aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/media/dvb/frontends/mt2060.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/media/dvb/frontends/mt2060.c')
-rw-r--r--drivers/media/dvb/frontends/mt2060.c312
1 files changed, 312 insertions, 0 deletions
diff --git a/drivers/media/dvb/frontends/mt2060.c b/drivers/media/dvb/frontends/mt2060.c
new file mode 100644
index 000000000000..aa92c1c51e6d
--- /dev/null
+++ b/drivers/media/dvb/frontends/mt2060.c
@@ -0,0 +1,312 @@
1/*
2 * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
3 *
4 * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 *
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
20 */
21
22/* See mt2060_priv.h for details */
23
24/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
25
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/delay.h>
29#include <linux/dvb/frontend.h>
30#include "mt2060.h"
31#include "mt2060_priv.h"
32
33static int debug=0;
34module_param(debug, int, 0644);
35MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
36
37#define dprintk(args...) do { if (debug) printk(KERN_DEBUG "MT2060: " args); printk("\n"); } while (0)
38
39// Reads a single register
40static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
41{
42 struct i2c_msg msg[2] = {
43 { .addr = state->config->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
44 { .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
45 };
46
47 if (i2c_transfer(state->i2c, msg, 2) != 2) {
48 printk(KERN_WARNING "mt2060 I2C read failed\n");
49 return -EREMOTEIO;
50 }
51 return 0;
52}
53
54// Writes a single register
55static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
56{
57 u8 buf[2];
58 struct i2c_msg msg = {
59 .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2
60 };
61 buf[0]=reg;
62 buf[1]=val;
63
64 if (i2c_transfer(state->i2c, &msg, 1) != 1) {
65 printk(KERN_WARNING "mt2060 I2C write failed\n");
66 return -EREMOTEIO;
67 }
68 return 0;
69}
70
71// Writes a set of consecutive registers
72static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len)
73{
74 struct i2c_msg msg = {
75 .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len
76 };
77 if (i2c_transfer(state->i2c, &msg, 1) != 1) {
78 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
79 return -EREMOTEIO;
80 }
81 return 0;
82}
83
84// Initialisation sequences
85// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
86static u8 mt2060_config1[] = {
87 REG_LO1C1,
88 0x3F, 0x74, 0x00, 0x08, 0x93
89};
90
91// FMCG=2, GP2=0, GP1=0
92static u8 mt2060_config2[] = {
93 REG_MISC_CTRL,
94 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
95};
96
97// VGAG=3, V1CSE=1
98static u8 mt2060_config3[] = {
99 REG_VGAG,
100 0x33
101};
102
103int mt2060_init(struct mt2060_state *state)
104{
105 if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
106 return -EREMOTEIO;
107 if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
108 return -EREMOTEIO;
109 return 0;
110}
111EXPORT_SYMBOL(mt2060_init);
112
113#ifdef MT2060_SPURCHECK
114/* The function below calculates the frequency offset between the output frequency if2
115 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
116static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
117{
118 int I,J;
119 int dia,diamin,diff;
120 diamin=1000000;
121 for (I = 1; I < 10; I++) {
122 J = ((2*I*lo1)/lo2+1)/2;
123 diff = I*(int)lo1-J*(int)lo2;
124 if (diff < 0) diff=-diff;
125 dia = (diff-(int)if2);
126 if (dia < 0) dia=-dia;
127 if (diamin > dia) diamin=dia;
128 }
129 return diamin;
130}
131
132#define BANDWIDTH 4000 // kHz
133
134/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
135static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
136{
137 u32 Spur,Sp1,Sp2;
138 int I,J;
139 I=0;
140 J=1000;
141
142 Spur=mt2060_spurcalc(lo1,lo2,if2);
143 if (Spur < BANDWIDTH) {
144 /* Potential spurs detected */
145 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
146 (int)lo1,(int)lo2);
147 I=1000;
148 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
149 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
150
151 if (Sp1 < Sp2) {
152 J=-J; I=-I; Spur=Sp2;
153 } else
154 Spur=Sp1;
155
156 while (Spur < BANDWIDTH) {
157 I += J;
158 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
159 }
160 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
161 (int)(lo1+I),(int)(lo2+I));
162 }
163 return I;
164}
165#endif
166
167#define IF2 36150 // IF2 frequency = 36.150 MHz
168#define FREF 16000 // Quartz oscillator 16 MHz
169
170int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
171{
172 int ret=0;
173 int i=0;
174 u32 freq;
175 u8 lnaband;
176 u32 f_lo1,f_lo2;
177 u32 div1,num1,div2,num2;
178 u8 b[8];
179 u32 if1;
180
181 if1 = state->if1_freq;
182 b[0] = REG_LO1B1;
183 b[1] = 0xFF;
184 mt2060_writeregs(state,b,2);
185
186 freq = fep->frequency / 1000; // Hz -> kHz
187
188 f_lo1 = freq + if1 * 1000;
189 f_lo1 = (f_lo1/250)*250;
190 f_lo2 = f_lo1 - freq - IF2;
191 f_lo2 = (f_lo2/50)*50;
192
193#ifdef MT2060_SPURCHECK
194 // LO-related spurs detection and correction
195 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
196 f_lo1 += num1;
197 f_lo2 += num1;
198#endif
199 //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
200 div1 = f_lo1 / FREF;
201 num1 = (64 * (f_lo1 % FREF) )/FREF;
202
203 // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
204 div2 = f_lo2 / FREF;
205 num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2;
206
207 if (freq <= 95000) lnaband = 0xB0; else
208 if (freq <= 180000) lnaband = 0xA0; else
209 if (freq <= 260000) lnaband = 0x90; else
210 if (freq <= 335000) lnaband = 0x80; else
211 if (freq <= 425000) lnaband = 0x70; else
212 if (freq <= 480000) lnaband = 0x60; else
213 if (freq <= 570000) lnaband = 0x50; else
214 if (freq <= 645000) lnaband = 0x40; else
215 if (freq <= 730000) lnaband = 0x30; else
216 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
217
218 b[0] = REG_LO1C1;
219 b[1] = lnaband | ((num1 >>2) & 0x0F);
220 b[2] = div1;
221 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
222 b[4] = num2 >> 4;
223 b[5] = ((num2 >>12) & 1) | (div2 << 1);
224
225 dprintk("IF1: %dMHz",(int)if1);
226 dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2);
227 dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2);
228 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
229
230 mt2060_writeregs(state,b,6);
231
232 //Waits for pll lock or timeout
233 i=0;
234 do {
235 mt2060_readreg(state,REG_LO_STATUS,b);
236 if ((b[0] & 0x88)==0x88) break;
237 msleep(4);
238 i++;
239 } while (i<10);
240
241 return ret;
242}
243EXPORT_SYMBOL(mt2060_set);
244
245/* from usbsnoop.log */
246static void mt2060_calibrate(struct mt2060_state *state)
247{
248 u8 b = 0;
249 int i = 0;
250
251 if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
252 return;
253 if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2)))
254 return;
255
256 do {
257 b |= (1 << 6); // FM1SS;
258 mt2060_writereg(state, REG_LO2C1,b);
259 msleep(20);
260
261 if (i == 0) {
262 b |= (1 << 7); // FM1CA;
263 mt2060_writereg(state, REG_LO2C1,b);
264 b &= ~(1 << 7); // FM1CA;
265 msleep(20);
266 }
267
268 b &= ~(1 << 6); // FM1SS
269 mt2060_writereg(state, REG_LO2C1,b);
270
271 msleep(20);
272 i++;
273 } while (i < 9);
274
275 i = 0;
276 while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
277 msleep(20);
278
279 if (i < 10) {
280 mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :)
281 dprintk("calibration was successful: %d",state->fmfreq);
282 } else
283 dprintk("FMCAL timed out");
284}
285
286/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
287int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1)
288{
289 u8 id = 0;
290 memset(state,0,sizeof(struct mt2060_state));
291
292 state->config = config;
293 state->i2c = i2c;
294 state->if1_freq = if1;
295
296 if (mt2060_readreg(state,REG_PART_REV,&id) != 0)
297 return -ENODEV;
298
299 if (id != PART_REV)
300 return -ENODEV;
301
302 printk(KERN_INFO "MT2060: successfully identified\n");
303
304 mt2060_calibrate(state);
305
306 return 0;
307}
308EXPORT_SYMBOL(mt2060_attach);
309
310MODULE_AUTHOR("Olivier DANET");
311MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
312MODULE_LICENSE("GPL");