diff options
Diffstat (limited to 'drivers/media/dvb/frontends/dib9000.c')
-rw-r--r-- | drivers/media/dvb/frontends/dib9000.c | 2351 |
1 files changed, 2351 insertions, 0 deletions
diff --git a/drivers/media/dvb/frontends/dib9000.c b/drivers/media/dvb/frontends/dib9000.c new file mode 100644 index 000000000000..91518761a2da --- /dev/null +++ b/drivers/media/dvb/frontends/dib9000.c | |||
@@ -0,0 +1,2351 @@ | |||
1 | /* | ||
2 | * Linux-DVB Driver for DiBcom's DiB9000 and demodulator-family. | ||
3 | * | ||
4 | * Copyright (C) 2005-10 DiBcom (http://www.dibcom.fr/) | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public License as | ||
8 | * published by the Free Software Foundation, version 2. | ||
9 | */ | ||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/i2c.h> | ||
12 | #include <linux/mutex.h> | ||
13 | |||
14 | #include "dvb_math.h" | ||
15 | #include "dvb_frontend.h" | ||
16 | |||
17 | #include "dib9000.h" | ||
18 | #include "dibx000_common.h" | ||
19 | |||
20 | static int debug; | ||
21 | module_param(debug, int, 0644); | ||
22 | MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); | ||
23 | |||
24 | #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB9000: "); printk(args); printk("\n"); } } while (0) | ||
25 | #define MAX_NUMBER_OF_FRONTENDS 6 | ||
26 | |||
27 | struct i2c_device { | ||
28 | struct i2c_adapter *i2c_adap; | ||
29 | u8 i2c_addr; | ||
30 | }; | ||
31 | |||
32 | /* lock */ | ||
33 | #define DIB_LOCK struct mutex | ||
34 | #define DibAcquireLock(lock) do { if (mutex_lock_interruptible(lock) < 0) dprintk("could not get the lock"); } while (0) | ||
35 | #define DibReleaseLock(lock) mutex_unlock(lock) | ||
36 | #define DibInitLock(lock) mutex_init(lock) | ||
37 | #define DibFreeLock(lock) | ||
38 | |||
39 | struct dib9000_state { | ||
40 | struct i2c_device i2c; | ||
41 | |||
42 | struct dibx000_i2c_master i2c_master; | ||
43 | struct i2c_adapter tuner_adap; | ||
44 | struct i2c_adapter component_bus; | ||
45 | |||
46 | u16 revision; | ||
47 | u8 reg_offs; | ||
48 | |||
49 | enum frontend_tune_state tune_state; | ||
50 | u32 status; | ||
51 | struct dvb_frontend_parametersContext channel_status; | ||
52 | |||
53 | u8 fe_id; | ||
54 | |||
55 | #define DIB9000_GPIO_DEFAULT_DIRECTIONS 0xffff | ||
56 | u16 gpio_dir; | ||
57 | #define DIB9000_GPIO_DEFAULT_VALUES 0x0000 | ||
58 | u16 gpio_val; | ||
59 | #define DIB9000_GPIO_DEFAULT_PWM_POS 0xffff | ||
60 | u16 gpio_pwm_pos; | ||
61 | |||
62 | union { /* common for all chips */ | ||
63 | struct { | ||
64 | u8 mobile_mode:1; | ||
65 | } host; | ||
66 | |||
67 | struct { | ||
68 | struct dib9000_fe_memory_map { | ||
69 | u16 addr; | ||
70 | u16 size; | ||
71 | } fe_mm[18]; | ||
72 | u8 memcmd; | ||
73 | |||
74 | DIB_LOCK mbx_if_lock; /* to protect read/write operations */ | ||
75 | DIB_LOCK mbx_lock; /* to protect the whole mailbox handling */ | ||
76 | |||
77 | DIB_LOCK mem_lock; /* to protect the memory accesses */ | ||
78 | DIB_LOCK mem_mbx_lock; /* to protect the memory-based mailbox */ | ||
79 | |||
80 | #define MBX_MAX_WORDS (256 - 200 - 2) | ||
81 | #define DIB9000_MSG_CACHE_SIZE 2 | ||
82 | u16 message_cache[DIB9000_MSG_CACHE_SIZE][MBX_MAX_WORDS]; | ||
83 | u8 fw_is_running; | ||
84 | } risc; | ||
85 | } platform; | ||
86 | |||
87 | union { /* common for all platforms */ | ||
88 | struct { | ||
89 | struct dib9000_config cfg; | ||
90 | } d9; | ||
91 | } chip; | ||
92 | |||
93 | struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; | ||
94 | u16 component_bus_speed; | ||
95 | }; | ||
96 | |||
97 | u32 fe_info[44] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
98 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
99 | 0, 0, 0 | ||
100 | }; | ||
101 | |||
102 | enum dib9000_power_mode { | ||
103 | DIB9000_POWER_ALL = 0, | ||
104 | |||
105 | DIB9000_POWER_NO, | ||
106 | DIB9000_POWER_INTERF_ANALOG_AGC, | ||
107 | DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, | ||
108 | DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD, | ||
109 | DIB9000_POWER_INTERFACE_ONLY, | ||
110 | }; | ||
111 | |||
112 | enum dib9000_out_messages { | ||
113 | OUT_MSG_HBM_ACK, | ||
114 | OUT_MSG_HOST_BUF_FAIL, | ||
115 | OUT_MSG_REQ_VERSION, | ||
116 | OUT_MSG_BRIDGE_I2C_W, | ||
117 | OUT_MSG_BRIDGE_I2C_R, | ||
118 | OUT_MSG_BRIDGE_APB_W, | ||
119 | OUT_MSG_BRIDGE_APB_R, | ||
120 | OUT_MSG_SCAN_CHANNEL, | ||
121 | OUT_MSG_MONIT_DEMOD, | ||
122 | OUT_MSG_CONF_GPIO, | ||
123 | OUT_MSG_DEBUG_HELP, | ||
124 | OUT_MSG_SUBBAND_SEL, | ||
125 | OUT_MSG_ENABLE_TIME_SLICE, | ||
126 | OUT_MSG_FE_FW_DL, | ||
127 | OUT_MSG_FE_CHANNEL_SEARCH, | ||
128 | OUT_MSG_FE_CHANNEL_TUNE, | ||
129 | OUT_MSG_FE_SLEEP, | ||
130 | OUT_MSG_FE_SYNC, | ||
131 | OUT_MSG_CTL_MONIT, | ||
132 | |||
133 | OUT_MSG_CONF_SVC, | ||
134 | OUT_MSG_SET_HBM, | ||
135 | OUT_MSG_INIT_DEMOD, | ||
136 | OUT_MSG_ENABLE_DIVERSITY, | ||
137 | OUT_MSG_SET_OUTPUT_MODE, | ||
138 | OUT_MSG_SET_PRIORITARY_CHANNEL, | ||
139 | OUT_MSG_ACK_FRG, | ||
140 | OUT_MSG_INIT_PMU, | ||
141 | }; | ||
142 | |||
143 | enum dib9000_in_messages { | ||
144 | IN_MSG_DATA, | ||
145 | IN_MSG_FRAME_INFO, | ||
146 | IN_MSG_CTL_MONIT, | ||
147 | IN_MSG_ACK_FREE_ITEM, | ||
148 | IN_MSG_DEBUG_BUF, | ||
149 | IN_MSG_MPE_MONITOR, | ||
150 | IN_MSG_RAWTS_MONITOR, | ||
151 | IN_MSG_END_BRIDGE_I2C_RW, | ||
152 | IN_MSG_END_BRIDGE_APB_RW, | ||
153 | IN_MSG_VERSION, | ||
154 | IN_MSG_END_OF_SCAN, | ||
155 | IN_MSG_MONIT_DEMOD, | ||
156 | IN_MSG_ERROR, | ||
157 | IN_MSG_FE_FW_DL_DONE, | ||
158 | IN_MSG_EVENT, | ||
159 | IN_MSG_ACK_CHANGE_SVC, | ||
160 | IN_MSG_HBM_PROF, | ||
161 | }; | ||
162 | |||
163 | /* memory_access requests */ | ||
164 | #define FE_MM_W_CHANNEL 0 | ||
165 | #define FE_MM_W_FE_INFO 1 | ||
166 | #define FE_MM_RW_SYNC 2 | ||
167 | |||
168 | #define FE_SYNC_CHANNEL 1 | ||
169 | #define FE_SYNC_W_GENERIC_MONIT 2 | ||
170 | #define FE_SYNC_COMPONENT_ACCESS 3 | ||
171 | |||
172 | #define FE_MM_R_CHANNEL_SEARCH_STATE 3 | ||
173 | #define FE_MM_R_CHANNEL_UNION_CONTEXT 4 | ||
174 | #define FE_MM_R_FE_INFO 5 | ||
175 | #define FE_MM_R_FE_MONITOR 6 | ||
176 | |||
177 | #define FE_MM_W_CHANNEL_HEAD 7 | ||
178 | #define FE_MM_W_CHANNEL_UNION 8 | ||
179 | #define FE_MM_W_CHANNEL_CONTEXT 9 | ||
180 | #define FE_MM_R_CHANNEL_UNION 10 | ||
181 | #define FE_MM_R_CHANNEL_CONTEXT 11 | ||
182 | #define FE_MM_R_CHANNEL_TUNE_STATE 12 | ||
183 | |||
184 | #define FE_MM_R_GENERIC_MONITORING_SIZE 13 | ||
185 | #define FE_MM_W_GENERIC_MONITORING 14 | ||
186 | #define FE_MM_R_GENERIC_MONITORING 15 | ||
187 | |||
188 | #define FE_MM_W_COMPONENT_ACCESS 16 | ||
189 | #define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17 | ||
190 | static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len); | ||
191 | static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len); | ||
192 | |||
193 | static u16 to_fw_output_mode(u16 mode) | ||
194 | { | ||
195 | switch (mode) { | ||
196 | case OUTMODE_HIGH_Z: | ||
197 | return 0; | ||
198 | case OUTMODE_MPEG2_PAR_GATED_CLK: | ||
199 | return 4; | ||
200 | case OUTMODE_MPEG2_PAR_CONT_CLK: | ||
201 | return 8; | ||
202 | case OUTMODE_MPEG2_SERIAL: | ||
203 | return 16; | ||
204 | case OUTMODE_DIVERSITY: | ||
205 | return 128; | ||
206 | case OUTMODE_MPEG2_FIFO: | ||
207 | return 2; | ||
208 | case OUTMODE_ANALOG_ADC: | ||
209 | return 1; | ||
210 | default: | ||
211 | return 0; | ||
212 | } | ||
213 | } | ||
214 | |||
215 | static u16 dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 * b, u32 len, u16 attribute) | ||
216 | { | ||
217 | u32 chunk_size = 126; | ||
218 | u32 l; | ||
219 | int ret; | ||
220 | u8 wb[2] = { reg >> 8, reg & 0xff }; | ||
221 | struct i2c_msg msg[2] = { | ||
222 | {.addr = state->i2c.i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2}, | ||
223 | {.addr = state->i2c.i2c_addr >> 1, .flags = I2C_M_RD, .buf = b, .len = len}, | ||
224 | }; | ||
225 | |||
226 | if (state->platform.risc.fw_is_running && (reg < 1024)) | ||
227 | return dib9000_risc_apb_access_read(state, reg, attribute, NULL, 0, b, len); | ||
228 | |||
229 | if (attribute & DATA_BUS_ACCESS_MODE_8BIT) | ||
230 | wb[0] |= (1 << 5); | ||
231 | if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
232 | wb[0] |= (1 << 4); | ||
233 | |||
234 | do { | ||
235 | l = len < chunk_size ? len : chunk_size; | ||
236 | msg[1].len = l; | ||
237 | msg[1].buf = b; | ||
238 | ret = i2c_transfer(state->i2c.i2c_adap, msg, 2) != 2 ? -EREMOTEIO : 0; | ||
239 | if (ret != 0) { | ||
240 | dprintk("i2c read error on %d", reg); | ||
241 | return -EREMOTEIO; | ||
242 | } | ||
243 | |||
244 | b += l; | ||
245 | len -= l; | ||
246 | |||
247 | if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) | ||
248 | reg += l / 2; | ||
249 | } while ((ret == 0) && len); | ||
250 | |||
251 | return 0; | ||
252 | } | ||
253 | |||
254 | static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg) | ||
255 | { | ||
256 | u8 b[2]; | ||
257 | u8 wb[2] = { reg >> 8, reg & 0xff }; | ||
258 | struct i2c_msg msg[2] = { | ||
259 | {.addr = i2c->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2}, | ||
260 | {.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD, .buf = b, .len = 2}, | ||
261 | }; | ||
262 | |||
263 | if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) { | ||
264 | dprintk("read register %x error", reg); | ||
265 | return 0; | ||
266 | } | ||
267 | |||
268 | return (b[0] << 8) | b[1]; | ||
269 | } | ||
270 | |||
271 | static inline u16 dib9000_read_word(struct dib9000_state *state, u16 reg) | ||
272 | { | ||
273 | u8 b[2]; | ||
274 | if (dib9000_read16_attr(state, reg, b, 2, 0) != 0) | ||
275 | return 0; | ||
276 | return (b[0] << 8 | b[1]); | ||
277 | } | ||
278 | |||
279 | static inline u16 dib9000_read_word_attr(struct dib9000_state *state, u16 reg, u16 attribute) | ||
280 | { | ||
281 | u8 b[2]; | ||
282 | if (dib9000_read16_attr(state, reg, b, 2, attribute) != 0) | ||
283 | return 0; | ||
284 | return (b[0] << 8 | b[1]); | ||
285 | } | ||
286 | |||
287 | #define dib9000_read16_noinc_attr(state, reg, b, len, attribute) dib9000_read16_attr(state, reg, b, len, (attribute) | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
288 | |||
289 | static u16 dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 * buf, u32 len, u16 attribute) | ||
290 | { | ||
291 | u8 b[255]; | ||
292 | u32 chunk_size = 126; | ||
293 | u32 l; | ||
294 | int ret; | ||
295 | |||
296 | struct i2c_msg msg = { | ||
297 | .addr = state->i2c.i2c_addr >> 1, .flags = 0, .buf = b, .len = len + 2 | ||
298 | }; | ||
299 | |||
300 | if (state->platform.risc.fw_is_running && (reg < 1024)) { | ||
301 | if (dib9000_risc_apb_access_write | ||
302 | (state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0) | ||
303 | return -EINVAL; | ||
304 | return 0; | ||
305 | } | ||
306 | |||
307 | b[0] = (reg >> 8) & 0xff; | ||
308 | b[1] = (reg) & 0xff; | ||
309 | |||
310 | if (attribute & DATA_BUS_ACCESS_MODE_8BIT) | ||
311 | b[0] |= (1 << 5); | ||
312 | if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
313 | b[0] |= (1 << 4); | ||
314 | |||
315 | do { | ||
316 | l = len < chunk_size ? len : chunk_size; | ||
317 | msg.len = l + 2; | ||
318 | memcpy(&b[2], buf, l); | ||
319 | |||
320 | ret = i2c_transfer(state->i2c.i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; | ||
321 | |||
322 | buf += l; | ||
323 | len -= l; | ||
324 | |||
325 | if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) | ||
326 | reg += l / 2; | ||
327 | } while ((ret == 0) && len); | ||
328 | |||
329 | return ret; | ||
330 | } | ||
331 | |||
332 | static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) | ||
333 | { | ||
334 | u8 b[4] = { (reg >> 8) & 0xff, reg & 0xff, (val >> 8) & 0xff, val & 0xff }; | ||
335 | struct i2c_msg msg = { | ||
336 | .addr = i2c->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 | ||
337 | }; | ||
338 | |||
339 | return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; | ||
340 | } | ||
341 | |||
342 | static inline int dib9000_write_word(struct dib9000_state *state, u16 reg, u16 val) | ||
343 | { | ||
344 | u8 b[2] = { val >> 8, val & 0xff }; | ||
345 | return dib9000_write16_attr(state, reg, b, 2, 0); | ||
346 | } | ||
347 | |||
348 | static inline int dib9000_write_word_attr(struct dib9000_state *state, u16 reg, u16 val, u16 attribute) | ||
349 | { | ||
350 | u8 b[2] = { val >> 8, val & 0xff }; | ||
351 | return dib9000_write16_attr(state, reg, b, 2, attribute); | ||
352 | } | ||
353 | |||
354 | #define dib9000_write(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, 0) | ||
355 | #define dib9000_write16_noinc(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
356 | #define dib9000_write16_noinc_attr(state, reg, buf, len, attribute) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | (attribute)) | ||
357 | |||
358 | #define dib9000_mbx_send(state, id, data, len) dib9000_mbx_send_attr(state, id, data, len, 0) | ||
359 | #define dib9000_mbx_get_message(state, id, msg, len) dib9000_mbx_get_message_attr(state, id, msg, len, 0) | ||
360 | |||
361 | #define MAC_IRQ (1 << 1) | ||
362 | #define IRQ_POL_MSK (1 << 4) | ||
363 | |||
364 | #define dib9000_risc_mem_read_chunks(state, b, len) dib9000_read16_attr(state, 1063, b, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
365 | #define dib9000_risc_mem_write_chunks(state, buf, len) dib9000_write16_attr(state, 1063, buf, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
366 | |||
367 | static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u32 len, u8 reading) | ||
368 | { | ||
369 | u8 b[14] = { 0 }; | ||
370 | |||
371 | /* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */ | ||
372 | /* b[0] = 0 << 7; */ | ||
373 | b[1] = 1; | ||
374 | |||
375 | /* b[2] = 0; */ | ||
376 | /* b[3] = 0; */ | ||
377 | b[4] = (u8) (addr >> 8); | ||
378 | b[5] = (u8) (addr & 0xff); | ||
379 | |||
380 | /* b[10] = 0; */ | ||
381 | /* b[11] = 0; */ | ||
382 | b[12] = (u8) (addr >> 8); | ||
383 | b[13] = (u8) (addr & 0xff); | ||
384 | |||
385 | addr += len; | ||
386 | /* b[6] = 0; */ | ||
387 | /* b[7] = 0; */ | ||
388 | b[8] = (u8) (addr >> 8); | ||
389 | b[9] = (u8) (addr & 0xff); | ||
390 | |||
391 | dib9000_write(state, 1056, b, 14); | ||
392 | if (reading) | ||
393 | dib9000_write_word(state, 1056, (1 << 15) | 1); | ||
394 | state->platform.risc.memcmd = -1; /* if it was called directly reset it - to force a future setup-call to set it */ | ||
395 | } | ||
396 | |||
397 | static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd) | ||
398 | { | ||
399 | struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f]; | ||
400 | /* decide whether we need to "refresh" the memory controller */ | ||
401 | if (state->platform.risc.memcmd == cmd && /* same command */ | ||
402 | !(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */ | ||
403 | return; | ||
404 | dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80); | ||
405 | state->platform.risc.memcmd = cmd; | ||
406 | } | ||
407 | |||
408 | static int dib9000_risc_mem_read(struct dib9000_state *state, u8 cmd, u8 * b, u16 len) | ||
409 | { | ||
410 | if (!state->platform.risc.fw_is_running) | ||
411 | return -EIO; | ||
412 | |||
413 | DibAcquireLock(&state->platform.risc.mem_lock); | ||
414 | dib9000_risc_mem_setup(state, cmd | 0x80); | ||
415 | dib9000_risc_mem_read_chunks(state, b, len); | ||
416 | DibReleaseLock(&state->platform.risc.mem_lock); | ||
417 | return 0; | ||
418 | } | ||
419 | |||
420 | static int dib9000_risc_mem_write(struct dib9000_state *state, u8 cmd, const u8 * b) | ||
421 | { | ||
422 | struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd]; | ||
423 | if (!state->platform.risc.fw_is_running) | ||
424 | return -EIO; | ||
425 | |||
426 | DibAcquireLock(&state->platform.risc.mem_lock); | ||
427 | dib9000_risc_mem_setup(state, cmd); | ||
428 | dib9000_risc_mem_write_chunks(state, b, m->size); | ||
429 | DibReleaseLock(&state->platform.risc.mem_lock); | ||
430 | return 0; | ||
431 | } | ||
432 | |||
433 | static int dib9000_firmware_download(struct dib9000_state *state, u8 risc_id, u16 key, const u8 * code, u32 len) | ||
434 | { | ||
435 | u16 offs; | ||
436 | |||
437 | if (risc_id == 1) | ||
438 | offs = 16; | ||
439 | else | ||
440 | offs = 0; | ||
441 | |||
442 | /* config crtl reg */ | ||
443 | dib9000_write_word(state, 1024 + offs, 0x000f); | ||
444 | dib9000_write_word(state, 1025 + offs, 0); | ||
445 | dib9000_write_word(state, 1031 + offs, key); | ||
446 | |||
447 | dprintk("going to download %dB of microcode", len); | ||
448 | if (dib9000_write16_noinc(state, 1026 + offs, (u8 *) code, (u16) len) != 0) { | ||
449 | dprintk("error while downloading microcode for RISC %c", 'A' + risc_id); | ||
450 | return -EIO; | ||
451 | } | ||
452 | |||
453 | dprintk("Microcode for RISC %c loaded", 'A' + risc_id); | ||
454 | |||
455 | return 0; | ||
456 | } | ||
457 | |||
458 | static int dib9000_mbx_host_init(struct dib9000_state *state, u8 risc_id) | ||
459 | { | ||
460 | u16 mbox_offs; | ||
461 | u16 reset_reg; | ||
462 | u16 tries = 1000; | ||
463 | |||
464 | if (risc_id == 1) | ||
465 | mbox_offs = 16; | ||
466 | else | ||
467 | mbox_offs = 0; | ||
468 | |||
469 | /* Reset mailbox */ | ||
470 | dib9000_write_word(state, 1027 + mbox_offs, 0x8000); | ||
471 | |||
472 | /* Read reset status */ | ||
473 | do { | ||
474 | reset_reg = dib9000_read_word(state, 1027 + mbox_offs); | ||
475 | msleep(100); | ||
476 | } while ((reset_reg & 0x8000) && --tries); | ||
477 | |||
478 | if (reset_reg & 0x8000) { | ||
479 | dprintk("MBX: init ERROR, no response from RISC %c", 'A' + risc_id); | ||
480 | return -EIO; | ||
481 | } | ||
482 | dprintk("MBX: initialized"); | ||
483 | return 0; | ||
484 | } | ||
485 | |||
486 | #define MAX_MAILBOX_TRY 100 | ||
487 | static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data, u8 len, u16 attr) | ||
488 | { | ||
489 | u8 *d, b[2]; | ||
490 | u16 tmp; | ||
491 | u16 size; | ||
492 | u32 i; | ||
493 | int ret = 0; | ||
494 | |||
495 | if (!state->platform.risc.fw_is_running) | ||
496 | return -EINVAL; | ||
497 | |||
498 | DibAcquireLock(&state->platform.risc.mbx_if_lock); | ||
499 | tmp = MAX_MAILBOX_TRY; | ||
500 | do { | ||
501 | size = dib9000_read_word_attr(state, 1043, attr) & 0xff; | ||
502 | if ((size + len + 1) > MBX_MAX_WORDS && --tmp) { | ||
503 | dprintk("MBX: RISC mbx full, retrying"); | ||
504 | msleep(100); | ||
505 | } else | ||
506 | break; | ||
507 | } while (1); | ||
508 | |||
509 | /*dprintk( "MBX: size: %d", size); */ | ||
510 | |||
511 | if (tmp == 0) { | ||
512 | ret = -EINVAL; | ||
513 | goto out; | ||
514 | } | ||
515 | #ifdef DUMP_MSG | ||
516 | dprintk("--> %02x %d ", id, len + 1); | ||
517 | for (i = 0; i < len; i++) | ||
518 | dprintk("%04x ", data[i]); | ||
519 | dprintk("\n"); | ||
520 | #endif | ||
521 | |||
522 | /* byte-order conversion - works on big (where it is not necessary) or little endian */ | ||
523 | d = (u8 *) data; | ||
524 | for (i = 0; i < len; i++) { | ||
525 | tmp = data[i]; | ||
526 | *d++ = tmp >> 8; | ||
527 | *d++ = tmp & 0xff; | ||
528 | } | ||
529 | |||
530 | /* write msg */ | ||
531 | b[0] = id; | ||
532 | b[1] = len + 1; | ||
533 | if (dib9000_write16_noinc_attr(state, 1045, b, 2, attr) != 0 || dib9000_write16_noinc_attr(state, 1045, (u8 *) data, len * 2, attr) != 0) { | ||
534 | ret = -EIO; | ||
535 | goto out; | ||
536 | } | ||
537 | |||
538 | /* update register nb_mes_in_RX */ | ||
539 | ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr); | ||
540 | |||
541 | out: | ||
542 | DibReleaseLock(&state->platform.risc.mbx_if_lock); | ||
543 | |||
544 | return ret; | ||
545 | } | ||
546 | |||
547 | static u8 dib9000_mbx_read(struct dib9000_state *state, u16 * data, u8 risc_id, u16 attr) | ||
548 | { | ||
549 | #ifdef DUMP_MSG | ||
550 | u16 *d = data; | ||
551 | #endif | ||
552 | |||
553 | u16 tmp, i; | ||
554 | u8 size; | ||
555 | u8 mc_base; | ||
556 | |||
557 | if (!state->platform.risc.fw_is_running) | ||
558 | return 0; | ||
559 | |||
560 | DibAcquireLock(&state->platform.risc.mbx_if_lock); | ||
561 | if (risc_id == 1) | ||
562 | mc_base = 16; | ||
563 | else | ||
564 | mc_base = 0; | ||
565 | |||
566 | /* Length and type in the first word */ | ||
567 | *data = dib9000_read_word_attr(state, 1029 + mc_base, attr); | ||
568 | |||
569 | size = *data & 0xff; | ||
570 | if (size <= MBX_MAX_WORDS) { | ||
571 | data++; | ||
572 | size--; /* Initial word already read */ | ||
573 | |||
574 | dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, size * 2, attr); | ||
575 | |||
576 | /* to word conversion */ | ||
577 | for (i = 0; i < size; i++) { | ||
578 | tmp = *data; | ||
579 | *data = (tmp >> 8) | (tmp << 8); | ||
580 | data++; | ||
581 | } | ||
582 | |||
583 | #ifdef DUMP_MSG | ||
584 | dprintk("<-- "); | ||
585 | for (i = 0; i < size + 1; i++) | ||
586 | dprintk("%04x ", d[i]); | ||
587 | dprintk("\n"); | ||
588 | #endif | ||
589 | } else { | ||
590 | dprintk("MBX: message is too big for message cache (%d), flushing message", size); | ||
591 | size--; /* Initial word already read */ | ||
592 | while (size--) | ||
593 | dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, 2, attr); | ||
594 | } | ||
595 | /* Update register nb_mes_in_TX */ | ||
596 | dib9000_write_word_attr(state, 1028 + mc_base, 1 << 14, attr); | ||
597 | |||
598 | DibReleaseLock(&state->platform.risc.mbx_if_lock); | ||
599 | |||
600 | return size + 1; | ||
601 | } | ||
602 | |||
603 | static int dib9000_risc_debug_buf(struct dib9000_state *state, u16 * data, u8 size) | ||
604 | { | ||
605 | u32 ts = data[1] << 16 | data[0]; | ||
606 | char *b = (char *)&data[2]; | ||
607 | |||
608 | b[2 * (size - 2) - 1] = '\0'; /* Bullet proof the buffer */ | ||
609 | if (*b == '~') { | ||
610 | b++; | ||
611 | dprintk(b); | ||
612 | } else | ||
613 | dprintk("RISC%d: %d.%04d %s", state->fe_id, ts / 10000, ts % 10000, *b ? b : "<emtpy>"); | ||
614 | return 1; | ||
615 | } | ||
616 | |||
617 | static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr) | ||
618 | { | ||
619 | int i; | ||
620 | u8 size; | ||
621 | u16 *block; | ||
622 | /* find a free slot */ | ||
623 | for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { | ||
624 | block = state->platform.risc.message_cache[i]; | ||
625 | if (*block == 0) { | ||
626 | size = dib9000_mbx_read(state, block, 1, attr); | ||
627 | |||
628 | /* dprintk( "MBX: fetched %04x message to cache", *block); */ | ||
629 | |||
630 | switch (*block >> 8) { | ||
631 | case IN_MSG_DEBUG_BUF: | ||
632 | dib9000_risc_debug_buf(state, block + 1, size); /* debug-messages are going to be printed right away */ | ||
633 | *block = 0; /* free the block */ | ||
634 | break; | ||
635 | #if 0 | ||
636 | case IN_MSG_DATA: /* FE-TRACE */ | ||
637 | dib9000_risc_data_process(state, block + 1, size); | ||
638 | *block = 0; | ||
639 | break; | ||
640 | #endif | ||
641 | default: | ||
642 | break; | ||
643 | } | ||
644 | |||
645 | return 1; | ||
646 | } | ||
647 | } | ||
648 | dprintk("MBX: no free cache-slot found for new message..."); | ||
649 | return -1; | ||
650 | } | ||
651 | |||
652 | static u8 dib9000_mbx_count(struct dib9000_state *state, u8 risc_id, u16 attr) | ||
653 | { | ||
654 | if (risc_id == 0) | ||
655 | return (u8) (dib9000_read_word_attr(state, 1028, attr) >> 10) & 0x1f; /* 5 bit field */ | ||
656 | else | ||
657 | return (u8) (dib9000_read_word_attr(state, 1044, attr) >> 8) & 0x7f; /* 7 bit field */ | ||
658 | } | ||
659 | |||
660 | static int dib9000_mbx_process(struct dib9000_state *state, u16 attr) | ||
661 | { | ||
662 | int ret = 0; | ||
663 | u16 tmp; | ||
664 | |||
665 | if (!state->platform.risc.fw_is_running) | ||
666 | return -1; | ||
667 | |||
668 | DibAcquireLock(&state->platform.risc.mbx_lock); | ||
669 | |||
670 | if (dib9000_mbx_count(state, 1, attr)) /* 1=RiscB */ | ||
671 | ret = dib9000_mbx_fetch_to_cache(state, attr); | ||
672 | |||
673 | tmp = dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */ | ||
674 | /* if (tmp) */ | ||
675 | /* dprintk( "cleared IRQ: %x", tmp); */ | ||
676 | DibReleaseLock(&state->platform.risc.mbx_lock); | ||
677 | |||
678 | return ret; | ||
679 | } | ||
680 | |||
681 | static int dib9000_mbx_get_message_attr(struct dib9000_state *state, u16 id, u16 * msg, u8 * size, u16 attr) | ||
682 | { | ||
683 | u8 i; | ||
684 | u16 *block; | ||
685 | u16 timeout = 30; | ||
686 | |||
687 | *msg = 0; | ||
688 | do { | ||
689 | /* dib9000_mbx_get_from_cache(); */ | ||
690 | for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { | ||
691 | block = state->platform.risc.message_cache[i]; | ||
692 | if ((*block >> 8) == id) { | ||
693 | *size = (*block & 0xff) - 1; | ||
694 | memcpy(msg, block + 1, (*size) * 2); | ||
695 | *block = 0; /* free the block */ | ||
696 | i = 0; /* signal that we found a message */ | ||
697 | break; | ||
698 | } | ||
699 | } | ||
700 | |||
701 | if (i == 0) | ||
702 | break; | ||
703 | |||
704 | if (dib9000_mbx_process(state, attr) == -1) /* try to fetch one message - if any */ | ||
705 | return -1; | ||
706 | |||
707 | } while (--timeout); | ||
708 | |||
709 | if (timeout == 0) { | ||
710 | dprintk("waiting for message %d timed out", id); | ||
711 | return -1; | ||
712 | } | ||
713 | |||
714 | return i == 0; | ||
715 | } | ||
716 | |||
717 | static int dib9000_risc_check_version(struct dib9000_state *state) | ||
718 | { | ||
719 | u8 r[4]; | ||
720 | u8 size; | ||
721 | u16 fw_version = 0; | ||
722 | |||
723 | if (dib9000_mbx_send(state, OUT_MSG_REQ_VERSION, &fw_version, 1) != 0) | ||
724 | return -EIO; | ||
725 | |||
726 | if (dib9000_mbx_get_message(state, IN_MSG_VERSION, (u16 *) r, &size) < 0) | ||
727 | return -EIO; | ||
728 | |||
729 | fw_version = (r[0] << 8) | r[1]; | ||
730 | dprintk("RISC: ver: %d.%02d (IC: %d)", fw_version >> 10, fw_version & 0x3ff, (r[2] << 8) | r[3]); | ||
731 | |||
732 | if ((fw_version >> 10) != 7) | ||
733 | return -EINVAL; | ||
734 | |||
735 | switch (fw_version & 0x3ff) { | ||
736 | case 11: | ||
737 | case 12: | ||
738 | case 14: | ||
739 | case 15: | ||
740 | case 16: | ||
741 | case 17: | ||
742 | break; | ||
743 | default: | ||
744 | dprintk("RISC: invalid firmware version"); | ||
745 | return -EINVAL; | ||
746 | } | ||
747 | |||
748 | dprintk("RISC: valid firmware version"); | ||
749 | return 0; | ||
750 | } | ||
751 | |||
752 | static int dib9000_fw_boot(struct dib9000_state *state, const u8 * codeA, u32 lenA, const u8 * codeB, u32 lenB) | ||
753 | { | ||
754 | /* Reconfig pool mac ram */ | ||
755 | dib9000_write_word(state, 1225, 0x02); /* A: 8k C, 4 k D - B: 32k C 6 k D - IRAM 96k */ | ||
756 | dib9000_write_word(state, 1226, 0x05); | ||
757 | |||
758 | /* Toggles IP crypto to Host APB interface. */ | ||
759 | dib9000_write_word(state, 1542, 1); | ||
760 | |||
761 | /* Set jump and no jump in the dma box */ | ||
762 | dib9000_write_word(state, 1074, 0); | ||
763 | dib9000_write_word(state, 1075, 0); | ||
764 | |||
765 | /* Set MAC as APB Master. */ | ||
766 | dib9000_write_word(state, 1237, 0); | ||
767 | |||
768 | /* Reset the RISCs */ | ||
769 | if (codeA != NULL) | ||
770 | dib9000_write_word(state, 1024, 2); | ||
771 | else | ||
772 | dib9000_write_word(state, 1024, 15); | ||
773 | if (codeB != NULL) | ||
774 | dib9000_write_word(state, 1040, 2); | ||
775 | |||
776 | if (codeA != NULL) | ||
777 | dib9000_firmware_download(state, 0, 0x1234, codeA, lenA); | ||
778 | if (codeB != NULL) | ||
779 | dib9000_firmware_download(state, 1, 0x1234, codeB, lenB); | ||
780 | |||
781 | /* Run the RISCs */ | ||
782 | if (codeA != NULL) | ||
783 | dib9000_write_word(state, 1024, 0); | ||
784 | if (codeB != NULL) | ||
785 | dib9000_write_word(state, 1040, 0); | ||
786 | |||
787 | if (codeA != NULL) | ||
788 | if (dib9000_mbx_host_init(state, 0) != 0) | ||
789 | return -EIO; | ||
790 | if (codeB != NULL) | ||
791 | if (dib9000_mbx_host_init(state, 1) != 0) | ||
792 | return -EIO; | ||
793 | |||
794 | msleep(100); | ||
795 | state->platform.risc.fw_is_running = 1; | ||
796 | |||
797 | if (dib9000_risc_check_version(state) != 0) | ||
798 | return -EINVAL; | ||
799 | |||
800 | state->platform.risc.memcmd = 0xff; | ||
801 | return 0; | ||
802 | } | ||
803 | |||
804 | static u16 dib9000_identify(struct i2c_device *client) | ||
805 | { | ||
806 | u16 value; | ||
807 | |||
808 | value = dib9000_i2c_read16(client, 896); | ||
809 | if (value != 0x01b3) { | ||
810 | dprintk("wrong Vendor ID (0x%x)", value); | ||
811 | return 0; | ||
812 | } | ||
813 | |||
814 | value = dib9000_i2c_read16(client, 897); | ||
815 | if (value != 0x4000 && value != 0x4001 && value != 0x4002 && value != 0x4003 && value != 0x4004 && value != 0x4005) { | ||
816 | dprintk("wrong Device ID (0x%x)", value); | ||
817 | return 0; | ||
818 | } | ||
819 | |||
820 | /* protect this driver to be used with 7000PC */ | ||
821 | if (value == 0x4000 && dib9000_i2c_read16(client, 769) == 0x4000) { | ||
822 | dprintk("this driver does not work with DiB7000PC"); | ||
823 | return 0; | ||
824 | } | ||
825 | |||
826 | switch (value) { | ||
827 | case 0x4000: | ||
828 | dprintk("found DiB7000MA/PA/MB/PB"); | ||
829 | break; | ||
830 | case 0x4001: | ||
831 | dprintk("found DiB7000HC"); | ||
832 | break; | ||
833 | case 0x4002: | ||
834 | dprintk("found DiB7000MC"); | ||
835 | break; | ||
836 | case 0x4003: | ||
837 | dprintk("found DiB9000A"); | ||
838 | break; | ||
839 | case 0x4004: | ||
840 | dprintk("found DiB9000H"); | ||
841 | break; | ||
842 | case 0x4005: | ||
843 | dprintk("found DiB9000M"); | ||
844 | break; | ||
845 | } | ||
846 | |||
847 | return value; | ||
848 | } | ||
849 | |||
850 | static void dib9000_set_power_mode(struct dib9000_state *state, enum dib9000_power_mode mode) | ||
851 | { | ||
852 | /* by default everything is going to be powered off */ | ||
853 | u16 reg_903 = 0x3fff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906; | ||
854 | u8 offset; | ||
855 | |||
856 | if (state->revision == 0x4003 || state->revision == 0x4004 || state->revision == 0x4005) | ||
857 | offset = 1; | ||
858 | else | ||
859 | offset = 0; | ||
860 | |||
861 | reg_906 = dib9000_read_word(state, 906 + offset) | 0x3; /* keep settings for RISC */ | ||
862 | |||
863 | /* now, depending on the requested mode, we power on */ | ||
864 | switch (mode) { | ||
865 | /* power up everything in the demod */ | ||
866 | case DIB9000_POWER_ALL: | ||
867 | reg_903 = 0x0000; | ||
868 | reg_904 = 0x0000; | ||
869 | reg_905 = 0x0000; | ||
870 | reg_906 = 0x0000; | ||
871 | break; | ||
872 | |||
873 | /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ | ||
874 | case DIB9000_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ | ||
875 | reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); | ||
876 | break; | ||
877 | |||
878 | case DIB9000_POWER_INTERF_ANALOG_AGC: | ||
879 | reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); | ||
880 | reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); | ||
881 | reg_906 &= ~((1 << 0)); | ||
882 | break; | ||
883 | |||
884 | case DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: | ||
885 | reg_903 = 0x0000; | ||
886 | reg_904 = 0x801f; | ||
887 | reg_905 = 0x0000; | ||
888 | reg_906 &= ~((1 << 0)); | ||
889 | break; | ||
890 | |||
891 | case DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD: | ||
892 | reg_903 = 0x0000; | ||
893 | reg_904 = 0x8000; | ||
894 | reg_905 = 0x010b; | ||
895 | reg_906 &= ~((1 << 0)); | ||
896 | break; | ||
897 | default: | ||
898 | case DIB9000_POWER_NO: | ||
899 | break; | ||
900 | } | ||
901 | |||
902 | /* always power down unused parts */ | ||
903 | if (!state->platform.host.mobile_mode) | ||
904 | reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); | ||
905 | |||
906 | /* P_sdio_select_clk = 0 on MC and after */ | ||
907 | if (state->revision != 0x4000) | ||
908 | reg_906 <<= 1; | ||
909 | |||
910 | dib9000_write_word(state, 903 + offset, reg_903); | ||
911 | dib9000_write_word(state, 904 + offset, reg_904); | ||
912 | dib9000_write_word(state, 905 + offset, reg_905); | ||
913 | dib9000_write_word(state, 906 + offset, reg_906); | ||
914 | } | ||
915 | |||
916 | static int dib9000_fw_reset(struct dvb_frontend *fe) | ||
917 | { | ||
918 | struct dib9000_state *state = fe->demodulator_priv; | ||
919 | |||
920 | dib9000_write_word(state, 1817, 0x0003); | ||
921 | |||
922 | dib9000_write_word(state, 1227, 1); | ||
923 | dib9000_write_word(state, 1227, 0); | ||
924 | |||
925 | switch ((state->revision = dib9000_identify(&state->i2c))) { | ||
926 | case 0x4003: | ||
927 | case 0x4004: | ||
928 | case 0x4005: | ||
929 | state->reg_offs = 1; | ||
930 | break; | ||
931 | default: | ||
932 | return -EINVAL; | ||
933 | } | ||
934 | |||
935 | /* reset the i2c-master to use the host interface */ | ||
936 | dibx000_reset_i2c_master(&state->i2c_master); | ||
937 | |||
938 | dib9000_set_power_mode(state, DIB9000_POWER_ALL); | ||
939 | |||
940 | /* unforce divstr regardless whether i2c enumeration was done or not */ | ||
941 | dib9000_write_word(state, 1794, dib9000_read_word(state, 1794) & ~(1 << 1)); | ||
942 | dib9000_write_word(state, 1796, 0); | ||
943 | dib9000_write_word(state, 1805, 0x805); | ||
944 | |||
945 | /* restart all parts */ | ||
946 | dib9000_write_word(state, 898, 0xffff); | ||
947 | dib9000_write_word(state, 899, 0xffff); | ||
948 | dib9000_write_word(state, 900, 0x0001); | ||
949 | dib9000_write_word(state, 901, 0xff19); | ||
950 | dib9000_write_word(state, 902, 0x003c); | ||
951 | |||
952 | dib9000_write_word(state, 898, 0); | ||
953 | dib9000_write_word(state, 899, 0); | ||
954 | dib9000_write_word(state, 900, 0); | ||
955 | dib9000_write_word(state, 901, 0); | ||
956 | dib9000_write_word(state, 902, 0); | ||
957 | |||
958 | dib9000_write_word(state, 911, state->chip.d9.cfg.if_drives); | ||
959 | |||
960 | dib9000_set_power_mode(state, DIB9000_POWER_INTERFACE_ONLY); | ||
961 | |||
962 | return 0; | ||
963 | } | ||
964 | |||
965 | static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len) | ||
966 | { | ||
967 | u16 mb[10]; | ||
968 | u8 i, s; | ||
969 | |||
970 | if (address >= 1024 || !state->platform.risc.fw_is_running) | ||
971 | return -EINVAL; | ||
972 | |||
973 | /* dprintk( "APB access thru rd fw %d %x", address, attribute); */ | ||
974 | |||
975 | mb[0] = (u16) address; | ||
976 | mb[1] = len / 2; | ||
977 | dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute); | ||
978 | switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) { | ||
979 | case 1: | ||
980 | s--; | ||
981 | for (i = 0; i < s; i++) { | ||
982 | b[i * 2] = (mb[i + 1] >> 8) & 0xff; | ||
983 | b[i * 2 + 1] = (mb[i + 1]) & 0xff; | ||
984 | } | ||
985 | return 0; | ||
986 | default: | ||
987 | return -EIO; | ||
988 | } | ||
989 | return -EIO; | ||
990 | } | ||
991 | |||
992 | static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len) | ||
993 | { | ||
994 | u16 mb[10]; | ||
995 | u8 s, i; | ||
996 | |||
997 | if (address >= 1024 || !state->platform.risc.fw_is_running) | ||
998 | return -EINVAL; | ||
999 | |||
1000 | /* dprintk( "APB access thru wr fw %d %x", address, attribute); */ | ||
1001 | |||
1002 | mb[0] = (unsigned short)address; | ||
1003 | for (i = 0; i < len && i < 20; i += 2) | ||
1004 | mb[1 + (i / 2)] = (b[i] << 8 | b[i + 1]); | ||
1005 | |||
1006 | dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, 1 + len / 2, attribute); | ||
1007 | return dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute) == 1 ? 0 : -EINVAL; | ||
1008 | } | ||
1009 | |||
1010 | static int dib9000_fw_memmbx_sync(struct dib9000_state *state, u8 i) | ||
1011 | { | ||
1012 | u8 index_loop = 10; | ||
1013 | |||
1014 | if (!state->platform.risc.fw_is_running) | ||
1015 | return 0; | ||
1016 | dib9000_risc_mem_write(state, FE_MM_RW_SYNC, &i); | ||
1017 | do { | ||
1018 | dib9000_risc_mem_read(state, FE_MM_RW_SYNC, &i, 1); | ||
1019 | } while (i && index_loop--); | ||
1020 | |||
1021 | if (index_loop > 0) | ||
1022 | return 0; | ||
1023 | return -EIO; | ||
1024 | } | ||
1025 | |||
1026 | static int dib9000_fw_init(struct dib9000_state *state) | ||
1027 | { | ||
1028 | struct dibGPIOFunction *f; | ||
1029 | u16 b[40] = { 0 }; | ||
1030 | u8 i; | ||
1031 | u8 size; | ||
1032 | |||
1033 | if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0) | ||
1034 | return -EIO; | ||
1035 | |||
1036 | /* initialize the firmware */ | ||
1037 | for (i = 0; i < ARRAY_SIZE(state->chip.d9.cfg.gpio_function); i++) { | ||
1038 | f = &state->chip.d9.cfg.gpio_function[i]; | ||
1039 | if (f->mask) { | ||
1040 | switch (f->function) { | ||
1041 | case BOARD_GPIO_FUNCTION_COMPONENT_ON: | ||
1042 | b[0] = (u16) f->mask; | ||
1043 | b[1] = (u16) f->direction; | ||
1044 | b[2] = (u16) f->value; | ||
1045 | break; | ||
1046 | case BOARD_GPIO_FUNCTION_COMPONENT_OFF: | ||
1047 | b[3] = (u16) f->mask; | ||
1048 | b[4] = (u16) f->direction; | ||
1049 | b[5] = (u16) f->value; | ||
1050 | break; | ||
1051 | } | ||
1052 | } | ||
1053 | } | ||
1054 | if (dib9000_mbx_send(state, OUT_MSG_CONF_GPIO, b, 15) != 0) | ||
1055 | return -EIO; | ||
1056 | |||
1057 | /* subband */ | ||
1058 | b[0] = state->chip.d9.cfg.subband.size; /* type == 0 -> GPIO - PWM not yet supported */ | ||
1059 | for (i = 0; i < state->chip.d9.cfg.subband.size; i++) { | ||
1060 | b[1 + i * 4] = state->chip.d9.cfg.subband.subband[i].f_mhz; | ||
1061 | b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask; | ||
1062 | b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction; | ||
1063 | b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value; | ||
1064 | } | ||
1065 | b[1 + i * 4] = 0; /* fe_id */ | ||
1066 | if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0) | ||
1067 | return -EIO; | ||
1068 | |||
1069 | /* 0 - id, 1 - no_of_frontends */ | ||
1070 | b[0] = (0 << 8) | 1; | ||
1071 | /* 0 = i2c-address demod, 0 = tuner */ | ||
1072 | b[1] = (0 << 8) | (0); | ||
1073 | b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff); | ||
1074 | b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff); | ||
1075 | b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff); | ||
1076 | b[5] = (u16) ((state->chip.d9.cfg.vcxo_timer) & 0xffff); | ||
1077 | b[6] = (u16) ((state->chip.d9.cfg.timing_frequency >> 16) & 0xffff); | ||
1078 | b[7] = (u16) ((state->chip.d9.cfg.timing_frequency) & 0xffff); | ||
1079 | b[29] = state->chip.d9.cfg.if_drives; | ||
1080 | if (dib9000_mbx_send(state, OUT_MSG_INIT_DEMOD, b, ARRAY_SIZE(b)) != 0) | ||
1081 | return -EIO; | ||
1082 | |||
1083 | if (dib9000_mbx_send(state, OUT_MSG_FE_FW_DL, NULL, 0) != 0) | ||
1084 | return -EIO; | ||
1085 | |||
1086 | if (dib9000_mbx_get_message(state, IN_MSG_FE_FW_DL_DONE, b, &size) < 0) | ||
1087 | return -EIO; | ||
1088 | |||
1089 | if (size > ARRAY_SIZE(b)) { | ||
1090 | dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size, | ||
1091 | (int)ARRAY_SIZE(b)); | ||
1092 | return -EINVAL; | ||
1093 | } | ||
1094 | |||
1095 | for (i = 0; i < size; i += 2) { | ||
1096 | state->platform.risc.fe_mm[i / 2].addr = b[i + 0]; | ||
1097 | state->platform.risc.fe_mm[i / 2].size = b[i + 1]; | ||
1098 | } | ||
1099 | |||
1100 | return 0; | ||
1101 | } | ||
1102 | |||
1103 | static void dib9000_fw_set_channel_head(struct dib9000_state *state, struct dvb_frontend_parameters *ch) | ||
1104 | { | ||
1105 | u8 b[9]; | ||
1106 | u32 freq = state->fe[0]->dtv_property_cache.frequency / 1000; | ||
1107 | if (state->fe_id % 2) | ||
1108 | freq += 101; | ||
1109 | |||
1110 | b[0] = (u8) ((freq >> 0) & 0xff); | ||
1111 | b[1] = (u8) ((freq >> 8) & 0xff); | ||
1112 | b[2] = (u8) ((freq >> 16) & 0xff); | ||
1113 | b[3] = (u8) ((freq >> 24) & 0xff); | ||
1114 | b[4] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 0) & 0xff); | ||
1115 | b[5] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 8) & 0xff); | ||
1116 | b[6] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 16) & 0xff); | ||
1117 | b[7] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 24) & 0xff); | ||
1118 | b[8] = 0x80; /* do not wait for CELL ID when doing autosearch */ | ||
1119 | if (state->fe[0]->dtv_property_cache.delivery_system == SYS_DVBT) | ||
1120 | b[8] |= 1; | ||
1121 | dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_HEAD, b); | ||
1122 | } | ||
1123 | |||
1124 | static int dib9000_fw_get_channel(struct dvb_frontend *fe, struct dvb_frontend_parameters *channel) | ||
1125 | { | ||
1126 | struct dib9000_state *state = fe->demodulator_priv; | ||
1127 | struct dibDVBTChannel { | ||
1128 | s8 spectrum_inversion; | ||
1129 | |||
1130 | s8 nfft; | ||
1131 | s8 guard; | ||
1132 | s8 constellation; | ||
1133 | |||
1134 | s8 hrch; | ||
1135 | s8 alpha; | ||
1136 | s8 code_rate_hp; | ||
1137 | s8 code_rate_lp; | ||
1138 | s8 select_hp; | ||
1139 | |||
1140 | s8 intlv_native; | ||
1141 | }; | ||
1142 | struct dibDVBTChannel ch; | ||
1143 | int ret = 0; | ||
1144 | |||
1145 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
1146 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { | ||
1147 | goto error; | ||
1148 | ret = -EIO; | ||
1149 | } | ||
1150 | |||
1151 | dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, (u8 *) &ch, sizeof(struct dibDVBTChannel)); | ||
1152 | |||
1153 | switch (ch.spectrum_inversion & 0x7) { | ||
1154 | case 1: | ||
1155 | state->fe[0]->dtv_property_cache.inversion = INVERSION_ON; | ||
1156 | break; | ||
1157 | case 0: | ||
1158 | state->fe[0]->dtv_property_cache.inversion = INVERSION_OFF; | ||
1159 | break; | ||
1160 | default: | ||
1161 | case -1: | ||
1162 | state->fe[0]->dtv_property_cache.inversion = INVERSION_AUTO; | ||
1163 | break; | ||
1164 | } | ||
1165 | switch (ch.nfft) { | ||
1166 | case 0: | ||
1167 | state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K; | ||
1168 | break; | ||
1169 | case 2: | ||
1170 | state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_4K; | ||
1171 | break; | ||
1172 | case 1: | ||
1173 | state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K; | ||
1174 | break; | ||
1175 | default: | ||
1176 | case -1: | ||
1177 | state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO; | ||
1178 | break; | ||
1179 | } | ||
1180 | switch (ch.guard) { | ||
1181 | case 0: | ||
1182 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32; | ||
1183 | break; | ||
1184 | case 1: | ||
1185 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16; | ||
1186 | break; | ||
1187 | case 2: | ||
1188 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8; | ||
1189 | break; | ||
1190 | case 3: | ||
1191 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4; | ||
1192 | break; | ||
1193 | default: | ||
1194 | case -1: | ||
1195 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO; | ||
1196 | break; | ||
1197 | } | ||
1198 | switch (ch.constellation) { | ||
1199 | case 2: | ||
1200 | state->fe[0]->dtv_property_cache.modulation = QAM_64; | ||
1201 | break; | ||
1202 | case 1: | ||
1203 | state->fe[0]->dtv_property_cache.modulation = QAM_16; | ||
1204 | break; | ||
1205 | case 0: | ||
1206 | state->fe[0]->dtv_property_cache.modulation = QPSK; | ||
1207 | break; | ||
1208 | default: | ||
1209 | case -1: | ||
1210 | state->fe[0]->dtv_property_cache.modulation = QAM_AUTO; | ||
1211 | break; | ||
1212 | } | ||
1213 | switch (ch.hrch) { | ||
1214 | case 0: | ||
1215 | state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_NONE; | ||
1216 | break; | ||
1217 | case 1: | ||
1218 | state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_1; | ||
1219 | break; | ||
1220 | default: | ||
1221 | case -1: | ||
1222 | state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_AUTO; | ||
1223 | break; | ||
1224 | } | ||
1225 | switch (ch.code_rate_hp) { | ||
1226 | case 1: | ||
1227 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_1_2; | ||
1228 | break; | ||
1229 | case 2: | ||
1230 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_2_3; | ||
1231 | break; | ||
1232 | case 3: | ||
1233 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_3_4; | ||
1234 | break; | ||
1235 | case 5: | ||
1236 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_5_6; | ||
1237 | break; | ||
1238 | case 7: | ||
1239 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_7_8; | ||
1240 | break; | ||
1241 | default: | ||
1242 | case -1: | ||
1243 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_AUTO; | ||
1244 | break; | ||
1245 | } | ||
1246 | switch (ch.code_rate_lp) { | ||
1247 | case 1: | ||
1248 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_1_2; | ||
1249 | break; | ||
1250 | case 2: | ||
1251 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_2_3; | ||
1252 | break; | ||
1253 | case 3: | ||
1254 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_3_4; | ||
1255 | break; | ||
1256 | case 5: | ||
1257 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_5_6; | ||
1258 | break; | ||
1259 | case 7: | ||
1260 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_7_8; | ||
1261 | break; | ||
1262 | default: | ||
1263 | case -1: | ||
1264 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_AUTO; | ||
1265 | break; | ||
1266 | } | ||
1267 | |||
1268 | error: | ||
1269 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
1270 | return ret; | ||
1271 | } | ||
1272 | |||
1273 | static int dib9000_fw_set_channel_union(struct dvb_frontend *fe, struct dvb_frontend_parameters *channel) | ||
1274 | { | ||
1275 | struct dib9000_state *state = fe->demodulator_priv; | ||
1276 | struct dibDVBTChannel { | ||
1277 | s8 spectrum_inversion; | ||
1278 | |||
1279 | s8 nfft; | ||
1280 | s8 guard; | ||
1281 | s8 constellation; | ||
1282 | |||
1283 | s8 hrch; | ||
1284 | s8 alpha; | ||
1285 | s8 code_rate_hp; | ||
1286 | s8 code_rate_lp; | ||
1287 | s8 select_hp; | ||
1288 | |||
1289 | s8 intlv_native; | ||
1290 | }; | ||
1291 | struct dibDVBTChannel ch; | ||
1292 | |||
1293 | switch (state->fe[0]->dtv_property_cache.inversion) { | ||
1294 | case INVERSION_ON: | ||
1295 | ch.spectrum_inversion = 1; | ||
1296 | break; | ||
1297 | case INVERSION_OFF: | ||
1298 | ch.spectrum_inversion = 0; | ||
1299 | break; | ||
1300 | default: | ||
1301 | case INVERSION_AUTO: | ||
1302 | ch.spectrum_inversion = -1; | ||
1303 | break; | ||
1304 | } | ||
1305 | switch (state->fe[0]->dtv_property_cache.transmission_mode) { | ||
1306 | case TRANSMISSION_MODE_2K: | ||
1307 | ch.nfft = 0; | ||
1308 | break; | ||
1309 | case TRANSMISSION_MODE_4K: | ||
1310 | ch.nfft = 2; | ||
1311 | break; | ||
1312 | case TRANSMISSION_MODE_8K: | ||
1313 | ch.nfft = 1; | ||
1314 | break; | ||
1315 | default: | ||
1316 | case TRANSMISSION_MODE_AUTO: | ||
1317 | ch.nfft = 1; | ||
1318 | break; | ||
1319 | } | ||
1320 | switch (state->fe[0]->dtv_property_cache.guard_interval) { | ||
1321 | case GUARD_INTERVAL_1_32: | ||
1322 | ch.guard = 0; | ||
1323 | break; | ||
1324 | case GUARD_INTERVAL_1_16: | ||
1325 | ch.guard = 1; | ||
1326 | break; | ||
1327 | case GUARD_INTERVAL_1_8: | ||
1328 | ch.guard = 2; | ||
1329 | break; | ||
1330 | case GUARD_INTERVAL_1_4: | ||
1331 | ch.guard = 3; | ||
1332 | break; | ||
1333 | default: | ||
1334 | case GUARD_INTERVAL_AUTO: | ||
1335 | ch.guard = -1; | ||
1336 | break; | ||
1337 | } | ||
1338 | switch (state->fe[0]->dtv_property_cache.modulation) { | ||
1339 | case QAM_64: | ||
1340 | ch.constellation = 2; | ||
1341 | break; | ||
1342 | case QAM_16: | ||
1343 | ch.constellation = 1; | ||
1344 | break; | ||
1345 | case QPSK: | ||
1346 | ch.constellation = 0; | ||
1347 | break; | ||
1348 | default: | ||
1349 | case QAM_AUTO: | ||
1350 | ch.constellation = -1; | ||
1351 | break; | ||
1352 | } | ||
1353 | switch (state->fe[0]->dtv_property_cache.hierarchy) { | ||
1354 | case HIERARCHY_NONE: | ||
1355 | ch.hrch = 0; | ||
1356 | break; | ||
1357 | case HIERARCHY_1: | ||
1358 | case HIERARCHY_2: | ||
1359 | case HIERARCHY_4: | ||
1360 | ch.hrch = 1; | ||
1361 | break; | ||
1362 | default: | ||
1363 | case HIERARCHY_AUTO: | ||
1364 | ch.hrch = -1; | ||
1365 | break; | ||
1366 | } | ||
1367 | ch.alpha = 1; | ||
1368 | switch (state->fe[0]->dtv_property_cache.code_rate_HP) { | ||
1369 | case FEC_1_2: | ||
1370 | ch.code_rate_hp = 1; | ||
1371 | break; | ||
1372 | case FEC_2_3: | ||
1373 | ch.code_rate_hp = 2; | ||
1374 | break; | ||
1375 | case FEC_3_4: | ||
1376 | ch.code_rate_hp = 3; | ||
1377 | break; | ||
1378 | case FEC_5_6: | ||
1379 | ch.code_rate_hp = 5; | ||
1380 | break; | ||
1381 | case FEC_7_8: | ||
1382 | ch.code_rate_hp = 7; | ||
1383 | break; | ||
1384 | default: | ||
1385 | case FEC_AUTO: | ||
1386 | ch.code_rate_hp = -1; | ||
1387 | break; | ||
1388 | } | ||
1389 | switch (state->fe[0]->dtv_property_cache.code_rate_LP) { | ||
1390 | case FEC_1_2: | ||
1391 | ch.code_rate_lp = 1; | ||
1392 | break; | ||
1393 | case FEC_2_3: | ||
1394 | ch.code_rate_lp = 2; | ||
1395 | break; | ||
1396 | case FEC_3_4: | ||
1397 | ch.code_rate_lp = 3; | ||
1398 | break; | ||
1399 | case FEC_5_6: | ||
1400 | ch.code_rate_lp = 5; | ||
1401 | break; | ||
1402 | case FEC_7_8: | ||
1403 | ch.code_rate_lp = 7; | ||
1404 | break; | ||
1405 | default: | ||
1406 | case FEC_AUTO: | ||
1407 | ch.code_rate_lp = -1; | ||
1408 | break; | ||
1409 | } | ||
1410 | ch.select_hp = 1; | ||
1411 | ch.intlv_native = 1; | ||
1412 | |||
1413 | dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch); | ||
1414 | |||
1415 | return 0; | ||
1416 | } | ||
1417 | |||
1418 | static int dib9000_fw_tune(struct dvb_frontend *fe, struct dvb_frontend_parameters *ch) | ||
1419 | { | ||
1420 | struct dib9000_state *state = fe->demodulator_priv; | ||
1421 | int ret = 10, search = state->channel_status.status == CHANNEL_STATUS_PARAMETERS_UNKNOWN; | ||
1422 | s8 i; | ||
1423 | |||
1424 | switch (state->tune_state) { | ||
1425 | case CT_DEMOD_START: | ||
1426 | dib9000_fw_set_channel_head(state, ch); | ||
1427 | |||
1428 | /* write the channel context - a channel is initialized to 0, so it is OK */ | ||
1429 | dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_CONTEXT, (u8 *) fe_info); | ||
1430 | dib9000_risc_mem_write(state, FE_MM_W_FE_INFO, (u8 *) fe_info); | ||
1431 | |||
1432 | if (search) | ||
1433 | dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_SEARCH, NULL, 0); | ||
1434 | else { | ||
1435 | dib9000_fw_set_channel_union(fe, ch); | ||
1436 | dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_TUNE, NULL, 0); | ||
1437 | } | ||
1438 | state->tune_state = CT_DEMOD_STEP_1; | ||
1439 | break; | ||
1440 | case CT_DEMOD_STEP_1: | ||
1441 | if (search) | ||
1442 | dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, (u8 *) &i, 1); | ||
1443 | else | ||
1444 | dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, (u8 *) &i, 1); | ||
1445 | switch (i) { /* something happened */ | ||
1446 | case 0: | ||
1447 | break; | ||
1448 | case -2: /* tps locks are "slower" than MPEG locks -> even in autosearch data is OK here */ | ||
1449 | if (search) | ||
1450 | state->status = FE_STATUS_DEMOD_SUCCESS; | ||
1451 | else { | ||
1452 | state->tune_state = CT_DEMOD_STOP; | ||
1453 | state->status = FE_STATUS_LOCKED; | ||
1454 | } | ||
1455 | break; | ||
1456 | default: | ||
1457 | state->status = FE_STATUS_TUNE_FAILED; | ||
1458 | state->tune_state = CT_DEMOD_STOP; | ||
1459 | break; | ||
1460 | } | ||
1461 | break; | ||
1462 | default: | ||
1463 | ret = FE_CALLBACK_TIME_NEVER; | ||
1464 | break; | ||
1465 | } | ||
1466 | |||
1467 | return ret; | ||
1468 | } | ||
1469 | |||
1470 | static int dib9000_fw_set_diversity_in(struct dvb_frontend *fe, int onoff) | ||
1471 | { | ||
1472 | struct dib9000_state *state = fe->demodulator_priv; | ||
1473 | u16 mode = (u16) onoff; | ||
1474 | return dib9000_mbx_send(state, OUT_MSG_ENABLE_DIVERSITY, &mode, 1); | ||
1475 | } | ||
1476 | |||
1477 | static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode) | ||
1478 | { | ||
1479 | struct dib9000_state *state = fe->demodulator_priv; | ||
1480 | u16 outreg, smo_mode; | ||
1481 | |||
1482 | dprintk("setting output mode for demod %p to %d", fe, mode); | ||
1483 | |||
1484 | switch (mode) { | ||
1485 | case OUTMODE_MPEG2_PAR_GATED_CLK: | ||
1486 | outreg = (1 << 10); /* 0x0400 */ | ||
1487 | break; | ||
1488 | case OUTMODE_MPEG2_PAR_CONT_CLK: | ||
1489 | outreg = (1 << 10) | (1 << 6); /* 0x0440 */ | ||
1490 | break; | ||
1491 | case OUTMODE_MPEG2_SERIAL: | ||
1492 | outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ | ||
1493 | break; | ||
1494 | case OUTMODE_DIVERSITY: | ||
1495 | outreg = (1 << 10) | (4 << 6); /* 0x0500 */ | ||
1496 | break; | ||
1497 | case OUTMODE_MPEG2_FIFO: | ||
1498 | outreg = (1 << 10) | (5 << 6); | ||
1499 | break; | ||
1500 | case OUTMODE_HIGH_Z: | ||
1501 | outreg = 0; | ||
1502 | break; | ||
1503 | default: | ||
1504 | dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe[0]); | ||
1505 | return -EINVAL; | ||
1506 | } | ||
1507 | |||
1508 | dib9000_write_word(state, 1795, outreg); | ||
1509 | |||
1510 | switch (mode) { | ||
1511 | case OUTMODE_MPEG2_PAR_GATED_CLK: | ||
1512 | case OUTMODE_MPEG2_PAR_CONT_CLK: | ||
1513 | case OUTMODE_MPEG2_SERIAL: | ||
1514 | case OUTMODE_MPEG2_FIFO: | ||
1515 | smo_mode = (dib9000_read_word(state, 295) & 0x0010) | (1 << 1); | ||
1516 | if (state->chip.d9.cfg.output_mpeg2_in_188_bytes) | ||
1517 | smo_mode |= (1 << 5); | ||
1518 | dib9000_write_word(state, 295, smo_mode); | ||
1519 | break; | ||
1520 | } | ||
1521 | |||
1522 | outreg = to_fw_output_mode(mode); | ||
1523 | return dib9000_mbx_send(state, OUT_MSG_SET_OUTPUT_MODE, &outreg, 1); | ||
1524 | } | ||
1525 | |||
1526 | static int dib9000_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) | ||
1527 | { | ||
1528 | struct dib9000_state *state = i2c_get_adapdata(i2c_adap); | ||
1529 | u16 i, len, t, index_msg; | ||
1530 | |||
1531 | for (index_msg = 0; index_msg < num; index_msg++) { | ||
1532 | if (msg[index_msg].flags & I2C_M_RD) { /* read */ | ||
1533 | len = msg[index_msg].len; | ||
1534 | if (len > 16) | ||
1535 | len = 16; | ||
1536 | |||
1537 | if (dib9000_read_word(state, 790) != 0) | ||
1538 | dprintk("TunerITF: read busy"); | ||
1539 | |||
1540 | dib9000_write_word(state, 784, (u16) (msg[index_msg].addr)); | ||
1541 | dib9000_write_word(state, 787, (len / 2) - 1); | ||
1542 | dib9000_write_word(state, 786, 1); /* start read */ | ||
1543 | |||
1544 | i = 1000; | ||
1545 | while (dib9000_read_word(state, 790) != (len / 2) && i) | ||
1546 | i--; | ||
1547 | |||
1548 | if (i == 0) | ||
1549 | dprintk("TunerITF: read failed"); | ||
1550 | |||
1551 | for (i = 0; i < len; i += 2) { | ||
1552 | t = dib9000_read_word(state, 785); | ||
1553 | msg[index_msg].buf[i] = (t >> 8) & 0xff; | ||
1554 | msg[index_msg].buf[i + 1] = (t) & 0xff; | ||
1555 | } | ||
1556 | if (dib9000_read_word(state, 790) != 0) | ||
1557 | dprintk("TunerITF: read more data than expected"); | ||
1558 | } else { | ||
1559 | i = 1000; | ||
1560 | while (dib9000_read_word(state, 789) && i) | ||
1561 | i--; | ||
1562 | if (i == 0) | ||
1563 | dprintk("TunerITF: write busy"); | ||
1564 | |||
1565 | len = msg[index_msg].len; | ||
1566 | if (len > 16) | ||
1567 | len = 16; | ||
1568 | |||
1569 | for (i = 0; i < len; i += 2) | ||
1570 | dib9000_write_word(state, 785, (msg[index_msg].buf[i] << 8) | msg[index_msg].buf[i + 1]); | ||
1571 | dib9000_write_word(state, 784, (u16) msg[index_msg].addr); | ||
1572 | dib9000_write_word(state, 787, (len / 2) - 1); | ||
1573 | dib9000_write_word(state, 786, 0); /* start write */ | ||
1574 | |||
1575 | i = 1000; | ||
1576 | while (dib9000_read_word(state, 791) > 0 && i) | ||
1577 | i--; | ||
1578 | if (i == 0) | ||
1579 | dprintk("TunerITF: write failed"); | ||
1580 | } | ||
1581 | } | ||
1582 | return num; | ||
1583 | } | ||
1584 | |||
1585 | int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed) | ||
1586 | { | ||
1587 | struct dib9000_state *state = fe->demodulator_priv; | ||
1588 | |||
1589 | state->component_bus_speed = speed; | ||
1590 | return 0; | ||
1591 | } | ||
1592 | EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed); | ||
1593 | |||
1594 | static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) | ||
1595 | { | ||
1596 | struct dib9000_state *state = i2c_get_adapdata(i2c_adap); | ||
1597 | u8 type = 0; /* I2C */ | ||
1598 | u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4; | ||
1599 | u16 scl = state->component_bus_speed; /* SCL frequency */ | ||
1600 | struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER]; | ||
1601 | u8 p[13] = { 0 }; | ||
1602 | |||
1603 | p[0] = type; | ||
1604 | p[1] = port; | ||
1605 | p[2] = msg[0].addr << 1; | ||
1606 | |||
1607 | p[3] = (u8) scl & 0xff; /* scl */ | ||
1608 | p[4] = (u8) (scl >> 8); | ||
1609 | |||
1610 | p[7] = 0; | ||
1611 | p[8] = 0; | ||
1612 | |||
1613 | p[9] = (u8) (msg[0].len); | ||
1614 | p[10] = (u8) (msg[0].len >> 8); | ||
1615 | if ((num > 1) && (msg[1].flags & I2C_M_RD)) { | ||
1616 | p[11] = (u8) (msg[1].len); | ||
1617 | p[12] = (u8) (msg[1].len >> 8); | ||
1618 | } else { | ||
1619 | p[11] = 0; | ||
1620 | p[12] = 0; | ||
1621 | } | ||
1622 | |||
1623 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
1624 | |||
1625 | dib9000_risc_mem_write(state, FE_MM_W_COMPONENT_ACCESS, p); | ||
1626 | |||
1627 | { /* write-part */ | ||
1628 | dib9000_risc_mem_setup_cmd(state, m->addr, msg[0].len, 0); | ||
1629 | dib9000_risc_mem_write_chunks(state, msg[0].buf, msg[0].len); | ||
1630 | } | ||
1631 | |||
1632 | /* do the transaction */ | ||
1633 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_COMPONENT_ACCESS) < 0) { | ||
1634 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
1635 | return 0; | ||
1636 | } | ||
1637 | |||
1638 | /* read back any possible result */ | ||
1639 | if ((num > 1) && (msg[1].flags & I2C_M_RD)) | ||
1640 | dib9000_risc_mem_read(state, FE_MM_RW_COMPONENT_ACCESS_BUFFER, msg[1].buf, msg[1].len); | ||
1641 | |||
1642 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
1643 | |||
1644 | return num; | ||
1645 | } | ||
1646 | |||
1647 | static u32 dib9000_i2c_func(struct i2c_adapter *adapter) | ||
1648 | { | ||
1649 | return I2C_FUNC_I2C; | ||
1650 | } | ||
1651 | |||
1652 | static struct i2c_algorithm dib9000_tuner_algo = { | ||
1653 | .master_xfer = dib9000_tuner_xfer, | ||
1654 | .functionality = dib9000_i2c_func, | ||
1655 | }; | ||
1656 | |||
1657 | static struct i2c_algorithm dib9000_component_bus_algo = { | ||
1658 | .master_xfer = dib9000_fw_component_bus_xfer, | ||
1659 | .functionality = dib9000_i2c_func, | ||
1660 | }; | ||
1661 | |||
1662 | struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe) | ||
1663 | { | ||
1664 | struct dib9000_state *st = fe->demodulator_priv; | ||
1665 | return &st->tuner_adap; | ||
1666 | } | ||
1667 | EXPORT_SYMBOL(dib9000_get_tuner_interface); | ||
1668 | |||
1669 | struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe) | ||
1670 | { | ||
1671 | struct dib9000_state *st = fe->demodulator_priv; | ||
1672 | return &st->component_bus; | ||
1673 | } | ||
1674 | EXPORT_SYMBOL(dib9000_get_component_bus_interface); | ||
1675 | |||
1676 | struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) | ||
1677 | { | ||
1678 | struct dib9000_state *st = fe->demodulator_priv; | ||
1679 | return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); | ||
1680 | } | ||
1681 | EXPORT_SYMBOL(dib9000_get_i2c_master); | ||
1682 | |||
1683 | int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c) | ||
1684 | { | ||
1685 | struct dib9000_state *st = fe->demodulator_priv; | ||
1686 | |||
1687 | st->i2c.i2c_adap = i2c; | ||
1688 | return 0; | ||
1689 | } | ||
1690 | EXPORT_SYMBOL(dib9000_set_i2c_adapter); | ||
1691 | |||
1692 | static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val) | ||
1693 | { | ||
1694 | st->gpio_dir = dib9000_read_word(st, 773); | ||
1695 | st->gpio_dir &= ~(1 << num); /* reset the direction bit */ | ||
1696 | st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ | ||
1697 | dib9000_write_word(st, 773, st->gpio_dir); | ||
1698 | |||
1699 | st->gpio_val = dib9000_read_word(st, 774); | ||
1700 | st->gpio_val &= ~(1 << num); /* reset the direction bit */ | ||
1701 | st->gpio_val |= (val & 0x01) << num; /* set the new value */ | ||
1702 | dib9000_write_word(st, 774, st->gpio_val); | ||
1703 | |||
1704 | dprintk("gpio dir: %04x: gpio val: %04x", st->gpio_dir, st->gpio_val); | ||
1705 | |||
1706 | return 0; | ||
1707 | } | ||
1708 | |||
1709 | int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) | ||
1710 | { | ||
1711 | struct dib9000_state *state = fe->demodulator_priv; | ||
1712 | return dib9000_cfg_gpio(state, num, dir, val); | ||
1713 | } | ||
1714 | EXPORT_SYMBOL(dib9000_set_gpio); | ||
1715 | |||
1716 | int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) | ||
1717 | { | ||
1718 | struct dib9000_state *state = fe->demodulator_priv; | ||
1719 | u16 val = dib9000_read_word(state, 294 + 1) & 0xffef; | ||
1720 | val |= (onoff & 0x1) << 4; | ||
1721 | |||
1722 | dprintk("PID filter enabled %d", onoff); | ||
1723 | return dib9000_write_word(state, 294 + 1, val); | ||
1724 | } | ||
1725 | EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl); | ||
1726 | |||
1727 | int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) | ||
1728 | { | ||
1729 | struct dib9000_state *state = fe->demodulator_priv; | ||
1730 | dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff); | ||
1731 | return dib9000_write_word(state, 300 + 1 + id, onoff ? (1 << 13) | pid : 0); | ||
1732 | } | ||
1733 | EXPORT_SYMBOL(dib9000_fw_pid_filter); | ||
1734 | |||
1735 | int dib9000_firmware_post_pll_init(struct dvb_frontend *fe) | ||
1736 | { | ||
1737 | struct dib9000_state *state = fe->demodulator_priv; | ||
1738 | return dib9000_fw_init(state); | ||
1739 | } | ||
1740 | EXPORT_SYMBOL(dib9000_firmware_post_pll_init); | ||
1741 | |||
1742 | static void dib9000_release(struct dvb_frontend *demod) | ||
1743 | { | ||
1744 | struct dib9000_state *st = demod->demodulator_priv; | ||
1745 | u8 index_frontend; | ||
1746 | |||
1747 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) | ||
1748 | dvb_frontend_detach(st->fe[index_frontend]); | ||
1749 | |||
1750 | DibFreeLock(&state->platform.risc.mbx_if_lock); | ||
1751 | DibFreeLock(&state->platform.risc.mbx_lock); | ||
1752 | DibFreeLock(&state->platform.risc.mem_lock); | ||
1753 | DibFreeLock(&state->platform.risc.mem_mbx_lock); | ||
1754 | dibx000_exit_i2c_master(&st->i2c_master); | ||
1755 | |||
1756 | i2c_del_adapter(&st->tuner_adap); | ||
1757 | i2c_del_adapter(&st->component_bus); | ||
1758 | kfree(st->fe[0]); | ||
1759 | kfree(st); | ||
1760 | } | ||
1761 | |||
1762 | static int dib9000_wakeup(struct dvb_frontend *fe) | ||
1763 | { | ||
1764 | return 0; | ||
1765 | } | ||
1766 | |||
1767 | static int dib9000_sleep(struct dvb_frontend *fe) | ||
1768 | { | ||
1769 | struct dib9000_state *state = fe->demodulator_priv; | ||
1770 | u8 index_frontend; | ||
1771 | int ret; | ||
1772 | |||
1773 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1774 | ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); | ||
1775 | if (ret < 0) | ||
1776 | return ret; | ||
1777 | } | ||
1778 | return dib9000_mbx_send(state, OUT_MSG_FE_SLEEP, NULL, 0); | ||
1779 | } | ||
1780 | |||
1781 | static int dib9000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) | ||
1782 | { | ||
1783 | tune->min_delay_ms = 1000; | ||
1784 | return 0; | ||
1785 | } | ||
1786 | |||
1787 | static int dib9000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep) | ||
1788 | { | ||
1789 | struct dib9000_state *state = fe->demodulator_priv; | ||
1790 | u8 index_frontend, sub_index_frontend; | ||
1791 | fe_status_t stat; | ||
1792 | int ret; | ||
1793 | |||
1794 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1795 | state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); | ||
1796 | if (stat & FE_HAS_SYNC) { | ||
1797 | dprintk("TPS lock on the slave%i", index_frontend); | ||
1798 | |||
1799 | /* synchronize the cache with the other frontends */ | ||
1800 | state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], fep); | ||
1801 | for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); | ||
1802 | sub_index_frontend++) { | ||
1803 | if (sub_index_frontend != index_frontend) { | ||
1804 | state->fe[sub_index_frontend]->dtv_property_cache.modulation = | ||
1805 | state->fe[index_frontend]->dtv_property_cache.modulation; | ||
1806 | state->fe[sub_index_frontend]->dtv_property_cache.inversion = | ||
1807 | state->fe[index_frontend]->dtv_property_cache.inversion; | ||
1808 | state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = | ||
1809 | state->fe[index_frontend]->dtv_property_cache.transmission_mode; | ||
1810 | state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = | ||
1811 | state->fe[index_frontend]->dtv_property_cache.guard_interval; | ||
1812 | state->fe[sub_index_frontend]->dtv_property_cache.hierarchy = | ||
1813 | state->fe[index_frontend]->dtv_property_cache.hierarchy; | ||
1814 | state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP = | ||
1815 | state->fe[index_frontend]->dtv_property_cache.code_rate_HP; | ||
1816 | state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP = | ||
1817 | state->fe[index_frontend]->dtv_property_cache.code_rate_LP; | ||
1818 | state->fe[sub_index_frontend]->dtv_property_cache.rolloff = | ||
1819 | state->fe[index_frontend]->dtv_property_cache.rolloff; | ||
1820 | } | ||
1821 | } | ||
1822 | return 0; | ||
1823 | } | ||
1824 | } | ||
1825 | |||
1826 | /* get the channel from master chip */ | ||
1827 | ret = dib9000_fw_get_channel(fe, fep); | ||
1828 | if (ret != 0) | ||
1829 | return ret; | ||
1830 | |||
1831 | /* synchronize the cache with the other frontends */ | ||
1832 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1833 | state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion; | ||
1834 | state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode; | ||
1835 | state->fe[index_frontend]->dtv_property_cache.guard_interval = fe->dtv_property_cache.guard_interval; | ||
1836 | state->fe[index_frontend]->dtv_property_cache.modulation = fe->dtv_property_cache.modulation; | ||
1837 | state->fe[index_frontend]->dtv_property_cache.hierarchy = fe->dtv_property_cache.hierarchy; | ||
1838 | state->fe[index_frontend]->dtv_property_cache.code_rate_HP = fe->dtv_property_cache.code_rate_HP; | ||
1839 | state->fe[index_frontend]->dtv_property_cache.code_rate_LP = fe->dtv_property_cache.code_rate_LP; | ||
1840 | state->fe[index_frontend]->dtv_property_cache.rolloff = fe->dtv_property_cache.rolloff; | ||
1841 | } | ||
1842 | |||
1843 | return 0; | ||
1844 | } | ||
1845 | |||
1846 | static int dib9000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) | ||
1847 | { | ||
1848 | struct dib9000_state *state = fe->demodulator_priv; | ||
1849 | state->tune_state = tune_state; | ||
1850 | if (tune_state == CT_DEMOD_START) | ||
1851 | state->status = FE_STATUS_TUNE_PENDING; | ||
1852 | |||
1853 | return 0; | ||
1854 | } | ||
1855 | |||
1856 | static u32 dib9000_get_status(struct dvb_frontend *fe) | ||
1857 | { | ||
1858 | struct dib9000_state *state = fe->demodulator_priv; | ||
1859 | return state->status; | ||
1860 | } | ||
1861 | |||
1862 | static int dib9000_set_channel_status(struct dvb_frontend *fe, struct dvb_frontend_parametersContext *channel_status) | ||
1863 | { | ||
1864 | struct dib9000_state *state = fe->demodulator_priv; | ||
1865 | |||
1866 | memcpy(&state->channel_status, channel_status, sizeof(struct dvb_frontend_parametersContext)); | ||
1867 | return 0; | ||
1868 | } | ||
1869 | |||
1870 | static int dib9000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep) | ||
1871 | { | ||
1872 | struct dib9000_state *state = fe->demodulator_priv; | ||
1873 | int sleep_time, sleep_time_slave; | ||
1874 | u32 frontend_status; | ||
1875 | u8 nbr_pending, exit_condition, index_frontend, index_frontend_success; | ||
1876 | struct dvb_frontend_parametersContext channel_status; | ||
1877 | |||
1878 | /* check that the correct parameters are set */ | ||
1879 | if (state->fe[0]->dtv_property_cache.frequency == 0) { | ||
1880 | dprintk("dib9000: must specify frequency "); | ||
1881 | return 0; | ||
1882 | } | ||
1883 | |||
1884 | if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) { | ||
1885 | dprintk("dib9000: must specify bandwidth "); | ||
1886 | return 0; | ||
1887 | } | ||
1888 | fe->dtv_property_cache.delivery_system = SYS_DVBT; | ||
1889 | |||
1890 | /* set the master status */ | ||
1891 | if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || | ||
1892 | fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) { | ||
1893 | /* no channel specified, autosearch the channel */ | ||
1894 | state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN; | ||
1895 | } else | ||
1896 | state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; | ||
1897 | |||
1898 | /* set mode and status for the different frontends */ | ||
1899 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1900 | dib9000_fw_set_diversity_in(state->fe[index_frontend], 1); | ||
1901 | |||
1902 | /* synchronization of the cache */ | ||
1903 | memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); | ||
1904 | |||
1905 | state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_DVBT; | ||
1906 | dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z); | ||
1907 | |||
1908 | dib9000_set_channel_status(state->fe[index_frontend], &state->channel_status); | ||
1909 | dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); | ||
1910 | } | ||
1911 | |||
1912 | /* actual tune */ | ||
1913 | exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */ | ||
1914 | index_frontend_success = 0; | ||
1915 | do { | ||
1916 | sleep_time = dib9000_fw_tune(state->fe[0], NULL); | ||
1917 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1918 | sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend], NULL); | ||
1919 | if (sleep_time == FE_CALLBACK_TIME_NEVER) | ||
1920 | sleep_time = sleep_time_slave; | ||
1921 | else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) | ||
1922 | sleep_time = sleep_time_slave; | ||
1923 | } | ||
1924 | if (sleep_time != FE_CALLBACK_TIME_NEVER) | ||
1925 | msleep(sleep_time / 10); | ||
1926 | else | ||
1927 | break; | ||
1928 | |||
1929 | nbr_pending = 0; | ||
1930 | exit_condition = 0; | ||
1931 | index_frontend_success = 0; | ||
1932 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1933 | frontend_status = -dib9000_get_status(state->fe[index_frontend]); | ||
1934 | if (frontend_status > -FE_STATUS_TUNE_PENDING) { | ||
1935 | exit_condition = 2; /* tune success */ | ||
1936 | index_frontend_success = index_frontend; | ||
1937 | break; | ||
1938 | } | ||
1939 | if (frontend_status == -FE_STATUS_TUNE_PENDING) | ||
1940 | nbr_pending++; /* some frontends are still tuning */ | ||
1941 | } | ||
1942 | if ((exit_condition != 2) && (nbr_pending == 0)) | ||
1943 | exit_condition = 1; /* if all tune are done and no success, exit: tune failed */ | ||
1944 | |||
1945 | } while (exit_condition == 0); | ||
1946 | |||
1947 | /* check the tune result */ | ||
1948 | if (exit_condition == 1) { /* tune failed */ | ||
1949 | dprintk("tune failed"); | ||
1950 | return 0; | ||
1951 | } | ||
1952 | |||
1953 | dprintk("tune success on frontend%i", index_frontend_success); | ||
1954 | |||
1955 | /* synchronize all the channel cache */ | ||
1956 | dib9000_get_frontend(state->fe[0], fep); | ||
1957 | |||
1958 | /* retune the other frontends with the found channel */ | ||
1959 | channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; | ||
1960 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1961 | /* only retune the frontends which was not tuned success */ | ||
1962 | if (index_frontend != index_frontend_success) { | ||
1963 | dib9000_set_channel_status(state->fe[index_frontend], &channel_status); | ||
1964 | dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); | ||
1965 | } | ||
1966 | } | ||
1967 | do { | ||
1968 | sleep_time = FE_CALLBACK_TIME_NEVER; | ||
1969 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1970 | if (index_frontend != index_frontend_success) { | ||
1971 | sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend], NULL); | ||
1972 | if (sleep_time == FE_CALLBACK_TIME_NEVER) | ||
1973 | sleep_time = sleep_time_slave; | ||
1974 | else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) | ||
1975 | sleep_time = sleep_time_slave; | ||
1976 | } | ||
1977 | } | ||
1978 | if (sleep_time != FE_CALLBACK_TIME_NEVER) | ||
1979 | msleep(sleep_time / 10); | ||
1980 | else | ||
1981 | break; | ||
1982 | |||
1983 | nbr_pending = 0; | ||
1984 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1985 | if (index_frontend != index_frontend_success) { | ||
1986 | frontend_status = -dib9000_get_status(state->fe[index_frontend]); | ||
1987 | if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING)) | ||
1988 | nbr_pending++; /* some frontends are still tuning */ | ||
1989 | } | ||
1990 | } | ||
1991 | } while (nbr_pending != 0); | ||
1992 | |||
1993 | /* set the output mode */ | ||
1994 | dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode); | ||
1995 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) | ||
1996 | dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); | ||
1997 | |||
1998 | /* turn off the diversity for the last frontend */ | ||
1999 | dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0); | ||
2000 | |||
2001 | return 0; | ||
2002 | } | ||
2003 | |||
2004 | static u16 dib9000_read_lock(struct dvb_frontend *fe) | ||
2005 | { | ||
2006 | struct dib9000_state *state = fe->demodulator_priv; | ||
2007 | |||
2008 | return dib9000_read_word(state, 535); | ||
2009 | } | ||
2010 | |||
2011 | static int dib9000_read_status(struct dvb_frontend *fe, fe_status_t * stat) | ||
2012 | { | ||
2013 | struct dib9000_state *state = fe->demodulator_priv; | ||
2014 | u8 index_frontend; | ||
2015 | u16 lock = 0, lock_slave = 0; | ||
2016 | |||
2017 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) | ||
2018 | lock_slave |= dib9000_read_lock(state->fe[index_frontend]); | ||
2019 | |||
2020 | lock = dib9000_read_word(state, 535); | ||
2021 | |||
2022 | *stat = 0; | ||
2023 | |||
2024 | if ((lock & 0x8000) || (lock_slave & 0x8000)) | ||
2025 | *stat |= FE_HAS_SIGNAL; | ||
2026 | if ((lock & 0x3000) || (lock_slave & 0x3000)) | ||
2027 | *stat |= FE_HAS_CARRIER; | ||
2028 | if ((lock & 0x0100) || (lock_slave & 0x0100)) | ||
2029 | *stat |= FE_HAS_VITERBI; | ||
2030 | if (((lock & 0x0038) == 0x38) || ((lock_slave & 0x0038) == 0x38)) | ||
2031 | *stat |= FE_HAS_SYNC; | ||
2032 | if ((lock & 0x0008) || (lock_slave & 0x0008)) | ||
2033 | *stat |= FE_HAS_LOCK; | ||
2034 | |||
2035 | return 0; | ||
2036 | } | ||
2037 | |||
2038 | static int dib9000_read_ber(struct dvb_frontend *fe, u32 * ber) | ||
2039 | { | ||
2040 | struct dib9000_state *state = fe->demodulator_priv; | ||
2041 | u16 c[16]; | ||
2042 | |||
2043 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
2044 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) | ||
2045 | return -EIO; | ||
2046 | dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, sizeof(c)); | ||
2047 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
2048 | |||
2049 | *ber = c[10] << 16 | c[11]; | ||
2050 | return 0; | ||
2051 | } | ||
2052 | |||
2053 | static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) | ||
2054 | { | ||
2055 | struct dib9000_state *state = fe->demodulator_priv; | ||
2056 | u8 index_frontend; | ||
2057 | u16 c[16]; | ||
2058 | u16 val; | ||
2059 | |||
2060 | *strength = 0; | ||
2061 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
2062 | state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); | ||
2063 | if (val > 65535 - *strength) | ||
2064 | *strength = 65535; | ||
2065 | else | ||
2066 | *strength += val; | ||
2067 | } | ||
2068 | |||
2069 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
2070 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) | ||
2071 | return -EIO; | ||
2072 | dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, sizeof(c)); | ||
2073 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
2074 | |||
2075 | val = 65535 - c[4]; | ||
2076 | if (val > 65535 - *strength) | ||
2077 | *strength = 65535; | ||
2078 | else | ||
2079 | *strength += val; | ||
2080 | return 0; | ||
2081 | } | ||
2082 | |||
2083 | static u32 dib9000_get_snr(struct dvb_frontend *fe) | ||
2084 | { | ||
2085 | struct dib9000_state *state = fe->demodulator_priv; | ||
2086 | u16 c[16]; | ||
2087 | u32 n, s, exp; | ||
2088 | u16 val; | ||
2089 | |||
2090 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
2091 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) | ||
2092 | return -EIO; | ||
2093 | dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, sizeof(c)); | ||
2094 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
2095 | |||
2096 | val = c[7]; | ||
2097 | n = (val >> 4) & 0xff; | ||
2098 | exp = ((val & 0xf) << 2); | ||
2099 | val = c[8]; | ||
2100 | exp += ((val >> 14) & 0x3); | ||
2101 | if ((exp & 0x20) != 0) | ||
2102 | exp -= 0x40; | ||
2103 | n <<= exp + 16; | ||
2104 | |||
2105 | s = (val >> 6) & 0xFF; | ||
2106 | exp = (val & 0x3F); | ||
2107 | if ((exp & 0x20) != 0) | ||
2108 | exp -= 0x40; | ||
2109 | s <<= exp + 16; | ||
2110 | |||
2111 | if (n > 0) { | ||
2112 | u32 t = (s / n) << 16; | ||
2113 | return t + ((s << 16) - n * t) / n; | ||
2114 | } | ||
2115 | return 0xffffffff; | ||
2116 | } | ||
2117 | |||
2118 | static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr) | ||
2119 | { | ||
2120 | struct dib9000_state *state = fe->demodulator_priv; | ||
2121 | u8 index_frontend; | ||
2122 | u32 snr_master; | ||
2123 | |||
2124 | snr_master = dib9000_get_snr(fe); | ||
2125 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) | ||
2126 | snr_master += dib9000_get_snr(state->fe[index_frontend]); | ||
2127 | |||
2128 | if ((snr_master >> 16) != 0) { | ||
2129 | snr_master = 10 * intlog10(snr_master >> 16); | ||
2130 | *snr = snr_master / ((1 << 24) / 10); | ||
2131 | } else | ||
2132 | *snr = 0; | ||
2133 | |||
2134 | return 0; | ||
2135 | } | ||
2136 | |||
2137 | static int dib9000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) | ||
2138 | { | ||
2139 | struct dib9000_state *state = fe->demodulator_priv; | ||
2140 | u16 c[16]; | ||
2141 | |||
2142 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
2143 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) | ||
2144 | return -EIO; | ||
2145 | dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, sizeof(c)); | ||
2146 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
2147 | |||
2148 | *unc = c[12]; | ||
2149 | return 0; | ||
2150 | } | ||
2151 | |||
2152 | int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, u8 first_addr) | ||
2153 | { | ||
2154 | int k = 0; | ||
2155 | u8 new_addr = 0; | ||
2156 | struct i2c_device client = {.i2c_adap = i2c }; | ||
2157 | |||
2158 | client.i2c_addr = default_addr + 16; | ||
2159 | dib9000_i2c_write16(&client, 1796, 0x0); | ||
2160 | |||
2161 | for (k = no_of_demods - 1; k >= 0; k--) { | ||
2162 | /* designated i2c address */ | ||
2163 | new_addr = first_addr + (k << 1); | ||
2164 | client.i2c_addr = default_addr; | ||
2165 | |||
2166 | dib9000_i2c_write16(&client, 1817, 3); | ||
2167 | dib9000_i2c_write16(&client, 1796, 0); | ||
2168 | dib9000_i2c_write16(&client, 1227, 1); | ||
2169 | dib9000_i2c_write16(&client, 1227, 0); | ||
2170 | |||
2171 | client.i2c_addr = new_addr; | ||
2172 | dib9000_i2c_write16(&client, 1817, 3); | ||
2173 | dib9000_i2c_write16(&client, 1796, 0); | ||
2174 | dib9000_i2c_write16(&client, 1227, 1); | ||
2175 | dib9000_i2c_write16(&client, 1227, 0); | ||
2176 | |||
2177 | if (dib9000_identify(&client) == 0) { | ||
2178 | client.i2c_addr = default_addr; | ||
2179 | if (dib9000_identify(&client) == 0) { | ||
2180 | dprintk("DiB9000 #%d: not identified", k); | ||
2181 | return -EIO; | ||
2182 | } | ||
2183 | } | ||
2184 | |||
2185 | dib9000_i2c_write16(&client, 1795, (1 << 10) | (4 << 6)); | ||
2186 | dib9000_i2c_write16(&client, 1794, (new_addr << 2) | 2); | ||
2187 | |||
2188 | dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); | ||
2189 | } | ||
2190 | |||
2191 | for (k = 0; k < no_of_demods; k++) { | ||
2192 | new_addr = first_addr | (k << 1); | ||
2193 | client.i2c_addr = new_addr; | ||
2194 | |||
2195 | dib9000_i2c_write16(&client, 1794, (new_addr << 2)); | ||
2196 | dib9000_i2c_write16(&client, 1795, 0); | ||
2197 | } | ||
2198 | |||
2199 | return 0; | ||
2200 | } | ||
2201 | EXPORT_SYMBOL(dib9000_i2c_enumeration); | ||
2202 | |||
2203 | int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) | ||
2204 | { | ||
2205 | struct dib9000_state *state = fe->demodulator_priv; | ||
2206 | u8 index_frontend = 1; | ||
2207 | |||
2208 | while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) | ||
2209 | index_frontend++; | ||
2210 | if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { | ||
2211 | dprintk("set slave fe %p to index %i", fe_slave, index_frontend); | ||
2212 | state->fe[index_frontend] = fe_slave; | ||
2213 | return 0; | ||
2214 | } | ||
2215 | |||
2216 | dprintk("too many slave frontend"); | ||
2217 | return -ENOMEM; | ||
2218 | } | ||
2219 | EXPORT_SYMBOL(dib9000_set_slave_frontend); | ||
2220 | |||
2221 | int dib9000_remove_slave_frontend(struct dvb_frontend *fe) | ||
2222 | { | ||
2223 | struct dib9000_state *state = fe->demodulator_priv; | ||
2224 | u8 index_frontend = 1; | ||
2225 | |||
2226 | while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) | ||
2227 | index_frontend++; | ||
2228 | if (index_frontend != 1) { | ||
2229 | dprintk("remove slave fe %p (index %i)", state->fe[index_frontend - 1], index_frontend - 1); | ||
2230 | state->fe[index_frontend] = NULL; | ||
2231 | return 0; | ||
2232 | } | ||
2233 | |||
2234 | dprintk("no frontend to be removed"); | ||
2235 | return -ENODEV; | ||
2236 | } | ||
2237 | EXPORT_SYMBOL(dib9000_remove_slave_frontend); | ||
2238 | |||
2239 | struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) | ||
2240 | { | ||
2241 | struct dib9000_state *state = fe->demodulator_priv; | ||
2242 | |||
2243 | if (slave_index >= MAX_NUMBER_OF_FRONTENDS) | ||
2244 | return NULL; | ||
2245 | return state->fe[slave_index]; | ||
2246 | } | ||
2247 | EXPORT_SYMBOL(dib9000_get_slave_frontend); | ||
2248 | |||
2249 | static struct dvb_frontend_ops dib9000_ops; | ||
2250 | struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, const struct dib9000_config *cfg) | ||
2251 | { | ||
2252 | struct dvb_frontend *fe; | ||
2253 | struct dib9000_state *st; | ||
2254 | st = kzalloc(sizeof(struct dib9000_state), GFP_KERNEL); | ||
2255 | if (st == NULL) | ||
2256 | return NULL; | ||
2257 | fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); | ||
2258 | if (fe == NULL) | ||
2259 | return NULL; | ||
2260 | |||
2261 | memcpy(&st->chip.d9.cfg, cfg, sizeof(struct dib9000_config)); | ||
2262 | st->i2c.i2c_adap = i2c_adap; | ||
2263 | st->i2c.i2c_addr = i2c_addr; | ||
2264 | |||
2265 | st->gpio_dir = DIB9000_GPIO_DEFAULT_DIRECTIONS; | ||
2266 | st->gpio_val = DIB9000_GPIO_DEFAULT_VALUES; | ||
2267 | st->gpio_pwm_pos = DIB9000_GPIO_DEFAULT_PWM_POS; | ||
2268 | |||
2269 | DibInitLock(&st->platform.risc.mbx_if_lock); | ||
2270 | DibInitLock(&st->platform.risc.mbx_lock); | ||
2271 | DibInitLock(&st->platform.risc.mem_lock); | ||
2272 | DibInitLock(&st->platform.risc.mem_mbx_lock); | ||
2273 | |||
2274 | st->fe[0] = fe; | ||
2275 | fe->demodulator_priv = st; | ||
2276 | memcpy(&st->fe[0]->ops, &dib9000_ops, sizeof(struct dvb_frontend_ops)); | ||
2277 | |||
2278 | /* Ensure the output mode remains at the previous default if it's | ||
2279 | * not specifically set by the caller. | ||
2280 | */ | ||
2281 | if ((st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) | ||
2282 | st->chip.d9.cfg.output_mode = OUTMODE_MPEG2_FIFO; | ||
2283 | |||
2284 | if (dib9000_identify(&st->i2c) == 0) | ||
2285 | goto error; | ||
2286 | |||
2287 | dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c.i2c_adap, st->i2c.i2c_addr); | ||
2288 | |||
2289 | st->tuner_adap.dev.parent = i2c_adap->dev.parent; | ||
2290 | strncpy(st->tuner_adap.name, "DIB9000_FW TUNER ACCESS", sizeof(st->tuner_adap.name)); | ||
2291 | st->tuner_adap.algo = &dib9000_tuner_algo; | ||
2292 | st->tuner_adap.algo_data = NULL; | ||
2293 | i2c_set_adapdata(&st->tuner_adap, st); | ||
2294 | if (i2c_add_adapter(&st->tuner_adap) < 0) | ||
2295 | goto error; | ||
2296 | |||
2297 | st->component_bus.dev.parent = i2c_adap->dev.parent; | ||
2298 | strncpy(st->component_bus.name, "DIB9000_FW COMPONENT BUS ACCESS", sizeof(st->component_bus.name)); | ||
2299 | st->component_bus.algo = &dib9000_component_bus_algo; | ||
2300 | st->component_bus.algo_data = NULL; | ||
2301 | st->component_bus_speed = 340; | ||
2302 | i2c_set_adapdata(&st->component_bus, st); | ||
2303 | if (i2c_add_adapter(&st->component_bus) < 0) | ||
2304 | goto component_bus_add_error; | ||
2305 | |||
2306 | dib9000_fw_reset(fe); | ||
2307 | |||
2308 | return fe; | ||
2309 | |||
2310 | component_bus_add_error: | ||
2311 | i2c_del_adapter(&st->tuner_adap); | ||
2312 | error: | ||
2313 | kfree(st); | ||
2314 | return NULL; | ||
2315 | } | ||
2316 | EXPORT_SYMBOL(dib9000_attach); | ||
2317 | |||
2318 | static struct dvb_frontend_ops dib9000_ops = { | ||
2319 | .info = { | ||
2320 | .name = "DiBcom 9000", | ||
2321 | .type = FE_OFDM, | ||
2322 | .frequency_min = 44250000, | ||
2323 | .frequency_max = 867250000, | ||
2324 | .frequency_stepsize = 62500, | ||
2325 | .caps = FE_CAN_INVERSION_AUTO | | ||
2326 | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | | ||
2327 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | | ||
2328 | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | | ||
2329 | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, | ||
2330 | }, | ||
2331 | |||
2332 | .release = dib9000_release, | ||
2333 | |||
2334 | .init = dib9000_wakeup, | ||
2335 | .sleep = dib9000_sleep, | ||
2336 | |||
2337 | .set_frontend = dib9000_set_frontend, | ||
2338 | .get_tune_settings = dib9000_fe_get_tune_settings, | ||
2339 | .get_frontend = dib9000_get_frontend, | ||
2340 | |||
2341 | .read_status = dib9000_read_status, | ||
2342 | .read_ber = dib9000_read_ber, | ||
2343 | .read_signal_strength = dib9000_read_signal_strength, | ||
2344 | .read_snr = dib9000_read_snr, | ||
2345 | .read_ucblocks = dib9000_read_unc_blocks, | ||
2346 | }; | ||
2347 | |||
2348 | MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); | ||
2349 | MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>"); | ||
2350 | MODULE_DESCRIPTION("Driver for the DiBcom 9000 COFDM demodulator"); | ||
2351 | MODULE_LICENSE("GPL"); | ||