diff options
Diffstat (limited to 'drivers/media/video')
-rw-r--r-- | drivers/media/video/cx25840/Makefile | 2 | ||||
-rw-r--r-- | drivers/media/video/cx25840/cx25840-core.c | 128 | ||||
-rw-r--r-- | drivers/media/video/cx25840/cx25840-core.h | 28 | ||||
-rw-r--r-- | drivers/media/video/cx25840/cx25840-ir.c | 1262 |
4 files changed, 1419 insertions, 1 deletions
diff --git a/drivers/media/video/cx25840/Makefile b/drivers/media/video/cx25840/Makefile index 6e8665be8954..2ee96d3973b8 100644 --- a/drivers/media/video/cx25840/Makefile +++ b/drivers/media/video/cx25840/Makefile | |||
@@ -1,5 +1,5 @@ | |||
1 | cx25840-objs := cx25840-core.o cx25840-audio.o cx25840-firmware.o \ | 1 | cx25840-objs := cx25840-core.o cx25840-audio.o cx25840-firmware.o \ |
2 | cx25840-vbi.o | 2 | cx25840-vbi.o cx25840-ir.o |
3 | 3 | ||
4 | obj-$(CONFIG_VIDEO_CX25840) += cx25840.o | 4 | obj-$(CONFIG_VIDEO_CX25840) += cx25840.o |
5 | 5 | ||
diff --git a/drivers/media/video/cx25840/cx25840-core.c b/drivers/media/video/cx25840/cx25840-core.c index 46a046d6405e..9fab0b170846 100644 --- a/drivers/media/video/cx25840/cx25840-core.c +++ b/drivers/media/video/cx25840/cx25840-core.c | |||
@@ -15,6 +15,9 @@ | |||
15 | * | 15 | * |
16 | * CX23885 support by Steven Toth <stoth@linuxtv.org>. | 16 | * CX23885 support by Steven Toth <stoth@linuxtv.org>. |
17 | * | 17 | * |
18 | * CX2388[578] IRQ handling, IO Pin mux configuration and other small fixes are | ||
19 | * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net> | ||
20 | * | ||
18 | * This program is free software; you can redistribute it and/or | 21 | * This program is free software; you can redistribute it and/or |
19 | * modify it under the terms of the GNU General Public License | 22 | * modify it under the terms of the GNU General Public License |
20 | * as published by the Free Software Foundation; either version 2 | 23 | * as published by the Free Software Foundation; either version 2 |
@@ -48,6 +51,28 @@ MODULE_DESCRIPTION("Conexant CX25840 audio/video decoder driver"); | |||
48 | MODULE_AUTHOR("Ulf Eklund, Chris Kennedy, Hans Verkuil, Tyler Trafford"); | 51 | MODULE_AUTHOR("Ulf Eklund, Chris Kennedy, Hans Verkuil, Tyler Trafford"); |
49 | MODULE_LICENSE("GPL"); | 52 | MODULE_LICENSE("GPL"); |
50 | 53 | ||
54 | #define CX25840_VID_INT_STAT_REG 0x410 | ||
55 | #define CX25840_VID_INT_STAT_BITS 0x0000ffff | ||
56 | #define CX25840_VID_INT_MASK_BITS 0xffff0000 | ||
57 | #define CX25840_VID_INT_MASK_SHFT 16 | ||
58 | #define CX25840_VID_INT_MASK_REG 0x412 | ||
59 | |||
60 | #define CX23885_AUD_MC_INT_MASK_REG 0x80c | ||
61 | #define CX23885_AUD_MC_INT_STAT_BITS 0xffff0000 | ||
62 | #define CX23885_AUD_MC_INT_CTRL_BITS 0x0000ffff | ||
63 | #define CX23885_AUD_MC_INT_STAT_SHFT 16 | ||
64 | |||
65 | #define CX25840_AUD_INT_CTRL_REG 0x812 | ||
66 | #define CX25840_AUD_INT_STAT_REG 0x813 | ||
67 | |||
68 | #define CX23885_PIN_CTRL_IRQ_REG 0x123 | ||
69 | #define CX23885_PIN_CTRL_IRQ_IR_STAT 0x40 | ||
70 | #define CX23885_PIN_CTRL_IRQ_AUD_STAT 0x20 | ||
71 | #define CX23885_PIN_CTRL_IRQ_VID_STAT 0x10 | ||
72 | |||
73 | #define CX25840_IR_STATS_REG 0x210 | ||
74 | #define CX25840_IR_IRQEN_REG 0x214 | ||
75 | |||
51 | static int cx25840_debug; | 76 | static int cx25840_debug; |
52 | 77 | ||
53 | module_param_named(debug,cx25840_debug, int, 0644); | 78 | module_param_named(debug,cx25840_debug, int, 0644); |
@@ -137,6 +162,14 @@ int cx25840_and_or(struct i2c_client *client, u16 addr, unsigned and_mask, | |||
137 | or_value); | 162 | or_value); |
138 | } | 163 | } |
139 | 164 | ||
165 | int cx25840_and_or4(struct i2c_client *client, u16 addr, u32 and_mask, | ||
166 | u32 or_value) | ||
167 | { | ||
168 | return cx25840_write4(client, addr, | ||
169 | (cx25840_read4(client, addr) & and_mask) | | ||
170 | or_value); | ||
171 | } | ||
172 | |||
140 | /* ----------------------------------------------------------------------- */ | 173 | /* ----------------------------------------------------------------------- */ |
141 | 174 | ||
142 | static int set_input(struct i2c_client *client, enum cx25840_video_input vid_input, | 175 | static int set_input(struct i2c_client *client, enum cx25840_video_input vid_input, |
@@ -592,6 +625,13 @@ static void cx23885_initialize(struct i2c_client *client) | |||
592 | 625 | ||
593 | /* start microcontroller */ | 626 | /* start microcontroller */ |
594 | cx25840_and_or(client, 0x803, ~0x10, 0x10); | 627 | cx25840_and_or(client, 0x803, ~0x10, 0x10); |
628 | |||
629 | /* Disable and clear video interrupts - we don't use them */ | ||
630 | cx25840_write4(client, CX25840_VID_INT_STAT_REG, 0xffffffff); | ||
631 | |||
632 | /* Disable and clear audio interrupts - we don't use them */ | ||
633 | cx25840_write(client, CX25840_AUD_INT_CTRL_REG, 0xff); | ||
634 | cx25840_write(client, CX25840_AUD_INT_STAT_REG, 0xff); | ||
595 | } | 635 | } |
596 | 636 | ||
597 | /* ----------------------------------------------------------------------- */ | 637 | /* ----------------------------------------------------------------------- */ |
@@ -1748,9 +1788,93 @@ static int cx25840_log_status(struct v4l2_subdev *sd) | |||
1748 | log_video_status(client); | 1788 | log_video_status(client); |
1749 | if (!is_cx2583x(state)) | 1789 | if (!is_cx2583x(state)) |
1750 | log_audio_status(client); | 1790 | log_audio_status(client); |
1791 | cx25840_ir_log_status(sd); | ||
1751 | return 0; | 1792 | return 0; |
1752 | } | 1793 | } |
1753 | 1794 | ||
1795 | static int cx23885_irq_handler(struct v4l2_subdev *sd, u32 status, | ||
1796 | bool *handled) | ||
1797 | { | ||
1798 | struct cx25840_state *state = to_state(sd); | ||
1799 | struct i2c_client *c = v4l2_get_subdevdata(sd); | ||
1800 | u8 irq_stat, aud_stat, aud_en, ir_stat, ir_en; | ||
1801 | u32 vid_stat, aud_mc_stat; | ||
1802 | bool block_handled; | ||
1803 | int ret = 0; | ||
1804 | |||
1805 | irq_stat = cx25840_read(c, CX23885_PIN_CTRL_IRQ_REG); | ||
1806 | v4l_dbg(2, cx25840_debug, c, "AV Core IRQ status (entry): %s %s %s\n", | ||
1807 | irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT ? "ir" : " ", | ||
1808 | irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT ? "aud" : " ", | ||
1809 | irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT ? "vid" : " "); | ||
1810 | |||
1811 | if ((is_cx23885(state) || is_cx23887(state))) { | ||
1812 | ir_stat = cx25840_read(c, CX25840_IR_STATS_REG); | ||
1813 | ir_en = cx25840_read(c, CX25840_IR_IRQEN_REG); | ||
1814 | v4l_dbg(2, cx25840_debug, c, | ||
1815 | "AV Core ir IRQ status: %#04x disables: %#04x\n", | ||
1816 | ir_stat, ir_en); | ||
1817 | if (irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT) { | ||
1818 | block_handled = false; | ||
1819 | ret = cx25840_ir_irq_handler(sd, | ||
1820 | status, &block_handled); | ||
1821 | if (block_handled) | ||
1822 | *handled = true; | ||
1823 | } | ||
1824 | } | ||
1825 | |||
1826 | aud_stat = cx25840_read(c, CX25840_AUD_INT_STAT_REG); | ||
1827 | aud_en = cx25840_read(c, CX25840_AUD_INT_CTRL_REG); | ||
1828 | v4l_dbg(2, cx25840_debug, c, | ||
1829 | "AV Core audio IRQ status: %#04x disables: %#04x\n", | ||
1830 | aud_stat, aud_en); | ||
1831 | aud_mc_stat = cx25840_read4(c, CX23885_AUD_MC_INT_MASK_REG); | ||
1832 | v4l_dbg(2, cx25840_debug, c, | ||
1833 | "AV Core audio MC IRQ status: %#06x enables: %#06x\n", | ||
1834 | aud_mc_stat >> CX23885_AUD_MC_INT_STAT_SHFT, | ||
1835 | aud_mc_stat & CX23885_AUD_MC_INT_CTRL_BITS); | ||
1836 | if (irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT) { | ||
1837 | if (aud_stat) { | ||
1838 | cx25840_write(c, CX25840_AUD_INT_STAT_REG, aud_stat); | ||
1839 | *handled = true; | ||
1840 | } | ||
1841 | } | ||
1842 | |||
1843 | vid_stat = cx25840_read4(c, CX25840_VID_INT_STAT_REG); | ||
1844 | v4l_dbg(2, cx25840_debug, c, | ||
1845 | "AV Core video IRQ status: %#06x disables: %#06x\n", | ||
1846 | vid_stat & CX25840_VID_INT_STAT_BITS, | ||
1847 | vid_stat >> CX25840_VID_INT_MASK_SHFT); | ||
1848 | if (irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT) { | ||
1849 | if (vid_stat & CX25840_VID_INT_STAT_BITS) { | ||
1850 | cx25840_write4(c, CX25840_VID_INT_STAT_REG, vid_stat); | ||
1851 | *handled = true; | ||
1852 | } | ||
1853 | } | ||
1854 | |||
1855 | irq_stat = cx25840_read(c, CX23885_PIN_CTRL_IRQ_REG); | ||
1856 | v4l_dbg(2, cx25840_debug, c, "AV Core IRQ status (exit): %s %s %s\n", | ||
1857 | irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT ? "ir" : " ", | ||
1858 | irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT ? "aud" : " ", | ||
1859 | irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT ? "vid" : " "); | ||
1860 | |||
1861 | return ret; | ||
1862 | } | ||
1863 | |||
1864 | static int cx25840_irq_handler(struct v4l2_subdev *sd, u32 status, | ||
1865 | bool *handled) | ||
1866 | { | ||
1867 | struct cx25840_state *state = to_state(sd); | ||
1868 | |||
1869 | *handled = false; | ||
1870 | |||
1871 | /* Only support the CX2388[578] AV Core for now */ | ||
1872 | if (is_cx2388x(state)) | ||
1873 | return cx23885_irq_handler(sd, status, handled); | ||
1874 | |||
1875 | return -ENODEV; | ||
1876 | } | ||
1877 | |||
1754 | /* ----------------------------------------------------------------------- */ | 1878 | /* ----------------------------------------------------------------------- */ |
1755 | 1879 | ||
1756 | static const struct v4l2_subdev_core_ops cx25840_core_ops = { | 1880 | static const struct v4l2_subdev_core_ops cx25840_core_ops = { |
@@ -1767,6 +1891,7 @@ static const struct v4l2_subdev_core_ops cx25840_core_ops = { | |||
1767 | .g_register = cx25840_g_register, | 1891 | .g_register = cx25840_g_register, |
1768 | .s_register = cx25840_s_register, | 1892 | .s_register = cx25840_s_register, |
1769 | #endif | 1893 | #endif |
1894 | .interrupt_service_routine = cx25840_irq_handler, | ||
1770 | }; | 1895 | }; |
1771 | 1896 | ||
1772 | static const struct v4l2_subdev_tuner_ops cx25840_tuner_ops = { | 1897 | static const struct v4l2_subdev_tuner_ops cx25840_tuner_ops = { |
@@ -1801,6 +1926,7 @@ static const struct v4l2_subdev_ops cx25840_ops = { | |||
1801 | .audio = &cx25840_audio_ops, | 1926 | .audio = &cx25840_audio_ops, |
1802 | .video = &cx25840_video_ops, | 1927 | .video = &cx25840_video_ops, |
1803 | .vbi = &cx25840_vbi_ops, | 1928 | .vbi = &cx25840_vbi_ops, |
1929 | .ir = &cx25840_ir_ops, | ||
1804 | }; | 1930 | }; |
1805 | 1931 | ||
1806 | /* ----------------------------------------------------------------------- */ | 1932 | /* ----------------------------------------------------------------------- */ |
@@ -1942,6 +2068,7 @@ static int cx25840_probe(struct i2c_client *client, | |||
1942 | state->id = id; | 2068 | state->id = id; |
1943 | state->rev = device_id; | 2069 | state->rev = device_id; |
1944 | 2070 | ||
2071 | cx25840_ir_probe(sd); | ||
1945 | return 0; | 2072 | return 0; |
1946 | } | 2073 | } |
1947 | 2074 | ||
@@ -1949,6 +2076,7 @@ static int cx25840_remove(struct i2c_client *client) | |||
1949 | { | 2076 | { |
1950 | struct v4l2_subdev *sd = i2c_get_clientdata(client); | 2077 | struct v4l2_subdev *sd = i2c_get_clientdata(client); |
1951 | 2078 | ||
2079 | cx25840_ir_remove(sd); | ||
1952 | v4l2_device_unregister_subdev(sd); | 2080 | v4l2_device_unregister_subdev(sd); |
1953 | kfree(to_state(sd)); | 2081 | kfree(to_state(sd)); |
1954 | return 0; | 2082 | return 0; |
diff --git a/drivers/media/video/cx25840/cx25840-core.h b/drivers/media/video/cx25840/cx25840-core.h index 04393b971567..8f47322c003d 100644 --- a/drivers/media/video/cx25840/cx25840-core.h +++ b/drivers/media/video/cx25840/cx25840-core.h | |||
@@ -34,6 +34,8 @@ | |||
34 | providing this information. */ | 34 | providing this information. */ |
35 | #define CX25840_CID_ENABLE_PVR150_WORKAROUND (V4L2_CID_PRIVATE_BASE+0) | 35 | #define CX25840_CID_ENABLE_PVR150_WORKAROUND (V4L2_CID_PRIVATE_BASE+0) |
36 | 36 | ||
37 | struct cx25840_ir_state; | ||
38 | |||
37 | struct cx25840_state { | 39 | struct cx25840_state { |
38 | struct i2c_client *c; | 40 | struct i2c_client *c; |
39 | struct v4l2_subdev sd; | 41 | struct v4l2_subdev sd; |
@@ -52,6 +54,7 @@ struct cx25840_state { | |||
52 | int is_initialized; | 54 | int is_initialized; |
53 | wait_queue_head_t fw_wait; /* wake up when the fw load is finished */ | 55 | wait_queue_head_t fw_wait; /* wake up when the fw load is finished */ |
54 | struct work_struct fw_work; /* work entry for fw load */ | 56 | struct work_struct fw_work; /* work entry for fw load */ |
57 | struct cx25840_ir_state *ir_state; | ||
55 | }; | 58 | }; |
56 | 59 | ||
57 | static inline struct cx25840_state *to_state(struct v4l2_subdev *sd) | 60 | static inline struct cx25840_state *to_state(struct v4l2_subdev *sd) |
@@ -77,6 +80,21 @@ static inline bool is_cx2388x(struct cx25840_state *state) | |||
77 | state->id == V4L2_IDENT_CX23888_AV; | 80 | state->id == V4L2_IDENT_CX23888_AV; |
78 | } | 81 | } |
79 | 82 | ||
83 | static inline bool is_cx23885(struct cx25840_state *state) | ||
84 | { | ||
85 | return state->id == V4L2_IDENT_CX23885_AV; | ||
86 | } | ||
87 | |||
88 | static inline bool is_cx23887(struct cx25840_state *state) | ||
89 | { | ||
90 | return state->id == V4L2_IDENT_CX23887_AV; | ||
91 | } | ||
92 | |||
93 | static inline bool is_cx23888(struct cx25840_state *state) | ||
94 | { | ||
95 | return state->id == V4L2_IDENT_CX23888_AV; | ||
96 | } | ||
97 | |||
80 | /* ----------------------------------------------------------------------- */ | 98 | /* ----------------------------------------------------------------------- */ |
81 | /* cx25850-core.c */ | 99 | /* cx25850-core.c */ |
82 | int cx25840_write(struct i2c_client *client, u16 addr, u8 value); | 100 | int cx25840_write(struct i2c_client *client, u16 addr, u8 value); |
@@ -84,6 +102,8 @@ int cx25840_write4(struct i2c_client *client, u16 addr, u32 value); | |||
84 | u8 cx25840_read(struct i2c_client *client, u16 addr); | 102 | u8 cx25840_read(struct i2c_client *client, u16 addr); |
85 | u32 cx25840_read4(struct i2c_client *client, u16 addr); | 103 | u32 cx25840_read4(struct i2c_client *client, u16 addr); |
86 | int cx25840_and_or(struct i2c_client *client, u16 addr, unsigned mask, u8 value); | 104 | int cx25840_and_or(struct i2c_client *client, u16 addr, unsigned mask, u8 value); |
105 | int cx25840_and_or4(struct i2c_client *client, u16 addr, u32 and_mask, | ||
106 | u32 or_value); | ||
87 | void cx25840_std_setup(struct i2c_client *client); | 107 | void cx25840_std_setup(struct i2c_client *client); |
88 | 108 | ||
89 | /* ----------------------------------------------------------------------- */ | 109 | /* ----------------------------------------------------------------------- */ |
@@ -104,4 +124,12 @@ int cx25840_s_sliced_fmt(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format * | |||
104 | int cx25840_g_sliced_fmt(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *fmt); | 124 | int cx25840_g_sliced_fmt(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *fmt); |
105 | int cx25840_decode_vbi_line(struct v4l2_subdev *sd, struct v4l2_decode_vbi_line *vbi); | 125 | int cx25840_decode_vbi_line(struct v4l2_subdev *sd, struct v4l2_decode_vbi_line *vbi); |
106 | 126 | ||
127 | /* ----------------------------------------------------------------------- */ | ||
128 | /* cx25850-ir.c */ | ||
129 | extern const struct v4l2_subdev_ir_ops cx25840_ir_ops; | ||
130 | int cx25840_ir_log_status(struct v4l2_subdev *sd); | ||
131 | int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled); | ||
132 | int cx25840_ir_probe(struct v4l2_subdev *sd); | ||
133 | int cx25840_ir_remove(struct v4l2_subdev *sd); | ||
134 | |||
107 | #endif | 135 | #endif |
diff --git a/drivers/media/video/cx25840/cx25840-ir.c b/drivers/media/video/cx25840/cx25840-ir.c new file mode 100644 index 000000000000..308e87e9fae7 --- /dev/null +++ b/drivers/media/video/cx25840/cx25840-ir.c | |||
@@ -0,0 +1,1262 @@ | |||
1 | /* | ||
2 | * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores | ||
3 | * | ||
4 | * Integrated Consumer Infrared Controller | ||
5 | * | ||
6 | * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net> | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or | ||
9 | * modify it under the terms of the GNU General Public License | ||
10 | * as published by the Free Software Foundation; either version 2 | ||
11 | * of the License, or (at your option) any later version. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, | ||
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | * GNU General Public License for more details. | ||
17 | * | ||
18 | * You should have received a copy of the GNU General Public License | ||
19 | * along with this program; if not, write to the Free Software | ||
20 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | ||
21 | * 02110-1301, USA. | ||
22 | */ | ||
23 | |||
24 | #include <linux/slab.h> | ||
25 | #include <linux/kfifo.h> | ||
26 | #include <media/cx25840.h> | ||
27 | |||
28 | #include "cx25840-core.h" | ||
29 | |||
30 | static unsigned int ir_debug; | ||
31 | module_param(ir_debug, int, 0644); | ||
32 | MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages"); | ||
33 | |||
34 | #define CX25840_IR_REG_BASE 0x200 | ||
35 | |||
36 | #define CX25840_IR_CNTRL_REG 0x200 | ||
37 | #define CNTRL_WIN_3_3 0x00000000 | ||
38 | #define CNTRL_WIN_4_3 0x00000001 | ||
39 | #define CNTRL_WIN_3_4 0x00000002 | ||
40 | #define CNTRL_WIN_4_4 0x00000003 | ||
41 | #define CNTRL_WIN 0x00000003 | ||
42 | #define CNTRL_EDG_NONE 0x00000000 | ||
43 | #define CNTRL_EDG_FALL 0x00000004 | ||
44 | #define CNTRL_EDG_RISE 0x00000008 | ||
45 | #define CNTRL_EDG_BOTH 0x0000000C | ||
46 | #define CNTRL_EDG 0x0000000C | ||
47 | #define CNTRL_DMD 0x00000010 | ||
48 | #define CNTRL_MOD 0x00000020 | ||
49 | #define CNTRL_RFE 0x00000040 | ||
50 | #define CNTRL_TFE 0x00000080 | ||
51 | #define CNTRL_RXE 0x00000100 | ||
52 | #define CNTRL_TXE 0x00000200 | ||
53 | #define CNTRL_RIC 0x00000400 | ||
54 | #define CNTRL_TIC 0x00000800 | ||
55 | #define CNTRL_CPL 0x00001000 | ||
56 | #define CNTRL_LBM 0x00002000 | ||
57 | #define CNTRL_R 0x00004000 | ||
58 | |||
59 | #define CX25840_IR_TXCLK_REG 0x204 | ||
60 | #define TXCLK_TCD 0x0000FFFF | ||
61 | |||
62 | #define CX25840_IR_RXCLK_REG 0x208 | ||
63 | #define RXCLK_RCD 0x0000FFFF | ||
64 | |||
65 | #define CX25840_IR_CDUTY_REG 0x20C | ||
66 | #define CDUTY_CDC 0x0000000F | ||
67 | |||
68 | #define CX25840_IR_STATS_REG 0x210 | ||
69 | #define STATS_RTO 0x00000001 | ||
70 | #define STATS_ROR 0x00000002 | ||
71 | #define STATS_RBY 0x00000004 | ||
72 | #define STATS_TBY 0x00000008 | ||
73 | #define STATS_RSR 0x00000010 | ||
74 | #define STATS_TSR 0x00000020 | ||
75 | |||
76 | #define CX25840_IR_IRQEN_REG 0x214 | ||
77 | #define IRQEN_RTE 0x00000001 | ||
78 | #define IRQEN_ROE 0x00000002 | ||
79 | #define IRQEN_RSE 0x00000010 | ||
80 | #define IRQEN_TSE 0x00000020 | ||
81 | #define IRQEN_MSK 0x00000033 | ||
82 | |||
83 | #define CX25840_IR_FILTR_REG 0x218 | ||
84 | #define FILTR_LPF 0x0000FFFF | ||
85 | |||
86 | #define CX25840_IR_FIFO_REG 0x23C | ||
87 | #define FIFO_RXTX 0x0000FFFF | ||
88 | #define FIFO_RXTX_LVL 0x00010000 | ||
89 | #define FIFO_RXTX_RTO 0x0001FFFF | ||
90 | #define FIFO_RX_NDV 0x00020000 | ||
91 | #define FIFO_RX_DEPTH 8 | ||
92 | #define FIFO_TX_DEPTH 8 | ||
93 | |||
94 | #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ | ||
95 | #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2) | ||
96 | |||
97 | #define CX25840_IR_RX_KFIFO_SIZE (512 * sizeof(u32)) | ||
98 | #define CX25840_IR_TX_KFIFO_SIZE (512 * sizeof(u32)) | ||
99 | |||
100 | struct cx25840_ir_state { | ||
101 | struct i2c_client *c; | ||
102 | |||
103 | struct v4l2_subdev_ir_parameters rx_params; | ||
104 | struct mutex rx_params_lock; /* protects Rx parameter settings cache */ | ||
105 | atomic_t rxclk_divider; | ||
106 | atomic_t rx_invert; | ||
107 | |||
108 | struct kfifo rx_kfifo; | ||
109 | spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */ | ||
110 | |||
111 | struct v4l2_subdev_ir_parameters tx_params; | ||
112 | struct mutex tx_params_lock; /* protects Tx parameter settings cache */ | ||
113 | atomic_t txclk_divider; | ||
114 | }; | ||
115 | |||
116 | static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd) | ||
117 | { | ||
118 | struct cx25840_state *state = to_state(sd); | ||
119 | return state ? state->ir_state : NULL; | ||
120 | } | ||
121 | |||
122 | |||
123 | /* | ||
124 | * Rx and Tx Clock Divider register computations | ||
125 | * | ||
126 | * Note the largest clock divider value of 0xffff corresponds to: | ||
127 | * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns | ||
128 | * which fits in 21 bits, so we'll use unsigned int for time arguments. | ||
129 | */ | ||
130 | static inline u16 count_to_clock_divider(unsigned int d) | ||
131 | { | ||
132 | if (d > RXCLK_RCD + 1) | ||
133 | d = RXCLK_RCD; | ||
134 | else if (d < 2) | ||
135 | d = 1; | ||
136 | else | ||
137 | d--; | ||
138 | return (u16) d; | ||
139 | } | ||
140 | |||
141 | static inline u16 ns_to_clock_divider(unsigned int ns) | ||
142 | { | ||
143 | return count_to_clock_divider( | ||
144 | DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); | ||
145 | } | ||
146 | |||
147 | static inline unsigned int clock_divider_to_ns(unsigned int divider) | ||
148 | { | ||
149 | /* Period of the Rx or Tx clock in ns */ | ||
150 | return DIV_ROUND_CLOSEST((divider + 1) * 1000, | ||
151 | CX25840_IR_REFCLK_FREQ / 1000000); | ||
152 | } | ||
153 | |||
154 | static inline u16 carrier_freq_to_clock_divider(unsigned int freq) | ||
155 | { | ||
156 | return count_to_clock_divider( | ||
157 | DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16)); | ||
158 | } | ||
159 | |||
160 | static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) | ||
161 | { | ||
162 | return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16); | ||
163 | } | ||
164 | |||
165 | static inline u16 freq_to_clock_divider(unsigned int freq, | ||
166 | unsigned int rollovers) | ||
167 | { | ||
168 | return count_to_clock_divider( | ||
169 | DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers)); | ||
170 | } | ||
171 | |||
172 | static inline unsigned int clock_divider_to_freq(unsigned int divider, | ||
173 | unsigned int rollovers) | ||
174 | { | ||
175 | return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, | ||
176 | (divider + 1) * rollovers); | ||
177 | } | ||
178 | |||
179 | /* | ||
180 | * Low Pass Filter register calculations | ||
181 | * | ||
182 | * Note the largest count value of 0xffff corresponds to: | ||
183 | * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns | ||
184 | * which fits in 21 bits, so we'll use unsigned int for time arguments. | ||
185 | */ | ||
186 | static inline u16 count_to_lpf_count(unsigned int d) | ||
187 | { | ||
188 | if (d > FILTR_LPF) | ||
189 | d = FILTR_LPF; | ||
190 | else if (d < 4) | ||
191 | d = 0; | ||
192 | return (u16) d; | ||
193 | } | ||
194 | |||
195 | static inline u16 ns_to_lpf_count(unsigned int ns) | ||
196 | { | ||
197 | return count_to_lpf_count( | ||
198 | DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); | ||
199 | } | ||
200 | |||
201 | static inline unsigned int lpf_count_to_ns(unsigned int count) | ||
202 | { | ||
203 | /* Duration of the Low Pass Filter rejection window in ns */ | ||
204 | return DIV_ROUND_CLOSEST(count * 1000, | ||
205 | CX25840_IR_REFCLK_FREQ / 1000000); | ||
206 | } | ||
207 | |||
208 | static inline unsigned int lpf_count_to_us(unsigned int count) | ||
209 | { | ||
210 | /* Duration of the Low Pass Filter rejection window in us */ | ||
211 | return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000); | ||
212 | } | ||
213 | |||
214 | /* | ||
215 | * FIFO register pulse width count compuations | ||
216 | */ | ||
217 | static u32 clock_divider_to_resolution(u16 divider) | ||
218 | { | ||
219 | /* | ||
220 | * Resolution is the duration of 1 tick of the readable portion of | ||
221 | * of the pulse width counter as read from the FIFO. The two lsb's are | ||
222 | * not readable, hence the << 2. This function returns ns. | ||
223 | */ | ||
224 | return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, | ||
225 | CX25840_IR_REFCLK_FREQ / 1000000); | ||
226 | } | ||
227 | |||
228 | static u64 pulse_width_count_to_ns(u16 count, u16 divider) | ||
229 | { | ||
230 | u64 n; | ||
231 | u32 rem; | ||
232 | |||
233 | /* | ||
234 | * The 2 lsb's of the pulse width timer count are not readable, hence | ||
235 | * the (count << 2) | 0x3 | ||
236 | */ | ||
237 | n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ | ||
238 | rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ | ||
239 | if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) | ||
240 | n++; | ||
241 | return n; | ||
242 | } | ||
243 | |||
244 | #if 0 | ||
245 | /* Keep as we will need this for Transmit functionality */ | ||
246 | static u16 ns_to_pulse_width_count(u32 ns, u16 divider) | ||
247 | { | ||
248 | u64 n; | ||
249 | u32 d; | ||
250 | u32 rem; | ||
251 | |||
252 | /* | ||
253 | * The 2 lsb's of the pulse width timer count are not accessable, hence | ||
254 | * the (1 << 2) | ||
255 | */ | ||
256 | n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */ | ||
257 | d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */ | ||
258 | rem = do_div(n, d); | ||
259 | if (rem >= d / 2) | ||
260 | n++; | ||
261 | |||
262 | if (n > FIFO_RXTX) | ||
263 | n = FIFO_RXTX; | ||
264 | else if (n == 0) | ||
265 | n = 1; | ||
266 | return (u16) n; | ||
267 | } | ||
268 | |||
269 | #endif | ||
270 | static unsigned int pulse_width_count_to_us(u16 count, u16 divider) | ||
271 | { | ||
272 | u64 n; | ||
273 | u32 rem; | ||
274 | |||
275 | /* | ||
276 | * The 2 lsb's of the pulse width timer count are not readable, hence | ||
277 | * the (count << 2) | 0x3 | ||
278 | */ | ||
279 | n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ | ||
280 | rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ | ||
281 | if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) | ||
282 | n++; | ||
283 | return (unsigned int) n; | ||
284 | } | ||
285 | |||
286 | /* | ||
287 | * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts | ||
288 | * | ||
289 | * The total pulse clock count is an 18 bit pulse width timer count as the most | ||
290 | * significant part and (up to) 16 bit clock divider count as a modulus. | ||
291 | * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse | ||
292 | * width timer count's least significant bit. | ||
293 | */ | ||
294 | static u64 ns_to_pulse_clocks(u32 ns) | ||
295 | { | ||
296 | u64 clocks; | ||
297 | u32 rem; | ||
298 | clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ | ||
299 | rem = do_div(clocks, 1000); /* /1000 = cycles */ | ||
300 | if (rem >= 1000 / 2) | ||
301 | clocks++; | ||
302 | return clocks; | ||
303 | } | ||
304 | |||
305 | static u16 pulse_clocks_to_clock_divider(u64 count) | ||
306 | { | ||
307 | u32 rem; | ||
308 | |||
309 | rem = do_div(count, (FIFO_RXTX << 2) | 0x3); | ||
310 | |||
311 | /* net result needs to be rounded down and decremented by 1 */ | ||
312 | if (count > RXCLK_RCD + 1) | ||
313 | count = RXCLK_RCD; | ||
314 | else if (count < 2) | ||
315 | count = 1; | ||
316 | else | ||
317 | count--; | ||
318 | return (u16) count; | ||
319 | } | ||
320 | |||
321 | /* | ||
322 | * IR Control Register helpers | ||
323 | */ | ||
324 | enum tx_fifo_watermark { | ||
325 | TX_FIFO_HALF_EMPTY = 0, | ||
326 | TX_FIFO_EMPTY = CNTRL_TIC, | ||
327 | }; | ||
328 | |||
329 | enum rx_fifo_watermark { | ||
330 | RX_FIFO_HALF_FULL = 0, | ||
331 | RX_FIFO_NOT_EMPTY = CNTRL_RIC, | ||
332 | }; | ||
333 | |||
334 | static inline void control_tx_irq_watermark(struct i2c_client *c, | ||
335 | enum tx_fifo_watermark level) | ||
336 | { | ||
337 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level); | ||
338 | } | ||
339 | |||
340 | static inline void control_rx_irq_watermark(struct i2c_client *c, | ||
341 | enum rx_fifo_watermark level) | ||
342 | { | ||
343 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level); | ||
344 | } | ||
345 | |||
346 | static inline void control_tx_enable(struct i2c_client *c, bool enable) | ||
347 | { | ||
348 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), | ||
349 | enable ? (CNTRL_TXE | CNTRL_TFE) : 0); | ||
350 | } | ||
351 | |||
352 | static inline void control_rx_enable(struct i2c_client *c, bool enable) | ||
353 | { | ||
354 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), | ||
355 | enable ? (CNTRL_RXE | CNTRL_RFE) : 0); | ||
356 | } | ||
357 | |||
358 | static inline void control_tx_modulation_enable(struct i2c_client *c, | ||
359 | bool enable) | ||
360 | { | ||
361 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD, | ||
362 | enable ? CNTRL_MOD : 0); | ||
363 | } | ||
364 | |||
365 | static inline void control_rx_demodulation_enable(struct i2c_client *c, | ||
366 | bool enable) | ||
367 | { | ||
368 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD, | ||
369 | enable ? CNTRL_DMD : 0); | ||
370 | } | ||
371 | |||
372 | static inline void control_rx_s_edge_detection(struct i2c_client *c, | ||
373 | u32 edge_types) | ||
374 | { | ||
375 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, | ||
376 | edge_types & CNTRL_EDG_BOTH); | ||
377 | } | ||
378 | |||
379 | static void control_rx_s_carrier_window(struct i2c_client *c, | ||
380 | unsigned int carrier, | ||
381 | unsigned int *carrier_range_low, | ||
382 | unsigned int *carrier_range_high) | ||
383 | { | ||
384 | u32 v; | ||
385 | unsigned int c16 = carrier * 16; | ||
386 | |||
387 | if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { | ||
388 | v = CNTRL_WIN_3_4; | ||
389 | *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); | ||
390 | } else { | ||
391 | v = CNTRL_WIN_3_3; | ||
392 | *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); | ||
393 | } | ||
394 | |||
395 | if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { | ||
396 | v |= CNTRL_WIN_4_3; | ||
397 | *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); | ||
398 | } else { | ||
399 | v |= CNTRL_WIN_3_3; | ||
400 | *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); | ||
401 | } | ||
402 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v); | ||
403 | } | ||
404 | |||
405 | static inline void control_tx_polarity_invert(struct i2c_client *c, | ||
406 | bool invert) | ||
407 | { | ||
408 | cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL, | ||
409 | invert ? CNTRL_CPL : 0); | ||
410 | } | ||
411 | |||
412 | /* | ||
413 | * IR Rx & Tx Clock Register helpers | ||
414 | */ | ||
415 | static unsigned int txclk_tx_s_carrier(struct i2c_client *c, | ||
416 | unsigned int freq, | ||
417 | u16 *divider) | ||
418 | { | ||
419 | *divider = carrier_freq_to_clock_divider(freq); | ||
420 | cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); | ||
421 | return clock_divider_to_carrier_freq(*divider); | ||
422 | } | ||
423 | |||
424 | static unsigned int rxclk_rx_s_carrier(struct i2c_client *c, | ||
425 | unsigned int freq, | ||
426 | u16 *divider) | ||
427 | { | ||
428 | *divider = carrier_freq_to_clock_divider(freq); | ||
429 | cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); | ||
430 | return clock_divider_to_carrier_freq(*divider); | ||
431 | } | ||
432 | |||
433 | static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns, | ||
434 | u16 *divider) | ||
435 | { | ||
436 | u64 pulse_clocks; | ||
437 | |||
438 | if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS) | ||
439 | ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS; | ||
440 | pulse_clocks = ns_to_pulse_clocks(ns); | ||
441 | *divider = pulse_clocks_to_clock_divider(pulse_clocks); | ||
442 | cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); | ||
443 | return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); | ||
444 | } | ||
445 | |||
446 | static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns, | ||
447 | u16 *divider) | ||
448 | { | ||
449 | u64 pulse_clocks; | ||
450 | |||
451 | if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS) | ||
452 | ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS; | ||
453 | pulse_clocks = ns_to_pulse_clocks(ns); | ||
454 | *divider = pulse_clocks_to_clock_divider(pulse_clocks); | ||
455 | cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); | ||
456 | return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); | ||
457 | } | ||
458 | |||
459 | /* | ||
460 | * IR Tx Carrier Duty Cycle register helpers | ||
461 | */ | ||
462 | static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c, | ||
463 | unsigned int duty_cycle) | ||
464 | { | ||
465 | u32 n; | ||
466 | n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ | ||
467 | if (n != 0) | ||
468 | n--; | ||
469 | if (n > 15) | ||
470 | n = 15; | ||
471 | cx25840_write4(c, CX25840_IR_CDUTY_REG, n); | ||
472 | return DIV_ROUND_CLOSEST((n + 1) * 100, 16); | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * IR Filter Register helpers | ||
477 | */ | ||
478 | static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns) | ||
479 | { | ||
480 | u32 count = ns_to_lpf_count(min_width_ns); | ||
481 | cx25840_write4(c, CX25840_IR_FILTR_REG, count); | ||
482 | return lpf_count_to_ns(count); | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | * IR IRQ Enable Register helpers | ||
487 | */ | ||
488 | static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask) | ||
489 | { | ||
490 | struct cx25840_state *state = to_state(sd); | ||
491 | |||
492 | if (is_cx23885(state) || is_cx23887(state)) | ||
493 | mask ^= IRQEN_MSK; | ||
494 | mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); | ||
495 | cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, | ||
496 | ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); | ||
497 | } | ||
498 | |||
499 | static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask) | ||
500 | { | ||
501 | struct cx25840_state *state = to_state(sd); | ||
502 | |||
503 | if (is_cx23885(state) || is_cx23887(state)) | ||
504 | mask ^= IRQEN_MSK; | ||
505 | mask &= IRQEN_TSE; | ||
506 | cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask); | ||
507 | } | ||
508 | |||
509 | /* | ||
510 | * V4L2 Subdevice IR Ops | ||
511 | */ | ||
512 | int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) | ||
513 | { | ||
514 | struct cx25840_state *state = to_state(sd); | ||
515 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
516 | struct i2c_client *c = NULL; | ||
517 | unsigned long flags; | ||
518 | |||
519 | u32 rx_data[FIFO_RX_DEPTH]; | ||
520 | int i, j, k; | ||
521 | u32 events, v; | ||
522 | int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; | ||
523 | u32 cntrl, irqen, stats; | ||
524 | |||
525 | *handled = false; | ||
526 | if (ir_state == NULL) | ||
527 | return -ENODEV; | ||
528 | |||
529 | c = ir_state->c; | ||
530 | |||
531 | /* Only support the IR controller for the CX2388[57] AV Core for now */ | ||
532 | if (!(is_cx23885(state) || is_cx23887(state))) | ||
533 | return -ENODEV; | ||
534 | |||
535 | cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); | ||
536 | irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); | ||
537 | if (is_cx23885(state) || is_cx23887(state)) | ||
538 | irqen ^= IRQEN_MSK; | ||
539 | stats = cx25840_read4(c, CX25840_IR_STATS_REG); | ||
540 | |||
541 | tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ | ||
542 | rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ | ||
543 | rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ | ||
544 | ror = stats & STATS_ROR; /* Rx FIFO Over Run */ | ||
545 | |||
546 | tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ | ||
547 | rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */ | ||
548 | rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ | ||
549 | roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ | ||
550 | |||
551 | v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n", | ||
552 | tsr ? "tsr" : " ", rsr ? "rsr" : " ", | ||
553 | rto ? "rto" : " ", ror ? "ror" : " ", | ||
554 | stats & STATS_TBY ? "tby" : " ", | ||
555 | stats & STATS_RBY ? "rby" : " "); | ||
556 | |||
557 | v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n", | ||
558 | tse ? "tse" : " ", rse ? "rse" : " ", | ||
559 | rte ? "rte" : " ", roe ? "roe" : " "); | ||
560 | |||
561 | /* | ||
562 | * Transmitter interrupt service | ||
563 | */ | ||
564 | if (tse && tsr) { | ||
565 | /* | ||
566 | * TODO: | ||
567 | * Check the watermark threshold setting | ||
568 | * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo | ||
569 | * Push the data to the hardware FIFO. | ||
570 | * If there was nothing more to send in the tx_kfifo, disable | ||
571 | * the TSR IRQ and notify the v4l2_device. | ||
572 | * If there was something in the tx_kfifo, check the tx_kfifo | ||
573 | * level and notify the v4l2_device, if it is low. | ||
574 | */ | ||
575 | /* For now, inhibit TSR interrupt until Tx is implemented */ | ||
576 | irqenable_tx(sd, 0); | ||
577 | events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; | ||
578 | v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); | ||
579 | *handled = true; | ||
580 | } | ||
581 | |||
582 | /* | ||
583 | * Receiver interrupt service | ||
584 | */ | ||
585 | kror = 0; | ||
586 | if ((rse && rsr) || (rte && rto)) { | ||
587 | /* | ||
588 | * Receive data on RSR to clear the STATS_RSR. | ||
589 | * Receive data on RTO, since we may not have yet hit the RSR | ||
590 | * watermark when we receive the RTO. | ||
591 | */ | ||
592 | for (i = 0, v = FIFO_RX_NDV; | ||
593 | (v & FIFO_RX_NDV) && !kror; i = 0) { | ||
594 | for (j = 0; | ||
595 | (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { | ||
596 | v = cx25840_read4(c, CX25840_IR_FIFO_REG); | ||
597 | rx_data[i++] = v & ~FIFO_RX_NDV; | ||
598 | } | ||
599 | if (i == 0) | ||
600 | break; | ||
601 | j = i * sizeof(u32); | ||
602 | k = kfifo_in_locked(&ir_state->rx_kfifo, | ||
603 | (unsigned char *) rx_data, j, | ||
604 | &ir_state->rx_kfifo_lock); | ||
605 | if (k != j) | ||
606 | kror++; /* rx_kfifo over run */ | ||
607 | } | ||
608 | *handled = true; | ||
609 | } | ||
610 | |||
611 | events = 0; | ||
612 | v = 0; | ||
613 | if (kror) { | ||
614 | events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; | ||
615 | v4l2_err(sd, "IR receiver software FIFO overrun\n"); | ||
616 | } | ||
617 | if (roe && ror) { | ||
618 | /* | ||
619 | * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear | ||
620 | * the Rx FIFO Over Run status (STATS_ROR) | ||
621 | */ | ||
622 | v |= CNTRL_RFE; | ||
623 | events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; | ||
624 | v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); | ||
625 | } | ||
626 | if (rte && rto) { | ||
627 | /* | ||
628 | * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear | ||
629 | * the Rx Pulse Width Timer Time Out (STATS_RTO) | ||
630 | */ | ||
631 | v |= CNTRL_RXE; | ||
632 | events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; | ||
633 | } | ||
634 | if (v) { | ||
635 | /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */ | ||
636 | cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v); | ||
637 | cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl); | ||
638 | *handled = true; | ||
639 | } | ||
640 | spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); | ||
641 | if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2) | ||
642 | events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; | ||
643 | spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); | ||
644 | |||
645 | if (events) | ||
646 | v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); | ||
647 | return 0; | ||
648 | } | ||
649 | |||
650 | /* Receiver */ | ||
651 | static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, | ||
652 | ssize_t *num) | ||
653 | { | ||
654 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
655 | bool invert; | ||
656 | u16 divider; | ||
657 | unsigned int i, n; | ||
658 | u32 *p; | ||
659 | u32 u, v; | ||
660 | |||
661 | if (ir_state == NULL) | ||
662 | return -ENODEV; | ||
663 | |||
664 | invert = (bool) atomic_read(&ir_state->rx_invert); | ||
665 | divider = (u16) atomic_read(&ir_state->rxclk_divider); | ||
666 | |||
667 | n = count / sizeof(u32) * sizeof(u32); | ||
668 | if (n == 0) { | ||
669 | *num = 0; | ||
670 | return 0; | ||
671 | } | ||
672 | |||
673 | n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n, | ||
674 | &ir_state->rx_kfifo_lock); | ||
675 | |||
676 | n /= sizeof(u32); | ||
677 | *num = n * sizeof(u32); | ||
678 | |||
679 | for (p = (u32 *) buf, i = 0; i < n; p++, i++) { | ||
680 | if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { | ||
681 | *p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END; | ||
682 | v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n"); | ||
683 | continue; | ||
684 | } | ||
685 | |||
686 | u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0; | ||
687 | if (invert) | ||
688 | u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK; | ||
689 | |||
690 | v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX), | ||
691 | divider); | ||
692 | if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS) | ||
693 | v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1; | ||
694 | |||
695 | *p = u | v; | ||
696 | |||
697 | v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s\n", | ||
698 | v, u ? "mark" : "space"); | ||
699 | } | ||
700 | return 0; | ||
701 | } | ||
702 | |||
703 | static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd, | ||
704 | struct v4l2_subdev_ir_parameters *p) | ||
705 | { | ||
706 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
707 | |||
708 | if (ir_state == NULL) | ||
709 | return -ENODEV; | ||
710 | |||
711 | mutex_lock(&ir_state->rx_params_lock); | ||
712 | memcpy(p, &ir_state->rx_params, | ||
713 | sizeof(struct v4l2_subdev_ir_parameters)); | ||
714 | mutex_unlock(&ir_state->rx_params_lock); | ||
715 | return 0; | ||
716 | } | ||
717 | |||
718 | static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd) | ||
719 | { | ||
720 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
721 | struct i2c_client *c; | ||
722 | |||
723 | if (ir_state == NULL) | ||
724 | return -ENODEV; | ||
725 | |||
726 | c = ir_state->c; | ||
727 | mutex_lock(&ir_state->rx_params_lock); | ||
728 | |||
729 | /* Disable or slow down all IR Rx circuits and counters */ | ||
730 | irqenable_rx(sd, 0); | ||
731 | control_rx_enable(c, false); | ||
732 | control_rx_demodulation_enable(c, false); | ||
733 | control_rx_s_edge_detection(c, CNTRL_EDG_NONE); | ||
734 | filter_rx_s_min_width(c, 0); | ||
735 | cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD); | ||
736 | |||
737 | ir_state->rx_params.shutdown = true; | ||
738 | |||
739 | mutex_unlock(&ir_state->rx_params_lock); | ||
740 | return 0; | ||
741 | } | ||
742 | |||
743 | static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd, | ||
744 | struct v4l2_subdev_ir_parameters *p) | ||
745 | { | ||
746 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
747 | struct i2c_client *c; | ||
748 | struct v4l2_subdev_ir_parameters *o; | ||
749 | u16 rxclk_divider; | ||
750 | |||
751 | if (ir_state == NULL) | ||
752 | return -ENODEV; | ||
753 | |||
754 | if (p->shutdown) | ||
755 | return cx25840_ir_rx_shutdown(sd); | ||
756 | |||
757 | if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) | ||
758 | return -ENOSYS; | ||
759 | |||
760 | c = ir_state->c; | ||
761 | o = &ir_state->rx_params; | ||
762 | |||
763 | mutex_lock(&ir_state->rx_params_lock); | ||
764 | |||
765 | o->shutdown = p->shutdown; | ||
766 | |||
767 | p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; | ||
768 | o->mode = p->mode; | ||
769 | |||
770 | p->bytes_per_data_element = sizeof(u32); | ||
771 | o->bytes_per_data_element = p->bytes_per_data_element; | ||
772 | |||
773 | /* Before we tweak the hardware, we have to disable the receiver */ | ||
774 | irqenable_rx(sd, 0); | ||
775 | control_rx_enable(c, false); | ||
776 | |||
777 | control_rx_demodulation_enable(c, p->modulation); | ||
778 | o->modulation = p->modulation; | ||
779 | |||
780 | if (p->modulation) { | ||
781 | p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq, | ||
782 | &rxclk_divider); | ||
783 | |||
784 | o->carrier_freq = p->carrier_freq; | ||
785 | |||
786 | p->duty_cycle = 50; | ||
787 | o->duty_cycle = p->duty_cycle; | ||
788 | |||
789 | control_rx_s_carrier_window(c, p->carrier_freq, | ||
790 | &p->carrier_range_lower, | ||
791 | &p->carrier_range_upper); | ||
792 | o->carrier_range_lower = p->carrier_range_lower; | ||
793 | o->carrier_range_upper = p->carrier_range_upper; | ||
794 | } else { | ||
795 | p->max_pulse_width = | ||
796 | rxclk_rx_s_max_pulse_width(c, p->max_pulse_width, | ||
797 | &rxclk_divider); | ||
798 | o->max_pulse_width = p->max_pulse_width; | ||
799 | } | ||
800 | atomic_set(&ir_state->rxclk_divider, rxclk_divider); | ||
801 | |||
802 | p->noise_filter_min_width = | ||
803 | filter_rx_s_min_width(c, p->noise_filter_min_width); | ||
804 | o->noise_filter_min_width = p->noise_filter_min_width; | ||
805 | |||
806 | p->resolution = clock_divider_to_resolution(rxclk_divider); | ||
807 | o->resolution = p->resolution; | ||
808 | |||
809 | /* FIXME - make this dependent on resolution for better performance */ | ||
810 | control_rx_irq_watermark(c, RX_FIFO_HALF_FULL); | ||
811 | |||
812 | control_rx_s_edge_detection(c, CNTRL_EDG_BOTH); | ||
813 | |||
814 | o->invert_level = p->invert_level; | ||
815 | atomic_set(&ir_state->rx_invert, p->invert_level); | ||
816 | |||
817 | o->interrupt_enable = p->interrupt_enable; | ||
818 | o->enable = p->enable; | ||
819 | if (p->enable) { | ||
820 | unsigned long flags; | ||
821 | |||
822 | spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); | ||
823 | kfifo_reset(&ir_state->rx_kfifo); | ||
824 | spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); | ||
825 | if (p->interrupt_enable) | ||
826 | irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); | ||
827 | control_rx_enable(c, p->enable); | ||
828 | } | ||
829 | |||
830 | mutex_unlock(&ir_state->rx_params_lock); | ||
831 | return 0; | ||
832 | } | ||
833 | |||
834 | /* Transmitter */ | ||
835 | static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, | ||
836 | ssize_t *num) | ||
837 | { | ||
838 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
839 | struct i2c_client *c; | ||
840 | |||
841 | if (ir_state == NULL) | ||
842 | return -ENODEV; | ||
843 | |||
844 | c = ir_state->c; | ||
845 | #if 0 | ||
846 | /* | ||
847 | * FIXME - the code below is an incomplete and untested sketch of what | ||
848 | * may need to be done. The critical part is to get 4 (or 8) pulses | ||
849 | * from the tx_kfifo, or converted from ns to the proper units from the | ||
850 | * input, and push them off to the hardware Tx FIFO right away, if the | ||
851 | * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in | ||
852 | * a less critical timeframe. Also watch out for overruning the | ||
853 | * tx_kfifo - don't let it happen and let the caller know not all his | ||
854 | * pulses were written. | ||
855 | */ | ||
856 | u32 *ns_pulse = (u32 *) buf; | ||
857 | unsigned int n; | ||
858 | u32 fifo_pulse[FIFO_TX_DEPTH]; | ||
859 | u32 mark; | ||
860 | |||
861 | /* Compute how much we can fit in the tx kfifo */ | ||
862 | n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo); | ||
863 | n = min(n, (unsigned int) count); | ||
864 | n /= sizeof(u32); | ||
865 | |||
866 | /* FIXME - turn on Tx Fifo service interrupt | ||
867 | * check hardware fifo level, and other stuff | ||
868 | */ | ||
869 | for (i = 0; i < n; ) { | ||
870 | for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) { | ||
871 | mark = ns_pulse[i] & V4L2_SUBDEV_IR_PULSE_LEVEL_MASK; | ||
872 | fifo_pulse[j] = ns_to_pulse_width_count( | ||
873 | ns_pulse[i] & | ||
874 | ~V4L2_SUBDEV_IR_PULSE_LEVEL_MASK, | ||
875 | ir_state->txclk_divider); | ||
876 | if (mark) | ||
877 | fifo_pulse[j] &= FIFO_RXTX_LVL; | ||
878 | i++; | ||
879 | } | ||
880 | kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse, | ||
881 | j * sizeof(u32)); | ||
882 | } | ||
883 | *num = n * sizeof(u32); | ||
884 | #else | ||
885 | /* For now enable the Tx FIFO Service interrupt & pretend we did work */ | ||
886 | irqenable_tx(sd, IRQEN_TSE); | ||
887 | *num = count; | ||
888 | #endif | ||
889 | return 0; | ||
890 | } | ||
891 | |||
892 | static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd, | ||
893 | struct v4l2_subdev_ir_parameters *p) | ||
894 | { | ||
895 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
896 | |||
897 | if (ir_state == NULL) | ||
898 | return -ENODEV; | ||
899 | |||
900 | mutex_lock(&ir_state->tx_params_lock); | ||
901 | memcpy(p, &ir_state->tx_params, | ||
902 | sizeof(struct v4l2_subdev_ir_parameters)); | ||
903 | mutex_unlock(&ir_state->tx_params_lock); | ||
904 | return 0; | ||
905 | } | ||
906 | |||
907 | static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd) | ||
908 | { | ||
909 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
910 | struct i2c_client *c; | ||
911 | |||
912 | if (ir_state == NULL) | ||
913 | return -ENODEV; | ||
914 | |||
915 | c = ir_state->c; | ||
916 | mutex_lock(&ir_state->tx_params_lock); | ||
917 | |||
918 | /* Disable or slow down all IR Tx circuits and counters */ | ||
919 | irqenable_tx(sd, 0); | ||
920 | control_tx_enable(c, false); | ||
921 | control_tx_modulation_enable(c, false); | ||
922 | cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD); | ||
923 | |||
924 | ir_state->tx_params.shutdown = true; | ||
925 | |||
926 | mutex_unlock(&ir_state->tx_params_lock); | ||
927 | return 0; | ||
928 | } | ||
929 | |||
930 | static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd, | ||
931 | struct v4l2_subdev_ir_parameters *p) | ||
932 | { | ||
933 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
934 | struct i2c_client *c; | ||
935 | struct v4l2_subdev_ir_parameters *o; | ||
936 | u16 txclk_divider; | ||
937 | |||
938 | if (ir_state == NULL) | ||
939 | return -ENODEV; | ||
940 | |||
941 | if (p->shutdown) | ||
942 | return cx25840_ir_tx_shutdown(sd); | ||
943 | |||
944 | if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) | ||
945 | return -ENOSYS; | ||
946 | |||
947 | c = ir_state->c; | ||
948 | o = &ir_state->tx_params; | ||
949 | mutex_lock(&ir_state->tx_params_lock); | ||
950 | |||
951 | o->shutdown = p->shutdown; | ||
952 | |||
953 | p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; | ||
954 | o->mode = p->mode; | ||
955 | |||
956 | p->bytes_per_data_element = sizeof(u32); | ||
957 | o->bytes_per_data_element = p->bytes_per_data_element; | ||
958 | |||
959 | /* Before we tweak the hardware, we have to disable the transmitter */ | ||
960 | irqenable_tx(sd, 0); | ||
961 | control_tx_enable(c, false); | ||
962 | |||
963 | control_tx_modulation_enable(c, p->modulation); | ||
964 | o->modulation = p->modulation; | ||
965 | |||
966 | if (p->modulation) { | ||
967 | p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq, | ||
968 | &txclk_divider); | ||
969 | o->carrier_freq = p->carrier_freq; | ||
970 | |||
971 | p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle); | ||
972 | o->duty_cycle = p->duty_cycle; | ||
973 | } else { | ||
974 | p->max_pulse_width = | ||
975 | txclk_tx_s_max_pulse_width(c, p->max_pulse_width, | ||
976 | &txclk_divider); | ||
977 | o->max_pulse_width = p->max_pulse_width; | ||
978 | } | ||
979 | atomic_set(&ir_state->txclk_divider, txclk_divider); | ||
980 | |||
981 | p->resolution = clock_divider_to_resolution(txclk_divider); | ||
982 | o->resolution = p->resolution; | ||
983 | |||
984 | /* FIXME - make this dependent on resolution for better performance */ | ||
985 | control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY); | ||
986 | |||
987 | control_tx_polarity_invert(c, p->invert_carrier_sense); | ||
988 | o->invert_carrier_sense = p->invert_carrier_sense; | ||
989 | |||
990 | /* | ||
991 | * FIXME: we don't have hardware help for IO pin level inversion | ||
992 | * here like we have on the CX23888. | ||
993 | * Act on this with some mix of logical inversion of data levels, | ||
994 | * carrier polarity, and carrier duty cycle. | ||
995 | */ | ||
996 | o->invert_level = p->invert_level; | ||
997 | |||
998 | o->interrupt_enable = p->interrupt_enable; | ||
999 | o->enable = p->enable; | ||
1000 | if (p->enable) { | ||
1001 | /* reset tx_fifo here */ | ||
1002 | if (p->interrupt_enable) | ||
1003 | irqenable_tx(sd, IRQEN_TSE); | ||
1004 | control_tx_enable(c, p->enable); | ||
1005 | } | ||
1006 | |||
1007 | mutex_unlock(&ir_state->tx_params_lock); | ||
1008 | return 0; | ||
1009 | } | ||
1010 | |||
1011 | |||
1012 | /* | ||
1013 | * V4L2 Subdevice Core Ops support | ||
1014 | */ | ||
1015 | int cx25840_ir_log_status(struct v4l2_subdev *sd) | ||
1016 | { | ||
1017 | struct cx25840_state *state = to_state(sd); | ||
1018 | struct i2c_client *c = state->c; | ||
1019 | char *s; | ||
1020 | int i, j; | ||
1021 | u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr; | ||
1022 | |||
1023 | /* The CX23888 chip doesn't have an IR controller on the A/V core */ | ||
1024 | if (is_cx23888(state)) | ||
1025 | return 0; | ||
1026 | |||
1027 | cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); | ||
1028 | txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD; | ||
1029 | rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD; | ||
1030 | cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC; | ||
1031 | stats = cx25840_read4(c, CX25840_IR_STATS_REG); | ||
1032 | irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); | ||
1033 | if (is_cx23885(state) || is_cx23887(state)) | ||
1034 | irqen ^= IRQEN_MSK; | ||
1035 | filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF; | ||
1036 | |||
1037 | v4l2_info(sd, "IR Receiver:\n"); | ||
1038 | v4l2_info(sd, "\tEnabled: %s\n", | ||
1039 | cntrl & CNTRL_RXE ? "yes" : "no"); | ||
1040 | v4l2_info(sd, "\tDemodulation from a carrier: %s\n", | ||
1041 | cntrl & CNTRL_DMD ? "enabled" : "disabled"); | ||
1042 | v4l2_info(sd, "\tFIFO: %s\n", | ||
1043 | cntrl & CNTRL_RFE ? "enabled" : "disabled"); | ||
1044 | switch (cntrl & CNTRL_EDG) { | ||
1045 | case CNTRL_EDG_NONE: | ||
1046 | s = "disabled"; | ||
1047 | break; | ||
1048 | case CNTRL_EDG_FALL: | ||
1049 | s = "falling edge"; | ||
1050 | break; | ||
1051 | case CNTRL_EDG_RISE: | ||
1052 | s = "rising edge"; | ||
1053 | break; | ||
1054 | case CNTRL_EDG_BOTH: | ||
1055 | s = "rising & falling edges"; | ||
1056 | break; | ||
1057 | default: | ||
1058 | s = "??? edge"; | ||
1059 | break; | ||
1060 | } | ||
1061 | v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); | ||
1062 | v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", | ||
1063 | cntrl & CNTRL_R ? "not loaded" : "overflow marker"); | ||
1064 | v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", | ||
1065 | cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); | ||
1066 | v4l2_info(sd, "\tLoopback mode: %s\n", | ||
1067 | cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); | ||
1068 | if (cntrl & CNTRL_DMD) { | ||
1069 | v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", | ||
1070 | clock_divider_to_carrier_freq(rxclk)); | ||
1071 | switch (cntrl & CNTRL_WIN) { | ||
1072 | case CNTRL_WIN_3_3: | ||
1073 | i = 3; | ||
1074 | j = 3; | ||
1075 | break; | ||
1076 | case CNTRL_WIN_4_3: | ||
1077 | i = 4; | ||
1078 | j = 3; | ||
1079 | break; | ||
1080 | case CNTRL_WIN_3_4: | ||
1081 | i = 3; | ||
1082 | j = 4; | ||
1083 | break; | ||
1084 | case CNTRL_WIN_4_4: | ||
1085 | i = 4; | ||
1086 | j = 4; | ||
1087 | break; | ||
1088 | default: | ||
1089 | i = 0; | ||
1090 | j = 0; | ||
1091 | break; | ||
1092 | } | ||
1093 | v4l2_info(sd, "\tNext carrier edge window: 16 clocks " | ||
1094 | "-%1d/+%1d, %u to %u Hz\n", i, j, | ||
1095 | clock_divider_to_freq(rxclk, 16 + j), | ||
1096 | clock_divider_to_freq(rxclk, 16 - i)); | ||
1097 | } else { | ||
1098 | v4l2_info(sd, "\tMax measurable pulse width: %u us, " | ||
1099 | "%llu ns\n", | ||
1100 | pulse_width_count_to_us(FIFO_RXTX, rxclk), | ||
1101 | pulse_width_count_to_ns(FIFO_RXTX, rxclk)); | ||
1102 | } | ||
1103 | v4l2_info(sd, "\tLow pass filter: %s\n", | ||
1104 | filtr ? "enabled" : "disabled"); | ||
1105 | if (filtr) | ||
1106 | v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, " | ||
1107 | "%u ns\n", | ||
1108 | lpf_count_to_us(filtr), | ||
1109 | lpf_count_to_ns(filtr)); | ||
1110 | v4l2_info(sd, "\tPulse width timer timed-out: %s\n", | ||
1111 | stats & STATS_RTO ? "yes" : "no"); | ||
1112 | v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", | ||
1113 | irqen & IRQEN_RTE ? "enabled" : "disabled"); | ||
1114 | v4l2_info(sd, "\tFIFO overrun: %s\n", | ||
1115 | stats & STATS_ROR ? "yes" : "no"); | ||
1116 | v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", | ||
1117 | irqen & IRQEN_ROE ? "enabled" : "disabled"); | ||
1118 | v4l2_info(sd, "\tBusy: %s\n", | ||
1119 | stats & STATS_RBY ? "yes" : "no"); | ||
1120 | v4l2_info(sd, "\tFIFO service requested: %s\n", | ||
1121 | stats & STATS_RSR ? "yes" : "no"); | ||
1122 | v4l2_info(sd, "\tFIFO service request interrupt: %s\n", | ||
1123 | irqen & IRQEN_RSE ? "enabled" : "disabled"); | ||
1124 | |||
1125 | v4l2_info(sd, "IR Transmitter:\n"); | ||
1126 | v4l2_info(sd, "\tEnabled: %s\n", | ||
1127 | cntrl & CNTRL_TXE ? "yes" : "no"); | ||
1128 | v4l2_info(sd, "\tModulation onto a carrier: %s\n", | ||
1129 | cntrl & CNTRL_MOD ? "enabled" : "disabled"); | ||
1130 | v4l2_info(sd, "\tFIFO: %s\n", | ||
1131 | cntrl & CNTRL_TFE ? "enabled" : "disabled"); | ||
1132 | v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", | ||
1133 | cntrl & CNTRL_TIC ? "not empty" : "half full or less"); | ||
1134 | v4l2_info(sd, "\tCarrier polarity: %s\n", | ||
1135 | cntrl & CNTRL_CPL ? "space:burst mark:noburst" | ||
1136 | : "space:noburst mark:burst"); | ||
1137 | if (cntrl & CNTRL_MOD) { | ||
1138 | v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", | ||
1139 | clock_divider_to_carrier_freq(txclk)); | ||
1140 | v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", | ||
1141 | cduty + 1); | ||
1142 | } else { | ||
1143 | v4l2_info(sd, "\tMax pulse width: %u us, " | ||
1144 | "%llu ns\n", | ||
1145 | pulse_width_count_to_us(FIFO_RXTX, txclk), | ||
1146 | pulse_width_count_to_ns(FIFO_RXTX, txclk)); | ||
1147 | } | ||
1148 | v4l2_info(sd, "\tBusy: %s\n", | ||
1149 | stats & STATS_TBY ? "yes" : "no"); | ||
1150 | v4l2_info(sd, "\tFIFO service requested: %s\n", | ||
1151 | stats & STATS_TSR ? "yes" : "no"); | ||
1152 | v4l2_info(sd, "\tFIFO service request interrupt: %s\n", | ||
1153 | irqen & IRQEN_TSE ? "enabled" : "disabled"); | ||
1154 | |||
1155 | return 0; | ||
1156 | } | ||
1157 | |||
1158 | |||
1159 | const struct v4l2_subdev_ir_ops cx25840_ir_ops = { | ||
1160 | .rx_read = cx25840_ir_rx_read, | ||
1161 | .rx_g_parameters = cx25840_ir_rx_g_parameters, | ||
1162 | .rx_s_parameters = cx25840_ir_rx_s_parameters, | ||
1163 | |||
1164 | .tx_write = cx25840_ir_tx_write, | ||
1165 | .tx_g_parameters = cx25840_ir_tx_g_parameters, | ||
1166 | .tx_s_parameters = cx25840_ir_tx_s_parameters, | ||
1167 | }; | ||
1168 | |||
1169 | |||
1170 | static const struct v4l2_subdev_ir_parameters default_rx_params = { | ||
1171 | .bytes_per_data_element = sizeof(u32), | ||
1172 | .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, | ||
1173 | |||
1174 | .enable = false, | ||
1175 | .interrupt_enable = false, | ||
1176 | .shutdown = true, | ||
1177 | |||
1178 | .modulation = true, | ||
1179 | .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */ | ||
1180 | |||
1181 | /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ | ||
1182 | /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ | ||
1183 | .noise_filter_min_width = 333333, /* ns */ | ||
1184 | .carrier_range_lower = 35000, | ||
1185 | .carrier_range_upper = 37000, | ||
1186 | .invert_level = false, | ||
1187 | }; | ||
1188 | |||
1189 | static const struct v4l2_subdev_ir_parameters default_tx_params = { | ||
1190 | .bytes_per_data_element = sizeof(u32), | ||
1191 | .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, | ||
1192 | |||
1193 | .enable = false, | ||
1194 | .interrupt_enable = false, | ||
1195 | .shutdown = true, | ||
1196 | |||
1197 | .modulation = true, | ||
1198 | .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ | ||
1199 | .duty_cycle = 25, /* 25 % - RC-5 carrier */ | ||
1200 | .invert_level = false, | ||
1201 | .invert_carrier_sense = false, | ||
1202 | }; | ||
1203 | |||
1204 | int cx25840_ir_probe(struct v4l2_subdev *sd) | ||
1205 | { | ||
1206 | struct cx25840_state *state = to_state(sd); | ||
1207 | struct cx25840_ir_state *ir_state; | ||
1208 | struct v4l2_subdev_ir_parameters default_params; | ||
1209 | |||
1210 | /* Only init the IR controller for the CX2388[57] AV Core for now */ | ||
1211 | if (!(is_cx23885(state) || is_cx23887(state))) | ||
1212 | return 0; | ||
1213 | |||
1214 | ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL); | ||
1215 | if (ir_state == NULL) | ||
1216 | return -ENOMEM; | ||
1217 | |||
1218 | spin_lock_init(&ir_state->rx_kfifo_lock); | ||
1219 | if (kfifo_alloc(&ir_state->rx_kfifo, | ||
1220 | CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) { | ||
1221 | kfree(ir_state); | ||
1222 | return -ENOMEM; | ||
1223 | } | ||
1224 | |||
1225 | ir_state->c = state->c; | ||
1226 | state->ir_state = ir_state; | ||
1227 | |||
1228 | /* Ensure no interrupts arrive yet */ | ||
1229 | if (is_cx23885(state) || is_cx23887(state)) | ||
1230 | cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK); | ||
1231 | else | ||
1232 | cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0); | ||
1233 | |||
1234 | mutex_init(&ir_state->rx_params_lock); | ||
1235 | memcpy(&default_params, &default_rx_params, | ||
1236 | sizeof(struct v4l2_subdev_ir_parameters)); | ||
1237 | v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); | ||
1238 | |||
1239 | mutex_init(&ir_state->tx_params_lock); | ||
1240 | memcpy(&default_params, &default_tx_params, | ||
1241 | sizeof(struct v4l2_subdev_ir_parameters)); | ||
1242 | v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); | ||
1243 | |||
1244 | return 0; | ||
1245 | } | ||
1246 | |||
1247 | int cx25840_ir_remove(struct v4l2_subdev *sd) | ||
1248 | { | ||
1249 | struct cx25840_state *state = to_state(sd); | ||
1250 | struct cx25840_ir_state *ir_state = to_ir_state(sd); | ||
1251 | |||
1252 | if (ir_state == NULL) | ||
1253 | return -ENODEV; | ||
1254 | |||
1255 | cx25840_ir_rx_shutdown(sd); | ||
1256 | cx25840_ir_tx_shutdown(sd); | ||
1257 | |||
1258 | kfifo_free(&ir_state->rx_kfifo); | ||
1259 | kfree(ir_state); | ||
1260 | state->ir_state = NULL; | ||
1261 | return 0; | ||
1262 | } | ||