_notifier *mn; | ||
303 | |||
304 | mn = mmu_find_ops(current->mm, &gru_mmuops); | ||
305 | if (mn) { | ||
306 | gms = container_of(mn, struct gru_mm_struct, ms_notifier); | ||
307 | atomic_inc(&gms->ms_refcnt); | ||
308 | } else { | ||
309 | gms = kzalloc(sizeof(*gms), GFP_KERNEL); | ||
310 | if (gms) { | ||
311 | spin_lock_init(&gms->ms_asid_lock); | ||
312 | gms->ms_notifier.ops = &gru_mmuops; | ||
313 | atomic_set(&gms->ms_refcnt, 1); | ||
314 | init_waitqueue_head(&gms->ms_wait_queue); | ||
315 | __mmu_notifier_register(&gms->ms_notifier, current->mm); | ||
316 | } | ||
317 | } | ||
318 | gru_dbg(grudev, "gms %p, refcnt %d\n", gms, | ||
319 | atomic_read(&gms->ms_refcnt)); | ||
320 | return gms; | ||
321 | } | ||
322 | |||
323 | void gru_drop_mmu_notifier(struct gru_mm_struct *gms) | ||
324 | { | ||
325 | gru_dbg(grudev, "gms %p, refcnt %d, released %d\n", gms, | ||
326 | atomic_read(&gms->ms_refcnt), gms->ms_released); | ||
327 | if (atomic_dec_return(&gms->ms_refcnt) == 0) { | ||
328 | if (!gms->ms_released) | ||
329 | mmu_notifier_unregister(&gms->ms_notifier, current->mm); | ||
330 | kfree(gms); | ||
331 | } | ||
332 | } | ||
333 | |||
334 | /* | ||
335 | * Setup TGH parameters. There are: | ||
336 | * - 24 TGH handles per GRU chiplet | ||
337 | * - a portion (MAX_LOCAL_TGH) of the handles are reserved for | ||
338 | * use by blade-local cpus | ||
339 | * - the rest are used by off-blade cpus. This usage is | ||
340 | * less frequent than blade-local usage. | ||
341 | * | ||
342 | * For now, use 16 handles for local flushes, 8 for remote flushes. If the blade | ||
343 | * has less tan or equal to 16 cpus, each cpu has a unique handle that it can | ||
344 | * use. | ||
345 | */ | ||
346 | #define MAX_LOCAL_TGH 16 | ||
347 | |||
348 | void gru_tgh_flush_init(struct gru_state *gru) | ||
349 | { | ||
350 | int cpus, shift = 0, n; | ||
351 | |||
352 | cpus = uv_blade_nr_possible_cpus(gru->gs_blade_id); | ||
353 | |||
354 | /* n = cpus rounded up to next power of 2 */ | ||
355 | if (cpus) { | ||
356 | n = 1 << fls(cpus - 1); | ||
357 | |||
358 | /* | ||
359 | * shift count for converting local cpu# to TGH index | ||
360 | * 0 if cpus <= MAX_LOCAL_TGH, | ||
361 | * 1 if cpus <= 2*MAX_LOCAL_TGH, | ||
362 | * etc | ||
363 | */ | ||
364 | shift = max(0, fls(n - 1) - fls(MAX_LOCAL_TGH - 1)); | ||
365 | } | ||
366 | gru->gs_tgh_local_shift = shift; | ||
367 | |||
368 | /* first starting TGH index to use for remote purges */ | ||
369 | gru->gs_tgh_first_remote = (cpus + (1 << shift) - 1) >> shift; | ||
370 | |||
371 | } | ||
diff --git a/drivers/misc/sgi-xp/Makefile b/drivers/misc/sgi-xp/Makefile index b6e40a7958ce..35ce28578075 100644 --- a/drivers/misc/sgi-xp/Makefile +++ b/drivers/misc/sgi-xp/Makefile | |||
@@ -3,9 +3,17 @@ | |||
3 | # | 3 | # |
4 | 4 | ||
5 | obj-$(CONFIG_SGI_XP) += xp.o | 5 | obj-$(CONFIG_SGI_XP) += xp.o |
6 | xp-y := xp_main.o xp_nofault.o | 6 | xp-y := xp_main.o |
7 | xp-$(CONFIG_IA64_SGI_SN2) += xp_sn2.o xp_nofault.o | ||
8 | xp-$(CONFIG_IA64_GENERIC) += xp_sn2.o xp_nofault.o xp_uv.o | ||
9 | xp-$(CONFIG_IA64_SGI_UV) += xp_uv.o | ||
10 | xp-$(CONFIG_X86_64) += xp_uv.o | ||
7 | 11 | ||
8 | obj-$(CONFIG_SGI_XP) += xpc.o | 12 | obj-$(CONFIG_SGI_XP) += xpc.o |
9 | xpc-y := xpc_main.o xpc_channel.o xpc_partition.o | 13 | xpc-y := xpc_main.o xpc_channel.o xpc_partition.o |
14 | xpc-$(CONFIG_IA64_SGI_SN2) += xpc_sn2.o | ||
15 | xpc-$(CONFIG_IA64_GENERIC) += xpc_sn2.o xpc_uv.o | ||
16 | xpc-$(CONFIG_IA64_SGI_UV) += xpc_uv.o | ||
17 | xpc-$(CONFIG_X86_64) += xpc_uv.o | ||
10 | 18 | ||
11 | obj-$(CONFIG_SGI_XP) += xpnet.o | 19 | obj-$(CONFIG_SGI_XP) += xpnet.o |
diff --git a/drivers/misc/sgi-xp/xp.h b/drivers/misc/sgi-xp/xp.h index 03a87a307e32..859a5281c61b 100644 --- a/drivers/misc/sgi-xp/xp.h +++ b/drivers/misc/sgi-xp/xp.h | |||
@@ -13,11 +13,34 @@ | |||
13 | #ifndef _DRIVERS_MISC_SGIXP_XP_H | 13 | #ifndef _DRIVERS_MISC_SGIXP_XP_H |
14 | #define _DRIVERS_MISC_SGIXP_XP_H | 14 | #define _DRIVERS_MISC_SGIXP_XP_H |
15 | 15 | ||
16 | #include <linux/cache.h> | ||
17 | #include <linux/hardirq.h> | ||
18 | #include <linux/mutex.h> | 16 | #include <linux/mutex.h> |
19 | #include <asm/sn/types.h> | 17 | |
20 | #include <asm/sn/bte.h> | 18 | #ifdef CONFIG_IA64 |
19 | #include <asm/system.h> | ||
20 | #include <asm/sn/arch.h> /* defines is_shub1() and is_shub2() */ | ||
21 | #define is_shub() ia64_platform_is("sn2") | ||
22 | #define is_uv() ia64_platform_is("uv") | ||
23 | #endif | ||
24 | #ifdef CONFIG_X86_64 | ||
25 | #include <asm/genapic.h> | ||
26 | #define is_uv() is_uv_system() | ||
27 | #endif | ||
28 | |||
29 | #ifndef is_shub1 | ||
30 | #define is_shub1() 0 | ||
31 | #endif | ||
32 | |||
33 | #ifndef is_shub2 | ||
34 | #define is_shub2() 0 | ||
35 | #endif | ||
36 | |||
37 | #ifndef is_shub | ||
38 | #define is_shub() 0 | ||
39 | #endif | ||
40 | |||
41 | #ifndef is_uv | ||
42 | #define is_uv() 0 | ||
43 | #endif | ||
21 | 44 | ||
22 | #ifdef USE_DBUG_ON | 45 | #ifdef USE_DBUG_ON |
23 | #define DBUG_ON(condition) BUG_ON(condition) | 46 | #define DBUG_ON(condition) BUG_ON(condition) |
@@ -26,133 +49,56 @@ | |||
26 | #endif | 49 | #endif |
27 | 50 | ||
28 | /* | 51 | /* |
29 | * Define the maximum number of logically defined partitions the system | 52 | * Define the maximum number of partitions the system can possibly support. |
30 | * can support. It is constrained by the maximum number of hardware | 53 | * It is based on the maximum number of hardware partitionable regions. The |
31 | * partitionable regions. The term 'region' in this context refers to the | 54 | * term 'region' in this context refers to the minimum number of nodes that |
32 | * minimum number of nodes that can comprise an access protection grouping. | 55 | * can comprise an access protection grouping. The access protection is in |
33 | * The access protection is in regards to memory, IPI and IOI. | 56 | * regards to memory, IPI and IOI. |
34 | * | 57 | * |
35 | * The maximum number of hardware partitionable regions is equal to the | 58 | * The maximum number of hardware partitionable regions is equal to the |
36 | * maximum number of nodes in the entire system divided by the minimum number | 59 | * maximum number of nodes in the entire system divided by the minimum number |
37 | * of nodes that comprise an access protection grouping. | 60 | * of nodes that comprise an access protection grouping. |
38 | */ | 61 | */ |
39 | #define XP_MAX_PARTITIONS 64 | 62 | #define XP_MAX_NPARTITIONS_SN2 64 |
40 | 63 | #define XP_MAX_NPARTITIONS_UV 256 | |
41 | /* | ||
42 | * Define the number of u64s required to represent all the C-brick nasids | ||
43 | * as a bitmap. The cross-partition kernel modules deal only with | ||
44 | * C-brick nasids, thus the need for bitmaps which don't account for | ||
45 | * odd-numbered (non C-brick) nasids. | ||
46 | */ | ||
47 | #define XP_MAX_PHYSNODE_ID (MAX_NUMALINK_NODES / 2) | ||
48 | #define XP_NASID_MASK_BYTES ((XP_MAX_PHYSNODE_ID + 7) / 8) | ||
49 | #define XP_NASID_MASK_WORDS ((XP_MAX_PHYSNODE_ID + 63) / 64) | ||
50 | |||
51 | /* | ||
52 | * Wrapper for bte_copy() that should it return a failure status will retry | ||
53 | * the bte_copy() once in the hope that the failure was due to a temporary | ||
54 | * aberration (i.e., the link going down temporarily). | ||
55 | * | ||
56 | * src - physical address of the source of the transfer. | ||
57 | * vdst - virtual address of the destination of the transfer. | ||
58 | * len - number of bytes to transfer from source to destination. | ||
59 | * mode - see bte_copy() for definition. | ||
60 | * notification - see bte_copy() for definition. | ||
61 | * | ||
62 | * Note: xp_bte_copy() should never be called while holding a spinlock. | ||
63 | */ | ||
64 | static inline bte_result_t | ||
65 | xp_bte_copy(u64 src, u64 vdst, u64 len, u64 mode, void *notification) | ||
66 | { | ||
67 | bte_result_t ret; | ||
68 | u64 pdst = ia64_tpa(vdst); | ||
69 | |||
70 | /* | ||
71 | * Ensure that the physically mapped memory is contiguous. | ||
72 | * | ||
73 | * We do this by ensuring that the memory is from region 7 only. | ||
74 | * If the need should arise to use memory from one of the other | ||
75 | * regions, then modify the BUG_ON() statement to ensure that the | ||
76 | * memory from that region is always physically contiguous. | ||
77 | */ | ||
78 | BUG_ON(REGION_NUMBER(vdst) != RGN_KERNEL); | ||
79 | |||
80 | ret = bte_copy(src, pdst, len, mode, notification); | ||
81 | if ((ret != BTE_SUCCESS) && BTE_ERROR_RETRY(ret)) { | ||
82 | if (!in_interrupt()) | ||
83 | cond_resched(); | ||
84 | |||
85 | ret = bte_copy(src, pdst, len, mode, notification); | ||
86 | } | ||
87 | |||
88 | return ret; | ||
89 | } | ||
90 | 64 | ||
91 | /* | 65 | /* |
92 | * XPC establishes channel connections between the local partition and any | 66 | * XPC establishes channel connections between the local partition and any |
93 | * other partition that is currently up. Over these channels, kernel-level | 67 | * other partition that is currently up. Over these channels, kernel-level |
94 | * `users' can communicate with their counterparts on the other partitions. | 68 | * `users' can communicate with their counterparts on the other partitions. |
95 | * | 69 | * |
96 | * The maxinum number of channels is limited to eight. For performance reasons, | ||
97 | * the internal cross partition structures require sixteen bytes per channel, | ||
98 | * and eight allows all of this interface-shared info to fit in one cache line. | ||
99 | * | ||
100 | * XPC_NCHANNELS reflects the total number of channels currently defined. | ||
101 | * If the need for additional channels arises, one can simply increase | 70 | * If the need for additional channels arises, one can simply increase |
102 | * XPC_NCHANNELS accordingly. If the day should come where that number | 71 | * XPC_MAX_NCHANNELS accordingly. If the day should come where that number |
103 | * exceeds the MAXIMUM number of channels allowed (eight), then one will need | 72 | * exceeds the absolute MAXIMUM number of channels possible (eight), then one |
104 | * to make changes to the XPC code to allow for this. | 73 | * will need to make changes to the XPC code to accommodate for this. |
74 | * | ||
75 | * The absolute maximum number of channels possible is limited to eight for | ||
76 | * performance reasons on sn2 hardware. The internal cross partition structures | ||
77 | * require sixteen bytes per channel, and eight allows all of this | ||
78 | * interface-shared info to fit in one 128-byte cacheline. | ||
105 | */ | 79 | */ |
106 | #define XPC_MEM_CHANNEL 0 /* memory channel number */ | 80 | #define XPC_MEM_CHANNEL 0 /* memory channel number */ |
107 | #define XPC_NET_CHANNEL 1 /* network channel number */ | 81 | #define XPC_NET_CHANNEL 1 /* network channel number */ |
108 | 82 | ||
109 | #define XPC_NCHANNELS 2 /* #of defined channels */ | 83 | #define XPC_MAX_NCHANNELS 2 /* max #of channels allowed */ |
110 | #define XPC_MAX_NCHANNELS 8 /* max #of channels allowed */ | ||
111 | 84 | ||
112 | #if XPC_NCHANNELS > XPC_MAX_NCHANNELS | 85 | #if XPC_MAX_NCHANNELS > 8 |
113 | #error XPC_NCHANNELS exceeds MAXIMUM allowed. | 86 | #error XPC_MAX_NCHANNELS exceeds absolute MAXIMUM possible. |
114 | #endif | 87 | #endif |
115 | 88 | ||
116 | /* | 89 | /* |
117 | * The format of an XPC message is as follows: | 90 | * Define macro, XPC_MSG_SIZE(), is provided for the user |
118 | * | ||
119 | * +-------+--------------------------------+ | ||
120 | * | flags |////////////////////////////////| | ||
121 | * +-------+--------------------------------+ | ||
122 | * | message # | | ||
123 | * +----------------------------------------+ | ||
124 | * | payload (user-defined message) | | ||
125 | * | | | ||
126 | * : | ||
127 | * | | | ||
128 | * +----------------------------------------+ | ||
129 | * | ||
130 | * The size of the payload is defined by the user via xpc_connect(). A user- | ||
131 | * defined message resides in the payload area. | ||
132 | * | ||
133 | * The user should have no dealings with the message header, but only the | ||
134 | * message's payload. When a message entry is allocated (via xpc_allocate()) | ||
135 | * a pointer to the payload area is returned and not the actual beginning of | ||
136 | * the XPC message. The user then constructs a message in the payload area | ||
137 | * and passes that pointer as an argument on xpc_send() or xpc_send_notify(). | ||
138 | * | ||
139 | * The size of a message entry (within a message queue) must be a cacheline | ||
140 | * sized multiple in order to facilitate the BTE transfer of messages from one | ||
141 | * message queue to another. A macro, XPC_MSG_SIZE(), is provided for the user | ||
142 | * that wants to fit as many msg entries as possible in a given memory size | 91 | * that wants to fit as many msg entries as possible in a given memory size |
143 | * (e.g. a memory page). | 92 | * (e.g. a memory page). |
144 | */ | 93 | */ |
145 | struct xpc_msg { | 94 | #define XPC_MSG_MAX_SIZE 128 |
146 | u8 flags; /* FOR XPC INTERNAL USE ONLY */ | 95 | #define XPC_MSG_HDR_MAX_SIZE 16 |
147 | u8 reserved[7]; /* FOR XPC INTERNAL USE ONLY */ | 96 | #define XPC_MSG_PAYLOAD_MAX_SIZE (XPC_MSG_MAX_SIZE - XPC_MSG_HDR_MAX_SIZE) |
148 | s64 number; /* FOR XPC INTERNAL USE ONLY */ | ||
149 | |||
150 | u64 payload; /* user defined portion of message */ | ||
151 | }; | ||
152 | 97 | ||
153 | #define XPC_MSG_PAYLOAD_OFFSET (u64) (&((struct xpc_msg *)0)->payload) | ||
154 | #define XPC_MSG_SIZE(_payload_size) \ | 98 | #define XPC_MSG_SIZE(_payload_size) \ |
155 | L1_CACHE_ALIGN(XPC_MSG_PAYLOAD_OFFSET + (_payload_size)) | 99 | ALIGN(XPC_MSG_HDR_MAX_SIZE + (_payload_size), \ |
100 | is_uv() ? 64 : 128) | ||
101 | |||
156 | 102 | ||
157 | /* | 103 | /* |
158 | * Define the return values and values passed to user's callout functions. | 104 | * Define the return values and values passed to user's callout functions. |
@@ -233,8 +179,20 @@ enum xp_retval { | |||
233 | xpDisconnected, /* 51: channel disconnected (closed) */ | 179 | xpDisconnected, /* 51: channel disconnected (closed) */ |
234 | 180 | ||
235 | xpBteCopyError, /* 52: bte_copy() returned error */ | 181 | xpBteCopyError, /* 52: bte_copy() returned error */ |
182 | xpSalError, /* 53: sn SAL error */ | ||
183 | xpRsvdPageNotSet, /* 54: the reserved page is not set up */ | ||
184 | xpPayloadTooBig, /* 55: payload too large for message slot */ | ||
185 | |||
186 | xpUnsupported, /* 56: unsupported functionality or resource */ | ||
187 | xpNeedMoreInfo, /* 57: more info is needed by SAL */ | ||
236 | 188 | ||
237 | xpUnknownReason /* 53: unknown reason - must be last in enum */ | 189 | xpGruCopyError, /* 58: gru_copy_gru() returned error */ |
190 | xpGruSendMqError, /* 59: gru send message queue related error */ | ||
191 | |||
192 | xpBadChannelNumber, /* 60: invalid channel number */ | ||
193 | xpBadMsgType, /* 60: invalid message type */ | ||
194 | |||
195 | xpUnknownReason /* 61: unknown reason - must be last in enum */ | ||
238 | }; | 196 | }; |
239 | 197 | ||
240 | /* | 198 | /* |
@@ -285,6 +243,9 @@ typedef void (*xpc_channel_func) (enum xp_retval reason, short partid, | |||
285 | * calling xpc_received(). | 243 | * calling xpc_received(). |
286 | * | 244 | * |
287 | * All other reason codes indicate failure. | 245 | * All other reason codes indicate failure. |
246 | * | ||
247 | * NOTE: The user defined function must be callable by an interrupt handler | ||
248 | * and thus cannot block. | ||
288 | */ | 249 | */ |
289 | typedef void (*xpc_notify_func) (enum xp_retval reason, short partid, | 250 | typedef void (*xpc_notify_func) (enum xp_retval reason, short partid, |
290 | int ch_number, void *key); | 251 | int ch_number, void *key); |
@@ -308,23 +269,22 @@ struct xpc_registration { | |||
308 | xpc_channel_func func; /* function to call */ | 269 | xpc_channel_func func; /* function to call */ |
309 | void *key; /* pointer to user's key */ | 270 | void *key; /* pointer to user's key */ |
310 | u16 nentries; /* #of msg entries in local msg queue */ | 271 | u16 nentries; /* #of msg entries in local msg queue */ |
311 | u16 msg_size; /* message queue's message size */ | 272 | u16 entry_size; /* message queue's message entry size */ |
312 | u32 assigned_limit; /* limit on #of assigned kthreads */ | 273 | u32 assigned_limit; /* limit on #of assigned kthreads */ |
313 | u32 idle_limit; /* limit on #of idle kthreads */ | 274 | u32 idle_limit; /* limit on #of idle kthreads */ |
314 | } ____cacheline_aligned; | 275 | } ____cacheline_aligned; |
315 | 276 | ||
316 | #define XPC_CHANNEL_REGISTERED(_c) (xpc_registrations[_c].func != NULL) | 277 | #define XPC_CHANNEL_REGISTERED(_c) (xpc_registrations[_c].func != NULL) |
317 | 278 | ||
318 | /* the following are valid xpc_allocate() flags */ | 279 | /* the following are valid xpc_send() or xpc_send_notify() flags */ |
319 | #define XPC_WAIT 0 /* wait flag */ | 280 | #define XPC_WAIT 0 /* wait flag */ |
320 | #define XPC_NOWAIT 1 /* no wait flag */ | 281 | #define XPC_NOWAIT 1 /* no wait flag */ |
321 | 282 | ||
322 | struct xpc_interface { | 283 | struct xpc_interface { |
323 | void (*connect) (int); | 284 | void (*connect) (int); |
324 | void (*disconnect) (int); | 285 | void (*disconnect) (int); |
325 | enum xp_retval (*allocate) (short, int, u32, void **); | 286 | enum xp_retval (*send) (short, int, u32, void *, u16); |
326 | enum xp_retval (*send) (short, int, void *); | 287 | enum xp_retval (*send_notify) (short, int, u32, void *, u16, |
327 | enum xp_retval (*send_notify) (short, int, void *, | ||
328 | xpc_notify_func, void *); | 288 | xpc_notify_func, void *); |
329 | void (*received) (short, int, void *); | 289 | void (*received) (short, int, void *); |
330 | enum xp_retval (*partid_to_nasids) (short, void *); | 290 | enum xp_retval (*partid_to_nasids) (short, void *); |
@@ -334,10 +294,9 @@ extern struct xpc_interface xpc_interface; | |||
334 | 294 | ||
335 | extern void xpc_set_interface(void (*)(int), | 295 | extern void xpc_set_interface(void (*)(int), |
336 | void (*)(int), | 296 | void (*)(int), |
337 | enum xp_retval (*)(short, int, u32, void **), | 297 | enum xp_retval (*)(short, int, u32, void *, u16), |
338 | enum xp_retval (*)(short, int, void *), | 298 | enum xp_retval (*)(short, int, u32, void *, u16, |
339 | enum xp_retval (*)(short, int, void *, | 299 | xpc_notify_func, void *), |
340 | xpc_notify_func, void *), | ||
341 | void (*)(short, int, void *), | 300 | void (*)(short, int, void *), |
342 | enum xp_retval (*)(short, void *)); | 301 | enum xp_retval (*)(short, void *)); |
343 | extern void xpc_clear_interface(void); | 302 | extern void xpc_clear_interface(void); |
@@ -347,22 +306,19 @@ extern enum xp_retval xpc_connect(int, xpc_channel_func, void *, u16, | |||
347 | extern void xpc_disconnect(int); | 306 | extern void xpc_disconnect(int); |
348 | 307 | ||
349 | static inline enum xp_retval | 308 | static inline enum xp_retval |
350 | xpc_allocate(short partid, int ch_number, u32 flags, void **payload) | 309 | xpc_send(short partid, int ch_number, u32 flags, void *payload, |
351 | { | 310 | u16 payload_size) |
352 | return xpc_interface.allocate(partid, ch_number, flags, payload); | ||
353 | } | ||
354 | |||
355 | static inline enum xp_retval | ||
356 | xpc_send(short partid, int ch_number, void *payload) | ||
357 | { | 311 | { |
358 | return xpc_interface.send(partid, ch_number, payload); | 312 | return xpc_interface.send(partid, ch_number, flags, payload, |
313 | payload_size); | ||
359 | } | 314 | } |
360 | 315 | ||
361 | static inline enum xp_retval | 316 | static inline enum xp_retval |
362 | xpc_send_notify(short partid, int ch_number, void *payload, | 317 | xpc_send_notify(short partid, int ch_number, u32 flags, void *payload, |
363 | xpc_notify_func func, void *key) | 318 | u16 payload_size, xpc_notify_func func, void *key) |
364 | { | 319 | { |
365 | return xpc_interface.send_notify(partid, ch_number, payload, func, key); | 320 | return xpc_interface.send_notify(partid, ch_number, flags, payload, |
321 | payload_size, func, key); | ||
366 | } | 322 | } |
367 | 323 | ||
368 | static inline void | 324 | static inline void |
@@ -377,8 +333,23 @@ xpc_partid_to_nasids(short partid, void *nasids) | |||
377 | return xpc_interface.partid_to_nasids(partid, nasids); | 333 | return xpc_interface.partid_to_nasids(partid, nasids); |
378 | } | 334 | } |
379 | 335 | ||
336 | extern short xp_max_npartitions; | ||
337 | extern short xp_partition_id; | ||
338 | extern u8 xp_region_size; | ||
339 | |||
340 | extern unsigned long (*xp_pa) (void *); | ||
341 | extern enum xp_retval (*xp_remote_memcpy) (unsigned long, const unsigned long, | ||
342 | size_t); | ||
343 | extern int (*xp_cpu_to_nasid) (int); | ||
344 | |||
380 | extern u64 xp_nofault_PIOR_target; | 345 | extern u64 xp_nofault_PIOR_target; |
381 | extern int xp_nofault_PIOR(void *); | 346 | extern int xp_nofault_PIOR(void *); |
382 | extern int xp_error_PIOR(void); | 347 | extern int xp_error_PIOR(void); |
383 | 348 | ||
349 | extern struct device *xp; | ||
350 | extern enum xp_retval xp_init_sn2(void); | ||
351 | extern enum xp_retval xp_init_uv(void); | ||
352 | extern void xp_exit_sn2(void); | ||
353 | extern void xp_exit_uv(void); | ||
354 | |||
384 | #endif /* _DRIVERS_MISC_SGIXP_XP_H */ | 355 | #endif /* _DRIVERS_MISC_SGIXP_XP_H */ |
diff --git a/drivers/misc/sgi-xp/xp_main.c b/drivers/misc/sgi-xp/xp_main.c index 196480b691a1..66a1d19e08ad 100644 --- a/drivers/misc/sgi-xp/xp_main.c +++ b/drivers/misc/sgi-xp/xp_main.c | |||
@@ -14,29 +14,48 @@ | |||
14 | * | 14 | * |
15 | */ | 15 | */ |
16 | 16 | ||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/module.h> | 17 | #include <linux/module.h> |
20 | #include <linux/mutex.h> | 18 | #include <linux/device.h> |
21 | #include <asm/sn/intr.h> | ||
22 | #include <asm/sn/sn_sal.h> | ||
23 | #include "xp.h" | 19 | #include "xp.h" |
24 | 20 | ||
25 | /* | 21 | /* define the XP debug device structures to be used with dev_dbg() et al */ |
26 | * The export of xp_nofault_PIOR needs to happen here since it is defined | 22 | |
27 | * in drivers/misc/sgi-xp/xp_nofault.S. The target of the nofault read is | 23 | struct device_driver xp_dbg_name = { |
28 | * defined here. | 24 | .name = "xp" |
29 | */ | 25 | }; |
30 | EXPORT_SYMBOL_GPL(xp_nofault_PIOR); | 26 | |
27 | struct device xp_dbg_subname = { | ||
28 | .bus_id = {0}, /* set to "" */ | ||
29 | .driver = &xp_dbg_name | ||
30 | }; | ||
31 | |||
32 | struct device *xp = &xp_dbg_subname; | ||
33 | |||
34 | /* max #of partitions possible */ | ||
35 | short xp_max_npartitions; | ||
36 | EXPORT_SYMBOL_GPL(xp_max_npartitions); | ||
37 | |||
38 | short xp_partition_id; | ||
39 | EXPORT_SYMBOL_GPL(xp_partition_id); | ||
40 | |||
41 | u8 xp_region_size; | ||
42 | EXPORT_SYMBOL_GPL(xp_region_size); | ||
43 | |||
44 | unsigned long (*xp_pa) (void *addr); | ||
45 | EXPORT_SYMBOL_GPL(xp_pa); | ||
46 | |||
47 | enum xp_retval (*xp_remote_memcpy) (unsigned long dst_gpa, | ||
48 | const unsigned long src_gpa, size_t len); | ||
49 | EXPORT_SYMBOL_GPL(xp_remote_memcpy); | ||
31 | 50 | ||
32 | u64 xp_nofault_PIOR_target; | 51 | int (*xp_cpu_to_nasid) (int cpuid); |
33 | EXPORT_SYMBOL_GPL(xp_nofault_PIOR_target); | 52 | EXPORT_SYMBOL_GPL(xp_cpu_to_nasid); |
34 | 53 | ||
35 | /* | 54 | /* |
36 | * xpc_registrations[] keeps track of xpc_connect()'s done by the kernel-level | 55 | * xpc_registrations[] keeps track of xpc_connect()'s done by the kernel-level |
37 | * users of XPC. | 56 | * users of XPC. |
38 | */ | 57 | */ |
39 | struct xpc_registration xpc_registrations[XPC_NCHANNELS]; | 58 | struct xpc_registration xpc_registrations[XPC_MAX_NCHANNELS]; |
40 | EXPORT_SYMBOL_GPL(xpc_registrations); | 59 | EXPORT_SYMBOL_GPL(xpc_registrations); |
41 | 60 | ||
42 | /* | 61 | /* |
@@ -51,10 +70,9 @@ xpc_notloaded(void) | |||
51 | struct xpc_interface xpc_interface = { | 70 | struct xpc_interface xpc_interface = { |
52 | (void (*)(int))xpc_notloaded, | 71 | (void (*)(int))xpc_notloaded, |
53 | (void (*)(int))xpc_notloaded, | 72 | (void (*)(int))xpc_notloaded, |
54 | (enum xp_retval(*)(short, int, u32, void **))xpc_notloaded, | 73 | (enum xp_retval(*)(short, int, u32, void *, u16))xpc_notloaded, |
55 | (enum xp_retval(*)(short, int, void *))xpc_notloaded, | 74 | (enum xp_retval(*)(short, int, u32, void *, u16, xpc_notify_func, |
56 | (enum xp_retval(*)(short, int, void *, xpc_notify_func, void *)) | 75 | void *))xpc_notloaded, |
57 | xpc_notloaded, | ||
58 | (void (*)(short, int, void *))xpc_notloaded, | 76 | (void (*)(short, int, void *))xpc_notloaded, |
59 | (enum xp_retval(*)(short, void *))xpc_notloaded | 77 | (enum xp_retval(*)(short, void *))xpc_notloaded |
60 | }; | 78 | }; |
@@ -66,16 +84,14 @@ EXPORT_SYMBOL_GPL(xpc_interface); | |||
66 | void | 84 | void |
67 | xpc_set_interface(void (*connect) (int), | 85 | xpc_set_interface(void (*connect) (int), |
68 | void (*disconnect) (int), | 86 | void (*disconnect) (int), |
69 | enum xp_retval (*allocate) (short, int, u32, void **), | 87 | enum xp_retval (*send) (short, int, u32, void *, u16), |
70 | enum xp_retval (*send) (short, int, void *), | 88 | enum xp_retval (*send_notify) (short, int, u32, void *, u16, |
71 | enum xp_retval (*send_notify) (short, int, void *, | ||
72 | xpc_notify_func, void *), | 89 | xpc_notify_func, void *), |
73 | void (*received) (short, int, void *), | 90 | void (*received) (short, int, void *), |
74 | enum xp_retval (*partid_to_nasids) (short, void *)) | 91 | enum xp_retval (*partid_to_nasids) (short, void *)) |
75 | { | 92 | { |
76 | xpc_interface.connect = connect; | 93 | xpc_interface.connect = connect; |
77 | xpc_interface.disconnect = disconnect; | 94 | xpc_interface.disconnect = disconnect; |
78 | xpc_interface.allocate = allocate; | ||
79 | xpc_interface.send = send; | 95 | xpc_interface.send = send; |
80 | xpc_interface.send_notify = send_notify; | 96 | xpc_interface.send_notify = send_notify; |
81 | xpc_interface.received = received; | 97 | xpc_interface.received = received; |
@@ -91,13 +107,11 @@ xpc_clear_interface(void) | |||
91 | { | 107 | { |
92 | xpc_interface.connect = (void (*)(int))xpc_notloaded; | 108 | xpc_interface.connect = (void (*)(int))xpc_notloaded; |
93 | xpc_interface.disconnect = (void (*)(int))xpc_notloaded; | 109 | xpc_interface.disconnect = (void (*)(int))xpc_notloaded; |
94 | xpc_interface.allocate = (enum xp_retval(*)(short, int, u32, | 110 | xpc_interface.send = (enum xp_retval(*)(short, int, u32, void *, u16)) |
95 | void **))xpc_notloaded; | ||
96 | xpc_interface.send = (enum xp_retval(*)(short, int, void *)) | ||
97 | xpc_notloaded; | 111 | xpc_notloaded; |
98 | xpc_interface.send_notify = (enum xp_retval(*)(short, int, void *, | 112 | xpc_interface.send_notify = (enum xp_retval(*)(short, int, u32, void *, |
99 | xpc_notify_func, | 113 | u16, xpc_notify_func, |
100 | void *))xpc_notloaded; | 114 | void *))xpc_notloaded; |
101 | xpc_interface.received = (void (*)(short, int, void *)) | 115 | xpc_interface.received = (void (*)(short, int, void *)) |
102 | xpc_notloaded; | 116 | xpc_notloaded; |
103 | xpc_interface.partid_to_nasids = (enum xp_retval(*)(short, void *)) | 117 | xpc_interface.partid_to_nasids = (enum xp_retval(*)(short, void *)) |
@@ -135,11 +149,14 @@ xpc_connect(int ch_number, xpc_channel_func func, void *key, u16 payload_size, | |||
135 | { | 149 | { |
136 | struct xpc_registration *registration; | 150 | struct xpc_registration *registration; |
137 | 151 | ||
138 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | 152 | DBUG_ON(ch_number < 0 || ch_number >= XPC_MAX_NCHANNELS); |
139 | DBUG_ON(payload_size == 0 || nentries == 0); | 153 | DBUG_ON(payload_size == 0 || nentries == 0); |
140 | DBUG_ON(func == NULL); | 154 | DBUG_ON(func == NULL); |
141 | DBUG_ON(assigned_limit == 0 || idle_limit > assigned_limit); | 155 | DBUG_ON(assigned_limit == 0 || idle_limit > assigned_limit); |
142 | 156 | ||
157 | if (XPC_MSG_SIZE(payload_size) > XPC_MSG_MAX_SIZE) | ||
158 | return xpPayloadTooBig; | ||
159 | |||
143 | registration = &xpc_registrations[ch_number]; | 160 | registration = &xpc_registrations[ch_number]; |
144 | 161 | ||
145 | if (mutex_lock_interruptible(®istration->mutex) != 0) | 162 | if (mutex_lock_interruptible(®istration->mutex) != 0) |
@@ -152,7 +169,7 @@ xpc_connect(int ch_number, xpc_channel_func func, void *key, u16 payload_size, | |||
152 | } | 169 | } |
153 | 170 | ||
154 | /* register the channel for connection */ | 171 | /* register the channel for connection */ |
155 | registration->msg_size = XPC_MSG_SIZE(payload_size); | 172 | registration->entry_size = XPC_MSG_SIZE(payload_size); |
156 | registration->nentries = nentries; | 173 | registration->nentries = nentries; |
157 | registration->assigned_limit = assigned_limit; | 174 | registration->assigned_limit = assigned_limit; |
158 | registration->idle_limit = idle_limit; | 175 | registration->idle_limit = idle_limit; |
@@ -185,7 +202,7 @@ xpc_disconnect(int ch_number) | |||
185 | { | 202 | { |
186 | struct xpc_registration *registration; | 203 | struct xpc_registration *registration; |
187 | 204 | ||
188 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | 205 | DBUG_ON(ch_number < 0 || ch_number >= XPC_MAX_NCHANNELS); |
189 | 206 | ||
190 | registration = &xpc_registrations[ch_number]; | 207 | registration = &xpc_registrations[ch_number]; |
191 | 208 | ||
@@ -206,7 +223,7 @@ xpc_disconnect(int ch_number) | |||
206 | registration->func = NULL; | 223 | registration->func = NULL; |
207 | registration->key = NULL; | 224 | registration->key = NULL; |
208 | registration->nentries = 0; | 225 | registration->nentries = 0; |
209 | registration->msg_size = 0; | 226 | registration->entry_size = 0; |
210 | registration->assigned_limit = 0; | 227 | registration->assigned_limit = 0; |
211 | registration->idle_limit = 0; | 228 | registration->idle_limit = 0; |
212 | 229 | ||
@@ -221,39 +238,21 @@ EXPORT_SYMBOL_GPL(xpc_disconnect); | |||
221 | int __init | 238 | int __init |
222 | xp_init(void) | 239 | xp_init(void) |
223 | { | 240 | { |
224 | int ret, ch_number; | 241 | enum xp_retval ret; |
225 | u64 func_addr = *(u64 *)xp_nofault_PIOR; | 242 | int ch_number; |
226 | u64 err_func_addr = *(u64 *)xp_error_PIOR; | ||
227 | |||
228 | if (!ia64_platform_is("sn2")) | ||
229 | return -ENODEV; | ||
230 | 243 | ||
231 | /* | 244 | if (is_shub()) |
232 | * Register a nofault code region which performs a cross-partition | 245 | ret = xp_init_sn2(); |
233 | * PIO read. If the PIO read times out, the MCA handler will consume | 246 | else if (is_uv()) |
234 | * the error and return to a kernel-provided instruction to indicate | 247 | ret = xp_init_uv(); |
235 | * an error. This PIO read exists because it is guaranteed to timeout | ||
236 | * if the destination is down (AMO operations do not timeout on at | ||
237 | * least some CPUs on Shubs <= v1.2, which unfortunately we have to | ||
238 | * work around). | ||
239 | */ | ||
240 | ret = sn_register_nofault_code(func_addr, err_func_addr, err_func_addr, | ||
241 | 1, 1); | ||
242 | if (ret != 0) { | ||
243 | printk(KERN_ERR "XP: can't register nofault code, error=%d\n", | ||
244 | ret); | ||
245 | } | ||
246 | /* | ||
247 | * Setup the nofault PIO read target. (There is no special reason why | ||
248 | * SH_IPI_ACCESS was selected.) | ||
249 | */ | ||
250 | if (is_shub2()) | ||
251 | xp_nofault_PIOR_target = SH2_IPI_ACCESS0; | ||
252 | else | 248 | else |
253 | xp_nofault_PIOR_target = SH1_IPI_ACCESS; | 249 | ret = xpUnsupported; |
250 | |||
251 | if (ret != xpSuccess) | ||
252 | return -ENODEV; | ||
254 | 253 | ||
255 | /* initialize the connection registration mutex */ | 254 | /* initialize the connection registration mutex */ |
256 | for (ch_number = 0; ch_number < XPC_NCHANNELS; ch_number++) | 255 | for (ch_number = 0; ch_number < XPC_MAX_NCHANNELS; ch_number++) |
257 | mutex_init(&xpc_registrations[ch_number].mutex); | 256 | mutex_init(&xpc_registrations[ch_number].mutex); |
258 | 257 | ||
259 | return 0; | 258 | return 0; |
@@ -264,12 +263,10 @@ module_init(xp_init); | |||
264 | void __exit | 263 | void __exit |
265 | xp_exit(void) | 264 | xp_exit(void) |
266 | { | 265 | { |
267 | u64 func_addr = *(u64 *)xp_nofault_PIOR; | 266 | if (is_shub()) |
268 | u64 err_func_addr = *(u64 *)xp_error_PIOR; | 267 | xp_exit_sn2(); |
269 | 268 | else if (is_uv()) | |
270 | /* unregister the PIO read nofault code region */ | 269 | xp_exit_uv(); |
271 | (void)sn_register_nofault_code(func_addr, err_func_addr, | ||
272 | err_func_addr, 1, 0); | ||
273 | } | 270 | } |
274 | 271 | ||
275 | module_exit(xp_exit); | 272 | module_exit(xp_exit); |
diff --git a/drivers/misc/sgi-xp/xp_sn2.c b/drivers/misc/sgi-xp/xp_sn2.c new file mode 100644 index 000000000000..1440134caf31 --- /dev/null +++ b/drivers/misc/sgi-xp/xp_sn2.c | |||
@@ -0,0 +1,146 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition (XP) sn2-based functions. | ||
11 | * | ||
12 | * Architecture specific implementation of common functions. | ||
13 | */ | ||
14 | |||
15 | #include <linux/module.h> | ||
16 | #include <linux/device.h> | ||
17 | #include <asm/sn/bte.h> | ||
18 | #include <asm/sn/sn_sal.h> | ||
19 | #include "xp.h" | ||
20 | |||
21 | /* | ||
22 | * The export of xp_nofault_PIOR needs to happen here since it is defined | ||
23 | * in drivers/misc/sgi-xp/xp_nofault.S. The target of the nofault read is | ||
24 | * defined here. | ||
25 | */ | ||
26 | EXPORT_SYMBOL_GPL(xp_nofault_PIOR); | ||
27 | |||
28 | u64 xp_nofault_PIOR_target; | ||
29 | EXPORT_SYMBOL_GPL(xp_nofault_PIOR_target); | ||
30 | |||
31 | /* | ||
32 | * Register a nofault code region which performs a cross-partition PIO read. | ||
33 | * If the PIO read times out, the MCA handler will consume the error and | ||
34 | * return to a kernel-provided instruction to indicate an error. This PIO read | ||
35 | * exists because it is guaranteed to timeout if the destination is down | ||
36 | * (amo operations do not timeout on at least some CPUs on Shubs <= v1.2, | ||
37 | * which unfortunately we have to work around). | ||
38 | */ | ||
39 | static enum xp_retval | ||
40 | xp_register_nofault_code_sn2(void) | ||
41 | { | ||
42 | int ret; | ||
43 | u64 func_addr; | ||
44 | u64 err_func_addr; | ||
45 | |||
46 | func_addr = *(u64 *)xp_nofault_PIOR; | ||
47 | err_func_addr = *(u64 *)xp_error_PIOR; | ||
48 | ret = sn_register_nofault_code(func_addr, err_func_addr, err_func_addr, | ||
49 | 1, 1); | ||
50 | if (ret != 0) { | ||
51 | dev_err(xp, "can't register nofault code, error=%d\n", ret); | ||
52 | return xpSalError; | ||
53 | } | ||
54 | /* | ||
55 | * Setup the nofault PIO read target. (There is no special reason why | ||
56 | * SH_IPI_ACCESS was selected.) | ||
57 | */ | ||
58 | if (is_shub1()) | ||
59 | xp_nofault_PIOR_target = SH1_IPI_ACCESS; | ||
60 | else if (is_shub2()) | ||
61 | xp_nofault_PIOR_target = SH2_IPI_ACCESS0; | ||
62 | |||
63 | return xpSuccess; | ||
64 | } | ||
65 | |||
66 | static void | ||
67 | xp_unregister_nofault_code_sn2(void) | ||
68 | { | ||
69 | u64 func_addr = *(u64 *)xp_nofault_PIOR; | ||
70 | u64 err_func_addr = *(u64 *)xp_error_PIOR; | ||
71 | |||
72 | /* unregister the PIO read nofault code region */ | ||
73 | (void)sn_register_nofault_code(func_addr, err_func_addr, | ||
74 | err_func_addr, 1, 0); | ||
75 | } | ||
76 | |||
77 | /* | ||
78 | * Convert a virtual memory address to a physical memory address. | ||
79 | */ | ||
80 | static unsigned long | ||
81 | xp_pa_sn2(void *addr) | ||
82 | { | ||
83 | return __pa(addr); | ||
84 | } | ||
85 | |||
86 | /* | ||
87 | * Wrapper for bte_copy(). | ||
88 | * | ||
89 | * dst_pa - physical address of the destination of the transfer. | ||
90 | * src_pa - physical address of the source of the transfer. | ||
91 | * len - number of bytes to transfer from source to destination. | ||
92 | * | ||
93 | * Note: xp_remote_memcpy_sn2() should never be called while holding a spinlock. | ||
94 | */ | ||
95 | static enum xp_retval | ||
96 | xp_remote_memcpy_sn2(unsigned long dst_pa, const unsigned long src_pa, | ||
97 | size_t len) | ||
98 | { | ||
99 | bte_result_t ret; | ||
100 | |||
101 | ret = bte_copy(src_pa, dst_pa, len, (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
102 | if (ret == BTE_SUCCESS) | ||
103 | return xpSuccess; | ||
104 | |||
105 | if (is_shub2()) { | ||
106 | dev_err(xp, "bte_copy() on shub2 failed, error=0x%x dst_pa=" | ||
107 | "0x%016lx src_pa=0x%016lx len=%ld\\n", ret, dst_pa, | ||
108 | src_pa, len); | ||
109 | } else { | ||
110 | dev_err(xp, "bte_copy() failed, error=%d dst_pa=0x%016lx " | ||
111 | "src_pa=0x%016lx len=%ld\\n", ret, dst_pa, src_pa, len); | ||
112 | } | ||
113 | |||
114 | return xpBteCopyError; | ||
115 | } | ||
116 | |||
117 | static int | ||
118 | xp_cpu_to_nasid_sn2(int cpuid) | ||
119 | { | ||
120 | return cpuid_to_nasid(cpuid); | ||
121 | } | ||
122 | |||
123 | enum xp_retval | ||
124 | xp_init_sn2(void) | ||
125 | { | ||
126 | BUG_ON(!is_shub()); | ||
127 | |||
128 | xp_max_npartitions = XP_MAX_NPARTITIONS_SN2; | ||
129 | xp_partition_id = sn_partition_id; | ||
130 | xp_region_size = sn_region_size; | ||
131 | |||
132 | xp_pa = xp_pa_sn2; | ||
133 | xp_remote_memcpy = xp_remote_memcpy_sn2; | ||
134 | xp_cpu_to_nasid = xp_cpu_to_nasid_sn2; | ||
135 | |||
136 | return xp_register_nofault_code_sn2(); | ||
137 | } | ||
138 | |||
139 | void | ||
140 | xp_exit_sn2(void) | ||
141 | { | ||
142 | BUG_ON(!is_shub()); | ||
143 | |||
144 | xp_unregister_nofault_code_sn2(); | ||
145 | } | ||
146 | |||
diff --git a/drivers/misc/sgi-xp/xp_uv.c b/drivers/misc/sgi-xp/xp_uv.c new file mode 100644 index 000000000000..d9f7ce2510bc --- /dev/null +++ b/drivers/misc/sgi-xp/xp_uv.c | |||
@@ -0,0 +1,72 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition (XP) uv-based functions. | ||
11 | * | ||
12 | * Architecture specific implementation of common functions. | ||
13 | * | ||
14 | */ | ||
15 | |||
16 | #include <linux/device.h> | ||
17 | #include <asm/uv/uv_hub.h> | ||
18 | #include "../sgi-gru/grukservices.h" | ||
19 | #include "xp.h" | ||
20 | |||
21 | /* | ||
22 | * Convert a virtual memory address to a physical memory address. | ||
23 | */ | ||
24 | static unsigned long | ||
25 | xp_pa_uv(void *addr) | ||
26 | { | ||
27 | return uv_gpa(addr); | ||
28 | } | ||
29 | |||
30 | static enum xp_retval | ||
31 | xp_remote_memcpy_uv(unsigned long dst_gpa, const unsigned long src_gpa, | ||
32 | size_t len) | ||
33 | { | ||
34 | int ret; | ||
35 | |||
36 | ret = gru_copy_gpa(dst_gpa, src_gpa, len); | ||
37 | if (ret == 0) | ||
38 | return xpSuccess; | ||
39 | |||
40 | dev_err(xp, "gru_copy_gpa() failed, dst_gpa=0x%016lx src_gpa=0x%016lx " | ||
41 | "len=%ld\n", dst_gpa, src_gpa, len); | ||
42 | return xpGruCopyError; | ||
43 | } | ||
44 | |||
45 | static int | ||
46 | xp_cpu_to_nasid_uv(int cpuid) | ||
47 | { | ||
48 | /* ??? Is this same as sn2 nasid in mach/part bitmaps set up by SAL? */ | ||
49 | return UV_PNODE_TO_NASID(uv_cpu_to_pnode(cpuid)); | ||
50 | } | ||
51 | |||
52 | enum xp_retval | ||
53 | xp_init_uv(void) | ||
54 | { | ||
55 | BUG_ON(!is_uv()); | ||
56 | |||
57 | xp_max_npartitions = XP_MAX_NPARTITIONS_UV; | ||
58 | xp_partition_id = 0; /* !!! not correct value */ | ||
59 | xp_region_size = 0; /* !!! not correct value */ | ||
60 | |||
61 | xp_pa = xp_pa_uv; | ||
62 | xp_remote_memcpy = xp_remote_memcpy_uv; | ||
63 | xp_cpu_to_nasid = xp_cpu_to_nasid_uv; | ||
64 | |||
65 | return xpSuccess; | ||
66 | } | ||
67 | |||
68 | void | ||
69 | xp_exit_uv(void) | ||
70 | { | ||
71 | BUG_ON(!is_uv()); | ||
72 | } | ||
diff --git a/drivers/misc/sgi-xp/xpc.h b/drivers/misc/sgi-xp/xpc.h index 11ac267ed68f..619208d61862 100644 --- a/drivers/misc/sgi-xp/xpc.h +++ b/drivers/misc/sgi-xp/xpc.h | |||
@@ -13,18 +13,10 @@ | |||
13 | #ifndef _DRIVERS_MISC_SGIXP_XPC_H | 13 | #ifndef _DRIVERS_MISC_SGIXP_XPC_H |
14 | #define _DRIVERS_MISC_SGIXP_XPC_H | 14 | #define _DRIVERS_MISC_SGIXP_XPC_H |
15 | 15 | ||
16 | #include <linux/interrupt.h> | 16 | #include <linux/wait.h> |
17 | #include <linux/sysctl.h> | ||
18 | #include <linux/device.h> | ||
19 | #include <linux/mutex.h> | ||
20 | #include <linux/completion.h> | 17 | #include <linux/completion.h> |
21 | #include <asm/pgtable.h> | 18 | #include <linux/timer.h> |
22 | #include <asm/processor.h> | 19 | #include <linux/sched.h> |
23 | #include <asm/sn/bte.h> | ||
24 | #include <asm/sn/clksupport.h> | ||
25 | #include <asm/sn/addrs.h> | ||
26 | #include <asm/sn/mspec.h> | ||
27 | #include <asm/sn/shub_mmr.h> | ||
28 | #include "xp.h" | 20 | #include "xp.h" |
29 | 21 | ||
30 | /* | 22 | /* |
@@ -36,23 +28,7 @@ | |||
36 | #define XPC_VERSION_MAJOR(_v) ((_v) >> 4) | 28 | #define XPC_VERSION_MAJOR(_v) ((_v) >> 4) |
37 | #define XPC_VERSION_MINOR(_v) ((_v) & 0xf) | 29 | #define XPC_VERSION_MINOR(_v) ((_v) & 0xf) |
38 | 30 | ||
39 | /* | 31 | /* define frequency of the heartbeat and frequency how often it's checked */ |
40 | * The next macros define word or bit representations for given | ||
41 | * C-brick nasid in either the SAL provided bit array representing | ||
42 | * nasids in the partition/machine or the AMO_t array used for | ||
43 | * inter-partition initiation communications. | ||
44 | * | ||
45 | * For SN2 machines, C-Bricks are alway even numbered NASIDs. As | ||
46 | * such, some space will be saved by insisting that nasid information | ||
47 | * passed from SAL always be packed for C-Bricks and the | ||
48 | * cross-partition interrupts use the same packing scheme. | ||
49 | */ | ||
50 | #define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2) | ||
51 | #define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1)) | ||
52 | #define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \ | ||
53 | (1UL << XPC_NASID_B_INDEX(_n))) | ||
54 | #define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2) | ||
55 | |||
56 | #define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */ | 32 | #define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */ |
57 | #define XPC_HB_CHECK_DEFAULT_INTERVAL 20 /* check HB every x secs */ | 33 | #define XPC_HB_CHECK_DEFAULT_INTERVAL 20 /* check HB every x secs */ |
58 | 34 | ||
@@ -72,11 +48,11 @@ | |||
72 | * | 48 | * |
73 | * reserved page header | 49 | * reserved page header |
74 | * | 50 | * |
75 | * The first cacheline of the reserved page contains the header | 51 | * The first two 64-byte cachelines of the reserved page contain the |
76 | * (struct xpc_rsvd_page). Before SAL initialization has completed, | 52 | * header (struct xpc_rsvd_page). Before SAL initialization has completed, |
77 | * SAL has set up the following fields of the reserved page header: | 53 | * SAL has set up the following fields of the reserved page header: |
78 | * SAL_signature, SAL_version, partid, and nasids_size. The other | 54 | * SAL_signature, SAL_version, SAL_partid, and SAL_nasids_size. The |
79 | * fields are set up by XPC. (xpc_rsvd_page points to the local | 55 | * other fields are set up by XPC. (xpc_rsvd_page points to the local |
80 | * partition's reserved page.) | 56 | * partition's reserved page.) |
81 | * | 57 | * |
82 | * part_nasids mask | 58 | * part_nasids mask |
@@ -87,14 +63,16 @@ | |||
87 | * the actual nasids in the entire machine (mach_nasids). We're only | 63 | * the actual nasids in the entire machine (mach_nasids). We're only |
88 | * interested in the even numbered nasids (which contain the processors | 64 | * interested in the even numbered nasids (which contain the processors |
89 | * and/or memory), so we only need half as many bits to represent the | 65 | * and/or memory), so we only need half as many bits to represent the |
90 | * nasids. The part_nasids mask is located starting at the first cacheline | 66 | * nasids. When mapping nasid to bit in a mask (or bit to nasid) be sure |
91 | * following the reserved page header. The mach_nasids mask follows right | 67 | * to either divide or multiply by 2. The part_nasids mask is located |
92 | * after the part_nasids mask. The size in bytes of each mask is reflected | 68 | * starting at the first cacheline following the reserved page header. The |
93 | * by the reserved page header field 'nasids_size'. (Local partition's | 69 | * mach_nasids mask follows right after the part_nasids mask. The size in |
94 | * mask pointers are xpc_part_nasids and xpc_mach_nasids.) | 70 | * bytes of each mask is reflected by the reserved page header field |
71 | * 'SAL_nasids_size'. (Local partition's mask pointers are xpc_part_nasids | ||
72 | * and xpc_mach_nasids.) | ||
95 | * | 73 | * |
96 | * vars | 74 | * vars (ia64-sn2 only) |
97 | * vars part | 75 | * vars part (ia64-sn2 only) |
98 | * | 76 | * |
99 | * Immediately following the mach_nasids mask are the XPC variables | 77 | * Immediately following the mach_nasids mask are the XPC variables |
100 | * required by other partitions. First are those that are generic to all | 78 | * required by other partitions. First are those that are generic to all |
@@ -102,43 +80,26 @@ | |||
102 | * which are partition specific (vars part). These are setup by XPC. | 80 | * which are partition specific (vars part). These are setup by XPC. |
103 | * (Local partition's vars pointers are xpc_vars and xpc_vars_part.) | 81 | * (Local partition's vars pointers are xpc_vars and xpc_vars_part.) |
104 | * | 82 | * |
105 | * Note: Until vars_pa is set, the partition XPC code has not been initialized. | 83 | * Note: Until 'ts_jiffies' is set non-zero, the partition XPC code has not been |
84 | * initialized. | ||
106 | */ | 85 | */ |
107 | struct xpc_rsvd_page { | 86 | struct xpc_rsvd_page { |
108 | u64 SAL_signature; /* SAL: unique signature */ | 87 | u64 SAL_signature; /* SAL: unique signature */ |
109 | u64 SAL_version; /* SAL: version */ | 88 | u64 SAL_version; /* SAL: version */ |
110 | u8 partid; /* SAL: partition ID */ | 89 | short SAL_partid; /* SAL: partition ID */ |
90 | short max_npartitions; /* value of XPC_MAX_PARTITIONS */ | ||
111 | u8 version; | 91 | u8 version; |
112 | u8 pad1[6]; /* align to next u64 in cacheline */ | 92 | u8 pad1[3]; /* align to next u64 in 1st 64-byte cacheline */ |
113 | u64 vars_pa; /* physical address of struct xpc_vars */ | 93 | union { |
114 | struct timespec stamp; /* time when reserved page was setup by XPC */ | 94 | unsigned long vars_pa; /* phys address of struct xpc_vars */ |
115 | u64 pad2[9]; /* align to last u64 in cacheline */ | 95 | unsigned long activate_mq_gpa; /* gru phy addr of activate_mq */ |
116 | u64 nasids_size; /* SAL: size of each nasid mask in bytes */ | 96 | } sn; |
97 | unsigned long ts_jiffies; /* timestamp when rsvd pg was setup by XPC */ | ||
98 | u64 pad2[10]; /* align to last u64 in 2nd 64-byte cacheline */ | ||
99 | u64 SAL_nasids_size; /* SAL: size of each nasid mask in bytes */ | ||
117 | }; | 100 | }; |
118 | 101 | ||
119 | #define XPC_RP_VERSION _XPC_VERSION(1, 1) /* version 1.1 of the reserved page */ | 102 | #define XPC_RP_VERSION _XPC_VERSION(2, 0) /* version 2.0 of the reserved page */ |
120 | |||
121 | #define XPC_SUPPORTS_RP_STAMP(_version) \ | ||
122 | (_version >= _XPC_VERSION(1, 1)) | ||
123 | |||
124 | /* | ||
125 | * compare stamps - the return value is: | ||
126 | * | ||
127 | * < 0, if stamp1 < stamp2 | ||
128 | * = 0, if stamp1 == stamp2 | ||
129 | * > 0, if stamp1 > stamp2 | ||
130 | */ | ||
131 | static inline int | ||
132 | xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2) | ||
133 | { | ||
134 | int ret; | ||
135 | |||
136 | ret = stamp1->tv_sec - stamp2->tv_sec; | ||
137 | if (ret == 0) | ||
138 | ret = stamp1->tv_nsec - stamp2->tv_nsec; | ||
139 | |||
140 | return ret; | ||
141 | } | ||
142 | 103 | ||
143 | /* | 104 | /* |
144 | * Define the structures by which XPC variables can be exported to other | 105 | * Define the structures by which XPC variables can be exported to other |
@@ -154,85 +115,40 @@ xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2) | |||
154 | * reflected by incrementing either the major or minor version numbers | 115 | * reflected by incrementing either the major or minor version numbers |
155 | * of struct xpc_vars. | 116 | * of struct xpc_vars. |
156 | */ | 117 | */ |
157 | struct xpc_vars { | 118 | struct xpc_vars_sn2 { |
158 | u8 version; | 119 | u8 version; |
159 | u64 heartbeat; | 120 | u64 heartbeat; |
160 | u64 heartbeating_to_mask; | 121 | DECLARE_BITMAP(heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2); |
161 | u64 heartbeat_offline; /* if 0, heartbeat should be changing */ | 122 | u64 heartbeat_offline; /* if 0, heartbeat should be changing */ |
162 | int act_nasid; | 123 | int activate_IRQ_nasid; |
163 | int act_phys_cpuid; | 124 | int activate_IRQ_phys_cpuid; |
164 | u64 vars_part_pa; | 125 | unsigned long vars_part_pa; |
165 | u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */ | 126 | unsigned long amos_page_pa;/* paddr of page of amos from MSPEC driver */ |
166 | AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */ | 127 | struct amo *amos_page; /* vaddr of page of amos from MSPEC driver */ |
167 | }; | 128 | }; |
168 | 129 | ||
169 | #define XPC_V_VERSION _XPC_VERSION(3, 1) /* version 3.1 of the cross vars */ | 130 | #define XPC_V_VERSION _XPC_VERSION(3, 1) /* version 3.1 of the cross vars */ |
170 | 131 | ||
171 | #define XPC_SUPPORTS_DISENGAGE_REQUEST(_version) \ | ||
172 | (_version >= _XPC_VERSION(3, 1)) | ||
173 | |||
174 | static inline int | ||
175 | xpc_hb_allowed(short partid, struct xpc_vars *vars) | ||
176 | { | ||
177 | return ((vars->heartbeating_to_mask & (1UL << partid)) != 0); | ||
178 | } | ||
179 | |||
180 | static inline void | ||
181 | xpc_allow_hb(short partid, struct xpc_vars *vars) | ||
182 | { | ||
183 | u64 old_mask, new_mask; | ||
184 | |||
185 | do { | ||
186 | old_mask = vars->heartbeating_to_mask; | ||
187 | new_mask = (old_mask | (1UL << partid)); | ||
188 | } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != | ||
189 | old_mask); | ||
190 | } | ||
191 | |||
192 | static inline void | ||
193 | xpc_disallow_hb(short partid, struct xpc_vars *vars) | ||
194 | { | ||
195 | u64 old_mask, new_mask; | ||
196 | |||
197 | do { | ||
198 | old_mask = vars->heartbeating_to_mask; | ||
199 | new_mask = (old_mask & ~(1UL << partid)); | ||
200 | } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != | ||
201 | old_mask); | ||
202 | } | ||
203 | |||
204 | /* | ||
205 | * The AMOs page consists of a number of AMO variables which are divided into | ||
206 | * four groups, The first two groups are used to identify an IRQ's sender. | ||
207 | * These two groups consist of 64 and 128 AMO variables respectively. The last | ||
208 | * two groups, consisting of just one AMO variable each, are used to identify | ||
209 | * the remote partitions that are currently engaged (from the viewpoint of | ||
210 | * the XPC running on the remote partition). | ||
211 | */ | ||
212 | #define XPC_NOTIFY_IRQ_AMOS 0 | ||
213 | #define XPC_ACTIVATE_IRQ_AMOS (XPC_NOTIFY_IRQ_AMOS + XP_MAX_PARTITIONS) | ||
214 | #define XPC_ENGAGED_PARTITIONS_AMO (XPC_ACTIVATE_IRQ_AMOS + XP_NASID_MASK_WORDS) | ||
215 | #define XPC_DISENGAGE_REQUEST_AMO (XPC_ENGAGED_PARTITIONS_AMO + 1) | ||
216 | |||
217 | /* | 132 | /* |
218 | * The following structure describes the per partition specific variables. | 133 | * The following structure describes the per partition specific variables. |
219 | * | 134 | * |
220 | * An array of these structures, one per partition, will be defined. As a | 135 | * An array of these structures, one per partition, will be defined. As a |
221 | * partition becomes active XPC will copy the array entry corresponding to | 136 | * partition becomes active XPC will copy the array entry corresponding to |
222 | * itself from that partition. It is desirable that the size of this | 137 | * itself from that partition. It is desirable that the size of this structure |
223 | * structure evenly divide into a cacheline, such that none of the entries | 138 | * evenly divides into a 128-byte cacheline, such that none of the entries in |
224 | * in this array crosses a cacheline boundary. As it is now, each entry | 139 | * this array crosses a 128-byte cacheline boundary. As it is now, each entry |
225 | * occupies half a cacheline. | 140 | * occupies 64-bytes. |
226 | */ | 141 | */ |
227 | struct xpc_vars_part { | 142 | struct xpc_vars_part_sn2 { |
228 | u64 magic; | 143 | u64 magic; |
229 | 144 | ||
230 | u64 openclose_args_pa; /* physical address of open and close args */ | 145 | unsigned long openclose_args_pa; /* phys addr of open and close args */ |
231 | u64 GPs_pa; /* physical address of Get/Put values */ | 146 | unsigned long GPs_pa; /* physical address of Get/Put values */ |
147 | |||
148 | unsigned long chctl_amo_pa; /* physical address of chctl flags' amo */ | ||
232 | 149 | ||
233 | u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */ | 150 | int notify_IRQ_nasid; /* nasid of where to send notify IRQs */ |
234 | int IPI_nasid; /* nasid of where to send IPIs */ | 151 | int notify_IRQ_phys_cpuid; /* CPUID of where to send notify IRQs */ |
235 | int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */ | ||
236 | 152 | ||
237 | u8 nchannels; /* #of defined channels supported */ | 153 | u8 nchannels; /* #of defined channels supported */ |
238 | 154 | ||
@@ -248,20 +164,95 @@ struct xpc_vars_part { | |||
248 | * MAGIC2 indicates that this partition has pulled the remote partititions | 164 | * MAGIC2 indicates that this partition has pulled the remote partititions |
249 | * per partition variables that pertain to this partition. | 165 | * per partition variables that pertain to this partition. |
250 | */ | 166 | */ |
251 | #define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */ | 167 | #define XPC_VP_MAGIC1_SN2 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */ |
252 | #define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */ | 168 | #define XPC_VP_MAGIC2_SN2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */ |
253 | 169 | ||
254 | /* the reserved page sizes and offsets */ | 170 | /* the reserved page sizes and offsets */ |
255 | 171 | ||
256 | #define XPC_RP_HEADER_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page)) | 172 | #define XPC_RP_HEADER_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page)) |
257 | #define XPC_RP_VARS_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_vars)) | 173 | #define XPC_RP_VARS_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_vars_sn2)) |
258 | 174 | ||
259 | #define XPC_RP_PART_NASIDS(_rp) ((u64 *)((u8 *)(_rp) + XPC_RP_HEADER_SIZE)) | 175 | #define XPC_RP_PART_NASIDS(_rp) ((unsigned long *)((u8 *)(_rp) + \ |
260 | #define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + xp_nasid_mask_words) | 176 | XPC_RP_HEADER_SIZE)) |
261 | #define XPC_RP_VARS(_rp) ((struct xpc_vars *)(XPC_RP_MACH_NASIDS(_rp) + \ | 177 | #define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + \ |
262 | xp_nasid_mask_words)) | 178 | xpc_nasid_mask_nlongs) |
263 | #define XPC_RP_VARS_PART(_rp) ((struct xpc_vars_part *) \ | 179 | #define XPC_RP_VARS(_rp) ((struct xpc_vars_sn2 *) \ |
264 | ((u8 *)XPC_RP_VARS(_rp) + XPC_RP_VARS_SIZE)) | 180 | (XPC_RP_MACH_NASIDS(_rp) + \ |
181 | xpc_nasid_mask_nlongs)) | ||
182 | |||
183 | /* | ||
184 | * The activate_mq is used to send/receive GRU messages that affect XPC's | ||
185 | * heartbeat, partition active state, and channel state. This is UV only. | ||
186 | */ | ||
187 | struct xpc_activate_mq_msghdr_uv { | ||
188 | short partid; /* sender's partid */ | ||
189 | u8 act_state; /* sender's act_state at time msg sent */ | ||
190 | u8 type; /* message's type */ | ||
191 | unsigned long rp_ts_jiffies; /* timestamp of sender's rp setup by XPC */ | ||
192 | }; | ||
193 | |||
194 | /* activate_mq defined message types */ | ||
195 | #define XPC_ACTIVATE_MQ_MSG_SYNC_ACT_STATE_UV 0 | ||
196 | #define XPC_ACTIVATE_MQ_MSG_INC_HEARTBEAT_UV 1 | ||
197 | #define XPC_ACTIVATE_MQ_MSG_OFFLINE_HEARTBEAT_UV 2 | ||
198 | #define XPC_ACTIVATE_MQ_MSG_ONLINE_HEARTBEAT_UV 3 | ||
199 | |||
200 | #define XPC_ACTIVATE_MQ_MSG_ACTIVATE_REQ_UV 4 | ||
201 | #define XPC_ACTIVATE_MQ_MSG_DEACTIVATE_REQ_UV 5 | ||
202 | |||
203 | #define XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREQUEST_UV 6 | ||
204 | #define XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREPLY_UV 7 | ||
205 | #define XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREQUEST_UV 8 | ||
206 | #define XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREPLY_UV 9 | ||
207 | |||
208 | #define XPC_ACTIVATE_MQ_MSG_MARK_ENGAGED_UV 10 | ||
209 | #define XPC_ACTIVATE_MQ_MSG_MARK_DISENGAGED_UV 11 | ||
210 | |||
211 | struct xpc_activate_mq_msg_uv { | ||
212 | struct xpc_activate_mq_msghdr_uv hdr; | ||
213 | }; | ||
214 | |||
215 | struct xpc_activate_mq_msg_heartbeat_req_uv { | ||
216 | struct xpc_activate_mq_msghdr_uv hdr; | ||
217 | u64 heartbeat; | ||
218 | }; | ||
219 | |||
220 | struct xpc_activate_mq_msg_activate_req_uv { | ||
221 | struct xpc_activate_mq_msghdr_uv hdr; | ||
222 | unsigned long rp_gpa; | ||
223 | unsigned long activate_mq_gpa; | ||
224 | }; | ||
225 | |||
226 | struct xpc_activate_mq_msg_deactivate_req_uv { | ||
227 | struct xpc_activate_mq_msghdr_uv hdr; | ||
228 | enum xp_retval reason; | ||
229 | }; | ||
230 | |||
231 | struct xpc_activate_mq_msg_chctl_closerequest_uv { | ||
232 | struct xpc_activate_mq_msghdr_uv hdr; | ||
233 | short ch_number; | ||
234 | enum xp_retval reason; | ||
235 | }; | ||
236 | |||
237 | struct xpc_activate_mq_msg_chctl_closereply_uv { | ||
238 | struct xpc_activate_mq_msghdr_uv hdr; | ||
239 | short ch_number; | ||
240 | }; | ||
241 | |||
242 | struct xpc_activate_mq_msg_chctl_openrequest_uv { | ||
243 | struct xpc_activate_mq_msghdr_uv hdr; | ||
244 | short ch_number; | ||
245 | short entry_size; /* size of notify_mq's GRU messages */ | ||
246 | short local_nentries; /* ??? Is this needed? What is? */ | ||
247 | }; | ||
248 | |||
249 | struct xpc_activate_mq_msg_chctl_openreply_uv { | ||
250 | struct xpc_activate_mq_msghdr_uv hdr; | ||
251 | short ch_number; | ||
252 | short remote_nentries; /* ??? Is this needed? What is? */ | ||
253 | short local_nentries; /* ??? Is this needed? What is? */ | ||
254 | unsigned long local_notify_mq_gpa; | ||
255 | }; | ||
265 | 256 | ||
266 | /* | 257 | /* |
267 | * Functions registered by add_timer() or called by kernel_thread() only | 258 | * Functions registered by add_timer() or called by kernel_thread() only |
@@ -270,22 +261,22 @@ struct xpc_vars_part { | |||
270 | * the passed argument. | 261 | * the passed argument. |
271 | */ | 262 | */ |
272 | #define XPC_PACK_ARGS(_arg1, _arg2) \ | 263 | #define XPC_PACK_ARGS(_arg1, _arg2) \ |
273 | ((((u64) _arg1) & 0xffffffff) | \ | 264 | ((((u64)_arg1) & 0xffffffff) | \ |
274 | ((((u64) _arg2) & 0xffffffff) << 32)) | 265 | ((((u64)_arg2) & 0xffffffff) << 32)) |
275 | 266 | ||
276 | #define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff) | 267 | #define XPC_UNPACK_ARG1(_args) (((u64)_args) & 0xffffffff) |
277 | #define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff) | 268 | #define XPC_UNPACK_ARG2(_args) ((((u64)_args) >> 32) & 0xffffffff) |
278 | 269 | ||
279 | /* | 270 | /* |
280 | * Define a Get/Put value pair (pointers) used with a message queue. | 271 | * Define a Get/Put value pair (pointers) used with a message queue. |
281 | */ | 272 | */ |
282 | struct xpc_gp { | 273 | struct xpc_gp_sn2 { |
283 | s64 get; /* Get value */ | 274 | s64 get; /* Get value */ |
284 | s64 put; /* Put value */ | 275 | s64 put; /* Put value */ |
285 | }; | 276 | }; |
286 | 277 | ||
287 | #define XPC_GP_SIZE \ | 278 | #define XPC_GP_SIZE \ |
288 | L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS) | 279 | L1_CACHE_ALIGN(sizeof(struct xpc_gp_sn2) * XPC_MAX_NCHANNELS) |
289 | 280 | ||
290 | /* | 281 | /* |
291 | * Define a structure that contains arguments associated with opening and | 282 | * Define a structure that contains arguments associated with opening and |
@@ -293,31 +284,89 @@ struct xpc_gp { | |||
293 | */ | 284 | */ |
294 | struct xpc_openclose_args { | 285 | struct xpc_openclose_args { |
295 | u16 reason; /* reason why channel is closing */ | 286 | u16 reason; /* reason why channel is closing */ |
296 | u16 msg_size; /* sizeof each message entry */ | 287 | u16 entry_size; /* sizeof each message entry */ |
297 | u16 remote_nentries; /* #of message entries in remote msg queue */ | 288 | u16 remote_nentries; /* #of message entries in remote msg queue */ |
298 | u16 local_nentries; /* #of message entries in local msg queue */ | 289 | u16 local_nentries; /* #of message entries in local msg queue */ |
299 | u64 local_msgqueue_pa; /* physical address of local message queue */ | 290 | unsigned long local_msgqueue_pa; /* phys addr of local message queue */ |
300 | }; | 291 | }; |
301 | 292 | ||
302 | #define XPC_OPENCLOSE_ARGS_SIZE \ | 293 | #define XPC_OPENCLOSE_ARGS_SIZE \ |
303 | L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS) | 294 | L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * \ |
295 | XPC_MAX_NCHANNELS) | ||
304 | 296 | ||
305 | /* struct xpc_msg flags */ | ||
306 | 297 | ||
307 | #define XPC_M_DONE 0x01 /* msg has been received/consumed */ | 298 | /* |
308 | #define XPC_M_READY 0x02 /* msg is ready to be sent */ | 299 | * Structures to define a fifo singly-linked list. |
309 | #define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */ | 300 | */ |
310 | 301 | ||
311 | #define XPC_MSG_ADDRESS(_payload) \ | 302 | struct xpc_fifo_entry_uv { |
312 | ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET)) | 303 | struct xpc_fifo_entry_uv *next; |
304 | }; | ||
305 | |||
306 | struct xpc_fifo_head_uv { | ||
307 | struct xpc_fifo_entry_uv *first; | ||
308 | struct xpc_fifo_entry_uv *last; | ||
309 | spinlock_t lock; | ||
310 | int n_entries; | ||
311 | }; | ||
313 | 312 | ||
314 | /* | 313 | /* |
315 | * Defines notify entry. | 314 | * Define a sn2 styled message. |
315 | * | ||
316 | * A user-defined message resides in the payload area. The max size of the | ||
317 | * payload is defined by the user via xpc_connect(). | ||
318 | * | ||
319 | * The size of a message entry (within a message queue) must be a 128-byte | ||
320 | * cacheline sized multiple in order to facilitate the BTE transfer of messages | ||
321 | * from one message queue to another. | ||
322 | */ | ||
323 | struct xpc_msg_sn2 { | ||
324 | u8 flags; /* FOR XPC INTERNAL USE ONLY */ | ||
325 | u8 reserved[7]; /* FOR XPC INTERNAL USE ONLY */ | ||
326 | s64 number; /* FOR XPC INTERNAL USE ONLY */ | ||
327 | |||
328 | u64 payload; /* user defined portion of message */ | ||
329 | }; | ||
330 | |||
331 | /* struct xpc_msg_sn2 flags */ | ||
332 | |||
333 | #define XPC_M_SN2_DONE 0x01 /* msg has been received/consumed */ | ||
334 | #define XPC_M_SN2_READY 0x02 /* msg is ready to be sent */ | ||
335 | #define XPC_M_SN2_INTERRUPT 0x04 /* send interrupt when msg consumed */ | ||
336 | |||
337 | /* | ||
338 | * The format of a uv XPC notify_mq GRU message is as follows: | ||
339 | * | ||
340 | * A user-defined message resides in the payload area. The max size of the | ||
341 | * payload is defined by the user via xpc_connect(). | ||
342 | * | ||
343 | * The size of a message (payload and header) sent via the GRU must be either 1 | ||
344 | * or 2 GRU_CACHE_LINE_BYTES in length. | ||
345 | */ | ||
346 | |||
347 | struct xpc_notify_mq_msghdr_uv { | ||
348 | union { | ||
349 | unsigned int gru_msg_hdr; /* FOR GRU INTERNAL USE ONLY */ | ||
350 | struct xpc_fifo_entry_uv next; /* FOR XPC INTERNAL USE ONLY */ | ||
351 | } u; | ||
352 | short partid; /* FOR XPC INTERNAL USE ONLY */ | ||
353 | u8 ch_number; /* FOR XPC INTERNAL USE ONLY */ | ||
354 | u8 size; /* FOR XPC INTERNAL USE ONLY */ | ||
355 | unsigned int msg_slot_number; /* FOR XPC INTERNAL USE ONLY */ | ||
356 | }; | ||
357 | |||
358 | struct xpc_notify_mq_msg_uv { | ||
359 | struct xpc_notify_mq_msghdr_uv hdr; | ||
360 | unsigned long payload; | ||
361 | }; | ||
362 | |||
363 | /* | ||
364 | * Define sn2's notify entry. | ||
316 | * | 365 | * |
317 | * This is used to notify a message's sender that their message was received | 366 | * This is used to notify a message's sender that their message was received |
318 | * and consumed by the intended recipient. | 367 | * and consumed by the intended recipient. |
319 | */ | 368 | */ |
320 | struct xpc_notify { | 369 | struct xpc_notify_sn2 { |
321 | u8 type; /* type of notification */ | 370 | u8 type; /* type of notification */ |
322 | 371 | ||
323 | /* the following two fields are only used if type == XPC_N_CALL */ | 372 | /* the following two fields are only used if type == XPC_N_CALL */ |
@@ -325,9 +374,20 @@ struct xpc_notify { | |||
325 | void *key; /* pointer to user's key */ | 374 | void *key; /* pointer to user's key */ |
326 | }; | 375 | }; |
327 | 376 | ||
328 | /* struct xpc_notify type of notification */ | 377 | /* struct xpc_notify_sn2 type of notification */ |
378 | |||
379 | #define XPC_N_CALL 0x01 /* notify function provided by user */ | ||
329 | 380 | ||
330 | #define XPC_N_CALL 0x01 /* notify function provided by user */ | 381 | /* |
382 | * Define uv's version of the notify entry. It additionally is used to allocate | ||
383 | * a msg slot on the remote partition into which is copied a sent message. | ||
384 | */ | ||
385 | struct xpc_send_msg_slot_uv { | ||
386 | struct xpc_fifo_entry_uv next; | ||
387 | unsigned int msg_slot_number; | ||
388 | xpc_notify_func func; /* user's notify function */ | ||
389 | void *key; /* pointer to user's key */ | ||
390 | }; | ||
331 | 391 | ||
332 | /* | 392 | /* |
333 | * Define the structure that manages all the stuff required by a channel. In | 393 | * Define the structure that manages all the stuff required by a channel. In |
@@ -339,8 +399,12 @@ struct xpc_notify { | |||
339 | * There is an array of these structures for each remote partition. It is | 399 | * There is an array of these structures for each remote partition. It is |
340 | * allocated at the time a partition becomes active. The array contains one | 400 | * allocated at the time a partition becomes active. The array contains one |
341 | * of these structures for each potential channel connection to that partition. | 401 | * of these structures for each potential channel connection to that partition. |
402 | */ | ||
403 | |||
404 | /* | ||
405 | * The following is sn2 only. | ||
342 | * | 406 | * |
343 | * Each of these structures manages two message queues (circular buffers). | 407 | * Each channel structure manages two message queues (circular buffers). |
344 | * They are allocated at the time a channel connection is made. One of | 408 | * They are allocated at the time a channel connection is made. One of |
345 | * these message queues (local_msgqueue) holds the locally created messages | 409 | * these message queues (local_msgqueue) holds the locally created messages |
346 | * that are destined for the remote partition. The other of these message | 410 | * that are destined for the remote partition. The other of these message |
@@ -407,58 +471,72 @@ struct xpc_notify { | |||
407 | * new messages, by the clearing of the message flags of the acknowledged | 471 | * new messages, by the clearing of the message flags of the acknowledged |
408 | * messages. | 472 | * messages. |
409 | */ | 473 | */ |
474 | |||
475 | struct xpc_channel_sn2 { | ||
476 | struct xpc_openclose_args *local_openclose_args; /* args passed on */ | ||
477 | /* opening or closing of channel */ | ||
478 | |||
479 | void *local_msgqueue_base; /* base address of kmalloc'd space */ | ||
480 | struct xpc_msg_sn2 *local_msgqueue; /* local message queue */ | ||
481 | void *remote_msgqueue_base; /* base address of kmalloc'd space */ | ||
482 | struct xpc_msg_sn2 *remote_msgqueue; /* cached copy of remote */ | ||
483 | /* partition's local message queue */ | ||
484 | unsigned long remote_msgqueue_pa; /* phys addr of remote partition's */ | ||
485 | /* local message queue */ | ||
486 | |||
487 | struct xpc_notify_sn2 *notify_queue;/* notify queue for messages sent */ | ||
488 | |||
489 | /* various flavors of local and remote Get/Put values */ | ||
490 | |||
491 | struct xpc_gp_sn2 *local_GP; /* local Get/Put values */ | ||
492 | struct xpc_gp_sn2 remote_GP; /* remote Get/Put values */ | ||
493 | struct xpc_gp_sn2 w_local_GP; /* working local Get/Put values */ | ||
494 | struct xpc_gp_sn2 w_remote_GP; /* working remote Get/Put values */ | ||
495 | s64 next_msg_to_pull; /* Put value of next msg to pull */ | ||
496 | |||
497 | struct mutex msg_to_pull_mutex; /* next msg to pull serialization */ | ||
498 | }; | ||
499 | |||
500 | struct xpc_channel_uv { | ||
501 | unsigned long remote_notify_mq_gpa; /* gru phys address of remote */ | ||
502 | /* partition's notify mq */ | ||
503 | |||
504 | struct xpc_send_msg_slot_uv *send_msg_slots; | ||
505 | struct xpc_notify_mq_msg_uv *recv_msg_slots; | ||
506 | |||
507 | struct xpc_fifo_head_uv msg_slot_free_list; | ||
508 | struct xpc_fifo_head_uv recv_msg_list; /* deliverable payloads */ | ||
509 | }; | ||
510 | |||
410 | struct xpc_channel { | 511 | struct xpc_channel { |
411 | short partid; /* ID of remote partition connected */ | 512 | short partid; /* ID of remote partition connected */ |
412 | spinlock_t lock; /* lock for updating this structure */ | 513 | spinlock_t lock; /* lock for updating this structure */ |
413 | u32 flags; /* general flags */ | 514 | unsigned int flags; /* general flags */ |
414 | 515 | ||
415 | enum xp_retval reason; /* reason why channel is disconnect'g */ | 516 | enum xp_retval reason; /* reason why channel is disconnect'g */ |
416 | int reason_line; /* line# disconnect initiated from */ | 517 | int reason_line; /* line# disconnect initiated from */ |
417 | 518 | ||
418 | u16 number; /* channel # */ | 519 | u16 number; /* channel # */ |
419 | 520 | ||
420 | u16 msg_size; /* sizeof each msg entry */ | 521 | u16 entry_size; /* sizeof each msg entry */ |
421 | u16 local_nentries; /* #of msg entries in local msg queue */ | 522 | u16 local_nentries; /* #of msg entries in local msg queue */ |
422 | u16 remote_nentries; /* #of msg entries in remote msg queue */ | 523 | u16 remote_nentries; /* #of msg entries in remote msg queue */ |
423 | 524 | ||
424 | void *local_msgqueue_base; /* base address of kmalloc'd space */ | ||
425 | struct xpc_msg *local_msgqueue; /* local message queue */ | ||
426 | void *remote_msgqueue_base; /* base address of kmalloc'd space */ | ||
427 | struct xpc_msg *remote_msgqueue; /* cached copy of remote partition's */ | ||
428 | /* local message queue */ | ||
429 | u64 remote_msgqueue_pa; /* phys addr of remote partition's */ | ||
430 | /* local message queue */ | ||
431 | |||
432 | atomic_t references; /* #of external references to queues */ | 525 | atomic_t references; /* #of external references to queues */ |
433 | 526 | ||
434 | atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */ | 527 | atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */ |
435 | wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */ | 528 | wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */ |
436 | 529 | ||
437 | u8 delayed_IPI_flags; /* IPI flags received, but delayed */ | 530 | u8 delayed_chctl_flags; /* chctl flags received, but delayed */ |
438 | /* action until channel disconnected */ | 531 | /* action until channel disconnected */ |
439 | 532 | ||
440 | /* queue of msg senders who want to be notified when msg received */ | ||
441 | |||
442 | atomic_t n_to_notify; /* #of msg senders to notify */ | 533 | atomic_t n_to_notify; /* #of msg senders to notify */ |
443 | struct xpc_notify *notify_queue; /* notify queue for messages sent */ | ||
444 | 534 | ||
445 | xpc_channel_func func; /* user's channel function */ | 535 | xpc_channel_func func; /* user's channel function */ |
446 | void *key; /* pointer to user's key */ | 536 | void *key; /* pointer to user's key */ |
447 | 537 | ||
448 | struct mutex msg_to_pull_mutex; /* next msg to pull serialization */ | ||
449 | struct completion wdisconnect_wait; /* wait for channel disconnect */ | 538 | struct completion wdisconnect_wait; /* wait for channel disconnect */ |
450 | 539 | ||
451 | struct xpc_openclose_args *local_openclose_args; /* args passed on */ | ||
452 | /* opening or closing of channel */ | ||
453 | |||
454 | /* various flavors of local and remote Get/Put values */ | ||
455 | |||
456 | struct xpc_gp *local_GP; /* local Get/Put values */ | ||
457 | struct xpc_gp remote_GP; /* remote Get/Put values */ | ||
458 | struct xpc_gp w_local_GP; /* working local Get/Put values */ | ||
459 | struct xpc_gp w_remote_GP; /* working remote Get/Put values */ | ||
460 | s64 next_msg_to_pull; /* Put value of next msg to pull */ | ||
461 | |||
462 | /* kthread management related fields */ | 540 | /* kthread management related fields */ |
463 | 541 | ||
464 | atomic_t kthreads_assigned; /* #of kthreads assigned to channel */ | 542 | atomic_t kthreads_assigned; /* #of kthreads assigned to channel */ |
@@ -469,6 +547,11 @@ struct xpc_channel { | |||
469 | 547 | ||
470 | wait_queue_head_t idle_wq; /* idle kthread wait queue */ | 548 | wait_queue_head_t idle_wq; /* idle kthread wait queue */ |
471 | 549 | ||
550 | union { | ||
551 | struct xpc_channel_sn2 sn2; | ||
552 | struct xpc_channel_uv uv; | ||
553 | } sn; | ||
554 | |||
472 | } ____cacheline_aligned; | 555 | } ____cacheline_aligned; |
473 | 556 | ||
474 | /* struct xpc_channel flags */ | 557 | /* struct xpc_channel flags */ |
@@ -501,33 +584,128 @@ struct xpc_channel { | |||
501 | #define XPC_C_WDISCONNECT 0x00040000 /* waiting for channel disconnect */ | 584 | #define XPC_C_WDISCONNECT 0x00040000 /* waiting for channel disconnect */ |
502 | 585 | ||
503 | /* | 586 | /* |
504 | * Manages channels on a partition basis. There is one of these structures | 587 | * The channel control flags (chctl) union consists of a 64-bit variable which |
588 | * is divided up into eight bytes, ordered from right to left. Byte zero | ||
589 | * pertains to channel 0, byte one to channel 1, and so on. Each channel's byte | ||
590 | * can have one or more of the chctl flags set in it. | ||
591 | */ | ||
592 | |||
593 | union xpc_channel_ctl_flags { | ||
594 | u64 all_flags; | ||
595 | u8 flags[XPC_MAX_NCHANNELS]; | ||
596 | }; | ||
597 | |||
598 | /* chctl flags */ | ||
599 | #define XPC_CHCTL_CLOSEREQUEST 0x01 | ||
600 | #define XPC_CHCTL_CLOSEREPLY 0x02 | ||
601 | #define XPC_CHCTL_OPENREQUEST 0x04 | ||
602 | #define XPC_CHCTL_OPENREPLY 0x08 | ||
603 | #define XPC_CHCTL_MSGREQUEST 0x10 | ||
604 | |||
605 | #define XPC_OPENCLOSE_CHCTL_FLAGS \ | ||
606 | (XPC_CHCTL_CLOSEREQUEST | XPC_CHCTL_CLOSEREPLY | \ | ||
607 | XPC_CHCTL_OPENREQUEST | XPC_CHCTL_OPENREPLY) | ||
608 | #define XPC_MSG_CHCTL_FLAGS XPC_CHCTL_MSGREQUEST | ||
609 | |||
610 | static inline int | ||
611 | xpc_any_openclose_chctl_flags_set(union xpc_channel_ctl_flags *chctl) | ||
612 | { | ||
613 | int ch_number; | ||
614 | |||
615 | for (ch_number = 0; ch_number < XPC_MAX_NCHANNELS; ch_number++) { | ||
616 | if (chctl->flags[ch_number] & XPC_OPENCLOSE_CHCTL_FLAGS) | ||
617 | return 1; | ||
618 | } | ||
619 | return 0; | ||
620 | } | ||
621 | |||
622 | static inline int | ||
623 | xpc_any_msg_chctl_flags_set(union xpc_channel_ctl_flags *chctl) | ||
624 | { | ||
625 | int ch_number; | ||
626 | |||
627 | for (ch_number = 0; ch_number < XPC_MAX_NCHANNELS; ch_number++) { | ||
628 | if (chctl->flags[ch_number] & XPC_MSG_CHCTL_FLAGS) | ||
629 | return 1; | ||
630 | } | ||
631 | return 0; | ||
632 | } | ||
633 | |||
634 | /* | ||
635 | * Manage channels on a partition basis. There is one of these structures | ||
505 | * for each partition (a partition will never utilize the structure that | 636 | * for each partition (a partition will never utilize the structure that |
506 | * represents itself). | 637 | * represents itself). |
507 | */ | 638 | */ |
639 | |||
640 | struct xpc_partition_sn2 { | ||
641 | unsigned long remote_amos_page_pa; /* paddr of partition's amos page */ | ||
642 | int activate_IRQ_nasid; /* active partition's act/deact nasid */ | ||
643 | int activate_IRQ_phys_cpuid; /* active part's act/deact phys cpuid */ | ||
644 | |||
645 | unsigned long remote_vars_pa; /* phys addr of partition's vars */ | ||
646 | unsigned long remote_vars_part_pa; /* paddr of partition's vars part */ | ||
647 | u8 remote_vars_version; /* version# of partition's vars */ | ||
648 | |||
649 | void *local_GPs_base; /* base address of kmalloc'd space */ | ||
650 | struct xpc_gp_sn2 *local_GPs; /* local Get/Put values */ | ||
651 | void *remote_GPs_base; /* base address of kmalloc'd space */ | ||
652 | struct xpc_gp_sn2 *remote_GPs; /* copy of remote partition's local */ | ||
653 | /* Get/Put values */ | ||
654 | unsigned long remote_GPs_pa; /* phys addr of remote partition's local */ | ||
655 | /* Get/Put values */ | ||
656 | |||
657 | void *local_openclose_args_base; /* base address of kmalloc'd space */ | ||
658 | struct xpc_openclose_args *local_openclose_args; /* local's args */ | ||
659 | unsigned long remote_openclose_args_pa; /* phys addr of remote's args */ | ||
660 | |||
661 | int notify_IRQ_nasid; /* nasid of where to send notify IRQs */ | ||
662 | int notify_IRQ_phys_cpuid; /* CPUID of where to send notify IRQs */ | ||
663 | char notify_IRQ_owner[8]; /* notify IRQ's owner's name */ | ||
664 | |||
665 | struct amo *remote_chctl_amo_va; /* addr of remote chctl flags' amo */ | ||
666 | struct amo *local_chctl_amo_va; /* address of chctl flags' amo */ | ||
667 | |||
668 | struct timer_list dropped_notify_IRQ_timer; /* dropped IRQ timer */ | ||
669 | }; | ||
670 | |||
671 | struct xpc_partition_uv { | ||
672 | unsigned long remote_activate_mq_gpa; /* gru phys address of remote */ | ||
673 | /* partition's activate mq */ | ||
674 | spinlock_t flags_lock; /* protect updating of flags */ | ||
675 | unsigned int flags; /* general flags */ | ||
676 | u8 remote_act_state; /* remote partition's act_state */ | ||
677 | u8 act_state_req; /* act_state request from remote partition */ | ||
678 | enum xp_retval reason; /* reason for deactivate act_state request */ | ||
679 | u64 heartbeat; /* incremented by remote partition */ | ||
680 | }; | ||
681 | |||
682 | /* struct xpc_partition_uv flags */ | ||
683 | |||
684 | #define XPC_P_HEARTBEAT_OFFLINE_UV 0x00000001 | ||
685 | #define XPC_P_ENGAGED_UV 0x00000002 | ||
686 | |||
687 | /* struct xpc_partition_uv act_state change requests */ | ||
688 | |||
689 | #define XPC_P_ASR_ACTIVATE_UV 0x01 | ||
690 | #define XPC_P_ASR_REACTIVATE_UV 0x02 | ||
691 | #define XPC_P_ASR_DEACTIVATE_UV 0x03 | ||
692 | |||
508 | struct xpc_partition { | 693 | struct xpc_partition { |
509 | 694 | ||
510 | /* XPC HB infrastructure */ | 695 | /* XPC HB infrastructure */ |
511 | 696 | ||
512 | u8 remote_rp_version; /* version# of partition's rsvd pg */ | 697 | u8 remote_rp_version; /* version# of partition's rsvd pg */ |
513 | struct timespec remote_rp_stamp; /* time when rsvd pg was initialized */ | 698 | unsigned long remote_rp_ts_jiffies; /* timestamp when rsvd pg setup */ |
514 | u64 remote_rp_pa; /* phys addr of partition's rsvd pg */ | 699 | unsigned long remote_rp_pa; /* phys addr of partition's rsvd pg */ |
515 | u64 remote_vars_pa; /* phys addr of partition's vars */ | ||
516 | u64 remote_vars_part_pa; /* phys addr of partition's vars part */ | ||
517 | u64 last_heartbeat; /* HB at last read */ | 700 | u64 last_heartbeat; /* HB at last read */ |
518 | u64 remote_amos_page_pa; /* phys addr of partition's amos page */ | 701 | u32 activate_IRQ_rcvd; /* IRQs since activation */ |
519 | int remote_act_nasid; /* active part's act/deact nasid */ | ||
520 | int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */ | ||
521 | u32 act_IRQ_rcvd; /* IRQs since activation */ | ||
522 | spinlock_t act_lock; /* protect updating of act_state */ | 702 | spinlock_t act_lock; /* protect updating of act_state */ |
523 | u8 act_state; /* from XPC HB viewpoint */ | 703 | u8 act_state; /* from XPC HB viewpoint */ |
524 | u8 remote_vars_version; /* version# of partition's vars */ | ||
525 | enum xp_retval reason; /* reason partition is deactivating */ | 704 | enum xp_retval reason; /* reason partition is deactivating */ |
526 | int reason_line; /* line# deactivation initiated from */ | 705 | int reason_line; /* line# deactivation initiated from */ |
527 | int reactivate_nasid; /* nasid in partition to reactivate */ | ||
528 | 706 | ||
529 | unsigned long disengage_request_timeout; /* timeout in jiffies */ | 707 | unsigned long disengage_timeout; /* timeout in jiffies */ |
530 | struct timer_list disengage_request_timer; | 708 | struct timer_list disengage_timer; |
531 | 709 | ||
532 | /* XPC infrastructure referencing and teardown control */ | 710 | /* XPC infrastructure referencing and teardown control */ |
533 | 711 | ||
@@ -535,85 +713,63 @@ struct xpc_partition { | |||
535 | wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */ | 713 | wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */ |
536 | atomic_t references; /* #of references to infrastructure */ | 714 | atomic_t references; /* #of references to infrastructure */ |
537 | 715 | ||
538 | /* | ||
539 | * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN | ||
540 | * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION | ||
541 | * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE | ||
542 | * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.) | ||
543 | */ | ||
544 | |||
545 | u8 nchannels; /* #of defined channels supported */ | 716 | u8 nchannels; /* #of defined channels supported */ |
546 | atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */ | 717 | atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */ |
547 | atomic_t nchannels_engaged; /* #of channels engaged with remote part */ | 718 | atomic_t nchannels_engaged; /* #of channels engaged with remote part */ |
548 | struct xpc_channel *channels; /* array of channel structures */ | 719 | struct xpc_channel *channels; /* array of channel structures */ |
549 | 720 | ||
550 | void *local_GPs_base; /* base address of kmalloc'd space */ | 721 | /* fields used for managing channel avialability and activity */ |
551 | struct xpc_gp *local_GPs; /* local Get/Put values */ | ||
552 | void *remote_GPs_base; /* base address of kmalloc'd space */ | ||
553 | struct xpc_gp *remote_GPs; /* copy of remote partition's local */ | ||
554 | /* Get/Put values */ | ||
555 | u64 remote_GPs_pa; /* phys address of remote partition's local */ | ||
556 | /* Get/Put values */ | ||
557 | 722 | ||
558 | /* fields used to pass args when opening or closing a channel */ | 723 | union xpc_channel_ctl_flags chctl; /* chctl flags yet to be processed */ |
724 | spinlock_t chctl_lock; /* chctl flags lock */ | ||
559 | 725 | ||
560 | void *local_openclose_args_base; /* base address of kmalloc'd space */ | ||
561 | struct xpc_openclose_args *local_openclose_args; /* local's args */ | ||
562 | void *remote_openclose_args_base; /* base address of kmalloc'd space */ | 726 | void *remote_openclose_args_base; /* base address of kmalloc'd space */ |
563 | struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */ | 727 | struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */ |
564 | /* args */ | 728 | /* args */ |
565 | u64 remote_openclose_args_pa; /* phys addr of remote's args */ | ||
566 | |||
567 | /* IPI sending, receiving and handling related fields */ | ||
568 | |||
569 | int remote_IPI_nasid; /* nasid of where to send IPIs */ | ||
570 | int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */ | ||
571 | AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */ | ||
572 | |||
573 | AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */ | ||
574 | u64 local_IPI_amo; /* IPI amo flags yet to be handled */ | ||
575 | char IPI_owner[8]; /* IPI owner's name */ | ||
576 | struct timer_list dropped_IPI_timer; /* dropped IPI timer */ | ||
577 | |||
578 | spinlock_t IPI_lock; /* IPI handler lock */ | ||
579 | 729 | ||
580 | /* channel manager related fields */ | 730 | /* channel manager related fields */ |
581 | 731 | ||
582 | atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */ | 732 | atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */ |
583 | wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */ | 733 | wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */ |
584 | 734 | ||
735 | union { | ||
736 | struct xpc_partition_sn2 sn2; | ||
737 | struct xpc_partition_uv uv; | ||
738 | } sn; | ||
739 | |||
585 | } ____cacheline_aligned; | 740 | } ____cacheline_aligned; |
586 | 741 | ||
587 | /* struct xpc_partition act_state values (for XPC HB) */ | 742 | /* struct xpc_partition act_state values (for XPC HB) */ |
588 | 743 | ||
589 | #define XPC_P_INACTIVE 0x00 /* partition is not active */ | 744 | #define XPC_P_AS_INACTIVE 0x00 /* partition is not active */ |
590 | #define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */ | 745 | #define XPC_P_AS_ACTIVATION_REQ 0x01 /* created thread to activate */ |
591 | #define XPC_P_ACTIVATING 0x02 /* activation thread started */ | 746 | #define XPC_P_AS_ACTIVATING 0x02 /* activation thread started */ |
592 | #define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */ | 747 | #define XPC_P_AS_ACTIVE 0x03 /* xpc_partition_up() was called */ |
593 | #define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */ | 748 | #define XPC_P_AS_DEACTIVATING 0x04 /* partition deactivation initiated */ |
594 | 749 | ||
595 | #define XPC_DEACTIVATE_PARTITION(_p, _reason) \ | 750 | #define XPC_DEACTIVATE_PARTITION(_p, _reason) \ |
596 | xpc_deactivate_partition(__LINE__, (_p), (_reason)) | 751 | xpc_deactivate_partition(__LINE__, (_p), (_reason)) |
597 | 752 | ||
598 | /* struct xpc_partition setup_state values */ | 753 | /* struct xpc_partition setup_state values */ |
599 | 754 | ||
600 | #define XPC_P_UNSET 0x00 /* infrastructure was never setup */ | 755 | #define XPC_P_SS_UNSET 0x00 /* infrastructure was never setup */ |
601 | #define XPC_P_SETUP 0x01 /* infrastructure is setup */ | 756 | #define XPC_P_SS_SETUP 0x01 /* infrastructure is setup */ |
602 | #define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */ | 757 | #define XPC_P_SS_WTEARDOWN 0x02 /* waiting to teardown infrastructure */ |
603 | #define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */ | 758 | #define XPC_P_SS_TORNDOWN 0x03 /* infrastructure is torndown */ |
604 | 759 | ||
605 | /* | 760 | /* |
606 | * struct xpc_partition IPI_timer #of seconds to wait before checking for | 761 | * struct xpc_partition_sn2's dropped notify IRQ timer is set to wait the |
607 | * dropped IPIs. These occur whenever an IPI amo write doesn't complete until | 762 | * following interval #of seconds before checking for dropped notify IRQs. |
608 | * after the IPI was received. | 763 | * These can occur whenever an IRQ's associated amo write doesn't complete |
764 | * until after the IRQ was received. | ||
609 | */ | 765 | */ |
610 | #define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ) | 766 | #define XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL (0.25 * HZ) |
611 | 767 | ||
612 | /* number of seconds to wait for other partitions to disengage */ | 768 | /* number of seconds to wait for other partitions to disengage */ |
613 | #define XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT 90 | 769 | #define XPC_DISENGAGE_DEFAULT_TIMELIMIT 90 |
614 | 770 | ||
615 | /* interval in seconds to print 'waiting disengagement' messages */ | 771 | /* interval in seconds to print 'waiting deactivation' messages */ |
616 | #define XPC_DISENGAGE_PRINTMSG_INTERVAL 10 | 772 | #define XPC_DEACTIVATE_PRINTMSG_INTERVAL 10 |
617 | 773 | ||
618 | #define XPC_PARTID(_p) ((short)((_p) - &xpc_partitions[0])) | 774 | #define XPC_PARTID(_p) ((short)((_p) - &xpc_partitions[0])) |
619 | 775 | ||
@@ -623,33 +779,92 @@ extern struct xpc_registration xpc_registrations[]; | |||
623 | /* found in xpc_main.c */ | 779 | /* found in xpc_main.c */ |
624 | extern struct device *xpc_part; | 780 | extern struct device *xpc_part; |
625 | extern struct device *xpc_chan; | 781 | extern struct device *xpc_chan; |
626 | extern int xpc_disengage_request_timelimit; | 782 | extern int xpc_disengage_timelimit; |
627 | extern int xpc_disengage_request_timedout; | 783 | extern int xpc_disengage_timedout; |
628 | extern irqreturn_t xpc_notify_IRQ_handler(int, void *); | 784 | extern int xpc_activate_IRQ_rcvd; |
629 | extern void xpc_dropped_IPI_check(struct xpc_partition *); | 785 | extern spinlock_t xpc_activate_IRQ_rcvd_lock; |
786 | extern wait_queue_head_t xpc_activate_IRQ_wq; | ||
787 | extern void *xpc_heartbeating_to_mask; | ||
788 | extern void *xpc_kzalloc_cacheline_aligned(size_t, gfp_t, void **); | ||
630 | extern void xpc_activate_partition(struct xpc_partition *); | 789 | extern void xpc_activate_partition(struct xpc_partition *); |
631 | extern void xpc_activate_kthreads(struct xpc_channel *, int); | 790 | extern void xpc_activate_kthreads(struct xpc_channel *, int); |
632 | extern void xpc_create_kthreads(struct xpc_channel *, int, int); | 791 | extern void xpc_create_kthreads(struct xpc_channel *, int, int); |
633 | extern void xpc_disconnect_wait(int); | 792 | extern void xpc_disconnect_wait(int); |
793 | extern int (*xpc_setup_partitions_sn) (void); | ||
794 | extern enum xp_retval (*xpc_get_partition_rsvd_page_pa) (void *, u64 *, | ||
795 | unsigned long *, | ||
796 | size_t *); | ||
797 | extern int (*xpc_setup_rsvd_page_sn) (struct xpc_rsvd_page *); | ||
798 | extern void (*xpc_heartbeat_init) (void); | ||
799 | extern void (*xpc_heartbeat_exit) (void); | ||
800 | extern void (*xpc_increment_heartbeat) (void); | ||
801 | extern void (*xpc_offline_heartbeat) (void); | ||
802 | extern void (*xpc_online_heartbeat) (void); | ||
803 | extern enum xp_retval (*xpc_get_remote_heartbeat) (struct xpc_partition *); | ||
804 | extern enum xp_retval (*xpc_make_first_contact) (struct xpc_partition *); | ||
805 | extern u64 (*xpc_get_chctl_all_flags) (struct xpc_partition *); | ||
806 | extern enum xp_retval (*xpc_setup_msg_structures) (struct xpc_channel *); | ||
807 | extern void (*xpc_teardown_msg_structures) (struct xpc_channel *); | ||
808 | extern void (*xpc_notify_senders_of_disconnect) (struct xpc_channel *); | ||
809 | extern void (*xpc_process_msg_chctl_flags) (struct xpc_partition *, int); | ||
810 | extern int (*xpc_n_of_deliverable_payloads) (struct xpc_channel *); | ||
811 | extern void *(*xpc_get_deliverable_payload) (struct xpc_channel *); | ||
812 | extern void (*xpc_request_partition_activation) (struct xpc_rsvd_page *, | ||
813 | unsigned long, int); | ||
814 | extern void (*xpc_request_partition_reactivation) (struct xpc_partition *); | ||
815 | extern void (*xpc_request_partition_deactivation) (struct xpc_partition *); | ||
816 | extern void (*xpc_cancel_partition_deactivation_request) ( | ||
817 | struct xpc_partition *); | ||
818 | extern void (*xpc_process_activate_IRQ_rcvd) (void); | ||
819 | extern enum xp_retval (*xpc_setup_ch_structures_sn) (struct xpc_partition *); | ||
820 | extern void (*xpc_teardown_ch_structures_sn) (struct xpc_partition *); | ||
821 | |||
822 | extern void (*xpc_indicate_partition_engaged) (struct xpc_partition *); | ||
823 | extern int (*xpc_partition_engaged) (short); | ||
824 | extern int (*xpc_any_partition_engaged) (void); | ||
825 | extern void (*xpc_indicate_partition_disengaged) (struct xpc_partition *); | ||
826 | extern void (*xpc_assume_partition_disengaged) (short); | ||
827 | |||
828 | extern void (*xpc_send_chctl_closerequest) (struct xpc_channel *, | ||
829 | unsigned long *); | ||
830 | extern void (*xpc_send_chctl_closereply) (struct xpc_channel *, | ||
831 | unsigned long *); | ||
832 | extern void (*xpc_send_chctl_openrequest) (struct xpc_channel *, | ||
833 | unsigned long *); | ||
834 | extern void (*xpc_send_chctl_openreply) (struct xpc_channel *, unsigned long *); | ||
835 | |||
836 | extern void (*xpc_save_remote_msgqueue_pa) (struct xpc_channel *, | ||
837 | unsigned long); | ||
838 | |||
839 | extern enum xp_retval (*xpc_send_payload) (struct xpc_channel *, u32, void *, | ||
840 | u16, u8, xpc_notify_func, void *); | ||
841 | extern void (*xpc_received_payload) (struct xpc_channel *, void *); | ||
842 | |||
843 | /* found in xpc_sn2.c */ | ||
844 | extern int xpc_init_sn2(void); | ||
845 | extern void xpc_exit_sn2(void); | ||
846 | |||
847 | /* found in xpc_uv.c */ | ||
848 | extern int xpc_init_uv(void); | ||
849 | extern void xpc_exit_uv(void); | ||
634 | 850 | ||
635 | /* found in xpc_partition.c */ | 851 | /* found in xpc_partition.c */ |
636 | extern int xpc_exiting; | 852 | extern int xpc_exiting; |
637 | extern struct xpc_vars *xpc_vars; | 853 | extern int xpc_nasid_mask_nlongs; |
638 | extern struct xpc_rsvd_page *xpc_rsvd_page; | 854 | extern struct xpc_rsvd_page *xpc_rsvd_page; |
639 | extern struct xpc_vars_part *xpc_vars_part; | 855 | extern unsigned long *xpc_mach_nasids; |
640 | extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; | 856 | extern struct xpc_partition *xpc_partitions; |
641 | extern char *xpc_remote_copy_buffer; | ||
642 | extern void *xpc_remote_copy_buffer_base; | ||
643 | extern void *xpc_kmalloc_cacheline_aligned(size_t, gfp_t, void **); | 857 | extern void *xpc_kmalloc_cacheline_aligned(size_t, gfp_t, void **); |
644 | extern struct xpc_rsvd_page *xpc_rsvd_page_init(void); | 858 | extern int xpc_setup_rsvd_page(void); |
645 | extern void xpc_allow_IPI_ops(void); | 859 | extern void xpc_teardown_rsvd_page(void); |
646 | extern void xpc_restrict_IPI_ops(void); | 860 | extern int xpc_identify_activate_IRQ_sender(void); |
647 | extern int xpc_identify_act_IRQ_sender(void); | ||
648 | extern int xpc_partition_disengaged(struct xpc_partition *); | 861 | extern int xpc_partition_disengaged(struct xpc_partition *); |
649 | extern enum xp_retval xpc_mark_partition_active(struct xpc_partition *); | 862 | extern enum xp_retval xpc_mark_partition_active(struct xpc_partition *); |
650 | extern void xpc_mark_partition_inactive(struct xpc_partition *); | 863 | extern void xpc_mark_partition_inactive(struct xpc_partition *); |
651 | extern void xpc_discovery(void); | 864 | extern void xpc_discovery(void); |
652 | extern void xpc_check_remote_hb(void); | 865 | extern enum xp_retval xpc_get_remote_rp(int, unsigned long *, |
866 | struct xpc_rsvd_page *, | ||
867 | unsigned long *); | ||
653 | extern void xpc_deactivate_partition(const int, struct xpc_partition *, | 868 | extern void xpc_deactivate_partition(const int, struct xpc_partition *, |
654 | enum xp_retval); | 869 | enum xp_retval); |
655 | extern enum xp_retval xpc_initiate_partid_to_nasids(short, void *); | 870 | extern enum xp_retval xpc_initiate_partid_to_nasids(short, void *); |
@@ -657,21 +872,52 @@ extern enum xp_retval xpc_initiate_partid_to_nasids(short, void *); | |||
657 | /* found in xpc_channel.c */ | 872 | /* found in xpc_channel.c */ |
658 | extern void xpc_initiate_connect(int); | 873 | extern void xpc_initiate_connect(int); |
659 | extern void xpc_initiate_disconnect(int); | 874 | extern void xpc_initiate_disconnect(int); |
660 | extern enum xp_retval xpc_initiate_allocate(short, int, u32, void **); | 875 | extern enum xp_retval xpc_allocate_msg_wait(struct xpc_channel *); |
661 | extern enum xp_retval xpc_initiate_send(short, int, void *); | 876 | extern enum xp_retval xpc_initiate_send(short, int, u32, void *, u16); |
662 | extern enum xp_retval xpc_initiate_send_notify(short, int, void *, | 877 | extern enum xp_retval xpc_initiate_send_notify(short, int, u32, void *, u16, |
663 | xpc_notify_func, void *); | 878 | xpc_notify_func, void *); |
664 | extern void xpc_initiate_received(short, int, void *); | 879 | extern void xpc_initiate_received(short, int, void *); |
665 | extern enum xp_retval xpc_setup_infrastructure(struct xpc_partition *); | 880 | extern void xpc_process_sent_chctl_flags(struct xpc_partition *); |
666 | extern enum xp_retval xpc_pull_remote_vars_part(struct xpc_partition *); | ||
667 | extern void xpc_process_channel_activity(struct xpc_partition *); | ||
668 | extern void xpc_connected_callout(struct xpc_channel *); | 881 | extern void xpc_connected_callout(struct xpc_channel *); |
669 | extern void xpc_deliver_msg(struct xpc_channel *); | 882 | extern void xpc_deliver_payload(struct xpc_channel *); |
670 | extern void xpc_disconnect_channel(const int, struct xpc_channel *, | 883 | extern void xpc_disconnect_channel(const int, struct xpc_channel *, |
671 | enum xp_retval, unsigned long *); | 884 | enum xp_retval, unsigned long *); |
672 | extern void xpc_disconnect_callout(struct xpc_channel *, enum xp_retval); | 885 | extern void xpc_disconnect_callout(struct xpc_channel *, enum xp_retval); |
673 | extern void xpc_partition_going_down(struct xpc_partition *, enum xp_retval); | 886 | extern void xpc_partition_going_down(struct xpc_partition *, enum xp_retval); |
674 | extern void xpc_teardown_infrastructure(struct xpc_partition *); | 887 | |
888 | static inline int | ||
889 | xpc_hb_allowed(short partid, void *heartbeating_to_mask) | ||
890 | { | ||
891 | return test_bit(partid, heartbeating_to_mask); | ||
892 | } | ||
893 | |||
894 | static inline int | ||
895 | xpc_any_hbs_allowed(void) | ||
896 | { | ||
897 | DBUG_ON(xpc_heartbeating_to_mask == NULL); | ||
898 | return !bitmap_empty(xpc_heartbeating_to_mask, xp_max_npartitions); | ||
899 | } | ||
900 | |||
901 | static inline void | ||
902 | xpc_allow_hb(short partid) | ||
903 | { | ||
904 | DBUG_ON(xpc_heartbeating_to_mask == NULL); | ||
905 | set_bit(partid, xpc_heartbeating_to_mask); | ||
906 | } | ||
907 | |||
908 | static inline void | ||
909 | xpc_disallow_hb(short partid) | ||
910 | { | ||
911 | DBUG_ON(xpc_heartbeating_to_mask == NULL); | ||
912 | clear_bit(partid, xpc_heartbeating_to_mask); | ||
913 | } | ||
914 | |||
915 | static inline void | ||
916 | xpc_disallow_all_hbs(void) | ||
917 | { | ||
918 | DBUG_ON(xpc_heartbeating_to_mask == NULL); | ||
919 | bitmap_zero(xpc_heartbeating_to_mask, xp_max_npartitions); | ||
920 | } | ||
675 | 921 | ||
676 | static inline void | 922 | static inline void |
677 | xpc_wakeup_channel_mgr(struct xpc_partition *part) | 923 | xpc_wakeup_channel_mgr(struct xpc_partition *part) |
@@ -713,7 +959,7 @@ xpc_part_deref(struct xpc_partition *part) | |||
713 | s32 refs = atomic_dec_return(&part->references); | 959 | s32 refs = atomic_dec_return(&part->references); |
714 | 960 | ||
715 | DBUG_ON(refs < 0); | 961 | DBUG_ON(refs < 0); |
716 | if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) | 962 | if (refs == 0 && part->setup_state == XPC_P_SS_WTEARDOWN) |
717 | wake_up(&part->teardown_wq); | 963 | wake_up(&part->teardown_wq); |
718 | } | 964 | } |
719 | 965 | ||
@@ -723,7 +969,7 @@ xpc_part_ref(struct xpc_partition *part) | |||
723 | int setup; | 969 | int setup; |
724 | 970 | ||
725 | atomic_inc(&part->references); | 971 | atomic_inc(&part->references); |
726 | setup = (part->setup_state == XPC_P_SETUP); | 972 | setup = (part->setup_state == XPC_P_SS_SETUP); |
727 | if (!setup) | 973 | if (!setup) |
728 | xpc_part_deref(part); | 974 | xpc_part_deref(part); |
729 | 975 | ||
@@ -741,416 +987,4 @@ xpc_part_ref(struct xpc_partition *part) | |||
741 | (_p)->reason_line = _line; \ | 987 | (_p)->reason_line = _line; \ |
742 | } | 988 | } |
743 | 989 | ||
744 | /* | ||
745 | * This next set of inlines are used to keep track of when a partition is | ||
746 | * potentially engaged in accessing memory belonging to another partition. | ||
747 | */ | ||
748 | |||
749 | static inline void | ||
750 | xpc_mark_partition_engaged(struct xpc_partition *part) | ||
751 | { | ||
752 | unsigned long irq_flags; | ||
753 | AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + | ||
754 | (XPC_ENGAGED_PARTITIONS_AMO * | ||
755 | sizeof(AMO_t))); | ||
756 | |||
757 | local_irq_save(irq_flags); | ||
758 | |||
759 | /* set bit corresponding to our partid in remote partition's AMO */ | ||
760 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, | ||
761 | (1UL << sn_partition_id)); | ||
762 | /* | ||
763 | * We must always use the nofault function regardless of whether we | ||
764 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
765 | * didn't, we'd never know that the other partition is down and would | ||
766 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
767 | */ | ||
768 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
769 | variable), | ||
770 | xp_nofault_PIOR_target)); | ||
771 | |||
772 | local_irq_restore(irq_flags); | ||
773 | } | ||
774 | |||
775 | static inline void | ||
776 | xpc_mark_partition_disengaged(struct xpc_partition *part) | ||
777 | { | ||
778 | unsigned long irq_flags; | ||
779 | AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + | ||
780 | (XPC_ENGAGED_PARTITIONS_AMO * | ||
781 | sizeof(AMO_t))); | ||
782 | |||
783 | local_irq_save(irq_flags); | ||
784 | |||
785 | /* clear bit corresponding to our partid in remote partition's AMO */ | ||
786 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
787 | ~(1UL << sn_partition_id)); | ||
788 | /* | ||
789 | * We must always use the nofault function regardless of whether we | ||
790 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
791 | * didn't, we'd never know that the other partition is down and would | ||
792 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
793 | */ | ||
794 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
795 | variable), | ||
796 | xp_nofault_PIOR_target)); | ||
797 | |||
798 | local_irq_restore(irq_flags); | ||
799 | } | ||
800 | |||
801 | static inline void | ||
802 | xpc_request_partition_disengage(struct xpc_partition *part) | ||
803 | { | ||
804 | unsigned long irq_flags; | ||
805 | AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + | ||
806 | (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); | ||
807 | |||
808 | local_irq_save(irq_flags); | ||
809 | |||
810 | /* set bit corresponding to our partid in remote partition's AMO */ | ||
811 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, | ||
812 | (1UL << sn_partition_id)); | ||
813 | /* | ||
814 | * We must always use the nofault function regardless of whether we | ||
815 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
816 | * didn't, we'd never know that the other partition is down and would | ||
817 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
818 | */ | ||
819 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
820 | variable), | ||
821 | xp_nofault_PIOR_target)); | ||
822 | |||
823 | local_irq_restore(irq_flags); | ||
824 | } | ||
825 | |||
826 | static inline void | ||
827 | xpc_cancel_partition_disengage_request(struct xpc_partition *part) | ||
828 | { | ||
829 | unsigned long irq_flags; | ||
830 | AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + | ||
831 | (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); | ||
832 | |||
833 | local_irq_save(irq_flags); | ||
834 | |||
835 | /* clear bit corresponding to our partid in remote partition's AMO */ | ||
836 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
837 | ~(1UL << sn_partition_id)); | ||
838 | /* | ||
839 | * We must always use the nofault function regardless of whether we | ||
840 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
841 | * didn't, we'd never know that the other partition is down and would | ||
842 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
843 | */ | ||
844 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
845 | variable), | ||
846 | xp_nofault_PIOR_target)); | ||
847 | |||
848 | local_irq_restore(irq_flags); | ||
849 | } | ||
850 | |||
851 | static inline u64 | ||
852 | xpc_partition_engaged(u64 partid_mask) | ||
853 | { | ||
854 | AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; | ||
855 | |||
856 | /* return our partition's AMO variable ANDed with partid_mask */ | ||
857 | return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & | ||
858 | partid_mask); | ||
859 | } | ||
860 | |||
861 | static inline u64 | ||
862 | xpc_partition_disengage_requested(u64 partid_mask) | ||
863 | { | ||
864 | AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; | ||
865 | |||
866 | /* return our partition's AMO variable ANDed with partid_mask */ | ||
867 | return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & | ||
868 | partid_mask); | ||
869 | } | ||
870 | |||
871 | static inline void | ||
872 | xpc_clear_partition_engaged(u64 partid_mask) | ||
873 | { | ||
874 | AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; | ||
875 | |||
876 | /* clear bit(s) based on partid_mask in our partition's AMO */ | ||
877 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
878 | ~partid_mask); | ||
879 | } | ||
880 | |||
881 | static inline void | ||
882 | xpc_clear_partition_disengage_request(u64 partid_mask) | ||
883 | { | ||
884 | AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; | ||
885 | |||
886 | /* clear bit(s) based on partid_mask in our partition's AMO */ | ||
887 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
888 | ~partid_mask); | ||
889 | } | ||
890 | |||
891 | /* | ||
892 | * The following set of macros and inlines are used for the sending and | ||
893 | * receiving of IPIs (also known as IRQs). There are two flavors of IPIs, | ||
894 | * one that is associated with partition activity (SGI_XPC_ACTIVATE) and | ||
895 | * the other that is associated with channel activity (SGI_XPC_NOTIFY). | ||
896 | */ | ||
897 | |||
898 | static inline u64 | ||
899 | xpc_IPI_receive(AMO_t *amo) | ||
900 | { | ||
901 | return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR); | ||
902 | } | ||
903 | |||
904 | static inline enum xp_retval | ||
905 | xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector) | ||
906 | { | ||
907 | int ret = 0; | ||
908 | unsigned long irq_flags; | ||
909 | |||
910 | local_irq_save(irq_flags); | ||
911 | |||
912 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag); | ||
913 | sn_send_IPI_phys(nasid, phys_cpuid, vector, 0); | ||
914 | |||
915 | /* | ||
916 | * We must always use the nofault function regardless of whether we | ||
917 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
918 | * didn't, we'd never know that the other partition is down and would | ||
919 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
920 | */ | ||
921 | ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable), | ||
922 | xp_nofault_PIOR_target)); | ||
923 | |||
924 | local_irq_restore(irq_flags); | ||
925 | |||
926 | return ((ret == 0) ? xpSuccess : xpPioReadError); | ||
927 | } | ||
928 | |||
929 | /* | ||
930 | * IPIs associated with SGI_XPC_ACTIVATE IRQ. | ||
931 | */ | ||
932 | |||
933 | /* | ||
934 | * Flag the appropriate AMO variable and send an IPI to the specified node. | ||
935 | */ | ||
936 | static inline void | ||
937 | xpc_activate_IRQ_send(u64 amos_page_pa, int from_nasid, int to_nasid, | ||
938 | int to_phys_cpuid) | ||
939 | { | ||
940 | int w_index = XPC_NASID_W_INDEX(from_nasid); | ||
941 | int b_index = XPC_NASID_B_INDEX(from_nasid); | ||
942 | AMO_t *amos = (AMO_t *)__va(amos_page_pa + | ||
943 | (XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t))); | ||
944 | |||
945 | (void)xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid, | ||
946 | to_phys_cpuid, SGI_XPC_ACTIVATE); | ||
947 | } | ||
948 | |||
949 | static inline void | ||
950 | xpc_IPI_send_activate(struct xpc_vars *vars) | ||
951 | { | ||
952 | xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0), | ||
953 | vars->act_nasid, vars->act_phys_cpuid); | ||
954 | } | ||
955 | |||
956 | static inline void | ||
957 | xpc_IPI_send_activated(struct xpc_partition *part) | ||
958 | { | ||
959 | xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), | ||
960 | part->remote_act_nasid, | ||
961 | part->remote_act_phys_cpuid); | ||
962 | } | ||
963 | |||
964 | static inline void | ||
965 | xpc_IPI_send_reactivate(struct xpc_partition *part) | ||
966 | { | ||
967 | xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid, | ||
968 | xpc_vars->act_nasid, xpc_vars->act_phys_cpuid); | ||
969 | } | ||
970 | |||
971 | static inline void | ||
972 | xpc_IPI_send_disengage(struct xpc_partition *part) | ||
973 | { | ||
974 | xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), | ||
975 | part->remote_act_nasid, | ||
976 | part->remote_act_phys_cpuid); | ||
977 | } | ||
978 | |||
979 | /* | ||
980 | * IPIs associated with SGI_XPC_NOTIFY IRQ. | ||
981 | */ | ||
982 | |||
983 | /* | ||
984 | * Send an IPI to the remote partition that is associated with the | ||
985 | * specified channel. | ||
986 | */ | ||
987 | #define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \ | ||
988 | xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f) | ||
989 | |||
990 | static inline void | ||
991 | xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string, | ||
992 | unsigned long *irq_flags) | ||
993 | { | ||
994 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
995 | enum xp_retval ret; | ||
996 | |||
997 | if (likely(part->act_state != XPC_P_DEACTIVATING)) { | ||
998 | ret = xpc_IPI_send(part->remote_IPI_amo_va, | ||
999 | (u64)ipi_flag << (ch->number * 8), | ||
1000 | part->remote_IPI_nasid, | ||
1001 | part->remote_IPI_phys_cpuid, SGI_XPC_NOTIFY); | ||
1002 | dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n", | ||
1003 | ipi_flag_string, ch->partid, ch->number, ret); | ||
1004 | if (unlikely(ret != xpSuccess)) { | ||
1005 | if (irq_flags != NULL) | ||
1006 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
1007 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1008 | if (irq_flags != NULL) | ||
1009 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
1010 | } | ||
1011 | } | ||
1012 | } | ||
1013 | |||
1014 | /* | ||
1015 | * Make it look like the remote partition, which is associated with the | ||
1016 | * specified channel, sent us an IPI. This faked IPI will be handled | ||
1017 | * by xpc_dropped_IPI_check(). | ||
1018 | */ | ||
1019 | #define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \ | ||
1020 | xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f) | ||
1021 | |||
1022 | static inline void | ||
1023 | xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag, | ||
1024 | char *ipi_flag_string) | ||
1025 | { | ||
1026 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
1027 | |||
1028 | FETCHOP_STORE_OP(TO_AMO((u64)&part->local_IPI_amo_va->variable), | ||
1029 | FETCHOP_OR, ((u64)ipi_flag << (ch->number * 8))); | ||
1030 | dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n", | ||
1031 | ipi_flag_string, ch->partid, ch->number); | ||
1032 | } | ||
1033 | |||
1034 | /* | ||
1035 | * The sending and receiving of IPIs includes the setting of an AMO variable | ||
1036 | * to indicate the reason the IPI was sent. The 64-bit variable is divided | ||
1037 | * up into eight bytes, ordered from right to left. Byte zero pertains to | ||
1038 | * channel 0, byte one to channel 1, and so on. Each byte is described by | ||
1039 | * the following IPI flags. | ||
1040 | */ | ||
1041 | |||
1042 | #define XPC_IPI_CLOSEREQUEST 0x01 | ||
1043 | #define XPC_IPI_CLOSEREPLY 0x02 | ||
1044 | #define XPC_IPI_OPENREQUEST 0x04 | ||
1045 | #define XPC_IPI_OPENREPLY 0x08 | ||
1046 | #define XPC_IPI_MSGREQUEST 0x10 | ||
1047 | |||
1048 | /* given an AMO variable and a channel#, get its associated IPI flags */ | ||
1049 | #define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff)) | ||
1050 | #define XPC_SET_IPI_FLAGS(_amo, _c, _f) (_amo) |= ((u64) (_f) << ((_c) * 8)) | ||
1051 | |||
1052 | #define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0fUL) | ||
1053 | #define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010UL) | ||
1054 | |||
1055 | static inline void | ||
1056 | xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1057 | { | ||
1058 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
1059 | |||
1060 | args->reason = ch->reason; | ||
1061 | |||
1062 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags); | ||
1063 | } | ||
1064 | |||
1065 | static inline void | ||
1066 | xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1067 | { | ||
1068 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags); | ||
1069 | } | ||
1070 | |||
1071 | static inline void | ||
1072 | xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1073 | { | ||
1074 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
1075 | |||
1076 | args->msg_size = ch->msg_size; | ||
1077 | args->local_nentries = ch->local_nentries; | ||
1078 | |||
1079 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags); | ||
1080 | } | ||
1081 | |||
1082 | static inline void | ||
1083 | xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1084 | { | ||
1085 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
1086 | |||
1087 | args->remote_nentries = ch->remote_nentries; | ||
1088 | args->local_nentries = ch->local_nentries; | ||
1089 | args->local_msgqueue_pa = __pa(ch->local_msgqueue); | ||
1090 | |||
1091 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags); | ||
1092 | } | ||
1093 | |||
1094 | static inline void | ||
1095 | xpc_IPI_send_msgrequest(struct xpc_channel *ch) | ||
1096 | { | ||
1097 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL); | ||
1098 | } | ||
1099 | |||
1100 | static inline void | ||
1101 | xpc_IPI_send_local_msgrequest(struct xpc_channel *ch) | ||
1102 | { | ||
1103 | XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST); | ||
1104 | } | ||
1105 | |||
1106 | /* | ||
1107 | * Memory for XPC's AMO variables is allocated by the MSPEC driver. These | ||
1108 | * pages are located in the lowest granule. The lowest granule uses 4k pages | ||
1109 | * for cached references and an alternate TLB handler to never provide a | ||
1110 | * cacheable mapping for the entire region. This will prevent speculative | ||
1111 | * reading of cached copies of our lines from being issued which will cause | ||
1112 | * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64 | ||
1113 | * AMO variables (based on XP_MAX_PARTITIONS) for message notification and an | ||
1114 | * additional 128 AMO variables (based on XP_NASID_MASK_WORDS) for partition | ||
1115 | * activation and 2 AMO variables for partition deactivation. | ||
1116 | */ | ||
1117 | static inline AMO_t * | ||
1118 | xpc_IPI_init(int index) | ||
1119 | { | ||
1120 | AMO_t *amo = xpc_vars->amos_page + index; | ||
1121 | |||
1122 | (void)xpc_IPI_receive(amo); /* clear AMO variable */ | ||
1123 | return amo; | ||
1124 | } | ||
1125 | |||
1126 | static inline enum xp_retval | ||
1127 | xpc_map_bte_errors(bte_result_t error) | ||
1128 | { | ||
1129 | return ((error == BTE_SUCCESS) ? xpSuccess : xpBteCopyError); | ||
1130 | } | ||
1131 | |||
1132 | /* | ||
1133 | * Check to see if there is any channel activity to/from the specified | ||
1134 | * partition. | ||
1135 | */ | ||
1136 | static inline void | ||
1137 | xpc_check_for_channel_activity(struct xpc_partition *part) | ||
1138 | { | ||
1139 | u64 IPI_amo; | ||
1140 | unsigned long irq_flags; | ||
1141 | |||
1142 | IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va); | ||
1143 | if (IPI_amo == 0) | ||
1144 | return; | ||
1145 | |||
1146 | spin_lock_irqsave(&part->IPI_lock, irq_flags); | ||
1147 | part->local_IPI_amo |= IPI_amo; | ||
1148 | spin_unlock_irqrestore(&part->IPI_lock, irq_flags); | ||
1149 | |||
1150 | dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n", | ||
1151 | XPC_PARTID(part), IPI_amo); | ||
1152 | |||
1153 | xpc_wakeup_channel_mgr(part); | ||
1154 | } | ||
1155 | |||
1156 | #endif /* _DRIVERS_MISC_SGIXP_XPC_H */ | 990 | #endif /* _DRIVERS_MISC_SGIXP_XPC_H */ |
diff --git a/drivers/misc/sgi-xp/xpc_channel.c b/drivers/misc/sgi-xp/xpc_channel.c index 9c90c2d55c08..9cd2ebe2a3b6 100644 --- a/drivers/misc/sgi-xp/xpc_channel.c +++ b/drivers/misc/sgi-xp/xpc_channel.c | |||
@@ -14,536 +14,10 @@ | |||
14 | * | 14 | * |
15 | */ | 15 | */ |
16 | 16 | ||
17 | #include <linux/kernel.h> | 17 | #include <linux/device.h> |
18 | #include <linux/init.h> | ||
19 | #include <linux/sched.h> | ||
20 | #include <linux/cache.h> | ||
21 | #include <linux/interrupt.h> | ||
22 | #include <linux/mutex.h> | ||
23 | #include <linux/completion.h> | ||
24 | #include <asm/sn/bte.h> | ||
25 | #include <asm/sn/sn_sal.h> | ||
26 | #include "xpc.h" | 18 | #include "xpc.h" |
27 | 19 | ||
28 | /* | 20 | /* |
29 | * Guarantee that the kzalloc'd memory is cacheline aligned. | ||
30 | */ | ||
31 | static void * | ||
32 | xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) | ||
33 | { | ||
34 | /* see if kzalloc will give us cachline aligned memory by default */ | ||
35 | *base = kzalloc(size, flags); | ||
36 | if (*base == NULL) | ||
37 | return NULL; | ||
38 | |||
39 | if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) | ||
40 | return *base; | ||
41 | |||
42 | kfree(*base); | ||
43 | |||
44 | /* nope, we'll have to do it ourselves */ | ||
45 | *base = kzalloc(size + L1_CACHE_BYTES, flags); | ||
46 | if (*base == NULL) | ||
47 | return NULL; | ||
48 | |||
49 | return (void *)L1_CACHE_ALIGN((u64)*base); | ||
50 | } | ||
51 | |||
52 | /* | ||
53 | * Set up the initial values for the XPartition Communication channels. | ||
54 | */ | ||
55 | static void | ||
56 | xpc_initialize_channels(struct xpc_partition *part, short partid) | ||
57 | { | ||
58 | int ch_number; | ||
59 | struct xpc_channel *ch; | ||
60 | |||
61 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
62 | ch = &part->channels[ch_number]; | ||
63 | |||
64 | ch->partid = partid; | ||
65 | ch->number = ch_number; | ||
66 | ch->flags = XPC_C_DISCONNECTED; | ||
67 | |||
68 | ch->local_GP = &part->local_GPs[ch_number]; | ||
69 | ch->local_openclose_args = | ||
70 | &part->local_openclose_args[ch_number]; | ||
71 | |||
72 | atomic_set(&ch->kthreads_assigned, 0); | ||
73 | atomic_set(&ch->kthreads_idle, 0); | ||
74 | atomic_set(&ch->kthreads_active, 0); | ||
75 | |||
76 | atomic_set(&ch->references, 0); | ||
77 | atomic_set(&ch->n_to_notify, 0); | ||
78 | |||
79 | spin_lock_init(&ch->lock); | ||
80 | mutex_init(&ch->msg_to_pull_mutex); | ||
81 | init_completion(&ch->wdisconnect_wait); | ||
82 | |||
83 | atomic_set(&ch->n_on_msg_allocate_wq, 0); | ||
84 | init_waitqueue_head(&ch->msg_allocate_wq); | ||
85 | init_waitqueue_head(&ch->idle_wq); | ||
86 | } | ||
87 | } | ||
88 | |||
89 | /* | ||
90 | * Setup the infrastructure necessary to support XPartition Communication | ||
91 | * between the specified remote partition and the local one. | ||
92 | */ | ||
93 | enum xp_retval | ||
94 | xpc_setup_infrastructure(struct xpc_partition *part) | ||
95 | { | ||
96 | int ret, cpuid; | ||
97 | struct timer_list *timer; | ||
98 | short partid = XPC_PARTID(part); | ||
99 | |||
100 | /* | ||
101 | * Zero out MOST of the entry for this partition. Only the fields | ||
102 | * starting with `nchannels' will be zeroed. The preceding fields must | ||
103 | * remain `viable' across partition ups and downs, since they may be | ||
104 | * referenced during this memset() operation. | ||
105 | */ | ||
106 | memset(&part->nchannels, 0, sizeof(struct xpc_partition) - | ||
107 | offsetof(struct xpc_partition, nchannels)); | ||
108 | |||
109 | /* | ||
110 | * Allocate all of the channel structures as a contiguous chunk of | ||
111 | * memory. | ||
112 | */ | ||
113 | part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_NCHANNELS, | ||
114 | GFP_KERNEL); | ||
115 | if (part->channels == NULL) { | ||
116 | dev_err(xpc_chan, "can't get memory for channels\n"); | ||
117 | return xpNoMemory; | ||
118 | } | ||
119 | |||
120 | part->nchannels = XPC_NCHANNELS; | ||
121 | |||
122 | /* allocate all the required GET/PUT values */ | ||
123 | |||
124 | part->local_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, | ||
125 | GFP_KERNEL, | ||
126 | &part->local_GPs_base); | ||
127 | if (part->local_GPs == NULL) { | ||
128 | kfree(part->channels); | ||
129 | part->channels = NULL; | ||
130 | dev_err(xpc_chan, "can't get memory for local get/put " | ||
131 | "values\n"); | ||
132 | return xpNoMemory; | ||
133 | } | ||
134 | |||
135 | part->remote_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, | ||
136 | GFP_KERNEL, | ||
137 | &part-> | ||
138 | remote_GPs_base); | ||
139 | if (part->remote_GPs == NULL) { | ||
140 | dev_err(xpc_chan, "can't get memory for remote get/put " | ||
141 | "values\n"); | ||
142 | kfree(part->local_GPs_base); | ||
143 | part->local_GPs = NULL; | ||
144 | kfree(part->channels); | ||
145 | part->channels = NULL; | ||
146 | return xpNoMemory; | ||
147 | } | ||
148 | |||
149 | /* allocate all the required open and close args */ | ||
150 | |||
151 | part->local_openclose_args = | ||
152 | xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, | ||
153 | &part->local_openclose_args_base); | ||
154 | if (part->local_openclose_args == NULL) { | ||
155 | dev_err(xpc_chan, "can't get memory for local connect args\n"); | ||
156 | kfree(part->remote_GPs_base); | ||
157 | part->remote_GPs = NULL; | ||
158 | kfree(part->local_GPs_base); | ||
159 | part->local_GPs = NULL; | ||
160 | kfree(part->channels); | ||
161 | part->channels = NULL; | ||
162 | return xpNoMemory; | ||
163 | } | ||
164 | |||
165 | part->remote_openclose_args = | ||
166 | xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, | ||
167 | &part->remote_openclose_args_base); | ||
168 | if (part->remote_openclose_args == NULL) { | ||
169 | dev_err(xpc_chan, "can't get memory for remote connect args\n"); | ||
170 | kfree(part->local_openclose_args_base); | ||
171 | part->local_openclose_args = NULL; | ||
172 | kfree(part->remote_GPs_base); | ||
173 | part->remote_GPs = NULL; | ||
174 | kfree(part->local_GPs_base); | ||
175 | part->local_GPs = NULL; | ||
176 | kfree(part->channels); | ||
177 | part->channels = NULL; | ||
178 | return xpNoMemory; | ||
179 | } | ||
180 | |||
181 | xpc_initialize_channels(part, partid); | ||
182 | |||
183 | atomic_set(&part->nchannels_active, 0); | ||
184 | atomic_set(&part->nchannels_engaged, 0); | ||
185 | |||
186 | /* local_IPI_amo were set to 0 by an earlier memset() */ | ||
187 | |||
188 | /* Initialize this partitions AMO_t structure */ | ||
189 | part->local_IPI_amo_va = xpc_IPI_init(partid); | ||
190 | |||
191 | spin_lock_init(&part->IPI_lock); | ||
192 | |||
193 | atomic_set(&part->channel_mgr_requests, 1); | ||
194 | init_waitqueue_head(&part->channel_mgr_wq); | ||
195 | |||
196 | sprintf(part->IPI_owner, "xpc%02d", partid); | ||
197 | ret = request_irq(SGI_XPC_NOTIFY, xpc_notify_IRQ_handler, IRQF_SHARED, | ||
198 | part->IPI_owner, (void *)(u64)partid); | ||
199 | if (ret != 0) { | ||
200 | dev_err(xpc_chan, "can't register NOTIFY IRQ handler, " | ||
201 | "errno=%d\n", -ret); | ||
202 | kfree(part->remote_openclose_args_base); | ||
203 | part->remote_openclose_args = NULL; | ||
204 | kfree(part->local_openclose_args_base); | ||
205 | part->local_openclose_args = NULL; | ||
206 | kfree(part->remote_GPs_base); | ||
207 | part->remote_GPs = NULL; | ||
208 | kfree(part->local_GPs_base); | ||
209 | part->local_GPs = NULL; | ||
210 | kfree(part->channels); | ||
211 | part->channels = NULL; | ||
212 | return xpLackOfResources; | ||
213 | } | ||
214 | |||
215 | /* Setup a timer to check for dropped IPIs */ | ||
216 | timer = &part->dropped_IPI_timer; | ||
217 | init_timer(timer); | ||
218 | timer->function = (void (*)(unsigned long))xpc_dropped_IPI_check; | ||
219 | timer->data = (unsigned long)part; | ||
220 | timer->expires = jiffies + XPC_P_DROPPED_IPI_WAIT; | ||
221 | add_timer(timer); | ||
222 | |||
223 | /* | ||
224 | * With the setting of the partition setup_state to XPC_P_SETUP, we're | ||
225 | * declaring that this partition is ready to go. | ||
226 | */ | ||
227 | part->setup_state = XPC_P_SETUP; | ||
228 | |||
229 | /* | ||
230 | * Setup the per partition specific variables required by the | ||
231 | * remote partition to establish channel connections with us. | ||
232 | * | ||
233 | * The setting of the magic # indicates that these per partition | ||
234 | * specific variables are ready to be used. | ||
235 | */ | ||
236 | xpc_vars_part[partid].GPs_pa = __pa(part->local_GPs); | ||
237 | xpc_vars_part[partid].openclose_args_pa = | ||
238 | __pa(part->local_openclose_args); | ||
239 | xpc_vars_part[partid].IPI_amo_pa = __pa(part->local_IPI_amo_va); | ||
240 | cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */ | ||
241 | xpc_vars_part[partid].IPI_nasid = cpuid_to_nasid(cpuid); | ||
242 | xpc_vars_part[partid].IPI_phys_cpuid = cpu_physical_id(cpuid); | ||
243 | xpc_vars_part[partid].nchannels = part->nchannels; | ||
244 | xpc_vars_part[partid].magic = XPC_VP_MAGIC1; | ||
245 | |||
246 | return xpSuccess; | ||
247 | } | ||
248 | |||
249 | /* | ||
250 | * Create a wrapper that hides the underlying mechanism for pulling a cacheline | ||
251 | * (or multiple cachelines) from a remote partition. | ||
252 | * | ||
253 | * src must be a cacheline aligned physical address on the remote partition. | ||
254 | * dst must be a cacheline aligned virtual address on this partition. | ||
255 | * cnt must be an cacheline sized | ||
256 | */ | ||
257 | static enum xp_retval | ||
258 | xpc_pull_remote_cachelines(struct xpc_partition *part, void *dst, | ||
259 | const void *src, size_t cnt) | ||
260 | { | ||
261 | bte_result_t bte_ret; | ||
262 | |||
263 | DBUG_ON((u64)src != L1_CACHE_ALIGN((u64)src)); | ||
264 | DBUG_ON((u64)dst != L1_CACHE_ALIGN((u64)dst)); | ||
265 | DBUG_ON(cnt != L1_CACHE_ALIGN(cnt)); | ||
266 | |||
267 | if (part->act_state == XPC_P_DEACTIVATING) | ||
268 | return part->reason; | ||
269 | |||
270 | bte_ret = xp_bte_copy((u64)src, (u64)dst, (u64)cnt, | ||
271 | (BTE_NORMAL | BTE_WACQUIRE), NULL); | ||
272 | if (bte_ret == BTE_SUCCESS) | ||
273 | return xpSuccess; | ||
274 | |||
275 | dev_dbg(xpc_chan, "xp_bte_copy() from partition %d failed, ret=%d\n", | ||
276 | XPC_PARTID(part), bte_ret); | ||
277 | |||
278 | return xpc_map_bte_errors(bte_ret); | ||
279 | } | ||
280 | |||
281 | /* | ||
282 | * Pull the remote per partition specific variables from the specified | ||
283 | * partition. | ||
284 | */ | ||
285 | enum xp_retval | ||
286 | xpc_pull_remote_vars_part(struct xpc_partition *part) | ||
287 | { | ||
288 | u8 buffer[L1_CACHE_BYTES * 2]; | ||
289 | struct xpc_vars_part *pulled_entry_cacheline = | ||
290 | (struct xpc_vars_part *)L1_CACHE_ALIGN((u64)buffer); | ||
291 | struct xpc_vars_part *pulled_entry; | ||
292 | u64 remote_entry_cacheline_pa, remote_entry_pa; | ||
293 | short partid = XPC_PARTID(part); | ||
294 | enum xp_retval ret; | ||
295 | |||
296 | /* pull the cacheline that contains the variables we're interested in */ | ||
297 | |||
298 | DBUG_ON(part->remote_vars_part_pa != | ||
299 | L1_CACHE_ALIGN(part->remote_vars_part_pa)); | ||
300 | DBUG_ON(sizeof(struct xpc_vars_part) != L1_CACHE_BYTES / 2); | ||
301 | |||
302 | remote_entry_pa = part->remote_vars_part_pa + | ||
303 | sn_partition_id * sizeof(struct xpc_vars_part); | ||
304 | |||
305 | remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1)); | ||
306 | |||
307 | pulled_entry = (struct xpc_vars_part *)((u64)pulled_entry_cacheline + | ||
308 | (remote_entry_pa & | ||
309 | (L1_CACHE_BYTES - 1))); | ||
310 | |||
311 | ret = xpc_pull_remote_cachelines(part, pulled_entry_cacheline, | ||
312 | (void *)remote_entry_cacheline_pa, | ||
313 | L1_CACHE_BYTES); | ||
314 | if (ret != xpSuccess) { | ||
315 | dev_dbg(xpc_chan, "failed to pull XPC vars_part from " | ||
316 | "partition %d, ret=%d\n", partid, ret); | ||
317 | return ret; | ||
318 | } | ||
319 | |||
320 | /* see if they've been set up yet */ | ||
321 | |||
322 | if (pulled_entry->magic != XPC_VP_MAGIC1 && | ||
323 | pulled_entry->magic != XPC_VP_MAGIC2) { | ||
324 | |||
325 | if (pulled_entry->magic != 0) { | ||
326 | dev_dbg(xpc_chan, "partition %d's XPC vars_part for " | ||
327 | "partition %d has bad magic value (=0x%lx)\n", | ||
328 | partid, sn_partition_id, pulled_entry->magic); | ||
329 | return xpBadMagic; | ||
330 | } | ||
331 | |||
332 | /* they've not been initialized yet */ | ||
333 | return xpRetry; | ||
334 | } | ||
335 | |||
336 | if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) { | ||
337 | |||
338 | /* validate the variables */ | ||
339 | |||
340 | if (pulled_entry->GPs_pa == 0 || | ||
341 | pulled_entry->openclose_args_pa == 0 || | ||
342 | pulled_entry->IPI_amo_pa == 0) { | ||
343 | |||
344 | dev_err(xpc_chan, "partition %d's XPC vars_part for " | ||
345 | "partition %d are not valid\n", partid, | ||
346 | sn_partition_id); | ||
347 | return xpInvalidAddress; | ||
348 | } | ||
349 | |||
350 | /* the variables we imported look to be valid */ | ||
351 | |||
352 | part->remote_GPs_pa = pulled_entry->GPs_pa; | ||
353 | part->remote_openclose_args_pa = | ||
354 | pulled_entry->openclose_args_pa; | ||
355 | part->remote_IPI_amo_va = | ||
356 | (AMO_t *)__va(pulled_entry->IPI_amo_pa); | ||
357 | part->remote_IPI_nasid = pulled_entry->IPI_nasid; | ||
358 | part->remote_IPI_phys_cpuid = pulled_entry->IPI_phys_cpuid; | ||
359 | |||
360 | if (part->nchannels > pulled_entry->nchannels) | ||
361 | part->nchannels = pulled_entry->nchannels; | ||
362 | |||
363 | /* let the other side know that we've pulled their variables */ | ||
364 | |||
365 | xpc_vars_part[partid].magic = XPC_VP_MAGIC2; | ||
366 | } | ||
367 | |||
368 | if (pulled_entry->magic == XPC_VP_MAGIC1) | ||
369 | return xpRetry; | ||
370 | |||
371 | return xpSuccess; | ||
372 | } | ||
373 | |||
374 | /* | ||
375 | * Get the IPI flags and pull the openclose args and/or remote GPs as needed. | ||
376 | */ | ||
377 | static u64 | ||
378 | xpc_get_IPI_flags(struct xpc_partition *part) | ||
379 | { | ||
380 | unsigned long irq_flags; | ||
381 | u64 IPI_amo; | ||
382 | enum xp_retval ret; | ||
383 | |||
384 | /* | ||
385 | * See if there are any IPI flags to be handled. | ||
386 | */ | ||
387 | |||
388 | spin_lock_irqsave(&part->IPI_lock, irq_flags); | ||
389 | IPI_amo = part->local_IPI_amo; | ||
390 | if (IPI_amo != 0) | ||
391 | part->local_IPI_amo = 0; | ||
392 | |||
393 | spin_unlock_irqrestore(&part->IPI_lock, irq_flags); | ||
394 | |||
395 | if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_amo)) { | ||
396 | ret = xpc_pull_remote_cachelines(part, | ||
397 | part->remote_openclose_args, | ||
398 | (void *)part-> | ||
399 | remote_openclose_args_pa, | ||
400 | XPC_OPENCLOSE_ARGS_SIZE); | ||
401 | if (ret != xpSuccess) { | ||
402 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
403 | |||
404 | dev_dbg(xpc_chan, "failed to pull openclose args from " | ||
405 | "partition %d, ret=%d\n", XPC_PARTID(part), | ||
406 | ret); | ||
407 | |||
408 | /* don't bother processing IPIs anymore */ | ||
409 | IPI_amo = 0; | ||
410 | } | ||
411 | } | ||
412 | |||
413 | if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_amo)) { | ||
414 | ret = xpc_pull_remote_cachelines(part, part->remote_GPs, | ||
415 | (void *)part->remote_GPs_pa, | ||
416 | XPC_GP_SIZE); | ||
417 | if (ret != xpSuccess) { | ||
418 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
419 | |||
420 | dev_dbg(xpc_chan, "failed to pull GPs from partition " | ||
421 | "%d, ret=%d\n", XPC_PARTID(part), ret); | ||
422 | |||
423 | /* don't bother processing IPIs anymore */ | ||
424 | IPI_amo = 0; | ||
425 | } | ||
426 | } | ||
427 | |||
428 | return IPI_amo; | ||
429 | } | ||
430 | |||
431 | /* | ||
432 | * Allocate the local message queue and the notify queue. | ||
433 | */ | ||
434 | static enum xp_retval | ||
435 | xpc_allocate_local_msgqueue(struct xpc_channel *ch) | ||
436 | { | ||
437 | unsigned long irq_flags; | ||
438 | int nentries; | ||
439 | size_t nbytes; | ||
440 | |||
441 | for (nentries = ch->local_nentries; nentries > 0; nentries--) { | ||
442 | |||
443 | nbytes = nentries * ch->msg_size; | ||
444 | ch->local_msgqueue = xpc_kzalloc_cacheline_aligned(nbytes, | ||
445 | GFP_KERNEL, | ||
446 | &ch->local_msgqueue_base); | ||
447 | if (ch->local_msgqueue == NULL) | ||
448 | continue; | ||
449 | |||
450 | nbytes = nentries * sizeof(struct xpc_notify); | ||
451 | ch->notify_queue = kzalloc(nbytes, GFP_KERNEL); | ||
452 | if (ch->notify_queue == NULL) { | ||
453 | kfree(ch->local_msgqueue_base); | ||
454 | ch->local_msgqueue = NULL; | ||
455 | continue; | ||
456 | } | ||
457 | |||
458 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
459 | if (nentries < ch->local_nentries) { | ||
460 | dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, " | ||
461 | "partid=%d, channel=%d\n", nentries, | ||
462 | ch->local_nentries, ch->partid, ch->number); | ||
463 | |||
464 | ch->local_nentries = nentries; | ||
465 | } | ||
466 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
467 | return xpSuccess; | ||
468 | } | ||
469 | |||
470 | dev_dbg(xpc_chan, "can't get memory for local message queue and notify " | ||
471 | "queue, partid=%d, channel=%d\n", ch->partid, ch->number); | ||
472 | return xpNoMemory; | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * Allocate the cached remote message queue. | ||
477 | */ | ||
478 | static enum xp_retval | ||
479 | xpc_allocate_remote_msgqueue(struct xpc_channel *ch) | ||
480 | { | ||
481 | unsigned long irq_flags; | ||
482 | int nentries; | ||
483 | size_t nbytes; | ||
484 | |||
485 | DBUG_ON(ch->remote_nentries <= 0); | ||
486 | |||
487 | for (nentries = ch->remote_nentries; nentries > 0; nentries--) { | ||
488 | |||
489 | nbytes = nentries * ch->msg_size; | ||
490 | ch->remote_msgqueue = xpc_kzalloc_cacheline_aligned(nbytes, | ||
491 | GFP_KERNEL, | ||
492 | &ch->remote_msgqueue_base); | ||
493 | if (ch->remote_msgqueue == NULL) | ||
494 | continue; | ||
495 | |||
496 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
497 | if (nentries < ch->remote_nentries) { | ||
498 | dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, " | ||
499 | "partid=%d, channel=%d\n", nentries, | ||
500 | ch->remote_nentries, ch->partid, ch->number); | ||
501 | |||
502 | ch->remote_nentries = nentries; | ||
503 | } | ||
504 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
505 | return xpSuccess; | ||
506 | } | ||
507 | |||
508 | dev_dbg(xpc_chan, "can't get memory for cached remote message queue, " | ||
509 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
510 | return xpNoMemory; | ||
511 | } | ||
512 | |||
513 | /* | ||
514 | * Allocate message queues and other stuff associated with a channel. | ||
515 | * | ||
516 | * Note: Assumes all of the channel sizes are filled in. | ||
517 | */ | ||
518 | static enum xp_retval | ||
519 | xpc_allocate_msgqueues(struct xpc_channel *ch) | ||
520 | { | ||
521 | unsigned long irq_flags; | ||
522 | enum xp_retval ret; | ||
523 | |||
524 | DBUG_ON(ch->flags & XPC_C_SETUP); | ||
525 | |||
526 | ret = xpc_allocate_local_msgqueue(ch); | ||
527 | if (ret != xpSuccess) | ||
528 | return ret; | ||
529 | |||
530 | ret = xpc_allocate_remote_msgqueue(ch); | ||
531 | if (ret != xpSuccess) { | ||
532 | kfree(ch->local_msgqueue_base); | ||
533 | ch->local_msgqueue = NULL; | ||
534 | kfree(ch->notify_queue); | ||
535 | ch->notify_queue = NULL; | ||
536 | return ret; | ||
537 | } | ||
538 | |||
539 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
540 | ch->flags |= XPC_C_SETUP; | ||
541 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
542 | |||
543 | return xpSuccess; | ||
544 | } | ||
545 | |||
546 | /* | ||
547 | * Process a connect message from a remote partition. | 21 | * Process a connect message from a remote partition. |
548 | * | 22 | * |
549 | * Note: xpc_process_connect() is expecting to be called with the | 23 | * Note: xpc_process_connect() is expecting to be called with the |
@@ -565,30 +39,29 @@ xpc_process_connect(struct xpc_channel *ch, unsigned long *irq_flags) | |||
565 | 39 | ||
566 | if (!(ch->flags & XPC_C_SETUP)) { | 40 | if (!(ch->flags & XPC_C_SETUP)) { |
567 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | 41 | spin_unlock_irqrestore(&ch->lock, *irq_flags); |
568 | ret = xpc_allocate_msgqueues(ch); | 42 | ret = xpc_setup_msg_structures(ch); |
569 | spin_lock_irqsave(&ch->lock, *irq_flags); | 43 | spin_lock_irqsave(&ch->lock, *irq_flags); |
570 | 44 | ||
571 | if (ret != xpSuccess) | 45 | if (ret != xpSuccess) |
572 | XPC_DISCONNECT_CHANNEL(ch, ret, irq_flags); | 46 | XPC_DISCONNECT_CHANNEL(ch, ret, irq_flags); |
573 | 47 | ||
48 | ch->flags |= XPC_C_SETUP; | ||
49 | |||
574 | if (ch->flags & (XPC_C_CONNECTED | XPC_C_DISCONNECTING)) | 50 | if (ch->flags & (XPC_C_CONNECTED | XPC_C_DISCONNECTING)) |
575 | return; | 51 | return; |
576 | 52 | ||
577 | DBUG_ON(!(ch->flags & XPC_C_SETUP)); | ||
578 | DBUG_ON(ch->local_msgqueue == NULL); | 53 | DBUG_ON(ch->local_msgqueue == NULL); |
579 | DBUG_ON(ch->remote_msgqueue == NULL); | 54 | DBUG_ON(ch->remote_msgqueue == NULL); |
580 | } | 55 | } |
581 | 56 | ||
582 | if (!(ch->flags & XPC_C_OPENREPLY)) { | 57 | if (!(ch->flags & XPC_C_OPENREPLY)) { |
583 | ch->flags |= XPC_C_OPENREPLY; | 58 | ch->flags |= XPC_C_OPENREPLY; |
584 | xpc_IPI_send_openreply(ch, irq_flags); | 59 | xpc_send_chctl_openreply(ch, irq_flags); |
585 | } | 60 | } |
586 | 61 | ||
587 | if (!(ch->flags & XPC_C_ROPENREPLY)) | 62 | if (!(ch->flags & XPC_C_ROPENREPLY)) |
588 | return; | 63 | return; |
589 | 64 | ||
590 | DBUG_ON(ch->remote_msgqueue_pa == 0); | ||
591 | |||
592 | ch->flags = (XPC_C_CONNECTED | XPC_C_SETUP); /* clear all else */ | 65 | ch->flags = (XPC_C_CONNECTED | XPC_C_SETUP); /* clear all else */ |
593 | 66 | ||
594 | dev_info(xpc_chan, "channel %d to partition %d connected\n", | 67 | dev_info(xpc_chan, "channel %d to partition %d connected\n", |
@@ -600,99 +73,6 @@ xpc_process_connect(struct xpc_channel *ch, unsigned long *irq_flags) | |||
600 | } | 73 | } |
601 | 74 | ||
602 | /* | 75 | /* |
603 | * Notify those who wanted to be notified upon delivery of their message. | ||
604 | */ | ||
605 | static void | ||
606 | xpc_notify_senders(struct xpc_channel *ch, enum xp_retval reason, s64 put) | ||
607 | { | ||
608 | struct xpc_notify *notify; | ||
609 | u8 notify_type; | ||
610 | s64 get = ch->w_remote_GP.get - 1; | ||
611 | |||
612 | while (++get < put && atomic_read(&ch->n_to_notify) > 0) { | ||
613 | |||
614 | notify = &ch->notify_queue[get % ch->local_nentries]; | ||
615 | |||
616 | /* | ||
617 | * See if the notify entry indicates it was associated with | ||
618 | * a message who's sender wants to be notified. It is possible | ||
619 | * that it is, but someone else is doing or has done the | ||
620 | * notification. | ||
621 | */ | ||
622 | notify_type = notify->type; | ||
623 | if (notify_type == 0 || | ||
624 | cmpxchg(¬ify->type, notify_type, 0) != notify_type) { | ||
625 | continue; | ||
626 | } | ||
627 | |||
628 | DBUG_ON(notify_type != XPC_N_CALL); | ||
629 | |||
630 | atomic_dec(&ch->n_to_notify); | ||
631 | |||
632 | if (notify->func != NULL) { | ||
633 | dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, " | ||
634 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
635 | (void *)notify, get, ch->partid, ch->number); | ||
636 | |||
637 | notify->func(reason, ch->partid, ch->number, | ||
638 | notify->key); | ||
639 | |||
640 | dev_dbg(xpc_chan, "notify->func() returned, " | ||
641 | "notify=0x%p, msg_number=%ld, partid=%d, " | ||
642 | "channel=%d\n", (void *)notify, get, | ||
643 | ch->partid, ch->number); | ||
644 | } | ||
645 | } | ||
646 | } | ||
647 | |||
648 | /* | ||
649 | * Free up message queues and other stuff that were allocated for the specified | ||
650 | * channel. | ||
651 | * | ||
652 | * Note: ch->reason and ch->reason_line are left set for debugging purposes, | ||
653 | * they're cleared when XPC_C_DISCONNECTED is cleared. | ||
654 | */ | ||
655 | static void | ||
656 | xpc_free_msgqueues(struct xpc_channel *ch) | ||
657 | { | ||
658 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
659 | DBUG_ON(atomic_read(&ch->n_to_notify) != 0); | ||
660 | |||
661 | ch->remote_msgqueue_pa = 0; | ||
662 | ch->func = NULL; | ||
663 | ch->key = NULL; | ||
664 | ch->msg_size = 0; | ||
665 | ch->local_nentries = 0; | ||
666 | ch->remote_nentries = 0; | ||
667 | ch->kthreads_assigned_limit = 0; | ||
668 | ch->kthreads_idle_limit = 0; | ||
669 | |||
670 | ch->local_GP->get = 0; | ||
671 | ch->local_GP->put = 0; | ||
672 | ch->remote_GP.get = 0; | ||
673 | ch->remote_GP.put = 0; | ||
674 | ch->w_local_GP.get = 0; | ||
675 | ch->w_local_GP.put = 0; | ||
676 | ch->w_remote_GP.get = 0; | ||
677 | ch->w_remote_GP.put = 0; | ||
678 | ch->next_msg_to_pull = 0; | ||
679 | |||
680 | if (ch->flags & XPC_C_SETUP) { | ||
681 | ch->flags &= ~XPC_C_SETUP; | ||
682 | |||
683 | dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n", | ||
684 | ch->flags, ch->partid, ch->number); | ||
685 | |||
686 | kfree(ch->local_msgqueue_base); | ||
687 | ch->local_msgqueue = NULL; | ||
688 | kfree(ch->remote_msgqueue_base); | ||
689 | ch->remote_msgqueue = NULL; | ||
690 | kfree(ch->notify_queue); | ||
691 | ch->notify_queue = NULL; | ||
692 | } | ||
693 | } | ||
694 | |||
695 | /* | ||
696 | * spin_lock_irqsave() is expected to be held on entry. | 76 | * spin_lock_irqsave() is expected to be held on entry. |
697 | */ | 77 | */ |
698 | static void | 78 | static void |
@@ -717,9 +97,9 @@ xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) | |||
717 | DBUG_ON((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && | 97 | DBUG_ON((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && |
718 | !(ch->flags & XPC_C_DISCONNECTINGCALLOUT_MADE)); | 98 | !(ch->flags & XPC_C_DISCONNECTINGCALLOUT_MADE)); |
719 | 99 | ||
720 | if (part->act_state == XPC_P_DEACTIVATING) { | 100 | if (part->act_state == XPC_P_AS_DEACTIVATING) { |
721 | /* can't proceed until the other side disengages from us */ | 101 | /* can't proceed until the other side disengages from us */ |
722 | if (xpc_partition_engaged(1UL << ch->partid)) | 102 | if (xpc_partition_engaged(ch->partid)) |
723 | return; | 103 | return; |
724 | 104 | ||
725 | } else { | 105 | } else { |
@@ -731,7 +111,7 @@ xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) | |||
731 | 111 | ||
732 | if (!(ch->flags & XPC_C_CLOSEREPLY)) { | 112 | if (!(ch->flags & XPC_C_CLOSEREPLY)) { |
733 | ch->flags |= XPC_C_CLOSEREPLY; | 113 | ch->flags |= XPC_C_CLOSEREPLY; |
734 | xpc_IPI_send_closereply(ch, irq_flags); | 114 | xpc_send_chctl_closereply(ch, irq_flags); |
735 | } | 115 | } |
736 | 116 | ||
737 | if (!(ch->flags & XPC_C_RCLOSEREPLY)) | 117 | if (!(ch->flags & XPC_C_RCLOSEREPLY)) |
@@ -740,8 +120,8 @@ xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) | |||
740 | 120 | ||
741 | /* wake those waiting for notify completion */ | 121 | /* wake those waiting for notify completion */ |
742 | if (atomic_read(&ch->n_to_notify) > 0) { | 122 | if (atomic_read(&ch->n_to_notify) > 0) { |
743 | /* >>> we do callout while holding ch->lock */ | 123 | /* we do callout while holding ch->lock, callout can't block */ |
744 | xpc_notify_senders(ch, ch->reason, ch->w_local_GP.put); | 124 | xpc_notify_senders_of_disconnect(ch); |
745 | } | 125 | } |
746 | 126 | ||
747 | /* both sides are disconnected now */ | 127 | /* both sides are disconnected now */ |
@@ -752,10 +132,24 @@ xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) | |||
752 | spin_lock_irqsave(&ch->lock, *irq_flags); | 132 | spin_lock_irqsave(&ch->lock, *irq_flags); |
753 | } | 133 | } |
754 | 134 | ||
135 | DBUG_ON(atomic_read(&ch->n_to_notify) != 0); | ||
136 | |||
755 | /* it's now safe to free the channel's message queues */ | 137 | /* it's now safe to free the channel's message queues */ |
756 | xpc_free_msgqueues(ch); | 138 | xpc_teardown_msg_structures(ch); |
757 | 139 | ||
758 | /* mark disconnected, clear all other flags except XPC_C_WDISCONNECT */ | 140 | ch->func = NULL; |
141 | ch->key = NULL; | ||
142 | ch->entry_size = 0; | ||
143 | ch->local_nentries = 0; | ||
144 | ch->remote_nentries = 0; | ||
145 | ch->kthreads_assigned_limit = 0; | ||
146 | ch->kthreads_idle_limit = 0; | ||
147 | |||
148 | /* | ||
149 | * Mark the channel disconnected and clear all other flags, including | ||
150 | * XPC_C_SETUP (because of call to xpc_teardown_msg_structures()) but | ||
151 | * not including XPC_C_WDISCONNECT (if it was set). | ||
152 | */ | ||
759 | ch->flags = (XPC_C_DISCONNECTED | (ch->flags & XPC_C_WDISCONNECT)); | 153 | ch->flags = (XPC_C_DISCONNECTED | (ch->flags & XPC_C_WDISCONNECT)); |
760 | 154 | ||
761 | atomic_dec(&part->nchannels_active); | 155 | atomic_dec(&part->nchannels_active); |
@@ -768,15 +162,15 @@ xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) | |||
768 | if (ch->flags & XPC_C_WDISCONNECT) { | 162 | if (ch->flags & XPC_C_WDISCONNECT) { |
769 | /* we won't lose the CPU since we're holding ch->lock */ | 163 | /* we won't lose the CPU since we're holding ch->lock */ |
770 | complete(&ch->wdisconnect_wait); | 164 | complete(&ch->wdisconnect_wait); |
771 | } else if (ch->delayed_IPI_flags) { | 165 | } else if (ch->delayed_chctl_flags) { |
772 | if (part->act_state != XPC_P_DEACTIVATING) { | 166 | if (part->act_state != XPC_P_AS_DEACTIVATING) { |
773 | /* time to take action on any delayed IPI flags */ | 167 | /* time to take action on any delayed chctl flags */ |
774 | spin_lock(&part->IPI_lock); | 168 | spin_lock(&part->chctl_lock); |
775 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, ch->number, | 169 | part->chctl.flags[ch->number] |= |
776 | ch->delayed_IPI_flags); | 170 | ch->delayed_chctl_flags; |
777 | spin_unlock(&part->IPI_lock); | 171 | spin_unlock(&part->chctl_lock); |
778 | } | 172 | } |
779 | ch->delayed_IPI_flags = 0; | 173 | ch->delayed_chctl_flags = 0; |
780 | } | 174 | } |
781 | } | 175 | } |
782 | 176 | ||
@@ -784,8 +178,8 @@ xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) | |||
784 | * Process a change in the channel's remote connection state. | 178 | * Process a change in the channel's remote connection state. |
785 | */ | 179 | */ |
786 | static void | 180 | static void |
787 | xpc_process_openclose_IPI(struct xpc_partition *part, int ch_number, | 181 | xpc_process_openclose_chctl_flags(struct xpc_partition *part, int ch_number, |
788 | u8 IPI_flags) | 182 | u8 chctl_flags) |
789 | { | 183 | { |
790 | unsigned long irq_flags; | 184 | unsigned long irq_flags; |
791 | struct xpc_openclose_args *args = | 185 | struct xpc_openclose_args *args = |
@@ -800,24 +194,24 @@ again: | |||
800 | if ((ch->flags & XPC_C_DISCONNECTED) && | 194 | if ((ch->flags & XPC_C_DISCONNECTED) && |
801 | (ch->flags & XPC_C_WDISCONNECT)) { | 195 | (ch->flags & XPC_C_WDISCONNECT)) { |
802 | /* | 196 | /* |
803 | * Delay processing IPI flags until thread waiting disconnect | 197 | * Delay processing chctl flags until thread waiting disconnect |
804 | * has had a chance to see that the channel is disconnected. | 198 | * has had a chance to see that the channel is disconnected. |
805 | */ | 199 | */ |
806 | ch->delayed_IPI_flags |= IPI_flags; | 200 | ch->delayed_chctl_flags |= chctl_flags; |
807 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 201 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
808 | return; | 202 | return; |
809 | } | 203 | } |
810 | 204 | ||
811 | if (IPI_flags & XPC_IPI_CLOSEREQUEST) { | 205 | if (chctl_flags & XPC_CHCTL_CLOSEREQUEST) { |
812 | 206 | ||
813 | dev_dbg(xpc_chan, "XPC_IPI_CLOSEREQUEST (reason=%d) received " | 207 | dev_dbg(xpc_chan, "XPC_CHCTL_CLOSEREQUEST (reason=%d) received " |
814 | "from partid=%d, channel=%d\n", args->reason, | 208 | "from partid=%d, channel=%d\n", args->reason, |
815 | ch->partid, ch->number); | 209 | ch->partid, ch->number); |
816 | 210 | ||
817 | /* | 211 | /* |
818 | * If RCLOSEREQUEST is set, we're probably waiting for | 212 | * If RCLOSEREQUEST is set, we're probably waiting for |
819 | * RCLOSEREPLY. We should find it and a ROPENREQUEST packed | 213 | * RCLOSEREPLY. We should find it and a ROPENREQUEST packed |
820 | * with this RCLOSEREQUEST in the IPI_flags. | 214 | * with this RCLOSEREQUEST in the chctl_flags. |
821 | */ | 215 | */ |
822 | 216 | ||
823 | if (ch->flags & XPC_C_RCLOSEREQUEST) { | 217 | if (ch->flags & XPC_C_RCLOSEREQUEST) { |
@@ -826,8 +220,8 @@ again: | |||
826 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREPLY)); | 220 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREPLY)); |
827 | DBUG_ON(ch->flags & XPC_C_RCLOSEREPLY); | 221 | DBUG_ON(ch->flags & XPC_C_RCLOSEREPLY); |
828 | 222 | ||
829 | DBUG_ON(!(IPI_flags & XPC_IPI_CLOSEREPLY)); | 223 | DBUG_ON(!(chctl_flags & XPC_CHCTL_CLOSEREPLY)); |
830 | IPI_flags &= ~XPC_IPI_CLOSEREPLY; | 224 | chctl_flags &= ~XPC_CHCTL_CLOSEREPLY; |
831 | ch->flags |= XPC_C_RCLOSEREPLY; | 225 | ch->flags |= XPC_C_RCLOSEREPLY; |
832 | 226 | ||
833 | /* both sides have finished disconnecting */ | 227 | /* both sides have finished disconnecting */ |
@@ -837,17 +231,15 @@ again: | |||
837 | } | 231 | } |
838 | 232 | ||
839 | if (ch->flags & XPC_C_DISCONNECTED) { | 233 | if (ch->flags & XPC_C_DISCONNECTED) { |
840 | if (!(IPI_flags & XPC_IPI_OPENREQUEST)) { | 234 | if (!(chctl_flags & XPC_CHCTL_OPENREQUEST)) { |
841 | if ((XPC_GET_IPI_FLAGS(part->local_IPI_amo, | 235 | if (part->chctl.flags[ch_number] & |
842 | ch_number) & | 236 | XPC_CHCTL_OPENREQUEST) { |
843 | XPC_IPI_OPENREQUEST)) { | 237 | |
844 | 238 | DBUG_ON(ch->delayed_chctl_flags != 0); | |
845 | DBUG_ON(ch->delayed_IPI_flags != 0); | 239 | spin_lock(&part->chctl_lock); |
846 | spin_lock(&part->IPI_lock); | 240 | part->chctl.flags[ch_number] |= |
847 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, | 241 | XPC_CHCTL_CLOSEREQUEST; |
848 | ch_number, | 242 | spin_unlock(&part->chctl_lock); |
849 | XPC_IPI_CLOSEREQUEST); | ||
850 | spin_unlock(&part->IPI_lock); | ||
851 | } | 243 | } |
852 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 244 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
853 | return; | 245 | return; |
@@ -860,7 +252,7 @@ again: | |||
860 | ch->flags |= (XPC_C_CONNECTING | XPC_C_ROPENREQUEST); | 252 | ch->flags |= (XPC_C_CONNECTING | XPC_C_ROPENREQUEST); |
861 | } | 253 | } |
862 | 254 | ||
863 | IPI_flags &= ~(XPC_IPI_OPENREQUEST | XPC_IPI_OPENREPLY); | 255 | chctl_flags &= ~(XPC_CHCTL_OPENREQUEST | XPC_CHCTL_OPENREPLY); |
864 | 256 | ||
865 | /* | 257 | /* |
866 | * The meaningful CLOSEREQUEST connection state fields are: | 258 | * The meaningful CLOSEREQUEST connection state fields are: |
@@ -878,7 +270,7 @@ again: | |||
878 | 270 | ||
879 | XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); | 271 | XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); |
880 | 272 | ||
881 | DBUG_ON(IPI_flags & XPC_IPI_CLOSEREPLY); | 273 | DBUG_ON(chctl_flags & XPC_CHCTL_CLOSEREPLY); |
882 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 274 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
883 | return; | 275 | return; |
884 | } | 276 | } |
@@ -886,13 +278,13 @@ again: | |||
886 | xpc_process_disconnect(ch, &irq_flags); | 278 | xpc_process_disconnect(ch, &irq_flags); |
887 | } | 279 | } |
888 | 280 | ||
889 | if (IPI_flags & XPC_IPI_CLOSEREPLY) { | 281 | if (chctl_flags & XPC_CHCTL_CLOSEREPLY) { |
890 | 282 | ||
891 | dev_dbg(xpc_chan, "XPC_IPI_CLOSEREPLY received from partid=%d," | 283 | dev_dbg(xpc_chan, "XPC_CHCTL_CLOSEREPLY received from partid=" |
892 | " channel=%d\n", ch->partid, ch->number); | 284 | "%d, channel=%d\n", ch->partid, ch->number); |
893 | 285 | ||
894 | if (ch->flags & XPC_C_DISCONNECTED) { | 286 | if (ch->flags & XPC_C_DISCONNECTED) { |
895 | DBUG_ON(part->act_state != XPC_P_DEACTIVATING); | 287 | DBUG_ON(part->act_state != XPC_P_AS_DEACTIVATING); |
896 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 288 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
897 | return; | 289 | return; |
898 | } | 290 | } |
@@ -900,15 +292,14 @@ again: | |||
900 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | 292 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); |
901 | 293 | ||
902 | if (!(ch->flags & XPC_C_RCLOSEREQUEST)) { | 294 | if (!(ch->flags & XPC_C_RCLOSEREQUEST)) { |
903 | if ((XPC_GET_IPI_FLAGS(part->local_IPI_amo, ch_number) | 295 | if (part->chctl.flags[ch_number] & |
904 | & XPC_IPI_CLOSEREQUEST)) { | 296 | XPC_CHCTL_CLOSEREQUEST) { |
905 | 297 | ||
906 | DBUG_ON(ch->delayed_IPI_flags != 0); | 298 | DBUG_ON(ch->delayed_chctl_flags != 0); |
907 | spin_lock(&part->IPI_lock); | 299 | spin_lock(&part->chctl_lock); |
908 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, | 300 | part->chctl.flags[ch_number] |= |
909 | ch_number, | 301 | XPC_CHCTL_CLOSEREPLY; |
910 | XPC_IPI_CLOSEREPLY); | 302 | spin_unlock(&part->chctl_lock); |
911 | spin_unlock(&part->IPI_lock); | ||
912 | } | 303 | } |
913 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 304 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
914 | return; | 305 | return; |
@@ -922,21 +313,21 @@ again: | |||
922 | } | 313 | } |
923 | } | 314 | } |
924 | 315 | ||
925 | if (IPI_flags & XPC_IPI_OPENREQUEST) { | 316 | if (chctl_flags & XPC_CHCTL_OPENREQUEST) { |
926 | 317 | ||
927 | dev_dbg(xpc_chan, "XPC_IPI_OPENREQUEST (msg_size=%d, " | 318 | dev_dbg(xpc_chan, "XPC_CHCTL_OPENREQUEST (entry_size=%d, " |
928 | "local_nentries=%d) received from partid=%d, " | 319 | "local_nentries=%d) received from partid=%d, " |
929 | "channel=%d\n", args->msg_size, args->local_nentries, | 320 | "channel=%d\n", args->entry_size, args->local_nentries, |
930 | ch->partid, ch->number); | 321 | ch->partid, ch->number); |
931 | 322 | ||
932 | if (part->act_state == XPC_P_DEACTIVATING || | 323 | if (part->act_state == XPC_P_AS_DEACTIVATING || |
933 | (ch->flags & XPC_C_ROPENREQUEST)) { | 324 | (ch->flags & XPC_C_ROPENREQUEST)) { |
934 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 325 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
935 | return; | 326 | return; |
936 | } | 327 | } |
937 | 328 | ||
938 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_WDISCONNECT)) { | 329 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_WDISCONNECT)) { |
939 | ch->delayed_IPI_flags |= XPC_IPI_OPENREQUEST; | 330 | ch->delayed_chctl_flags |= XPC_CHCTL_OPENREQUEST; |
940 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 331 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
941 | return; | 332 | return; |
942 | } | 333 | } |
@@ -947,10 +338,10 @@ again: | |||
947 | 338 | ||
948 | /* | 339 | /* |
949 | * The meaningful OPENREQUEST connection state fields are: | 340 | * The meaningful OPENREQUEST connection state fields are: |
950 | * msg_size = size of channel's messages in bytes | 341 | * entry_size = size of channel's messages in bytes |
951 | * local_nentries = remote partition's local_nentries | 342 | * local_nentries = remote partition's local_nentries |
952 | */ | 343 | */ |
953 | if (args->msg_size == 0 || args->local_nentries == 0) { | 344 | if (args->entry_size == 0 || args->local_nentries == 0) { |
954 | /* assume OPENREQUEST was delayed by mistake */ | 345 | /* assume OPENREQUEST was delayed by mistake */ |
955 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 346 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
956 | return; | 347 | return; |
@@ -960,14 +351,14 @@ again: | |||
960 | ch->remote_nentries = args->local_nentries; | 351 | ch->remote_nentries = args->local_nentries; |
961 | 352 | ||
962 | if (ch->flags & XPC_C_OPENREQUEST) { | 353 | if (ch->flags & XPC_C_OPENREQUEST) { |
963 | if (args->msg_size != ch->msg_size) { | 354 | if (args->entry_size != ch->entry_size) { |
964 | XPC_DISCONNECT_CHANNEL(ch, xpUnequalMsgSizes, | 355 | XPC_DISCONNECT_CHANNEL(ch, xpUnequalMsgSizes, |
965 | &irq_flags); | 356 | &irq_flags); |
966 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 357 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
967 | return; | 358 | return; |
968 | } | 359 | } |
969 | } else { | 360 | } else { |
970 | ch->msg_size = args->msg_size; | 361 | ch->entry_size = args->entry_size; |
971 | 362 | ||
972 | XPC_SET_REASON(ch, 0, 0); | 363 | XPC_SET_REASON(ch, 0, 0); |
973 | ch->flags &= ~XPC_C_DISCONNECTED; | 364 | ch->flags &= ~XPC_C_DISCONNECTED; |
@@ -978,13 +369,13 @@ again: | |||
978 | xpc_process_connect(ch, &irq_flags); | 369 | xpc_process_connect(ch, &irq_flags); |
979 | } | 370 | } |
980 | 371 | ||
981 | if (IPI_flags & XPC_IPI_OPENREPLY) { | 372 | if (chctl_flags & XPC_CHCTL_OPENREPLY) { |
982 | 373 | ||
983 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY (local_msgqueue_pa=0x%lx, " | 374 | dev_dbg(xpc_chan, "XPC_CHCTL_OPENREPLY (local_msgqueue_pa=" |
984 | "local_nentries=%d, remote_nentries=%d) received from " | 375 | "0x%lx, local_nentries=%d, remote_nentries=%d) " |
985 | "partid=%d, channel=%d\n", args->local_msgqueue_pa, | 376 | "received from partid=%d, channel=%d\n", |
986 | args->local_nentries, args->remote_nentries, | 377 | args->local_msgqueue_pa, args->local_nentries, |
987 | ch->partid, ch->number); | 378 | args->remote_nentries, ch->partid, ch->number); |
988 | 379 | ||
989 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) { | 380 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) { |
990 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 381 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
@@ -1012,10 +403,10 @@ again: | |||
1012 | DBUG_ON(args->remote_nentries == 0); | 403 | DBUG_ON(args->remote_nentries == 0); |
1013 | 404 | ||
1014 | ch->flags |= XPC_C_ROPENREPLY; | 405 | ch->flags |= XPC_C_ROPENREPLY; |
1015 | ch->remote_msgqueue_pa = args->local_msgqueue_pa; | 406 | xpc_save_remote_msgqueue_pa(ch, args->local_msgqueue_pa); |
1016 | 407 | ||
1017 | if (args->local_nentries < ch->remote_nentries) { | 408 | if (args->local_nentries < ch->remote_nentries) { |
1018 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " | 409 | dev_dbg(xpc_chan, "XPC_CHCTL_OPENREPLY: new " |
1019 | "remote_nentries=%d, old remote_nentries=%d, " | 410 | "remote_nentries=%d, old remote_nentries=%d, " |
1020 | "partid=%d, channel=%d\n", | 411 | "partid=%d, channel=%d\n", |
1021 | args->local_nentries, ch->remote_nentries, | 412 | args->local_nentries, ch->remote_nentries, |
@@ -1024,7 +415,7 @@ again: | |||
1024 | ch->remote_nentries = args->local_nentries; | 415 | ch->remote_nentries = args->local_nentries; |
1025 | } | 416 | } |
1026 | if (args->remote_nentries < ch->local_nentries) { | 417 | if (args->remote_nentries < ch->local_nentries) { |
1027 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " | 418 | dev_dbg(xpc_chan, "XPC_CHCTL_OPENREPLY: new " |
1028 | "local_nentries=%d, old local_nentries=%d, " | 419 | "local_nentries=%d, old local_nentries=%d, " |
1029 | "partid=%d, channel=%d\n", | 420 | "partid=%d, channel=%d\n", |
1030 | args->remote_nentries, ch->local_nentries, | 421 | args->remote_nentries, ch->local_nentries, |
@@ -1082,7 +473,7 @@ xpc_connect_channel(struct xpc_channel *ch) | |||
1082 | ch->local_nentries = registration->nentries; | 473 | ch->local_nentries = registration->nentries; |
1083 | 474 | ||
1084 | if (ch->flags & XPC_C_ROPENREQUEST) { | 475 | if (ch->flags & XPC_C_ROPENREQUEST) { |
1085 | if (registration->msg_size != ch->msg_size) { | 476 | if (registration->entry_size != ch->entry_size) { |
1086 | /* the local and remote sides aren't the same */ | 477 | /* the local and remote sides aren't the same */ |
1087 | 478 | ||
1088 | /* | 479 | /* |
@@ -1101,7 +492,7 @@ xpc_connect_channel(struct xpc_channel *ch) | |||
1101 | return xpUnequalMsgSizes; | 492 | return xpUnequalMsgSizes; |
1102 | } | 493 | } |
1103 | } else { | 494 | } else { |
1104 | ch->msg_size = registration->msg_size; | 495 | ch->entry_size = registration->entry_size; |
1105 | 496 | ||
1106 | XPC_SET_REASON(ch, 0, 0); | 497 | XPC_SET_REASON(ch, 0, 0); |
1107 | ch->flags &= ~XPC_C_DISCONNECTED; | 498 | ch->flags &= ~XPC_C_DISCONNECTED; |
@@ -1114,7 +505,7 @@ xpc_connect_channel(struct xpc_channel *ch) | |||
1114 | /* initiate the connection */ | 505 | /* initiate the connection */ |
1115 | 506 | ||
1116 | ch->flags |= (XPC_C_OPENREQUEST | XPC_C_CONNECTING); | 507 | ch->flags |= (XPC_C_OPENREQUEST | XPC_C_CONNECTING); |
1117 | xpc_IPI_send_openrequest(ch, &irq_flags); | 508 | xpc_send_chctl_openrequest(ch, &irq_flags); |
1118 | 509 | ||
1119 | xpc_process_connect(ch, &irq_flags); | 510 | xpc_process_connect(ch, &irq_flags); |
1120 | 511 | ||
@@ -1123,152 +514,16 @@ xpc_connect_channel(struct xpc_channel *ch) | |||
1123 | return xpSuccess; | 514 | return xpSuccess; |
1124 | } | 515 | } |
1125 | 516 | ||
1126 | /* | ||
1127 | * Clear some of the msg flags in the local message queue. | ||
1128 | */ | ||
1129 | static inline void | ||
1130 | xpc_clear_local_msgqueue_flags(struct xpc_channel *ch) | ||
1131 | { | ||
1132 | struct xpc_msg *msg; | ||
1133 | s64 get; | ||
1134 | |||
1135 | get = ch->w_remote_GP.get; | ||
1136 | do { | ||
1137 | msg = (struct xpc_msg *)((u64)ch->local_msgqueue + | ||
1138 | (get % ch->local_nentries) * | ||
1139 | ch->msg_size); | ||
1140 | msg->flags = 0; | ||
1141 | } while (++get < ch->remote_GP.get); | ||
1142 | } | ||
1143 | |||
1144 | /* | ||
1145 | * Clear some of the msg flags in the remote message queue. | ||
1146 | */ | ||
1147 | static inline void | ||
1148 | xpc_clear_remote_msgqueue_flags(struct xpc_channel *ch) | ||
1149 | { | ||
1150 | struct xpc_msg *msg; | ||
1151 | s64 put; | ||
1152 | |||
1153 | put = ch->w_remote_GP.put; | ||
1154 | do { | ||
1155 | msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + | ||
1156 | (put % ch->remote_nentries) * | ||
1157 | ch->msg_size); | ||
1158 | msg->flags = 0; | ||
1159 | } while (++put < ch->remote_GP.put); | ||
1160 | } | ||
1161 | |||
1162 | static void | ||
1163 | xpc_process_msg_IPI(struct xpc_partition *part, int ch_number) | ||
1164 | { | ||
1165 | struct xpc_channel *ch = &part->channels[ch_number]; | ||
1166 | int nmsgs_sent; | ||
1167 | |||
1168 | ch->remote_GP = part->remote_GPs[ch_number]; | ||
1169 | |||
1170 | /* See what, if anything, has changed for each connected channel */ | ||
1171 | |||
1172 | xpc_msgqueue_ref(ch); | ||
1173 | |||
1174 | if (ch->w_remote_GP.get == ch->remote_GP.get && | ||
1175 | ch->w_remote_GP.put == ch->remote_GP.put) { | ||
1176 | /* nothing changed since GPs were last pulled */ | ||
1177 | xpc_msgqueue_deref(ch); | ||
1178 | return; | ||
1179 | } | ||
1180 | |||
1181 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1182 | xpc_msgqueue_deref(ch); | ||
1183 | return; | ||
1184 | } | ||
1185 | |||
1186 | /* | ||
1187 | * First check to see if messages recently sent by us have been | ||
1188 | * received by the other side. (The remote GET value will have | ||
1189 | * changed since we last looked at it.) | ||
1190 | */ | ||
1191 | |||
1192 | if (ch->w_remote_GP.get != ch->remote_GP.get) { | ||
1193 | |||
1194 | /* | ||
1195 | * We need to notify any senders that want to be notified | ||
1196 | * that their sent messages have been received by their | ||
1197 | * intended recipients. We need to do this before updating | ||
1198 | * w_remote_GP.get so that we don't allocate the same message | ||
1199 | * queue entries prematurely (see xpc_allocate_msg()). | ||
1200 | */ | ||
1201 | if (atomic_read(&ch->n_to_notify) > 0) { | ||
1202 | /* | ||
1203 | * Notify senders that messages sent have been | ||
1204 | * received and delivered by the other side. | ||
1205 | */ | ||
1206 | xpc_notify_senders(ch, xpMsgDelivered, | ||
1207 | ch->remote_GP.get); | ||
1208 | } | ||
1209 | |||
1210 | /* | ||
1211 | * Clear msg->flags in previously sent messages, so that | ||
1212 | * they're ready for xpc_allocate_msg(). | ||
1213 | */ | ||
1214 | xpc_clear_local_msgqueue_flags(ch); | ||
1215 | |||
1216 | ch->w_remote_GP.get = ch->remote_GP.get; | ||
1217 | |||
1218 | dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, " | ||
1219 | "channel=%d\n", ch->w_remote_GP.get, ch->partid, | ||
1220 | ch->number); | ||
1221 | |||
1222 | /* | ||
1223 | * If anyone was waiting for message queue entries to become | ||
1224 | * available, wake them up. | ||
1225 | */ | ||
1226 | if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) | ||
1227 | wake_up(&ch->msg_allocate_wq); | ||
1228 | } | ||
1229 | |||
1230 | /* | ||
1231 | * Now check for newly sent messages by the other side. (The remote | ||
1232 | * PUT value will have changed since we last looked at it.) | ||
1233 | */ | ||
1234 | |||
1235 | if (ch->w_remote_GP.put != ch->remote_GP.put) { | ||
1236 | /* | ||
1237 | * Clear msg->flags in previously received messages, so that | ||
1238 | * they're ready for xpc_get_deliverable_msg(). | ||
1239 | */ | ||
1240 | xpc_clear_remote_msgqueue_flags(ch); | ||
1241 | |||
1242 | ch->w_remote_GP.put = ch->remote_GP.put; | ||
1243 | |||
1244 | dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, " | ||
1245 | "channel=%d\n", ch->w_remote_GP.put, ch->partid, | ||
1246 | ch->number); | ||
1247 | |||
1248 | nmsgs_sent = ch->w_remote_GP.put - ch->w_local_GP.get; | ||
1249 | if (nmsgs_sent > 0) { | ||
1250 | dev_dbg(xpc_chan, "msgs waiting to be copied and " | ||
1251 | "delivered=%d, partid=%d, channel=%d\n", | ||
1252 | nmsgs_sent, ch->partid, ch->number); | ||
1253 | |||
1254 | if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) | ||
1255 | xpc_activate_kthreads(ch, nmsgs_sent); | ||
1256 | } | ||
1257 | } | ||
1258 | |||
1259 | xpc_msgqueue_deref(ch); | ||
1260 | } | ||
1261 | |||
1262 | void | 517 | void |
1263 | xpc_process_channel_activity(struct xpc_partition *part) | 518 | xpc_process_sent_chctl_flags(struct xpc_partition *part) |
1264 | { | 519 | { |
1265 | unsigned long irq_flags; | 520 | unsigned long irq_flags; |
1266 | u64 IPI_amo, IPI_flags; | 521 | union xpc_channel_ctl_flags chctl; |
1267 | struct xpc_channel *ch; | 522 | struct xpc_channel *ch; |
1268 | int ch_number; | 523 | int ch_number; |
1269 | u32 ch_flags; | 524 | u32 ch_flags; |
1270 | 525 | ||
1271 | IPI_amo = xpc_get_IPI_flags(part); | 526 | chctl.all_flags = xpc_get_chctl_all_flags(part); |
1272 | 527 | ||
1273 | /* | 528 | /* |
1274 | * Initiate channel connections for registered channels. | 529 | * Initiate channel connections for registered channels. |
@@ -1281,14 +536,14 @@ xpc_process_channel_activity(struct xpc_partition *part) | |||
1281 | ch = &part->channels[ch_number]; | 536 | ch = &part->channels[ch_number]; |
1282 | 537 | ||
1283 | /* | 538 | /* |
1284 | * Process any open or close related IPI flags, and then deal | 539 | * Process any open or close related chctl flags, and then deal |
1285 | * with connecting or disconnecting the channel as required. | 540 | * with connecting or disconnecting the channel as required. |
1286 | */ | 541 | */ |
1287 | 542 | ||
1288 | IPI_flags = XPC_GET_IPI_FLAGS(IPI_amo, ch_number); | 543 | if (chctl.flags[ch_number] & XPC_OPENCLOSE_CHCTL_FLAGS) { |
1289 | 544 | xpc_process_openclose_chctl_flags(part, ch_number, | |
1290 | if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_flags)) | 545 | chctl.flags[ch_number]); |
1291 | xpc_process_openclose_IPI(part, ch_number, IPI_flags); | 546 | } |
1292 | 547 | ||
1293 | ch_flags = ch->flags; /* need an atomic snapshot of flags */ | 548 | ch_flags = ch->flags; /* need an atomic snapshot of flags */ |
1294 | 549 | ||
@@ -1299,7 +554,7 @@ xpc_process_channel_activity(struct xpc_partition *part) | |||
1299 | continue; | 554 | continue; |
1300 | } | 555 | } |
1301 | 556 | ||
1302 | if (part->act_state == XPC_P_DEACTIVATING) | 557 | if (part->act_state == XPC_P_AS_DEACTIVATING) |
1303 | continue; | 558 | continue; |
1304 | 559 | ||
1305 | if (!(ch_flags & XPC_C_CONNECTED)) { | 560 | if (!(ch_flags & XPC_C_CONNECTED)) { |
@@ -1315,13 +570,13 @@ xpc_process_channel_activity(struct xpc_partition *part) | |||
1315 | } | 570 | } |
1316 | 571 | ||
1317 | /* | 572 | /* |
1318 | * Process any message related IPI flags, this may involve the | 573 | * Process any message related chctl flags, this may involve |
1319 | * activation of kthreads to deliver any pending messages sent | 574 | * the activation of kthreads to deliver any pending messages |
1320 | * from the other partition. | 575 | * sent from the other partition. |
1321 | */ | 576 | */ |
1322 | 577 | ||
1323 | if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_flags)) | 578 | if (chctl.flags[ch_number] & XPC_MSG_CHCTL_FLAGS) |
1324 | xpc_process_msg_IPI(part, ch_number); | 579 | xpc_process_msg_chctl_flags(part, ch_number); |
1325 | } | 580 | } |
1326 | } | 581 | } |
1327 | 582 | ||
@@ -1369,59 +624,6 @@ xpc_partition_going_down(struct xpc_partition *part, enum xp_retval reason) | |||
1369 | } | 624 | } |
1370 | 625 | ||
1371 | /* | 626 | /* |
1372 | * Teardown the infrastructure necessary to support XPartition Communication | ||
1373 | * between the specified remote partition and the local one. | ||
1374 | */ | ||
1375 | void | ||
1376 | xpc_teardown_infrastructure(struct xpc_partition *part) | ||
1377 | { | ||
1378 | short partid = XPC_PARTID(part); | ||
1379 | |||
1380 | /* | ||
1381 | * We start off by making this partition inaccessible to local | ||
1382 | * processes by marking it as no longer setup. Then we make it | ||
1383 | * inaccessible to remote processes by clearing the XPC per partition | ||
1384 | * specific variable's magic # (which indicates that these variables | ||
1385 | * are no longer valid) and by ignoring all XPC notify IPIs sent to | ||
1386 | * this partition. | ||
1387 | */ | ||
1388 | |||
1389 | DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); | ||
1390 | DBUG_ON(atomic_read(&part->nchannels_active) != 0); | ||
1391 | DBUG_ON(part->setup_state != XPC_P_SETUP); | ||
1392 | part->setup_state = XPC_P_WTEARDOWN; | ||
1393 | |||
1394 | xpc_vars_part[partid].magic = 0; | ||
1395 | |||
1396 | free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid); | ||
1397 | |||
1398 | /* | ||
1399 | * Before proceeding with the teardown we have to wait until all | ||
1400 | * existing references cease. | ||
1401 | */ | ||
1402 | wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); | ||
1403 | |||
1404 | /* now we can begin tearing down the infrastructure */ | ||
1405 | |||
1406 | part->setup_state = XPC_P_TORNDOWN; | ||
1407 | |||
1408 | /* in case we've still got outstanding timers registered... */ | ||
1409 | del_timer_sync(&part->dropped_IPI_timer); | ||
1410 | |||
1411 | kfree(part->remote_openclose_args_base); | ||
1412 | part->remote_openclose_args = NULL; | ||
1413 | kfree(part->local_openclose_args_base); | ||
1414 | part->local_openclose_args = NULL; | ||
1415 | kfree(part->remote_GPs_base); | ||
1416 | part->remote_GPs = NULL; | ||
1417 | kfree(part->local_GPs_base); | ||
1418 | part->local_GPs = NULL; | ||
1419 | kfree(part->channels); | ||
1420 | part->channels = NULL; | ||
1421 | part->local_IPI_amo_va = NULL; | ||
1422 | } | ||
1423 | |||
1424 | /* | ||
1425 | * Called by XP at the time of channel connection registration to cause | 627 | * Called by XP at the time of channel connection registration to cause |
1426 | * XPC to establish connections to all currently active partitions. | 628 | * XPC to establish connections to all currently active partitions. |
1427 | */ | 629 | */ |
@@ -1432,9 +634,9 @@ xpc_initiate_connect(int ch_number) | |||
1432 | struct xpc_partition *part; | 634 | struct xpc_partition *part; |
1433 | struct xpc_channel *ch; | 635 | struct xpc_channel *ch; |
1434 | 636 | ||
1435 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | 637 | DBUG_ON(ch_number < 0 || ch_number >= XPC_MAX_NCHANNELS); |
1436 | 638 | ||
1437 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | 639 | for (partid = 0; partid < xp_max_npartitions; partid++) { |
1438 | part = &xpc_partitions[partid]; | 640 | part = &xpc_partitions[partid]; |
1439 | 641 | ||
1440 | if (xpc_part_ref(part)) { | 642 | if (xpc_part_ref(part)) { |
@@ -1488,10 +690,10 @@ xpc_initiate_disconnect(int ch_number) | |||
1488 | struct xpc_partition *part; | 690 | struct xpc_partition *part; |
1489 | struct xpc_channel *ch; | 691 | struct xpc_channel *ch; |
1490 | 692 | ||
1491 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | 693 | DBUG_ON(ch_number < 0 || ch_number >= XPC_MAX_NCHANNELS); |
1492 | 694 | ||
1493 | /* initiate the channel disconnect for every active partition */ | 695 | /* initiate the channel disconnect for every active partition */ |
1494 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | 696 | for (partid = 0; partid < xp_max_npartitions; partid++) { |
1495 | part = &xpc_partitions[partid]; | 697 | part = &xpc_partitions[partid]; |
1496 | 698 | ||
1497 | if (xpc_part_ref(part)) { | 699 | if (xpc_part_ref(part)) { |
@@ -1550,7 +752,7 @@ xpc_disconnect_channel(const int line, struct xpc_channel *ch, | |||
1550 | XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | | 752 | XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | |
1551 | XPC_C_CONNECTING | XPC_C_CONNECTED); | 753 | XPC_C_CONNECTING | XPC_C_CONNECTED); |
1552 | 754 | ||
1553 | xpc_IPI_send_closerequest(ch, irq_flags); | 755 | xpc_send_chctl_closerequest(ch, irq_flags); |
1554 | 756 | ||
1555 | if (channel_was_connected) | 757 | if (channel_was_connected) |
1556 | ch->flags |= XPC_C_WASCONNECTED; | 758 | ch->flags |= XPC_C_WASCONNECTED; |
@@ -1598,7 +800,7 @@ xpc_disconnect_callout(struct xpc_channel *ch, enum xp_retval reason) | |||
1598 | * Wait for a message entry to become available for the specified channel, | 800 | * Wait for a message entry to become available for the specified channel, |
1599 | * but don't wait any longer than 1 jiffy. | 801 | * but don't wait any longer than 1 jiffy. |
1600 | */ | 802 | */ |
1601 | static enum xp_retval | 803 | enum xp_retval |
1602 | xpc_allocate_msg_wait(struct xpc_channel *ch) | 804 | xpc_allocate_msg_wait(struct xpc_channel *ch) |
1603 | { | 805 | { |
1604 | enum xp_retval ret; | 806 | enum xp_retval ret; |
@@ -1625,315 +827,54 @@ xpc_allocate_msg_wait(struct xpc_channel *ch) | |||
1625 | } | 827 | } |
1626 | 828 | ||
1627 | /* | 829 | /* |
1628 | * Allocate an entry for a message from the message queue associated with the | 830 | * Send a message that contains the user's payload on the specified channel |
1629 | * specified channel. | 831 | * connected to the specified partition. |
1630 | */ | ||
1631 | static enum xp_retval | ||
1632 | xpc_allocate_msg(struct xpc_channel *ch, u32 flags, | ||
1633 | struct xpc_msg **address_of_msg) | ||
1634 | { | ||
1635 | struct xpc_msg *msg; | ||
1636 | enum xp_retval ret; | ||
1637 | s64 put; | ||
1638 | |||
1639 | /* this reference will be dropped in xpc_send_msg() */ | ||
1640 | xpc_msgqueue_ref(ch); | ||
1641 | |||
1642 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1643 | xpc_msgqueue_deref(ch); | ||
1644 | return ch->reason; | ||
1645 | } | ||
1646 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1647 | xpc_msgqueue_deref(ch); | ||
1648 | return xpNotConnected; | ||
1649 | } | ||
1650 | |||
1651 | /* | ||
1652 | * Get the next available message entry from the local message queue. | ||
1653 | * If none are available, we'll make sure that we grab the latest | ||
1654 | * GP values. | ||
1655 | */ | ||
1656 | ret = xpTimeout; | ||
1657 | |||
1658 | while (1) { | ||
1659 | |||
1660 | put = ch->w_local_GP.put; | ||
1661 | rmb(); /* guarantee that .put loads before .get */ | ||
1662 | if (put - ch->w_remote_GP.get < ch->local_nentries) { | ||
1663 | |||
1664 | /* There are available message entries. We need to try | ||
1665 | * to secure one for ourselves. We'll do this by trying | ||
1666 | * to increment w_local_GP.put as long as someone else | ||
1667 | * doesn't beat us to it. If they do, we'll have to | ||
1668 | * try again. | ||
1669 | */ | ||
1670 | if (cmpxchg(&ch->w_local_GP.put, put, put + 1) == put) { | ||
1671 | /* we got the entry referenced by put */ | ||
1672 | break; | ||
1673 | } | ||
1674 | continue; /* try again */ | ||
1675 | } | ||
1676 | |||
1677 | /* | ||
1678 | * There aren't any available msg entries at this time. | ||
1679 | * | ||
1680 | * In waiting for a message entry to become available, | ||
1681 | * we set a timeout in case the other side is not | ||
1682 | * sending completion IPIs. This lets us fake an IPI | ||
1683 | * that will cause the IPI handler to fetch the latest | ||
1684 | * GP values as if an IPI was sent by the other side. | ||
1685 | */ | ||
1686 | if (ret == xpTimeout) | ||
1687 | xpc_IPI_send_local_msgrequest(ch); | ||
1688 | |||
1689 | if (flags & XPC_NOWAIT) { | ||
1690 | xpc_msgqueue_deref(ch); | ||
1691 | return xpNoWait; | ||
1692 | } | ||
1693 | |||
1694 | ret = xpc_allocate_msg_wait(ch); | ||
1695 | if (ret != xpInterrupted && ret != xpTimeout) { | ||
1696 | xpc_msgqueue_deref(ch); | ||
1697 | return ret; | ||
1698 | } | ||
1699 | } | ||
1700 | |||
1701 | /* get the message's address and initialize it */ | ||
1702 | msg = (struct xpc_msg *)((u64)ch->local_msgqueue + | ||
1703 | (put % ch->local_nentries) * ch->msg_size); | ||
1704 | |||
1705 | DBUG_ON(msg->flags != 0); | ||
1706 | msg->number = put; | ||
1707 | |||
1708 | dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, " | ||
1709 | "msg_number=%ld, partid=%d, channel=%d\n", put + 1, | ||
1710 | (void *)msg, msg->number, ch->partid, ch->number); | ||
1711 | |||
1712 | *address_of_msg = msg; | ||
1713 | |||
1714 | return xpSuccess; | ||
1715 | } | ||
1716 | |||
1717 | /* | ||
1718 | * Allocate an entry for a message from the message queue associated with the | ||
1719 | * specified channel. NOTE that this routine can sleep waiting for a message | ||
1720 | * entry to become available. To not sleep, pass in the XPC_NOWAIT flag. | ||
1721 | * | 832 | * |
1722 | * Arguments: | 833 | * NOTE that this routine can sleep waiting for a message entry to become |
834 | * available. To not sleep, pass in the XPC_NOWAIT flag. | ||
1723 | * | 835 | * |
1724 | * partid - ID of partition to which the channel is connected. | 836 | * Once sent, this routine will not wait for the message to be received, nor |
1725 | * ch_number - channel #. | 837 | * will notification be given when it does happen. |
1726 | * flags - see xpc.h for valid flags. | ||
1727 | * payload - address of the allocated payload area pointer (filled in on | ||
1728 | * return) in which the user-defined message is constructed. | ||
1729 | */ | ||
1730 | enum xp_retval | ||
1731 | xpc_initiate_allocate(short partid, int ch_number, u32 flags, void **payload) | ||
1732 | { | ||
1733 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
1734 | enum xp_retval ret = xpUnknownReason; | ||
1735 | struct xpc_msg *msg = NULL; | ||
1736 | |||
1737 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
1738 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
1739 | |||
1740 | *payload = NULL; | ||
1741 | |||
1742 | if (xpc_part_ref(part)) { | ||
1743 | ret = xpc_allocate_msg(&part->channels[ch_number], flags, &msg); | ||
1744 | xpc_part_deref(part); | ||
1745 | |||
1746 | if (msg != NULL) | ||
1747 | *payload = &msg->payload; | ||
1748 | } | ||
1749 | |||
1750 | return ret; | ||
1751 | } | ||
1752 | |||
1753 | /* | ||
1754 | * Now we actually send the messages that are ready to be sent by advancing | ||
1755 | * the local message queue's Put value and then send an IPI to the recipient | ||
1756 | * partition. | ||
1757 | */ | ||
1758 | static void | ||
1759 | xpc_send_msgs(struct xpc_channel *ch, s64 initial_put) | ||
1760 | { | ||
1761 | struct xpc_msg *msg; | ||
1762 | s64 put = initial_put + 1; | ||
1763 | int send_IPI = 0; | ||
1764 | |||
1765 | while (1) { | ||
1766 | |||
1767 | while (1) { | ||
1768 | if (put == ch->w_local_GP.put) | ||
1769 | break; | ||
1770 | |||
1771 | msg = (struct xpc_msg *)((u64)ch->local_msgqueue + | ||
1772 | (put % ch->local_nentries) * | ||
1773 | ch->msg_size); | ||
1774 | |||
1775 | if (!(msg->flags & XPC_M_READY)) | ||
1776 | break; | ||
1777 | |||
1778 | put++; | ||
1779 | } | ||
1780 | |||
1781 | if (put == initial_put) { | ||
1782 | /* nothing's changed */ | ||
1783 | break; | ||
1784 | } | ||
1785 | |||
1786 | if (cmpxchg_rel(&ch->local_GP->put, initial_put, put) != | ||
1787 | initial_put) { | ||
1788 | /* someone else beat us to it */ | ||
1789 | DBUG_ON(ch->local_GP->put < initial_put); | ||
1790 | break; | ||
1791 | } | ||
1792 | |||
1793 | /* we just set the new value of local_GP->put */ | ||
1794 | |||
1795 | dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, " | ||
1796 | "channel=%d\n", put, ch->partid, ch->number); | ||
1797 | |||
1798 | send_IPI = 1; | ||
1799 | |||
1800 | /* | ||
1801 | * We need to ensure that the message referenced by | ||
1802 | * local_GP->put is not XPC_M_READY or that local_GP->put | ||
1803 | * equals w_local_GP.put, so we'll go have a look. | ||
1804 | */ | ||
1805 | initial_put = put; | ||
1806 | } | ||
1807 | |||
1808 | if (send_IPI) | ||
1809 | xpc_IPI_send_msgrequest(ch); | ||
1810 | } | ||
1811 | |||
1812 | /* | ||
1813 | * Common code that does the actual sending of the message by advancing the | ||
1814 | * local message queue's Put value and sends an IPI to the partition the | ||
1815 | * message is being sent to. | ||
1816 | */ | ||
1817 | static enum xp_retval | ||
1818 | xpc_send_msg(struct xpc_channel *ch, struct xpc_msg *msg, u8 notify_type, | ||
1819 | xpc_notify_func func, void *key) | ||
1820 | { | ||
1821 | enum xp_retval ret = xpSuccess; | ||
1822 | struct xpc_notify *notify = notify; | ||
1823 | s64 put, msg_number = msg->number; | ||
1824 | |||
1825 | DBUG_ON(notify_type == XPC_N_CALL && func == NULL); | ||
1826 | DBUG_ON((((u64)msg - (u64)ch->local_msgqueue) / ch->msg_size) != | ||
1827 | msg_number % ch->local_nentries); | ||
1828 | DBUG_ON(msg->flags & XPC_M_READY); | ||
1829 | |||
1830 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1831 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1832 | xpc_msgqueue_deref(ch); | ||
1833 | return ch->reason; | ||
1834 | } | ||
1835 | |||
1836 | if (notify_type != 0) { | ||
1837 | /* | ||
1838 | * Tell the remote side to send an ACK interrupt when the | ||
1839 | * message has been delivered. | ||
1840 | */ | ||
1841 | msg->flags |= XPC_M_INTERRUPT; | ||
1842 | |||
1843 | atomic_inc(&ch->n_to_notify); | ||
1844 | |||
1845 | notify = &ch->notify_queue[msg_number % ch->local_nentries]; | ||
1846 | notify->func = func; | ||
1847 | notify->key = key; | ||
1848 | notify->type = notify_type; | ||
1849 | |||
1850 | /* >>> is a mb() needed here? */ | ||
1851 | |||
1852 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1853 | /* | ||
1854 | * An error occurred between our last error check and | ||
1855 | * this one. We will try to clear the type field from | ||
1856 | * the notify entry. If we succeed then | ||
1857 | * xpc_disconnect_channel() didn't already process | ||
1858 | * the notify entry. | ||
1859 | */ | ||
1860 | if (cmpxchg(¬ify->type, notify_type, 0) == | ||
1861 | notify_type) { | ||
1862 | atomic_dec(&ch->n_to_notify); | ||
1863 | ret = ch->reason; | ||
1864 | } | ||
1865 | |||
1866 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1867 | xpc_msgqueue_deref(ch); | ||
1868 | return ret; | ||
1869 | } | ||
1870 | } | ||
1871 | |||
1872 | msg->flags |= XPC_M_READY; | ||
1873 | |||
1874 | /* | ||
1875 | * The preceding store of msg->flags must occur before the following | ||
1876 | * load of ch->local_GP->put. | ||
1877 | */ | ||
1878 | mb(); | ||
1879 | |||
1880 | /* see if the message is next in line to be sent, if so send it */ | ||
1881 | |||
1882 | put = ch->local_GP->put; | ||
1883 | if (put == msg_number) | ||
1884 | xpc_send_msgs(ch, put); | ||
1885 | |||
1886 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1887 | xpc_msgqueue_deref(ch); | ||
1888 | return ret; | ||
1889 | } | ||
1890 | |||
1891 | /* | ||
1892 | * Send a message previously allocated using xpc_initiate_allocate() on the | ||
1893 | * specified channel connected to the specified partition. | ||
1894 | * | ||
1895 | * This routine will not wait for the message to be received, nor will | ||
1896 | * notification be given when it does happen. Once this routine has returned | ||
1897 | * the message entry allocated via xpc_initiate_allocate() is no longer | ||
1898 | * accessable to the caller. | ||
1899 | * | ||
1900 | * This routine, although called by users, does not call xpc_part_ref() to | ||
1901 | * ensure that the partition infrastructure is in place. It relies on the | ||
1902 | * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). | ||
1903 | * | 838 | * |
1904 | * Arguments: | 839 | * Arguments: |
1905 | * | 840 | * |
1906 | * partid - ID of partition to which the channel is connected. | 841 | * partid - ID of partition to which the channel is connected. |
1907 | * ch_number - channel # to send message on. | 842 | * ch_number - channel # to send message on. |
1908 | * payload - pointer to the payload area allocated via | 843 | * flags - see xp.h for valid flags. |
1909 | * xpc_initiate_allocate(). | 844 | * payload - pointer to the payload which is to be sent. |
845 | * payload_size - size of the payload in bytes. | ||
1910 | */ | 846 | */ |
1911 | enum xp_retval | 847 | enum xp_retval |
1912 | xpc_initiate_send(short partid, int ch_number, void *payload) | 848 | xpc_initiate_send(short partid, int ch_number, u32 flags, void *payload, |
849 | u16 payload_size) | ||
1913 | { | 850 | { |
1914 | struct xpc_partition *part = &xpc_partitions[partid]; | 851 | struct xpc_partition *part = &xpc_partitions[partid]; |
1915 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | 852 | enum xp_retval ret = xpUnknownReason; |
1916 | enum xp_retval ret; | ||
1917 | 853 | ||
1918 | dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *)msg, | 854 | dev_dbg(xpc_chan, "payload=0x%p, partid=%d, channel=%d\n", payload, |
1919 | partid, ch_number); | 855 | partid, ch_number); |
1920 | 856 | ||
1921 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | 857 | DBUG_ON(partid < 0 || partid >= xp_max_npartitions); |
1922 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | 858 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); |
1923 | DBUG_ON(msg == NULL); | 859 | DBUG_ON(payload == NULL); |
1924 | 860 | ||
1925 | ret = xpc_send_msg(&part->channels[ch_number], msg, 0, NULL, NULL); | 861 | if (xpc_part_ref(part)) { |
862 | ret = xpc_send_payload(&part->channels[ch_number], flags, | ||
863 | payload, payload_size, 0, NULL, NULL); | ||
864 | xpc_part_deref(part); | ||
865 | } | ||
1926 | 866 | ||
1927 | return ret; | 867 | return ret; |
1928 | } | 868 | } |
1929 | 869 | ||
1930 | /* | 870 | /* |
1931 | * Send a message previously allocated using xpc_initiate_allocate on the | 871 | * Send a message that contains the user's payload on the specified channel |
1932 | * specified channel connected to the specified partition. | 872 | * connected to the specified partition. |
1933 | * | 873 | * |
1934 | * This routine will not wait for the message to be sent. Once this routine | 874 | * NOTE that this routine can sleep waiting for a message entry to become |
1935 | * has returned the message entry allocated via xpc_initiate_allocate() is no | 875 | * available. To not sleep, pass in the XPC_NOWAIT flag. |
1936 | * longer accessable to the caller. | 876 | * |
877 | * This routine will not wait for the message to be sent or received. | ||
1937 | * | 878 | * |
1938 | * Once the remote end of the channel has received the message, the function | 879 | * Once the remote end of the channel has received the message, the function |
1939 | * passed as an argument to xpc_initiate_send_notify() will be called. This | 880 | * passed as an argument to xpc_initiate_send_notify() will be called. This |
@@ -1943,158 +884,51 @@ xpc_initiate_send(short partid, int ch_number, void *payload) | |||
1943 | * | 884 | * |
1944 | * If this routine returns an error, the caller's function will NOT be called. | 885 | * If this routine returns an error, the caller's function will NOT be called. |
1945 | * | 886 | * |
1946 | * This routine, although called by users, does not call xpc_part_ref() to | ||
1947 | * ensure that the partition infrastructure is in place. It relies on the | ||
1948 | * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). | ||
1949 | * | ||
1950 | * Arguments: | 887 | * Arguments: |
1951 | * | 888 | * |
1952 | * partid - ID of partition to which the channel is connected. | 889 | * partid - ID of partition to which the channel is connected. |
1953 | * ch_number - channel # to send message on. | 890 | * ch_number - channel # to send message on. |
1954 | * payload - pointer to the payload area allocated via | 891 | * flags - see xp.h for valid flags. |
1955 | * xpc_initiate_allocate(). | 892 | * payload - pointer to the payload which is to be sent. |
893 | * payload_size - size of the payload in bytes. | ||
1956 | * func - function to call with asynchronous notification of message | 894 | * func - function to call with asynchronous notification of message |
1957 | * receipt. THIS FUNCTION MUST BE NON-BLOCKING. | 895 | * receipt. THIS FUNCTION MUST BE NON-BLOCKING. |
1958 | * key - user-defined key to be passed to the function when it's called. | 896 | * key - user-defined key to be passed to the function when it's called. |
1959 | */ | 897 | */ |
1960 | enum xp_retval | 898 | enum xp_retval |
1961 | xpc_initiate_send_notify(short partid, int ch_number, void *payload, | 899 | xpc_initiate_send_notify(short partid, int ch_number, u32 flags, void *payload, |
1962 | xpc_notify_func func, void *key) | 900 | u16 payload_size, xpc_notify_func func, void *key) |
1963 | { | 901 | { |
1964 | struct xpc_partition *part = &xpc_partitions[partid]; | 902 | struct xpc_partition *part = &xpc_partitions[partid]; |
1965 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | 903 | enum xp_retval ret = xpUnknownReason; |
1966 | enum xp_retval ret; | ||
1967 | 904 | ||
1968 | dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *)msg, | 905 | dev_dbg(xpc_chan, "payload=0x%p, partid=%d, channel=%d\n", payload, |
1969 | partid, ch_number); | 906 | partid, ch_number); |
1970 | 907 | ||
1971 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | 908 | DBUG_ON(partid < 0 || partid >= xp_max_npartitions); |
1972 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | 909 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); |
1973 | DBUG_ON(msg == NULL); | 910 | DBUG_ON(payload == NULL); |
1974 | DBUG_ON(func == NULL); | 911 | DBUG_ON(func == NULL); |
1975 | 912 | ||
1976 | ret = xpc_send_msg(&part->channels[ch_number], msg, XPC_N_CALL, | 913 | if (xpc_part_ref(part)) { |
1977 | func, key); | 914 | ret = xpc_send_payload(&part->channels[ch_number], flags, |
1978 | return ret; | 915 | payload, payload_size, XPC_N_CALL, func, |
1979 | } | 916 | key); |
1980 | 917 | xpc_part_deref(part); | |
1981 | static struct xpc_msg * | ||
1982 | xpc_pull_remote_msg(struct xpc_channel *ch, s64 get) | ||
1983 | { | ||
1984 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
1985 | struct xpc_msg *remote_msg, *msg; | ||
1986 | u32 msg_index, nmsgs; | ||
1987 | u64 msg_offset; | ||
1988 | enum xp_retval ret; | ||
1989 | |||
1990 | if (mutex_lock_interruptible(&ch->msg_to_pull_mutex) != 0) { | ||
1991 | /* we were interrupted by a signal */ | ||
1992 | return NULL; | ||
1993 | } | ||
1994 | |||
1995 | while (get >= ch->next_msg_to_pull) { | ||
1996 | |||
1997 | /* pull as many messages as are ready and able to be pulled */ | ||
1998 | |||
1999 | msg_index = ch->next_msg_to_pull % ch->remote_nentries; | ||
2000 | |||
2001 | DBUG_ON(ch->next_msg_to_pull >= ch->w_remote_GP.put); | ||
2002 | nmsgs = ch->w_remote_GP.put - ch->next_msg_to_pull; | ||
2003 | if (msg_index + nmsgs > ch->remote_nentries) { | ||
2004 | /* ignore the ones that wrap the msg queue for now */ | ||
2005 | nmsgs = ch->remote_nentries - msg_index; | ||
2006 | } | ||
2007 | |||
2008 | msg_offset = msg_index * ch->msg_size; | ||
2009 | msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset); | ||
2010 | remote_msg = (struct xpc_msg *)(ch->remote_msgqueue_pa + | ||
2011 | msg_offset); | ||
2012 | |||
2013 | ret = xpc_pull_remote_cachelines(part, msg, remote_msg, | ||
2014 | nmsgs * ch->msg_size); | ||
2015 | if (ret != xpSuccess) { | ||
2016 | |||
2017 | dev_dbg(xpc_chan, "failed to pull %d msgs starting with" | ||
2018 | " msg %ld from partition %d, channel=%d, " | ||
2019 | "ret=%d\n", nmsgs, ch->next_msg_to_pull, | ||
2020 | ch->partid, ch->number, ret); | ||
2021 | |||
2022 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
2023 | |||
2024 | mutex_unlock(&ch->msg_to_pull_mutex); | ||
2025 | return NULL; | ||
2026 | } | ||
2027 | |||
2028 | ch->next_msg_to_pull += nmsgs; | ||
2029 | } | 918 | } |
2030 | 919 | return ret; | |
2031 | mutex_unlock(&ch->msg_to_pull_mutex); | ||
2032 | |||
2033 | /* return the message we were looking for */ | ||
2034 | msg_offset = (get % ch->remote_nentries) * ch->msg_size; | ||
2035 | msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset); | ||
2036 | |||
2037 | return msg; | ||
2038 | } | ||
2039 | |||
2040 | /* | ||
2041 | * Get a message to be delivered. | ||
2042 | */ | ||
2043 | static struct xpc_msg * | ||
2044 | xpc_get_deliverable_msg(struct xpc_channel *ch) | ||
2045 | { | ||
2046 | struct xpc_msg *msg = NULL; | ||
2047 | s64 get; | ||
2048 | |||
2049 | do { | ||
2050 | if (ch->flags & XPC_C_DISCONNECTING) | ||
2051 | break; | ||
2052 | |||
2053 | get = ch->w_local_GP.get; | ||
2054 | rmb(); /* guarantee that .get loads before .put */ | ||
2055 | if (get == ch->w_remote_GP.put) | ||
2056 | break; | ||
2057 | |||
2058 | /* There are messages waiting to be pulled and delivered. | ||
2059 | * We need to try to secure one for ourselves. We'll do this | ||
2060 | * by trying to increment w_local_GP.get and hope that no one | ||
2061 | * else beats us to it. If they do, we'll we'll simply have | ||
2062 | * to try again for the next one. | ||
2063 | */ | ||
2064 | |||
2065 | if (cmpxchg(&ch->w_local_GP.get, get, get + 1) == get) { | ||
2066 | /* we got the entry referenced by get */ | ||
2067 | |||
2068 | dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, " | ||
2069 | "partid=%d, channel=%d\n", get + 1, | ||
2070 | ch->partid, ch->number); | ||
2071 | |||
2072 | /* pull the message from the remote partition */ | ||
2073 | |||
2074 | msg = xpc_pull_remote_msg(ch, get); | ||
2075 | |||
2076 | DBUG_ON(msg != NULL && msg->number != get); | ||
2077 | DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE)); | ||
2078 | DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY)); | ||
2079 | |||
2080 | break; | ||
2081 | } | ||
2082 | |||
2083 | } while (1); | ||
2084 | |||
2085 | return msg; | ||
2086 | } | 920 | } |
2087 | 921 | ||
2088 | /* | 922 | /* |
2089 | * Deliver a message to its intended recipient. | 923 | * Deliver a message's payload to its intended recipient. |
2090 | */ | 924 | */ |
2091 | void | 925 | void |
2092 | xpc_deliver_msg(struct xpc_channel *ch) | 926 | xpc_deliver_payload(struct xpc_channel *ch) |
2093 | { | 927 | { |
2094 | struct xpc_msg *msg; | 928 | void *payload; |
2095 | 929 | ||
2096 | msg = xpc_get_deliverable_msg(ch); | 930 | payload = xpc_get_deliverable_payload(ch); |
2097 | if (msg != NULL) { | 931 | if (payload != NULL) { |
2098 | 932 | ||
2099 | /* | 933 | /* |
2100 | * This ref is taken to protect the payload itself from being | 934 | * This ref is taken to protect the payload itself from being |
@@ -2106,18 +940,16 @@ xpc_deliver_msg(struct xpc_channel *ch) | |||
2106 | atomic_inc(&ch->kthreads_active); | 940 | atomic_inc(&ch->kthreads_active); |
2107 | 941 | ||
2108 | if (ch->func != NULL) { | 942 | if (ch->func != NULL) { |
2109 | dev_dbg(xpc_chan, "ch->func() called, msg=0x%p, " | 943 | dev_dbg(xpc_chan, "ch->func() called, payload=0x%p " |
2110 | "msg_number=%ld, partid=%d, channel=%d\n", | 944 | "partid=%d channel=%d\n", payload, ch->partid, |
2111 | (void *)msg, msg->number, ch->partid, | ||
2112 | ch->number); | 945 | ch->number); |
2113 | 946 | ||
2114 | /* deliver the message to its intended recipient */ | 947 | /* deliver the message to its intended recipient */ |
2115 | ch->func(xpMsgReceived, ch->partid, ch->number, | 948 | ch->func(xpMsgReceived, ch->partid, ch->number, payload, |
2116 | &msg->payload, ch->key); | 949 | ch->key); |
2117 | 950 | ||
2118 | dev_dbg(xpc_chan, "ch->func() returned, msg=0x%p, " | 951 | dev_dbg(xpc_chan, "ch->func() returned, payload=0x%p " |
2119 | "msg_number=%ld, partid=%d, channel=%d\n", | 952 | "partid=%d channel=%d\n", payload, ch->partid, |
2120 | (void *)msg, msg->number, ch->partid, | ||
2121 | ch->number); | 953 | ch->number); |
2122 | } | 954 | } |
2123 | 955 | ||
@@ -2126,118 +958,31 @@ xpc_deliver_msg(struct xpc_channel *ch) | |||
2126 | } | 958 | } |
2127 | 959 | ||
2128 | /* | 960 | /* |
2129 | * Now we actually acknowledge the messages that have been delivered and ack'd | 961 | * Acknowledge receipt of a delivered message's payload. |
2130 | * by advancing the cached remote message queue's Get value and if requested | ||
2131 | * send an IPI to the message sender's partition. | ||
2132 | */ | ||
2133 | static void | ||
2134 | xpc_acknowledge_msgs(struct xpc_channel *ch, s64 initial_get, u8 msg_flags) | ||
2135 | { | ||
2136 | struct xpc_msg *msg; | ||
2137 | s64 get = initial_get + 1; | ||
2138 | int send_IPI = 0; | ||
2139 | |||
2140 | while (1) { | ||
2141 | |||
2142 | while (1) { | ||
2143 | if (get == ch->w_local_GP.get) | ||
2144 | break; | ||
2145 | |||
2146 | msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + | ||
2147 | (get % ch->remote_nentries) * | ||
2148 | ch->msg_size); | ||
2149 | |||
2150 | if (!(msg->flags & XPC_M_DONE)) | ||
2151 | break; | ||
2152 | |||
2153 | msg_flags |= msg->flags; | ||
2154 | get++; | ||
2155 | } | ||
2156 | |||
2157 | if (get == initial_get) { | ||
2158 | /* nothing's changed */ | ||
2159 | break; | ||
2160 | } | ||
2161 | |||
2162 | if (cmpxchg_rel(&ch->local_GP->get, initial_get, get) != | ||
2163 | initial_get) { | ||
2164 | /* someone else beat us to it */ | ||
2165 | DBUG_ON(ch->local_GP->get <= initial_get); | ||
2166 | break; | ||
2167 | } | ||
2168 | |||
2169 | /* we just set the new value of local_GP->get */ | ||
2170 | |||
2171 | dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, " | ||
2172 | "channel=%d\n", get, ch->partid, ch->number); | ||
2173 | |||
2174 | send_IPI = (msg_flags & XPC_M_INTERRUPT); | ||
2175 | |||
2176 | /* | ||
2177 | * We need to ensure that the message referenced by | ||
2178 | * local_GP->get is not XPC_M_DONE or that local_GP->get | ||
2179 | * equals w_local_GP.get, so we'll go have a look. | ||
2180 | */ | ||
2181 | initial_get = get; | ||
2182 | } | ||
2183 | |||
2184 | if (send_IPI) | ||
2185 | xpc_IPI_send_msgrequest(ch); | ||
2186 | } | ||
2187 | |||
2188 | /* | ||
2189 | * Acknowledge receipt of a delivered message. | ||
2190 | * | ||
2191 | * If a message has XPC_M_INTERRUPT set, send an interrupt to the partition | ||
2192 | * that sent the message. | ||
2193 | * | 962 | * |
2194 | * This function, although called by users, does not call xpc_part_ref() to | 963 | * This function, although called by users, does not call xpc_part_ref() to |
2195 | * ensure that the partition infrastructure is in place. It relies on the | 964 | * ensure that the partition infrastructure is in place. It relies on the |
2196 | * fact that we called xpc_msgqueue_ref() in xpc_deliver_msg(). | 965 | * fact that we called xpc_msgqueue_ref() in xpc_deliver_payload(). |
2197 | * | 966 | * |
2198 | * Arguments: | 967 | * Arguments: |
2199 | * | 968 | * |
2200 | * partid - ID of partition to which the channel is connected. | 969 | * partid - ID of partition to which the channel is connected. |
2201 | * ch_number - channel # message received on. | 970 | * ch_number - channel # message received on. |
2202 | * payload - pointer to the payload area allocated via | 971 | * payload - pointer to the payload area allocated via |
2203 | * xpc_initiate_allocate(). | 972 | * xpc_initiate_send() or xpc_initiate_send_notify(). |
2204 | */ | 973 | */ |
2205 | void | 974 | void |
2206 | xpc_initiate_received(short partid, int ch_number, void *payload) | 975 | xpc_initiate_received(short partid, int ch_number, void *payload) |
2207 | { | 976 | { |
2208 | struct xpc_partition *part = &xpc_partitions[partid]; | 977 | struct xpc_partition *part = &xpc_partitions[partid]; |
2209 | struct xpc_channel *ch; | 978 | struct xpc_channel *ch; |
2210 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
2211 | s64 get, msg_number = msg->number; | ||
2212 | 979 | ||
2213 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | 980 | DBUG_ON(partid < 0 || partid >= xp_max_npartitions); |
2214 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | 981 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); |
2215 | 982 | ||
2216 | ch = &part->channels[ch_number]; | 983 | ch = &part->channels[ch_number]; |
984 | xpc_received_payload(ch, payload); | ||
2217 | 985 | ||
2218 | dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n", | 986 | /* the call to xpc_msgqueue_ref() was done by xpc_deliver_payload() */ |
2219 | (void *)msg, msg_number, ch->partid, ch->number); | ||
2220 | |||
2221 | DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) != | ||
2222 | msg_number % ch->remote_nentries); | ||
2223 | DBUG_ON(msg->flags & XPC_M_DONE); | ||
2224 | |||
2225 | msg->flags |= XPC_M_DONE; | ||
2226 | |||
2227 | /* | ||
2228 | * The preceding store of msg->flags must occur before the following | ||
2229 | * load of ch->local_GP->get. | ||
2230 | */ | ||
2231 | mb(); | ||
2232 | |||
2233 | /* | ||
2234 | * See if this message is next in line to be acknowledged as having | ||
2235 | * been delivered. | ||
2236 | */ | ||
2237 | get = ch->local_GP->get; | ||
2238 | if (get == msg_number) | ||
2239 | xpc_acknowledge_msgs(ch, get, msg->flags); | ||
2240 | |||
2241 | /* the call to xpc_msgqueue_ref() was done by xpc_deliver_msg() */ | ||
2242 | xpc_msgqueue_deref(ch); | 987 | xpc_msgqueue_deref(ch); |
2243 | } | 988 | } |
diff --git a/drivers/misc/sgi-xp/xpc_main.c b/drivers/misc/sgi-xp/xpc_main.c index 579b01ff82d4..46325fc84811 100644 --- a/drivers/misc/sgi-xp/xpc_main.c +++ b/drivers/misc/sgi-xp/xpc_main.c | |||
@@ -25,37 +25,31 @@ | |||
25 | * | 25 | * |
26 | * Caveats: | 26 | * Caveats: |
27 | * | 27 | * |
28 | * . We currently have no way to determine which nasid an IPI came | 28 | * . Currently on sn2, we have no way to determine which nasid an IRQ |
29 | * from. Thus, xpc_IPI_send() does a remote AMO write followed by | 29 | * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write |
30 | * an IPI. The AMO indicates where data is to be pulled from, so | 30 | * followed by an IPI. The amo indicates where data is to be pulled |
31 | * after the IPI arrives, the remote partition checks the AMO word. | 31 | * from, so after the IPI arrives, the remote partition checks the amo |
32 | * The IPI can actually arrive before the AMO however, so other code | 32 | * word. The IPI can actually arrive before the amo however, so other |
33 | * must periodically check for this case. Also, remote AMO operations | 33 | * code must periodically check for this case. Also, remote amo |
34 | * do not reliably time out. Thus we do a remote PIO read solely to | 34 | * operations do not reliably time out. Thus we do a remote PIO read |
35 | * know whether the remote partition is down and whether we should | 35 | * solely to know whether the remote partition is down and whether we |
36 | * stop sending IPIs to it. This remote PIO read operation is set up | 36 | * should stop sending IPIs to it. This remote PIO read operation is |
37 | * in a special nofault region so SAL knows to ignore (and cleanup) | 37 | * set up in a special nofault region so SAL knows to ignore (and |
38 | * any errors due to the remote AMO write, PIO read, and/or PIO | 38 | * cleanup) any errors due to the remote amo write, PIO read, and/or |
39 | * write operations. | 39 | * PIO write operations. |
40 | * | 40 | * |
41 | * If/when new hardware solves this IPI problem, we should abandon | 41 | * If/when new hardware solves this IPI problem, we should abandon |
42 | * the current approach. | 42 | * the current approach. |
43 | * | 43 | * |
44 | */ | 44 | */ |
45 | 45 | ||
46 | #include <linux/kernel.h> | ||
47 | #include <linux/module.h> | 46 | #include <linux/module.h> |
48 | #include <linux/init.h> | 47 | #include <linux/sysctl.h> |
49 | #include <linux/cache.h> | 48 | #include <linux/device.h> |
50 | #include <linux/interrupt.h> | ||
51 | #include <linux/delay.h> | 49 | #include <linux/delay.h> |
52 | #include <linux/reboot.h> | 50 | #include <linux/reboot.h> |
53 | #include <linux/completion.h> | ||
54 | #include <linux/kdebug.h> | 51 | #include <linux/kdebug.h> |
55 | #include <linux/kthread.h> | 52 | #include <linux/kthread.h> |
56 | #include <linux/uaccess.h> | ||
57 | #include <asm/sn/intr.h> | ||
58 | #include <asm/sn/sn_sal.h> | ||
59 | #include "xpc.h" | 53 | #include "xpc.h" |
60 | 54 | ||
61 | /* define two XPC debug device structures to be used with dev_dbg() et al */ | 55 | /* define two XPC debug device structures to be used with dev_dbg() et al */ |
@@ -89,9 +83,9 @@ static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; | |||
89 | static int xpc_hb_check_min_interval = 10; | 83 | static int xpc_hb_check_min_interval = 10; |
90 | static int xpc_hb_check_max_interval = 120; | 84 | static int xpc_hb_check_max_interval = 120; |
91 | 85 | ||
92 | int xpc_disengage_request_timelimit = XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT; | 86 | int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT; |
93 | static int xpc_disengage_request_min_timelimit; /* = 0 */ | 87 | static int xpc_disengage_min_timelimit; /* = 0 */ |
94 | static int xpc_disengage_request_max_timelimit = 120; | 88 | static int xpc_disengage_max_timelimit = 120; |
95 | 89 | ||
96 | static ctl_table xpc_sys_xpc_hb_dir[] = { | 90 | static ctl_table xpc_sys_xpc_hb_dir[] = { |
97 | { | 91 | { |
@@ -124,14 +118,14 @@ static ctl_table xpc_sys_xpc_dir[] = { | |||
124 | .child = xpc_sys_xpc_hb_dir}, | 118 | .child = xpc_sys_xpc_hb_dir}, |
125 | { | 119 | { |
126 | .ctl_name = CTL_UNNUMBERED, | 120 | .ctl_name = CTL_UNNUMBERED, |
127 | .procname = "disengage_request_timelimit", | 121 | .procname = "disengage_timelimit", |
128 | .data = &xpc_disengage_request_timelimit, | 122 | .data = &xpc_disengage_timelimit, |
129 | .maxlen = sizeof(int), | 123 | .maxlen = sizeof(int), |
130 | .mode = 0644, | 124 | .mode = 0644, |
131 | .proc_handler = &proc_dointvec_minmax, | 125 | .proc_handler = &proc_dointvec_minmax, |
132 | .strategy = &sysctl_intvec, | 126 | .strategy = &sysctl_intvec, |
133 | .extra1 = &xpc_disengage_request_min_timelimit, | 127 | .extra1 = &xpc_disengage_min_timelimit, |
134 | .extra2 = &xpc_disengage_request_max_timelimit}, | 128 | .extra2 = &xpc_disengage_max_timelimit}, |
135 | {} | 129 | {} |
136 | }; | 130 | }; |
137 | static ctl_table xpc_sys_dir[] = { | 131 | static ctl_table xpc_sys_dir[] = { |
@@ -144,16 +138,19 @@ static ctl_table xpc_sys_dir[] = { | |||
144 | }; | 138 | }; |
145 | static struct ctl_table_header *xpc_sysctl; | 139 | static struct ctl_table_header *xpc_sysctl; |
146 | 140 | ||
147 | /* non-zero if any remote partition disengage request was timed out */ | 141 | /* non-zero if any remote partition disengage was timed out */ |
148 | int xpc_disengage_request_timedout; | 142 | int xpc_disengage_timedout; |
149 | 143 | ||
150 | /* #of IRQs received */ | 144 | /* #of activate IRQs received and not yet processed */ |
151 | static atomic_t xpc_act_IRQ_rcvd; | 145 | int xpc_activate_IRQ_rcvd; |
146 | DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock); | ||
152 | 147 | ||
153 | /* IRQ handler notifies this wait queue on receipt of an IRQ */ | 148 | /* IRQ handler notifies this wait queue on receipt of an IRQ */ |
154 | static DECLARE_WAIT_QUEUE_HEAD(xpc_act_IRQ_wq); | 149 | DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq); |
155 | 150 | ||
156 | static unsigned long xpc_hb_check_timeout; | 151 | static unsigned long xpc_hb_check_timeout; |
152 | static struct timer_list xpc_hb_timer; | ||
153 | void *xpc_heartbeating_to_mask; | ||
157 | 154 | ||
158 | /* notification that the xpc_hb_checker thread has exited */ | 155 | /* notification that the xpc_hb_checker thread has exited */ |
159 | static DECLARE_COMPLETION(xpc_hb_checker_exited); | 156 | static DECLARE_COMPLETION(xpc_hb_checker_exited); |
@@ -161,8 +158,6 @@ static DECLARE_COMPLETION(xpc_hb_checker_exited); | |||
161 | /* notification that the xpc_discovery thread has exited */ | 158 | /* notification that the xpc_discovery thread has exited */ |
162 | static DECLARE_COMPLETION(xpc_discovery_exited); | 159 | static DECLARE_COMPLETION(xpc_discovery_exited); |
163 | 160 | ||
164 | static struct timer_list xpc_hb_timer; | ||
165 | |||
166 | static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); | 161 | static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); |
167 | 162 | ||
168 | static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); | 163 | static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); |
@@ -175,31 +170,76 @@ static struct notifier_block xpc_die_notifier = { | |||
175 | .notifier_call = xpc_system_die, | 170 | .notifier_call = xpc_system_die, |
176 | }; | 171 | }; |
177 | 172 | ||
173 | int (*xpc_setup_partitions_sn) (void); | ||
174 | enum xp_retval (*xpc_get_partition_rsvd_page_pa) (void *buf, u64 *cookie, | ||
175 | unsigned long *rp_pa, | ||
176 | size_t *len); | ||
177 | int (*xpc_setup_rsvd_page_sn) (struct xpc_rsvd_page *rp); | ||
178 | void (*xpc_heartbeat_init) (void); | ||
179 | void (*xpc_heartbeat_exit) (void); | ||
180 | void (*xpc_increment_heartbeat) (void); | ||
181 | void (*xpc_offline_heartbeat) (void); | ||
182 | void (*xpc_online_heartbeat) (void); | ||
183 | enum xp_retval (*xpc_get_remote_heartbeat) (struct xpc_partition *part); | ||
184 | |||
185 | enum xp_retval (*xpc_make_first_contact) (struct xpc_partition *part); | ||
186 | void (*xpc_notify_senders_of_disconnect) (struct xpc_channel *ch); | ||
187 | u64 (*xpc_get_chctl_all_flags) (struct xpc_partition *part); | ||
188 | enum xp_retval (*xpc_setup_msg_structures) (struct xpc_channel *ch); | ||
189 | void (*xpc_teardown_msg_structures) (struct xpc_channel *ch); | ||
190 | void (*xpc_process_msg_chctl_flags) (struct xpc_partition *part, int ch_number); | ||
191 | int (*xpc_n_of_deliverable_payloads) (struct xpc_channel *ch); | ||
192 | void *(*xpc_get_deliverable_payload) (struct xpc_channel *ch); | ||
193 | |||
194 | void (*xpc_request_partition_activation) (struct xpc_rsvd_page *remote_rp, | ||
195 | unsigned long remote_rp_pa, | ||
196 | int nasid); | ||
197 | void (*xpc_request_partition_reactivation) (struct xpc_partition *part); | ||
198 | void (*xpc_request_partition_deactivation) (struct xpc_partition *part); | ||
199 | void (*xpc_cancel_partition_deactivation_request) (struct xpc_partition *part); | ||
200 | |||
201 | void (*xpc_process_activate_IRQ_rcvd) (void); | ||
202 | enum xp_retval (*xpc_setup_ch_structures_sn) (struct xpc_partition *part); | ||
203 | void (*xpc_teardown_ch_structures_sn) (struct xpc_partition *part); | ||
204 | |||
205 | void (*xpc_indicate_partition_engaged) (struct xpc_partition *part); | ||
206 | int (*xpc_partition_engaged) (short partid); | ||
207 | int (*xpc_any_partition_engaged) (void); | ||
208 | void (*xpc_indicate_partition_disengaged) (struct xpc_partition *part); | ||
209 | void (*xpc_assume_partition_disengaged) (short partid); | ||
210 | |||
211 | void (*xpc_send_chctl_closerequest) (struct xpc_channel *ch, | ||
212 | unsigned long *irq_flags); | ||
213 | void (*xpc_send_chctl_closereply) (struct xpc_channel *ch, | ||
214 | unsigned long *irq_flags); | ||
215 | void (*xpc_send_chctl_openrequest) (struct xpc_channel *ch, | ||
216 | unsigned long *irq_flags); | ||
217 | void (*xpc_send_chctl_openreply) (struct xpc_channel *ch, | ||
218 | unsigned long *irq_flags); | ||
219 | |||
220 | void (*xpc_save_remote_msgqueue_pa) (struct xpc_channel *ch, | ||
221 | unsigned long msgqueue_pa); | ||
222 | |||
223 | enum xp_retval (*xpc_send_payload) (struct xpc_channel *ch, u32 flags, | ||
224 | void *payload, u16 payload_size, | ||
225 | u8 notify_type, xpc_notify_func func, | ||
226 | void *key); | ||
227 | void (*xpc_received_payload) (struct xpc_channel *ch, void *payload); | ||
228 | |||
178 | /* | 229 | /* |
179 | * Timer function to enforce the timelimit on the partition disengage request. | 230 | * Timer function to enforce the timelimit on the partition disengage. |
180 | */ | 231 | */ |
181 | static void | 232 | static void |
182 | xpc_timeout_partition_disengage_request(unsigned long data) | 233 | xpc_timeout_partition_disengage(unsigned long data) |
183 | { | 234 | { |
184 | struct xpc_partition *part = (struct xpc_partition *)data; | 235 | struct xpc_partition *part = (struct xpc_partition *)data; |
185 | 236 | ||
186 | DBUG_ON(time_before(jiffies, part->disengage_request_timeout)); | 237 | DBUG_ON(time_is_after_jiffies(part->disengage_timeout)); |
187 | 238 | ||
188 | (void)xpc_partition_disengaged(part); | 239 | (void)xpc_partition_disengaged(part); |
189 | 240 | ||
190 | DBUG_ON(part->disengage_request_timeout != 0); | 241 | DBUG_ON(part->disengage_timeout != 0); |
191 | DBUG_ON(xpc_partition_engaged(1UL << XPC_PARTID(part)) != 0); | 242 | DBUG_ON(xpc_partition_engaged(XPC_PARTID(part))); |
192 | } | ||
193 | |||
194 | /* | ||
195 | * Notify the heartbeat check thread that an IRQ has been received. | ||
196 | */ | ||
197 | static irqreturn_t | ||
198 | xpc_act_IRQ_handler(int irq, void *dev_id) | ||
199 | { | ||
200 | atomic_inc(&xpc_act_IRQ_rcvd); | ||
201 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
202 | return IRQ_HANDLED; | ||
203 | } | 243 | } |
204 | 244 | ||
205 | /* | 245 | /* |
@@ -210,15 +250,63 @@ xpc_act_IRQ_handler(int irq, void *dev_id) | |||
210 | static void | 250 | static void |
211 | xpc_hb_beater(unsigned long dummy) | 251 | xpc_hb_beater(unsigned long dummy) |
212 | { | 252 | { |
213 | xpc_vars->heartbeat++; | 253 | xpc_increment_heartbeat(); |
214 | 254 | ||
215 | if (time_after_eq(jiffies, xpc_hb_check_timeout)) | 255 | if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) |
216 | wake_up_interruptible(&xpc_act_IRQ_wq); | 256 | wake_up_interruptible(&xpc_activate_IRQ_wq); |
217 | 257 | ||
218 | xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); | 258 | xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); |
219 | add_timer(&xpc_hb_timer); | 259 | add_timer(&xpc_hb_timer); |
220 | } | 260 | } |
221 | 261 | ||
262 | static void | ||
263 | xpc_start_hb_beater(void) | ||
264 | { | ||
265 | xpc_heartbeat_init(); | ||
266 | init_timer(&xpc_hb_timer); | ||
267 | xpc_hb_timer.function = xpc_hb_beater; | ||
268 | xpc_hb_beater(0); | ||
269 | } | ||
270 | |||
271 | static void | ||
272 | xpc_stop_hb_beater(void) | ||
273 | { | ||
274 | del_timer_sync(&xpc_hb_timer); | ||
275 | xpc_heartbeat_exit(); | ||
276 | } | ||
277 | |||
278 | /* | ||
279 | * At periodic intervals, scan through all active partitions and ensure | ||
280 | * their heartbeat is still active. If not, the partition is deactivated. | ||
281 | */ | ||
282 | static void | ||
283 | xpc_check_remote_hb(void) | ||
284 | { | ||
285 | struct xpc_partition *part; | ||
286 | short partid; | ||
287 | enum xp_retval ret; | ||
288 | |||
289 | for (partid = 0; partid < xp_max_npartitions; partid++) { | ||
290 | |||
291 | if (xpc_exiting) | ||
292 | break; | ||
293 | |||
294 | if (partid == xp_partition_id) | ||
295 | continue; | ||
296 | |||
297 | part = &xpc_partitions[partid]; | ||
298 | |||
299 | if (part->act_state == XPC_P_AS_INACTIVE || | ||
300 | part->act_state == XPC_P_AS_DEACTIVATING) { | ||
301 | continue; | ||
302 | } | ||
303 | |||
304 | ret = xpc_get_remote_heartbeat(part); | ||
305 | if (ret != xpSuccess) | ||
306 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
307 | } | ||
308 | } | ||
309 | |||
222 | /* | 310 | /* |
223 | * This thread is responsible for nearly all of the partition | 311 | * This thread is responsible for nearly all of the partition |
224 | * activation/deactivation. | 312 | * activation/deactivation. |
@@ -226,67 +314,57 @@ xpc_hb_beater(unsigned long dummy) | |||
226 | static int | 314 | static int |
227 | xpc_hb_checker(void *ignore) | 315 | xpc_hb_checker(void *ignore) |
228 | { | 316 | { |
229 | int last_IRQ_count = 0; | ||
230 | int new_IRQ_count; | ||
231 | int force_IRQ = 0; | 317 | int force_IRQ = 0; |
232 | cpumask_of_cpu_ptr(cpumask, XPC_HB_CHECK_CPU); | ||
233 | 318 | ||
234 | /* this thread was marked active by xpc_hb_init() */ | 319 | /* this thread was marked active by xpc_hb_init() */ |
235 | 320 | ||
236 | set_cpus_allowed_ptr(current, cpumask); | 321 | set_cpus_allowed_ptr(current, &cpumask_of_cpu(XPC_HB_CHECK_CPU)); |
237 | 322 | ||
238 | /* set our heartbeating to other partitions into motion */ | 323 | /* set our heartbeating to other partitions into motion */ |
239 | xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); | 324 | xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); |
240 | xpc_hb_beater(0); | 325 | xpc_start_hb_beater(); |
241 | 326 | ||
242 | while (!xpc_exiting) { | 327 | while (!xpc_exiting) { |
243 | 328 | ||
244 | dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " | 329 | dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " |
245 | "been received\n", | 330 | "been received\n", |
246 | (int)(xpc_hb_check_timeout - jiffies), | 331 | (int)(xpc_hb_check_timeout - jiffies), |
247 | atomic_read(&xpc_act_IRQ_rcvd) - last_IRQ_count); | 332 | xpc_activate_IRQ_rcvd); |
248 | 333 | ||
249 | /* checking of remote heartbeats is skewed by IRQ handling */ | 334 | /* checking of remote heartbeats is skewed by IRQ handling */ |
250 | if (time_after_eq(jiffies, xpc_hb_check_timeout)) { | 335 | if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) { |
336 | xpc_hb_check_timeout = jiffies + | ||
337 | (xpc_hb_check_interval * HZ); | ||
338 | |||
251 | dev_dbg(xpc_part, "checking remote heartbeats\n"); | 339 | dev_dbg(xpc_part, "checking remote heartbeats\n"); |
252 | xpc_check_remote_hb(); | 340 | xpc_check_remote_hb(); |
253 | 341 | ||
254 | /* | 342 | /* |
255 | * We need to periodically recheck to ensure no | 343 | * On sn2 we need to periodically recheck to ensure no |
256 | * IPI/AMO pairs have been missed. That check | 344 | * IRQ/amo pairs have been missed. |
257 | * must always reset xpc_hb_check_timeout. | ||
258 | */ | 345 | */ |
259 | force_IRQ = 1; | 346 | if (is_shub()) |
347 | force_IRQ = 1; | ||
260 | } | 348 | } |
261 | 349 | ||
262 | /* check for outstanding IRQs */ | 350 | /* check for outstanding IRQs */ |
263 | new_IRQ_count = atomic_read(&xpc_act_IRQ_rcvd); | 351 | if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) { |
264 | if (last_IRQ_count < new_IRQ_count || force_IRQ != 0) { | ||
265 | force_IRQ = 0; | 352 | force_IRQ = 0; |
266 | 353 | dev_dbg(xpc_part, "processing activate IRQs " | |
267 | dev_dbg(xpc_part, "found an IRQ to process; will be " | 354 | "received\n"); |
268 | "resetting xpc_hb_check_timeout\n"); | 355 | xpc_process_activate_IRQ_rcvd(); |
269 | |||
270 | last_IRQ_count += xpc_identify_act_IRQ_sender(); | ||
271 | if (last_IRQ_count < new_IRQ_count) { | ||
272 | /* retry once to help avoid missing AMO */ | ||
273 | (void)xpc_identify_act_IRQ_sender(); | ||
274 | } | ||
275 | last_IRQ_count = new_IRQ_count; | ||
276 | |||
277 | xpc_hb_check_timeout = jiffies + | ||
278 | (xpc_hb_check_interval * HZ); | ||
279 | } | 356 | } |
280 | 357 | ||
281 | /* wait for IRQ or timeout */ | 358 | /* wait for IRQ or timeout */ |
282 | (void)wait_event_interruptible(xpc_act_IRQ_wq, | 359 | (void)wait_event_interruptible(xpc_activate_IRQ_wq, |
283 | (last_IRQ_count < | 360 | (time_is_before_eq_jiffies( |
284 | atomic_read(&xpc_act_IRQ_rcvd) | 361 | xpc_hb_check_timeout) || |
285 | || time_after_eq(jiffies, | 362 | xpc_activate_IRQ_rcvd > 0 || |
286 | xpc_hb_check_timeout) || | ||
287 | xpc_exiting)); | 363 | xpc_exiting)); |
288 | } | 364 | } |
289 | 365 | ||
366 | xpc_stop_hb_beater(); | ||
367 | |||
290 | dev_dbg(xpc_part, "heartbeat checker is exiting\n"); | 368 | dev_dbg(xpc_part, "heartbeat checker is exiting\n"); |
291 | 369 | ||
292 | /* mark this thread as having exited */ | 370 | /* mark this thread as having exited */ |
@@ -312,37 +390,8 @@ xpc_initiate_discovery(void *ignore) | |||
312 | } | 390 | } |
313 | 391 | ||
314 | /* | 392 | /* |
315 | * Establish first contact with the remote partititon. This involves pulling | ||
316 | * the XPC per partition variables from the remote partition and waiting for | ||
317 | * the remote partition to pull ours. | ||
318 | */ | ||
319 | static enum xp_retval | ||
320 | xpc_make_first_contact(struct xpc_partition *part) | ||
321 | { | ||
322 | enum xp_retval ret; | ||
323 | |||
324 | while ((ret = xpc_pull_remote_vars_part(part)) != xpSuccess) { | ||
325 | if (ret != xpRetry) { | ||
326 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
327 | return ret; | ||
328 | } | ||
329 | |||
330 | dev_dbg(xpc_chan, "waiting to make first contact with " | ||
331 | "partition %d\n", XPC_PARTID(part)); | ||
332 | |||
333 | /* wait a 1/4 of a second or so */ | ||
334 | (void)msleep_interruptible(250); | ||
335 | |||
336 | if (part->act_state == XPC_P_DEACTIVATING) | ||
337 | return part->reason; | ||
338 | } | ||
339 | |||
340 | return xpc_mark_partition_active(part); | ||
341 | } | ||
342 | |||
343 | /* | ||
344 | * The first kthread assigned to a newly activated partition is the one | 393 | * The first kthread assigned to a newly activated partition is the one |
345 | * created by XPC HB with which it calls xpc_partition_up(). XPC hangs on to | 394 | * created by XPC HB with which it calls xpc_activating(). XPC hangs on to |
346 | * that kthread until the partition is brought down, at which time that kthread | 395 | * that kthread until the partition is brought down, at which time that kthread |
347 | * returns back to XPC HB. (The return of that kthread will signify to XPC HB | 396 | * returns back to XPC HB. (The return of that kthread will signify to XPC HB |
348 | * that XPC has dismantled all communication infrastructure for the associated | 397 | * that XPC has dismantled all communication infrastructure for the associated |
@@ -355,11 +404,11 @@ xpc_make_first_contact(struct xpc_partition *part) | |||
355 | static void | 404 | static void |
356 | xpc_channel_mgr(struct xpc_partition *part) | 405 | xpc_channel_mgr(struct xpc_partition *part) |
357 | { | 406 | { |
358 | while (part->act_state != XPC_P_DEACTIVATING || | 407 | while (part->act_state != XPC_P_AS_DEACTIVATING || |
359 | atomic_read(&part->nchannels_active) > 0 || | 408 | atomic_read(&part->nchannels_active) > 0 || |
360 | !xpc_partition_disengaged(part)) { | 409 | !xpc_partition_disengaged(part)) { |
361 | 410 | ||
362 | xpc_process_channel_activity(part); | 411 | xpc_process_sent_chctl_flags(part); |
363 | 412 | ||
364 | /* | 413 | /* |
365 | * Wait until we've been requested to activate kthreads or | 414 | * Wait until we've been requested to activate kthreads or |
@@ -377,8 +426,8 @@ xpc_channel_mgr(struct xpc_partition *part) | |||
377 | atomic_dec(&part->channel_mgr_requests); | 426 | atomic_dec(&part->channel_mgr_requests); |
378 | (void)wait_event_interruptible(part->channel_mgr_wq, | 427 | (void)wait_event_interruptible(part->channel_mgr_wq, |
379 | (atomic_read(&part->channel_mgr_requests) > 0 || | 428 | (atomic_read(&part->channel_mgr_requests) > 0 || |
380 | part->local_IPI_amo != 0 || | 429 | part->chctl.all_flags != 0 || |
381 | (part->act_state == XPC_P_DEACTIVATING && | 430 | (part->act_state == XPC_P_AS_DEACTIVATING && |
382 | atomic_read(&part->nchannels_active) == 0 && | 431 | atomic_read(&part->nchannels_active) == 0 && |
383 | xpc_partition_disengaged(part)))); | 432 | xpc_partition_disengaged(part)))); |
384 | atomic_set(&part->channel_mgr_requests, 1); | 433 | atomic_set(&part->channel_mgr_requests, 1); |
@@ -386,47 +435,163 @@ xpc_channel_mgr(struct xpc_partition *part) | |||
386 | } | 435 | } |
387 | 436 | ||
388 | /* | 437 | /* |
389 | * When XPC HB determines that a partition has come up, it will create a new | 438 | * Guarantee that the kzalloc'd memory is cacheline aligned. |
390 | * kthread and that kthread will call this function to attempt to set up the | ||
391 | * basic infrastructure used for Cross Partition Communication with the newly | ||
392 | * upped partition. | ||
393 | * | ||
394 | * The kthread that was created by XPC HB and which setup the XPC | ||
395 | * infrastructure will remain assigned to the partition until the partition | ||
396 | * goes down. At which time the kthread will teardown the XPC infrastructure | ||
397 | * and then exit. | ||
398 | * | ||
399 | * XPC HB will put the remote partition's XPC per partition specific variables | ||
400 | * physical address into xpc_partitions[partid].remote_vars_part_pa prior to | ||
401 | * calling xpc_partition_up(). | ||
402 | */ | 439 | */ |
403 | static void | 440 | void * |
404 | xpc_partition_up(struct xpc_partition *part) | 441 | xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) |
442 | { | ||
443 | /* see if kzalloc will give us cachline aligned memory by default */ | ||
444 | *base = kzalloc(size, flags); | ||
445 | if (*base == NULL) | ||
446 | return NULL; | ||
447 | |||
448 | if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) | ||
449 | return *base; | ||
450 | |||
451 | kfree(*base); | ||
452 | |||
453 | /* nope, we'll have to do it ourselves */ | ||
454 | *base = kzalloc(size + L1_CACHE_BYTES, flags); | ||
455 | if (*base == NULL) | ||
456 | return NULL; | ||
457 | |||
458 | return (void *)L1_CACHE_ALIGN((u64)*base); | ||
459 | } | ||
460 | |||
461 | /* | ||
462 | * Setup the channel structures necessary to support XPartition Communication | ||
463 | * between the specified remote partition and the local one. | ||
464 | */ | ||
465 | static enum xp_retval | ||
466 | xpc_setup_ch_structures(struct xpc_partition *part) | ||
405 | { | 467 | { |
468 | enum xp_retval ret; | ||
469 | int ch_number; | ||
470 | struct xpc_channel *ch; | ||
471 | short partid = XPC_PARTID(part); | ||
472 | |||
473 | /* | ||
474 | * Allocate all of the channel structures as a contiguous chunk of | ||
475 | * memory. | ||
476 | */ | ||
406 | DBUG_ON(part->channels != NULL); | 477 | DBUG_ON(part->channels != NULL); |
478 | part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS, | ||
479 | GFP_KERNEL); | ||
480 | if (part->channels == NULL) { | ||
481 | dev_err(xpc_chan, "can't get memory for channels\n"); | ||
482 | return xpNoMemory; | ||
483 | } | ||
407 | 484 | ||
408 | dev_dbg(xpc_chan, "activating partition %d\n", XPC_PARTID(part)); | 485 | /* allocate the remote open and close args */ |
409 | 486 | ||
410 | if (xpc_setup_infrastructure(part) != xpSuccess) | 487 | part->remote_openclose_args = |
411 | return; | 488 | xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, |
489 | GFP_KERNEL, &part-> | ||
490 | remote_openclose_args_base); | ||
491 | if (part->remote_openclose_args == NULL) { | ||
492 | dev_err(xpc_chan, "can't get memory for remote connect args\n"); | ||
493 | ret = xpNoMemory; | ||
494 | goto out_1; | ||
495 | } | ||
496 | |||
497 | part->chctl.all_flags = 0; | ||
498 | spin_lock_init(&part->chctl_lock); | ||
499 | |||
500 | atomic_set(&part->channel_mgr_requests, 1); | ||
501 | init_waitqueue_head(&part->channel_mgr_wq); | ||
502 | |||
503 | part->nchannels = XPC_MAX_NCHANNELS; | ||
504 | |||
505 | atomic_set(&part->nchannels_active, 0); | ||
506 | atomic_set(&part->nchannels_engaged, 0); | ||
507 | |||
508 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
509 | ch = &part->channels[ch_number]; | ||
510 | |||
511 | ch->partid = partid; | ||
512 | ch->number = ch_number; | ||
513 | ch->flags = XPC_C_DISCONNECTED; | ||
514 | |||
515 | atomic_set(&ch->kthreads_assigned, 0); | ||
516 | atomic_set(&ch->kthreads_idle, 0); | ||
517 | atomic_set(&ch->kthreads_active, 0); | ||
518 | |||
519 | atomic_set(&ch->references, 0); | ||
520 | atomic_set(&ch->n_to_notify, 0); | ||
521 | |||
522 | spin_lock_init(&ch->lock); | ||
523 | init_completion(&ch->wdisconnect_wait); | ||
524 | |||
525 | atomic_set(&ch->n_on_msg_allocate_wq, 0); | ||
526 | init_waitqueue_head(&ch->msg_allocate_wq); | ||
527 | init_waitqueue_head(&ch->idle_wq); | ||
528 | } | ||
529 | |||
530 | ret = xpc_setup_ch_structures_sn(part); | ||
531 | if (ret != xpSuccess) | ||
532 | goto out_2; | ||
533 | |||
534 | /* | ||
535 | * With the setting of the partition setup_state to XPC_P_SS_SETUP, | ||
536 | * we're declaring that this partition is ready to go. | ||
537 | */ | ||
538 | part->setup_state = XPC_P_SS_SETUP; | ||
539 | |||
540 | return xpSuccess; | ||
541 | |||
542 | /* setup of ch structures failed */ | ||
543 | out_2: | ||
544 | kfree(part->remote_openclose_args_base); | ||
545 | part->remote_openclose_args = NULL; | ||
546 | out_1: | ||
547 | kfree(part->channels); | ||
548 | part->channels = NULL; | ||
549 | return ret; | ||
550 | } | ||
551 | |||
552 | /* | ||
553 | * Teardown the channel structures necessary to support XPartition Communication | ||
554 | * between the specified remote partition and the local one. | ||
555 | */ | ||
556 | static void | ||
557 | xpc_teardown_ch_structures(struct xpc_partition *part) | ||
558 | { | ||
559 | DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); | ||
560 | DBUG_ON(atomic_read(&part->nchannels_active) != 0); | ||
412 | 561 | ||
413 | /* | 562 | /* |
414 | * The kthread that XPC HB called us with will become the | 563 | * Make this partition inaccessible to local processes by marking it |
415 | * channel manager for this partition. It will not return | 564 | * as no longer setup. Then wait before proceeding with the teardown |
416 | * back to XPC HB until the partition's XPC infrastructure | 565 | * until all existing references cease. |
417 | * has been dismantled. | ||
418 | */ | 566 | */ |
567 | DBUG_ON(part->setup_state != XPC_P_SS_SETUP); | ||
568 | part->setup_state = XPC_P_SS_WTEARDOWN; | ||
419 | 569 | ||
420 | (void)xpc_part_ref(part); /* this will always succeed */ | 570 | wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); |
421 | 571 | ||
422 | if (xpc_make_first_contact(part) == xpSuccess) | 572 | /* now we can begin tearing down the infrastructure */ |
423 | xpc_channel_mgr(part); | ||
424 | 573 | ||
425 | xpc_part_deref(part); | 574 | xpc_teardown_ch_structures_sn(part); |
426 | 575 | ||
427 | xpc_teardown_infrastructure(part); | 576 | kfree(part->remote_openclose_args_base); |
577 | part->remote_openclose_args = NULL; | ||
578 | kfree(part->channels); | ||
579 | part->channels = NULL; | ||
580 | |||
581 | part->setup_state = XPC_P_SS_TORNDOWN; | ||
428 | } | 582 | } |
429 | 583 | ||
584 | /* | ||
585 | * When XPC HB determines that a partition has come up, it will create a new | ||
586 | * kthread and that kthread will call this function to attempt to set up the | ||
587 | * basic infrastructure used for Cross Partition Communication with the newly | ||
588 | * upped partition. | ||
589 | * | ||
590 | * The kthread that was created by XPC HB and which setup the XPC | ||
591 | * infrastructure will remain assigned to the partition becoming the channel | ||
592 | * manager for that partition until the partition is deactivating, at which | ||
593 | * time the kthread will teardown the XPC infrastructure and then exit. | ||
594 | */ | ||
430 | static int | 595 | static int |
431 | xpc_activating(void *__partid) | 596 | xpc_activating(void *__partid) |
432 | { | 597 | { |
@@ -434,64 +599,47 @@ xpc_activating(void *__partid) | |||
434 | struct xpc_partition *part = &xpc_partitions[partid]; | 599 | struct xpc_partition *part = &xpc_partitions[partid]; |
435 | unsigned long irq_flags; | 600 | unsigned long irq_flags; |
436 | 601 | ||
437 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | 602 | DBUG_ON(partid < 0 || partid >= xp_max_npartitions); |
438 | 603 | ||
439 | spin_lock_irqsave(&part->act_lock, irq_flags); | 604 | spin_lock_irqsave(&part->act_lock, irq_flags); |
440 | 605 | ||
441 | if (part->act_state == XPC_P_DEACTIVATING) { | 606 | if (part->act_state == XPC_P_AS_DEACTIVATING) { |
442 | part->act_state = XPC_P_INACTIVE; | 607 | part->act_state = XPC_P_AS_INACTIVE; |
443 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | 608 | spin_unlock_irqrestore(&part->act_lock, irq_flags); |
444 | part->remote_rp_pa = 0; | 609 | part->remote_rp_pa = 0; |
445 | return 0; | 610 | return 0; |
446 | } | 611 | } |
447 | 612 | ||
448 | /* indicate the thread is activating */ | 613 | /* indicate the thread is activating */ |
449 | DBUG_ON(part->act_state != XPC_P_ACTIVATION_REQ); | 614 | DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ); |
450 | part->act_state = XPC_P_ACTIVATING; | 615 | part->act_state = XPC_P_AS_ACTIVATING; |
451 | 616 | ||
452 | XPC_SET_REASON(part, 0, 0); | 617 | XPC_SET_REASON(part, 0, 0); |
453 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | 618 | spin_unlock_irqrestore(&part->act_lock, irq_flags); |
454 | 619 | ||
455 | dev_dbg(xpc_part, "bringing partition %d up\n", partid); | 620 | dev_dbg(xpc_part, "activating partition %d\n", partid); |
456 | 621 | ||
457 | /* | 622 | xpc_allow_hb(partid); |
458 | * Register the remote partition's AMOs with SAL so it can handle | ||
459 | * and cleanup errors within that address range should the remote | ||
460 | * partition go down. We don't unregister this range because it is | ||
461 | * difficult to tell when outstanding writes to the remote partition | ||
462 | * are finished and thus when it is safe to unregister. This should | ||
463 | * not result in wasted space in the SAL xp_addr_region table because | ||
464 | * we should get the same page for remote_amos_page_pa after module | ||
465 | * reloads and system reboots. | ||
466 | */ | ||
467 | if (sn_register_xp_addr_region(part->remote_amos_page_pa, | ||
468 | PAGE_SIZE, 1) < 0) { | ||
469 | dev_warn(xpc_part, "xpc_partition_up(%d) failed to register " | ||
470 | "xp_addr region\n", partid); | ||
471 | 623 | ||
472 | spin_lock_irqsave(&part->act_lock, irq_flags); | 624 | if (xpc_setup_ch_structures(part) == xpSuccess) { |
473 | part->act_state = XPC_P_INACTIVE; | 625 | (void)xpc_part_ref(part); /* this will always succeed */ |
474 | XPC_SET_REASON(part, xpPhysAddrRegFailed, __LINE__); | ||
475 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
476 | part->remote_rp_pa = 0; | ||
477 | return 0; | ||
478 | } | ||
479 | 626 | ||
480 | xpc_allow_hb(partid, xpc_vars); | 627 | if (xpc_make_first_contact(part) == xpSuccess) { |
481 | xpc_IPI_send_activated(part); | 628 | xpc_mark_partition_active(part); |
629 | xpc_channel_mgr(part); | ||
630 | /* won't return until partition is deactivating */ | ||
631 | } | ||
482 | 632 | ||
483 | /* | 633 | xpc_part_deref(part); |
484 | * xpc_partition_up() holds this thread and marks this partition as | 634 | xpc_teardown_ch_structures(part); |
485 | * XPC_P_ACTIVE by calling xpc_hb_mark_active(). | 635 | } |
486 | */ | ||
487 | (void)xpc_partition_up(part); | ||
488 | 636 | ||
489 | xpc_disallow_hb(partid, xpc_vars); | 637 | xpc_disallow_hb(partid); |
490 | xpc_mark_partition_inactive(part); | 638 | xpc_mark_partition_inactive(part); |
491 | 639 | ||
492 | if (part->reason == xpReactivating) { | 640 | if (part->reason == xpReactivating) { |
493 | /* interrupting ourselves results in activating partition */ | 641 | /* interrupting ourselves results in activating partition */ |
494 | xpc_IPI_send_reactivate(part); | 642 | xpc_request_partition_reactivation(part); |
495 | } | 643 | } |
496 | 644 | ||
497 | return 0; | 645 | return 0; |
@@ -506,9 +654,9 @@ xpc_activate_partition(struct xpc_partition *part) | |||
506 | 654 | ||
507 | spin_lock_irqsave(&part->act_lock, irq_flags); | 655 | spin_lock_irqsave(&part->act_lock, irq_flags); |
508 | 656 | ||
509 | DBUG_ON(part->act_state != XPC_P_INACTIVE); | 657 | DBUG_ON(part->act_state != XPC_P_AS_INACTIVE); |
510 | 658 | ||
511 | part->act_state = XPC_P_ACTIVATION_REQ; | 659 | part->act_state = XPC_P_AS_ACTIVATION_REQ; |
512 | XPC_SET_REASON(part, xpCloneKThread, __LINE__); | 660 | XPC_SET_REASON(part, xpCloneKThread, __LINE__); |
513 | 661 | ||
514 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | 662 | spin_unlock_irqrestore(&part->act_lock, irq_flags); |
@@ -517,62 +665,12 @@ xpc_activate_partition(struct xpc_partition *part) | |||
517 | partid); | 665 | partid); |
518 | if (IS_ERR(kthread)) { | 666 | if (IS_ERR(kthread)) { |
519 | spin_lock_irqsave(&part->act_lock, irq_flags); | 667 | spin_lock_irqsave(&part->act_lock, irq_flags); |
520 | part->act_state = XPC_P_INACTIVE; | 668 | part->act_state = XPC_P_AS_INACTIVE; |
521 | XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); | 669 | XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); |
522 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | 670 | spin_unlock_irqrestore(&part->act_lock, irq_flags); |
523 | } | 671 | } |
524 | } | 672 | } |
525 | 673 | ||
526 | /* | ||
527 | * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified | ||
528 | * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more | ||
529 | * than one partition, we use an AMO_t structure per partition to indicate | ||
530 | * whether a partition has sent an IPI or not. If it has, then wake up the | ||
531 | * associated kthread to handle it. | ||
532 | * | ||
533 | * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC | ||
534 | * running on other partitions. | ||
535 | * | ||
536 | * Noteworthy Arguments: | ||
537 | * | ||
538 | * irq - Interrupt ReQuest number. NOT USED. | ||
539 | * | ||
540 | * dev_id - partid of IPI's potential sender. | ||
541 | */ | ||
542 | irqreturn_t | ||
543 | xpc_notify_IRQ_handler(int irq, void *dev_id) | ||
544 | { | ||
545 | short partid = (short)(u64)dev_id; | ||
546 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
547 | |||
548 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
549 | |||
550 | if (xpc_part_ref(part)) { | ||
551 | xpc_check_for_channel_activity(part); | ||
552 | |||
553 | xpc_part_deref(part); | ||
554 | } | ||
555 | return IRQ_HANDLED; | ||
556 | } | ||
557 | |||
558 | /* | ||
559 | * Check to see if xpc_notify_IRQ_handler() dropped any IPIs on the floor | ||
560 | * because the write to their associated IPI amo completed after the IRQ/IPI | ||
561 | * was received. | ||
562 | */ | ||
563 | void | ||
564 | xpc_dropped_IPI_check(struct xpc_partition *part) | ||
565 | { | ||
566 | if (xpc_part_ref(part)) { | ||
567 | xpc_check_for_channel_activity(part); | ||
568 | |||
569 | part->dropped_IPI_timer.expires = jiffies + | ||
570 | XPC_P_DROPPED_IPI_WAIT; | ||
571 | add_timer(&part->dropped_IPI_timer); | ||
572 | xpc_part_deref(part); | ||
573 | } | ||
574 | } | ||
575 | |||
576 | void | 674 | void |
577 | xpc_activate_kthreads(struct xpc_channel *ch, int needed) | 675 | xpc_activate_kthreads(struct xpc_channel *ch, int needed) |
578 | { | 676 | { |
@@ -617,9 +715,9 @@ xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) | |||
617 | do { | 715 | do { |
618 | /* deliver messages to their intended recipients */ | 716 | /* deliver messages to their intended recipients */ |
619 | 717 | ||
620 | while (ch->w_local_GP.get < ch->w_remote_GP.put && | 718 | while (xpc_n_of_deliverable_payloads(ch) > 0 && |
621 | !(ch->flags & XPC_C_DISCONNECTING)) { | 719 | !(ch->flags & XPC_C_DISCONNECTING)) { |
622 | xpc_deliver_msg(ch); | 720 | xpc_deliver_payload(ch); |
623 | } | 721 | } |
624 | 722 | ||
625 | if (atomic_inc_return(&ch->kthreads_idle) > | 723 | if (atomic_inc_return(&ch->kthreads_idle) > |
@@ -633,7 +731,7 @@ xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) | |||
633 | "wait_event_interruptible_exclusive()\n"); | 731 | "wait_event_interruptible_exclusive()\n"); |
634 | 732 | ||
635 | (void)wait_event_interruptible_exclusive(ch->idle_wq, | 733 | (void)wait_event_interruptible_exclusive(ch->idle_wq, |
636 | (ch->w_local_GP.get < ch->w_remote_GP.put || | 734 | (xpc_n_of_deliverable_payloads(ch) > 0 || |
637 | (ch->flags & XPC_C_DISCONNECTING))); | 735 | (ch->flags & XPC_C_DISCONNECTING))); |
638 | 736 | ||
639 | atomic_dec(&ch->kthreads_idle); | 737 | atomic_dec(&ch->kthreads_idle); |
@@ -678,7 +776,7 @@ xpc_kthread_start(void *args) | |||
678 | * additional kthreads to help deliver them. We only | 776 | * additional kthreads to help deliver them. We only |
679 | * need one less than total #of messages to deliver. | 777 | * need one less than total #of messages to deliver. |
680 | */ | 778 | */ |
681 | n_needed = ch->w_remote_GP.put - ch->w_local_GP.get - 1; | 779 | n_needed = xpc_n_of_deliverable_payloads(ch) - 1; |
682 | if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) | 780 | if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) |
683 | xpc_activate_kthreads(ch, n_needed); | 781 | xpc_activate_kthreads(ch, n_needed); |
684 | 782 | ||
@@ -704,11 +802,9 @@ xpc_kthread_start(void *args) | |||
704 | } | 802 | } |
705 | spin_unlock_irqrestore(&ch->lock, irq_flags); | 803 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
706 | 804 | ||
707 | if (atomic_dec_return(&ch->kthreads_assigned) == 0) { | 805 | if (atomic_dec_return(&ch->kthreads_assigned) == 0 && |
708 | if (atomic_dec_return(&part->nchannels_engaged) == 0) { | 806 | atomic_dec_return(&part->nchannels_engaged) == 0) { |
709 | xpc_mark_partition_disengaged(part); | 807 | xpc_indicate_partition_disengaged(part); |
710 | xpc_IPI_send_disengage(part); | ||
711 | } | ||
712 | } | 808 | } |
713 | 809 | ||
714 | xpc_msgqueue_deref(ch); | 810 | xpc_msgqueue_deref(ch); |
@@ -759,9 +855,9 @@ xpc_create_kthreads(struct xpc_channel *ch, int needed, | |||
759 | } else if (ch->flags & XPC_C_DISCONNECTING) { | 855 | } else if (ch->flags & XPC_C_DISCONNECTING) { |
760 | break; | 856 | break; |
761 | 857 | ||
762 | } else if (atomic_inc_return(&ch->kthreads_assigned) == 1) { | 858 | } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 && |
763 | if (atomic_inc_return(&part->nchannels_engaged) == 1) | 859 | atomic_inc_return(&part->nchannels_engaged) == 1) { |
764 | xpc_mark_partition_engaged(part); | 860 | xpc_indicate_partition_engaged(part); |
765 | } | 861 | } |
766 | (void)xpc_part_ref(part); | 862 | (void)xpc_part_ref(part); |
767 | xpc_msgqueue_ref(ch); | 863 | xpc_msgqueue_ref(ch); |
@@ -783,8 +879,7 @@ xpc_create_kthreads(struct xpc_channel *ch, int needed, | |||
783 | 879 | ||
784 | if (atomic_dec_return(&ch->kthreads_assigned) == 0 && | 880 | if (atomic_dec_return(&ch->kthreads_assigned) == 0 && |
785 | atomic_dec_return(&part->nchannels_engaged) == 0) { | 881 | atomic_dec_return(&part->nchannels_engaged) == 0) { |
786 | xpc_mark_partition_disengaged(part); | 882 | xpc_indicate_partition_disengaged(part); |
787 | xpc_IPI_send_disengage(part); | ||
788 | } | 883 | } |
789 | xpc_msgqueue_deref(ch); | 884 | xpc_msgqueue_deref(ch); |
790 | xpc_part_deref(part); | 885 | xpc_part_deref(part); |
@@ -816,7 +911,7 @@ xpc_disconnect_wait(int ch_number) | |||
816 | int wakeup_channel_mgr; | 911 | int wakeup_channel_mgr; |
817 | 912 | ||
818 | /* now wait for all callouts to the caller's function to cease */ | 913 | /* now wait for all callouts to the caller's function to cease */ |
819 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | 914 | for (partid = 0; partid < xp_max_npartitions; partid++) { |
820 | part = &xpc_partitions[partid]; | 915 | part = &xpc_partitions[partid]; |
821 | 916 | ||
822 | if (!xpc_part_ref(part)) | 917 | if (!xpc_part_ref(part)) |
@@ -835,16 +930,15 @@ xpc_disconnect_wait(int ch_number) | |||
835 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); | 930 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); |
836 | wakeup_channel_mgr = 0; | 931 | wakeup_channel_mgr = 0; |
837 | 932 | ||
838 | if (ch->delayed_IPI_flags) { | 933 | if (ch->delayed_chctl_flags) { |
839 | if (part->act_state != XPC_P_DEACTIVATING) { | 934 | if (part->act_state != XPC_P_AS_DEACTIVATING) { |
840 | spin_lock(&part->IPI_lock); | 935 | spin_lock(&part->chctl_lock); |
841 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, | 936 | part->chctl.flags[ch->number] |= |
842 | ch->number, | 937 | ch->delayed_chctl_flags; |
843 | ch->delayed_IPI_flags); | 938 | spin_unlock(&part->chctl_lock); |
844 | spin_unlock(&part->IPI_lock); | ||
845 | wakeup_channel_mgr = 1; | 939 | wakeup_channel_mgr = 1; |
846 | } | 940 | } |
847 | ch->delayed_IPI_flags = 0; | 941 | ch->delayed_chctl_flags = 0; |
848 | } | 942 | } |
849 | 943 | ||
850 | ch->flags &= ~XPC_C_WDISCONNECT; | 944 | ch->flags &= ~XPC_C_WDISCONNECT; |
@@ -857,13 +951,63 @@ xpc_disconnect_wait(int ch_number) | |||
857 | } | 951 | } |
858 | } | 952 | } |
859 | 953 | ||
954 | static int | ||
955 | xpc_setup_partitions(void) | ||
956 | { | ||
957 | short partid; | ||
958 | struct xpc_partition *part; | ||
959 | |||
960 | xpc_partitions = kzalloc(sizeof(struct xpc_partition) * | ||
961 | xp_max_npartitions, GFP_KERNEL); | ||
962 | if (xpc_partitions == NULL) { | ||
963 | dev_err(xpc_part, "can't get memory for partition structure\n"); | ||
964 | return -ENOMEM; | ||
965 | } | ||
966 | |||
967 | /* | ||
968 | * The first few fields of each entry of xpc_partitions[] need to | ||
969 | * be initialized now so that calls to xpc_connect() and | ||
970 | * xpc_disconnect() can be made prior to the activation of any remote | ||
971 | * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE | ||
972 | * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING | ||
973 | * PARTITION HAS BEEN ACTIVATED. | ||
974 | */ | ||
975 | for (partid = 0; partid < xp_max_npartitions; partid++) { | ||
976 | part = &xpc_partitions[partid]; | ||
977 | |||
978 | DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); | ||
979 | |||
980 | part->activate_IRQ_rcvd = 0; | ||
981 | spin_lock_init(&part->act_lock); | ||
982 | part->act_state = XPC_P_AS_INACTIVE; | ||
983 | XPC_SET_REASON(part, 0, 0); | ||
984 | |||
985 | init_timer(&part->disengage_timer); | ||
986 | part->disengage_timer.function = | ||
987 | xpc_timeout_partition_disengage; | ||
988 | part->disengage_timer.data = (unsigned long)part; | ||
989 | |||
990 | part->setup_state = XPC_P_SS_UNSET; | ||
991 | init_waitqueue_head(&part->teardown_wq); | ||
992 | atomic_set(&part->references, 0); | ||
993 | } | ||
994 | |||
995 | return xpc_setup_partitions_sn(); | ||
996 | } | ||
997 | |||
998 | static void | ||
999 | xpc_teardown_partitions(void) | ||
1000 | { | ||
1001 | kfree(xpc_partitions); | ||
1002 | } | ||
1003 | |||
860 | static void | 1004 | static void |
861 | xpc_do_exit(enum xp_retval reason) | 1005 | xpc_do_exit(enum xp_retval reason) |
862 | { | 1006 | { |
863 | short partid; | 1007 | short partid; |
864 | int active_part_count, printed_waiting_msg = 0; | 1008 | int active_part_count, printed_waiting_msg = 0; |
865 | struct xpc_partition *part; | 1009 | struct xpc_partition *part; |
866 | unsigned long printmsg_time, disengage_request_timeout = 0; | 1010 | unsigned long printmsg_time, disengage_timeout = 0; |
867 | 1011 | ||
868 | /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ | 1012 | /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ |
869 | DBUG_ON(xpc_exiting == 1); | 1013 | DBUG_ON(xpc_exiting == 1); |
@@ -874,10 +1018,7 @@ xpc_do_exit(enum xp_retval reason) | |||
874 | * the heartbeat checker thread in case it's sleeping. | 1018 | * the heartbeat checker thread in case it's sleeping. |
875 | */ | 1019 | */ |
876 | xpc_exiting = 1; | 1020 | xpc_exiting = 1; |
877 | wake_up_interruptible(&xpc_act_IRQ_wq); | 1021 | wake_up_interruptible(&xpc_activate_IRQ_wq); |
878 | |||
879 | /* ignore all incoming interrupts */ | ||
880 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
881 | 1022 | ||
882 | /* wait for the discovery thread to exit */ | 1023 | /* wait for the discovery thread to exit */ |
883 | wait_for_completion(&xpc_discovery_exited); | 1024 | wait_for_completion(&xpc_discovery_exited); |
@@ -890,17 +1031,17 @@ xpc_do_exit(enum xp_retval reason) | |||
890 | 1031 | ||
891 | /* wait for all partitions to become inactive */ | 1032 | /* wait for all partitions to become inactive */ |
892 | 1033 | ||
893 | printmsg_time = jiffies + (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ); | 1034 | printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); |
894 | xpc_disengage_request_timedout = 0; | 1035 | xpc_disengage_timedout = 0; |
895 | 1036 | ||
896 | do { | 1037 | do { |
897 | active_part_count = 0; | 1038 | active_part_count = 0; |
898 | 1039 | ||
899 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | 1040 | for (partid = 0; partid < xp_max_npartitions; partid++) { |
900 | part = &xpc_partitions[partid]; | 1041 | part = &xpc_partitions[partid]; |
901 | 1042 | ||
902 | if (xpc_partition_disengaged(part) && | 1043 | if (xpc_partition_disengaged(part) && |
903 | part->act_state == XPC_P_INACTIVE) { | 1044 | part->act_state == XPC_P_AS_INACTIVE) { |
904 | continue; | 1045 | continue; |
905 | } | 1046 | } |
906 | 1047 | ||
@@ -908,36 +1049,32 @@ xpc_do_exit(enum xp_retval reason) | |||
908 | 1049 | ||
909 | XPC_DEACTIVATE_PARTITION(part, reason); | 1050 | XPC_DEACTIVATE_PARTITION(part, reason); |
910 | 1051 | ||
911 | if (part->disengage_request_timeout > | 1052 | if (part->disengage_timeout > disengage_timeout) |
912 | disengage_request_timeout) { | 1053 | disengage_timeout = part->disengage_timeout; |
913 | disengage_request_timeout = | ||
914 | part->disengage_request_timeout; | ||
915 | } | ||
916 | } | 1054 | } |
917 | 1055 | ||
918 | if (xpc_partition_engaged(-1UL)) { | 1056 | if (xpc_any_partition_engaged()) { |
919 | if (time_after(jiffies, printmsg_time)) { | 1057 | if (time_is_before_jiffies(printmsg_time)) { |
920 | dev_info(xpc_part, "waiting for remote " | 1058 | dev_info(xpc_part, "waiting for remote " |
921 | "partitions to disengage, timeout in " | 1059 | "partitions to deactivate, timeout in " |
922 | "%ld seconds\n", | 1060 | "%ld seconds\n", (disengage_timeout - |
923 | (disengage_request_timeout - jiffies) | 1061 | jiffies) / HZ); |
924 | / HZ); | ||
925 | printmsg_time = jiffies + | 1062 | printmsg_time = jiffies + |
926 | (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ); | 1063 | (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); |
927 | printed_waiting_msg = 1; | 1064 | printed_waiting_msg = 1; |
928 | } | 1065 | } |
929 | 1066 | ||
930 | } else if (active_part_count > 0) { | 1067 | } else if (active_part_count > 0) { |
931 | if (printed_waiting_msg) { | 1068 | if (printed_waiting_msg) { |
932 | dev_info(xpc_part, "waiting for local partition" | 1069 | dev_info(xpc_part, "waiting for local partition" |
933 | " to disengage\n"); | 1070 | " to deactivate\n"); |
934 | printed_waiting_msg = 0; | 1071 | printed_waiting_msg = 0; |
935 | } | 1072 | } |
936 | 1073 | ||
937 | } else { | 1074 | } else { |
938 | if (!xpc_disengage_request_timedout) { | 1075 | if (!xpc_disengage_timedout) { |
939 | dev_info(xpc_part, "all partitions have " | 1076 | dev_info(xpc_part, "all partitions have " |
940 | "disengaged\n"); | 1077 | "deactivated\n"); |
941 | } | 1078 | } |
942 | break; | 1079 | break; |
943 | } | 1080 | } |
@@ -947,33 +1084,28 @@ xpc_do_exit(enum xp_retval reason) | |||
947 | 1084 | ||
948 | } while (1); | 1085 | } while (1); |
949 | 1086 | ||
950 | DBUG_ON(xpc_partition_engaged(-1UL)); | 1087 | DBUG_ON(xpc_any_partition_engaged()); |
1088 | DBUG_ON(xpc_any_hbs_allowed() != 0); | ||
951 | 1089 | ||
952 | /* indicate to others that our reserved page is uninitialized */ | 1090 | xpc_teardown_rsvd_page(); |
953 | xpc_rsvd_page->vars_pa = 0; | ||
954 | |||
955 | /* now it's time to eliminate our heartbeat */ | ||
956 | del_timer_sync(&xpc_hb_timer); | ||
957 | DBUG_ON(xpc_vars->heartbeating_to_mask != 0); | ||
958 | 1091 | ||
959 | if (reason == xpUnloading) { | 1092 | if (reason == xpUnloading) { |
960 | /* take ourselves off of the reboot_notifier_list */ | ||
961 | (void)unregister_reboot_notifier(&xpc_reboot_notifier); | ||
962 | |||
963 | /* take ourselves off of the die_notifier list */ | ||
964 | (void)unregister_die_notifier(&xpc_die_notifier); | 1093 | (void)unregister_die_notifier(&xpc_die_notifier); |
1094 | (void)unregister_reboot_notifier(&xpc_reboot_notifier); | ||
965 | } | 1095 | } |
966 | 1096 | ||
967 | /* close down protections for IPI operations */ | ||
968 | xpc_restrict_IPI_ops(); | ||
969 | |||
970 | /* clear the interface to XPC's functions */ | 1097 | /* clear the interface to XPC's functions */ |
971 | xpc_clear_interface(); | 1098 | xpc_clear_interface(); |
972 | 1099 | ||
973 | if (xpc_sysctl) | 1100 | if (xpc_sysctl) |
974 | unregister_sysctl_table(xpc_sysctl); | 1101 | unregister_sysctl_table(xpc_sysctl); |
975 | 1102 | ||
976 | kfree(xpc_remote_copy_buffer_base); | 1103 | xpc_teardown_partitions(); |
1104 | |||
1105 | if (is_shub()) | ||
1106 | xpc_exit_sn2(); | ||
1107 | else | ||
1108 | xpc_exit_uv(); | ||
977 | } | 1109 | } |
978 | 1110 | ||
979 | /* | 1111 | /* |
@@ -1003,60 +1135,57 @@ xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) | |||
1003 | } | 1135 | } |
1004 | 1136 | ||
1005 | /* | 1137 | /* |
1006 | * Notify other partitions to disengage from all references to our memory. | 1138 | * Notify other partitions to deactivate from us by first disengaging from all |
1139 | * references to our memory. | ||
1007 | */ | 1140 | */ |
1008 | static void | 1141 | static void |
1009 | xpc_die_disengage(void) | 1142 | xpc_die_deactivate(void) |
1010 | { | 1143 | { |
1011 | struct xpc_partition *part; | 1144 | struct xpc_partition *part; |
1012 | short partid; | 1145 | short partid; |
1013 | unsigned long engaged; | 1146 | int any_engaged; |
1014 | long time, printmsg_time, disengage_request_timeout; | 1147 | long keep_waiting; |
1148 | long wait_to_print; | ||
1015 | 1149 | ||
1016 | /* keep xpc_hb_checker thread from doing anything (just in case) */ | 1150 | /* keep xpc_hb_checker thread from doing anything (just in case) */ |
1017 | xpc_exiting = 1; | 1151 | xpc_exiting = 1; |
1018 | 1152 | ||
1019 | xpc_vars->heartbeating_to_mask = 0; /* indicate we're deactivated */ | 1153 | xpc_disallow_all_hbs(); /*indicate we're deactivated */ |
1020 | 1154 | ||
1021 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | 1155 | for (partid = 0; partid < xp_max_npartitions; partid++) { |
1022 | part = &xpc_partitions[partid]; | 1156 | part = &xpc_partitions[partid]; |
1023 | 1157 | ||
1024 | if (!XPC_SUPPORTS_DISENGAGE_REQUEST(part-> | 1158 | if (xpc_partition_engaged(partid) || |
1025 | remote_vars_version)) { | 1159 | part->act_state != XPC_P_AS_INACTIVE) { |
1026 | 1160 | xpc_request_partition_deactivation(part); | |
1027 | /* just in case it was left set by an earlier XPC */ | 1161 | xpc_indicate_partition_disengaged(part); |
1028 | xpc_clear_partition_engaged(1UL << partid); | ||
1029 | continue; | ||
1030 | } | ||
1031 | |||
1032 | if (xpc_partition_engaged(1UL << partid) || | ||
1033 | part->act_state != XPC_P_INACTIVE) { | ||
1034 | xpc_request_partition_disengage(part); | ||
1035 | xpc_mark_partition_disengaged(part); | ||
1036 | xpc_IPI_send_disengage(part); | ||
1037 | } | 1162 | } |
1038 | } | 1163 | } |
1039 | 1164 | ||
1040 | time = rtc_time(); | 1165 | /* |
1041 | printmsg_time = time + | 1166 | * Though we requested that all other partitions deactivate from us, |
1042 | (XPC_DISENGAGE_PRINTMSG_INTERVAL * sn_rtc_cycles_per_second); | 1167 | * we only wait until they've all disengaged or we've reached the |
1043 | disengage_request_timeout = time + | 1168 | * defined timelimit. |
1044 | (xpc_disengage_request_timelimit * sn_rtc_cycles_per_second); | 1169 | * |
1045 | 1170 | * Given that one iteration through the following while-loop takes | |
1046 | /* wait for all other partitions to disengage from us */ | 1171 | * approximately 200 microseconds, calculate the #of loops to take |
1172 | * before bailing and the #of loops before printing a waiting message. | ||
1173 | */ | ||
1174 | keep_waiting = xpc_disengage_timelimit * 1000 * 5; | ||
1175 | wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5; | ||
1047 | 1176 | ||
1048 | while (1) { | 1177 | while (1) { |
1049 | engaged = xpc_partition_engaged(-1UL); | 1178 | any_engaged = xpc_any_partition_engaged(); |
1050 | if (!engaged) { | 1179 | if (!any_engaged) { |
1051 | dev_info(xpc_part, "all partitions have disengaged\n"); | 1180 | dev_info(xpc_part, "all partitions have deactivated\n"); |
1052 | break; | 1181 | break; |
1053 | } | 1182 | } |
1054 | 1183 | ||
1055 | time = rtc_time(); | 1184 | if (!keep_waiting--) { |
1056 | if (time >= disengage_request_timeout) { | 1185 | for (partid = 0; partid < xp_max_npartitions; |
1057 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | 1186 | partid++) { |
1058 | if (engaged & (1UL << partid)) { | 1187 | if (xpc_partition_engaged(partid)) { |
1059 | dev_info(xpc_part, "disengage from " | 1188 | dev_info(xpc_part, "deactivate from " |
1060 | "remote partition %d timed " | 1189 | "remote partition %d timed " |
1061 | "out\n", partid); | 1190 | "out\n", partid); |
1062 | } | 1191 | } |
@@ -1064,15 +1193,15 @@ xpc_die_disengage(void) | |||
1064 | break; | 1193 | break; |
1065 | } | 1194 | } |
1066 | 1195 | ||
1067 | if (time >= printmsg_time) { | 1196 | if (!wait_to_print--) { |
1068 | dev_info(xpc_part, "waiting for remote partitions to " | 1197 | dev_info(xpc_part, "waiting for remote partitions to " |
1069 | "disengage, timeout in %ld seconds\n", | 1198 | "deactivate, timeout in %ld seconds\n", |
1070 | (disengage_request_timeout - time) / | 1199 | keep_waiting / (1000 * 5)); |
1071 | sn_rtc_cycles_per_second); | 1200 | wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * |
1072 | printmsg_time = time + | 1201 | 1000 * 5; |
1073 | (XPC_DISENGAGE_PRINTMSG_INTERVAL * | ||
1074 | sn_rtc_cycles_per_second); | ||
1075 | } | 1202 | } |
1203 | |||
1204 | udelay(200); | ||
1076 | } | 1205 | } |
1077 | } | 1206 | } |
1078 | 1207 | ||
@@ -1087,10 +1216,11 @@ xpc_die_disengage(void) | |||
1087 | static int | 1216 | static int |
1088 | xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) | 1217 | xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) |
1089 | { | 1218 | { |
1219 | #ifdef CONFIG_IA64 /* !!! temporary kludge */ | ||
1090 | switch (event) { | 1220 | switch (event) { |
1091 | case DIE_MACHINE_RESTART: | 1221 | case DIE_MACHINE_RESTART: |
1092 | case DIE_MACHINE_HALT: | 1222 | case DIE_MACHINE_HALT: |
1093 | xpc_die_disengage(); | 1223 | xpc_die_deactivate(); |
1094 | break; | 1224 | break; |
1095 | 1225 | ||
1096 | case DIE_KDEBUG_ENTER: | 1226 | case DIE_KDEBUG_ENTER: |
@@ -1101,8 +1231,7 @@ xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) | |||
1101 | /* fall through */ | 1231 | /* fall through */ |
1102 | case DIE_MCA_MONARCH_ENTER: | 1232 | case DIE_MCA_MONARCH_ENTER: |
1103 | case DIE_INIT_MONARCH_ENTER: | 1233 | case DIE_INIT_MONARCH_ENTER: |
1104 | xpc_vars->heartbeat++; | 1234 | xpc_offline_heartbeat(); |
1105 | xpc_vars->heartbeat_offline = 1; | ||
1106 | break; | 1235 | break; |
1107 | 1236 | ||
1108 | case DIE_KDEBUG_LEAVE: | 1237 | case DIE_KDEBUG_LEAVE: |
@@ -1113,10 +1242,12 @@ xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) | |||
1113 | /* fall through */ | 1242 | /* fall through */ |
1114 | case DIE_MCA_MONARCH_LEAVE: | 1243 | case DIE_MCA_MONARCH_LEAVE: |
1115 | case DIE_INIT_MONARCH_LEAVE: | 1244 | case DIE_INIT_MONARCH_LEAVE: |
1116 | xpc_vars->heartbeat++; | 1245 | xpc_online_heartbeat(); |
1117 | xpc_vars->heartbeat_offline = 0; | ||
1118 | break; | 1246 | break; |
1119 | } | 1247 | } |
1248 | #else | ||
1249 | xpc_die_deactivate(); | ||
1250 | #endif | ||
1120 | 1251 | ||
1121 | return NOTIFY_DONE; | 1252 | return NOTIFY_DONE; |
1122 | } | 1253 | } |
@@ -1125,105 +1256,52 @@ int __init | |||
1125 | xpc_init(void) | 1256 | xpc_init(void) |
1126 | { | 1257 | { |
1127 | int ret; | 1258 | int ret; |
1128 | short partid; | ||
1129 | struct xpc_partition *part; | ||
1130 | struct task_struct *kthread; | 1259 | struct task_struct *kthread; |
1131 | size_t buf_size; | ||
1132 | |||
1133 | if (!ia64_platform_is("sn2")) | ||
1134 | return -ENODEV; | ||
1135 | |||
1136 | buf_size = max(XPC_RP_VARS_SIZE, | ||
1137 | XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES); | ||
1138 | xpc_remote_copy_buffer = xpc_kmalloc_cacheline_aligned(buf_size, | ||
1139 | GFP_KERNEL, | ||
1140 | &xpc_remote_copy_buffer_base); | ||
1141 | if (xpc_remote_copy_buffer == NULL) | ||
1142 | return -ENOMEM; | ||
1143 | 1260 | ||
1144 | snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part"); | 1261 | snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part"); |
1145 | snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan"); | 1262 | snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan"); |
1146 | 1263 | ||
1147 | xpc_sysctl = register_sysctl_table(xpc_sys_dir); | 1264 | if (is_shub()) { |
1148 | 1265 | /* | |
1149 | /* | 1266 | * The ia64-sn2 architecture supports at most 64 partitions. |
1150 | * The first few fields of each entry of xpc_partitions[] need to | 1267 | * And the inability to unregister remote amos restricts us |
1151 | * be initialized now so that calls to xpc_connect() and | 1268 | * further to only support exactly 64 partitions on this |
1152 | * xpc_disconnect() can be made prior to the activation of any remote | 1269 | * architecture, no less. |
1153 | * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE | 1270 | */ |
1154 | * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING | 1271 | if (xp_max_npartitions != 64) { |
1155 | * PARTITION HAS BEEN ACTIVATED. | 1272 | dev_err(xpc_part, "max #of partitions not set to 64\n"); |
1156 | */ | 1273 | ret = -EINVAL; |
1157 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | 1274 | } else { |
1158 | part = &xpc_partitions[partid]; | 1275 | ret = xpc_init_sn2(); |
1159 | 1276 | } | |
1160 | DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); | ||
1161 | |||
1162 | part->act_IRQ_rcvd = 0; | ||
1163 | spin_lock_init(&part->act_lock); | ||
1164 | part->act_state = XPC_P_INACTIVE; | ||
1165 | XPC_SET_REASON(part, 0, 0); | ||
1166 | 1277 | ||
1167 | init_timer(&part->disengage_request_timer); | 1278 | } else if (is_uv()) { |
1168 | part->disengage_request_timer.function = | 1279 | ret = xpc_init_uv(); |
1169 | xpc_timeout_partition_disengage_request; | ||
1170 | part->disengage_request_timer.data = (unsigned long)part; | ||
1171 | 1280 | ||
1172 | part->setup_state = XPC_P_UNSET; | 1281 | } else { |
1173 | init_waitqueue_head(&part->teardown_wq); | 1282 | ret = -ENODEV; |
1174 | atomic_set(&part->references, 0); | ||
1175 | } | 1283 | } |
1176 | 1284 | ||
1177 | /* | 1285 | if (ret != 0) |
1178 | * Open up protections for IPI operations (and AMO operations on | 1286 | return ret; |
1179 | * Shub 1.1 systems). | ||
1180 | */ | ||
1181 | xpc_allow_IPI_ops(); | ||
1182 | |||
1183 | /* | ||
1184 | * Interrupts being processed will increment this atomic variable and | ||
1185 | * awaken the heartbeat thread which will process the interrupts. | ||
1186 | */ | ||
1187 | atomic_set(&xpc_act_IRQ_rcvd, 0); | ||
1188 | 1287 | ||
1189 | /* | 1288 | ret = xpc_setup_partitions(); |
1190 | * This is safe to do before the xpc_hb_checker thread has started | ||
1191 | * because the handler releases a wait queue. If an interrupt is | ||
1192 | * received before the thread is waiting, it will not go to sleep, | ||
1193 | * but rather immediately process the interrupt. | ||
1194 | */ | ||
1195 | ret = request_irq(SGI_XPC_ACTIVATE, xpc_act_IRQ_handler, 0, | ||
1196 | "xpc hb", NULL); | ||
1197 | if (ret != 0) { | 1289 | if (ret != 0) { |
1198 | dev_err(xpc_part, "can't register ACTIVATE IRQ handler, " | 1290 | dev_err(xpc_part, "can't get memory for partition structure\n"); |
1199 | "errno=%d\n", -ret); | 1291 | goto out_1; |
1200 | |||
1201 | xpc_restrict_IPI_ops(); | ||
1202 | |||
1203 | if (xpc_sysctl) | ||
1204 | unregister_sysctl_table(xpc_sysctl); | ||
1205 | |||
1206 | kfree(xpc_remote_copy_buffer_base); | ||
1207 | return -EBUSY; | ||
1208 | } | 1292 | } |
1209 | 1293 | ||
1294 | xpc_sysctl = register_sysctl_table(xpc_sys_dir); | ||
1295 | |||
1210 | /* | 1296 | /* |
1211 | * Fill the partition reserved page with the information needed by | 1297 | * Fill the partition reserved page with the information needed by |
1212 | * other partitions to discover we are alive and establish initial | 1298 | * other partitions to discover we are alive and establish initial |
1213 | * communications. | 1299 | * communications. |
1214 | */ | 1300 | */ |
1215 | xpc_rsvd_page = xpc_rsvd_page_init(); | 1301 | ret = xpc_setup_rsvd_page(); |
1216 | if (xpc_rsvd_page == NULL) { | 1302 | if (ret != 0) { |
1217 | dev_err(xpc_part, "could not setup our reserved page\n"); | 1303 | dev_err(xpc_part, "can't setup our reserved page\n"); |
1218 | 1304 | goto out_2; | |
1219 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
1220 | xpc_restrict_IPI_ops(); | ||
1221 | |||
1222 | if (xpc_sysctl) | ||
1223 | unregister_sysctl_table(xpc_sysctl); | ||
1224 | |||
1225 | kfree(xpc_remote_copy_buffer_base); | ||
1226 | return -EBUSY; | ||
1227 | } | 1305 | } |
1228 | 1306 | ||
1229 | /* add ourselves to the reboot_notifier_list */ | 1307 | /* add ourselves to the reboot_notifier_list */ |
@@ -1236,9 +1314,6 @@ xpc_init(void) | |||
1236 | if (ret != 0) | 1314 | if (ret != 0) |
1237 | dev_warn(xpc_part, "can't register die notifier\n"); | 1315 | dev_warn(xpc_part, "can't register die notifier\n"); |
1238 | 1316 | ||
1239 | init_timer(&xpc_hb_timer); | ||
1240 | xpc_hb_timer.function = xpc_hb_beater; | ||
1241 | |||
1242 | /* | 1317 | /* |
1243 | * The real work-horse behind xpc. This processes incoming | 1318 | * The real work-horse behind xpc. This processes incoming |
1244 | * interrupts and monitors remote heartbeats. | 1319 | * interrupts and monitors remote heartbeats. |
@@ -1246,25 +1321,8 @@ xpc_init(void) | |||
1246 | kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); | 1321 | kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); |
1247 | if (IS_ERR(kthread)) { | 1322 | if (IS_ERR(kthread)) { |
1248 | dev_err(xpc_part, "failed while forking hb check thread\n"); | 1323 | dev_err(xpc_part, "failed while forking hb check thread\n"); |
1249 | 1324 | ret = -EBUSY; | |
1250 | /* indicate to others that our reserved page is uninitialized */ | 1325 | goto out_3; |
1251 | xpc_rsvd_page->vars_pa = 0; | ||
1252 | |||
1253 | /* take ourselves off of the reboot_notifier_list */ | ||
1254 | (void)unregister_reboot_notifier(&xpc_reboot_notifier); | ||
1255 | |||
1256 | /* take ourselves off of the die_notifier list */ | ||
1257 | (void)unregister_die_notifier(&xpc_die_notifier); | ||
1258 | |||
1259 | del_timer_sync(&xpc_hb_timer); | ||
1260 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
1261 | xpc_restrict_IPI_ops(); | ||
1262 | |||
1263 | if (xpc_sysctl) | ||
1264 | unregister_sysctl_table(xpc_sysctl); | ||
1265 | |||
1266 | kfree(xpc_remote_copy_buffer_base); | ||
1267 | return -EBUSY; | ||
1268 | } | 1326 | } |
1269 | 1327 | ||
1270 | /* | 1328 | /* |
@@ -1286,11 +1344,28 @@ xpc_init(void) | |||
1286 | 1344 | ||
1287 | /* set the interface to point at XPC's functions */ | 1345 | /* set the interface to point at XPC's functions */ |
1288 | xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, | 1346 | xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, |
1289 | xpc_initiate_allocate, xpc_initiate_send, | 1347 | xpc_initiate_send, xpc_initiate_send_notify, |
1290 | xpc_initiate_send_notify, xpc_initiate_received, | 1348 | xpc_initiate_received, xpc_initiate_partid_to_nasids); |
1291 | xpc_initiate_partid_to_nasids); | ||
1292 | 1349 | ||
1293 | return 0; | 1350 | return 0; |
1351 | |||
1352 | /* initialization was not successful */ | ||
1353 | out_3: | ||
1354 | xpc_teardown_rsvd_page(); | ||
1355 | |||
1356 | (void)unregister_die_notifier(&xpc_die_notifier); | ||
1357 | (void)unregister_reboot_notifier(&xpc_reboot_notifier); | ||
1358 | out_2: | ||
1359 | if (xpc_sysctl) | ||
1360 | unregister_sysctl_table(xpc_sysctl); | ||
1361 | |||
1362 | xpc_teardown_partitions(); | ||
1363 | out_1: | ||
1364 | if (is_shub()) | ||
1365 | xpc_exit_sn2(); | ||
1366 | else | ||
1367 | xpc_exit_uv(); | ||
1368 | return ret; | ||
1294 | } | 1369 | } |
1295 | 1370 | ||
1296 | module_init(xpc_init); | 1371 | module_init(xpc_init); |
@@ -1315,9 +1390,9 @@ module_param(xpc_hb_check_interval, int, 0); | |||
1315 | MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " | 1390 | MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " |
1316 | "heartbeat checks."); | 1391 | "heartbeat checks."); |
1317 | 1392 | ||
1318 | module_param(xpc_disengage_request_timelimit, int, 0); | 1393 | module_param(xpc_disengage_timelimit, int, 0); |
1319 | MODULE_PARM_DESC(xpc_disengage_request_timelimit, "Number of seconds to wait " | 1394 | MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait " |
1320 | "for disengage request to complete."); | 1395 | "for disengage to complete."); |
1321 | 1396 | ||
1322 | module_param(xpc_kdebug_ignore, int, 0); | 1397 | module_param(xpc_kdebug_ignore, int, 0); |
1323 | MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " | 1398 | MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " |
diff --git a/drivers/misc/sgi-xp/xpc_partition.c b/drivers/misc/sgi-xp/xpc_partition.c index 7dd4b5812c42..6722f6fe4dc7 100644 --- a/drivers/misc/sgi-xp/xpc_partition.c +++ b/drivers/misc/sgi-xp/xpc_partition.c | |||
@@ -15,57 +15,22 @@ | |||
15 | * | 15 | * |
16 | */ | 16 | */ |
17 | 17 | ||
18 | #include <linux/kernel.h> | 18 | #include <linux/device.h> |
19 | #include <linux/sysctl.h> | 19 | #include <linux/hardirq.h> |
20 | #include <linux/cache.h> | ||
21 | #include <linux/mmzone.h> | ||
22 | #include <linux/nodemask.h> | ||
23 | #include <asm/uncached.h> | ||
24 | #include <asm/sn/bte.h> | ||
25 | #include <asm/sn/intr.h> | ||
26 | #include <asm/sn/sn_sal.h> | ||
27 | #include <asm/sn/nodepda.h> | ||
28 | #include <asm/sn/addrs.h> | ||
29 | #include "xpc.h" | 20 | #include "xpc.h" |
30 | 21 | ||
31 | /* XPC is exiting flag */ | 22 | /* XPC is exiting flag */ |
32 | int xpc_exiting; | 23 | int xpc_exiting; |
33 | 24 | ||
34 | /* SH_IPI_ACCESS shub register value on startup */ | ||
35 | static u64 xpc_sh1_IPI_access; | ||
36 | static u64 xpc_sh2_IPI_access0; | ||
37 | static u64 xpc_sh2_IPI_access1; | ||
38 | static u64 xpc_sh2_IPI_access2; | ||
39 | static u64 xpc_sh2_IPI_access3; | ||
40 | |||
41 | /* original protection values for each node */ | ||
42 | u64 xpc_prot_vec[MAX_NUMNODES]; | ||
43 | |||
44 | /* this partition's reserved page pointers */ | 25 | /* this partition's reserved page pointers */ |
45 | struct xpc_rsvd_page *xpc_rsvd_page; | 26 | struct xpc_rsvd_page *xpc_rsvd_page; |
46 | static u64 *xpc_part_nasids; | 27 | static unsigned long *xpc_part_nasids; |
47 | static u64 *xpc_mach_nasids; | 28 | unsigned long *xpc_mach_nasids; |
48 | struct xpc_vars *xpc_vars; | ||
49 | struct xpc_vars_part *xpc_vars_part; | ||
50 | 29 | ||
51 | static int xp_nasid_mask_bytes; /* actual size in bytes of nasid mask */ | 30 | static int xpc_nasid_mask_nbytes; /* #of bytes in nasid mask */ |
52 | static int xp_nasid_mask_words; /* actual size in words of nasid mask */ | 31 | int xpc_nasid_mask_nlongs; /* #of longs in nasid mask */ |
53 | |||
54 | /* | ||
55 | * For performance reasons, each entry of xpc_partitions[] is cacheline | ||
56 | * aligned. And xpc_partitions[] is padded with an additional entry at the | ||
57 | * end so that the last legitimate entry doesn't share its cacheline with | ||
58 | * another variable. | ||
59 | */ | ||
60 | struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; | ||
61 | 32 | ||
62 | /* | 33 | struct xpc_partition *xpc_partitions; |
63 | * Generic buffer used to store a local copy of portions of a remote | ||
64 | * partition's reserved page (either its header and part_nasids mask, | ||
65 | * or its vars). | ||
66 | */ | ||
67 | char *xpc_remote_copy_buffer; | ||
68 | void *xpc_remote_copy_buffer_base; | ||
69 | 34 | ||
70 | /* | 35 | /* |
71 | * Guarantee that the kmalloc'd memory is cacheline aligned. | 36 | * Guarantee that the kmalloc'd memory is cacheline aligned. |
@@ -95,56 +60,59 @@ xpc_kmalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) | |||
95 | * Given a nasid, get the physical address of the partition's reserved page | 60 | * Given a nasid, get the physical address of the partition's reserved page |
96 | * for that nasid. This function returns 0 on any error. | 61 | * for that nasid. This function returns 0 on any error. |
97 | */ | 62 | */ |
98 | static u64 | 63 | static unsigned long |
99 | xpc_get_rsvd_page_pa(int nasid) | 64 | xpc_get_rsvd_page_pa(int nasid) |
100 | { | 65 | { |
101 | bte_result_t bte_res; | 66 | enum xp_retval ret; |
102 | s64 status; | ||
103 | u64 cookie = 0; | 67 | u64 cookie = 0; |
104 | u64 rp_pa = nasid; /* seed with nasid */ | 68 | unsigned long rp_pa = nasid; /* seed with nasid */ |
105 | u64 len = 0; | 69 | size_t len = 0; |
106 | u64 buf = buf; | 70 | size_t buf_len = 0; |
107 | u64 buf_len = 0; | 71 | void *buf = buf; |
108 | void *buf_base = NULL; | 72 | void *buf_base = NULL; |
109 | 73 | ||
110 | while (1) { | 74 | while (1) { |
111 | 75 | ||
112 | status = sn_partition_reserved_page_pa(buf, &cookie, &rp_pa, | 76 | /* !!! rp_pa will need to be _gpa on UV. |
113 | &len); | 77 | * ??? So do we save it into the architecture specific parts |
78 | * ??? of the xpc_partition structure? Do we rename this | ||
79 | * ??? function or have two versions? Rename rp_pa for UV to | ||
80 | * ??? rp_gpa? | ||
81 | */ | ||
82 | ret = xpc_get_partition_rsvd_page_pa(buf, &cookie, &rp_pa, | ||
83 | &len); | ||
114 | 84 | ||
115 | dev_dbg(xpc_part, "SAL returned with status=%li, cookie=" | 85 | dev_dbg(xpc_part, "SAL returned with ret=%d, cookie=0x%016lx, " |
116 | "0x%016lx, address=0x%016lx, len=0x%016lx\n", | 86 | "address=0x%016lx, len=0x%016lx\n", ret, |
117 | status, cookie, rp_pa, len); | 87 | (unsigned long)cookie, rp_pa, len); |
118 | 88 | ||
119 | if (status != SALRET_MORE_PASSES) | 89 | if (ret != xpNeedMoreInfo) |
120 | break; | 90 | break; |
121 | 91 | ||
92 | /* !!! L1_CACHE_ALIGN() is only a sn2-bte_copy requirement */ | ||
122 | if (L1_CACHE_ALIGN(len) > buf_len) { | 93 | if (L1_CACHE_ALIGN(len) > buf_len) { |
123 | kfree(buf_base); | 94 | kfree(buf_base); |
124 | buf_len = L1_CACHE_ALIGN(len); | 95 | buf_len = L1_CACHE_ALIGN(len); |
125 | buf = (u64)xpc_kmalloc_cacheline_aligned(buf_len, | 96 | buf = xpc_kmalloc_cacheline_aligned(buf_len, GFP_KERNEL, |
126 | GFP_KERNEL, | 97 | &buf_base); |
127 | &buf_base); | ||
128 | if (buf_base == NULL) { | 98 | if (buf_base == NULL) { |
129 | dev_err(xpc_part, "unable to kmalloc " | 99 | dev_err(xpc_part, "unable to kmalloc " |
130 | "len=0x%016lx\n", buf_len); | 100 | "len=0x%016lx\n", buf_len); |
131 | status = SALRET_ERROR; | 101 | ret = xpNoMemory; |
132 | break; | 102 | break; |
133 | } | 103 | } |
134 | } | 104 | } |
135 | 105 | ||
136 | bte_res = xp_bte_copy(rp_pa, buf, buf_len, | 106 | ret = xp_remote_memcpy(xp_pa(buf), rp_pa, buf_len); |
137 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | 107 | if (ret != xpSuccess) { |
138 | if (bte_res != BTE_SUCCESS) { | 108 | dev_dbg(xpc_part, "xp_remote_memcpy failed %d\n", ret); |
139 | dev_dbg(xpc_part, "xp_bte_copy failed %i\n", bte_res); | ||
140 | status = SALRET_ERROR; | ||
141 | break; | 109 | break; |
142 | } | 110 | } |
143 | } | 111 | } |
144 | 112 | ||
145 | kfree(buf_base); | 113 | kfree(buf_base); |
146 | 114 | ||
147 | if (status != SALRET_OK) | 115 | if (ret != xpSuccess) |
148 | rp_pa = 0; | 116 | rp_pa = 0; |
149 | 117 | ||
150 | dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa); | 118 | dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa); |
@@ -156,300 +124,77 @@ xpc_get_rsvd_page_pa(int nasid) | |||
156 | * other partitions to discover we are alive and establish initial | 124 | * other partitions to discover we are alive and establish initial |
157 | * communications. | 125 | * communications. |
158 | */ | 126 | */ |
159 | struct xpc_rsvd_page * | 127 | int |
160 | xpc_rsvd_page_init(void) | 128 | xpc_setup_rsvd_page(void) |
161 | { | 129 | { |
130 | int ret; | ||
162 | struct xpc_rsvd_page *rp; | 131 | struct xpc_rsvd_page *rp; |
163 | AMO_t *amos_page; | 132 | unsigned long rp_pa; |
164 | u64 rp_pa, nasid_array = 0; | 133 | unsigned long new_ts_jiffies; |
165 | int i, ret; | ||
166 | 134 | ||
167 | /* get the local reserved page's address */ | 135 | /* get the local reserved page's address */ |
168 | 136 | ||
169 | preempt_disable(); | 137 | preempt_disable(); |
170 | rp_pa = xpc_get_rsvd_page_pa(cpuid_to_nasid(smp_processor_id())); | 138 | rp_pa = xpc_get_rsvd_page_pa(xp_cpu_to_nasid(smp_processor_id())); |
171 | preempt_enable(); | 139 | preempt_enable(); |
172 | if (rp_pa == 0) { | 140 | if (rp_pa == 0) { |
173 | dev_err(xpc_part, "SAL failed to locate the reserved page\n"); | 141 | dev_err(xpc_part, "SAL failed to locate the reserved page\n"); |
174 | return NULL; | 142 | return -ESRCH; |
175 | } | 143 | } |
176 | rp = (struct xpc_rsvd_page *)__va(rp_pa); | 144 | rp = (struct xpc_rsvd_page *)__va(rp_pa); |
177 | 145 | ||
178 | if (rp->partid != sn_partition_id) { | 146 | if (rp->SAL_version < 3) { |
179 | dev_err(xpc_part, "the reserved page's partid of %d should be " | 147 | /* SAL_versions < 3 had a SAL_partid defined as a u8 */ |
180 | "%d\n", rp->partid, sn_partition_id); | 148 | rp->SAL_partid &= 0xff; |
181 | return NULL; | 149 | } |
150 | BUG_ON(rp->SAL_partid != xp_partition_id); | ||
151 | |||
152 | if (rp->SAL_partid < 0 || rp->SAL_partid >= xp_max_npartitions) { | ||
153 | dev_err(xpc_part, "the reserved page's partid of %d is outside " | ||
154 | "supported range (< 0 || >= %d)\n", rp->SAL_partid, | ||
155 | xp_max_npartitions); | ||
156 | return -EINVAL; | ||
182 | } | 157 | } |
183 | 158 | ||
184 | rp->version = XPC_RP_VERSION; | 159 | rp->version = XPC_RP_VERSION; |
160 | rp->max_npartitions = xp_max_npartitions; | ||
185 | 161 | ||
186 | /* establish the actual sizes of the nasid masks */ | 162 | /* establish the actual sizes of the nasid masks */ |
187 | if (rp->SAL_version == 1) { | 163 | if (rp->SAL_version == 1) { |
188 | /* SAL_version 1 didn't set the nasids_size field */ | 164 | /* SAL_version 1 didn't set the nasids_size field */ |
189 | rp->nasids_size = 128; | 165 | rp->SAL_nasids_size = 128; |
190 | } | 166 | } |
191 | xp_nasid_mask_bytes = rp->nasids_size; | 167 | xpc_nasid_mask_nbytes = rp->SAL_nasids_size; |
192 | xp_nasid_mask_words = xp_nasid_mask_bytes / 8; | 168 | xpc_nasid_mask_nlongs = BITS_TO_LONGS(rp->SAL_nasids_size * |
169 | BITS_PER_BYTE); | ||
193 | 170 | ||
194 | /* setup the pointers to the various items in the reserved page */ | 171 | /* setup the pointers to the various items in the reserved page */ |
195 | xpc_part_nasids = XPC_RP_PART_NASIDS(rp); | 172 | xpc_part_nasids = XPC_RP_PART_NASIDS(rp); |
196 | xpc_mach_nasids = XPC_RP_MACH_NASIDS(rp); | 173 | xpc_mach_nasids = XPC_RP_MACH_NASIDS(rp); |
197 | xpc_vars = XPC_RP_VARS(rp); | ||
198 | xpc_vars_part = XPC_RP_VARS_PART(rp); | ||
199 | |||
200 | /* | ||
201 | * Before clearing xpc_vars, see if a page of AMOs had been previously | ||
202 | * allocated. If not we'll need to allocate one and set permissions | ||
203 | * so that cross-partition AMOs are allowed. | ||
204 | * | ||
205 | * The allocated AMO page needs MCA reporting to remain disabled after | ||
206 | * XPC has unloaded. To make this work, we keep a copy of the pointer | ||
207 | * to this page (i.e., amos_page) in the struct xpc_vars structure, | ||
208 | * which is pointed to by the reserved page, and re-use that saved copy | ||
209 | * on subsequent loads of XPC. This AMO page is never freed, and its | ||
210 | * memory protections are never restricted. | ||
211 | */ | ||
212 | amos_page = xpc_vars->amos_page; | ||
213 | if (amos_page == NULL) { | ||
214 | amos_page = (AMO_t *)TO_AMO(uncached_alloc_page(0, 1)); | ||
215 | if (amos_page == NULL) { | ||
216 | dev_err(xpc_part, "can't allocate page of AMOs\n"); | ||
217 | return NULL; | ||
218 | } | ||
219 | |||
220 | /* | ||
221 | * Open up AMO-R/W to cpu. This is done for Shub 1.1 systems | ||
222 | * when xpc_allow_IPI_ops() is called via xpc_hb_init(). | ||
223 | */ | ||
224 | if (!enable_shub_wars_1_1()) { | ||
225 | ret = sn_change_memprotect(ia64_tpa((u64)amos_page), | ||
226 | PAGE_SIZE, | ||
227 | SN_MEMPROT_ACCESS_CLASS_1, | ||
228 | &nasid_array); | ||
229 | if (ret != 0) { | ||
230 | dev_err(xpc_part, "can't change memory " | ||
231 | "protections\n"); | ||
232 | uncached_free_page(__IA64_UNCACHED_OFFSET | | ||
233 | TO_PHYS((u64)amos_page), 1); | ||
234 | return NULL; | ||
235 | } | ||
236 | } | ||
237 | } else if (!IS_AMO_ADDRESS((u64)amos_page)) { | ||
238 | /* | ||
239 | * EFI's XPBOOT can also set amos_page in the reserved page, | ||
240 | * but it happens to leave it as an uncached physical address | ||
241 | * and we need it to be an uncached virtual, so we'll have to | ||
242 | * convert it. | ||
243 | */ | ||
244 | if (!IS_AMO_PHYS_ADDRESS((u64)amos_page)) { | ||
245 | dev_err(xpc_part, "previously used amos_page address " | ||
246 | "is bad = 0x%p\n", (void *)amos_page); | ||
247 | return NULL; | ||
248 | } | ||
249 | amos_page = (AMO_t *)TO_AMO((u64)amos_page); | ||
250 | } | ||
251 | |||
252 | /* clear xpc_vars */ | ||
253 | memset(xpc_vars, 0, sizeof(struct xpc_vars)); | ||
254 | |||
255 | xpc_vars->version = XPC_V_VERSION; | ||
256 | xpc_vars->act_nasid = cpuid_to_nasid(0); | ||
257 | xpc_vars->act_phys_cpuid = cpu_physical_id(0); | ||
258 | xpc_vars->vars_part_pa = __pa(xpc_vars_part); | ||
259 | xpc_vars->amos_page_pa = ia64_tpa((u64)amos_page); | ||
260 | xpc_vars->amos_page = amos_page; /* save for next load of XPC */ | ||
261 | |||
262 | /* clear xpc_vars_part */ | ||
263 | memset((u64 *)xpc_vars_part, 0, sizeof(struct xpc_vars_part) * | ||
264 | XP_MAX_PARTITIONS); | ||
265 | |||
266 | /* initialize the activate IRQ related AMO variables */ | ||
267 | for (i = 0; i < xp_nasid_mask_words; i++) | ||
268 | (void)xpc_IPI_init(XPC_ACTIVATE_IRQ_AMOS + i); | ||
269 | |||
270 | /* initialize the engaged remote partitions related AMO variables */ | ||
271 | (void)xpc_IPI_init(XPC_ENGAGED_PARTITIONS_AMO); | ||
272 | (void)xpc_IPI_init(XPC_DISENGAGE_REQUEST_AMO); | ||
273 | 174 | ||
274 | /* timestamp of when reserved page was setup by XPC */ | 175 | ret = xpc_setup_rsvd_page_sn(rp); |
275 | rp->stamp = CURRENT_TIME; | 176 | if (ret != 0) |
177 | return ret; | ||
276 | 178 | ||
277 | /* | 179 | /* |
180 | * Set timestamp of when reserved page was setup by XPC. | ||
278 | * This signifies to the remote partition that our reserved | 181 | * This signifies to the remote partition that our reserved |
279 | * page is initialized. | 182 | * page is initialized. |
280 | */ | 183 | */ |
281 | rp->vars_pa = __pa(xpc_vars); | 184 | new_ts_jiffies = jiffies; |
185 | if (new_ts_jiffies == 0 || new_ts_jiffies == rp->ts_jiffies) | ||
186 | new_ts_jiffies++; | ||
187 | rp->ts_jiffies = new_ts_jiffies; | ||
282 | 188 | ||
283 | return rp; | 189 | xpc_rsvd_page = rp; |
190 | return 0; | ||
284 | } | 191 | } |
285 | 192 | ||
286 | /* | ||
287 | * Change protections to allow IPI operations (and AMO operations on | ||
288 | * Shub 1.1 systems). | ||
289 | */ | ||
290 | void | 193 | void |
291 | xpc_allow_IPI_ops(void) | 194 | xpc_teardown_rsvd_page(void) |
292 | { | 195 | { |
293 | int node; | 196 | /* a zero timestamp indicates our rsvd page is not initialized */ |
294 | int nasid; | 197 | xpc_rsvd_page->ts_jiffies = 0; |
295 | |||
296 | /* >>> Change SH_IPI_ACCESS code to use SAL call once it is available */ | ||
297 | |||
298 | if (is_shub2()) { | ||
299 | xpc_sh2_IPI_access0 = | ||
300 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0)); | ||
301 | xpc_sh2_IPI_access1 = | ||
302 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1)); | ||
303 | xpc_sh2_IPI_access2 = | ||
304 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2)); | ||
305 | xpc_sh2_IPI_access3 = | ||
306 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3)); | ||
307 | |||
308 | for_each_online_node(node) { | ||
309 | nasid = cnodeid_to_nasid(node); | ||
310 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
311 | -1UL); | ||
312 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
313 | -1UL); | ||
314 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
315 | -1UL); | ||
316 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
317 | -1UL); | ||
318 | } | ||
319 | |||
320 | } else { | ||
321 | xpc_sh1_IPI_access = | ||
322 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS)); | ||
323 | |||
324 | for_each_online_node(node) { | ||
325 | nasid = cnodeid_to_nasid(node); | ||
326 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
327 | -1UL); | ||
328 | |||
329 | /* | ||
330 | * Since the BIST collides with memory operations on | ||
331 | * SHUB 1.1 sn_change_memprotect() cannot be used. | ||
332 | */ | ||
333 | if (enable_shub_wars_1_1()) { | ||
334 | /* open up everything */ | ||
335 | xpc_prot_vec[node] = (u64)HUB_L((u64 *) | ||
336 | GLOBAL_MMR_ADDR | ||
337 | (nasid, | ||
338 | SH1_MD_DQLP_MMR_DIR_PRIVEC0)); | ||
339 | HUB_S((u64 *) | ||
340 | GLOBAL_MMR_ADDR(nasid, | ||
341 | SH1_MD_DQLP_MMR_DIR_PRIVEC0), | ||
342 | -1UL); | ||
343 | HUB_S((u64 *) | ||
344 | GLOBAL_MMR_ADDR(nasid, | ||
345 | SH1_MD_DQRP_MMR_DIR_PRIVEC0), | ||
346 | -1UL); | ||
347 | } | ||
348 | } | ||
349 | } | ||
350 | } | ||
351 | |||
352 | /* | ||
353 | * Restrict protections to disallow IPI operations (and AMO operations on | ||
354 | * Shub 1.1 systems). | ||
355 | */ | ||
356 | void | ||
357 | xpc_restrict_IPI_ops(void) | ||
358 | { | ||
359 | int node; | ||
360 | int nasid; | ||
361 | |||
362 | /* >>> Change SH_IPI_ACCESS code to use SAL call once it is available */ | ||
363 | |||
364 | if (is_shub2()) { | ||
365 | |||
366 | for_each_online_node(node) { | ||
367 | nasid = cnodeid_to_nasid(node); | ||
368 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
369 | xpc_sh2_IPI_access0); | ||
370 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
371 | xpc_sh2_IPI_access1); | ||
372 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
373 | xpc_sh2_IPI_access2); | ||
374 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
375 | xpc_sh2_IPI_access3); | ||
376 | } | ||
377 | |||
378 | } else { | ||
379 | |||
380 | for_each_online_node(node) { | ||
381 | nasid = cnodeid_to_nasid(node); | ||
382 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
383 | xpc_sh1_IPI_access); | ||
384 | |||
385 | if (enable_shub_wars_1_1()) { | ||
386 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, | ||
387 | SH1_MD_DQLP_MMR_DIR_PRIVEC0), | ||
388 | xpc_prot_vec[node]); | ||
389 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, | ||
390 | SH1_MD_DQRP_MMR_DIR_PRIVEC0), | ||
391 | xpc_prot_vec[node]); | ||
392 | } | ||
393 | } | ||
394 | } | ||
395 | } | ||
396 | |||
397 | /* | ||
398 | * At periodic intervals, scan through all active partitions and ensure | ||
399 | * their heartbeat is still active. If not, the partition is deactivated. | ||
400 | */ | ||
401 | void | ||
402 | xpc_check_remote_hb(void) | ||
403 | { | ||
404 | struct xpc_vars *remote_vars; | ||
405 | struct xpc_partition *part; | ||
406 | short partid; | ||
407 | bte_result_t bres; | ||
408 | |||
409 | remote_vars = (struct xpc_vars *)xpc_remote_copy_buffer; | ||
410 | |||
411 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
412 | |||
413 | if (xpc_exiting) | ||
414 | break; | ||
415 | |||
416 | if (partid == sn_partition_id) | ||
417 | continue; | ||
418 | |||
419 | part = &xpc_partitions[partid]; | ||
420 | |||
421 | if (part->act_state == XPC_P_INACTIVE || | ||
422 | part->act_state == XPC_P_DEACTIVATING) { | ||
423 | continue; | ||
424 | } | ||
425 | |||
426 | /* pull the remote_hb cache line */ | ||
427 | bres = xp_bte_copy(part->remote_vars_pa, | ||
428 | (u64)remote_vars, | ||
429 | XPC_RP_VARS_SIZE, | ||
430 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
431 | if (bres != BTE_SUCCESS) { | ||
432 | XPC_DEACTIVATE_PARTITION(part, | ||
433 | xpc_map_bte_errors(bres)); | ||
434 | continue; | ||
435 | } | ||
436 | |||
437 | dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat" | ||
438 | " = %ld, heartbeat_offline = %ld, HB_mask = 0x%lx\n", | ||
439 | partid, remote_vars->heartbeat, part->last_heartbeat, | ||
440 | remote_vars->heartbeat_offline, | ||
441 | remote_vars->heartbeating_to_mask); | ||
442 | |||
443 | if (((remote_vars->heartbeat == part->last_heartbeat) && | ||
444 | (remote_vars->heartbeat_offline == 0)) || | ||
445 | !xpc_hb_allowed(sn_partition_id, remote_vars)) { | ||
446 | |||
447 | XPC_DEACTIVATE_PARTITION(part, xpNoHeartbeat); | ||
448 | continue; | ||
449 | } | ||
450 | |||
451 | part->last_heartbeat = remote_vars->heartbeat; | ||
452 | } | ||
453 | } | 198 | } |
454 | 199 | ||
455 | /* | 200 | /* |
@@ -459,11 +204,12 @@ xpc_check_remote_hb(void) | |||
459 | * is large enough to contain a copy of their reserved page header and | 204 | * is large enough to contain a copy of their reserved page header and |
460 | * part_nasids mask. | 205 | * part_nasids mask. |
461 | */ | 206 | */ |
462 | static enum xp_retval | 207 | enum xp_retval |
463 | xpc_get_remote_rp(int nasid, u64 *discovered_nasids, | 208 | xpc_get_remote_rp(int nasid, unsigned long *discovered_nasids, |
464 | struct xpc_rsvd_page *remote_rp, u64 *remote_rp_pa) | 209 | struct xpc_rsvd_page *remote_rp, unsigned long *remote_rp_pa) |
465 | { | 210 | { |
466 | int bres, i; | 211 | int l; |
212 | enum xp_retval ret; | ||
467 | 213 | ||
468 | /* get the reserved page's physical address */ | 214 | /* get the reserved page's physical address */ |
469 | 215 | ||
@@ -472,355 +218,45 @@ xpc_get_remote_rp(int nasid, u64 *discovered_nasids, | |||
472 | return xpNoRsvdPageAddr; | 218 | return xpNoRsvdPageAddr; |
473 | 219 | ||
474 | /* pull over the reserved page header and part_nasids mask */ | 220 | /* pull over the reserved page header and part_nasids mask */ |
475 | bres = xp_bte_copy(*remote_rp_pa, (u64)remote_rp, | 221 | ret = xp_remote_memcpy(xp_pa(remote_rp), *remote_rp_pa, |
476 | XPC_RP_HEADER_SIZE + xp_nasid_mask_bytes, | 222 | XPC_RP_HEADER_SIZE + xpc_nasid_mask_nbytes); |
477 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | 223 | if (ret != xpSuccess) |
478 | if (bres != BTE_SUCCESS) | 224 | return ret; |
479 | return xpc_map_bte_errors(bres); | ||
480 | 225 | ||
481 | if (discovered_nasids != NULL) { | 226 | if (discovered_nasids != NULL) { |
482 | u64 *remote_part_nasids = XPC_RP_PART_NASIDS(remote_rp); | 227 | unsigned long *remote_part_nasids = |
483 | 228 | XPC_RP_PART_NASIDS(remote_rp); | |
484 | for (i = 0; i < xp_nasid_mask_words; i++) | ||
485 | discovered_nasids[i] |= remote_part_nasids[i]; | ||
486 | } | ||
487 | |||
488 | /* check that the partid is for another partition */ | ||
489 | 229 | ||
490 | if (remote_rp->partid < 1 || | 230 | for (l = 0; l < xpc_nasid_mask_nlongs; l++) |
491 | remote_rp->partid > (XP_MAX_PARTITIONS - 1)) { | 231 | discovered_nasids[l] |= remote_part_nasids[l]; |
492 | return xpInvalidPartid; | ||
493 | } | 232 | } |
494 | 233 | ||
495 | if (remote_rp->partid == sn_partition_id) | 234 | /* zero timestamp indicates the reserved page has not been setup */ |
496 | return xpLocalPartid; | 235 | if (remote_rp->ts_jiffies == 0) |
236 | return xpRsvdPageNotSet; | ||
497 | 237 | ||
498 | if (XPC_VERSION_MAJOR(remote_rp->version) != | 238 | if (XPC_VERSION_MAJOR(remote_rp->version) != |
499 | XPC_VERSION_MAJOR(XPC_RP_VERSION)) { | 239 | XPC_VERSION_MAJOR(XPC_RP_VERSION)) { |
500 | return xpBadVersion; | 240 | return xpBadVersion; |
501 | } | 241 | } |
502 | 242 | ||
503 | return xpSuccess; | 243 | /* check that both remote and local partids are valid for each side */ |
504 | } | 244 | if (remote_rp->SAL_partid < 0 || |
505 | 245 | remote_rp->SAL_partid >= xp_max_npartitions || | |
506 | /* | 246 | remote_rp->max_npartitions <= xp_partition_id) { |
507 | * Get a copy of the remote partition's XPC variables from the reserved page. | 247 | return xpInvalidPartid; |
508 | * | ||
509 | * remote_vars points to a buffer that is cacheline aligned for BTE copies and | ||
510 | * assumed to be of size XPC_RP_VARS_SIZE. | ||
511 | */ | ||
512 | static enum xp_retval | ||
513 | xpc_get_remote_vars(u64 remote_vars_pa, struct xpc_vars *remote_vars) | ||
514 | { | ||
515 | int bres; | ||
516 | |||
517 | if (remote_vars_pa == 0) | ||
518 | return xpVarsNotSet; | ||
519 | |||
520 | /* pull over the cross partition variables */ | ||
521 | bres = xp_bte_copy(remote_vars_pa, (u64)remote_vars, XPC_RP_VARS_SIZE, | ||
522 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
523 | if (bres != BTE_SUCCESS) | ||
524 | return xpc_map_bte_errors(bres); | ||
525 | |||
526 | if (XPC_VERSION_MAJOR(remote_vars->version) != | ||
527 | XPC_VERSION_MAJOR(XPC_V_VERSION)) { | ||
528 | return xpBadVersion; | ||
529 | } | ||
530 | |||
531 | return xpSuccess; | ||
532 | } | ||
533 | |||
534 | /* | ||
535 | * Update the remote partition's info. | ||
536 | */ | ||
537 | static void | ||
538 | xpc_update_partition_info(struct xpc_partition *part, u8 remote_rp_version, | ||
539 | struct timespec *remote_rp_stamp, u64 remote_rp_pa, | ||
540 | u64 remote_vars_pa, struct xpc_vars *remote_vars) | ||
541 | { | ||
542 | part->remote_rp_version = remote_rp_version; | ||
543 | dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n", | ||
544 | part->remote_rp_version); | ||
545 | |||
546 | part->remote_rp_stamp = *remote_rp_stamp; | ||
547 | dev_dbg(xpc_part, " remote_rp_stamp (tv_sec = 0x%lx tv_nsec = 0x%lx\n", | ||
548 | part->remote_rp_stamp.tv_sec, part->remote_rp_stamp.tv_nsec); | ||
549 | |||
550 | part->remote_rp_pa = remote_rp_pa; | ||
551 | dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa); | ||
552 | |||
553 | part->remote_vars_pa = remote_vars_pa; | ||
554 | dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n", | ||
555 | part->remote_vars_pa); | ||
556 | |||
557 | part->last_heartbeat = remote_vars->heartbeat; | ||
558 | dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n", | ||
559 | part->last_heartbeat); | ||
560 | |||
561 | part->remote_vars_part_pa = remote_vars->vars_part_pa; | ||
562 | dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n", | ||
563 | part->remote_vars_part_pa); | ||
564 | |||
565 | part->remote_act_nasid = remote_vars->act_nasid; | ||
566 | dev_dbg(xpc_part, " remote_act_nasid = 0x%x\n", | ||
567 | part->remote_act_nasid); | ||
568 | |||
569 | part->remote_act_phys_cpuid = remote_vars->act_phys_cpuid; | ||
570 | dev_dbg(xpc_part, " remote_act_phys_cpuid = 0x%x\n", | ||
571 | part->remote_act_phys_cpuid); | ||
572 | |||
573 | part->remote_amos_page_pa = remote_vars->amos_page_pa; | ||
574 | dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n", | ||
575 | part->remote_amos_page_pa); | ||
576 | |||
577 | part->remote_vars_version = remote_vars->version; | ||
578 | dev_dbg(xpc_part, " remote_vars_version = 0x%x\n", | ||
579 | part->remote_vars_version); | ||
580 | } | ||
581 | |||
582 | /* | ||
583 | * Prior code has determined the nasid which generated an IPI. Inspect | ||
584 | * that nasid to determine if its partition needs to be activated or | ||
585 | * deactivated. | ||
586 | * | ||
587 | * A partition is consider "awaiting activation" if our partition | ||
588 | * flags indicate it is not active and it has a heartbeat. A | ||
589 | * partition is considered "awaiting deactivation" if our partition | ||
590 | * flags indicate it is active but it has no heartbeat or it is not | ||
591 | * sending its heartbeat to us. | ||
592 | * | ||
593 | * To determine the heartbeat, the remote nasid must have a properly | ||
594 | * initialized reserved page. | ||
595 | */ | ||
596 | static void | ||
597 | xpc_identify_act_IRQ_req(int nasid) | ||
598 | { | ||
599 | struct xpc_rsvd_page *remote_rp; | ||
600 | struct xpc_vars *remote_vars; | ||
601 | u64 remote_rp_pa; | ||
602 | u64 remote_vars_pa; | ||
603 | int remote_rp_version; | ||
604 | int reactivate = 0; | ||
605 | int stamp_diff; | ||
606 | struct timespec remote_rp_stamp = { 0, 0 }; | ||
607 | short partid; | ||
608 | struct xpc_partition *part; | ||
609 | enum xp_retval ret; | ||
610 | |||
611 | /* pull over the reserved page structure */ | ||
612 | |||
613 | remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer; | ||
614 | |||
615 | ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa); | ||
616 | if (ret != xpSuccess) { | ||
617 | dev_warn(xpc_part, "unable to get reserved page from nasid %d, " | ||
618 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
619 | return; | ||
620 | } | ||
621 | |||
622 | remote_vars_pa = remote_rp->vars_pa; | ||
623 | remote_rp_version = remote_rp->version; | ||
624 | if (XPC_SUPPORTS_RP_STAMP(remote_rp_version)) | ||
625 | remote_rp_stamp = remote_rp->stamp; | ||
626 | |||
627 | partid = remote_rp->partid; | ||
628 | part = &xpc_partitions[partid]; | ||
629 | |||
630 | /* pull over the cross partition variables */ | ||
631 | |||
632 | remote_vars = (struct xpc_vars *)xpc_remote_copy_buffer; | ||
633 | |||
634 | ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); | ||
635 | if (ret != xpSuccess) { | ||
636 | |||
637 | dev_warn(xpc_part, "unable to get XPC variables from nasid %d, " | ||
638 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
639 | |||
640 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
641 | return; | ||
642 | } | ||
643 | |||
644 | part->act_IRQ_rcvd++; | ||
645 | |||
646 | dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = " | ||
647 | "%ld:0x%lx\n", (int)nasid, (int)partid, part->act_IRQ_rcvd, | ||
648 | remote_vars->heartbeat, remote_vars->heartbeating_to_mask); | ||
649 | |||
650 | if (xpc_partition_disengaged(part) && | ||
651 | part->act_state == XPC_P_INACTIVE) { | ||
652 | |||
653 | xpc_update_partition_info(part, remote_rp_version, | ||
654 | &remote_rp_stamp, remote_rp_pa, | ||
655 | remote_vars_pa, remote_vars); | ||
656 | |||
657 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) { | ||
658 | if (xpc_partition_disengage_requested(1UL << partid)) { | ||
659 | /* | ||
660 | * Other side is waiting on us to disengage, | ||
661 | * even though we already have. | ||
662 | */ | ||
663 | return; | ||
664 | } | ||
665 | } else { | ||
666 | /* other side doesn't support disengage requests */ | ||
667 | xpc_clear_partition_disengage_request(1UL << partid); | ||
668 | } | ||
669 | |||
670 | xpc_activate_partition(part); | ||
671 | return; | ||
672 | } | ||
673 | |||
674 | DBUG_ON(part->remote_rp_version == 0); | ||
675 | DBUG_ON(part->remote_vars_version == 0); | ||
676 | |||
677 | if (!XPC_SUPPORTS_RP_STAMP(part->remote_rp_version)) { | ||
678 | DBUG_ON(XPC_SUPPORTS_DISENGAGE_REQUEST(part-> | ||
679 | remote_vars_version)); | ||
680 | |||
681 | if (!XPC_SUPPORTS_RP_STAMP(remote_rp_version)) { | ||
682 | DBUG_ON(XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars-> | ||
683 | version)); | ||
684 | /* see if the other side rebooted */ | ||
685 | if (part->remote_amos_page_pa == | ||
686 | remote_vars->amos_page_pa && | ||
687 | xpc_hb_allowed(sn_partition_id, remote_vars)) { | ||
688 | /* doesn't look that way, so ignore the IPI */ | ||
689 | return; | ||
690 | } | ||
691 | } | ||
692 | |||
693 | /* | ||
694 | * Other side rebooted and previous XPC didn't support the | ||
695 | * disengage request, so we don't need to do anything special. | ||
696 | */ | ||
697 | |||
698 | xpc_update_partition_info(part, remote_rp_version, | ||
699 | &remote_rp_stamp, remote_rp_pa, | ||
700 | remote_vars_pa, remote_vars); | ||
701 | part->reactivate_nasid = nasid; | ||
702 | XPC_DEACTIVATE_PARTITION(part, xpReactivating); | ||
703 | return; | ||
704 | } | ||
705 | |||
706 | DBUG_ON(!XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)); | ||
707 | |||
708 | if (!XPC_SUPPORTS_RP_STAMP(remote_rp_version)) { | ||
709 | DBUG_ON(!XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars->version)); | ||
710 | |||
711 | /* | ||
712 | * Other side rebooted and previous XPC did support the | ||
713 | * disengage request, but the new one doesn't. | ||
714 | */ | ||
715 | |||
716 | xpc_clear_partition_engaged(1UL << partid); | ||
717 | xpc_clear_partition_disengage_request(1UL << partid); | ||
718 | |||
719 | xpc_update_partition_info(part, remote_rp_version, | ||
720 | &remote_rp_stamp, remote_rp_pa, | ||
721 | remote_vars_pa, remote_vars); | ||
722 | reactivate = 1; | ||
723 | |||
724 | } else { | ||
725 | DBUG_ON(!XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars->version)); | ||
726 | |||
727 | stamp_diff = xpc_compare_stamps(&part->remote_rp_stamp, | ||
728 | &remote_rp_stamp); | ||
729 | if (stamp_diff != 0) { | ||
730 | DBUG_ON(stamp_diff >= 0); | ||
731 | |||
732 | /* | ||
733 | * Other side rebooted and the previous XPC did support | ||
734 | * the disengage request, as does the new one. | ||
735 | */ | ||
736 | |||
737 | DBUG_ON(xpc_partition_engaged(1UL << partid)); | ||
738 | DBUG_ON(xpc_partition_disengage_requested(1UL << | ||
739 | partid)); | ||
740 | |||
741 | xpc_update_partition_info(part, remote_rp_version, | ||
742 | &remote_rp_stamp, | ||
743 | remote_rp_pa, remote_vars_pa, | ||
744 | remote_vars); | ||
745 | reactivate = 1; | ||
746 | } | ||
747 | } | ||
748 | |||
749 | if (part->disengage_request_timeout > 0 && | ||
750 | !xpc_partition_disengaged(part)) { | ||
751 | /* still waiting on other side to disengage from us */ | ||
752 | return; | ||
753 | } | ||
754 | |||
755 | if (reactivate) { | ||
756 | part->reactivate_nasid = nasid; | ||
757 | XPC_DEACTIVATE_PARTITION(part, xpReactivating); | ||
758 | |||
759 | } else if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version) && | ||
760 | xpc_partition_disengage_requested(1UL << partid)) { | ||
761 | XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown); | ||
762 | } | 248 | } |
763 | } | ||
764 | 249 | ||
765 | /* | 250 | if (remote_rp->SAL_partid == xp_partition_id) |
766 | * Loop through the activation AMO variables and process any bits | 251 | return xpLocalPartid; |
767 | * which are set. Each bit indicates a nasid sending a partition | ||
768 | * activation or deactivation request. | ||
769 | * | ||
770 | * Return #of IRQs detected. | ||
771 | */ | ||
772 | int | ||
773 | xpc_identify_act_IRQ_sender(void) | ||
774 | { | ||
775 | int word, bit; | ||
776 | u64 nasid_mask; | ||
777 | u64 nasid; /* remote nasid */ | ||
778 | int n_IRQs_detected = 0; | ||
779 | AMO_t *act_amos; | ||
780 | |||
781 | act_amos = xpc_vars->amos_page + XPC_ACTIVATE_IRQ_AMOS; | ||
782 | |||
783 | /* scan through act AMO variable looking for non-zero entries */ | ||
784 | for (word = 0; word < xp_nasid_mask_words; word++) { | ||
785 | |||
786 | if (xpc_exiting) | ||
787 | break; | ||
788 | |||
789 | nasid_mask = xpc_IPI_receive(&act_amos[word]); | ||
790 | if (nasid_mask == 0) { | ||
791 | /* no IRQs from nasids in this variable */ | ||
792 | continue; | ||
793 | } | ||
794 | |||
795 | dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word, | ||
796 | nasid_mask); | ||
797 | |||
798 | /* | ||
799 | * If this nasid has been added to the machine since | ||
800 | * our partition was reset, this will retain the | ||
801 | * remote nasid in our reserved pages machine mask. | ||
802 | * This is used in the event of module reload. | ||
803 | */ | ||
804 | xpc_mach_nasids[word] |= nasid_mask; | ||
805 | |||
806 | /* locate the nasid(s) which sent interrupts */ | ||
807 | 252 | ||
808 | for (bit = 0; bit < (8 * sizeof(u64)); bit++) { | 253 | return xpSuccess; |
809 | if (nasid_mask & (1UL << bit)) { | ||
810 | n_IRQs_detected++; | ||
811 | nasid = XPC_NASID_FROM_W_B(word, bit); | ||
812 | dev_dbg(xpc_part, "interrupt from nasid %ld\n", | ||
813 | nasid); | ||
814 | xpc_identify_act_IRQ_req(nasid); | ||
815 | } | ||
816 | } | ||
817 | } | ||
818 | return n_IRQs_detected; | ||
819 | } | 254 | } |
820 | 255 | ||
821 | /* | 256 | /* |
822 | * See if the other side has responded to a partition disengage request | 257 | * See if the other side has responded to a partition deactivate request |
823 | * from us. | 258 | * from us. Though we requested the remote partition to deactivate with regard |
259 | * to us, we really only need to wait for the other side to disengage from us. | ||
824 | */ | 260 | */ |
825 | int | 261 | int |
826 | xpc_partition_disengaged(struct xpc_partition *part) | 262 | xpc_partition_disengaged(struct xpc_partition *part) |
@@ -828,41 +264,37 @@ xpc_partition_disengaged(struct xpc_partition *part) | |||
828 | short partid = XPC_PARTID(part); | 264 | short partid = XPC_PARTID(part); |
829 | int disengaged; | 265 | int disengaged; |
830 | 266 | ||
831 | disengaged = (xpc_partition_engaged(1UL << partid) == 0); | 267 | disengaged = !xpc_partition_engaged(partid); |
832 | if (part->disengage_request_timeout) { | 268 | if (part->disengage_timeout) { |
833 | if (!disengaged) { | 269 | if (!disengaged) { |
834 | if (time_before(jiffies, | 270 | if (time_is_after_jiffies(part->disengage_timeout)) { |
835 | part->disengage_request_timeout)) { | ||
836 | /* timelimit hasn't been reached yet */ | 271 | /* timelimit hasn't been reached yet */ |
837 | return 0; | 272 | return 0; |
838 | } | 273 | } |
839 | 274 | ||
840 | /* | 275 | /* |
841 | * Other side hasn't responded to our disengage | 276 | * Other side hasn't responded to our deactivate |
842 | * request in a timely fashion, so assume it's dead. | 277 | * request in a timely fashion, so assume it's dead. |
843 | */ | 278 | */ |
844 | 279 | ||
845 | dev_info(xpc_part, "disengage from remote partition %d " | 280 | dev_info(xpc_part, "deactivate request to remote " |
846 | "timed out\n", partid); | 281 | "partition %d timed out\n", partid); |
847 | xpc_disengage_request_timedout = 1; | 282 | xpc_disengage_timedout = 1; |
848 | xpc_clear_partition_engaged(1UL << partid); | 283 | xpc_assume_partition_disengaged(partid); |
849 | disengaged = 1; | 284 | disengaged = 1; |
850 | } | 285 | } |
851 | part->disengage_request_timeout = 0; | 286 | part->disengage_timeout = 0; |
852 | 287 | ||
853 | /* cancel the timer function, provided it's not us */ | 288 | /* cancel the timer function, provided it's not us */ |
854 | if (!in_interrupt()) { | 289 | if (!in_interrupt()) |
855 | del_singleshot_timer_sync(&part-> | 290 | del_singleshot_timer_sync(&part->disengage_timer); |
856 | disengage_request_timer); | ||
857 | } | ||
858 | 291 | ||
859 | DBUG_ON(part->act_state != XPC_P_DEACTIVATING && | 292 | DBUG_ON(part->act_state != XPC_P_AS_DEACTIVATING && |
860 | part->act_state != XPC_P_INACTIVE); | 293 | part->act_state != XPC_P_AS_INACTIVE); |
861 | if (part->act_state != XPC_P_INACTIVE) | 294 | if (part->act_state != XPC_P_AS_INACTIVE) |
862 | xpc_wakeup_channel_mgr(part); | 295 | xpc_wakeup_channel_mgr(part); |
863 | 296 | ||
864 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) | 297 | xpc_cancel_partition_deactivation_request(part); |
865 | xpc_cancel_partition_disengage_request(part); | ||
866 | } | 298 | } |
867 | return disengaged; | 299 | return disengaged; |
868 | } | 300 | } |
@@ -879,8 +311,8 @@ xpc_mark_partition_active(struct xpc_partition *part) | |||
879 | dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part)); | 311 | dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part)); |
880 | 312 | ||
881 | spin_lock_irqsave(&part->act_lock, irq_flags); | 313 | spin_lock_irqsave(&part->act_lock, irq_flags); |
882 | if (part->act_state == XPC_P_ACTIVATING) { | 314 | if (part->act_state == XPC_P_AS_ACTIVATING) { |
883 | part->act_state = XPC_P_ACTIVE; | 315 | part->act_state = XPC_P_AS_ACTIVE; |
884 | ret = xpSuccess; | 316 | ret = xpSuccess; |
885 | } else { | 317 | } else { |
886 | DBUG_ON(part->reason == xpSuccess); | 318 | DBUG_ON(part->reason == xpSuccess); |
@@ -892,7 +324,7 @@ xpc_mark_partition_active(struct xpc_partition *part) | |||
892 | } | 324 | } |
893 | 325 | ||
894 | /* | 326 | /* |
895 | * Notify XPC that the partition is down. | 327 | * Start the process of deactivating the specified partition. |
896 | */ | 328 | */ |
897 | void | 329 | void |
898 | xpc_deactivate_partition(const int line, struct xpc_partition *part, | 330 | xpc_deactivate_partition(const int line, struct xpc_partition *part, |
@@ -902,16 +334,16 @@ xpc_deactivate_partition(const int line, struct xpc_partition *part, | |||
902 | 334 | ||
903 | spin_lock_irqsave(&part->act_lock, irq_flags); | 335 | spin_lock_irqsave(&part->act_lock, irq_flags); |
904 | 336 | ||
905 | if (part->act_state == XPC_P_INACTIVE) { | 337 | if (part->act_state == XPC_P_AS_INACTIVE) { |
906 | XPC_SET_REASON(part, reason, line); | 338 | XPC_SET_REASON(part, reason, line); |
907 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | 339 | spin_unlock_irqrestore(&part->act_lock, irq_flags); |
908 | if (reason == xpReactivating) { | 340 | if (reason == xpReactivating) { |
909 | /* we interrupt ourselves to reactivate partition */ | 341 | /* we interrupt ourselves to reactivate partition */ |
910 | xpc_IPI_send_reactivate(part); | 342 | xpc_request_partition_reactivation(part); |
911 | } | 343 | } |
912 | return; | 344 | return; |
913 | } | 345 | } |
914 | if (part->act_state == XPC_P_DEACTIVATING) { | 346 | if (part->act_state == XPC_P_AS_DEACTIVATING) { |
915 | if ((part->reason == xpUnloading && reason != xpUnloading) || | 347 | if ((part->reason == xpUnloading && reason != xpUnloading) || |
916 | reason == xpReactivating) { | 348 | reason == xpReactivating) { |
917 | XPC_SET_REASON(part, reason, line); | 349 | XPC_SET_REASON(part, reason, line); |
@@ -920,22 +352,18 @@ xpc_deactivate_partition(const int line, struct xpc_partition *part, | |||
920 | return; | 352 | return; |
921 | } | 353 | } |
922 | 354 | ||
923 | part->act_state = XPC_P_DEACTIVATING; | 355 | part->act_state = XPC_P_AS_DEACTIVATING; |
924 | XPC_SET_REASON(part, reason, line); | 356 | XPC_SET_REASON(part, reason, line); |
925 | 357 | ||
926 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | 358 | spin_unlock_irqrestore(&part->act_lock, irq_flags); |
927 | 359 | ||
928 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) { | 360 | /* ask remote partition to deactivate with regard to us */ |
929 | xpc_request_partition_disengage(part); | 361 | xpc_request_partition_deactivation(part); |
930 | xpc_IPI_send_disengage(part); | ||
931 | 362 | ||
932 | /* set a timelimit on the disengage request */ | 363 | /* set a timelimit on the disengage phase of the deactivation request */ |
933 | part->disengage_request_timeout = jiffies + | 364 | part->disengage_timeout = jiffies + (xpc_disengage_timelimit * HZ); |
934 | (xpc_disengage_request_timelimit * HZ); | 365 | part->disengage_timer.expires = part->disengage_timeout; |
935 | part->disengage_request_timer.expires = | 366 | add_timer(&part->disengage_timer); |
936 | part->disengage_request_timeout; | ||
937 | add_timer(&part->disengage_request_timer); | ||
938 | } | ||
939 | 367 | ||
940 | dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", | 368 | dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", |
941 | XPC_PARTID(part), reason); | 369 | XPC_PARTID(part), reason); |
@@ -955,7 +383,7 @@ xpc_mark_partition_inactive(struct xpc_partition *part) | |||
955 | XPC_PARTID(part)); | 383 | XPC_PARTID(part)); |
956 | 384 | ||
957 | spin_lock_irqsave(&part->act_lock, irq_flags); | 385 | spin_lock_irqsave(&part->act_lock, irq_flags); |
958 | part->act_state = XPC_P_INACTIVE; | 386 | part->act_state = XPC_P_AS_INACTIVE; |
959 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | 387 | spin_unlock_irqrestore(&part->act_lock, irq_flags); |
960 | part->remote_rp_pa = 0; | 388 | part->remote_rp_pa = 0; |
961 | } | 389 | } |
@@ -974,28 +402,22 @@ xpc_discovery(void) | |||
974 | { | 402 | { |
975 | void *remote_rp_base; | 403 | void *remote_rp_base; |
976 | struct xpc_rsvd_page *remote_rp; | 404 | struct xpc_rsvd_page *remote_rp; |
977 | struct xpc_vars *remote_vars; | 405 | unsigned long remote_rp_pa; |
978 | u64 remote_rp_pa; | ||
979 | u64 remote_vars_pa; | ||
980 | int region; | 406 | int region; |
981 | int region_size; | 407 | int region_size; |
982 | int max_regions; | 408 | int max_regions; |
983 | int nasid; | 409 | int nasid; |
984 | struct xpc_rsvd_page *rp; | 410 | struct xpc_rsvd_page *rp; |
985 | short partid; | 411 | unsigned long *discovered_nasids; |
986 | struct xpc_partition *part; | ||
987 | u64 *discovered_nasids; | ||
988 | enum xp_retval ret; | 412 | enum xp_retval ret; |
989 | 413 | ||
990 | remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RP_HEADER_SIZE + | 414 | remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RP_HEADER_SIZE + |
991 | xp_nasid_mask_bytes, | 415 | xpc_nasid_mask_nbytes, |
992 | GFP_KERNEL, &remote_rp_base); | 416 | GFP_KERNEL, &remote_rp_base); |
993 | if (remote_rp == NULL) | 417 | if (remote_rp == NULL) |
994 | return; | 418 | return; |
995 | 419 | ||
996 | remote_vars = (struct xpc_vars *)remote_rp; | 420 | discovered_nasids = kzalloc(sizeof(long) * xpc_nasid_mask_nlongs, |
997 | |||
998 | discovered_nasids = kzalloc(sizeof(u64) * xp_nasid_mask_words, | ||
999 | GFP_KERNEL); | 421 | GFP_KERNEL); |
1000 | if (discovered_nasids == NULL) { | 422 | if (discovered_nasids == NULL) { |
1001 | kfree(remote_rp_base); | 423 | kfree(remote_rp_base); |
@@ -1010,7 +432,7 @@ xpc_discovery(void) | |||
1010 | * protection is in regards to memory, IOI and IPI. | 432 | * protection is in regards to memory, IOI and IPI. |
1011 | */ | 433 | */ |
1012 | max_regions = 64; | 434 | max_regions = 64; |
1013 | region_size = sn_region_size; | 435 | region_size = xp_region_size; |
1014 | 436 | ||
1015 | switch (region_size) { | 437 | switch (region_size) { |
1016 | case 128: | 438 | case 128: |
@@ -1038,28 +460,28 @@ xpc_discovery(void) | |||
1038 | 460 | ||
1039 | dev_dbg(xpc_part, "checking nasid %d\n", nasid); | 461 | dev_dbg(xpc_part, "checking nasid %d\n", nasid); |
1040 | 462 | ||
1041 | if (XPC_NASID_IN_ARRAY(nasid, xpc_part_nasids)) { | 463 | if (test_bit(nasid / 2, xpc_part_nasids)) { |
1042 | dev_dbg(xpc_part, "PROM indicates Nasid %d is " | 464 | dev_dbg(xpc_part, "PROM indicates Nasid %d is " |
1043 | "part of the local partition; skipping " | 465 | "part of the local partition; skipping " |
1044 | "region\n", nasid); | 466 | "region\n", nasid); |
1045 | break; | 467 | break; |
1046 | } | 468 | } |
1047 | 469 | ||
1048 | if (!(XPC_NASID_IN_ARRAY(nasid, xpc_mach_nasids))) { | 470 | if (!(test_bit(nasid / 2, xpc_mach_nasids))) { |
1049 | dev_dbg(xpc_part, "PROM indicates Nasid %d was " | 471 | dev_dbg(xpc_part, "PROM indicates Nasid %d was " |
1050 | "not on Numa-Link network at reset\n", | 472 | "not on Numa-Link network at reset\n", |
1051 | nasid); | 473 | nasid); |
1052 | continue; | 474 | continue; |
1053 | } | 475 | } |
1054 | 476 | ||
1055 | if (XPC_NASID_IN_ARRAY(nasid, discovered_nasids)) { | 477 | if (test_bit(nasid / 2, discovered_nasids)) { |
1056 | dev_dbg(xpc_part, "Nasid %d is part of a " | 478 | dev_dbg(xpc_part, "Nasid %d is part of a " |
1057 | "partition which was previously " | 479 | "partition which was previously " |
1058 | "discovered\n", nasid); | 480 | "discovered\n", nasid); |
1059 | continue; | 481 | continue; |
1060 | } | 482 | } |
1061 | 483 | ||
1062 | /* pull over the reserved page structure */ | 484 | /* pull over the rsvd page header & part_nasids mask */ |
1063 | 485 | ||
1064 | ret = xpc_get_remote_rp(nasid, discovered_nasids, | 486 | ret = xpc_get_remote_rp(nasid, discovered_nasids, |
1065 | remote_rp, &remote_rp_pa); | 487 | remote_rp, &remote_rp_pa); |
@@ -1074,72 +496,8 @@ xpc_discovery(void) | |||
1074 | continue; | 496 | continue; |
1075 | } | 497 | } |
1076 | 498 | ||
1077 | remote_vars_pa = remote_rp->vars_pa; | 499 | xpc_request_partition_activation(remote_rp, |
1078 | 500 | remote_rp_pa, nasid); | |
1079 | partid = remote_rp->partid; | ||
1080 | part = &xpc_partitions[partid]; | ||
1081 | |||
1082 | /* pull over the cross partition variables */ | ||
1083 | |||
1084 | ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); | ||
1085 | if (ret != xpSuccess) { | ||
1086 | dev_dbg(xpc_part, "unable to get XPC variables " | ||
1087 | "from nasid %d, reason=%d\n", nasid, | ||
1088 | ret); | ||
1089 | |||
1090 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1091 | continue; | ||
1092 | } | ||
1093 | |||
1094 | if (part->act_state != XPC_P_INACTIVE) { | ||
1095 | dev_dbg(xpc_part, "partition %d on nasid %d is " | ||
1096 | "already activating\n", partid, nasid); | ||
1097 | break; | ||
1098 | } | ||
1099 | |||
1100 | /* | ||
1101 | * Register the remote partition's AMOs with SAL so it | ||
1102 | * can handle and cleanup errors within that address | ||
1103 | * range should the remote partition go down. We don't | ||
1104 | * unregister this range because it is difficult to | ||
1105 | * tell when outstanding writes to the remote partition | ||
1106 | * are finished and thus when it is thus safe to | ||
1107 | * unregister. This should not result in wasted space | ||
1108 | * in the SAL xp_addr_region table because we should | ||
1109 | * get the same page for remote_act_amos_pa after | ||
1110 | * module reloads and system reboots. | ||
1111 | */ | ||
1112 | if (sn_register_xp_addr_region | ||
1113 | (remote_vars->amos_page_pa, PAGE_SIZE, 1) < 0) { | ||
1114 | dev_dbg(xpc_part, | ||
1115 | "partition %d failed to " | ||
1116 | "register xp_addr region 0x%016lx\n", | ||
1117 | partid, remote_vars->amos_page_pa); | ||
1118 | |||
1119 | XPC_SET_REASON(part, xpPhysAddrRegFailed, | ||
1120 | __LINE__); | ||
1121 | break; | ||
1122 | } | ||
1123 | |||
1124 | /* | ||
1125 | * The remote nasid is valid and available. | ||
1126 | * Send an interrupt to that nasid to notify | ||
1127 | * it that we are ready to begin activation. | ||
1128 | */ | ||
1129 | dev_dbg(xpc_part, "sending an interrupt to AMO 0x%lx, " | ||
1130 | "nasid %d, phys_cpuid 0x%x\n", | ||
1131 | remote_vars->amos_page_pa, | ||
1132 | remote_vars->act_nasid, | ||
1133 | remote_vars->act_phys_cpuid); | ||
1134 | |||
1135 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars-> | ||
1136 | version)) { | ||
1137 | part->remote_amos_page_pa = | ||
1138 | remote_vars->amos_page_pa; | ||
1139 | xpc_mark_partition_disengaged(part); | ||
1140 | xpc_cancel_partition_disengage_request(part); | ||
1141 | } | ||
1142 | xpc_IPI_send_activate(remote_vars); | ||
1143 | } | 501 | } |
1144 | } | 502 | } |
1145 | 503 | ||
@@ -1155,20 +513,16 @@ enum xp_retval | |||
1155 | xpc_initiate_partid_to_nasids(short partid, void *nasid_mask) | 513 | xpc_initiate_partid_to_nasids(short partid, void *nasid_mask) |
1156 | { | 514 | { |
1157 | struct xpc_partition *part; | 515 | struct xpc_partition *part; |
1158 | u64 part_nasid_pa; | 516 | unsigned long part_nasid_pa; |
1159 | int bte_res; | ||
1160 | 517 | ||
1161 | part = &xpc_partitions[partid]; | 518 | part = &xpc_partitions[partid]; |
1162 | if (part->remote_rp_pa == 0) | 519 | if (part->remote_rp_pa == 0) |
1163 | return xpPartitionDown; | 520 | return xpPartitionDown; |
1164 | 521 | ||
1165 | memset(nasid_mask, 0, XP_NASID_MASK_BYTES); | 522 | memset(nasid_mask, 0, xpc_nasid_mask_nbytes); |
1166 | |||
1167 | part_nasid_pa = (u64)XPC_RP_PART_NASIDS(part->remote_rp_pa); | ||
1168 | 523 | ||
1169 | bte_res = xp_bte_copy(part_nasid_pa, (u64)nasid_mask, | 524 | part_nasid_pa = (unsigned long)XPC_RP_PART_NASIDS(part->remote_rp_pa); |
1170 | xp_nasid_mask_bytes, (BTE_NOTIFY | BTE_WACQUIRE), | ||
1171 | NULL); | ||
1172 | 525 | ||
1173 | return xpc_map_bte_errors(bte_res); | 526 | return xp_remote_memcpy(xp_pa(nasid_mask), part_nasid_pa, |
527 | xpc_nasid_mask_nbytes); | ||
1174 | } | 528 | } |
diff --git a/drivers/misc/sgi-xp/xpc_sn2.c b/drivers/misc/sgi-xp/xpc_sn2.c new file mode 100644 index 000000000000..b4882ccf6344 --- /dev/null +++ b/drivers/misc/sgi-xp/xpc_sn2.c | |||
@@ -0,0 +1,2404 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition Communication (XPC) sn2-based functions. | ||
11 | * | ||
12 | * Architecture specific implementation of common functions. | ||
13 | * | ||
14 | */ | ||
15 | |||
16 | #include <linux/delay.h> | ||
17 | #include <asm/uncached.h> | ||
18 | #include <asm/sn/mspec.h> | ||
19 | #include <asm/sn/sn_sal.h> | ||
20 | #include "xpc.h" | ||
21 | |||
22 | /* | ||
23 | * Define the number of u64s required to represent all the C-brick nasids | ||
24 | * as a bitmap. The cross-partition kernel modules deal only with | ||
25 | * C-brick nasids, thus the need for bitmaps which don't account for | ||
26 | * odd-numbered (non C-brick) nasids. | ||
27 | */ | ||
28 | #define XPC_MAX_PHYSNODES_SN2 (MAX_NUMALINK_NODES / 2) | ||
29 | #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8) | ||
30 | #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64) | ||
31 | |||
32 | /* | ||
33 | * Memory for XPC's amo variables is allocated by the MSPEC driver. These | ||
34 | * pages are located in the lowest granule. The lowest granule uses 4k pages | ||
35 | * for cached references and an alternate TLB handler to never provide a | ||
36 | * cacheable mapping for the entire region. This will prevent speculative | ||
37 | * reading of cached copies of our lines from being issued which will cause | ||
38 | * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64 | ||
39 | * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of | ||
40 | * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify | ||
41 | * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote | ||
42 | * partitions (i.e., XPCs) consider themselves currently engaged with the | ||
43 | * local XPC and 1 amo variable to request partition deactivation. | ||
44 | */ | ||
45 | #define XPC_NOTIFY_IRQ_AMOS_SN2 0 | ||
46 | #define XPC_ACTIVATE_IRQ_AMOS_SN2 (XPC_NOTIFY_IRQ_AMOS_SN2 + \ | ||
47 | XP_MAX_NPARTITIONS_SN2) | ||
48 | #define XPC_ENGAGED_PARTITIONS_AMO_SN2 (XPC_ACTIVATE_IRQ_AMOS_SN2 + \ | ||
49 | XP_NASID_MASK_WORDS_SN2) | ||
50 | #define XPC_DEACTIVATE_REQUEST_AMO_SN2 (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1) | ||
51 | |||
52 | /* | ||
53 | * Buffer used to store a local copy of portions of a remote partition's | ||
54 | * reserved page (either its header and part_nasids mask, or its vars). | ||
55 | */ | ||
56 | static void *xpc_remote_copy_buffer_base_sn2; | ||
57 | static char *xpc_remote_copy_buffer_sn2; | ||
58 | |||
59 | static struct xpc_vars_sn2 *xpc_vars_sn2; | ||
60 | static struct xpc_vars_part_sn2 *xpc_vars_part_sn2; | ||
61 | |||
62 | static int | ||
63 | xpc_setup_partitions_sn_sn2(void) | ||
64 | { | ||
65 | /* nothing needs to be done */ | ||
66 | return 0; | ||
67 | } | ||
68 | |||
69 | /* SH_IPI_ACCESS shub register value on startup */ | ||
70 | static u64 xpc_sh1_IPI_access_sn2; | ||
71 | static u64 xpc_sh2_IPI_access0_sn2; | ||
72 | static u64 xpc_sh2_IPI_access1_sn2; | ||
73 | static u64 xpc_sh2_IPI_access2_sn2; | ||
74 | static u64 xpc_sh2_IPI_access3_sn2; | ||
75 | |||
76 | /* | ||
77 | * Change protections to allow IPI operations. | ||
78 | */ | ||
79 | static void | ||
80 | xpc_allow_IPI_ops_sn2(void) | ||
81 | { | ||
82 | int node; | ||
83 | int nasid; | ||
84 | |||
85 | /* !!! The following should get moved into SAL. */ | ||
86 | if (is_shub2()) { | ||
87 | xpc_sh2_IPI_access0_sn2 = | ||
88 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0)); | ||
89 | xpc_sh2_IPI_access1_sn2 = | ||
90 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1)); | ||
91 | xpc_sh2_IPI_access2_sn2 = | ||
92 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2)); | ||
93 | xpc_sh2_IPI_access3_sn2 = | ||
94 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3)); | ||
95 | |||
96 | for_each_online_node(node) { | ||
97 | nasid = cnodeid_to_nasid(node); | ||
98 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
99 | -1UL); | ||
100 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
101 | -1UL); | ||
102 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
103 | -1UL); | ||
104 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
105 | -1UL); | ||
106 | } | ||
107 | } else { | ||
108 | xpc_sh1_IPI_access_sn2 = | ||
109 | (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS)); | ||
110 | |||
111 | for_each_online_node(node) { | ||
112 | nasid = cnodeid_to_nasid(node); | ||
113 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
114 | -1UL); | ||
115 | } | ||
116 | } | ||
117 | } | ||
118 | |||
119 | /* | ||
120 | * Restrict protections to disallow IPI operations. | ||
121 | */ | ||
122 | static void | ||
123 | xpc_disallow_IPI_ops_sn2(void) | ||
124 | { | ||
125 | int node; | ||
126 | int nasid; | ||
127 | |||
128 | /* !!! The following should get moved into SAL. */ | ||
129 | if (is_shub2()) { | ||
130 | for_each_online_node(node) { | ||
131 | nasid = cnodeid_to_nasid(node); | ||
132 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
133 | xpc_sh2_IPI_access0_sn2); | ||
134 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
135 | xpc_sh2_IPI_access1_sn2); | ||
136 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
137 | xpc_sh2_IPI_access2_sn2); | ||
138 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
139 | xpc_sh2_IPI_access3_sn2); | ||
140 | } | ||
141 | } else { | ||
142 | for_each_online_node(node) { | ||
143 | nasid = cnodeid_to_nasid(node); | ||
144 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
145 | xpc_sh1_IPI_access_sn2); | ||
146 | } | ||
147 | } | ||
148 | } | ||
149 | |||
150 | /* | ||
151 | * The following set of functions are used for the sending and receiving of | ||
152 | * IRQs (also known as IPIs). There are two flavors of IRQs, one that is | ||
153 | * associated with partition activity (SGI_XPC_ACTIVATE) and the other that | ||
154 | * is associated with channel activity (SGI_XPC_NOTIFY). | ||
155 | */ | ||
156 | |||
157 | static u64 | ||
158 | xpc_receive_IRQ_amo_sn2(struct amo *amo) | ||
159 | { | ||
160 | return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR); | ||
161 | } | ||
162 | |||
163 | static enum xp_retval | ||
164 | xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid, | ||
165 | int vector) | ||
166 | { | ||
167 | int ret = 0; | ||
168 | unsigned long irq_flags; | ||
169 | |||
170 | local_irq_save(irq_flags); | ||
171 | |||
172 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag); | ||
173 | sn_send_IPI_phys(nasid, phys_cpuid, vector, 0); | ||
174 | |||
175 | /* | ||
176 | * We must always use the nofault function regardless of whether we | ||
177 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
178 | * didn't, we'd never know that the other partition is down and would | ||
179 | * keep sending IRQs and amos to it until the heartbeat times out. | ||
180 | */ | ||
181 | ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable), | ||
182 | xp_nofault_PIOR_target)); | ||
183 | |||
184 | local_irq_restore(irq_flags); | ||
185 | |||
186 | return (ret == 0) ? xpSuccess : xpPioReadError; | ||
187 | } | ||
188 | |||
189 | static struct amo * | ||
190 | xpc_init_IRQ_amo_sn2(int index) | ||
191 | { | ||
192 | struct amo *amo = xpc_vars_sn2->amos_page + index; | ||
193 | |||
194 | (void)xpc_receive_IRQ_amo_sn2(amo); /* clear amo variable */ | ||
195 | return amo; | ||
196 | } | ||
197 | |||
198 | /* | ||
199 | * Functions associated with SGI_XPC_ACTIVATE IRQ. | ||
200 | */ | ||
201 | |||
202 | /* | ||
203 | * Notify the heartbeat check thread that an activate IRQ has been received. | ||
204 | */ | ||
205 | static irqreturn_t | ||
206 | xpc_handle_activate_IRQ_sn2(int irq, void *dev_id) | ||
207 | { | ||
208 | unsigned long irq_flags; | ||
209 | |||
210 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
211 | xpc_activate_IRQ_rcvd++; | ||
212 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
213 | |||
214 | wake_up_interruptible(&xpc_activate_IRQ_wq); | ||
215 | return IRQ_HANDLED; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * Flag the appropriate amo variable and send an IRQ to the specified node. | ||
220 | */ | ||
221 | static void | ||
222 | xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid, | ||
223 | int to_nasid, int to_phys_cpuid) | ||
224 | { | ||
225 | struct amo *amos = (struct amo *)__va(amos_page_pa + | ||
226 | (XPC_ACTIVATE_IRQ_AMOS_SN2 * | ||
227 | sizeof(struct amo))); | ||
228 | |||
229 | (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)], | ||
230 | BIT_MASK(from_nasid / 2), to_nasid, | ||
231 | to_phys_cpuid, SGI_XPC_ACTIVATE); | ||
232 | } | ||
233 | |||
234 | static void | ||
235 | xpc_send_local_activate_IRQ_sn2(int from_nasid) | ||
236 | { | ||
237 | unsigned long irq_flags; | ||
238 | struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa + | ||
239 | (XPC_ACTIVATE_IRQ_AMOS_SN2 * | ||
240 | sizeof(struct amo))); | ||
241 | |||
242 | /* fake the sending and receipt of an activate IRQ from remote nasid */ | ||
243 | FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable), | ||
244 | FETCHOP_OR, BIT_MASK(from_nasid / 2)); | ||
245 | |||
246 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
247 | xpc_activate_IRQ_rcvd++; | ||
248 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
249 | |||
250 | wake_up_interruptible(&xpc_activate_IRQ_wq); | ||
251 | } | ||
252 | |||
253 | /* | ||
254 | * Functions associated with SGI_XPC_NOTIFY IRQ. | ||
255 | */ | ||
256 | |||
257 | /* | ||
258 | * Check to see if any chctl flags were sent from the specified partition. | ||
259 | */ | ||
260 | static void | ||
261 | xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part) | ||
262 | { | ||
263 | union xpc_channel_ctl_flags chctl; | ||
264 | unsigned long irq_flags; | ||
265 | |||
266 | chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2. | ||
267 | local_chctl_amo_va); | ||
268 | if (chctl.all_flags == 0) | ||
269 | return; | ||
270 | |||
271 | spin_lock_irqsave(&part->chctl_lock, irq_flags); | ||
272 | part->chctl.all_flags |= chctl.all_flags; | ||
273 | spin_unlock_irqrestore(&part->chctl_lock, irq_flags); | ||
274 | |||
275 | dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags=" | ||
276 | "0x%lx\n", XPC_PARTID(part), chctl.all_flags); | ||
277 | |||
278 | xpc_wakeup_channel_mgr(part); | ||
279 | } | ||
280 | |||
281 | /* | ||
282 | * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified | ||
283 | * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more | ||
284 | * than one partition, we use an amo structure per partition to indicate | ||
285 | * whether a partition has sent an IRQ or not. If it has, then wake up the | ||
286 | * associated kthread to handle it. | ||
287 | * | ||
288 | * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC | ||
289 | * running on other partitions. | ||
290 | * | ||
291 | * Noteworthy Arguments: | ||
292 | * | ||
293 | * irq - Interrupt ReQuest number. NOT USED. | ||
294 | * | ||
295 | * dev_id - partid of IRQ's potential sender. | ||
296 | */ | ||
297 | static irqreturn_t | ||
298 | xpc_handle_notify_IRQ_sn2(int irq, void *dev_id) | ||
299 | { | ||
300 | short partid = (short)(u64)dev_id; | ||
301 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
302 | |||
303 | DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2); | ||
304 | |||
305 | if (xpc_part_ref(part)) { | ||
306 | xpc_check_for_sent_chctl_flags_sn2(part); | ||
307 | |||
308 | xpc_part_deref(part); | ||
309 | } | ||
310 | return IRQ_HANDLED; | ||
311 | } | ||
312 | |||
313 | /* | ||
314 | * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor | ||
315 | * because the write to their associated amo variable completed after the IRQ | ||
316 | * was received. | ||
317 | */ | ||
318 | static void | ||
319 | xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part) | ||
320 | { | ||
321 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
322 | |||
323 | if (xpc_part_ref(part)) { | ||
324 | xpc_check_for_sent_chctl_flags_sn2(part); | ||
325 | |||
326 | part_sn2->dropped_notify_IRQ_timer.expires = jiffies + | ||
327 | XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL; | ||
328 | add_timer(&part_sn2->dropped_notify_IRQ_timer); | ||
329 | xpc_part_deref(part); | ||
330 | } | ||
331 | } | ||
332 | |||
333 | /* | ||
334 | * Send a notify IRQ to the remote partition that is associated with the | ||
335 | * specified channel. | ||
336 | */ | ||
337 | static void | ||
338 | xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag, | ||
339 | char *chctl_flag_string, unsigned long *irq_flags) | ||
340 | { | ||
341 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
342 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
343 | union xpc_channel_ctl_flags chctl = { 0 }; | ||
344 | enum xp_retval ret; | ||
345 | |||
346 | if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) { | ||
347 | chctl.flags[ch->number] = chctl_flag; | ||
348 | ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va, | ||
349 | chctl.all_flags, | ||
350 | part_sn2->notify_IRQ_nasid, | ||
351 | part_sn2->notify_IRQ_phys_cpuid, | ||
352 | SGI_XPC_NOTIFY); | ||
353 | dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n", | ||
354 | chctl_flag_string, ch->partid, ch->number, ret); | ||
355 | if (unlikely(ret != xpSuccess)) { | ||
356 | if (irq_flags != NULL) | ||
357 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
358 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
359 | if (irq_flags != NULL) | ||
360 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
361 | } | ||
362 | } | ||
363 | } | ||
364 | |||
365 | #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \ | ||
366 | xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f) | ||
367 | |||
368 | /* | ||
369 | * Make it look like the remote partition, which is associated with the | ||
370 | * specified channel, sent us a notify IRQ. This faked IRQ will be handled | ||
371 | * by xpc_check_for_dropped_notify_IRQ_sn2(). | ||
372 | */ | ||
373 | static void | ||
374 | xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag, | ||
375 | char *chctl_flag_string) | ||
376 | { | ||
377 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
378 | union xpc_channel_ctl_flags chctl = { 0 }; | ||
379 | |||
380 | chctl.flags[ch->number] = chctl_flag; | ||
381 | FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va-> | ||
382 | variable), FETCHOP_OR, chctl.all_flags); | ||
383 | dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n", | ||
384 | chctl_flag_string, ch->partid, ch->number); | ||
385 | } | ||
386 | |||
387 | #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \ | ||
388 | xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f) | ||
389 | |||
390 | static void | ||
391 | xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch, | ||
392 | unsigned long *irq_flags) | ||
393 | { | ||
394 | struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args; | ||
395 | |||
396 | args->reason = ch->reason; | ||
397 | XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags); | ||
398 | } | ||
399 | |||
400 | static void | ||
401 | xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags) | ||
402 | { | ||
403 | XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags); | ||
404 | } | ||
405 | |||
406 | static void | ||
407 | xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags) | ||
408 | { | ||
409 | struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args; | ||
410 | |||
411 | args->entry_size = ch->entry_size; | ||
412 | args->local_nentries = ch->local_nentries; | ||
413 | XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags); | ||
414 | } | ||
415 | |||
416 | static void | ||
417 | xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags) | ||
418 | { | ||
419 | struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args; | ||
420 | |||
421 | args->remote_nentries = ch->remote_nentries; | ||
422 | args->local_nentries = ch->local_nentries; | ||
423 | args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue); | ||
424 | XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags); | ||
425 | } | ||
426 | |||
427 | static void | ||
428 | xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch) | ||
429 | { | ||
430 | XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL); | ||
431 | } | ||
432 | |||
433 | static void | ||
434 | xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch) | ||
435 | { | ||
436 | XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST); | ||
437 | } | ||
438 | |||
439 | static void | ||
440 | xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch, | ||
441 | unsigned long msgqueue_pa) | ||
442 | { | ||
443 | ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa; | ||
444 | } | ||
445 | |||
446 | /* | ||
447 | * This next set of functions are used to keep track of when a partition is | ||
448 | * potentially engaged in accessing memory belonging to another partition. | ||
449 | */ | ||
450 | |||
451 | static void | ||
452 | xpc_indicate_partition_engaged_sn2(struct xpc_partition *part) | ||
453 | { | ||
454 | unsigned long irq_flags; | ||
455 | struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa + | ||
456 | (XPC_ENGAGED_PARTITIONS_AMO_SN2 * | ||
457 | sizeof(struct amo))); | ||
458 | |||
459 | local_irq_save(irq_flags); | ||
460 | |||
461 | /* set bit corresponding to our partid in remote partition's amo */ | ||
462 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, | ||
463 | BIT(sn_partition_id)); | ||
464 | |||
465 | /* | ||
466 | * We must always use the nofault function regardless of whether we | ||
467 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
468 | * didn't, we'd never know that the other partition is down and would | ||
469 | * keep sending IRQs and amos to it until the heartbeat times out. | ||
470 | */ | ||
471 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
472 | variable), | ||
473 | xp_nofault_PIOR_target)); | ||
474 | |||
475 | local_irq_restore(irq_flags); | ||
476 | } | ||
477 | |||
478 | static void | ||
479 | xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part) | ||
480 | { | ||
481 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
482 | unsigned long irq_flags; | ||
483 | struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa + | ||
484 | (XPC_ENGAGED_PARTITIONS_AMO_SN2 * | ||
485 | sizeof(struct amo))); | ||
486 | |||
487 | local_irq_save(irq_flags); | ||
488 | |||
489 | /* clear bit corresponding to our partid in remote partition's amo */ | ||
490 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
491 | ~BIT(sn_partition_id)); | ||
492 | |||
493 | /* | ||
494 | * We must always use the nofault function regardless of whether we | ||
495 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
496 | * didn't, we'd never know that the other partition is down and would | ||
497 | * keep sending IRQs and amos to it until the heartbeat times out. | ||
498 | */ | ||
499 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
500 | variable), | ||
501 | xp_nofault_PIOR_target)); | ||
502 | |||
503 | local_irq_restore(irq_flags); | ||
504 | |||
505 | /* | ||
506 | * Send activate IRQ to get other side to see that we've cleared our | ||
507 | * bit in their engaged partitions amo. | ||
508 | */ | ||
509 | xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa, | ||
510 | cnodeid_to_nasid(0), | ||
511 | part_sn2->activate_IRQ_nasid, | ||
512 | part_sn2->activate_IRQ_phys_cpuid); | ||
513 | } | ||
514 | |||
515 | static void | ||
516 | xpc_assume_partition_disengaged_sn2(short partid) | ||
517 | { | ||
518 | struct amo *amo = xpc_vars_sn2->amos_page + | ||
519 | XPC_ENGAGED_PARTITIONS_AMO_SN2; | ||
520 | |||
521 | /* clear bit(s) based on partid mask in our partition's amo */ | ||
522 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
523 | ~BIT(partid)); | ||
524 | } | ||
525 | |||
526 | static int | ||
527 | xpc_partition_engaged_sn2(short partid) | ||
528 | { | ||
529 | struct amo *amo = xpc_vars_sn2->amos_page + | ||
530 | XPC_ENGAGED_PARTITIONS_AMO_SN2; | ||
531 | |||
532 | /* our partition's amo variable ANDed with partid mask */ | ||
533 | return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & | ||
534 | BIT(partid)) != 0; | ||
535 | } | ||
536 | |||
537 | static int | ||
538 | xpc_any_partition_engaged_sn2(void) | ||
539 | { | ||
540 | struct amo *amo = xpc_vars_sn2->amos_page + | ||
541 | XPC_ENGAGED_PARTITIONS_AMO_SN2; | ||
542 | |||
543 | /* our partition's amo variable */ | ||
544 | return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0; | ||
545 | } | ||
546 | |||
547 | /* original protection values for each node */ | ||
548 | static u64 xpc_prot_vec_sn2[MAX_NUMNODES]; | ||
549 | |||
550 | /* | ||
551 | * Change protections to allow amo operations on non-Shub 1.1 systems. | ||
552 | */ | ||
553 | static enum xp_retval | ||
554 | xpc_allow_amo_ops_sn2(struct amo *amos_page) | ||
555 | { | ||
556 | u64 nasid_array = 0; | ||
557 | int ret; | ||
558 | |||
559 | /* | ||
560 | * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST | ||
561 | * collides with memory operations. On those systems we call | ||
562 | * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead. | ||
563 | */ | ||
564 | if (!enable_shub_wars_1_1()) { | ||
565 | ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE, | ||
566 | SN_MEMPROT_ACCESS_CLASS_1, | ||
567 | &nasid_array); | ||
568 | if (ret != 0) | ||
569 | return xpSalError; | ||
570 | } | ||
571 | return xpSuccess; | ||
572 | } | ||
573 | |||
574 | /* | ||
575 | * Change protections to allow amo operations on Shub 1.1 systems. | ||
576 | */ | ||
577 | static void | ||
578 | xpc_allow_amo_ops_shub_wars_1_1_sn2(void) | ||
579 | { | ||
580 | int node; | ||
581 | int nasid; | ||
582 | |||
583 | if (!enable_shub_wars_1_1()) | ||
584 | return; | ||
585 | |||
586 | for_each_online_node(node) { | ||
587 | nasid = cnodeid_to_nasid(node); | ||
588 | /* save current protection values */ | ||
589 | xpc_prot_vec_sn2[node] = | ||
590 | (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid, | ||
591 | SH1_MD_DQLP_MMR_DIR_PRIVEC0)); | ||
592 | /* open up everything */ | ||
593 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, | ||
594 | SH1_MD_DQLP_MMR_DIR_PRIVEC0), | ||
595 | -1UL); | ||
596 | HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, | ||
597 | SH1_MD_DQRP_MMR_DIR_PRIVEC0), | ||
598 | -1UL); | ||
599 | } | ||
600 | } | ||
601 | |||
602 | static enum xp_retval | ||
603 | xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa, | ||
604 | size_t *len) | ||
605 | { | ||
606 | s64 status; | ||
607 | enum xp_retval ret; | ||
608 | |||
609 | status = sn_partition_reserved_page_pa((u64)buf, cookie, rp_pa, len); | ||
610 | if (status == SALRET_OK) | ||
611 | ret = xpSuccess; | ||
612 | else if (status == SALRET_MORE_PASSES) | ||
613 | ret = xpNeedMoreInfo; | ||
614 | else | ||
615 | ret = xpSalError; | ||
616 | |||
617 | return ret; | ||
618 | } | ||
619 | |||
620 | |||
621 | static int | ||
622 | xpc_setup_rsvd_page_sn_sn2(struct xpc_rsvd_page *rp) | ||
623 | { | ||
624 | struct amo *amos_page; | ||
625 | int i; | ||
626 | int ret; | ||
627 | |||
628 | xpc_vars_sn2 = XPC_RP_VARS(rp); | ||
629 | |||
630 | rp->sn.vars_pa = xp_pa(xpc_vars_sn2); | ||
631 | |||
632 | /* vars_part array follows immediately after vars */ | ||
633 | xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) + | ||
634 | XPC_RP_VARS_SIZE); | ||
635 | |||
636 | /* | ||
637 | * Before clearing xpc_vars_sn2, see if a page of amos had been | ||
638 | * previously allocated. If not we'll need to allocate one and set | ||
639 | * permissions so that cross-partition amos are allowed. | ||
640 | * | ||
641 | * The allocated amo page needs MCA reporting to remain disabled after | ||
642 | * XPC has unloaded. To make this work, we keep a copy of the pointer | ||
643 | * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure, | ||
644 | * which is pointed to by the reserved page, and re-use that saved copy | ||
645 | * on subsequent loads of XPC. This amo page is never freed, and its | ||
646 | * memory protections are never restricted. | ||
647 | */ | ||
648 | amos_page = xpc_vars_sn2->amos_page; | ||
649 | if (amos_page == NULL) { | ||
650 | amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1)); | ||
651 | if (amos_page == NULL) { | ||
652 | dev_err(xpc_part, "can't allocate page of amos\n"); | ||
653 | return -ENOMEM; | ||
654 | } | ||
655 | |||
656 | /* | ||
657 | * Open up amo-R/W to cpu. This is done on Shub 1.1 systems | ||
658 | * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called. | ||
659 | */ | ||
660 | ret = xpc_allow_amo_ops_sn2(amos_page); | ||
661 | if (ret != xpSuccess) { | ||
662 | dev_err(xpc_part, "can't allow amo operations\n"); | ||
663 | uncached_free_page(__IA64_UNCACHED_OFFSET | | ||
664 | TO_PHYS((u64)amos_page), 1); | ||
665 | return -EPERM; | ||
666 | } | ||
667 | } | ||
668 | |||
669 | /* clear xpc_vars_sn2 */ | ||
670 | memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2)); | ||
671 | |||
672 | xpc_vars_sn2->version = XPC_V_VERSION; | ||
673 | xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0); | ||
674 | xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0); | ||
675 | xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2); | ||
676 | xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page); | ||
677 | xpc_vars_sn2->amos_page = amos_page; /* save for next load of XPC */ | ||
678 | |||
679 | /* clear xpc_vars_part_sn2 */ | ||
680 | memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) * | ||
681 | XP_MAX_NPARTITIONS_SN2); | ||
682 | |||
683 | /* initialize the activate IRQ related amo variables */ | ||
684 | for (i = 0; i < xpc_nasid_mask_nlongs; i++) | ||
685 | (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i); | ||
686 | |||
687 | /* initialize the engaged remote partitions related amo variables */ | ||
688 | (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2); | ||
689 | (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2); | ||
690 | |||
691 | return 0; | ||
692 | } | ||
693 | |||
694 | static void | ||
695 | xpc_increment_heartbeat_sn2(void) | ||
696 | { | ||
697 | xpc_vars_sn2->heartbeat++; | ||
698 | } | ||
699 | |||
700 | static void | ||
701 | xpc_offline_heartbeat_sn2(void) | ||
702 | { | ||
703 | xpc_increment_heartbeat_sn2(); | ||
704 | xpc_vars_sn2->heartbeat_offline = 1; | ||
705 | } | ||
706 | |||
707 | static void | ||
708 | xpc_online_heartbeat_sn2(void) | ||
709 | { | ||
710 | xpc_increment_heartbeat_sn2(); | ||
711 | xpc_vars_sn2->heartbeat_offline = 0; | ||
712 | } | ||
713 | |||
714 | static void | ||
715 | xpc_heartbeat_init_sn2(void) | ||
716 | { | ||
717 | DBUG_ON(xpc_vars_sn2 == NULL); | ||
718 | |||
719 | bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2); | ||
720 | xpc_heartbeating_to_mask = &xpc_vars_sn2->heartbeating_to_mask[0]; | ||
721 | xpc_online_heartbeat_sn2(); | ||
722 | } | ||
723 | |||
724 | static void | ||
725 | xpc_heartbeat_exit_sn2(void) | ||
726 | { | ||
727 | xpc_offline_heartbeat_sn2(); | ||
728 | } | ||
729 | |||
730 | static enum xp_retval | ||
731 | xpc_get_remote_heartbeat_sn2(struct xpc_partition *part) | ||
732 | { | ||
733 | struct xpc_vars_sn2 *remote_vars; | ||
734 | enum xp_retval ret; | ||
735 | |||
736 | remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2; | ||
737 | |||
738 | /* pull the remote vars structure that contains the heartbeat */ | ||
739 | ret = xp_remote_memcpy(xp_pa(remote_vars), | ||
740 | part->sn.sn2.remote_vars_pa, | ||
741 | XPC_RP_VARS_SIZE); | ||
742 | if (ret != xpSuccess) | ||
743 | return ret; | ||
744 | |||
745 | dev_dbg(xpc_part, "partid=%d, heartbeat=%ld, last_heartbeat=%ld, " | ||
746 | "heartbeat_offline=%ld, HB_mask[0]=0x%lx\n", XPC_PARTID(part), | ||
747 | remote_vars->heartbeat, part->last_heartbeat, | ||
748 | remote_vars->heartbeat_offline, | ||
749 | remote_vars->heartbeating_to_mask[0]); | ||
750 | |||
751 | if ((remote_vars->heartbeat == part->last_heartbeat && | ||
752 | remote_vars->heartbeat_offline == 0) || | ||
753 | !xpc_hb_allowed(sn_partition_id, | ||
754 | &remote_vars->heartbeating_to_mask)) { | ||
755 | ret = xpNoHeartbeat; | ||
756 | } else { | ||
757 | part->last_heartbeat = remote_vars->heartbeat; | ||
758 | } | ||
759 | |||
760 | return ret; | ||
761 | } | ||
762 | |||
763 | /* | ||
764 | * Get a copy of the remote partition's XPC variables from the reserved page. | ||
765 | * | ||
766 | * remote_vars points to a buffer that is cacheline aligned for BTE copies and | ||
767 | * assumed to be of size XPC_RP_VARS_SIZE. | ||
768 | */ | ||
769 | static enum xp_retval | ||
770 | xpc_get_remote_vars_sn2(unsigned long remote_vars_pa, | ||
771 | struct xpc_vars_sn2 *remote_vars) | ||
772 | { | ||
773 | enum xp_retval ret; | ||
774 | |||
775 | if (remote_vars_pa == 0) | ||
776 | return xpVarsNotSet; | ||
777 | |||
778 | /* pull over the cross partition variables */ | ||
779 | ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa, | ||
780 | XPC_RP_VARS_SIZE); | ||
781 | if (ret != xpSuccess) | ||
782 | return ret; | ||
783 | |||
784 | if (XPC_VERSION_MAJOR(remote_vars->version) != | ||
785 | XPC_VERSION_MAJOR(XPC_V_VERSION)) { | ||
786 | return xpBadVersion; | ||
787 | } | ||
788 | |||
789 | return xpSuccess; | ||
790 | } | ||
791 | |||
792 | static void | ||
793 | xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp, | ||
794 | unsigned long remote_rp_pa, int nasid) | ||
795 | { | ||
796 | xpc_send_local_activate_IRQ_sn2(nasid); | ||
797 | } | ||
798 | |||
799 | static void | ||
800 | xpc_request_partition_reactivation_sn2(struct xpc_partition *part) | ||
801 | { | ||
802 | xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid); | ||
803 | } | ||
804 | |||
805 | static void | ||
806 | xpc_request_partition_deactivation_sn2(struct xpc_partition *part) | ||
807 | { | ||
808 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
809 | unsigned long irq_flags; | ||
810 | struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa + | ||
811 | (XPC_DEACTIVATE_REQUEST_AMO_SN2 * | ||
812 | sizeof(struct amo))); | ||
813 | |||
814 | local_irq_save(irq_flags); | ||
815 | |||
816 | /* set bit corresponding to our partid in remote partition's amo */ | ||
817 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, | ||
818 | BIT(sn_partition_id)); | ||
819 | |||
820 | /* | ||
821 | * We must always use the nofault function regardless of whether we | ||
822 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
823 | * didn't, we'd never know that the other partition is down and would | ||
824 | * keep sending IRQs and amos to it until the heartbeat times out. | ||
825 | */ | ||
826 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
827 | variable), | ||
828 | xp_nofault_PIOR_target)); | ||
829 | |||
830 | local_irq_restore(irq_flags); | ||
831 | |||
832 | /* | ||
833 | * Send activate IRQ to get other side to see that we've set our | ||
834 | * bit in their deactivate request amo. | ||
835 | */ | ||
836 | xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa, | ||
837 | cnodeid_to_nasid(0), | ||
838 | part_sn2->activate_IRQ_nasid, | ||
839 | part_sn2->activate_IRQ_phys_cpuid); | ||
840 | } | ||
841 | |||
842 | static void | ||
843 | xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part) | ||
844 | { | ||
845 | unsigned long irq_flags; | ||
846 | struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa + | ||
847 | (XPC_DEACTIVATE_REQUEST_AMO_SN2 * | ||
848 | sizeof(struct amo))); | ||
849 | |||
850 | local_irq_save(irq_flags); | ||
851 | |||
852 | /* clear bit corresponding to our partid in remote partition's amo */ | ||
853 | FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, | ||
854 | ~BIT(sn_partition_id)); | ||
855 | |||
856 | /* | ||
857 | * We must always use the nofault function regardless of whether we | ||
858 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
859 | * didn't, we'd never know that the other partition is down and would | ||
860 | * keep sending IRQs and amos to it until the heartbeat times out. | ||
861 | */ | ||
862 | (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
863 | variable), | ||
864 | xp_nofault_PIOR_target)); | ||
865 | |||
866 | local_irq_restore(irq_flags); | ||
867 | } | ||
868 | |||
869 | static int | ||
870 | xpc_partition_deactivation_requested_sn2(short partid) | ||
871 | { | ||
872 | struct amo *amo = xpc_vars_sn2->amos_page + | ||
873 | XPC_DEACTIVATE_REQUEST_AMO_SN2; | ||
874 | |||
875 | /* our partition's amo variable ANDed with partid mask */ | ||
876 | return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & | ||
877 | BIT(partid)) != 0; | ||
878 | } | ||
879 | |||
880 | /* | ||
881 | * Update the remote partition's info. | ||
882 | */ | ||
883 | static void | ||
884 | xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version, | ||
885 | unsigned long *remote_rp_ts_jiffies, | ||
886 | unsigned long remote_rp_pa, | ||
887 | unsigned long remote_vars_pa, | ||
888 | struct xpc_vars_sn2 *remote_vars) | ||
889 | { | ||
890 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
891 | |||
892 | part->remote_rp_version = remote_rp_version; | ||
893 | dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n", | ||
894 | part->remote_rp_version); | ||
895 | |||
896 | part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies; | ||
897 | dev_dbg(xpc_part, " remote_rp_ts_jiffies = 0x%016lx\n", | ||
898 | part->remote_rp_ts_jiffies); | ||
899 | |||
900 | part->remote_rp_pa = remote_rp_pa; | ||
901 | dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa); | ||
902 | |||
903 | part_sn2->remote_vars_pa = remote_vars_pa; | ||
904 | dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n", | ||
905 | part_sn2->remote_vars_pa); | ||
906 | |||
907 | part->last_heartbeat = remote_vars->heartbeat; | ||
908 | dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n", | ||
909 | part->last_heartbeat); | ||
910 | |||
911 | part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa; | ||
912 | dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n", | ||
913 | part_sn2->remote_vars_part_pa); | ||
914 | |||
915 | part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid; | ||
916 | dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n", | ||
917 | part_sn2->activate_IRQ_nasid); | ||
918 | |||
919 | part_sn2->activate_IRQ_phys_cpuid = | ||
920 | remote_vars->activate_IRQ_phys_cpuid; | ||
921 | dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n", | ||
922 | part_sn2->activate_IRQ_phys_cpuid); | ||
923 | |||
924 | part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa; | ||
925 | dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n", | ||
926 | part_sn2->remote_amos_page_pa); | ||
927 | |||
928 | part_sn2->remote_vars_version = remote_vars->version; | ||
929 | dev_dbg(xpc_part, " remote_vars_version = 0x%x\n", | ||
930 | part_sn2->remote_vars_version); | ||
931 | } | ||
932 | |||
933 | /* | ||
934 | * Prior code has determined the nasid which generated a activate IRQ. | ||
935 | * Inspect that nasid to determine if its partition needs to be activated | ||
936 | * or deactivated. | ||
937 | * | ||
938 | * A partition is considered "awaiting activation" if our partition | ||
939 | * flags indicate it is not active and it has a heartbeat. A | ||
940 | * partition is considered "awaiting deactivation" if our partition | ||
941 | * flags indicate it is active but it has no heartbeat or it is not | ||
942 | * sending its heartbeat to us. | ||
943 | * | ||
944 | * To determine the heartbeat, the remote nasid must have a properly | ||
945 | * initialized reserved page. | ||
946 | */ | ||
947 | static void | ||
948 | xpc_identify_activate_IRQ_req_sn2(int nasid) | ||
949 | { | ||
950 | struct xpc_rsvd_page *remote_rp; | ||
951 | struct xpc_vars_sn2 *remote_vars; | ||
952 | unsigned long remote_rp_pa; | ||
953 | unsigned long remote_vars_pa; | ||
954 | int remote_rp_version; | ||
955 | int reactivate = 0; | ||
956 | unsigned long remote_rp_ts_jiffies = 0; | ||
957 | short partid; | ||
958 | struct xpc_partition *part; | ||
959 | struct xpc_partition_sn2 *part_sn2; | ||
960 | enum xp_retval ret; | ||
961 | |||
962 | /* pull over the reserved page structure */ | ||
963 | |||
964 | remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2; | ||
965 | |||
966 | ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa); | ||
967 | if (ret != xpSuccess) { | ||
968 | dev_warn(xpc_part, "unable to get reserved page from nasid %d, " | ||
969 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
970 | return; | ||
971 | } | ||
972 | |||
973 | remote_vars_pa = remote_rp->sn.vars_pa; | ||
974 | remote_rp_version = remote_rp->version; | ||
975 | remote_rp_ts_jiffies = remote_rp->ts_jiffies; | ||
976 | |||
977 | partid = remote_rp->SAL_partid; | ||
978 | part = &xpc_partitions[partid]; | ||
979 | part_sn2 = &part->sn.sn2; | ||
980 | |||
981 | /* pull over the cross partition variables */ | ||
982 | |||
983 | remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2; | ||
984 | |||
985 | ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars); | ||
986 | if (ret != xpSuccess) { | ||
987 | dev_warn(xpc_part, "unable to get XPC variables from nasid %d, " | ||
988 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
989 | |||
990 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
991 | return; | ||
992 | } | ||
993 | |||
994 | part->activate_IRQ_rcvd++; | ||
995 | |||
996 | dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = " | ||
997 | "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd, | ||
998 | remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]); | ||
999 | |||
1000 | if (xpc_partition_disengaged(part) && | ||
1001 | part->act_state == XPC_P_AS_INACTIVE) { | ||
1002 | |||
1003 | xpc_update_partition_info_sn2(part, remote_rp_version, | ||
1004 | &remote_rp_ts_jiffies, | ||
1005 | remote_rp_pa, remote_vars_pa, | ||
1006 | remote_vars); | ||
1007 | |||
1008 | if (xpc_partition_deactivation_requested_sn2(partid)) { | ||
1009 | /* | ||
1010 | * Other side is waiting on us to deactivate even though | ||
1011 | * we already have. | ||
1012 | */ | ||
1013 | return; | ||
1014 | } | ||
1015 | |||
1016 | xpc_activate_partition(part); | ||
1017 | return; | ||
1018 | } | ||
1019 | |||
1020 | DBUG_ON(part->remote_rp_version == 0); | ||
1021 | DBUG_ON(part_sn2->remote_vars_version == 0); | ||
1022 | |||
1023 | if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) { | ||
1024 | |||
1025 | /* the other side rebooted */ | ||
1026 | |||
1027 | DBUG_ON(xpc_partition_engaged_sn2(partid)); | ||
1028 | DBUG_ON(xpc_partition_deactivation_requested_sn2(partid)); | ||
1029 | |||
1030 | xpc_update_partition_info_sn2(part, remote_rp_version, | ||
1031 | &remote_rp_ts_jiffies, | ||
1032 | remote_rp_pa, remote_vars_pa, | ||
1033 | remote_vars); | ||
1034 | reactivate = 1; | ||
1035 | } | ||
1036 | |||
1037 | if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) { | ||
1038 | /* still waiting on other side to disengage from us */ | ||
1039 | return; | ||
1040 | } | ||
1041 | |||
1042 | if (reactivate) | ||
1043 | XPC_DEACTIVATE_PARTITION(part, xpReactivating); | ||
1044 | else if (xpc_partition_deactivation_requested_sn2(partid)) | ||
1045 | XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown); | ||
1046 | } | ||
1047 | |||
1048 | /* | ||
1049 | * Loop through the activation amo variables and process any bits | ||
1050 | * which are set. Each bit indicates a nasid sending a partition | ||
1051 | * activation or deactivation request. | ||
1052 | * | ||
1053 | * Return #of IRQs detected. | ||
1054 | */ | ||
1055 | int | ||
1056 | xpc_identify_activate_IRQ_sender_sn2(void) | ||
1057 | { | ||
1058 | int l; | ||
1059 | int b; | ||
1060 | unsigned long nasid_mask_long; | ||
1061 | u64 nasid; /* remote nasid */ | ||
1062 | int n_IRQs_detected = 0; | ||
1063 | struct amo *act_amos; | ||
1064 | |||
1065 | act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2; | ||
1066 | |||
1067 | /* scan through activate amo variables looking for non-zero entries */ | ||
1068 | for (l = 0; l < xpc_nasid_mask_nlongs; l++) { | ||
1069 | |||
1070 | if (xpc_exiting) | ||
1071 | break; | ||
1072 | |||
1073 | nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]); | ||
1074 | |||
1075 | b = find_first_bit(&nasid_mask_long, BITS_PER_LONG); | ||
1076 | if (b >= BITS_PER_LONG) { | ||
1077 | /* no IRQs from nasids in this amo variable */ | ||
1078 | continue; | ||
1079 | } | ||
1080 | |||
1081 | dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l, | ||
1082 | nasid_mask_long); | ||
1083 | |||
1084 | /* | ||
1085 | * If this nasid has been added to the machine since | ||
1086 | * our partition was reset, this will retain the | ||
1087 | * remote nasid in our reserved pages machine mask. | ||
1088 | * This is used in the event of module reload. | ||
1089 | */ | ||
1090 | xpc_mach_nasids[l] |= nasid_mask_long; | ||
1091 | |||
1092 | /* locate the nasid(s) which sent interrupts */ | ||
1093 | |||
1094 | do { | ||
1095 | n_IRQs_detected++; | ||
1096 | nasid = (l * BITS_PER_LONG + b) * 2; | ||
1097 | dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid); | ||
1098 | xpc_identify_activate_IRQ_req_sn2(nasid); | ||
1099 | |||
1100 | b = find_next_bit(&nasid_mask_long, BITS_PER_LONG, | ||
1101 | b + 1); | ||
1102 | } while (b < BITS_PER_LONG); | ||
1103 | } | ||
1104 | return n_IRQs_detected; | ||
1105 | } | ||
1106 | |||
1107 | static void | ||
1108 | xpc_process_activate_IRQ_rcvd_sn2(void) | ||
1109 | { | ||
1110 | unsigned long irq_flags; | ||
1111 | int n_IRQs_expected; | ||
1112 | int n_IRQs_detected; | ||
1113 | |||
1114 | DBUG_ON(xpc_activate_IRQ_rcvd == 0); | ||
1115 | |||
1116 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
1117 | n_IRQs_expected = xpc_activate_IRQ_rcvd; | ||
1118 | xpc_activate_IRQ_rcvd = 0; | ||
1119 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
1120 | |||
1121 | n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2(); | ||
1122 | if (n_IRQs_detected < n_IRQs_expected) { | ||
1123 | /* retry once to help avoid missing amo */ | ||
1124 | (void)xpc_identify_activate_IRQ_sender_sn2(); | ||
1125 | } | ||
1126 | } | ||
1127 | |||
1128 | /* | ||
1129 | * Setup the channel structures that are sn2 specific. | ||
1130 | */ | ||
1131 | static enum xp_retval | ||
1132 | xpc_setup_ch_structures_sn_sn2(struct xpc_partition *part) | ||
1133 | { | ||
1134 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
1135 | struct xpc_channel_sn2 *ch_sn2; | ||
1136 | enum xp_retval retval; | ||
1137 | int ret; | ||
1138 | int cpuid; | ||
1139 | int ch_number; | ||
1140 | struct timer_list *timer; | ||
1141 | short partid = XPC_PARTID(part); | ||
1142 | |||
1143 | /* allocate all the required GET/PUT values */ | ||
1144 | |||
1145 | part_sn2->local_GPs = | ||
1146 | xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL, | ||
1147 | &part_sn2->local_GPs_base); | ||
1148 | if (part_sn2->local_GPs == NULL) { | ||
1149 | dev_err(xpc_chan, "can't get memory for local get/put " | ||
1150 | "values\n"); | ||
1151 | return xpNoMemory; | ||
1152 | } | ||
1153 | |||
1154 | part_sn2->remote_GPs = | ||
1155 | xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL, | ||
1156 | &part_sn2->remote_GPs_base); | ||
1157 | if (part_sn2->remote_GPs == NULL) { | ||
1158 | dev_err(xpc_chan, "can't get memory for remote get/put " | ||
1159 | "values\n"); | ||
1160 | retval = xpNoMemory; | ||
1161 | goto out_1; | ||
1162 | } | ||
1163 | |||
1164 | part_sn2->remote_GPs_pa = 0; | ||
1165 | |||
1166 | /* allocate all the required open and close args */ | ||
1167 | |||
1168 | part_sn2->local_openclose_args = | ||
1169 | xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, | ||
1170 | GFP_KERNEL, &part_sn2-> | ||
1171 | local_openclose_args_base); | ||
1172 | if (part_sn2->local_openclose_args == NULL) { | ||
1173 | dev_err(xpc_chan, "can't get memory for local connect args\n"); | ||
1174 | retval = xpNoMemory; | ||
1175 | goto out_2; | ||
1176 | } | ||
1177 | |||
1178 | part_sn2->remote_openclose_args_pa = 0; | ||
1179 | |||
1180 | part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid); | ||
1181 | |||
1182 | part_sn2->notify_IRQ_nasid = 0; | ||
1183 | part_sn2->notify_IRQ_phys_cpuid = 0; | ||
1184 | part_sn2->remote_chctl_amo_va = NULL; | ||
1185 | |||
1186 | sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid); | ||
1187 | ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2, | ||
1188 | IRQF_SHARED, part_sn2->notify_IRQ_owner, | ||
1189 | (void *)(u64)partid); | ||
1190 | if (ret != 0) { | ||
1191 | dev_err(xpc_chan, "can't register NOTIFY IRQ handler, " | ||
1192 | "errno=%d\n", -ret); | ||
1193 | retval = xpLackOfResources; | ||
1194 | goto out_3; | ||
1195 | } | ||
1196 | |||
1197 | /* Setup a timer to check for dropped notify IRQs */ | ||
1198 | timer = &part_sn2->dropped_notify_IRQ_timer; | ||
1199 | init_timer(timer); | ||
1200 | timer->function = | ||
1201 | (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2; | ||
1202 | timer->data = (unsigned long)part; | ||
1203 | timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL; | ||
1204 | add_timer(timer); | ||
1205 | |||
1206 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
1207 | ch_sn2 = &part->channels[ch_number].sn.sn2; | ||
1208 | |||
1209 | ch_sn2->local_GP = &part_sn2->local_GPs[ch_number]; | ||
1210 | ch_sn2->local_openclose_args = | ||
1211 | &part_sn2->local_openclose_args[ch_number]; | ||
1212 | |||
1213 | mutex_init(&ch_sn2->msg_to_pull_mutex); | ||
1214 | } | ||
1215 | |||
1216 | /* | ||
1217 | * Setup the per partition specific variables required by the | ||
1218 | * remote partition to establish channel connections with us. | ||
1219 | * | ||
1220 | * The setting of the magic # indicates that these per partition | ||
1221 | * specific variables are ready to be used. | ||
1222 | */ | ||
1223 | xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs); | ||
1224 | xpc_vars_part_sn2[partid].openclose_args_pa = | ||
1225 | xp_pa(part_sn2->local_openclose_args); | ||
1226 | xpc_vars_part_sn2[partid].chctl_amo_pa = | ||
1227 | xp_pa(part_sn2->local_chctl_amo_va); | ||
1228 | cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */ | ||
1229 | xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid); | ||
1230 | xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid = | ||
1231 | cpu_physical_id(cpuid); | ||
1232 | xpc_vars_part_sn2[partid].nchannels = part->nchannels; | ||
1233 | xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2; | ||
1234 | |||
1235 | return xpSuccess; | ||
1236 | |||
1237 | /* setup of ch structures failed */ | ||
1238 | out_3: | ||
1239 | kfree(part_sn2->local_openclose_args_base); | ||
1240 | part_sn2->local_openclose_args = NULL; | ||
1241 | out_2: | ||
1242 | kfree(part_sn2->remote_GPs_base); | ||
1243 | part_sn2->remote_GPs = NULL; | ||
1244 | out_1: | ||
1245 | kfree(part_sn2->local_GPs_base); | ||
1246 | part_sn2->local_GPs = NULL; | ||
1247 | return retval; | ||
1248 | } | ||
1249 | |||
1250 | /* | ||
1251 | * Teardown the channel structures that are sn2 specific. | ||
1252 | */ | ||
1253 | static void | ||
1254 | xpc_teardown_ch_structures_sn_sn2(struct xpc_partition *part) | ||
1255 | { | ||
1256 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
1257 | short partid = XPC_PARTID(part); | ||
1258 | |||
1259 | /* | ||
1260 | * Indicate that the variables specific to the remote partition are no | ||
1261 | * longer available for its use. | ||
1262 | */ | ||
1263 | xpc_vars_part_sn2[partid].magic = 0; | ||
1264 | |||
1265 | /* in case we've still got outstanding timers registered... */ | ||
1266 | del_timer_sync(&part_sn2->dropped_notify_IRQ_timer); | ||
1267 | free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid); | ||
1268 | |||
1269 | kfree(part_sn2->local_openclose_args_base); | ||
1270 | part_sn2->local_openclose_args = NULL; | ||
1271 | kfree(part_sn2->remote_GPs_base); | ||
1272 | part_sn2->remote_GPs = NULL; | ||
1273 | kfree(part_sn2->local_GPs_base); | ||
1274 | part_sn2->local_GPs = NULL; | ||
1275 | part_sn2->local_chctl_amo_va = NULL; | ||
1276 | } | ||
1277 | |||
1278 | /* | ||
1279 | * Create a wrapper that hides the underlying mechanism for pulling a cacheline | ||
1280 | * (or multiple cachelines) from a remote partition. | ||
1281 | * | ||
1282 | * src_pa must be a cacheline aligned physical address on the remote partition. | ||
1283 | * dst must be a cacheline aligned virtual address on this partition. | ||
1284 | * cnt must be cacheline sized | ||
1285 | */ | ||
1286 | /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */ | ||
1287 | static enum xp_retval | ||
1288 | xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst, | ||
1289 | const unsigned long src_pa, size_t cnt) | ||
1290 | { | ||
1291 | enum xp_retval ret; | ||
1292 | |||
1293 | DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa)); | ||
1294 | DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst)); | ||
1295 | DBUG_ON(cnt != L1_CACHE_ALIGN(cnt)); | ||
1296 | |||
1297 | if (part->act_state == XPC_P_AS_DEACTIVATING) | ||
1298 | return part->reason; | ||
1299 | |||
1300 | ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt); | ||
1301 | if (ret != xpSuccess) { | ||
1302 | dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed," | ||
1303 | " ret=%d\n", XPC_PARTID(part), ret); | ||
1304 | } | ||
1305 | return ret; | ||
1306 | } | ||
1307 | |||
1308 | /* | ||
1309 | * Pull the remote per partition specific variables from the specified | ||
1310 | * partition. | ||
1311 | */ | ||
1312 | static enum xp_retval | ||
1313 | xpc_pull_remote_vars_part_sn2(struct xpc_partition *part) | ||
1314 | { | ||
1315 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
1316 | u8 buffer[L1_CACHE_BYTES * 2]; | ||
1317 | struct xpc_vars_part_sn2 *pulled_entry_cacheline = | ||
1318 | (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer); | ||
1319 | struct xpc_vars_part_sn2 *pulled_entry; | ||
1320 | unsigned long remote_entry_cacheline_pa; | ||
1321 | unsigned long remote_entry_pa; | ||
1322 | short partid = XPC_PARTID(part); | ||
1323 | enum xp_retval ret; | ||
1324 | |||
1325 | /* pull the cacheline that contains the variables we're interested in */ | ||
1326 | |||
1327 | DBUG_ON(part_sn2->remote_vars_part_pa != | ||
1328 | L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa)); | ||
1329 | DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2); | ||
1330 | |||
1331 | remote_entry_pa = part_sn2->remote_vars_part_pa + | ||
1332 | sn_partition_id * sizeof(struct xpc_vars_part_sn2); | ||
1333 | |||
1334 | remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1)); | ||
1335 | |||
1336 | pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline | ||
1337 | + (remote_entry_pa & | ||
1338 | (L1_CACHE_BYTES - 1))); | ||
1339 | |||
1340 | ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline, | ||
1341 | remote_entry_cacheline_pa, | ||
1342 | L1_CACHE_BYTES); | ||
1343 | if (ret != xpSuccess) { | ||
1344 | dev_dbg(xpc_chan, "failed to pull XPC vars_part from " | ||
1345 | "partition %d, ret=%d\n", partid, ret); | ||
1346 | return ret; | ||
1347 | } | ||
1348 | |||
1349 | /* see if they've been set up yet */ | ||
1350 | |||
1351 | if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 && | ||
1352 | pulled_entry->magic != XPC_VP_MAGIC2_SN2) { | ||
1353 | |||
1354 | if (pulled_entry->magic != 0) { | ||
1355 | dev_dbg(xpc_chan, "partition %d's XPC vars_part for " | ||
1356 | "partition %d has bad magic value (=0x%lx)\n", | ||
1357 | partid, sn_partition_id, pulled_entry->magic); | ||
1358 | return xpBadMagic; | ||
1359 | } | ||
1360 | |||
1361 | /* they've not been initialized yet */ | ||
1362 | return xpRetry; | ||
1363 | } | ||
1364 | |||
1365 | if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) { | ||
1366 | |||
1367 | /* validate the variables */ | ||
1368 | |||
1369 | if (pulled_entry->GPs_pa == 0 || | ||
1370 | pulled_entry->openclose_args_pa == 0 || | ||
1371 | pulled_entry->chctl_amo_pa == 0) { | ||
1372 | |||
1373 | dev_err(xpc_chan, "partition %d's XPC vars_part for " | ||
1374 | "partition %d are not valid\n", partid, | ||
1375 | sn_partition_id); | ||
1376 | return xpInvalidAddress; | ||
1377 | } | ||
1378 | |||
1379 | /* the variables we imported look to be valid */ | ||
1380 | |||
1381 | part_sn2->remote_GPs_pa = pulled_entry->GPs_pa; | ||
1382 | part_sn2->remote_openclose_args_pa = | ||
1383 | pulled_entry->openclose_args_pa; | ||
1384 | part_sn2->remote_chctl_amo_va = | ||
1385 | (struct amo *)__va(pulled_entry->chctl_amo_pa); | ||
1386 | part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid; | ||
1387 | part_sn2->notify_IRQ_phys_cpuid = | ||
1388 | pulled_entry->notify_IRQ_phys_cpuid; | ||
1389 | |||
1390 | if (part->nchannels > pulled_entry->nchannels) | ||
1391 | part->nchannels = pulled_entry->nchannels; | ||
1392 | |||
1393 | /* let the other side know that we've pulled their variables */ | ||
1394 | |||
1395 | xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2; | ||
1396 | } | ||
1397 | |||
1398 | if (pulled_entry->magic == XPC_VP_MAGIC1_SN2) | ||
1399 | return xpRetry; | ||
1400 | |||
1401 | return xpSuccess; | ||
1402 | } | ||
1403 | |||
1404 | /* | ||
1405 | * Establish first contact with the remote partititon. This involves pulling | ||
1406 | * the XPC per partition variables from the remote partition and waiting for | ||
1407 | * the remote partition to pull ours. | ||
1408 | */ | ||
1409 | static enum xp_retval | ||
1410 | xpc_make_first_contact_sn2(struct xpc_partition *part) | ||
1411 | { | ||
1412 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
1413 | enum xp_retval ret; | ||
1414 | |||
1415 | /* | ||
1416 | * Register the remote partition's amos with SAL so it can handle | ||
1417 | * and cleanup errors within that address range should the remote | ||
1418 | * partition go down. We don't unregister this range because it is | ||
1419 | * difficult to tell when outstanding writes to the remote partition | ||
1420 | * are finished and thus when it is safe to unregister. This should | ||
1421 | * not result in wasted space in the SAL xp_addr_region table because | ||
1422 | * we should get the same page for remote_amos_page_pa after module | ||
1423 | * reloads and system reboots. | ||
1424 | */ | ||
1425 | if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa, | ||
1426 | PAGE_SIZE, 1) < 0) { | ||
1427 | dev_warn(xpc_part, "xpc_activating(%d) failed to register " | ||
1428 | "xp_addr region\n", XPC_PARTID(part)); | ||
1429 | |||
1430 | ret = xpPhysAddrRegFailed; | ||
1431 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1432 | return ret; | ||
1433 | } | ||
1434 | |||
1435 | /* | ||
1436 | * Send activate IRQ to get other side to activate if they've not | ||
1437 | * already begun to do so. | ||
1438 | */ | ||
1439 | xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa, | ||
1440 | cnodeid_to_nasid(0), | ||
1441 | part_sn2->activate_IRQ_nasid, | ||
1442 | part_sn2->activate_IRQ_phys_cpuid); | ||
1443 | |||
1444 | while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) { | ||
1445 | if (ret != xpRetry) { | ||
1446 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1447 | return ret; | ||
1448 | } | ||
1449 | |||
1450 | dev_dbg(xpc_part, "waiting to make first contact with " | ||
1451 | "partition %d\n", XPC_PARTID(part)); | ||
1452 | |||
1453 | /* wait a 1/4 of a second or so */ | ||
1454 | (void)msleep_interruptible(250); | ||
1455 | |||
1456 | if (part->act_state == XPC_P_AS_DEACTIVATING) | ||
1457 | return part->reason; | ||
1458 | } | ||
1459 | |||
1460 | return xpSuccess; | ||
1461 | } | ||
1462 | |||
1463 | /* | ||
1464 | * Get the chctl flags and pull the openclose args and/or remote GPs as needed. | ||
1465 | */ | ||
1466 | static u64 | ||
1467 | xpc_get_chctl_all_flags_sn2(struct xpc_partition *part) | ||
1468 | { | ||
1469 | struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2; | ||
1470 | unsigned long irq_flags; | ||
1471 | union xpc_channel_ctl_flags chctl; | ||
1472 | enum xp_retval ret; | ||
1473 | |||
1474 | /* | ||
1475 | * See if there are any chctl flags to be handled. | ||
1476 | */ | ||
1477 | |||
1478 | spin_lock_irqsave(&part->chctl_lock, irq_flags); | ||
1479 | chctl = part->chctl; | ||
1480 | if (chctl.all_flags != 0) | ||
1481 | part->chctl.all_flags = 0; | ||
1482 | |||
1483 | spin_unlock_irqrestore(&part->chctl_lock, irq_flags); | ||
1484 | |||
1485 | if (xpc_any_openclose_chctl_flags_set(&chctl)) { | ||
1486 | ret = xpc_pull_remote_cachelines_sn2(part, part-> | ||
1487 | remote_openclose_args, | ||
1488 | part_sn2-> | ||
1489 | remote_openclose_args_pa, | ||
1490 | XPC_OPENCLOSE_ARGS_SIZE); | ||
1491 | if (ret != xpSuccess) { | ||
1492 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1493 | |||
1494 | dev_dbg(xpc_chan, "failed to pull openclose args from " | ||
1495 | "partition %d, ret=%d\n", XPC_PARTID(part), | ||
1496 | ret); | ||
1497 | |||
1498 | /* don't bother processing chctl flags anymore */ | ||
1499 | chctl.all_flags = 0; | ||
1500 | } | ||
1501 | } | ||
1502 | |||
1503 | if (xpc_any_msg_chctl_flags_set(&chctl)) { | ||
1504 | ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs, | ||
1505 | part_sn2->remote_GPs_pa, | ||
1506 | XPC_GP_SIZE); | ||
1507 | if (ret != xpSuccess) { | ||
1508 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1509 | |||
1510 | dev_dbg(xpc_chan, "failed to pull GPs from partition " | ||
1511 | "%d, ret=%d\n", XPC_PARTID(part), ret); | ||
1512 | |||
1513 | /* don't bother processing chctl flags anymore */ | ||
1514 | chctl.all_flags = 0; | ||
1515 | } | ||
1516 | } | ||
1517 | |||
1518 | return chctl.all_flags; | ||
1519 | } | ||
1520 | |||
1521 | /* | ||
1522 | * Allocate the local message queue and the notify queue. | ||
1523 | */ | ||
1524 | static enum xp_retval | ||
1525 | xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch) | ||
1526 | { | ||
1527 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1528 | unsigned long irq_flags; | ||
1529 | int nentries; | ||
1530 | size_t nbytes; | ||
1531 | |||
1532 | for (nentries = ch->local_nentries; nentries > 0; nentries--) { | ||
1533 | |||
1534 | nbytes = nentries * ch->entry_size; | ||
1535 | ch_sn2->local_msgqueue = | ||
1536 | xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, | ||
1537 | &ch_sn2->local_msgqueue_base); | ||
1538 | if (ch_sn2->local_msgqueue == NULL) | ||
1539 | continue; | ||
1540 | |||
1541 | nbytes = nentries * sizeof(struct xpc_notify_sn2); | ||
1542 | ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL); | ||
1543 | if (ch_sn2->notify_queue == NULL) { | ||
1544 | kfree(ch_sn2->local_msgqueue_base); | ||
1545 | ch_sn2->local_msgqueue = NULL; | ||
1546 | continue; | ||
1547 | } | ||
1548 | |||
1549 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1550 | if (nentries < ch->local_nentries) { | ||
1551 | dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, " | ||
1552 | "partid=%d, channel=%d\n", nentries, | ||
1553 | ch->local_nentries, ch->partid, ch->number); | ||
1554 | |||
1555 | ch->local_nentries = nentries; | ||
1556 | } | ||
1557 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1558 | return xpSuccess; | ||
1559 | } | ||
1560 | |||
1561 | dev_dbg(xpc_chan, "can't get memory for local message queue and notify " | ||
1562 | "queue, partid=%d, channel=%d\n", ch->partid, ch->number); | ||
1563 | return xpNoMemory; | ||
1564 | } | ||
1565 | |||
1566 | /* | ||
1567 | * Allocate the cached remote message queue. | ||
1568 | */ | ||
1569 | static enum xp_retval | ||
1570 | xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch) | ||
1571 | { | ||
1572 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1573 | unsigned long irq_flags; | ||
1574 | int nentries; | ||
1575 | size_t nbytes; | ||
1576 | |||
1577 | DBUG_ON(ch->remote_nentries <= 0); | ||
1578 | |||
1579 | for (nentries = ch->remote_nentries; nentries > 0; nentries--) { | ||
1580 | |||
1581 | nbytes = nentries * ch->entry_size; | ||
1582 | ch_sn2->remote_msgqueue = | ||
1583 | xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2-> | ||
1584 | remote_msgqueue_base); | ||
1585 | if (ch_sn2->remote_msgqueue == NULL) | ||
1586 | continue; | ||
1587 | |||
1588 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1589 | if (nentries < ch->remote_nentries) { | ||
1590 | dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, " | ||
1591 | "partid=%d, channel=%d\n", nentries, | ||
1592 | ch->remote_nentries, ch->partid, ch->number); | ||
1593 | |||
1594 | ch->remote_nentries = nentries; | ||
1595 | } | ||
1596 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1597 | return xpSuccess; | ||
1598 | } | ||
1599 | |||
1600 | dev_dbg(xpc_chan, "can't get memory for cached remote message queue, " | ||
1601 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
1602 | return xpNoMemory; | ||
1603 | } | ||
1604 | |||
1605 | /* | ||
1606 | * Allocate message queues and other stuff associated with a channel. | ||
1607 | * | ||
1608 | * Note: Assumes all of the channel sizes are filled in. | ||
1609 | */ | ||
1610 | static enum xp_retval | ||
1611 | xpc_setup_msg_structures_sn2(struct xpc_channel *ch) | ||
1612 | { | ||
1613 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1614 | enum xp_retval ret; | ||
1615 | |||
1616 | DBUG_ON(ch->flags & XPC_C_SETUP); | ||
1617 | |||
1618 | ret = xpc_allocate_local_msgqueue_sn2(ch); | ||
1619 | if (ret == xpSuccess) { | ||
1620 | |||
1621 | ret = xpc_allocate_remote_msgqueue_sn2(ch); | ||
1622 | if (ret != xpSuccess) { | ||
1623 | kfree(ch_sn2->local_msgqueue_base); | ||
1624 | ch_sn2->local_msgqueue = NULL; | ||
1625 | kfree(ch_sn2->notify_queue); | ||
1626 | ch_sn2->notify_queue = NULL; | ||
1627 | } | ||
1628 | } | ||
1629 | return ret; | ||
1630 | } | ||
1631 | |||
1632 | /* | ||
1633 | * Free up message queues and other stuff that were allocated for the specified | ||
1634 | * channel. | ||
1635 | */ | ||
1636 | static void | ||
1637 | xpc_teardown_msg_structures_sn2(struct xpc_channel *ch) | ||
1638 | { | ||
1639 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1640 | |||
1641 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
1642 | |||
1643 | ch_sn2->remote_msgqueue_pa = 0; | ||
1644 | |||
1645 | ch_sn2->local_GP->get = 0; | ||
1646 | ch_sn2->local_GP->put = 0; | ||
1647 | ch_sn2->remote_GP.get = 0; | ||
1648 | ch_sn2->remote_GP.put = 0; | ||
1649 | ch_sn2->w_local_GP.get = 0; | ||
1650 | ch_sn2->w_local_GP.put = 0; | ||
1651 | ch_sn2->w_remote_GP.get = 0; | ||
1652 | ch_sn2->w_remote_GP.put = 0; | ||
1653 | ch_sn2->next_msg_to_pull = 0; | ||
1654 | |||
1655 | if (ch->flags & XPC_C_SETUP) { | ||
1656 | dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n", | ||
1657 | ch->flags, ch->partid, ch->number); | ||
1658 | |||
1659 | kfree(ch_sn2->local_msgqueue_base); | ||
1660 | ch_sn2->local_msgqueue = NULL; | ||
1661 | kfree(ch_sn2->remote_msgqueue_base); | ||
1662 | ch_sn2->remote_msgqueue = NULL; | ||
1663 | kfree(ch_sn2->notify_queue); | ||
1664 | ch_sn2->notify_queue = NULL; | ||
1665 | } | ||
1666 | } | ||
1667 | |||
1668 | /* | ||
1669 | * Notify those who wanted to be notified upon delivery of their message. | ||
1670 | */ | ||
1671 | static void | ||
1672 | xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put) | ||
1673 | { | ||
1674 | struct xpc_notify_sn2 *notify; | ||
1675 | u8 notify_type; | ||
1676 | s64 get = ch->sn.sn2.w_remote_GP.get - 1; | ||
1677 | |||
1678 | while (++get < put && atomic_read(&ch->n_to_notify) > 0) { | ||
1679 | |||
1680 | notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries]; | ||
1681 | |||
1682 | /* | ||
1683 | * See if the notify entry indicates it was associated with | ||
1684 | * a message who's sender wants to be notified. It is possible | ||
1685 | * that it is, but someone else is doing or has done the | ||
1686 | * notification. | ||
1687 | */ | ||
1688 | notify_type = notify->type; | ||
1689 | if (notify_type == 0 || | ||
1690 | cmpxchg(¬ify->type, notify_type, 0) != notify_type) { | ||
1691 | continue; | ||
1692 | } | ||
1693 | |||
1694 | DBUG_ON(notify_type != XPC_N_CALL); | ||
1695 | |||
1696 | atomic_dec(&ch->n_to_notify); | ||
1697 | |||
1698 | if (notify->func != NULL) { | ||
1699 | dev_dbg(xpc_chan, "notify->func() called, notify=0x%p " | ||
1700 | "msg_number=%ld partid=%d channel=%d\n", | ||
1701 | (void *)notify, get, ch->partid, ch->number); | ||
1702 | |||
1703 | notify->func(reason, ch->partid, ch->number, | ||
1704 | notify->key); | ||
1705 | |||
1706 | dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p" | ||
1707 | " msg_number=%ld partid=%d channel=%d\n", | ||
1708 | (void *)notify, get, ch->partid, ch->number); | ||
1709 | } | ||
1710 | } | ||
1711 | } | ||
1712 | |||
1713 | static void | ||
1714 | xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch) | ||
1715 | { | ||
1716 | xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put); | ||
1717 | } | ||
1718 | |||
1719 | /* | ||
1720 | * Clear some of the msg flags in the local message queue. | ||
1721 | */ | ||
1722 | static inline void | ||
1723 | xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch) | ||
1724 | { | ||
1725 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1726 | struct xpc_msg_sn2 *msg; | ||
1727 | s64 get; | ||
1728 | |||
1729 | get = ch_sn2->w_remote_GP.get; | ||
1730 | do { | ||
1731 | msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue + | ||
1732 | (get % ch->local_nentries) * | ||
1733 | ch->entry_size); | ||
1734 | msg->flags = 0; | ||
1735 | } while (++get < ch_sn2->remote_GP.get); | ||
1736 | } | ||
1737 | |||
1738 | /* | ||
1739 | * Clear some of the msg flags in the remote message queue. | ||
1740 | */ | ||
1741 | static inline void | ||
1742 | xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch) | ||
1743 | { | ||
1744 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1745 | struct xpc_msg_sn2 *msg; | ||
1746 | s64 put; | ||
1747 | |||
1748 | put = ch_sn2->w_remote_GP.put; | ||
1749 | do { | ||
1750 | msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + | ||
1751 | (put % ch->remote_nentries) * | ||
1752 | ch->entry_size); | ||
1753 | msg->flags = 0; | ||
1754 | } while (++put < ch_sn2->remote_GP.put); | ||
1755 | } | ||
1756 | |||
1757 | static int | ||
1758 | xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch) | ||
1759 | { | ||
1760 | return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get; | ||
1761 | } | ||
1762 | |||
1763 | static void | ||
1764 | xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number) | ||
1765 | { | ||
1766 | struct xpc_channel *ch = &part->channels[ch_number]; | ||
1767 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1768 | int npayloads_sent; | ||
1769 | |||
1770 | ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number]; | ||
1771 | |||
1772 | /* See what, if anything, has changed for each connected channel */ | ||
1773 | |||
1774 | xpc_msgqueue_ref(ch); | ||
1775 | |||
1776 | if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get && | ||
1777 | ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) { | ||
1778 | /* nothing changed since GPs were last pulled */ | ||
1779 | xpc_msgqueue_deref(ch); | ||
1780 | return; | ||
1781 | } | ||
1782 | |||
1783 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1784 | xpc_msgqueue_deref(ch); | ||
1785 | return; | ||
1786 | } | ||
1787 | |||
1788 | /* | ||
1789 | * First check to see if messages recently sent by us have been | ||
1790 | * received by the other side. (The remote GET value will have | ||
1791 | * changed since we last looked at it.) | ||
1792 | */ | ||
1793 | |||
1794 | if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) { | ||
1795 | |||
1796 | /* | ||
1797 | * We need to notify any senders that want to be notified | ||
1798 | * that their sent messages have been received by their | ||
1799 | * intended recipients. We need to do this before updating | ||
1800 | * w_remote_GP.get so that we don't allocate the same message | ||
1801 | * queue entries prematurely (see xpc_allocate_msg()). | ||
1802 | */ | ||
1803 | if (atomic_read(&ch->n_to_notify) > 0) { | ||
1804 | /* | ||
1805 | * Notify senders that messages sent have been | ||
1806 | * received and delivered by the other side. | ||
1807 | */ | ||
1808 | xpc_notify_senders_sn2(ch, xpMsgDelivered, | ||
1809 | ch_sn2->remote_GP.get); | ||
1810 | } | ||
1811 | |||
1812 | /* | ||
1813 | * Clear msg->flags in previously sent messages, so that | ||
1814 | * they're ready for xpc_allocate_msg(). | ||
1815 | */ | ||
1816 | xpc_clear_local_msgqueue_flags_sn2(ch); | ||
1817 | |||
1818 | ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get; | ||
1819 | |||
1820 | dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, " | ||
1821 | "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid, | ||
1822 | ch->number); | ||
1823 | |||
1824 | /* | ||
1825 | * If anyone was waiting for message queue entries to become | ||
1826 | * available, wake them up. | ||
1827 | */ | ||
1828 | if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) | ||
1829 | wake_up(&ch->msg_allocate_wq); | ||
1830 | } | ||
1831 | |||
1832 | /* | ||
1833 | * Now check for newly sent messages by the other side. (The remote | ||
1834 | * PUT value will have changed since we last looked at it.) | ||
1835 | */ | ||
1836 | |||
1837 | if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) { | ||
1838 | /* | ||
1839 | * Clear msg->flags in previously received messages, so that | ||
1840 | * they're ready for xpc_get_deliverable_payload_sn2(). | ||
1841 | */ | ||
1842 | xpc_clear_remote_msgqueue_flags_sn2(ch); | ||
1843 | |||
1844 | ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put; | ||
1845 | |||
1846 | dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, " | ||
1847 | "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid, | ||
1848 | ch->number); | ||
1849 | |||
1850 | npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch); | ||
1851 | if (npayloads_sent > 0) { | ||
1852 | dev_dbg(xpc_chan, "msgs waiting to be copied and " | ||
1853 | "delivered=%d, partid=%d, channel=%d\n", | ||
1854 | npayloads_sent, ch->partid, ch->number); | ||
1855 | |||
1856 | if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) | ||
1857 | xpc_activate_kthreads(ch, npayloads_sent); | ||
1858 | } | ||
1859 | } | ||
1860 | |||
1861 | xpc_msgqueue_deref(ch); | ||
1862 | } | ||
1863 | |||
1864 | static struct xpc_msg_sn2 * | ||
1865 | xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get) | ||
1866 | { | ||
1867 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
1868 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1869 | unsigned long remote_msg_pa; | ||
1870 | struct xpc_msg_sn2 *msg; | ||
1871 | u32 msg_index; | ||
1872 | u32 nmsgs; | ||
1873 | u64 msg_offset; | ||
1874 | enum xp_retval ret; | ||
1875 | |||
1876 | if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) { | ||
1877 | /* we were interrupted by a signal */ | ||
1878 | return NULL; | ||
1879 | } | ||
1880 | |||
1881 | while (get >= ch_sn2->next_msg_to_pull) { | ||
1882 | |||
1883 | /* pull as many messages as are ready and able to be pulled */ | ||
1884 | |||
1885 | msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries; | ||
1886 | |||
1887 | DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put); | ||
1888 | nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull; | ||
1889 | if (msg_index + nmsgs > ch->remote_nentries) { | ||
1890 | /* ignore the ones that wrap the msg queue for now */ | ||
1891 | nmsgs = ch->remote_nentries - msg_index; | ||
1892 | } | ||
1893 | |||
1894 | msg_offset = msg_index * ch->entry_size; | ||
1895 | msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + | ||
1896 | msg_offset); | ||
1897 | remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset; | ||
1898 | |||
1899 | ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa, | ||
1900 | nmsgs * ch->entry_size); | ||
1901 | if (ret != xpSuccess) { | ||
1902 | |||
1903 | dev_dbg(xpc_chan, "failed to pull %d msgs starting with" | ||
1904 | " msg %ld from partition %d, channel=%d, " | ||
1905 | "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull, | ||
1906 | ch->partid, ch->number, ret); | ||
1907 | |||
1908 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1909 | |||
1910 | mutex_unlock(&ch_sn2->msg_to_pull_mutex); | ||
1911 | return NULL; | ||
1912 | } | ||
1913 | |||
1914 | ch_sn2->next_msg_to_pull += nmsgs; | ||
1915 | } | ||
1916 | |||
1917 | mutex_unlock(&ch_sn2->msg_to_pull_mutex); | ||
1918 | |||
1919 | /* return the message we were looking for */ | ||
1920 | msg_offset = (get % ch->remote_nentries) * ch->entry_size; | ||
1921 | msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset); | ||
1922 | |||
1923 | return msg; | ||
1924 | } | ||
1925 | |||
1926 | /* | ||
1927 | * Get the next deliverable message's payload. | ||
1928 | */ | ||
1929 | static void * | ||
1930 | xpc_get_deliverable_payload_sn2(struct xpc_channel *ch) | ||
1931 | { | ||
1932 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1933 | struct xpc_msg_sn2 *msg; | ||
1934 | void *payload = NULL; | ||
1935 | s64 get; | ||
1936 | |||
1937 | do { | ||
1938 | if (ch->flags & XPC_C_DISCONNECTING) | ||
1939 | break; | ||
1940 | |||
1941 | get = ch_sn2->w_local_GP.get; | ||
1942 | rmb(); /* guarantee that .get loads before .put */ | ||
1943 | if (get == ch_sn2->w_remote_GP.put) | ||
1944 | break; | ||
1945 | |||
1946 | /* There are messages waiting to be pulled and delivered. | ||
1947 | * We need to try to secure one for ourselves. We'll do this | ||
1948 | * by trying to increment w_local_GP.get and hope that no one | ||
1949 | * else beats us to it. If they do, we'll we'll simply have | ||
1950 | * to try again for the next one. | ||
1951 | */ | ||
1952 | |||
1953 | if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) { | ||
1954 | /* we got the entry referenced by get */ | ||
1955 | |||
1956 | dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, " | ||
1957 | "partid=%d, channel=%d\n", get + 1, | ||
1958 | ch->partid, ch->number); | ||
1959 | |||
1960 | /* pull the message from the remote partition */ | ||
1961 | |||
1962 | msg = xpc_pull_remote_msg_sn2(ch, get); | ||
1963 | |||
1964 | DBUG_ON(msg != NULL && msg->number != get); | ||
1965 | DBUG_ON(msg != NULL && (msg->flags & XPC_M_SN2_DONE)); | ||
1966 | DBUG_ON(msg != NULL && !(msg->flags & XPC_M_SN2_READY)); | ||
1967 | |||
1968 | payload = &msg->payload; | ||
1969 | break; | ||
1970 | } | ||
1971 | |||
1972 | } while (1); | ||
1973 | |||
1974 | return payload; | ||
1975 | } | ||
1976 | |||
1977 | /* | ||
1978 | * Now we actually send the messages that are ready to be sent by advancing | ||
1979 | * the local message queue's Put value and then send a chctl msgrequest to the | ||
1980 | * recipient partition. | ||
1981 | */ | ||
1982 | static void | ||
1983 | xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put) | ||
1984 | { | ||
1985 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
1986 | struct xpc_msg_sn2 *msg; | ||
1987 | s64 put = initial_put + 1; | ||
1988 | int send_msgrequest = 0; | ||
1989 | |||
1990 | while (1) { | ||
1991 | |||
1992 | while (1) { | ||
1993 | if (put == ch_sn2->w_local_GP.put) | ||
1994 | break; | ||
1995 | |||
1996 | msg = (struct xpc_msg_sn2 *)((u64)ch_sn2-> | ||
1997 | local_msgqueue + (put % | ||
1998 | ch->local_nentries) * | ||
1999 | ch->entry_size); | ||
2000 | |||
2001 | if (!(msg->flags & XPC_M_SN2_READY)) | ||
2002 | break; | ||
2003 | |||
2004 | put++; | ||
2005 | } | ||
2006 | |||
2007 | if (put == initial_put) { | ||
2008 | /* nothing's changed */ | ||
2009 | break; | ||
2010 | } | ||
2011 | |||
2012 | if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) != | ||
2013 | initial_put) { | ||
2014 | /* someone else beat us to it */ | ||
2015 | DBUG_ON(ch_sn2->local_GP->put < initial_put); | ||
2016 | break; | ||
2017 | } | ||
2018 | |||
2019 | /* we just set the new value of local_GP->put */ | ||
2020 | |||
2021 | dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, " | ||
2022 | "channel=%d\n", put, ch->partid, ch->number); | ||
2023 | |||
2024 | send_msgrequest = 1; | ||
2025 | |||
2026 | /* | ||
2027 | * We need to ensure that the message referenced by | ||
2028 | * local_GP->put is not XPC_M_SN2_READY or that local_GP->put | ||
2029 | * equals w_local_GP.put, so we'll go have a look. | ||
2030 | */ | ||
2031 | initial_put = put; | ||
2032 | } | ||
2033 | |||
2034 | if (send_msgrequest) | ||
2035 | xpc_send_chctl_msgrequest_sn2(ch); | ||
2036 | } | ||
2037 | |||
2038 | /* | ||
2039 | * Allocate an entry for a message from the message queue associated with the | ||
2040 | * specified channel. | ||
2041 | */ | ||
2042 | static enum xp_retval | ||
2043 | xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags, | ||
2044 | struct xpc_msg_sn2 **address_of_msg) | ||
2045 | { | ||
2046 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
2047 | struct xpc_msg_sn2 *msg; | ||
2048 | enum xp_retval ret; | ||
2049 | s64 put; | ||
2050 | |||
2051 | /* | ||
2052 | * Get the next available message entry from the local message queue. | ||
2053 | * If none are available, we'll make sure that we grab the latest | ||
2054 | * GP values. | ||
2055 | */ | ||
2056 | ret = xpTimeout; | ||
2057 | |||
2058 | while (1) { | ||
2059 | |||
2060 | put = ch_sn2->w_local_GP.put; | ||
2061 | rmb(); /* guarantee that .put loads before .get */ | ||
2062 | if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) { | ||
2063 | |||
2064 | /* There are available message entries. We need to try | ||
2065 | * to secure one for ourselves. We'll do this by trying | ||
2066 | * to increment w_local_GP.put as long as someone else | ||
2067 | * doesn't beat us to it. If they do, we'll have to | ||
2068 | * try again. | ||
2069 | */ | ||
2070 | if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) == | ||
2071 | put) { | ||
2072 | /* we got the entry referenced by put */ | ||
2073 | break; | ||
2074 | } | ||
2075 | continue; /* try again */ | ||
2076 | } | ||
2077 | |||
2078 | /* | ||
2079 | * There aren't any available msg entries at this time. | ||
2080 | * | ||
2081 | * In waiting for a message entry to become available, | ||
2082 | * we set a timeout in case the other side is not sending | ||
2083 | * completion interrupts. This lets us fake a notify IRQ | ||
2084 | * that will cause the notify IRQ handler to fetch the latest | ||
2085 | * GP values as if an interrupt was sent by the other side. | ||
2086 | */ | ||
2087 | if (ret == xpTimeout) | ||
2088 | xpc_send_chctl_local_msgrequest_sn2(ch); | ||
2089 | |||
2090 | if (flags & XPC_NOWAIT) | ||
2091 | return xpNoWait; | ||
2092 | |||
2093 | ret = xpc_allocate_msg_wait(ch); | ||
2094 | if (ret != xpInterrupted && ret != xpTimeout) | ||
2095 | return ret; | ||
2096 | } | ||
2097 | |||
2098 | /* get the message's address and initialize it */ | ||
2099 | msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue + | ||
2100 | (put % ch->local_nentries) * | ||
2101 | ch->entry_size); | ||
2102 | |||
2103 | DBUG_ON(msg->flags != 0); | ||
2104 | msg->number = put; | ||
2105 | |||
2106 | dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, " | ||
2107 | "msg_number=%ld, partid=%d, channel=%d\n", put + 1, | ||
2108 | (void *)msg, msg->number, ch->partid, ch->number); | ||
2109 | |||
2110 | *address_of_msg = msg; | ||
2111 | return xpSuccess; | ||
2112 | } | ||
2113 | |||
2114 | /* | ||
2115 | * Common code that does the actual sending of the message by advancing the | ||
2116 | * local message queue's Put value and sends a chctl msgrequest to the | ||
2117 | * partition the message is being sent to. | ||
2118 | */ | ||
2119 | static enum xp_retval | ||
2120 | xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload, | ||
2121 | u16 payload_size, u8 notify_type, xpc_notify_func func, | ||
2122 | void *key) | ||
2123 | { | ||
2124 | enum xp_retval ret = xpSuccess; | ||
2125 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
2126 | struct xpc_msg_sn2 *msg = msg; | ||
2127 | struct xpc_notify_sn2 *notify = notify; | ||
2128 | s64 msg_number; | ||
2129 | s64 put; | ||
2130 | |||
2131 | DBUG_ON(notify_type == XPC_N_CALL && func == NULL); | ||
2132 | |||
2133 | if (XPC_MSG_SIZE(payload_size) > ch->entry_size) | ||
2134 | return xpPayloadTooBig; | ||
2135 | |||
2136 | xpc_msgqueue_ref(ch); | ||
2137 | |||
2138 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
2139 | ret = ch->reason; | ||
2140 | goto out_1; | ||
2141 | } | ||
2142 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
2143 | ret = xpNotConnected; | ||
2144 | goto out_1; | ||
2145 | } | ||
2146 | |||
2147 | ret = xpc_allocate_msg_sn2(ch, flags, &msg); | ||
2148 | if (ret != xpSuccess) | ||
2149 | goto out_1; | ||
2150 | |||
2151 | msg_number = msg->number; | ||
2152 | |||
2153 | if (notify_type != 0) { | ||
2154 | /* | ||
2155 | * Tell the remote side to send an ACK interrupt when the | ||
2156 | * message has been delivered. | ||
2157 | */ | ||
2158 | msg->flags |= XPC_M_SN2_INTERRUPT; | ||
2159 | |||
2160 | atomic_inc(&ch->n_to_notify); | ||
2161 | |||
2162 | notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries]; | ||
2163 | notify->func = func; | ||
2164 | notify->key = key; | ||
2165 | notify->type = notify_type; | ||
2166 | |||
2167 | /* ??? Is a mb() needed here? */ | ||
2168 | |||
2169 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
2170 | /* | ||
2171 | * An error occurred between our last error check and | ||
2172 | * this one. We will try to clear the type field from | ||
2173 | * the notify entry. If we succeed then | ||
2174 | * xpc_disconnect_channel() didn't already process | ||
2175 | * the notify entry. | ||
2176 | */ | ||
2177 | if (cmpxchg(¬ify->type, notify_type, 0) == | ||
2178 | notify_type) { | ||
2179 | atomic_dec(&ch->n_to_notify); | ||
2180 | ret = ch->reason; | ||
2181 | } | ||
2182 | goto out_1; | ||
2183 | } | ||
2184 | } | ||
2185 | |||
2186 | memcpy(&msg->payload, payload, payload_size); | ||
2187 | |||
2188 | msg->flags |= XPC_M_SN2_READY; | ||
2189 | |||
2190 | /* | ||
2191 | * The preceding store of msg->flags must occur before the following | ||
2192 | * load of local_GP->put. | ||
2193 | */ | ||
2194 | mb(); | ||
2195 | |||
2196 | /* see if the message is next in line to be sent, if so send it */ | ||
2197 | |||
2198 | put = ch_sn2->local_GP->put; | ||
2199 | if (put == msg_number) | ||
2200 | xpc_send_msgs_sn2(ch, put); | ||
2201 | |||
2202 | out_1: | ||
2203 | xpc_msgqueue_deref(ch); | ||
2204 | return ret; | ||
2205 | } | ||
2206 | |||
2207 | /* | ||
2208 | * Now we actually acknowledge the messages that have been delivered and ack'd | ||
2209 | * by advancing the cached remote message queue's Get value and if requested | ||
2210 | * send a chctl msgrequest to the message sender's partition. | ||
2211 | * | ||
2212 | * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition | ||
2213 | * that sent the message. | ||
2214 | */ | ||
2215 | static void | ||
2216 | xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags) | ||
2217 | { | ||
2218 | struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2; | ||
2219 | struct xpc_msg_sn2 *msg; | ||
2220 | s64 get = initial_get + 1; | ||
2221 | int send_msgrequest = 0; | ||
2222 | |||
2223 | while (1) { | ||
2224 | |||
2225 | while (1) { | ||
2226 | if (get == ch_sn2->w_local_GP.get) | ||
2227 | break; | ||
2228 | |||
2229 | msg = (struct xpc_msg_sn2 *)((u64)ch_sn2-> | ||
2230 | remote_msgqueue + (get % | ||
2231 | ch->remote_nentries) * | ||
2232 | ch->entry_size); | ||
2233 | |||
2234 | if (!(msg->flags & XPC_M_SN2_DONE)) | ||
2235 | break; | ||
2236 | |||
2237 | msg_flags |= msg->flags; | ||
2238 | get++; | ||
2239 | } | ||
2240 | |||
2241 | if (get == initial_get) { | ||
2242 | /* nothing's changed */ | ||
2243 | break; | ||
2244 | } | ||
2245 | |||
2246 | if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) != | ||
2247 | initial_get) { | ||
2248 | /* someone else beat us to it */ | ||
2249 | DBUG_ON(ch_sn2->local_GP->get <= initial_get); | ||
2250 | break; | ||
2251 | } | ||
2252 | |||
2253 | /* we just set the new value of local_GP->get */ | ||
2254 | |||
2255 | dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, " | ||
2256 | "channel=%d\n", get, ch->partid, ch->number); | ||
2257 | |||
2258 | send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT); | ||
2259 | |||
2260 | /* | ||
2261 | * We need to ensure that the message referenced by | ||
2262 | * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get | ||
2263 | * equals w_local_GP.get, so we'll go have a look. | ||
2264 | */ | ||
2265 | initial_get = get; | ||
2266 | } | ||
2267 | |||
2268 | if (send_msgrequest) | ||
2269 | xpc_send_chctl_msgrequest_sn2(ch); | ||
2270 | } | ||
2271 | |||
2272 | static void | ||
2273 | xpc_received_payload_sn2(struct xpc_channel *ch, void *payload) | ||
2274 | { | ||
2275 | struct xpc_msg_sn2 *msg; | ||
2276 | s64 msg_number; | ||
2277 | s64 get; | ||
2278 | |||
2279 | msg = container_of(payload, struct xpc_msg_sn2, payload); | ||
2280 | msg_number = msg->number; | ||
2281 | |||
2282 | dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n", | ||
2283 | (void *)msg, msg_number, ch->partid, ch->number); | ||
2284 | |||
2285 | DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->entry_size) != | ||
2286 | msg_number % ch->remote_nentries); | ||
2287 | DBUG_ON(msg->flags & XPC_M_SN2_DONE); | ||
2288 | |||
2289 | msg->flags |= XPC_M_SN2_DONE; | ||
2290 | |||
2291 | /* | ||
2292 | * The preceding store of msg->flags must occur before the following | ||
2293 | * load of local_GP->get. | ||
2294 | */ | ||
2295 | mb(); | ||
2296 | |||
2297 | /* | ||
2298 | * See if this message is next in line to be acknowledged as having | ||
2299 | * been delivered. | ||
2300 | */ | ||
2301 | get = ch->sn.sn2.local_GP->get; | ||
2302 | if (get == msg_number) | ||
2303 | xpc_acknowledge_msgs_sn2(ch, get, msg->flags); | ||
2304 | } | ||
2305 | |||
2306 | int | ||
2307 | xpc_init_sn2(void) | ||
2308 | { | ||
2309 | int ret; | ||
2310 | size_t buf_size; | ||
2311 | |||
2312 | xpc_setup_partitions_sn = xpc_setup_partitions_sn_sn2; | ||
2313 | xpc_get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2; | ||
2314 | xpc_setup_rsvd_page_sn = xpc_setup_rsvd_page_sn_sn2; | ||
2315 | xpc_increment_heartbeat = xpc_increment_heartbeat_sn2; | ||
2316 | xpc_offline_heartbeat = xpc_offline_heartbeat_sn2; | ||
2317 | xpc_online_heartbeat = xpc_online_heartbeat_sn2; | ||
2318 | xpc_heartbeat_init = xpc_heartbeat_init_sn2; | ||
2319 | xpc_heartbeat_exit = xpc_heartbeat_exit_sn2; | ||
2320 | xpc_get_remote_heartbeat = xpc_get_remote_heartbeat_sn2; | ||
2321 | |||
2322 | xpc_request_partition_activation = xpc_request_partition_activation_sn2; | ||
2323 | xpc_request_partition_reactivation = | ||
2324 | xpc_request_partition_reactivation_sn2; | ||
2325 | xpc_request_partition_deactivation = | ||
2326 | xpc_request_partition_deactivation_sn2; | ||
2327 | xpc_cancel_partition_deactivation_request = | ||
2328 | xpc_cancel_partition_deactivation_request_sn2; | ||
2329 | |||
2330 | xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2; | ||
2331 | xpc_setup_ch_structures_sn = xpc_setup_ch_structures_sn_sn2; | ||
2332 | xpc_teardown_ch_structures_sn = xpc_teardown_ch_structures_sn_sn2; | ||
2333 | xpc_make_first_contact = xpc_make_first_contact_sn2; | ||
2334 | |||
2335 | xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2; | ||
2336 | xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2; | ||
2337 | xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2; | ||
2338 | xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2; | ||
2339 | xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2; | ||
2340 | |||
2341 | xpc_save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2; | ||
2342 | |||
2343 | xpc_setup_msg_structures = xpc_setup_msg_structures_sn2; | ||
2344 | xpc_teardown_msg_structures = xpc_teardown_msg_structures_sn2; | ||
2345 | |||
2346 | xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2; | ||
2347 | xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2; | ||
2348 | xpc_n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2; | ||
2349 | xpc_get_deliverable_payload = xpc_get_deliverable_payload_sn2; | ||
2350 | |||
2351 | xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2; | ||
2352 | xpc_indicate_partition_disengaged = | ||
2353 | xpc_indicate_partition_disengaged_sn2; | ||
2354 | xpc_partition_engaged = xpc_partition_engaged_sn2; | ||
2355 | xpc_any_partition_engaged = xpc_any_partition_engaged_sn2; | ||
2356 | xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2; | ||
2357 | |||
2358 | xpc_send_payload = xpc_send_payload_sn2; | ||
2359 | xpc_received_payload = xpc_received_payload_sn2; | ||
2360 | |||
2361 | if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) { | ||
2362 | dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is " | ||
2363 | "larger than %d\n", XPC_MSG_HDR_MAX_SIZE); | ||
2364 | return -E2BIG; | ||
2365 | } | ||
2366 | |||
2367 | buf_size = max(XPC_RP_VARS_SIZE, | ||
2368 | XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2); | ||
2369 | xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size, | ||
2370 | GFP_KERNEL, | ||
2371 | &xpc_remote_copy_buffer_base_sn2); | ||
2372 | if (xpc_remote_copy_buffer_sn2 == NULL) { | ||
2373 | dev_err(xpc_part, "can't get memory for remote copy buffer\n"); | ||
2374 | return -ENOMEM; | ||
2375 | } | ||
2376 | |||
2377 | /* open up protections for IPI and [potentially] amo operations */ | ||
2378 | xpc_allow_IPI_ops_sn2(); | ||
2379 | xpc_allow_amo_ops_shub_wars_1_1_sn2(); | ||
2380 | |||
2381 | /* | ||
2382 | * This is safe to do before the xpc_hb_checker thread has started | ||
2383 | * because the handler releases a wait queue. If an interrupt is | ||
2384 | * received before the thread is waiting, it will not go to sleep, | ||
2385 | * but rather immediately process the interrupt. | ||
2386 | */ | ||
2387 | ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0, | ||
2388 | "xpc hb", NULL); | ||
2389 | if (ret != 0) { | ||
2390 | dev_err(xpc_part, "can't register ACTIVATE IRQ handler, " | ||
2391 | "errno=%d\n", -ret); | ||
2392 | xpc_disallow_IPI_ops_sn2(); | ||
2393 | kfree(xpc_remote_copy_buffer_base_sn2); | ||
2394 | } | ||
2395 | return ret; | ||
2396 | } | ||
2397 | |||
2398 | void | ||
2399 | xpc_exit_sn2(void) | ||
2400 | { | ||
2401 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
2402 | xpc_disallow_IPI_ops_sn2(); | ||
2403 | kfree(xpc_remote_copy_buffer_base_sn2); | ||
2404 | } | ||
diff --git a/drivers/misc/sgi-xp/xpc_uv.c b/drivers/misc/sgi-xp/xpc_uv.c new file mode 100644 index 000000000000..1ac694c01623 --- /dev/null +++ b/drivers/misc/sgi-xp/xpc_uv.c | |||
@@ -0,0 +1,1443 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | /* | ||
10 | * Cross Partition Communication (XPC) uv-based functions. | ||
11 | * | ||
12 | * Architecture specific implementation of common functions. | ||
13 | * | ||
14 | */ | ||
15 | |||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/mm.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/delay.h> | ||
20 | #include <linux/device.h> | ||
21 | #include <asm/uv/uv_hub.h> | ||
22 | #include "../sgi-gru/gru.h" | ||
23 | #include "../sgi-gru/grukservices.h" | ||
24 | #include "xpc.h" | ||
25 | |||
26 | static atomic64_t xpc_heartbeat_uv; | ||
27 | static DECLARE_BITMAP(xpc_heartbeating_to_mask_uv, XP_MAX_NPARTITIONS_UV); | ||
28 | |||
29 | #define XPC_ACTIVATE_MSG_SIZE_UV (1 * GRU_CACHE_LINE_BYTES) | ||
30 | #define XPC_NOTIFY_MSG_SIZE_UV (2 * GRU_CACHE_LINE_BYTES) | ||
31 | |||
32 | #define XPC_ACTIVATE_MQ_SIZE_UV (4 * XP_MAX_NPARTITIONS_UV * \ | ||
33 | XPC_ACTIVATE_MSG_SIZE_UV) | ||
34 | #define XPC_NOTIFY_MQ_SIZE_UV (4 * XP_MAX_NPARTITIONS_UV * \ | ||
35 | XPC_NOTIFY_MSG_SIZE_UV) | ||
36 | |||
37 | static void *xpc_activate_mq_uv; | ||
38 | static void *xpc_notify_mq_uv; | ||
39 | |||
40 | static int | ||
41 | xpc_setup_partitions_sn_uv(void) | ||
42 | { | ||
43 | short partid; | ||
44 | struct xpc_partition_uv *part_uv; | ||
45 | |||
46 | for (partid = 0; partid < XP_MAX_NPARTITIONS_UV; partid++) { | ||
47 | part_uv = &xpc_partitions[partid].sn.uv; | ||
48 | |||
49 | spin_lock_init(&part_uv->flags_lock); | ||
50 | part_uv->remote_act_state = XPC_P_AS_INACTIVE; | ||
51 | } | ||
52 | return 0; | ||
53 | } | ||
54 | |||
55 | static void * | ||
56 | xpc_create_gru_mq_uv(unsigned int mq_size, int cpuid, unsigned int irq, | ||
57 | irq_handler_t irq_handler) | ||
58 | { | ||
59 | int ret; | ||
60 | int nid; | ||
61 | int mq_order; | ||
62 | struct page *page; | ||
63 | void *mq; | ||
64 | |||
65 | nid = cpu_to_node(cpuid); | ||
66 | mq_order = get_order(mq_size); | ||
67 | page = alloc_pages_node(nid, GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, | ||
68 | mq_order); | ||
69 | if (page == NULL) { | ||
70 | dev_err(xpc_part, "xpc_create_gru_mq_uv() failed to alloc %d " | ||
71 | "bytes of memory on nid=%d for GRU mq\n", mq_size, nid); | ||
72 | return NULL; | ||
73 | } | ||
74 | |||
75 | mq = page_address(page); | ||
76 | ret = gru_create_message_queue(mq, mq_size); | ||
77 | if (ret != 0) { | ||
78 | dev_err(xpc_part, "gru_create_message_queue() returned " | ||
79 | "error=%d\n", ret); | ||
80 | free_pages((unsigned long)mq, mq_order); | ||
81 | return NULL; | ||
82 | } | ||
83 | |||
84 | /* !!! Need to do some other things to set up IRQ */ | ||
85 | |||
86 | ret = request_irq(irq, irq_handler, 0, "xpc", NULL); | ||
87 | if (ret != 0) { | ||
88 | dev_err(xpc_part, "request_irq(irq=%d) returned error=%d\n", | ||
89 | irq, ret); | ||
90 | free_pages((unsigned long)mq, mq_order); | ||
91 | return NULL; | ||
92 | } | ||
93 | |||
94 | /* !!! enable generation of irq when GRU mq op occurs to this mq */ | ||
95 | |||
96 | /* ??? allow other partitions to access GRU mq? */ | ||
97 | |||
98 | return mq; | ||
99 | } | ||
100 | |||
101 | static void | ||
102 | xpc_destroy_gru_mq_uv(void *mq, unsigned int mq_size, unsigned int irq) | ||
103 | { | ||
104 | /* ??? disallow other partitions to access GRU mq? */ | ||
105 | |||
106 | /* !!! disable generation of irq when GRU mq op occurs to this mq */ | ||
107 | |||
108 | free_irq(irq, NULL); | ||
109 | |||
110 | free_pages((unsigned long)mq, get_order(mq_size)); | ||
111 | } | ||
112 | |||
113 | static enum xp_retval | ||
114 | xpc_send_gru_msg(unsigned long mq_gpa, void *msg, size_t msg_size) | ||
115 | { | ||
116 | enum xp_retval xp_ret; | ||
117 | int ret; | ||
118 | |||
119 | while (1) { | ||
120 | ret = gru_send_message_gpa(mq_gpa, msg, msg_size); | ||
121 | if (ret == MQE_OK) { | ||
122 | xp_ret = xpSuccess; | ||
123 | break; | ||
124 | } | ||
125 | |||
126 | if (ret == MQE_QUEUE_FULL) { | ||
127 | dev_dbg(xpc_chan, "gru_send_message_gpa() returned " | ||
128 | "error=MQE_QUEUE_FULL\n"); | ||
129 | /* !!! handle QLimit reached; delay & try again */ | ||
130 | /* ??? Do we add a limit to the number of retries? */ | ||
131 | (void)msleep_interruptible(10); | ||
132 | } else if (ret == MQE_CONGESTION) { | ||
133 | dev_dbg(xpc_chan, "gru_send_message_gpa() returned " | ||
134 | "error=MQE_CONGESTION\n"); | ||
135 | /* !!! handle LB Overflow; simply try again */ | ||
136 | /* ??? Do we add a limit to the number of retries? */ | ||
137 | } else { | ||
138 | /* !!! Currently this is MQE_UNEXPECTED_CB_ERR */ | ||
139 | dev_err(xpc_chan, "gru_send_message_gpa() returned " | ||
140 | "error=%d\n", ret); | ||
141 | xp_ret = xpGruSendMqError; | ||
142 | break; | ||
143 | } | ||
144 | } | ||
145 | return xp_ret; | ||
146 | } | ||
147 | |||
148 | static void | ||
149 | xpc_process_activate_IRQ_rcvd_uv(void) | ||
150 | { | ||
151 | unsigned long irq_flags; | ||
152 | short partid; | ||
153 | struct xpc_partition *part; | ||
154 | u8 act_state_req; | ||
155 | |||
156 | DBUG_ON(xpc_activate_IRQ_rcvd == 0); | ||
157 | |||
158 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
159 | for (partid = 0; partid < XP_MAX_NPARTITIONS_UV; partid++) { | ||
160 | part = &xpc_partitions[partid]; | ||
161 | |||
162 | if (part->sn.uv.act_state_req == 0) | ||
163 | continue; | ||
164 | |||
165 | xpc_activate_IRQ_rcvd--; | ||
166 | BUG_ON(xpc_activate_IRQ_rcvd < 0); | ||
167 | |||
168 | act_state_req = part->sn.uv.act_state_req; | ||
169 | part->sn.uv.act_state_req = 0; | ||
170 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
171 | |||
172 | if (act_state_req == XPC_P_ASR_ACTIVATE_UV) { | ||
173 | if (part->act_state == XPC_P_AS_INACTIVE) | ||
174 | xpc_activate_partition(part); | ||
175 | else if (part->act_state == XPC_P_AS_DEACTIVATING) | ||
176 | XPC_DEACTIVATE_PARTITION(part, xpReactivating); | ||
177 | |||
178 | } else if (act_state_req == XPC_P_ASR_REACTIVATE_UV) { | ||
179 | if (part->act_state == XPC_P_AS_INACTIVE) | ||
180 | xpc_activate_partition(part); | ||
181 | else | ||
182 | XPC_DEACTIVATE_PARTITION(part, xpReactivating); | ||
183 | |||
184 | } else if (act_state_req == XPC_P_ASR_DEACTIVATE_UV) { | ||
185 | XPC_DEACTIVATE_PARTITION(part, part->sn.uv.reason); | ||
186 | |||
187 | } else { | ||
188 | BUG(); | ||
189 | } | ||
190 | |||
191 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
192 | if (xpc_activate_IRQ_rcvd == 0) | ||
193 | break; | ||
194 | } | ||
195 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
196 | |||
197 | } | ||
198 | |||
199 | static void | ||
200 | xpc_handle_activate_mq_msg_uv(struct xpc_partition *part, | ||
201 | struct xpc_activate_mq_msghdr_uv *msg_hdr, | ||
202 | int *wakeup_hb_checker) | ||
203 | { | ||
204 | unsigned long irq_flags; | ||
205 | struct xpc_partition_uv *part_uv = &part->sn.uv; | ||
206 | struct xpc_openclose_args *args; | ||
207 | |||
208 | part_uv->remote_act_state = msg_hdr->act_state; | ||
209 | |||
210 | switch (msg_hdr->type) { | ||
211 | case XPC_ACTIVATE_MQ_MSG_SYNC_ACT_STATE_UV: | ||
212 | /* syncing of remote_act_state was just done above */ | ||
213 | break; | ||
214 | |||
215 | case XPC_ACTIVATE_MQ_MSG_INC_HEARTBEAT_UV: { | ||
216 | struct xpc_activate_mq_msg_heartbeat_req_uv *msg; | ||
217 | |||
218 | msg = container_of(msg_hdr, | ||
219 | struct xpc_activate_mq_msg_heartbeat_req_uv, | ||
220 | hdr); | ||
221 | part_uv->heartbeat = msg->heartbeat; | ||
222 | break; | ||
223 | } | ||
224 | case XPC_ACTIVATE_MQ_MSG_OFFLINE_HEARTBEAT_UV: { | ||
225 | struct xpc_activate_mq_msg_heartbeat_req_uv *msg; | ||
226 | |||
227 | msg = container_of(msg_hdr, | ||
228 | struct xpc_activate_mq_msg_heartbeat_req_uv, | ||
229 | hdr); | ||
230 | part_uv->heartbeat = msg->heartbeat; | ||
231 | |||
232 | spin_lock_irqsave(&part_uv->flags_lock, irq_flags); | ||
233 | part_uv->flags |= XPC_P_HEARTBEAT_OFFLINE_UV; | ||
234 | spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags); | ||
235 | break; | ||
236 | } | ||
237 | case XPC_ACTIVATE_MQ_MSG_ONLINE_HEARTBEAT_UV: { | ||
238 | struct xpc_activate_mq_msg_heartbeat_req_uv *msg; | ||
239 | |||
240 | msg = container_of(msg_hdr, | ||
241 | struct xpc_activate_mq_msg_heartbeat_req_uv, | ||
242 | hdr); | ||
243 | part_uv->heartbeat = msg->heartbeat; | ||
244 | |||
245 | spin_lock_irqsave(&part_uv->flags_lock, irq_flags); | ||
246 | part_uv->flags &= ~XPC_P_HEARTBEAT_OFFLINE_UV; | ||
247 | spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags); | ||
248 | break; | ||
249 | } | ||
250 | case XPC_ACTIVATE_MQ_MSG_ACTIVATE_REQ_UV: { | ||
251 | struct xpc_activate_mq_msg_activate_req_uv *msg; | ||
252 | |||
253 | /* | ||
254 | * ??? Do we deal here with ts_jiffies being different | ||
255 | * ??? if act_state != XPC_P_AS_INACTIVE instead of | ||
256 | * ??? below? | ||
257 | */ | ||
258 | msg = container_of(msg_hdr, struct | ||
259 | xpc_activate_mq_msg_activate_req_uv, hdr); | ||
260 | |||
261 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
262 | if (part_uv->act_state_req == 0) | ||
263 | xpc_activate_IRQ_rcvd++; | ||
264 | part_uv->act_state_req = XPC_P_ASR_ACTIVATE_UV; | ||
265 | part->remote_rp_pa = msg->rp_gpa; /* !!! _pa is _gpa */ | ||
266 | part->remote_rp_ts_jiffies = msg_hdr->rp_ts_jiffies; | ||
267 | part_uv->remote_activate_mq_gpa = msg->activate_mq_gpa; | ||
268 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
269 | |||
270 | (*wakeup_hb_checker)++; | ||
271 | break; | ||
272 | } | ||
273 | case XPC_ACTIVATE_MQ_MSG_DEACTIVATE_REQ_UV: { | ||
274 | struct xpc_activate_mq_msg_deactivate_req_uv *msg; | ||
275 | |||
276 | msg = container_of(msg_hdr, struct | ||
277 | xpc_activate_mq_msg_deactivate_req_uv, hdr); | ||
278 | |||
279 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
280 | if (part_uv->act_state_req == 0) | ||
281 | xpc_activate_IRQ_rcvd++; | ||
282 | part_uv->act_state_req = XPC_P_ASR_DEACTIVATE_UV; | ||
283 | part_uv->reason = msg->reason; | ||
284 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
285 | |||
286 | (*wakeup_hb_checker)++; | ||
287 | return; | ||
288 | } | ||
289 | case XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREQUEST_UV: { | ||
290 | struct xpc_activate_mq_msg_chctl_closerequest_uv *msg; | ||
291 | |||
292 | msg = container_of(msg_hdr, struct | ||
293 | xpc_activate_mq_msg_chctl_closerequest_uv, | ||
294 | hdr); | ||
295 | args = &part->remote_openclose_args[msg->ch_number]; | ||
296 | args->reason = msg->reason; | ||
297 | |||
298 | spin_lock_irqsave(&part->chctl_lock, irq_flags); | ||
299 | part->chctl.flags[msg->ch_number] |= XPC_CHCTL_CLOSEREQUEST; | ||
300 | spin_unlock_irqrestore(&part->chctl_lock, irq_flags); | ||
301 | |||
302 | xpc_wakeup_channel_mgr(part); | ||
303 | break; | ||
304 | } | ||
305 | case XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREPLY_UV: { | ||
306 | struct xpc_activate_mq_msg_chctl_closereply_uv *msg; | ||
307 | |||
308 | msg = container_of(msg_hdr, struct | ||
309 | xpc_activate_mq_msg_chctl_closereply_uv, | ||
310 | hdr); | ||
311 | |||
312 | spin_lock_irqsave(&part->chctl_lock, irq_flags); | ||
313 | part->chctl.flags[msg->ch_number] |= XPC_CHCTL_CLOSEREPLY; | ||
314 | spin_unlock_irqrestore(&part->chctl_lock, irq_flags); | ||
315 | |||
316 | xpc_wakeup_channel_mgr(part); | ||
317 | break; | ||
318 | } | ||
319 | case XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREQUEST_UV: { | ||
320 | struct xpc_activate_mq_msg_chctl_openrequest_uv *msg; | ||
321 | |||
322 | msg = container_of(msg_hdr, struct | ||
323 | xpc_activate_mq_msg_chctl_openrequest_uv, | ||
324 | hdr); | ||
325 | args = &part->remote_openclose_args[msg->ch_number]; | ||
326 | args->entry_size = msg->entry_size; | ||
327 | args->local_nentries = msg->local_nentries; | ||
328 | |||
329 | spin_lock_irqsave(&part->chctl_lock, irq_flags); | ||
330 | part->chctl.flags[msg->ch_number] |= XPC_CHCTL_OPENREQUEST; | ||
331 | spin_unlock_irqrestore(&part->chctl_lock, irq_flags); | ||
332 | |||
333 | xpc_wakeup_channel_mgr(part); | ||
334 | break; | ||
335 | } | ||
336 | case XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREPLY_UV: { | ||
337 | struct xpc_activate_mq_msg_chctl_openreply_uv *msg; | ||
338 | |||
339 | msg = container_of(msg_hdr, struct | ||
340 | xpc_activate_mq_msg_chctl_openreply_uv, hdr); | ||
341 | args = &part->remote_openclose_args[msg->ch_number]; | ||
342 | args->remote_nentries = msg->remote_nentries; | ||
343 | args->local_nentries = msg->local_nentries; | ||
344 | args->local_msgqueue_pa = msg->local_notify_mq_gpa; | ||
345 | |||
346 | spin_lock_irqsave(&part->chctl_lock, irq_flags); | ||
347 | part->chctl.flags[msg->ch_number] |= XPC_CHCTL_OPENREPLY; | ||
348 | spin_unlock_irqrestore(&part->chctl_lock, irq_flags); | ||
349 | |||
350 | xpc_wakeup_channel_mgr(part); | ||
351 | break; | ||
352 | } | ||
353 | case XPC_ACTIVATE_MQ_MSG_MARK_ENGAGED_UV: | ||
354 | spin_lock_irqsave(&part_uv->flags_lock, irq_flags); | ||
355 | part_uv->flags |= XPC_P_ENGAGED_UV; | ||
356 | spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags); | ||
357 | break; | ||
358 | |||
359 | case XPC_ACTIVATE_MQ_MSG_MARK_DISENGAGED_UV: | ||
360 | spin_lock_irqsave(&part_uv->flags_lock, irq_flags); | ||
361 | part_uv->flags &= ~XPC_P_ENGAGED_UV; | ||
362 | spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags); | ||
363 | break; | ||
364 | |||
365 | default: | ||
366 | dev_err(xpc_part, "received unknown activate_mq msg type=%d " | ||
367 | "from partition=%d\n", msg_hdr->type, XPC_PARTID(part)); | ||
368 | |||
369 | /* get hb checker to deactivate from the remote partition */ | ||
370 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
371 | if (part_uv->act_state_req == 0) | ||
372 | xpc_activate_IRQ_rcvd++; | ||
373 | part_uv->act_state_req = XPC_P_ASR_DEACTIVATE_UV; | ||
374 | part_uv->reason = xpBadMsgType; | ||
375 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
376 | |||
377 | (*wakeup_hb_checker)++; | ||
378 | return; | ||
379 | } | ||
380 | |||
381 | if (msg_hdr->rp_ts_jiffies != part->remote_rp_ts_jiffies && | ||
382 | part->remote_rp_ts_jiffies != 0) { | ||
383 | /* | ||
384 | * ??? Does what we do here need to be sensitive to | ||
385 | * ??? act_state or remote_act_state? | ||
386 | */ | ||
387 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
388 | if (part_uv->act_state_req == 0) | ||
389 | xpc_activate_IRQ_rcvd++; | ||
390 | part_uv->act_state_req = XPC_P_ASR_REACTIVATE_UV; | ||
391 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
392 | |||
393 | (*wakeup_hb_checker)++; | ||
394 | } | ||
395 | } | ||
396 | |||
397 | static irqreturn_t | ||
398 | xpc_handle_activate_IRQ_uv(int irq, void *dev_id) | ||
399 | { | ||
400 | struct xpc_activate_mq_msghdr_uv *msg_hdr; | ||
401 | short partid; | ||
402 | struct xpc_partition *part; | ||
403 | int wakeup_hb_checker = 0; | ||
404 | |||
405 | while ((msg_hdr = gru_get_next_message(xpc_activate_mq_uv)) != NULL) { | ||
406 | |||
407 | partid = msg_hdr->partid; | ||
408 | if (partid < 0 || partid >= XP_MAX_NPARTITIONS_UV) { | ||
409 | dev_err(xpc_part, "xpc_handle_activate_IRQ_uv() " | ||
410 | "received invalid partid=0x%x in message\n", | ||
411 | partid); | ||
412 | } else { | ||
413 | part = &xpc_partitions[partid]; | ||
414 | if (xpc_part_ref(part)) { | ||
415 | xpc_handle_activate_mq_msg_uv(part, msg_hdr, | ||
416 | &wakeup_hb_checker); | ||
417 | xpc_part_deref(part); | ||
418 | } | ||
419 | } | ||
420 | |||
421 | gru_free_message(xpc_activate_mq_uv, msg_hdr); | ||
422 | } | ||
423 | |||
424 | if (wakeup_hb_checker) | ||
425 | wake_up_interruptible(&xpc_activate_IRQ_wq); | ||
426 | |||
427 | return IRQ_HANDLED; | ||
428 | } | ||
429 | |||
430 | static enum xp_retval | ||
431 | xpc_send_activate_IRQ_uv(struct xpc_partition *part, void *msg, size_t msg_size, | ||
432 | int msg_type) | ||
433 | { | ||
434 | struct xpc_activate_mq_msghdr_uv *msg_hdr = msg; | ||
435 | |||
436 | DBUG_ON(msg_size > XPC_ACTIVATE_MSG_SIZE_UV); | ||
437 | |||
438 | msg_hdr->type = msg_type; | ||
439 | msg_hdr->partid = XPC_PARTID(part); | ||
440 | msg_hdr->act_state = part->act_state; | ||
441 | msg_hdr->rp_ts_jiffies = xpc_rsvd_page->ts_jiffies; | ||
442 | |||
443 | /* ??? Is holding a spin_lock (ch->lock) during this call a bad idea? */ | ||
444 | return xpc_send_gru_msg(part->sn.uv.remote_activate_mq_gpa, msg, | ||
445 | msg_size); | ||
446 | } | ||
447 | |||
448 | static void | ||
449 | xpc_send_activate_IRQ_part_uv(struct xpc_partition *part, void *msg, | ||
450 | size_t msg_size, int msg_type) | ||
451 | { | ||
452 | enum xp_retval ret; | ||
453 | |||
454 | ret = xpc_send_activate_IRQ_uv(part, msg, msg_size, msg_type); | ||
455 | if (unlikely(ret != xpSuccess)) | ||
456 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
457 | } | ||
458 | |||
459 | static void | ||
460 | xpc_send_activate_IRQ_ch_uv(struct xpc_channel *ch, unsigned long *irq_flags, | ||
461 | void *msg, size_t msg_size, int msg_type) | ||
462 | { | ||
463 | struct xpc_partition *part = &xpc_partitions[ch->number]; | ||
464 | enum xp_retval ret; | ||
465 | |||
466 | ret = xpc_send_activate_IRQ_uv(part, msg, msg_size, msg_type); | ||
467 | if (unlikely(ret != xpSuccess)) { | ||
468 | if (irq_flags != NULL) | ||
469 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
470 | |||
471 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
472 | |||
473 | if (irq_flags != NULL) | ||
474 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
475 | } | ||
476 | } | ||
477 | |||
478 | static void | ||
479 | xpc_send_local_activate_IRQ_uv(struct xpc_partition *part, int act_state_req) | ||
480 | { | ||
481 | unsigned long irq_flags; | ||
482 | struct xpc_partition_uv *part_uv = &part->sn.uv; | ||
483 | |||
484 | /* | ||
485 | * !!! Make our side think that the remote parition sent an activate | ||
486 | * !!! message our way by doing what the activate IRQ handler would | ||
487 | * !!! do had one really been sent. | ||
488 | */ | ||
489 | |||
490 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
491 | if (part_uv->act_state_req == 0) | ||
492 | xpc_activate_IRQ_rcvd++; | ||
493 | part_uv->act_state_req = act_state_req; | ||
494 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
495 | |||
496 | wake_up_interruptible(&xpc_activate_IRQ_wq); | ||
497 | } | ||
498 | |||
499 | static enum xp_retval | ||
500 | xpc_get_partition_rsvd_page_pa_uv(void *buf, u64 *cookie, unsigned long *rp_pa, | ||
501 | size_t *len) | ||
502 | { | ||
503 | /* !!! call the UV version of sn_partition_reserved_page_pa() */ | ||
504 | return xpUnsupported; | ||
505 | } | ||
506 | |||
507 | static int | ||
508 | xpc_setup_rsvd_page_sn_uv(struct xpc_rsvd_page *rp) | ||
509 | { | ||
510 | rp->sn.activate_mq_gpa = uv_gpa(xpc_activate_mq_uv); | ||
511 | return 0; | ||
512 | } | ||
513 | |||
514 | static void | ||
515 | xpc_send_heartbeat_uv(int msg_type) | ||
516 | { | ||
517 | short partid; | ||
518 | struct xpc_partition *part; | ||
519 | struct xpc_activate_mq_msg_heartbeat_req_uv msg; | ||
520 | |||
521 | /* | ||
522 | * !!! On uv we're broadcasting a heartbeat message every 5 seconds. | ||
523 | * !!! Whereas on sn2 we're bte_copy'ng the heartbeat info every 20 | ||
524 | * !!! seconds. This is an increase in numalink traffic. | ||
525 | * ??? Is this good? | ||
526 | */ | ||
527 | |||
528 | msg.heartbeat = atomic64_inc_return(&xpc_heartbeat_uv); | ||
529 | |||
530 | partid = find_first_bit(xpc_heartbeating_to_mask_uv, | ||
531 | XP_MAX_NPARTITIONS_UV); | ||
532 | |||
533 | while (partid < XP_MAX_NPARTITIONS_UV) { | ||
534 | part = &xpc_partitions[partid]; | ||
535 | |||
536 | xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg), | ||
537 | msg_type); | ||
538 | |||
539 | partid = find_next_bit(xpc_heartbeating_to_mask_uv, | ||
540 | XP_MAX_NPARTITIONS_UV, partid + 1); | ||
541 | } | ||
542 | } | ||
543 | |||
544 | static void | ||
545 | xpc_increment_heartbeat_uv(void) | ||
546 | { | ||
547 | xpc_send_heartbeat_uv(XPC_ACTIVATE_MQ_MSG_INC_HEARTBEAT_UV); | ||
548 | } | ||
549 | |||
550 | static void | ||
551 | xpc_offline_heartbeat_uv(void) | ||
552 | { | ||
553 | xpc_send_heartbeat_uv(XPC_ACTIVATE_MQ_MSG_OFFLINE_HEARTBEAT_UV); | ||
554 | } | ||
555 | |||
556 | static void | ||
557 | xpc_online_heartbeat_uv(void) | ||
558 | { | ||
559 | xpc_send_heartbeat_uv(XPC_ACTIVATE_MQ_MSG_ONLINE_HEARTBEAT_UV); | ||
560 | } | ||
561 | |||
562 | static void | ||
563 | xpc_heartbeat_init_uv(void) | ||
564 | { | ||
565 | atomic64_set(&xpc_heartbeat_uv, 0); | ||
566 | bitmap_zero(xpc_heartbeating_to_mask_uv, XP_MAX_NPARTITIONS_UV); | ||
567 | xpc_heartbeating_to_mask = &xpc_heartbeating_to_mask_uv[0]; | ||
568 | } | ||
569 | |||
570 | static void | ||
571 | xpc_heartbeat_exit_uv(void) | ||
572 | { | ||
573 | xpc_send_heartbeat_uv(XPC_ACTIVATE_MQ_MSG_OFFLINE_HEARTBEAT_UV); | ||
574 | } | ||
575 | |||
576 | static enum xp_retval | ||
577 | xpc_get_remote_heartbeat_uv(struct xpc_partition *part) | ||
578 | { | ||
579 | struct xpc_partition_uv *part_uv = &part->sn.uv; | ||
580 | enum xp_retval ret = xpNoHeartbeat; | ||
581 | |||
582 | if (part_uv->remote_act_state != XPC_P_AS_INACTIVE && | ||
583 | part_uv->remote_act_state != XPC_P_AS_DEACTIVATING) { | ||
584 | |||
585 | if (part_uv->heartbeat != part->last_heartbeat || | ||
586 | (part_uv->flags & XPC_P_HEARTBEAT_OFFLINE_UV)) { | ||
587 | |||
588 | part->last_heartbeat = part_uv->heartbeat; | ||
589 | ret = xpSuccess; | ||
590 | } | ||
591 | } | ||
592 | return ret; | ||
593 | } | ||
594 | |||
595 | static void | ||
596 | xpc_request_partition_activation_uv(struct xpc_rsvd_page *remote_rp, | ||
597 | unsigned long remote_rp_gpa, int nasid) | ||
598 | { | ||
599 | short partid = remote_rp->SAL_partid; | ||
600 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
601 | struct xpc_activate_mq_msg_activate_req_uv msg; | ||
602 | |||
603 | part->remote_rp_pa = remote_rp_gpa; /* !!! _pa here is really _gpa */ | ||
604 | part->remote_rp_ts_jiffies = remote_rp->ts_jiffies; | ||
605 | part->sn.uv.remote_activate_mq_gpa = remote_rp->sn.activate_mq_gpa; | ||
606 | |||
607 | /* | ||
608 | * ??? Is it a good idea to make this conditional on what is | ||
609 | * ??? potentially stale state information? | ||
610 | */ | ||
611 | if (part->sn.uv.remote_act_state == XPC_P_AS_INACTIVE) { | ||
612 | msg.rp_gpa = uv_gpa(xpc_rsvd_page); | ||
613 | msg.activate_mq_gpa = xpc_rsvd_page->sn.activate_mq_gpa; | ||
614 | xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg), | ||
615 | XPC_ACTIVATE_MQ_MSG_ACTIVATE_REQ_UV); | ||
616 | } | ||
617 | |||
618 | if (part->act_state == XPC_P_AS_INACTIVE) | ||
619 | xpc_send_local_activate_IRQ_uv(part, XPC_P_ASR_ACTIVATE_UV); | ||
620 | } | ||
621 | |||
622 | static void | ||
623 | xpc_request_partition_reactivation_uv(struct xpc_partition *part) | ||
624 | { | ||
625 | xpc_send_local_activate_IRQ_uv(part, XPC_P_ASR_ACTIVATE_UV); | ||
626 | } | ||
627 | |||
628 | static void | ||
629 | xpc_request_partition_deactivation_uv(struct xpc_partition *part) | ||
630 | { | ||
631 | struct xpc_activate_mq_msg_deactivate_req_uv msg; | ||
632 | |||
633 | /* | ||
634 | * ??? Is it a good idea to make this conditional on what is | ||
635 | * ??? potentially stale state information? | ||
636 | */ | ||
637 | if (part->sn.uv.remote_act_state != XPC_P_AS_DEACTIVATING && | ||
638 | part->sn.uv.remote_act_state != XPC_P_AS_INACTIVE) { | ||
639 | |||
640 | msg.reason = part->reason; | ||
641 | xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg), | ||
642 | XPC_ACTIVATE_MQ_MSG_DEACTIVATE_REQ_UV); | ||
643 | } | ||
644 | } | ||
645 | |||
646 | static void | ||
647 | xpc_cancel_partition_deactivation_request_uv(struct xpc_partition *part) | ||
648 | { | ||
649 | /* nothing needs to be done */ | ||
650 | return; | ||
651 | } | ||
652 | |||
653 | static void | ||
654 | xpc_init_fifo_uv(struct xpc_fifo_head_uv *head) | ||
655 | { | ||
656 | head->first = NULL; | ||
657 | head->last = NULL; | ||
658 | spin_lock_init(&head->lock); | ||
659 | head->n_entries = 0; | ||
660 | } | ||
661 | |||
662 | static void * | ||
663 | xpc_get_fifo_entry_uv(struct xpc_fifo_head_uv *head) | ||
664 | { | ||
665 | unsigned long irq_flags; | ||
666 | struct xpc_fifo_entry_uv *first; | ||
667 | |||
668 | spin_lock_irqsave(&head->lock, irq_flags); | ||
669 | first = head->first; | ||
670 | if (head->first != NULL) { | ||
671 | head->first = first->next; | ||
672 | if (head->first == NULL) | ||
673 | head->last = NULL; | ||
674 | } | ||
675 | head->n_entries++; | ||
676 | spin_unlock_irqrestore(&head->lock, irq_flags); | ||
677 | first->next = NULL; | ||
678 | return first; | ||
679 | } | ||
680 | |||
681 | static void | ||
682 | xpc_put_fifo_entry_uv(struct xpc_fifo_head_uv *head, | ||
683 | struct xpc_fifo_entry_uv *last) | ||
684 | { | ||
685 | unsigned long irq_flags; | ||
686 | |||
687 | last->next = NULL; | ||
688 | spin_lock_irqsave(&head->lock, irq_flags); | ||
689 | if (head->last != NULL) | ||
690 | head->last->next = last; | ||
691 | else | ||
692 | head->first = last; | ||
693 | head->last = last; | ||
694 | head->n_entries--; | ||
695 | BUG_ON(head->n_entries < 0); | ||
696 | spin_unlock_irqrestore(&head->lock, irq_flags); | ||
697 | } | ||
698 | |||
699 | static int | ||
700 | xpc_n_of_fifo_entries_uv(struct xpc_fifo_head_uv *head) | ||
701 | { | ||
702 | return head->n_entries; | ||
703 | } | ||
704 | |||
705 | /* | ||
706 | * Setup the channel structures that are uv specific. | ||
707 | */ | ||
708 | static enum xp_retval | ||
709 | xpc_setup_ch_structures_sn_uv(struct xpc_partition *part) | ||
710 | { | ||
711 | struct xpc_channel_uv *ch_uv; | ||
712 | int ch_number; | ||
713 | |||
714 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
715 | ch_uv = &part->channels[ch_number].sn.uv; | ||
716 | |||
717 | xpc_init_fifo_uv(&ch_uv->msg_slot_free_list); | ||
718 | xpc_init_fifo_uv(&ch_uv->recv_msg_list); | ||
719 | } | ||
720 | |||
721 | return xpSuccess; | ||
722 | } | ||
723 | |||
724 | /* | ||
725 | * Teardown the channel structures that are uv specific. | ||
726 | */ | ||
727 | static void | ||
728 | xpc_teardown_ch_structures_sn_uv(struct xpc_partition *part) | ||
729 | { | ||
730 | /* nothing needs to be done */ | ||
731 | return; | ||
732 | } | ||
733 | |||
734 | static enum xp_retval | ||
735 | xpc_make_first_contact_uv(struct xpc_partition *part) | ||
736 | { | ||
737 | struct xpc_activate_mq_msg_uv msg; | ||
738 | |||
739 | /* | ||
740 | * We send a sync msg to get the remote partition's remote_act_state | ||
741 | * updated to our current act_state which at this point should | ||
742 | * be XPC_P_AS_ACTIVATING. | ||
743 | */ | ||
744 | xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg), | ||
745 | XPC_ACTIVATE_MQ_MSG_SYNC_ACT_STATE_UV); | ||
746 | |||
747 | while (part->sn.uv.remote_act_state != XPC_P_AS_ACTIVATING) { | ||
748 | |||
749 | dev_dbg(xpc_part, "waiting to make first contact with " | ||
750 | "partition %d\n", XPC_PARTID(part)); | ||
751 | |||
752 | /* wait a 1/4 of a second or so */ | ||
753 | (void)msleep_interruptible(250); | ||
754 | |||
755 | if (part->act_state == XPC_P_AS_DEACTIVATING) | ||
756 | return part->reason; | ||
757 | } | ||
758 | |||
759 | return xpSuccess; | ||
760 | } | ||
761 | |||
762 | static u64 | ||
763 | xpc_get_chctl_all_flags_uv(struct xpc_partition *part) | ||
764 | { | ||
765 | unsigned long irq_flags; | ||
766 | union xpc_channel_ctl_flags chctl; | ||
767 | |||
768 | spin_lock_irqsave(&part->chctl_lock, irq_flags); | ||
769 | chctl = part->chctl; | ||
770 | if (chctl.all_flags != 0) | ||
771 | part->chctl.all_flags = 0; | ||
772 | |||
773 | spin_unlock_irqrestore(&part->chctl_lock, irq_flags); | ||
774 | return chctl.all_flags; | ||
775 | } | ||
776 | |||
777 | static enum xp_retval | ||
778 | xpc_allocate_send_msg_slot_uv(struct xpc_channel *ch) | ||
779 | { | ||
780 | struct xpc_channel_uv *ch_uv = &ch->sn.uv; | ||
781 | struct xpc_send_msg_slot_uv *msg_slot; | ||
782 | unsigned long irq_flags; | ||
783 | int nentries; | ||
784 | int entry; | ||
785 | size_t nbytes; | ||
786 | |||
787 | for (nentries = ch->local_nentries; nentries > 0; nentries--) { | ||
788 | nbytes = nentries * sizeof(struct xpc_send_msg_slot_uv); | ||
789 | ch_uv->send_msg_slots = kzalloc(nbytes, GFP_KERNEL); | ||
790 | if (ch_uv->send_msg_slots == NULL) | ||
791 | continue; | ||
792 | |||
793 | for (entry = 0; entry < nentries; entry++) { | ||
794 | msg_slot = &ch_uv->send_msg_slots[entry]; | ||
795 | |||
796 | msg_slot->msg_slot_number = entry; | ||
797 | xpc_put_fifo_entry_uv(&ch_uv->msg_slot_free_list, | ||
798 | &msg_slot->next); | ||
799 | } | ||
800 | |||
801 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
802 | if (nentries < ch->local_nentries) | ||
803 | ch->local_nentries = nentries; | ||
804 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
805 | return xpSuccess; | ||
806 | } | ||
807 | |||
808 | return xpNoMemory; | ||
809 | } | ||
810 | |||
811 | static enum xp_retval | ||
812 | xpc_allocate_recv_msg_slot_uv(struct xpc_channel *ch) | ||
813 | { | ||
814 | struct xpc_channel_uv *ch_uv = &ch->sn.uv; | ||
815 | struct xpc_notify_mq_msg_uv *msg_slot; | ||
816 | unsigned long irq_flags; | ||
817 | int nentries; | ||
818 | int entry; | ||
819 | size_t nbytes; | ||
820 | |||
821 | for (nentries = ch->remote_nentries; nentries > 0; nentries--) { | ||
822 | nbytes = nentries * ch->entry_size; | ||
823 | ch_uv->recv_msg_slots = kzalloc(nbytes, GFP_KERNEL); | ||
824 | if (ch_uv->recv_msg_slots == NULL) | ||
825 | continue; | ||
826 | |||
827 | for (entry = 0; entry < nentries; entry++) { | ||
828 | msg_slot = ch_uv->recv_msg_slots + entry * | ||
829 | ch->entry_size; | ||
830 | |||
831 | msg_slot->hdr.msg_slot_number = entry; | ||
832 | } | ||
833 | |||
834 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
835 | if (nentries < ch->remote_nentries) | ||
836 | ch->remote_nentries = nentries; | ||
837 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
838 | return xpSuccess; | ||
839 | } | ||
840 | |||
841 | return xpNoMemory; | ||
842 | } | ||
843 | |||
844 | /* | ||
845 | * Allocate msg_slots associated with the channel. | ||
846 | */ | ||
847 | static enum xp_retval | ||
848 | xpc_setup_msg_structures_uv(struct xpc_channel *ch) | ||
849 | { | ||
850 | static enum xp_retval ret; | ||
851 | struct xpc_channel_uv *ch_uv = &ch->sn.uv; | ||
852 | |||
853 | DBUG_ON(ch->flags & XPC_C_SETUP); | ||
854 | |||
855 | ret = xpc_allocate_send_msg_slot_uv(ch); | ||
856 | if (ret == xpSuccess) { | ||
857 | |||
858 | ret = xpc_allocate_recv_msg_slot_uv(ch); | ||
859 | if (ret != xpSuccess) { | ||
860 | kfree(ch_uv->send_msg_slots); | ||
861 | xpc_init_fifo_uv(&ch_uv->msg_slot_free_list); | ||
862 | } | ||
863 | } | ||
864 | return ret; | ||
865 | } | ||
866 | |||
867 | /* | ||
868 | * Free up msg_slots and clear other stuff that were setup for the specified | ||
869 | * channel. | ||
870 | */ | ||
871 | static void | ||
872 | xpc_teardown_msg_structures_uv(struct xpc_channel *ch) | ||
873 | { | ||
874 | struct xpc_channel_uv *ch_uv = &ch->sn.uv; | ||
875 | |||
876 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
877 | |||
878 | ch_uv->remote_notify_mq_gpa = 0; | ||
879 | |||
880 | if (ch->flags & XPC_C_SETUP) { | ||
881 | xpc_init_fifo_uv(&ch_uv->msg_slot_free_list); | ||
882 | kfree(ch_uv->send_msg_slots); | ||
883 | xpc_init_fifo_uv(&ch_uv->recv_msg_list); | ||
884 | kfree(ch_uv->recv_msg_slots); | ||
885 | } | ||
886 | } | ||
887 | |||
888 | static void | ||
889 | xpc_send_chctl_closerequest_uv(struct xpc_channel *ch, unsigned long *irq_flags) | ||
890 | { | ||
891 | struct xpc_activate_mq_msg_chctl_closerequest_uv msg; | ||
892 | |||
893 | msg.ch_number = ch->number; | ||
894 | msg.reason = ch->reason; | ||
895 | xpc_send_activate_IRQ_ch_uv(ch, irq_flags, &msg, sizeof(msg), | ||
896 | XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREQUEST_UV); | ||
897 | } | ||
898 | |||
899 | static void | ||
900 | xpc_send_chctl_closereply_uv(struct xpc_channel *ch, unsigned long *irq_flags) | ||
901 | { | ||
902 | struct xpc_activate_mq_msg_chctl_closereply_uv msg; | ||
903 | |||
904 | msg.ch_number = ch->number; | ||
905 | xpc_send_activate_IRQ_ch_uv(ch, irq_flags, &msg, sizeof(msg), | ||
906 | XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREPLY_UV); | ||
907 | } | ||
908 | |||
909 | static void | ||
910 | xpc_send_chctl_openrequest_uv(struct xpc_channel *ch, unsigned long *irq_flags) | ||
911 | { | ||
912 | struct xpc_activate_mq_msg_chctl_openrequest_uv msg; | ||
913 | |||
914 | msg.ch_number = ch->number; | ||
915 | msg.entry_size = ch->entry_size; | ||
916 | msg.local_nentries = ch->local_nentries; | ||
917 | xpc_send_activate_IRQ_ch_uv(ch, irq_flags, &msg, sizeof(msg), | ||
918 | XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREQUEST_UV); | ||
919 | } | ||
920 | |||
921 | static void | ||
922 | xpc_send_chctl_openreply_uv(struct xpc_channel *ch, unsigned long *irq_flags) | ||
923 | { | ||
924 | struct xpc_activate_mq_msg_chctl_openreply_uv msg; | ||
925 | |||
926 | msg.ch_number = ch->number; | ||
927 | msg.local_nentries = ch->local_nentries; | ||
928 | msg.remote_nentries = ch->remote_nentries; | ||
929 | msg.local_notify_mq_gpa = uv_gpa(xpc_notify_mq_uv); | ||
930 | xpc_send_activate_IRQ_ch_uv(ch, irq_flags, &msg, sizeof(msg), | ||
931 | XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREPLY_UV); | ||
932 | } | ||
933 | |||
934 | static void | ||
935 | xpc_send_chctl_local_msgrequest_uv(struct xpc_partition *part, int ch_number) | ||
936 | { | ||
937 | unsigned long irq_flags; | ||
938 | |||
939 | spin_lock_irqsave(&part->chctl_lock, irq_flags); | ||
940 | part->chctl.flags[ch_number] |= XPC_CHCTL_MSGREQUEST; | ||
941 | spin_unlock_irqrestore(&part->chctl_lock, irq_flags); | ||
942 | |||
943 | xpc_wakeup_channel_mgr(part); | ||
944 | } | ||
945 | |||
946 | static void | ||
947 | xpc_save_remote_msgqueue_pa_uv(struct xpc_channel *ch, | ||
948 | unsigned long msgqueue_pa) | ||
949 | { | ||
950 | ch->sn.uv.remote_notify_mq_gpa = msgqueue_pa; | ||
951 | } | ||
952 | |||
953 | static void | ||
954 | xpc_indicate_partition_engaged_uv(struct xpc_partition *part) | ||
955 | { | ||
956 | struct xpc_activate_mq_msg_uv msg; | ||
957 | |||
958 | xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg), | ||
959 | XPC_ACTIVATE_MQ_MSG_MARK_ENGAGED_UV); | ||
960 | } | ||
961 | |||
962 | static void | ||
963 | xpc_indicate_partition_disengaged_uv(struct xpc_partition *part) | ||
964 | { | ||
965 | struct xpc_activate_mq_msg_uv msg; | ||
966 | |||
967 | xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg), | ||
968 | XPC_ACTIVATE_MQ_MSG_MARK_DISENGAGED_UV); | ||
969 | } | ||
970 | |||
971 | static void | ||
972 | xpc_assume_partition_disengaged_uv(short partid) | ||
973 | { | ||
974 | struct xpc_partition_uv *part_uv = &xpc_partitions[partid].sn.uv; | ||
975 | unsigned long irq_flags; | ||
976 | |||
977 | spin_lock_irqsave(&part_uv->flags_lock, irq_flags); | ||
978 | part_uv->flags &= ~XPC_P_ENGAGED_UV; | ||
979 | spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags); | ||
980 | } | ||
981 | |||
982 | static int | ||
983 | xpc_partition_engaged_uv(short partid) | ||
984 | { | ||
985 | return (xpc_partitions[partid].sn.uv.flags & XPC_P_ENGAGED_UV) != 0; | ||
986 | } | ||
987 | |||
988 | static int | ||
989 | xpc_any_partition_engaged_uv(void) | ||
990 | { | ||
991 | struct xpc_partition_uv *part_uv; | ||
992 | short partid; | ||
993 | |||
994 | for (partid = 0; partid < XP_MAX_NPARTITIONS_UV; partid++) { | ||
995 | part_uv = &xpc_partitions[partid].sn.uv; | ||
996 | if ((part_uv->flags & XPC_P_ENGAGED_UV) != 0) | ||
997 | return 1; | ||
998 | } | ||
999 | return 0; | ||
1000 | } | ||
1001 | |||
1002 | static enum xp_retval | ||
1003 | xpc_allocate_msg_slot_uv(struct xpc_channel *ch, u32 flags, | ||
1004 | struct xpc_send_msg_slot_uv **address_of_msg_slot) | ||
1005 | { | ||
1006 | enum xp_retval ret; | ||
1007 | struct xpc_send_msg_slot_uv *msg_slot; | ||
1008 | struct xpc_fifo_entry_uv *entry; | ||
1009 | |||
1010 | while (1) { | ||
1011 | entry = xpc_get_fifo_entry_uv(&ch->sn.uv.msg_slot_free_list); | ||
1012 | if (entry != NULL) | ||
1013 | break; | ||
1014 | |||
1015 | if (flags & XPC_NOWAIT) | ||
1016 | return xpNoWait; | ||
1017 | |||
1018 | ret = xpc_allocate_msg_wait(ch); | ||
1019 | if (ret != xpInterrupted && ret != xpTimeout) | ||
1020 | return ret; | ||
1021 | } | ||
1022 | |||
1023 | msg_slot = container_of(entry, struct xpc_send_msg_slot_uv, next); | ||
1024 | *address_of_msg_slot = msg_slot; | ||
1025 | return xpSuccess; | ||
1026 | } | ||
1027 | |||
1028 | static void | ||
1029 | xpc_free_msg_slot_uv(struct xpc_channel *ch, | ||
1030 | struct xpc_send_msg_slot_uv *msg_slot) | ||
1031 | { | ||
1032 | xpc_put_fifo_entry_uv(&ch->sn.uv.msg_slot_free_list, &msg_slot->next); | ||
1033 | |||
1034 | /* wakeup anyone waiting for a free msg slot */ | ||
1035 | if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) | ||
1036 | wake_up(&ch->msg_allocate_wq); | ||
1037 | } | ||
1038 | |||
1039 | static void | ||
1040 | xpc_notify_sender_uv(struct xpc_channel *ch, | ||
1041 | struct xpc_send_msg_slot_uv *msg_slot, | ||
1042 | enum xp_retval reason) | ||
1043 | { | ||
1044 | xpc_notify_func func = msg_slot->func; | ||
1045 | |||
1046 | if (func != NULL && cmpxchg(&msg_slot->func, func, NULL) == func) { | ||
1047 | |||
1048 | atomic_dec(&ch->n_to_notify); | ||
1049 | |||
1050 | dev_dbg(xpc_chan, "msg_slot->func() called, msg_slot=0x%p " | ||
1051 | "msg_slot_number=%d partid=%d channel=%d\n", msg_slot, | ||
1052 | msg_slot->msg_slot_number, ch->partid, ch->number); | ||
1053 | |||
1054 | func(reason, ch->partid, ch->number, msg_slot->key); | ||
1055 | |||
1056 | dev_dbg(xpc_chan, "msg_slot->func() returned, msg_slot=0x%p " | ||
1057 | "msg_slot_number=%d partid=%d channel=%d\n", msg_slot, | ||
1058 | msg_slot->msg_slot_number, ch->partid, ch->number); | ||
1059 | } | ||
1060 | } | ||
1061 | |||
1062 | static void | ||
1063 | xpc_handle_notify_mq_ack_uv(struct xpc_channel *ch, | ||
1064 | struct xpc_notify_mq_msg_uv *msg) | ||
1065 | { | ||
1066 | struct xpc_send_msg_slot_uv *msg_slot; | ||
1067 | int entry = msg->hdr.msg_slot_number % ch->local_nentries; | ||
1068 | |||
1069 | msg_slot = &ch->sn.uv.send_msg_slots[entry]; | ||
1070 | |||
1071 | BUG_ON(msg_slot->msg_slot_number != msg->hdr.msg_slot_number); | ||
1072 | msg_slot->msg_slot_number += ch->local_nentries; | ||
1073 | |||
1074 | if (msg_slot->func != NULL) | ||
1075 | xpc_notify_sender_uv(ch, msg_slot, xpMsgDelivered); | ||
1076 | |||
1077 | xpc_free_msg_slot_uv(ch, msg_slot); | ||
1078 | } | ||
1079 | |||
1080 | static void | ||
1081 | xpc_handle_notify_mq_msg_uv(struct xpc_partition *part, | ||
1082 | struct xpc_notify_mq_msg_uv *msg) | ||
1083 | { | ||
1084 | struct xpc_partition_uv *part_uv = &part->sn.uv; | ||
1085 | struct xpc_channel *ch; | ||
1086 | struct xpc_channel_uv *ch_uv; | ||
1087 | struct xpc_notify_mq_msg_uv *msg_slot; | ||
1088 | unsigned long irq_flags; | ||
1089 | int ch_number = msg->hdr.ch_number; | ||
1090 | |||
1091 | if (unlikely(ch_number >= part->nchannels)) { | ||
1092 | dev_err(xpc_part, "xpc_handle_notify_IRQ_uv() received invalid " | ||
1093 | "channel number=0x%x in message from partid=%d\n", | ||
1094 | ch_number, XPC_PARTID(part)); | ||
1095 | |||
1096 | /* get hb checker to deactivate from the remote partition */ | ||
1097 | spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
1098 | if (part_uv->act_state_req == 0) | ||
1099 | xpc_activate_IRQ_rcvd++; | ||
1100 | part_uv->act_state_req = XPC_P_ASR_DEACTIVATE_UV; | ||
1101 | part_uv->reason = xpBadChannelNumber; | ||
1102 | spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags); | ||
1103 | |||
1104 | wake_up_interruptible(&xpc_activate_IRQ_wq); | ||
1105 | return; | ||
1106 | } | ||
1107 | |||
1108 | ch = &part->channels[ch_number]; | ||
1109 | xpc_msgqueue_ref(ch); | ||
1110 | |||
1111 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1112 | xpc_msgqueue_deref(ch); | ||
1113 | return; | ||
1114 | } | ||
1115 | |||
1116 | /* see if we're really dealing with an ACK for a previously sent msg */ | ||
1117 | if (msg->hdr.size == 0) { | ||
1118 | xpc_handle_notify_mq_ack_uv(ch, msg); | ||
1119 | xpc_msgqueue_deref(ch); | ||
1120 | return; | ||
1121 | } | ||
1122 | |||
1123 | /* we're dealing with a normal message sent via the notify_mq */ | ||
1124 | ch_uv = &ch->sn.uv; | ||
1125 | |||
1126 | msg_slot = (struct xpc_notify_mq_msg_uv *)((u64)ch_uv->recv_msg_slots + | ||
1127 | (msg->hdr.msg_slot_number % ch->remote_nentries) * | ||
1128 | ch->entry_size); | ||
1129 | |||
1130 | BUG_ON(msg->hdr.msg_slot_number != msg_slot->hdr.msg_slot_number); | ||
1131 | BUG_ON(msg_slot->hdr.size != 0); | ||
1132 | |||
1133 | memcpy(msg_slot, msg, msg->hdr.size); | ||
1134 | |||
1135 | xpc_put_fifo_entry_uv(&ch_uv->recv_msg_list, &msg_slot->hdr.u.next); | ||
1136 | |||
1137 | if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) { | ||
1138 | /* | ||
1139 | * If there is an existing idle kthread get it to deliver | ||
1140 | * the payload, otherwise we'll have to get the channel mgr | ||
1141 | * for this partition to create a kthread to do the delivery. | ||
1142 | */ | ||
1143 | if (atomic_read(&ch->kthreads_idle) > 0) | ||
1144 | wake_up_nr(&ch->idle_wq, 1); | ||
1145 | else | ||
1146 | xpc_send_chctl_local_msgrequest_uv(part, ch->number); | ||
1147 | } | ||
1148 | xpc_msgqueue_deref(ch); | ||
1149 | } | ||
1150 | |||
1151 | static irqreturn_t | ||
1152 | xpc_handle_notify_IRQ_uv(int irq, void *dev_id) | ||
1153 | { | ||
1154 | struct xpc_notify_mq_msg_uv *msg; | ||
1155 | short partid; | ||
1156 | struct xpc_partition *part; | ||
1157 | |||
1158 | while ((msg = gru_get_next_message(xpc_notify_mq_uv)) != NULL) { | ||
1159 | |||
1160 | partid = msg->hdr.partid; | ||
1161 | if (partid < 0 || partid >= XP_MAX_NPARTITIONS_UV) { | ||
1162 | dev_err(xpc_part, "xpc_handle_notify_IRQ_uv() received " | ||
1163 | "invalid partid=0x%x in message\n", partid); | ||
1164 | } else { | ||
1165 | part = &xpc_partitions[partid]; | ||
1166 | |||
1167 | if (xpc_part_ref(part)) { | ||
1168 | xpc_handle_notify_mq_msg_uv(part, msg); | ||
1169 | xpc_part_deref(part); | ||
1170 | } | ||
1171 | } | ||
1172 | |||
1173 | gru_free_message(xpc_notify_mq_uv, msg); | ||
1174 | } | ||
1175 | |||
1176 | return IRQ_HANDLED; | ||
1177 | } | ||
1178 | |||
1179 | static int | ||
1180 | xpc_n_of_deliverable_payloads_uv(struct xpc_channel *ch) | ||
1181 | { | ||
1182 | return xpc_n_of_fifo_entries_uv(&ch->sn.uv.recv_msg_list); | ||
1183 | } | ||
1184 | |||
1185 | static void | ||
1186 | xpc_process_msg_chctl_flags_uv(struct xpc_partition *part, int ch_number) | ||
1187 | { | ||
1188 | struct xpc_channel *ch = &part->channels[ch_number]; | ||
1189 | int ndeliverable_payloads; | ||
1190 | |||
1191 | xpc_msgqueue_ref(ch); | ||
1192 | |||
1193 | ndeliverable_payloads = xpc_n_of_deliverable_payloads_uv(ch); | ||
1194 | |||
1195 | if (ndeliverable_payloads > 0 && | ||
1196 | (ch->flags & XPC_C_CONNECTED) && | ||
1197 | (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)) { | ||
1198 | |||
1199 | xpc_activate_kthreads(ch, ndeliverable_payloads); | ||
1200 | } | ||
1201 | |||
1202 | xpc_msgqueue_deref(ch); | ||
1203 | } | ||
1204 | |||
1205 | static enum xp_retval | ||
1206 | xpc_send_payload_uv(struct xpc_channel *ch, u32 flags, void *payload, | ||
1207 | u16 payload_size, u8 notify_type, xpc_notify_func func, | ||
1208 | void *key) | ||
1209 | { | ||
1210 | enum xp_retval ret = xpSuccess; | ||
1211 | struct xpc_send_msg_slot_uv *msg_slot = NULL; | ||
1212 | struct xpc_notify_mq_msg_uv *msg; | ||
1213 | u8 msg_buffer[XPC_NOTIFY_MSG_SIZE_UV]; | ||
1214 | size_t msg_size; | ||
1215 | |||
1216 | DBUG_ON(notify_type != XPC_N_CALL); | ||
1217 | |||
1218 | msg_size = sizeof(struct xpc_notify_mq_msghdr_uv) + payload_size; | ||
1219 | if (msg_size > ch->entry_size) | ||
1220 | return xpPayloadTooBig; | ||
1221 | |||
1222 | xpc_msgqueue_ref(ch); | ||
1223 | |||
1224 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1225 | ret = ch->reason; | ||
1226 | goto out_1; | ||
1227 | } | ||
1228 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1229 | ret = xpNotConnected; | ||
1230 | goto out_1; | ||
1231 | } | ||
1232 | |||
1233 | ret = xpc_allocate_msg_slot_uv(ch, flags, &msg_slot); | ||
1234 | if (ret != xpSuccess) | ||
1235 | goto out_1; | ||
1236 | |||
1237 | if (func != NULL) { | ||
1238 | atomic_inc(&ch->n_to_notify); | ||
1239 | |||
1240 | msg_slot->key = key; | ||
1241 | wmb(); /* a non-NULL func must hit memory after the key */ | ||
1242 | msg_slot->func = func; | ||
1243 | |||
1244 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1245 | ret = ch->reason; | ||
1246 | goto out_2; | ||
1247 | } | ||
1248 | } | ||
1249 | |||
1250 | msg = (struct xpc_notify_mq_msg_uv *)&msg_buffer; | ||
1251 | msg->hdr.partid = xp_partition_id; | ||
1252 | msg->hdr.ch_number = ch->number; | ||
1253 | msg->hdr.size = msg_size; | ||
1254 | msg->hdr.msg_slot_number = msg_slot->msg_slot_number; | ||
1255 | memcpy(&msg->payload, payload, payload_size); | ||
1256 | |||
1257 | ret = xpc_send_gru_msg(ch->sn.uv.remote_notify_mq_gpa, msg, msg_size); | ||
1258 | if (ret == xpSuccess) | ||
1259 | goto out_1; | ||
1260 | |||
1261 | XPC_DEACTIVATE_PARTITION(&xpc_partitions[ch->partid], ret); | ||
1262 | out_2: | ||
1263 | if (func != NULL) { | ||
1264 | /* | ||
1265 | * Try to NULL the msg_slot's func field. If we fail, then | ||
1266 | * xpc_notify_senders_of_disconnect_uv() beat us to it, in which | ||
1267 | * case we need to pretend we succeeded to send the message | ||
1268 | * since the user will get a callout for the disconnect error | ||
1269 | * by xpc_notify_senders_of_disconnect_uv(), and to also get an | ||
1270 | * error returned here will confuse them. Additionally, since | ||
1271 | * in this case the channel is being disconnected we don't need | ||
1272 | * to put the the msg_slot back on the free list. | ||
1273 | */ | ||
1274 | if (cmpxchg(&msg_slot->func, func, NULL) != func) { | ||
1275 | ret = xpSuccess; | ||
1276 | goto out_1; | ||
1277 | } | ||
1278 | |||
1279 | msg_slot->key = NULL; | ||
1280 | atomic_dec(&ch->n_to_notify); | ||
1281 | } | ||
1282 | xpc_free_msg_slot_uv(ch, msg_slot); | ||
1283 | out_1: | ||
1284 | xpc_msgqueue_deref(ch); | ||
1285 | return ret; | ||
1286 | } | ||
1287 | |||
1288 | /* | ||
1289 | * Tell the callers of xpc_send_notify() that the status of their payloads | ||
1290 | * is unknown because the channel is now disconnecting. | ||
1291 | * | ||
1292 | * We don't worry about putting these msg_slots on the free list since the | ||
1293 | * msg_slots themselves are about to be kfree'd. | ||
1294 | */ | ||
1295 | static void | ||
1296 | xpc_notify_senders_of_disconnect_uv(struct xpc_channel *ch) | ||
1297 | { | ||
1298 | struct xpc_send_msg_slot_uv *msg_slot; | ||
1299 | int entry; | ||
1300 | |||
1301 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTING)); | ||
1302 | |||
1303 | for (entry = 0; entry < ch->local_nentries; entry++) { | ||
1304 | |||
1305 | if (atomic_read(&ch->n_to_notify) == 0) | ||
1306 | break; | ||
1307 | |||
1308 | msg_slot = &ch->sn.uv.send_msg_slots[entry]; | ||
1309 | if (msg_slot->func != NULL) | ||
1310 | xpc_notify_sender_uv(ch, msg_slot, ch->reason); | ||
1311 | } | ||
1312 | } | ||
1313 | |||
1314 | /* | ||
1315 | * Get the next deliverable message's payload. | ||
1316 | */ | ||
1317 | static void * | ||
1318 | xpc_get_deliverable_payload_uv(struct xpc_channel *ch) | ||
1319 | { | ||
1320 | struct xpc_fifo_entry_uv *entry; | ||
1321 | struct xpc_notify_mq_msg_uv *msg; | ||
1322 | void *payload = NULL; | ||
1323 | |||
1324 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
1325 | entry = xpc_get_fifo_entry_uv(&ch->sn.uv.recv_msg_list); | ||
1326 | if (entry != NULL) { | ||
1327 | msg = container_of(entry, struct xpc_notify_mq_msg_uv, | ||
1328 | hdr.u.next); | ||
1329 | payload = &msg->payload; | ||
1330 | } | ||
1331 | } | ||
1332 | return payload; | ||
1333 | } | ||
1334 | |||
1335 | static void | ||
1336 | xpc_received_payload_uv(struct xpc_channel *ch, void *payload) | ||
1337 | { | ||
1338 | struct xpc_notify_mq_msg_uv *msg; | ||
1339 | enum xp_retval ret; | ||
1340 | |||
1341 | msg = container_of(payload, struct xpc_notify_mq_msg_uv, payload); | ||
1342 | |||
1343 | /* return an ACK to the sender of this message */ | ||
1344 | |||
1345 | msg->hdr.partid = xp_partition_id; | ||
1346 | msg->hdr.size = 0; /* size of zero indicates this is an ACK */ | ||
1347 | |||
1348 | ret = xpc_send_gru_msg(ch->sn.uv.remote_notify_mq_gpa, msg, | ||
1349 | sizeof(struct xpc_notify_mq_msghdr_uv)); | ||
1350 | if (ret != xpSuccess) | ||
1351 | XPC_DEACTIVATE_PARTITION(&xpc_partitions[ch->partid], ret); | ||
1352 | |||
1353 | msg->hdr.msg_slot_number += ch->remote_nentries; | ||
1354 | } | ||
1355 | |||
1356 | int | ||
1357 | xpc_init_uv(void) | ||
1358 | { | ||
1359 | xpc_setup_partitions_sn = xpc_setup_partitions_sn_uv; | ||
1360 | xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_uv; | ||
1361 | xpc_get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_uv; | ||
1362 | xpc_setup_rsvd_page_sn = xpc_setup_rsvd_page_sn_uv; | ||
1363 | xpc_increment_heartbeat = xpc_increment_heartbeat_uv; | ||
1364 | xpc_offline_heartbeat = xpc_offline_heartbeat_uv; | ||
1365 | xpc_online_heartbeat = xpc_online_heartbeat_uv; | ||
1366 | xpc_heartbeat_init = xpc_heartbeat_init_uv; | ||
1367 | xpc_heartbeat_exit = xpc_heartbeat_exit_uv; | ||
1368 | xpc_get_remote_heartbeat = xpc_get_remote_heartbeat_uv; | ||
1369 | |||
1370 | xpc_request_partition_activation = xpc_request_partition_activation_uv; | ||
1371 | xpc_request_partition_reactivation = | ||
1372 | xpc_request_partition_reactivation_uv; | ||
1373 | xpc_request_partition_deactivation = | ||
1374 | xpc_request_partition_deactivation_uv; | ||
1375 | xpc_cancel_partition_deactivation_request = | ||
1376 | xpc_cancel_partition_deactivation_request_uv; | ||
1377 | |||
1378 | xpc_setup_ch_structures_sn = xpc_setup_ch_structures_sn_uv; | ||
1379 | xpc_teardown_ch_structures_sn = xpc_teardown_ch_structures_sn_uv; | ||
1380 | |||
1381 | xpc_make_first_contact = xpc_make_first_contact_uv; | ||
1382 | |||
1383 | xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_uv; | ||
1384 | xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_uv; | ||
1385 | xpc_send_chctl_closereply = xpc_send_chctl_closereply_uv; | ||
1386 | xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_uv; | ||
1387 | xpc_send_chctl_openreply = xpc_send_chctl_openreply_uv; | ||
1388 | |||
1389 | xpc_save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_uv; | ||
1390 | |||
1391 | xpc_setup_msg_structures = xpc_setup_msg_structures_uv; | ||
1392 | xpc_teardown_msg_structures = xpc_teardown_msg_structures_uv; | ||
1393 | |||
1394 | xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_uv; | ||
1395 | xpc_indicate_partition_disengaged = | ||
1396 | xpc_indicate_partition_disengaged_uv; | ||
1397 | xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_uv; | ||
1398 | xpc_partition_engaged = xpc_partition_engaged_uv; | ||
1399 | xpc_any_partition_engaged = xpc_any_partition_engaged_uv; | ||
1400 | |||
1401 | xpc_n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_uv; | ||
1402 | xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_uv; | ||
1403 | xpc_send_payload = xpc_send_payload_uv; | ||
1404 | xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_uv; | ||
1405 | xpc_get_deliverable_payload = xpc_get_deliverable_payload_uv; | ||
1406 | xpc_received_payload = xpc_received_payload_uv; | ||
1407 | |||
1408 | if (sizeof(struct xpc_notify_mq_msghdr_uv) > XPC_MSG_HDR_MAX_SIZE) { | ||
1409 | dev_err(xpc_part, "xpc_notify_mq_msghdr_uv is larger than %d\n", | ||
1410 | XPC_MSG_HDR_MAX_SIZE); | ||
1411 | return -E2BIG; | ||
1412 | } | ||
1413 | |||
1414 | /* ??? The cpuid argument's value is 0, is that what we want? */ | ||
1415 | /* !!! The irq argument's value isn't correct. */ | ||
1416 | xpc_activate_mq_uv = xpc_create_gru_mq_uv(XPC_ACTIVATE_MQ_SIZE_UV, 0, 0, | ||
1417 | xpc_handle_activate_IRQ_uv); | ||
1418 | if (xpc_activate_mq_uv == NULL) | ||
1419 | return -ENOMEM; | ||
1420 | |||
1421 | /* ??? The cpuid argument's value is 0, is that what we want? */ | ||
1422 | /* !!! The irq argument's value isn't correct. */ | ||
1423 | xpc_notify_mq_uv = xpc_create_gru_mq_uv(XPC_NOTIFY_MQ_SIZE_UV, 0, 0, | ||
1424 | xpc_handle_notify_IRQ_uv); | ||
1425 | if (xpc_notify_mq_uv == NULL) { | ||
1426 | /* !!! The irq argument's value isn't correct. */ | ||
1427 | xpc_destroy_gru_mq_uv(xpc_activate_mq_uv, | ||
1428 | XPC_ACTIVATE_MQ_SIZE_UV, 0); | ||
1429 | return -ENOMEM; | ||
1430 | } | ||
1431 | |||
1432 | return 0; | ||
1433 | } | ||
1434 | |||
1435 | void | ||
1436 | xpc_exit_uv(void) | ||
1437 | { | ||
1438 | /* !!! The irq argument's value isn't correct. */ | ||
1439 | xpc_destroy_gru_mq_uv(xpc_notify_mq_uv, XPC_NOTIFY_MQ_SIZE_UV, 0); | ||
1440 | |||
1441 | /* !!! The irq argument's value isn't correct. */ | ||
1442 | xpc_destroy_gru_mq_uv(xpc_activate_mq_uv, XPC_ACTIVATE_MQ_SIZE_UV, 0); | ||
1443 | } | ||
diff --git a/drivers/misc/sgi-xp/xpnet.c b/drivers/misc/sgi-xp/xpnet.c index 822dc8e8d7f0..71513b3af708 100644 --- a/drivers/misc/sgi-xp/xpnet.c +++ b/drivers/misc/sgi-xp/xpnet.c | |||
@@ -21,21 +21,8 @@ | |||
21 | */ | 21 | */ |
22 | 22 | ||
23 | #include <linux/module.h> | 23 | #include <linux/module.h> |
24 | #include <linux/types.h> | ||
25 | #include <linux/kernel.h> | ||
26 | #include <linux/init.h> | ||
27 | #include <linux/ioport.h> | ||
28 | #include <linux/netdevice.h> | 24 | #include <linux/netdevice.h> |
29 | #include <linux/etherdevice.h> | 25 | #include <linux/etherdevice.h> |
30 | #include <linux/delay.h> | ||
31 | #include <linux/ethtool.h> | ||
32 | #include <linux/mii.h> | ||
33 | #include <linux/smp.h> | ||
34 | #include <linux/string.h> | ||
35 | #include <asm/sn/bte.h> | ||
36 | #include <asm/sn/io.h> | ||
37 | #include <asm/sn/sn_sal.h> | ||
38 | #include <asm/atomic.h> | ||
39 | #include "xp.h" | 26 | #include "xp.h" |
40 | 27 | ||
41 | /* | 28 | /* |
@@ -57,7 +44,7 @@ struct xpnet_message { | |||
57 | u16 version; /* Version for this message */ | 44 | u16 version; /* Version for this message */ |
58 | u16 embedded_bytes; /* #of bytes embedded in XPC message */ | 45 | u16 embedded_bytes; /* #of bytes embedded in XPC message */ |
59 | u32 magic; /* Special number indicating this is xpnet */ | 46 | u32 magic; /* Special number indicating this is xpnet */ |
60 | u64 buf_pa; /* phys address of buffer to retrieve */ | 47 | unsigned long buf_pa; /* phys address of buffer to retrieve */ |
61 | u32 size; /* #of bytes in buffer */ | 48 | u32 size; /* #of bytes in buffer */ |
62 | u8 leadin_ignore; /* #of bytes to ignore at the beginning */ | 49 | u8 leadin_ignore; /* #of bytes to ignore at the beginning */ |
63 | u8 tailout_ignore; /* #of bytes to ignore at the end */ | 50 | u8 tailout_ignore; /* #of bytes to ignore at the end */ |
@@ -70,11 +57,10 @@ struct xpnet_message { | |||
70 | * | 57 | * |
71 | * XPC expects each message to exist in an individual cacheline. | 58 | * XPC expects each message to exist in an individual cacheline. |
72 | */ | 59 | */ |
73 | #define XPNET_MSG_SIZE (L1_CACHE_BYTES - XPC_MSG_PAYLOAD_OFFSET) | 60 | #define XPNET_MSG_SIZE XPC_MSG_PAYLOAD_MAX_SIZE |
74 | #define XPNET_MSG_DATA_MAX \ | 61 | #define XPNET_MSG_DATA_MAX \ |
75 | (XPNET_MSG_SIZE - (u64)(&((struct xpnet_message *)0)->data)) | 62 | (XPNET_MSG_SIZE - offsetof(struct xpnet_message, data)) |
76 | #define XPNET_MSG_ALIGNED_SIZE (L1_CACHE_ALIGN(XPNET_MSG_SIZE)) | 63 | #define XPNET_MSG_NENTRIES (PAGE_SIZE / XPC_MSG_MAX_SIZE) |
77 | #define XPNET_MSG_NENTRIES (PAGE_SIZE / XPNET_MSG_ALIGNED_SIZE) | ||
78 | 64 | ||
79 | #define XPNET_MAX_KTHREADS (XPNET_MSG_NENTRIES + 1) | 65 | #define XPNET_MAX_KTHREADS (XPNET_MSG_NENTRIES + 1) |
80 | #define XPNET_MAX_IDLE_KTHREADS (XPNET_MSG_NENTRIES + 1) | 66 | #define XPNET_MAX_IDLE_KTHREADS (XPNET_MSG_NENTRIES + 1) |
@@ -105,7 +91,6 @@ struct xpnet_message { | |||
105 | * then be released. | 91 | * then be released. |
106 | */ | 92 | */ |
107 | struct xpnet_pending_msg { | 93 | struct xpnet_pending_msg { |
108 | struct list_head free_list; | ||
109 | struct sk_buff *skb; | 94 | struct sk_buff *skb; |
110 | atomic_t use_count; | 95 | atomic_t use_count; |
111 | }; | 96 | }; |
@@ -121,7 +106,7 @@ struct net_device *xpnet_device; | |||
121 | * When we are notified of other partitions activating, we add them to | 106 | * When we are notified of other partitions activating, we add them to |
122 | * our bitmask of partitions to which we broadcast. | 107 | * our bitmask of partitions to which we broadcast. |
123 | */ | 108 | */ |
124 | static u64 xpnet_broadcast_partitions; | 109 | static unsigned long *xpnet_broadcast_partitions; |
125 | /* protect above */ | 110 | /* protect above */ |
126 | static DEFINE_SPINLOCK(xpnet_broadcast_lock); | 111 | static DEFINE_SPINLOCK(xpnet_broadcast_lock); |
127 | 112 | ||
@@ -141,16 +126,13 @@ static DEFINE_SPINLOCK(xpnet_broadcast_lock); | |||
141 | #define XPNET_DEF_MTU (0x8000UL) | 126 | #define XPNET_DEF_MTU (0x8000UL) |
142 | 127 | ||
143 | /* | 128 | /* |
144 | * The partition id is encapsulated in the MAC address. The following | 129 | * The partid is encapsulated in the MAC address beginning in the following |
145 | * define locates the octet the partid is in. | 130 | * octet and it consists of two octets. |
146 | */ | 131 | */ |
147 | #define XPNET_PARTID_OCTET 1 | 132 | #define XPNET_PARTID_OCTET 2 |
148 | #define XPNET_LICENSE_OCTET 2 | 133 | |
134 | /* Define the XPNET debug device structures to be used with dev_dbg() et al */ | ||
149 | 135 | ||
150 | /* | ||
151 | * Define the XPNET debug device structure that is to be used with dev_dbg(), | ||
152 | * dev_err(), dev_warn(), and dev_info(). | ||
153 | */ | ||
154 | struct device_driver xpnet_dbg_name = { | 136 | struct device_driver xpnet_dbg_name = { |
155 | .name = "xpnet" | 137 | .name = "xpnet" |
156 | }; | 138 | }; |
@@ -169,7 +151,8 @@ static void | |||
169 | xpnet_receive(short partid, int channel, struct xpnet_message *msg) | 151 | xpnet_receive(short partid, int channel, struct xpnet_message *msg) |
170 | { | 152 | { |
171 | struct sk_buff *skb; | 153 | struct sk_buff *skb; |
172 | bte_result_t bret; | 154 | void *dst; |
155 | enum xp_retval ret; | ||
173 | struct xpnet_dev_private *priv = | 156 | struct xpnet_dev_private *priv = |
174 | (struct xpnet_dev_private *)xpnet_device->priv; | 157 | (struct xpnet_dev_private *)xpnet_device->priv; |
175 | 158 | ||
@@ -201,7 +184,7 @@ xpnet_receive(short partid, int channel, struct xpnet_message *msg) | |||
201 | 184 | ||
202 | /* | 185 | /* |
203 | * The allocated skb has some reserved space. | 186 | * The allocated skb has some reserved space. |
204 | * In order to use bte_copy, we need to get the | 187 | * In order to use xp_remote_memcpy(), we need to get the |
205 | * skb->data pointer moved forward. | 188 | * skb->data pointer moved forward. |
206 | */ | 189 | */ |
207 | skb_reserve(skb, (L1_CACHE_BYTES - ((u64)skb->data & | 190 | skb_reserve(skb, (L1_CACHE_BYTES - ((u64)skb->data & |
@@ -226,26 +209,21 @@ xpnet_receive(short partid, int channel, struct xpnet_message *msg) | |||
226 | skb_copy_to_linear_data(skb, &msg->data, | 209 | skb_copy_to_linear_data(skb, &msg->data, |
227 | (size_t)msg->embedded_bytes); | 210 | (size_t)msg->embedded_bytes); |
228 | } else { | 211 | } else { |
212 | dst = (void *)((u64)skb->data & ~(L1_CACHE_BYTES - 1)); | ||
229 | dev_dbg(xpnet, "transferring buffer to the skb->data area;\n\t" | 213 | dev_dbg(xpnet, "transferring buffer to the skb->data area;\n\t" |
230 | "bte_copy(0x%p, 0x%p, %hu)\n", (void *)msg->buf_pa, | 214 | "xp_remote_memcpy(0x%p, 0x%p, %hu)\n", dst, |
231 | (void *)__pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)), | 215 | (void *)msg->buf_pa, msg->size); |
232 | msg->size); | ||
233 | |||
234 | bret = bte_copy(msg->buf_pa, | ||
235 | __pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)), | ||
236 | msg->size, (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
237 | 216 | ||
238 | if (bret != BTE_SUCCESS) { | 217 | ret = xp_remote_memcpy(xp_pa(dst), msg->buf_pa, msg->size); |
218 | if (ret != xpSuccess) { | ||
239 | /* | 219 | /* |
240 | * >>> Need better way of cleaning skb. Currently skb | 220 | * !!! Need better way of cleaning skb. Currently skb |
241 | * >>> appears in_use and we can't just call | 221 | * !!! appears in_use and we can't just call |
242 | * >>> dev_kfree_skb. | 222 | * !!! dev_kfree_skb. |
243 | */ | 223 | */ |
244 | dev_err(xpnet, "bte_copy(0x%p, 0x%p, 0x%hx) returned " | 224 | dev_err(xpnet, "xp_remote_memcpy(0x%p, 0x%p, 0x%hx) " |
245 | "error=0x%x\n", (void *)msg->buf_pa, | 225 | "returned error=0x%x\n", dst, |
246 | (void *)__pa((u64)skb->data & | 226 | (void *)msg->buf_pa, msg->size, ret); |
247 | ~(L1_CACHE_BYTES - 1)), | ||
248 | msg->size, bret); | ||
249 | 227 | ||
250 | xpc_received(partid, channel, (void *)msg); | 228 | xpc_received(partid, channel, (void *)msg); |
251 | 229 | ||
@@ -285,9 +263,7 @@ static void | |||
285 | xpnet_connection_activity(enum xp_retval reason, short partid, int channel, | 263 | xpnet_connection_activity(enum xp_retval reason, short partid, int channel, |
286 | void *data, void *key) | 264 | void *data, void *key) |
287 | { | 265 | { |
288 | long bp; | 266 | DBUG_ON(partid < 0 || partid >= xp_max_npartitions); |
289 | |||
290 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
291 | DBUG_ON(channel != XPC_NET_CHANNEL); | 267 | DBUG_ON(channel != XPC_NET_CHANNEL); |
292 | 268 | ||
293 | switch (reason) { | 269 | switch (reason) { |
@@ -299,31 +275,28 @@ xpnet_connection_activity(enum xp_retval reason, short partid, int channel, | |||
299 | 275 | ||
300 | case xpConnected: /* connection completed to a partition */ | 276 | case xpConnected: /* connection completed to a partition */ |
301 | spin_lock_bh(&xpnet_broadcast_lock); | 277 | spin_lock_bh(&xpnet_broadcast_lock); |
302 | xpnet_broadcast_partitions |= 1UL << (partid - 1); | 278 | __set_bit(partid, xpnet_broadcast_partitions); |
303 | bp = xpnet_broadcast_partitions; | ||
304 | spin_unlock_bh(&xpnet_broadcast_lock); | 279 | spin_unlock_bh(&xpnet_broadcast_lock); |
305 | 280 | ||
306 | netif_carrier_on(xpnet_device); | 281 | netif_carrier_on(xpnet_device); |
307 | 282 | ||
308 | dev_dbg(xpnet, "%s connection created to partition %d; " | 283 | dev_dbg(xpnet, "%s connected to partition %d\n", |
309 | "xpnet_broadcast_partitions=0x%lx\n", | 284 | xpnet_device->name, partid); |
310 | xpnet_device->name, partid, bp); | ||
311 | break; | 285 | break; |
312 | 286 | ||
313 | default: | 287 | default: |
314 | spin_lock_bh(&xpnet_broadcast_lock); | 288 | spin_lock_bh(&xpnet_broadcast_lock); |
315 | xpnet_broadcast_partitions &= ~(1UL << (partid - 1)); | 289 | __clear_bit(partid, xpnet_broadcast_partitions); |
316 | bp = xpnet_broadcast_partitions; | ||
317 | spin_unlock_bh(&xpnet_broadcast_lock); | 290 | spin_unlock_bh(&xpnet_broadcast_lock); |
318 | 291 | ||
319 | if (bp == 0) | 292 | if (bitmap_empty((unsigned long *)xpnet_broadcast_partitions, |
293 | xp_max_npartitions)) { | ||
320 | netif_carrier_off(xpnet_device); | 294 | netif_carrier_off(xpnet_device); |
295 | } | ||
321 | 296 | ||
322 | dev_dbg(xpnet, "%s disconnected from partition %d; " | 297 | dev_dbg(xpnet, "%s disconnected from partition %d\n", |
323 | "xpnet_broadcast_partitions=0x%lx\n", | 298 | xpnet_device->name, partid); |
324 | xpnet_device->name, partid, bp); | ||
325 | break; | 299 | break; |
326 | |||
327 | } | 300 | } |
328 | } | 301 | } |
329 | 302 | ||
@@ -334,8 +307,10 @@ xpnet_dev_open(struct net_device *dev) | |||
334 | 307 | ||
335 | dev_dbg(xpnet, "calling xpc_connect(%d, 0x%p, NULL, %ld, %ld, %ld, " | 308 | dev_dbg(xpnet, "calling xpc_connect(%d, 0x%p, NULL, %ld, %ld, %ld, " |
336 | "%ld)\n", XPC_NET_CHANNEL, xpnet_connection_activity, | 309 | "%ld)\n", XPC_NET_CHANNEL, xpnet_connection_activity, |
337 | XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, XPNET_MAX_KTHREADS, | 310 | (unsigned long)XPNET_MSG_SIZE, |
338 | XPNET_MAX_IDLE_KTHREADS); | 311 | (unsigned long)XPNET_MSG_NENTRIES, |
312 | (unsigned long)XPNET_MAX_KTHREADS, | ||
313 | (unsigned long)XPNET_MAX_IDLE_KTHREADS); | ||
339 | 314 | ||
340 | ret = xpc_connect(XPC_NET_CHANNEL, xpnet_connection_activity, NULL, | 315 | ret = xpc_connect(XPC_NET_CHANNEL, xpnet_connection_activity, NULL, |
341 | XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, | 316 | XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, |
@@ -426,35 +401,74 @@ xpnet_send_completed(enum xp_retval reason, short partid, int channel, | |||
426 | } | 401 | } |
427 | } | 402 | } |
428 | 403 | ||
404 | static void | ||
405 | xpnet_send(struct sk_buff *skb, struct xpnet_pending_msg *queued_msg, | ||
406 | u64 start_addr, u64 end_addr, u16 embedded_bytes, int dest_partid) | ||
407 | { | ||
408 | u8 msg_buffer[XPNET_MSG_SIZE]; | ||
409 | struct xpnet_message *msg = (struct xpnet_message *)&msg_buffer; | ||
410 | u16 msg_size = sizeof(struct xpnet_message); | ||
411 | enum xp_retval ret; | ||
412 | |||
413 | msg->embedded_bytes = embedded_bytes; | ||
414 | if (unlikely(embedded_bytes != 0)) { | ||
415 | msg->version = XPNET_VERSION_EMBED; | ||
416 | dev_dbg(xpnet, "calling memcpy(0x%p, 0x%p, 0x%lx)\n", | ||
417 | &msg->data, skb->data, (size_t)embedded_bytes); | ||
418 | skb_copy_from_linear_data(skb, &msg->data, | ||
419 | (size_t)embedded_bytes); | ||
420 | msg_size += embedded_bytes - 1; | ||
421 | } else { | ||
422 | msg->version = XPNET_VERSION; | ||
423 | } | ||
424 | msg->magic = XPNET_MAGIC; | ||
425 | msg->size = end_addr - start_addr; | ||
426 | msg->leadin_ignore = (u64)skb->data - start_addr; | ||
427 | msg->tailout_ignore = end_addr - (u64)skb_tail_pointer(skb); | ||
428 | msg->buf_pa = xp_pa((void *)start_addr); | ||
429 | |||
430 | dev_dbg(xpnet, "sending XPC message to %d:%d\n" | ||
431 | KERN_DEBUG "msg->buf_pa=0x%lx, msg->size=%u, " | ||
432 | "msg->leadin_ignore=%u, msg->tailout_ignore=%u\n", | ||
433 | dest_partid, XPC_NET_CHANNEL, msg->buf_pa, msg->size, | ||
434 | msg->leadin_ignore, msg->tailout_ignore); | ||
435 | |||
436 | atomic_inc(&queued_msg->use_count); | ||
437 | |||
438 | ret = xpc_send_notify(dest_partid, XPC_NET_CHANNEL, XPC_NOWAIT, msg, | ||
439 | msg_size, xpnet_send_completed, queued_msg); | ||
440 | if (unlikely(ret != xpSuccess)) | ||
441 | atomic_dec(&queued_msg->use_count); | ||
442 | } | ||
443 | |||
429 | /* | 444 | /* |
430 | * Network layer has formatted a packet (skb) and is ready to place it | 445 | * Network layer has formatted a packet (skb) and is ready to place it |
431 | * "on the wire". Prepare and send an xpnet_message to all partitions | 446 | * "on the wire". Prepare and send an xpnet_message to all partitions |
432 | * which have connected with us and are targets of this packet. | 447 | * which have connected with us and are targets of this packet. |
433 | * | 448 | * |
434 | * MAC-NOTE: For the XPNET driver, the MAC address contains the | 449 | * MAC-NOTE: For the XPNET driver, the MAC address contains the |
435 | * destination partition_id. If the destination partition id word | 450 | * destination partid. If the destination partid octets are 0xffff, |
436 | * is 0xff, this packet is to broadcast to all partitions. | 451 | * this packet is to be broadcast to all connected partitions. |
437 | */ | 452 | */ |
438 | static int | 453 | static int |
439 | xpnet_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | 454 | xpnet_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) |
440 | { | 455 | { |
441 | struct xpnet_pending_msg *queued_msg; | 456 | struct xpnet_pending_msg *queued_msg; |
442 | enum xp_retval ret; | ||
443 | struct xpnet_message *msg; | ||
444 | u64 start_addr, end_addr; | 457 | u64 start_addr, end_addr; |
445 | long dp; | ||
446 | u8 second_mac_octet; | ||
447 | short dest_partid; | 458 | short dest_partid; |
448 | struct xpnet_dev_private *priv; | 459 | struct xpnet_dev_private *priv = (struct xpnet_dev_private *)dev->priv; |
449 | u16 embedded_bytes; | 460 | u16 embedded_bytes = 0; |
450 | |||
451 | priv = (struct xpnet_dev_private *)dev->priv; | ||
452 | 461 | ||
453 | dev_dbg(xpnet, ">skb->head=0x%p skb->data=0x%p skb->tail=0x%p " | 462 | dev_dbg(xpnet, ">skb->head=0x%p skb->data=0x%p skb->tail=0x%p " |
454 | "skb->end=0x%p skb->len=%d\n", (void *)skb->head, | 463 | "skb->end=0x%p skb->len=%d\n", (void *)skb->head, |
455 | (void *)skb->data, skb_tail_pointer(skb), skb_end_pointer(skb), | 464 | (void *)skb->data, skb_tail_pointer(skb), skb_end_pointer(skb), |
456 | skb->len); | 465 | skb->len); |
457 | 466 | ||
467 | if (skb->data[0] == 0x33) { | ||
468 | dev_kfree_skb(skb); | ||
469 | return 0; /* nothing needed to be done */ | ||
470 | } | ||
471 | |||
458 | /* | 472 | /* |
459 | * The xpnet_pending_msg tracks how many outstanding | 473 | * The xpnet_pending_msg tracks how many outstanding |
460 | * xpc_send_notifies are relying on this skb. When none | 474 | * xpc_send_notifies are relying on this skb. When none |
@@ -466,7 +480,6 @@ xpnet_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | |||
466 | "packet\n", sizeof(struct xpnet_pending_msg)); | 480 | "packet\n", sizeof(struct xpnet_pending_msg)); |
467 | 481 | ||
468 | priv->stats.tx_errors++; | 482 | priv->stats.tx_errors++; |
469 | |||
470 | return -ENOMEM; | 483 | return -ENOMEM; |
471 | } | 484 | } |
472 | 485 | ||
@@ -475,7 +488,6 @@ xpnet_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | |||
475 | end_addr = L1_CACHE_ALIGN((u64)skb_tail_pointer(skb)); | 488 | end_addr = L1_CACHE_ALIGN((u64)skb_tail_pointer(skb)); |
476 | 489 | ||
477 | /* calculate how many bytes to embed in the XPC message */ | 490 | /* calculate how many bytes to embed in the XPC message */ |
478 | embedded_bytes = 0; | ||
479 | if (unlikely(skb->len <= XPNET_MSG_DATA_MAX)) { | 491 | if (unlikely(skb->len <= XPNET_MSG_DATA_MAX)) { |
480 | /* skb->data does fit so embed */ | 492 | /* skb->data does fit so embed */ |
481 | embedded_bytes = skb->len; | 493 | embedded_bytes = skb->len; |
@@ -491,82 +503,28 @@ xpnet_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | |||
491 | atomic_set(&queued_msg->use_count, 1); | 503 | atomic_set(&queued_msg->use_count, 1); |
492 | queued_msg->skb = skb; | 504 | queued_msg->skb = skb; |
493 | 505 | ||
494 | second_mac_octet = skb->data[XPNET_PARTID_OCTET]; | 506 | if (skb->data[0] == 0xff) { |
495 | if (second_mac_octet == 0xff) { | ||
496 | /* we are being asked to broadcast to all partitions */ | 507 | /* we are being asked to broadcast to all partitions */ |
497 | dp = xpnet_broadcast_partitions; | 508 | for_each_bit(dest_partid, xpnet_broadcast_partitions, |
498 | } else if (second_mac_octet != 0) { | 509 | xp_max_npartitions) { |
499 | dp = xpnet_broadcast_partitions & | ||
500 | (1UL << (second_mac_octet - 1)); | ||
501 | } else { | ||
502 | /* 0 is an invalid partid. Ignore */ | ||
503 | dp = 0; | ||
504 | } | ||
505 | dev_dbg(xpnet, "destination Partitions mask (dp) = 0x%lx\n", dp); | ||
506 | |||
507 | /* | ||
508 | * If we wanted to allow promiscuous mode to work like an | ||
509 | * unswitched network, this would be a good point to OR in a | ||
510 | * mask of partitions which should be receiving all packets. | ||
511 | */ | ||
512 | |||
513 | /* | ||
514 | * Main send loop. | ||
515 | */ | ||
516 | for (dest_partid = 1; dp && dest_partid < XP_MAX_PARTITIONS; | ||
517 | dest_partid++) { | ||
518 | 510 | ||
519 | if (!(dp & (1UL << (dest_partid - 1)))) { | 511 | xpnet_send(skb, queued_msg, start_addr, end_addr, |
520 | /* not destined for this partition */ | 512 | embedded_bytes, dest_partid); |
521 | continue; | ||
522 | } | 513 | } |
514 | } else { | ||
515 | dest_partid = (short)skb->data[XPNET_PARTID_OCTET + 1]; | ||
516 | dest_partid |= (short)skb->data[XPNET_PARTID_OCTET + 0] << 8; | ||
523 | 517 | ||
524 | /* remove this partition from the destinations mask */ | 518 | if (dest_partid >= 0 && |
525 | dp &= ~(1UL << (dest_partid - 1)); | 519 | dest_partid < xp_max_npartitions && |
526 | 520 | test_bit(dest_partid, xpnet_broadcast_partitions) != 0) { | |
527 | /* found a partition to send to */ | 521 | |
528 | 522 | xpnet_send(skb, queued_msg, start_addr, end_addr, | |
529 | ret = xpc_allocate(dest_partid, XPC_NET_CHANNEL, | 523 | embedded_bytes, dest_partid); |
530 | XPC_NOWAIT, (void **)&msg); | ||
531 | if (unlikely(ret != xpSuccess)) | ||
532 | continue; | ||
533 | |||
534 | msg->embedded_bytes = embedded_bytes; | ||
535 | if (unlikely(embedded_bytes != 0)) { | ||
536 | msg->version = XPNET_VERSION_EMBED; | ||
537 | dev_dbg(xpnet, "calling memcpy(0x%p, 0x%p, 0x%lx)\n", | ||
538 | &msg->data, skb->data, (size_t)embedded_bytes); | ||
539 | skb_copy_from_linear_data(skb, &msg->data, | ||
540 | (size_t)embedded_bytes); | ||
541 | } else { | ||
542 | msg->version = XPNET_VERSION; | ||
543 | } | ||
544 | msg->magic = XPNET_MAGIC; | ||
545 | msg->size = end_addr - start_addr; | ||
546 | msg->leadin_ignore = (u64)skb->data - start_addr; | ||
547 | msg->tailout_ignore = end_addr - (u64)skb_tail_pointer(skb); | ||
548 | msg->buf_pa = __pa(start_addr); | ||
549 | |||
550 | dev_dbg(xpnet, "sending XPC message to %d:%d\n" | ||
551 | KERN_DEBUG "msg->buf_pa=0x%lx, msg->size=%u, " | ||
552 | "msg->leadin_ignore=%u, msg->tailout_ignore=%u\n", | ||
553 | dest_partid, XPC_NET_CHANNEL, msg->buf_pa, msg->size, | ||
554 | msg->leadin_ignore, msg->tailout_ignore); | ||
555 | |||
556 | atomic_inc(&queued_msg->use_count); | ||
557 | |||
558 | ret = xpc_send_notify(dest_partid, XPC_NET_CHANNEL, msg, | ||
559 | xpnet_send_completed, queued_msg); | ||
560 | if (unlikely(ret != xpSuccess)) { | ||
561 | atomic_dec(&queued_msg->use_count); | ||
562 | continue; | ||
563 | } | 524 | } |
564 | } | 525 | } |
565 | 526 | ||
566 | if (atomic_dec_return(&queued_msg->use_count) == 0) { | 527 | if (atomic_dec_return(&queued_msg->use_count) == 0) { |
567 | dev_dbg(xpnet, "no partitions to receive packet destined for " | ||
568 | "%d\n", dest_partid); | ||
569 | |||
570 | dev_kfree_skb(skb); | 528 | dev_kfree_skb(skb); |
571 | kfree(queued_msg); | 529 | kfree(queued_msg); |
572 | } | 530 | } |
@@ -594,23 +552,28 @@ xpnet_dev_tx_timeout(struct net_device *dev) | |||
594 | static int __init | 552 | static int __init |
595 | xpnet_init(void) | 553 | xpnet_init(void) |
596 | { | 554 | { |
597 | int i; | 555 | int result; |
598 | u32 license_num; | ||
599 | int result = -ENOMEM; | ||
600 | 556 | ||
601 | if (!ia64_platform_is("sn2")) | 557 | if (!is_shub() && !is_uv()) |
602 | return -ENODEV; | 558 | return -ENODEV; |
603 | 559 | ||
604 | dev_info(xpnet, "registering network device %s\n", XPNET_DEVICE_NAME); | 560 | dev_info(xpnet, "registering network device %s\n", XPNET_DEVICE_NAME); |
605 | 561 | ||
562 | xpnet_broadcast_partitions = kzalloc(BITS_TO_LONGS(xp_max_npartitions) * | ||
563 | sizeof(long), GFP_KERNEL); | ||
564 | if (xpnet_broadcast_partitions == NULL) | ||
565 | return -ENOMEM; | ||
566 | |||
606 | /* | 567 | /* |
607 | * use ether_setup() to init the majority of our device | 568 | * use ether_setup() to init the majority of our device |
608 | * structure and then override the necessary pieces. | 569 | * structure and then override the necessary pieces. |
609 | */ | 570 | */ |
610 | xpnet_device = alloc_netdev(sizeof(struct xpnet_dev_private), | 571 | xpnet_device = alloc_netdev(sizeof(struct xpnet_dev_private), |
611 | XPNET_DEVICE_NAME, ether_setup); | 572 | XPNET_DEVICE_NAME, ether_setup); |
612 | if (xpnet_device == NULL) | 573 | if (xpnet_device == NULL) { |
574 | kfree(xpnet_broadcast_partitions); | ||
613 | return -ENOMEM; | 575 | return -ENOMEM; |
576 | } | ||
614 | 577 | ||
615 | netif_carrier_off(xpnet_device); | 578 | netif_carrier_off(xpnet_device); |
616 | 579 | ||
@@ -628,14 +591,10 @@ xpnet_init(void) | |||
628 | * MAC addresses. We chose the first octet of the MAC to be unlikely | 591 | * MAC addresses. We chose the first octet of the MAC to be unlikely |
629 | * to collide with any vendor's officially issued MAC. | 592 | * to collide with any vendor's officially issued MAC. |
630 | */ | 593 | */ |
631 | xpnet_device->dev_addr[0] = 0xfe; | 594 | xpnet_device->dev_addr[0] = 0x02; /* locally administered, no OUI */ |
632 | xpnet_device->dev_addr[XPNET_PARTID_OCTET] = sn_partition_id; | 595 | |
633 | license_num = sn_partition_serial_number_val(); | 596 | xpnet_device->dev_addr[XPNET_PARTID_OCTET + 1] = xp_partition_id; |
634 | for (i = 3; i >= 0; i--) { | 597 | xpnet_device->dev_addr[XPNET_PARTID_OCTET + 0] = (xp_partition_id >> 8); |
635 | xpnet_device->dev_addr[XPNET_LICENSE_OCTET + i] = | ||
636 | license_num & 0xff; | ||
637 | license_num = license_num >> 8; | ||
638 | } | ||
639 | 598 | ||
640 | /* | 599 | /* |
641 | * ether_setup() sets this to a multicast device. We are | 600 | * ether_setup() sets this to a multicast device. We are |
@@ -651,8 +610,10 @@ xpnet_init(void) | |||
651 | xpnet_device->features = NETIF_F_NO_CSUM; | 610 | xpnet_device->features = NETIF_F_NO_CSUM; |
652 | 611 | ||
653 | result = register_netdev(xpnet_device); | 612 | result = register_netdev(xpnet_device); |
654 | if (result != 0) | 613 | if (result != 0) { |
655 | free_netdev(xpnet_device); | 614 | free_netdev(xpnet_device); |
615 | kfree(xpnet_broadcast_partitions); | ||
616 | } | ||
656 | 617 | ||
657 | return result; | 618 | return result; |
658 | } | 619 | } |
@@ -666,8 +627,8 @@ xpnet_exit(void) | |||
666 | xpnet_device[0].name); | 627 | xpnet_device[0].name); |
667 | 628 | ||
668 | unregister_netdev(xpnet_device); | 629 | unregister_netdev(xpnet_device); |
669 | |||
670 | free_netdev(xpnet_device); | 630 | free_netdev(xpnet_device); |
631 | kfree(xpnet_broadcast_partitions); | ||
671 | } | 632 | } |
672 | 633 | ||
673 | module_exit(xpnet_exit); | 634 | module_exit(xpnet_exit); |