aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/misc/sgi-xp/xpc.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/misc/sgi-xp/xpc.h')
-rw-r--r--drivers/misc/sgi-xp/xpc.h1187
1 files changed, 1187 insertions, 0 deletions
diff --git a/drivers/misc/sgi-xp/xpc.h b/drivers/misc/sgi-xp/xpc.h
new file mode 100644
index 000000000000..9eb6d4a3269c
--- /dev/null
+++ b/drivers/misc/sgi-xp/xpc.h
@@ -0,0 +1,1187 @@
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved.
7 */
8
9/*
10 * Cross Partition Communication (XPC) structures and macros.
11 */
12
13#ifndef _DRIVERS_MISC_SGIXP_XPC_H
14#define _DRIVERS_MISC_SGIXP_XPC_H
15
16#include <linux/interrupt.h>
17#include <linux/sysctl.h>
18#include <linux/device.h>
19#include <linux/mutex.h>
20#include <linux/completion.h>
21#include <asm/pgtable.h>
22#include <asm/processor.h>
23#include <asm/sn/bte.h>
24#include <asm/sn/clksupport.h>
25#include <asm/sn/addrs.h>
26#include <asm/sn/mspec.h>
27#include <asm/sn/shub_mmr.h>
28#include "xp.h"
29
30/*
31 * XPC Version numbers consist of a major and minor number. XPC can always
32 * talk to versions with same major #, and never talk to versions with a
33 * different major #.
34 */
35#define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf))
36#define XPC_VERSION_MAJOR(_v) ((_v) >> 4)
37#define XPC_VERSION_MINOR(_v) ((_v) & 0xf)
38
39/*
40 * The next macros define word or bit representations for given
41 * C-brick nasid in either the SAL provided bit array representing
42 * nasids in the partition/machine or the AMO_t array used for
43 * inter-partition initiation communications.
44 *
45 * For SN2 machines, C-Bricks are alway even numbered NASIDs. As
46 * such, some space will be saved by insisting that nasid information
47 * passed from SAL always be packed for C-Bricks and the
48 * cross-partition interrupts use the same packing scheme.
49 */
50#define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2)
51#define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1))
52#define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \
53 (1UL << XPC_NASID_B_INDEX(_n)))
54#define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2)
55
56#define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */
57#define XPC_HB_CHECK_DEFAULT_INTERVAL 20 /* check HB every x secs */
58
59/* define the process name of HB checker and the CPU it is pinned to */
60#define XPC_HB_CHECK_THREAD_NAME "xpc_hb"
61#define XPC_HB_CHECK_CPU 0
62
63/* define the process name of the discovery thread */
64#define XPC_DISCOVERY_THREAD_NAME "xpc_discovery"
65
66/*
67 * the reserved page
68 *
69 * SAL reserves one page of memory per partition for XPC. Though a full page
70 * in length (16384 bytes), its starting address is not page aligned, but it
71 * is cacheline aligned. The reserved page consists of the following:
72 *
73 * reserved page header
74 *
75 * The first cacheline of the reserved page contains the header
76 * (struct xpc_rsvd_page). Before SAL initialization has completed,
77 * SAL has set up the following fields of the reserved page header:
78 * SAL_signature, SAL_version, partid, and nasids_size. The other
79 * fields are set up by XPC. (xpc_rsvd_page points to the local
80 * partition's reserved page.)
81 *
82 * part_nasids mask
83 * mach_nasids mask
84 *
85 * SAL also sets up two bitmaps (or masks), one that reflects the actual
86 * nasids in this partition (part_nasids), and the other that reflects
87 * the actual nasids in the entire machine (mach_nasids). We're only
88 * interested in the even numbered nasids (which contain the processors
89 * and/or memory), so we only need half as many bits to represent the
90 * nasids. The part_nasids mask is located starting at the first cacheline
91 * following the reserved page header. The mach_nasids mask follows right
92 * after the part_nasids mask. The size in bytes of each mask is reflected
93 * by the reserved page header field 'nasids_size'. (Local partition's
94 * mask pointers are xpc_part_nasids and xpc_mach_nasids.)
95 *
96 * vars
97 * vars part
98 *
99 * Immediately following the mach_nasids mask are the XPC variables
100 * required by other partitions. First are those that are generic to all
101 * partitions (vars), followed on the next available cacheline by those
102 * which are partition specific (vars part). These are setup by XPC.
103 * (Local partition's vars pointers are xpc_vars and xpc_vars_part.)
104 *
105 * Note: Until vars_pa is set, the partition XPC code has not been initialized.
106 */
107struct xpc_rsvd_page {
108 u64 SAL_signature; /* SAL: unique signature */
109 u64 SAL_version; /* SAL: version */
110 u8 partid; /* SAL: partition ID */
111 u8 version;
112 u8 pad1[6]; /* align to next u64 in cacheline */
113 u64 vars_pa; /* physical address of struct xpc_vars */
114 struct timespec stamp; /* time when reserved page was setup by XPC */
115 u64 pad2[9]; /* align to last u64 in cacheline */
116 u64 nasids_size; /* SAL: size of each nasid mask in bytes */
117};
118
119#define XPC_RP_VERSION _XPC_VERSION(1, 1) /* version 1.1 of the reserved page */
120
121#define XPC_SUPPORTS_RP_STAMP(_version) \
122 (_version >= _XPC_VERSION(1, 1))
123
124/*
125 * compare stamps - the return value is:
126 *
127 * < 0, if stamp1 < stamp2
128 * = 0, if stamp1 == stamp2
129 * > 0, if stamp1 > stamp2
130 */
131static inline int
132xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2)
133{
134 int ret;
135
136 ret = stamp1->tv_sec - stamp2->tv_sec;
137 if (ret == 0)
138 ret = stamp1->tv_nsec - stamp2->tv_nsec;
139
140 return ret;
141}
142
143/*
144 * Define the structures by which XPC variables can be exported to other
145 * partitions. (There are two: struct xpc_vars and struct xpc_vars_part)
146 */
147
148/*
149 * The following structure describes the partition generic variables
150 * needed by other partitions in order to properly initialize.
151 *
152 * struct xpc_vars version number also applies to struct xpc_vars_part.
153 * Changes to either structure and/or related functionality should be
154 * reflected by incrementing either the major or minor version numbers
155 * of struct xpc_vars.
156 */
157struct xpc_vars {
158 u8 version;
159 u64 heartbeat;
160 u64 heartbeating_to_mask;
161 u64 heartbeat_offline; /* if 0, heartbeat should be changing */
162 int act_nasid;
163 int act_phys_cpuid;
164 u64 vars_part_pa;
165 u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */
166 AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */
167};
168
169#define XPC_V_VERSION _XPC_VERSION(3, 1) /* version 3.1 of the cross vars */
170
171#define XPC_SUPPORTS_DISENGAGE_REQUEST(_version) \
172 (_version >= _XPC_VERSION(3, 1))
173
174static inline int
175xpc_hb_allowed(partid_t partid, struct xpc_vars *vars)
176{
177 return ((vars->heartbeating_to_mask & (1UL << partid)) != 0);
178}
179
180static inline void
181xpc_allow_hb(partid_t partid, struct xpc_vars *vars)
182{
183 u64 old_mask, new_mask;
184
185 do {
186 old_mask = vars->heartbeating_to_mask;
187 new_mask = (old_mask | (1UL << partid));
188 } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) !=
189 old_mask);
190}
191
192static inline void
193xpc_disallow_hb(partid_t partid, struct xpc_vars *vars)
194{
195 u64 old_mask, new_mask;
196
197 do {
198 old_mask = vars->heartbeating_to_mask;
199 new_mask = (old_mask & ~(1UL << partid));
200 } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) !=
201 old_mask);
202}
203
204/*
205 * The AMOs page consists of a number of AMO variables which are divided into
206 * four groups, The first two groups are used to identify an IRQ's sender.
207 * These two groups consist of 64 and 128 AMO variables respectively. The last
208 * two groups, consisting of just one AMO variable each, are used to identify
209 * the remote partitions that are currently engaged (from the viewpoint of
210 * the XPC running on the remote partition).
211 */
212#define XPC_NOTIFY_IRQ_AMOS 0
213#define XPC_ACTIVATE_IRQ_AMOS (XPC_NOTIFY_IRQ_AMOS + XP_MAX_PARTITIONS)
214#define XPC_ENGAGED_PARTITIONS_AMO (XPC_ACTIVATE_IRQ_AMOS + XP_NASID_MASK_WORDS)
215#define XPC_DISENGAGE_REQUEST_AMO (XPC_ENGAGED_PARTITIONS_AMO + 1)
216
217/*
218 * The following structure describes the per partition specific variables.
219 *
220 * An array of these structures, one per partition, will be defined. As a
221 * partition becomes active XPC will copy the array entry corresponding to
222 * itself from that partition. It is desirable that the size of this
223 * structure evenly divide into a cacheline, such that none of the entries
224 * in this array crosses a cacheline boundary. As it is now, each entry
225 * occupies half a cacheline.
226 */
227struct xpc_vars_part {
228 u64 magic;
229
230 u64 openclose_args_pa; /* physical address of open and close args */
231 u64 GPs_pa; /* physical address of Get/Put values */
232
233 u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */
234 int IPI_nasid; /* nasid of where to send IPIs */
235 int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */
236
237 u8 nchannels; /* #of defined channels supported */
238
239 u8 reserved[23]; /* pad to a full 64 bytes */
240};
241
242/*
243 * The vars_part MAGIC numbers play a part in the first contact protocol.
244 *
245 * MAGIC1 indicates that the per partition specific variables for a remote
246 * partition have been initialized by this partition.
247 *
248 * MAGIC2 indicates that this partition has pulled the remote partititions
249 * per partition variables that pertain to this partition.
250 */
251#define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */
252#define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */
253
254/* the reserved page sizes and offsets */
255
256#define XPC_RP_HEADER_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page))
257#define XPC_RP_VARS_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_vars))
258
259#define XPC_RP_PART_NASIDS(_rp) ((u64 *)((u8 *)(_rp) + XPC_RP_HEADER_SIZE))
260#define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + xp_nasid_mask_words)
261#define XPC_RP_VARS(_rp) ((struct xpc_vars *)(XPC_RP_MACH_NASIDS(_rp) + \
262 xp_nasid_mask_words))
263#define XPC_RP_VARS_PART(_rp) ((struct xpc_vars_part *) \
264 ((u8 *)XPC_RP_VARS(_rp) + XPC_RP_VARS_SIZE))
265
266/*
267 * Functions registered by add_timer() or called by kernel_thread() only
268 * allow for a single 64-bit argument. The following macros can be used to
269 * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from
270 * the passed argument.
271 */
272#define XPC_PACK_ARGS(_arg1, _arg2) \
273 ((((u64) _arg1) & 0xffffffff) | \
274 ((((u64) _arg2) & 0xffffffff) << 32))
275
276#define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff)
277#define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff)
278
279/*
280 * Define a Get/Put value pair (pointers) used with a message queue.
281 */
282struct xpc_gp {
283 s64 get; /* Get value */
284 s64 put; /* Put value */
285};
286
287#define XPC_GP_SIZE \
288 L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS)
289
290/*
291 * Define a structure that contains arguments associated with opening and
292 * closing a channel.
293 */
294struct xpc_openclose_args {
295 u16 reason; /* reason why channel is closing */
296 u16 msg_size; /* sizeof each message entry */
297 u16 remote_nentries; /* #of message entries in remote msg queue */
298 u16 local_nentries; /* #of message entries in local msg queue */
299 u64 local_msgqueue_pa; /* physical address of local message queue */
300};
301
302#define XPC_OPENCLOSE_ARGS_SIZE \
303 L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS)
304
305/* struct xpc_msg flags */
306
307#define XPC_M_DONE 0x01 /* msg has been received/consumed */
308#define XPC_M_READY 0x02 /* msg is ready to be sent */
309#define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */
310
311#define XPC_MSG_ADDRESS(_payload) \
312 ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET))
313
314/*
315 * Defines notify entry.
316 *
317 * This is used to notify a message's sender that their message was received
318 * and consumed by the intended recipient.
319 */
320struct xpc_notify {
321 u8 type; /* type of notification */
322
323 /* the following two fields are only used if type == XPC_N_CALL */
324 xpc_notify_func func; /* user's notify function */
325 void *key; /* pointer to user's key */
326};
327
328/* struct xpc_notify type of notification */
329
330#define XPC_N_CALL 0x01 /* notify function provided by user */
331
332/*
333 * Define the structure that manages all the stuff required by a channel. In
334 * particular, they are used to manage the messages sent across the channel.
335 *
336 * This structure is private to a partition, and is NOT shared across the
337 * partition boundary.
338 *
339 * There is an array of these structures for each remote partition. It is
340 * allocated at the time a partition becomes active. The array contains one
341 * of these structures for each potential channel connection to that partition.
342 *
343 * Each of these structures manages two message queues (circular buffers).
344 * They are allocated at the time a channel connection is made. One of
345 * these message queues (local_msgqueue) holds the locally created messages
346 * that are destined for the remote partition. The other of these message
347 * queues (remote_msgqueue) is a locally cached copy of the remote partition's
348 * own local_msgqueue.
349 *
350 * The following is a description of the Get/Put pointers used to manage these
351 * two message queues. Consider the local_msgqueue to be on one partition
352 * and the remote_msgqueue to be its cached copy on another partition. A
353 * description of what each of the lettered areas contains is included.
354 *
355 *
356 * local_msgqueue remote_msgqueue
357 *
358 * |/////////| |/////////|
359 * w_remote_GP.get --> +---------+ |/////////|
360 * | F | |/////////|
361 * remote_GP.get --> +---------+ +---------+ <-- local_GP->get
362 * | | | |
363 * | | | E |
364 * | | | |
365 * | | +---------+ <-- w_local_GP.get
366 * | B | |/////////|
367 * | | |////D////|
368 * | | |/////////|
369 * | | +---------+ <-- w_remote_GP.put
370 * | | |////C////|
371 * local_GP->put --> +---------+ +---------+ <-- remote_GP.put
372 * | | |/////////|
373 * | A | |/////////|
374 * | | |/////////|
375 * w_local_GP.put --> +---------+ |/////////|
376 * |/////////| |/////////|
377 *
378 *
379 * ( remote_GP.[get|put] are cached copies of the remote
380 * partition's local_GP->[get|put], and thus their values can
381 * lag behind their counterparts on the remote partition. )
382 *
383 *
384 * A - Messages that have been allocated, but have not yet been sent to the
385 * remote partition.
386 *
387 * B - Messages that have been sent, but have not yet been acknowledged by the
388 * remote partition as having been received.
389 *
390 * C - Area that needs to be prepared for the copying of sent messages, by
391 * the clearing of the message flags of any previously received messages.
392 *
393 * D - Area into which sent messages are to be copied from the remote
394 * partition's local_msgqueue and then delivered to their intended
395 * recipients. [ To allow for a multi-message copy, another pointer
396 * (next_msg_to_pull) has been added to keep track of the next message
397 * number needing to be copied (pulled). It chases after w_remote_GP.put.
398 * Any messages lying between w_local_GP.get and next_msg_to_pull have
399 * been copied and are ready to be delivered. ]
400 *
401 * E - Messages that have been copied and delivered, but have not yet been
402 * acknowledged by the recipient as having been received.
403 *
404 * F - Messages that have been acknowledged, but XPC has not yet notified the
405 * sender that the message was received by its intended recipient.
406 * This is also an area that needs to be prepared for the allocating of
407 * new messages, by the clearing of the message flags of the acknowledged
408 * messages.
409 */
410struct xpc_channel {
411 partid_t partid; /* ID of remote partition connected */
412 spinlock_t lock; /* lock for updating this structure */
413 u32 flags; /* general flags */
414
415 enum xpc_retval reason; /* reason why channel is disconnect'g */
416 int reason_line; /* line# disconnect initiated from */
417
418 u16 number; /* channel # */
419
420 u16 msg_size; /* sizeof each msg entry */
421 u16 local_nentries; /* #of msg entries in local msg queue */
422 u16 remote_nentries; /* #of msg entries in remote msg queue */
423
424 void *local_msgqueue_base; /* base address of kmalloc'd space */
425 struct xpc_msg *local_msgqueue; /* local message queue */
426 void *remote_msgqueue_base; /* base address of kmalloc'd space */
427 struct xpc_msg *remote_msgqueue; /* cached copy of remote partition's */
428 /* local message queue */
429 u64 remote_msgqueue_pa; /* phys addr of remote partition's */
430 /* local message queue */
431
432 atomic_t references; /* #of external references to queues */
433
434 atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */
435 wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */
436
437 u8 delayed_IPI_flags; /* IPI flags received, but delayed */
438 /* action until channel disconnected */
439
440 /* queue of msg senders who want to be notified when msg received */
441
442 atomic_t n_to_notify; /* #of msg senders to notify */
443 struct xpc_notify *notify_queue; /* notify queue for messages sent */
444
445 xpc_channel_func func; /* user's channel function */
446 void *key; /* pointer to user's key */
447
448 struct mutex msg_to_pull_mutex; /* next msg to pull serialization */
449 struct completion wdisconnect_wait; /* wait for channel disconnect */
450
451 struct xpc_openclose_args *local_openclose_args; /* args passed on */
452 /* opening or closing of channel */
453
454 /* various flavors of local and remote Get/Put values */
455
456 struct xpc_gp *local_GP; /* local Get/Put values */
457 struct xpc_gp remote_GP; /* remote Get/Put values */
458 struct xpc_gp w_local_GP; /* working local Get/Put values */
459 struct xpc_gp w_remote_GP; /* working remote Get/Put values */
460 s64 next_msg_to_pull; /* Put value of next msg to pull */
461
462 /* kthread management related fields */
463
464 atomic_t kthreads_assigned; /* #of kthreads assigned to channel */
465 u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */
466 atomic_t kthreads_idle; /* #of kthreads idle waiting for work */
467 u32 kthreads_idle_limit; /* limit on #of kthreads idle */
468 atomic_t kthreads_active; /* #of kthreads actively working */
469
470 wait_queue_head_t idle_wq; /* idle kthread wait queue */
471
472} ____cacheline_aligned;
473
474/* struct xpc_channel flags */
475
476#define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */
477
478#define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */
479#define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */
480#define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */
481#define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */
482
483#define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */
484#define XPC_C_CONNECTEDCALLOUT 0x00000040 /* connected callout initiated */
485#define XPC_C_CONNECTEDCALLOUT_MADE \
486 0x00000080 /* connected callout completed */
487#define XPC_C_CONNECTED 0x00000100 /* local channel is connected */
488#define XPC_C_CONNECTING 0x00000200 /* channel is being connected */
489
490#define XPC_C_RCLOSEREPLY 0x00000400 /* remote close channel reply */
491#define XPC_C_CLOSEREPLY 0x00000800 /* local close channel reply */
492#define XPC_C_RCLOSEREQUEST 0x00001000 /* remote close channel request */
493#define XPC_C_CLOSEREQUEST 0x00002000 /* local close channel request */
494
495#define XPC_C_DISCONNECTED 0x00004000 /* channel is disconnected */
496#define XPC_C_DISCONNECTING 0x00008000 /* channel is being disconnected */
497#define XPC_C_DISCONNECTINGCALLOUT \
498 0x00010000 /* disconnecting callout initiated */
499#define XPC_C_DISCONNECTINGCALLOUT_MADE \
500 0x00020000 /* disconnecting callout completed */
501#define XPC_C_WDISCONNECT 0x00040000 /* waiting for channel disconnect */
502
503/*
504 * Manages channels on a partition basis. There is one of these structures
505 * for each partition (a partition will never utilize the structure that
506 * represents itself).
507 */
508struct xpc_partition {
509
510 /* XPC HB infrastructure */
511
512 u8 remote_rp_version; /* version# of partition's rsvd pg */
513 struct timespec remote_rp_stamp; /* time when rsvd pg was initialized */
514 u64 remote_rp_pa; /* phys addr of partition's rsvd pg */
515 u64 remote_vars_pa; /* phys addr of partition's vars */
516 u64 remote_vars_part_pa; /* phys addr of partition's vars part */
517 u64 last_heartbeat; /* HB at last read */
518 u64 remote_amos_page_pa; /* phys addr of partition's amos page */
519 int remote_act_nasid; /* active part's act/deact nasid */
520 int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */
521 u32 act_IRQ_rcvd; /* IRQs since activation */
522 spinlock_t act_lock; /* protect updating of act_state */
523 u8 act_state; /* from XPC HB viewpoint */
524 u8 remote_vars_version; /* version# of partition's vars */
525 enum xpc_retval reason; /* reason partition is deactivating */
526 int reason_line; /* line# deactivation initiated from */
527 int reactivate_nasid; /* nasid in partition to reactivate */
528
529 unsigned long disengage_request_timeout; /* timeout in jiffies */
530 struct timer_list disengage_request_timer;
531
532 /* XPC infrastructure referencing and teardown control */
533
534 u8 setup_state; /* infrastructure setup state */
535 wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */
536 atomic_t references; /* #of references to infrastructure */
537
538 /*
539 * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN
540 * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION
541 * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE
542 * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.)
543 */
544
545 u8 nchannels; /* #of defined channels supported */
546 atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */
547 atomic_t nchannels_engaged; /* #of channels engaged with remote part */
548 struct xpc_channel *channels; /* array of channel structures */
549
550 void *local_GPs_base; /* base address of kmalloc'd space */
551 struct xpc_gp *local_GPs; /* local Get/Put values */
552 void *remote_GPs_base; /* base address of kmalloc'd space */
553 struct xpc_gp *remote_GPs; /* copy of remote partition's local */
554 /* Get/Put values */
555 u64 remote_GPs_pa; /* phys address of remote partition's local */
556 /* Get/Put values */
557
558 /* fields used to pass args when opening or closing a channel */
559
560 void *local_openclose_args_base; /* base address of kmalloc'd space */
561 struct xpc_openclose_args *local_openclose_args; /* local's args */
562 void *remote_openclose_args_base; /* base address of kmalloc'd space */
563 struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */
564 /* args */
565 u64 remote_openclose_args_pa; /* phys addr of remote's args */
566
567 /* IPI sending, receiving and handling related fields */
568
569 int remote_IPI_nasid; /* nasid of where to send IPIs */
570 int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */
571 AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */
572
573 AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */
574 u64 local_IPI_amo; /* IPI amo flags yet to be handled */
575 char IPI_owner[8]; /* IPI owner's name */
576 struct timer_list dropped_IPI_timer; /* dropped IPI timer */
577
578 spinlock_t IPI_lock; /* IPI handler lock */
579
580 /* channel manager related fields */
581
582 atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */
583 wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */
584
585} ____cacheline_aligned;
586
587/* struct xpc_partition act_state values (for XPC HB) */
588
589#define XPC_P_INACTIVE 0x00 /* partition is not active */
590#define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */
591#define XPC_P_ACTIVATING 0x02 /* activation thread started */
592#define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */
593#define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */
594
595#define XPC_DEACTIVATE_PARTITION(_p, _reason) \
596 xpc_deactivate_partition(__LINE__, (_p), (_reason))
597
598/* struct xpc_partition setup_state values */
599
600#define XPC_P_UNSET 0x00 /* infrastructure was never setup */
601#define XPC_P_SETUP 0x01 /* infrastructure is setup */
602#define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */
603#define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */
604
605/*
606 * struct xpc_partition IPI_timer #of seconds to wait before checking for
607 * dropped IPIs. These occur whenever an IPI amo write doesn't complete until
608 * after the IPI was received.
609 */
610#define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ)
611
612/* number of seconds to wait for other partitions to disengage */
613#define XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT 90
614
615/* interval in seconds to print 'waiting disengagement' messages */
616#define XPC_DISENGAGE_PRINTMSG_INTERVAL 10
617
618#define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0]))
619
620/* found in xp_main.c */
621extern struct xpc_registration xpc_registrations[];
622
623/* found in xpc_main.c */
624extern struct device *xpc_part;
625extern struct device *xpc_chan;
626extern int xpc_disengage_request_timelimit;
627extern int xpc_disengage_request_timedout;
628extern irqreturn_t xpc_notify_IRQ_handler(int, void *);
629extern void xpc_dropped_IPI_check(struct xpc_partition *);
630extern void xpc_activate_partition(struct xpc_partition *);
631extern void xpc_activate_kthreads(struct xpc_channel *, int);
632extern void xpc_create_kthreads(struct xpc_channel *, int, int);
633extern void xpc_disconnect_wait(int);
634
635/* found in xpc_partition.c */
636extern int xpc_exiting;
637extern struct xpc_vars *xpc_vars;
638extern struct xpc_rsvd_page *xpc_rsvd_page;
639extern struct xpc_vars_part *xpc_vars_part;
640extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1];
641extern char *xpc_remote_copy_buffer;
642extern void *xpc_remote_copy_buffer_base;
643extern void *xpc_kmalloc_cacheline_aligned(size_t, gfp_t, void **);
644extern struct xpc_rsvd_page *xpc_rsvd_page_init(void);
645extern void xpc_allow_IPI_ops(void);
646extern void xpc_restrict_IPI_ops(void);
647extern int xpc_identify_act_IRQ_sender(void);
648extern int xpc_partition_disengaged(struct xpc_partition *);
649extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *);
650extern void xpc_mark_partition_inactive(struct xpc_partition *);
651extern void xpc_discovery(void);
652extern void xpc_check_remote_hb(void);
653extern void xpc_deactivate_partition(const int, struct xpc_partition *,
654 enum xpc_retval);
655extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *);
656
657/* found in xpc_channel.c */
658extern void xpc_initiate_connect(int);
659extern void xpc_initiate_disconnect(int);
660extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **);
661extern enum xpc_retval xpc_initiate_send(partid_t, int, void *);
662extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *,
663 xpc_notify_func, void *);
664extern void xpc_initiate_received(partid_t, int, void *);
665extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *);
666extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *);
667extern void xpc_process_channel_activity(struct xpc_partition *);
668extern void xpc_connected_callout(struct xpc_channel *);
669extern void xpc_deliver_msg(struct xpc_channel *);
670extern void xpc_disconnect_channel(const int, struct xpc_channel *,
671 enum xpc_retval, unsigned long *);
672extern void xpc_disconnect_callout(struct xpc_channel *, enum xpc_retval);
673extern void xpc_partition_going_down(struct xpc_partition *, enum xpc_retval);
674extern void xpc_teardown_infrastructure(struct xpc_partition *);
675
676static inline void
677xpc_wakeup_channel_mgr(struct xpc_partition *part)
678{
679 if (atomic_inc_return(&part->channel_mgr_requests) == 1)
680 wake_up(&part->channel_mgr_wq);
681}
682
683/*
684 * These next two inlines are used to keep us from tearing down a channel's
685 * msg queues while a thread may be referencing them.
686 */
687static inline void
688xpc_msgqueue_ref(struct xpc_channel *ch)
689{
690 atomic_inc(&ch->references);
691}
692
693static inline void
694xpc_msgqueue_deref(struct xpc_channel *ch)
695{
696 s32 refs = atomic_dec_return(&ch->references);
697
698 DBUG_ON(refs < 0);
699 if (refs == 0)
700 xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]);
701}
702
703#define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \
704 xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs)
705
706/*
707 * These two inlines are used to keep us from tearing down a partition's
708 * setup infrastructure while a thread may be referencing it.
709 */
710static inline void
711xpc_part_deref(struct xpc_partition *part)
712{
713 s32 refs = atomic_dec_return(&part->references);
714
715 DBUG_ON(refs < 0);
716 if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN)
717 wake_up(&part->teardown_wq);
718}
719
720static inline int
721xpc_part_ref(struct xpc_partition *part)
722{
723 int setup;
724
725 atomic_inc(&part->references);
726 setup = (part->setup_state == XPC_P_SETUP);
727 if (!setup)
728 xpc_part_deref(part);
729
730 return setup;
731}
732
733/*
734 * The following macro is to be used for the setting of the reason and
735 * reason_line fields in both the struct xpc_channel and struct xpc_partition
736 * structures.
737 */
738#define XPC_SET_REASON(_p, _reason, _line) \
739 { \
740 (_p)->reason = _reason; \
741 (_p)->reason_line = _line; \
742 }
743
744/*
745 * This next set of inlines are used to keep track of when a partition is
746 * potentially engaged in accessing memory belonging to another partition.
747 */
748
749static inline void
750xpc_mark_partition_engaged(struct xpc_partition *part)
751{
752 unsigned long irq_flags;
753 AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa +
754 (XPC_ENGAGED_PARTITIONS_AMO *
755 sizeof(AMO_t)));
756
757 local_irq_save(irq_flags);
758
759 /* set bit corresponding to our partid in remote partition's AMO */
760 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
761 (1UL << sn_partition_id));
762 /*
763 * We must always use the nofault function regardless of whether we
764 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
765 * didn't, we'd never know that the other partition is down and would
766 * keep sending IPIs and AMOs to it until the heartbeat times out.
767 */
768 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
769 variable),
770 xp_nofault_PIOR_target));
771
772 local_irq_restore(irq_flags);
773}
774
775static inline void
776xpc_mark_partition_disengaged(struct xpc_partition *part)
777{
778 unsigned long irq_flags;
779 AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa +
780 (XPC_ENGAGED_PARTITIONS_AMO *
781 sizeof(AMO_t)));
782
783 local_irq_save(irq_flags);
784
785 /* clear bit corresponding to our partid in remote partition's AMO */
786 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
787 ~(1UL << sn_partition_id));
788 /*
789 * We must always use the nofault function regardless of whether we
790 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
791 * didn't, we'd never know that the other partition is down and would
792 * keep sending IPIs and AMOs to it until the heartbeat times out.
793 */
794 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
795 variable),
796 xp_nofault_PIOR_target));
797
798 local_irq_restore(irq_flags);
799}
800
801static inline void
802xpc_request_partition_disengage(struct xpc_partition *part)
803{
804 unsigned long irq_flags;
805 AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa +
806 (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t)));
807
808 local_irq_save(irq_flags);
809
810 /* set bit corresponding to our partid in remote partition's AMO */
811 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
812 (1UL << sn_partition_id));
813 /*
814 * We must always use the nofault function regardless of whether we
815 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
816 * didn't, we'd never know that the other partition is down and would
817 * keep sending IPIs and AMOs to it until the heartbeat times out.
818 */
819 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
820 variable),
821 xp_nofault_PIOR_target));
822
823 local_irq_restore(irq_flags);
824}
825
826static inline void
827xpc_cancel_partition_disengage_request(struct xpc_partition *part)
828{
829 unsigned long irq_flags;
830 AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa +
831 (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t)));
832
833 local_irq_save(irq_flags);
834
835 /* clear bit corresponding to our partid in remote partition's AMO */
836 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
837 ~(1UL << sn_partition_id));
838 /*
839 * We must always use the nofault function regardless of whether we
840 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
841 * didn't, we'd never know that the other partition is down and would
842 * keep sending IPIs and AMOs to it until the heartbeat times out.
843 */
844 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
845 variable),
846 xp_nofault_PIOR_target));
847
848 local_irq_restore(irq_flags);
849}
850
851static inline u64
852xpc_partition_engaged(u64 partid_mask)
853{
854 AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
855
856 /* return our partition's AMO variable ANDed with partid_mask */
857 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
858 partid_mask);
859}
860
861static inline u64
862xpc_partition_disengage_requested(u64 partid_mask)
863{
864 AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO;
865
866 /* return our partition's AMO variable ANDed with partid_mask */
867 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
868 partid_mask);
869}
870
871static inline void
872xpc_clear_partition_engaged(u64 partid_mask)
873{
874 AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
875
876 /* clear bit(s) based on partid_mask in our partition's AMO */
877 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
878 ~partid_mask);
879}
880
881static inline void
882xpc_clear_partition_disengage_request(u64 partid_mask)
883{
884 AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO;
885
886 /* clear bit(s) based on partid_mask in our partition's AMO */
887 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
888 ~partid_mask);
889}
890
891/*
892 * The following set of macros and inlines are used for the sending and
893 * receiving of IPIs (also known as IRQs). There are two flavors of IPIs,
894 * one that is associated with partition activity (SGI_XPC_ACTIVATE) and
895 * the other that is associated with channel activity (SGI_XPC_NOTIFY).
896 */
897
898static inline u64
899xpc_IPI_receive(AMO_t *amo)
900{
901 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
902}
903
904static inline enum xpc_retval
905xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector)
906{
907 int ret = 0;
908 unsigned long irq_flags;
909
910 local_irq_save(irq_flags);
911
912 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
913 sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
914
915 /*
916 * We must always use the nofault function regardless of whether we
917 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
918 * didn't, we'd never know that the other partition is down and would
919 * keep sending IPIs and AMOs to it until the heartbeat times out.
920 */
921 ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
922 xp_nofault_PIOR_target));
923
924 local_irq_restore(irq_flags);
925
926 return ((ret == 0) ? xpcSuccess : xpcPioReadError);
927}
928
929/*
930 * IPIs associated with SGI_XPC_ACTIVATE IRQ.
931 */
932
933/*
934 * Flag the appropriate AMO variable and send an IPI to the specified node.
935 */
936static inline void
937xpc_activate_IRQ_send(u64 amos_page_pa, int from_nasid, int to_nasid,
938 int to_phys_cpuid)
939{
940 int w_index = XPC_NASID_W_INDEX(from_nasid);
941 int b_index = XPC_NASID_B_INDEX(from_nasid);
942 AMO_t *amos = (AMO_t *)__va(amos_page_pa +
943 (XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t)));
944
945 (void)xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid,
946 to_phys_cpuid, SGI_XPC_ACTIVATE);
947}
948
949static inline void
950xpc_IPI_send_activate(struct xpc_vars *vars)
951{
952 xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0),
953 vars->act_nasid, vars->act_phys_cpuid);
954}
955
956static inline void
957xpc_IPI_send_activated(struct xpc_partition *part)
958{
959 xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0),
960 part->remote_act_nasid,
961 part->remote_act_phys_cpuid);
962}
963
964static inline void
965xpc_IPI_send_reactivate(struct xpc_partition *part)
966{
967 xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid,
968 xpc_vars->act_nasid, xpc_vars->act_phys_cpuid);
969}
970
971static inline void
972xpc_IPI_send_disengage(struct xpc_partition *part)
973{
974 xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0),
975 part->remote_act_nasid,
976 part->remote_act_phys_cpuid);
977}
978
979/*
980 * IPIs associated with SGI_XPC_NOTIFY IRQ.
981 */
982
983/*
984 * Send an IPI to the remote partition that is associated with the
985 * specified channel.
986 */
987#define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \
988 xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f)
989
990static inline void
991xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string,
992 unsigned long *irq_flags)
993{
994 struct xpc_partition *part = &xpc_partitions[ch->partid];
995 enum xpc_retval ret;
996
997 if (likely(part->act_state != XPC_P_DEACTIVATING)) {
998 ret = xpc_IPI_send(part->remote_IPI_amo_va,
999 (u64)ipi_flag << (ch->number * 8),
1000 part->remote_IPI_nasid,
1001 part->remote_IPI_phys_cpuid, SGI_XPC_NOTIFY);
1002 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
1003 ipi_flag_string, ch->partid, ch->number, ret);
1004 if (unlikely(ret != xpcSuccess)) {
1005 if (irq_flags != NULL)
1006 spin_unlock_irqrestore(&ch->lock, *irq_flags);
1007 XPC_DEACTIVATE_PARTITION(part, ret);
1008 if (irq_flags != NULL)
1009 spin_lock_irqsave(&ch->lock, *irq_flags);
1010 }
1011 }
1012}
1013
1014/*
1015 * Make it look like the remote partition, which is associated with the
1016 * specified channel, sent us an IPI. This faked IPI will be handled
1017 * by xpc_dropped_IPI_check().
1018 */
1019#define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \
1020 xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f)
1021
1022static inline void
1023xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag,
1024 char *ipi_flag_string)
1025{
1026 struct xpc_partition *part = &xpc_partitions[ch->partid];
1027
1028 FETCHOP_STORE_OP(TO_AMO((u64)&part->local_IPI_amo_va->variable),
1029 FETCHOP_OR, ((u64)ipi_flag << (ch->number * 8)));
1030 dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
1031 ipi_flag_string, ch->partid, ch->number);
1032}
1033
1034/*
1035 * The sending and receiving of IPIs includes the setting of an AMO variable
1036 * to indicate the reason the IPI was sent. The 64-bit variable is divided
1037 * up into eight bytes, ordered from right to left. Byte zero pertains to
1038 * channel 0, byte one to channel 1, and so on. Each byte is described by
1039 * the following IPI flags.
1040 */
1041
1042#define XPC_IPI_CLOSEREQUEST 0x01
1043#define XPC_IPI_CLOSEREPLY 0x02
1044#define XPC_IPI_OPENREQUEST 0x04
1045#define XPC_IPI_OPENREPLY 0x08
1046#define XPC_IPI_MSGREQUEST 0x10
1047
1048/* given an AMO variable and a channel#, get its associated IPI flags */
1049#define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff))
1050#define XPC_SET_IPI_FLAGS(_amo, _c, _f) (_amo) |= ((u64) (_f) << ((_c) * 8))
1051
1052#define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0fUL)
1053#define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010UL)
1054
1055static inline void
1056xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags)
1057{
1058 struct xpc_openclose_args *args = ch->local_openclose_args;
1059
1060 args->reason = ch->reason;
1061
1062 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags);
1063}
1064
1065static inline void
1066xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags)
1067{
1068 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags);
1069}
1070
1071static inline void
1072xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags)
1073{
1074 struct xpc_openclose_args *args = ch->local_openclose_args;
1075
1076 args->msg_size = ch->msg_size;
1077 args->local_nentries = ch->local_nentries;
1078
1079 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags);
1080}
1081
1082static inline void
1083xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags)
1084{
1085 struct xpc_openclose_args *args = ch->local_openclose_args;
1086
1087 args->remote_nentries = ch->remote_nentries;
1088 args->local_nentries = ch->local_nentries;
1089 args->local_msgqueue_pa = __pa(ch->local_msgqueue);
1090
1091 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags);
1092}
1093
1094static inline void
1095xpc_IPI_send_msgrequest(struct xpc_channel *ch)
1096{
1097 XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL);
1098}
1099
1100static inline void
1101xpc_IPI_send_local_msgrequest(struct xpc_channel *ch)
1102{
1103 XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST);
1104}
1105
1106/*
1107 * Memory for XPC's AMO variables is allocated by the MSPEC driver. These
1108 * pages are located in the lowest granule. The lowest granule uses 4k pages
1109 * for cached references and an alternate TLB handler to never provide a
1110 * cacheable mapping for the entire region. This will prevent speculative
1111 * reading of cached copies of our lines from being issued which will cause
1112 * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
1113 * AMO variables (based on XP_MAX_PARTITIONS) for message notification and an
1114 * additional 128 AMO variables (based on XP_NASID_MASK_WORDS) for partition
1115 * activation and 2 AMO variables for partition deactivation.
1116 */
1117static inline AMO_t *
1118xpc_IPI_init(int index)
1119{
1120 AMO_t *amo = xpc_vars->amos_page + index;
1121
1122 (void)xpc_IPI_receive(amo); /* clear AMO variable */
1123 return amo;
1124}
1125
1126static inline enum xpc_retval
1127xpc_map_bte_errors(bte_result_t error)
1128{
1129 if (error == BTE_SUCCESS)
1130 return xpcSuccess;
1131
1132 if (is_shub2()) {
1133 if (BTE_VALID_SH2_ERROR(error))
1134 return xpcBteSh2Start + error;
1135 return xpcBteUnmappedError;
1136 }
1137 switch (error) {
1138 case BTE_SUCCESS:
1139 return xpcSuccess;
1140 case BTEFAIL_DIR:
1141 return xpcBteDirectoryError;
1142 case BTEFAIL_POISON:
1143 return xpcBtePoisonError;
1144 case BTEFAIL_WERR:
1145 return xpcBteWriteError;
1146 case BTEFAIL_ACCESS:
1147 return xpcBteAccessError;
1148 case BTEFAIL_PWERR:
1149 return xpcBtePWriteError;
1150 case BTEFAIL_PRERR:
1151 return xpcBtePReadError;
1152 case BTEFAIL_TOUT:
1153 return xpcBteTimeOutError;
1154 case BTEFAIL_XTERR:
1155 return xpcBteXtalkError;
1156 case BTEFAIL_NOTAVAIL:
1157 return xpcBteNotAvailable;
1158 default:
1159 return xpcBteUnmappedError;
1160 }
1161}
1162
1163/*
1164 * Check to see if there is any channel activity to/from the specified
1165 * partition.
1166 */
1167static inline void
1168xpc_check_for_channel_activity(struct xpc_partition *part)
1169{
1170 u64 IPI_amo;
1171 unsigned long irq_flags;
1172
1173 IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va);
1174 if (IPI_amo == 0)
1175 return;
1176
1177 spin_lock_irqsave(&part->IPI_lock, irq_flags);
1178 part->local_IPI_amo |= IPI_amo;
1179 spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
1180
1181 dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n",
1182 XPC_PARTID(part), IPI_amo);
1183
1184 xpc_wakeup_channel_mgr(part);
1185}
1186
1187#endif /* _DRIVERS_MISC_SGIXP_XPC_H */