aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/md/dm-raid1.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/md/dm-raid1.c')
-rw-r--r--drivers/md/dm-raid1.c1269
1 files changed, 1269 insertions, 0 deletions
diff --git a/drivers/md/dm-raid1.c b/drivers/md/dm-raid1.c
new file mode 100644
index 000000000000..6e3cf7e13451
--- /dev/null
+++ b/drivers/md/dm-raid1.c
@@ -0,0 +1,1269 @@
1/*
2 * Copyright (C) 2003 Sistina Software Limited.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
8#include "dm-bio-list.h"
9#include "dm-io.h"
10#include "dm-log.h"
11#include "kcopyd.h"
12
13#include <linux/ctype.h>
14#include <linux/init.h>
15#include <linux/mempool.h>
16#include <linux/module.h>
17#include <linux/pagemap.h>
18#include <linux/slab.h>
19#include <linux/time.h>
20#include <linux/vmalloc.h>
21#include <linux/workqueue.h>
22
23static struct workqueue_struct *_kmirrord_wq;
24static struct work_struct _kmirrord_work;
25
26static inline void wake(void)
27{
28 queue_work(_kmirrord_wq, &_kmirrord_work);
29}
30
31/*-----------------------------------------------------------------
32 * Region hash
33 *
34 * The mirror splits itself up into discrete regions. Each
35 * region can be in one of three states: clean, dirty,
36 * nosync. There is no need to put clean regions in the hash.
37 *
38 * In addition to being present in the hash table a region _may_
39 * be present on one of three lists.
40 *
41 * clean_regions: Regions on this list have no io pending to
42 * them, they are in sync, we are no longer interested in them,
43 * they are dull. rh_update_states() will remove them from the
44 * hash table.
45 *
46 * quiesced_regions: These regions have been spun down, ready
47 * for recovery. rh_recovery_start() will remove regions from
48 * this list and hand them to kmirrord, which will schedule the
49 * recovery io with kcopyd.
50 *
51 * recovered_regions: Regions that kcopyd has successfully
52 * recovered. rh_update_states() will now schedule any delayed
53 * io, up the recovery_count, and remove the region from the
54 * hash.
55 *
56 * There are 2 locks:
57 * A rw spin lock 'hash_lock' protects just the hash table,
58 * this is never held in write mode from interrupt context,
59 * which I believe means that we only have to disable irqs when
60 * doing a write lock.
61 *
62 * An ordinary spin lock 'region_lock' that protects the three
63 * lists in the region_hash, with the 'state', 'list' and
64 * 'bhs_delayed' fields of the regions. This is used from irq
65 * context, so all other uses will have to suspend local irqs.
66 *---------------------------------------------------------------*/
67struct mirror_set;
68struct region_hash {
69 struct mirror_set *ms;
70 uint32_t region_size;
71 unsigned region_shift;
72
73 /* holds persistent region state */
74 struct dirty_log *log;
75
76 /* hash table */
77 rwlock_t hash_lock;
78 mempool_t *region_pool;
79 unsigned int mask;
80 unsigned int nr_buckets;
81 struct list_head *buckets;
82
83 spinlock_t region_lock;
84 struct semaphore recovery_count;
85 struct list_head clean_regions;
86 struct list_head quiesced_regions;
87 struct list_head recovered_regions;
88};
89
90enum {
91 RH_CLEAN,
92 RH_DIRTY,
93 RH_NOSYNC,
94 RH_RECOVERING
95};
96
97struct region {
98 struct region_hash *rh; /* FIXME: can we get rid of this ? */
99 region_t key;
100 int state;
101
102 struct list_head hash_list;
103 struct list_head list;
104
105 atomic_t pending;
106 struct bio_list delayed_bios;
107};
108
109/*
110 * Conversion fns
111 */
112static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio)
113{
114 return bio->bi_sector >> rh->region_shift;
115}
116
117static inline sector_t region_to_sector(struct region_hash *rh, region_t region)
118{
119 return region << rh->region_shift;
120}
121
122/* FIXME move this */
123static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw);
124
125static void *region_alloc(unsigned int __nocast gfp_mask, void *pool_data)
126{
127 return kmalloc(sizeof(struct region), gfp_mask);
128}
129
130static void region_free(void *element, void *pool_data)
131{
132 kfree(element);
133}
134
135#define MIN_REGIONS 64
136#define MAX_RECOVERY 1
137static int rh_init(struct region_hash *rh, struct mirror_set *ms,
138 struct dirty_log *log, uint32_t region_size,
139 region_t nr_regions)
140{
141 unsigned int nr_buckets, max_buckets;
142 size_t i;
143
144 /*
145 * Calculate a suitable number of buckets for our hash
146 * table.
147 */
148 max_buckets = nr_regions >> 6;
149 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
150 ;
151 nr_buckets >>= 1;
152
153 rh->ms = ms;
154 rh->log = log;
155 rh->region_size = region_size;
156 rh->region_shift = ffs(region_size) - 1;
157 rwlock_init(&rh->hash_lock);
158 rh->mask = nr_buckets - 1;
159 rh->nr_buckets = nr_buckets;
160
161 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
162 if (!rh->buckets) {
163 DMERR("unable to allocate region hash memory");
164 return -ENOMEM;
165 }
166
167 for (i = 0; i < nr_buckets; i++)
168 INIT_LIST_HEAD(rh->buckets + i);
169
170 spin_lock_init(&rh->region_lock);
171 sema_init(&rh->recovery_count, 0);
172 INIT_LIST_HEAD(&rh->clean_regions);
173 INIT_LIST_HEAD(&rh->quiesced_regions);
174 INIT_LIST_HEAD(&rh->recovered_regions);
175
176 rh->region_pool = mempool_create(MIN_REGIONS, region_alloc,
177 region_free, NULL);
178 if (!rh->region_pool) {
179 vfree(rh->buckets);
180 rh->buckets = NULL;
181 return -ENOMEM;
182 }
183
184 return 0;
185}
186
187static void rh_exit(struct region_hash *rh)
188{
189 unsigned int h;
190 struct region *reg, *nreg;
191
192 BUG_ON(!list_empty(&rh->quiesced_regions));
193 for (h = 0; h < rh->nr_buckets; h++) {
194 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) {
195 BUG_ON(atomic_read(&reg->pending));
196 mempool_free(reg, rh->region_pool);
197 }
198 }
199
200 if (rh->log)
201 dm_destroy_dirty_log(rh->log);
202 if (rh->region_pool)
203 mempool_destroy(rh->region_pool);
204 vfree(rh->buckets);
205}
206
207#define RH_HASH_MULT 2654435387U
208
209static inline unsigned int rh_hash(struct region_hash *rh, region_t region)
210{
211 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask;
212}
213
214static struct region *__rh_lookup(struct region_hash *rh, region_t region)
215{
216 struct region *reg;
217
218 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list)
219 if (reg->key == region)
220 return reg;
221
222 return NULL;
223}
224
225static void __rh_insert(struct region_hash *rh, struct region *reg)
226{
227 unsigned int h = rh_hash(rh, reg->key);
228 list_add(&reg->hash_list, rh->buckets + h);
229}
230
231static struct region *__rh_alloc(struct region_hash *rh, region_t region)
232{
233 struct region *reg, *nreg;
234
235 read_unlock(&rh->hash_lock);
236 nreg = mempool_alloc(rh->region_pool, GFP_NOIO);
237 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
238 RH_CLEAN : RH_NOSYNC;
239 nreg->rh = rh;
240 nreg->key = region;
241
242 INIT_LIST_HEAD(&nreg->list);
243
244 atomic_set(&nreg->pending, 0);
245 bio_list_init(&nreg->delayed_bios);
246 write_lock_irq(&rh->hash_lock);
247
248 reg = __rh_lookup(rh, region);
249 if (reg)
250 /* we lost the race */
251 mempool_free(nreg, rh->region_pool);
252
253 else {
254 __rh_insert(rh, nreg);
255 if (nreg->state == RH_CLEAN) {
256 spin_lock(&rh->region_lock);
257 list_add(&nreg->list, &rh->clean_regions);
258 spin_unlock(&rh->region_lock);
259 }
260 reg = nreg;
261 }
262 write_unlock_irq(&rh->hash_lock);
263 read_lock(&rh->hash_lock);
264
265 return reg;
266}
267
268static inline struct region *__rh_find(struct region_hash *rh, region_t region)
269{
270 struct region *reg;
271
272 reg = __rh_lookup(rh, region);
273 if (!reg)
274 reg = __rh_alloc(rh, region);
275
276 return reg;
277}
278
279static int rh_state(struct region_hash *rh, region_t region, int may_block)
280{
281 int r;
282 struct region *reg;
283
284 read_lock(&rh->hash_lock);
285 reg = __rh_lookup(rh, region);
286 read_unlock(&rh->hash_lock);
287
288 if (reg)
289 return reg->state;
290
291 /*
292 * The region wasn't in the hash, so we fall back to the
293 * dirty log.
294 */
295 r = rh->log->type->in_sync(rh->log, region, may_block);
296
297 /*
298 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
299 * taken as a RH_NOSYNC
300 */
301 return r == 1 ? RH_CLEAN : RH_NOSYNC;
302}
303
304static inline int rh_in_sync(struct region_hash *rh,
305 region_t region, int may_block)
306{
307 int state = rh_state(rh, region, may_block);
308 return state == RH_CLEAN || state == RH_DIRTY;
309}
310
311static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list)
312{
313 struct bio *bio;
314
315 while ((bio = bio_list_pop(bio_list))) {
316 queue_bio(ms, bio, WRITE);
317 }
318}
319
320static void rh_update_states(struct region_hash *rh)
321{
322 struct region *reg, *next;
323
324 LIST_HEAD(clean);
325 LIST_HEAD(recovered);
326
327 /*
328 * Quickly grab the lists.
329 */
330 write_lock_irq(&rh->hash_lock);
331 spin_lock(&rh->region_lock);
332 if (!list_empty(&rh->clean_regions)) {
333 list_splice(&rh->clean_regions, &clean);
334 INIT_LIST_HEAD(&rh->clean_regions);
335
336 list_for_each_entry (reg, &clean, list) {
337 rh->log->type->clear_region(rh->log, reg->key);
338 list_del(&reg->hash_list);
339 }
340 }
341
342 if (!list_empty(&rh->recovered_regions)) {
343 list_splice(&rh->recovered_regions, &recovered);
344 INIT_LIST_HEAD(&rh->recovered_regions);
345
346 list_for_each_entry (reg, &recovered, list)
347 list_del(&reg->hash_list);
348 }
349 spin_unlock(&rh->region_lock);
350 write_unlock_irq(&rh->hash_lock);
351
352 /*
353 * All the regions on the recovered and clean lists have
354 * now been pulled out of the system, so no need to do
355 * any more locking.
356 */
357 list_for_each_entry_safe (reg, next, &recovered, list) {
358 rh->log->type->clear_region(rh->log, reg->key);
359 rh->log->type->complete_resync_work(rh->log, reg->key, 1);
360 dispatch_bios(rh->ms, &reg->delayed_bios);
361 up(&rh->recovery_count);
362 mempool_free(reg, rh->region_pool);
363 }
364
365 if (!list_empty(&recovered))
366 rh->log->type->flush(rh->log);
367
368 list_for_each_entry_safe (reg, next, &clean, list)
369 mempool_free(reg, rh->region_pool);
370}
371
372static void rh_inc(struct region_hash *rh, region_t region)
373{
374 struct region *reg;
375
376 read_lock(&rh->hash_lock);
377 reg = __rh_find(rh, region);
378 if (reg->state == RH_CLEAN) {
379 rh->log->type->mark_region(rh->log, reg->key);
380
381 spin_lock_irq(&rh->region_lock);
382 reg->state = RH_DIRTY;
383 list_del_init(&reg->list); /* take off the clean list */
384 spin_unlock_irq(&rh->region_lock);
385 }
386
387 atomic_inc(&reg->pending);
388 read_unlock(&rh->hash_lock);
389}
390
391static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios)
392{
393 struct bio *bio;
394
395 for (bio = bios->head; bio; bio = bio->bi_next)
396 rh_inc(rh, bio_to_region(rh, bio));
397}
398
399static void rh_dec(struct region_hash *rh, region_t region)
400{
401 unsigned long flags;
402 struct region *reg;
403 int should_wake = 0;
404
405 read_lock(&rh->hash_lock);
406 reg = __rh_lookup(rh, region);
407 read_unlock(&rh->hash_lock);
408
409 if (atomic_dec_and_test(&reg->pending)) {
410 spin_lock_irqsave(&rh->region_lock, flags);
411 if (reg->state == RH_RECOVERING) {
412 list_add_tail(&reg->list, &rh->quiesced_regions);
413 } else {
414 reg->state = RH_CLEAN;
415 list_add(&reg->list, &rh->clean_regions);
416 }
417 spin_unlock_irqrestore(&rh->region_lock, flags);
418 should_wake = 1;
419 }
420
421 if (should_wake)
422 wake();
423}
424
425/*
426 * Starts quiescing a region in preparation for recovery.
427 */
428static int __rh_recovery_prepare(struct region_hash *rh)
429{
430 int r;
431 struct region *reg;
432 region_t region;
433
434 /*
435 * Ask the dirty log what's next.
436 */
437 r = rh->log->type->get_resync_work(rh->log, &region);
438 if (r <= 0)
439 return r;
440
441 /*
442 * Get this region, and start it quiescing by setting the
443 * recovering flag.
444 */
445 read_lock(&rh->hash_lock);
446 reg = __rh_find(rh, region);
447 read_unlock(&rh->hash_lock);
448
449 spin_lock_irq(&rh->region_lock);
450 reg->state = RH_RECOVERING;
451
452 /* Already quiesced ? */
453 if (atomic_read(&reg->pending))
454 list_del_init(&reg->list);
455
456 else {
457 list_del_init(&reg->list);
458 list_add(&reg->list, &rh->quiesced_regions);
459 }
460 spin_unlock_irq(&rh->region_lock);
461
462 return 1;
463}
464
465static void rh_recovery_prepare(struct region_hash *rh)
466{
467 while (!down_trylock(&rh->recovery_count))
468 if (__rh_recovery_prepare(rh) <= 0) {
469 up(&rh->recovery_count);
470 break;
471 }
472}
473
474/*
475 * Returns any quiesced regions.
476 */
477static struct region *rh_recovery_start(struct region_hash *rh)
478{
479 struct region *reg = NULL;
480
481 spin_lock_irq(&rh->region_lock);
482 if (!list_empty(&rh->quiesced_regions)) {
483 reg = list_entry(rh->quiesced_regions.next,
484 struct region, list);
485 list_del_init(&reg->list); /* remove from the quiesced list */
486 }
487 spin_unlock_irq(&rh->region_lock);
488
489 return reg;
490}
491
492/* FIXME: success ignored for now */
493static void rh_recovery_end(struct region *reg, int success)
494{
495 struct region_hash *rh = reg->rh;
496
497 spin_lock_irq(&rh->region_lock);
498 list_add(&reg->list, &reg->rh->recovered_regions);
499 spin_unlock_irq(&rh->region_lock);
500
501 wake();
502}
503
504static void rh_flush(struct region_hash *rh)
505{
506 rh->log->type->flush(rh->log);
507}
508
509static void rh_delay(struct region_hash *rh, struct bio *bio)
510{
511 struct region *reg;
512
513 read_lock(&rh->hash_lock);
514 reg = __rh_find(rh, bio_to_region(rh, bio));
515 bio_list_add(&reg->delayed_bios, bio);
516 read_unlock(&rh->hash_lock);
517}
518
519static void rh_stop_recovery(struct region_hash *rh)
520{
521 int i;
522
523 /* wait for any recovering regions */
524 for (i = 0; i < MAX_RECOVERY; i++)
525 down(&rh->recovery_count);
526}
527
528static void rh_start_recovery(struct region_hash *rh)
529{
530 int i;
531
532 for (i = 0; i < MAX_RECOVERY; i++)
533 up(&rh->recovery_count);
534
535 wake();
536}
537
538/*-----------------------------------------------------------------
539 * Mirror set structures.
540 *---------------------------------------------------------------*/
541struct mirror {
542 atomic_t error_count;
543 struct dm_dev *dev;
544 sector_t offset;
545};
546
547struct mirror_set {
548 struct dm_target *ti;
549 struct list_head list;
550 struct region_hash rh;
551 struct kcopyd_client *kcopyd_client;
552
553 spinlock_t lock; /* protects the next two lists */
554 struct bio_list reads;
555 struct bio_list writes;
556
557 /* recovery */
558 region_t nr_regions;
559 int in_sync;
560
561 unsigned int nr_mirrors;
562 struct mirror mirror[0];
563};
564
565/*
566 * Every mirror should look like this one.
567 */
568#define DEFAULT_MIRROR 0
569
570/*
571 * This is yucky. We squirrel the mirror_set struct away inside
572 * bi_next for write buffers. This is safe since the bh
573 * doesn't get submitted to the lower levels of block layer.
574 */
575static struct mirror_set *bio_get_ms(struct bio *bio)
576{
577 return (struct mirror_set *) bio->bi_next;
578}
579
580static void bio_set_ms(struct bio *bio, struct mirror_set *ms)
581{
582 bio->bi_next = (struct bio *) ms;
583}
584
585/*-----------------------------------------------------------------
586 * Recovery.
587 *
588 * When a mirror is first activated we may find that some regions
589 * are in the no-sync state. We have to recover these by
590 * recopying from the default mirror to all the others.
591 *---------------------------------------------------------------*/
592static void recovery_complete(int read_err, unsigned int write_err,
593 void *context)
594{
595 struct region *reg = (struct region *) context;
596
597 /* FIXME: better error handling */
598 rh_recovery_end(reg, read_err || write_err);
599}
600
601static int recover(struct mirror_set *ms, struct region *reg)
602{
603 int r;
604 unsigned int i;
605 struct io_region from, to[KCOPYD_MAX_REGIONS], *dest;
606 struct mirror *m;
607 unsigned long flags = 0;
608
609 /* fill in the source */
610 m = ms->mirror + DEFAULT_MIRROR;
611 from.bdev = m->dev->bdev;
612 from.sector = m->offset + region_to_sector(reg->rh, reg->key);
613 if (reg->key == (ms->nr_regions - 1)) {
614 /*
615 * The final region may be smaller than
616 * region_size.
617 */
618 from.count = ms->ti->len & (reg->rh->region_size - 1);
619 if (!from.count)
620 from.count = reg->rh->region_size;
621 } else
622 from.count = reg->rh->region_size;
623
624 /* fill in the destinations */
625 for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
626 if (i == DEFAULT_MIRROR)
627 continue;
628
629 m = ms->mirror + i;
630 dest->bdev = m->dev->bdev;
631 dest->sector = m->offset + region_to_sector(reg->rh, reg->key);
632 dest->count = from.count;
633 dest++;
634 }
635
636 /* hand to kcopyd */
637 set_bit(KCOPYD_IGNORE_ERROR, &flags);
638 r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags,
639 recovery_complete, reg);
640
641 return r;
642}
643
644static void do_recovery(struct mirror_set *ms)
645{
646 int r;
647 struct region *reg;
648 struct dirty_log *log = ms->rh.log;
649
650 /*
651 * Start quiescing some regions.
652 */
653 rh_recovery_prepare(&ms->rh);
654
655 /*
656 * Copy any already quiesced regions.
657 */
658 while ((reg = rh_recovery_start(&ms->rh))) {
659 r = recover(ms, reg);
660 if (r)
661 rh_recovery_end(reg, 0);
662 }
663
664 /*
665 * Update the in sync flag.
666 */
667 if (!ms->in_sync &&
668 (log->type->get_sync_count(log) == ms->nr_regions)) {
669 /* the sync is complete */
670 dm_table_event(ms->ti->table);
671 ms->in_sync = 1;
672 }
673}
674
675/*-----------------------------------------------------------------
676 * Reads
677 *---------------------------------------------------------------*/
678static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
679{
680 /* FIXME: add read balancing */
681 return ms->mirror + DEFAULT_MIRROR;
682}
683
684/*
685 * remap a buffer to a particular mirror.
686 */
687static void map_bio(struct mirror_set *ms, struct mirror *m, struct bio *bio)
688{
689 bio->bi_bdev = m->dev->bdev;
690 bio->bi_sector = m->offset + (bio->bi_sector - ms->ti->begin);
691}
692
693static void do_reads(struct mirror_set *ms, struct bio_list *reads)
694{
695 region_t region;
696 struct bio *bio;
697 struct mirror *m;
698
699 while ((bio = bio_list_pop(reads))) {
700 region = bio_to_region(&ms->rh, bio);
701
702 /*
703 * We can only read balance if the region is in sync.
704 */
705 if (rh_in_sync(&ms->rh, region, 0))
706 m = choose_mirror(ms, bio->bi_sector);
707 else
708 m = ms->mirror + DEFAULT_MIRROR;
709
710 map_bio(ms, m, bio);
711 generic_make_request(bio);
712 }
713}
714
715/*-----------------------------------------------------------------
716 * Writes.
717 *
718 * We do different things with the write io depending on the
719 * state of the region that it's in:
720 *
721 * SYNC: increment pending, use kcopyd to write to *all* mirrors
722 * RECOVERING: delay the io until recovery completes
723 * NOSYNC: increment pending, just write to the default mirror
724 *---------------------------------------------------------------*/
725static void write_callback(unsigned long error, void *context)
726{
727 unsigned int i;
728 int uptodate = 1;
729 struct bio *bio = (struct bio *) context;
730 struct mirror_set *ms;
731
732 ms = bio_get_ms(bio);
733 bio_set_ms(bio, NULL);
734
735 /*
736 * NOTE: We don't decrement the pending count here,
737 * instead it is done by the targets endio function.
738 * This way we handle both writes to SYNC and NOSYNC
739 * regions with the same code.
740 */
741
742 if (error) {
743 /*
744 * only error the io if all mirrors failed.
745 * FIXME: bogus
746 */
747 uptodate = 0;
748 for (i = 0; i < ms->nr_mirrors; i++)
749 if (!test_bit(i, &error)) {
750 uptodate = 1;
751 break;
752 }
753 }
754 bio_endio(bio, bio->bi_size, 0);
755}
756
757static void do_write(struct mirror_set *ms, struct bio *bio)
758{
759 unsigned int i;
760 struct io_region io[KCOPYD_MAX_REGIONS+1];
761 struct mirror *m;
762
763 for (i = 0; i < ms->nr_mirrors; i++) {
764 m = ms->mirror + i;
765
766 io[i].bdev = m->dev->bdev;
767 io[i].sector = m->offset + (bio->bi_sector - ms->ti->begin);
768 io[i].count = bio->bi_size >> 9;
769 }
770
771 bio_set_ms(bio, ms);
772 dm_io_async_bvec(ms->nr_mirrors, io, WRITE,
773 bio->bi_io_vec + bio->bi_idx,
774 write_callback, bio);
775}
776
777static void do_writes(struct mirror_set *ms, struct bio_list *writes)
778{
779 int state;
780 struct bio *bio;
781 struct bio_list sync, nosync, recover, *this_list = NULL;
782
783 if (!writes->head)
784 return;
785
786 /*
787 * Classify each write.
788 */
789 bio_list_init(&sync);
790 bio_list_init(&nosync);
791 bio_list_init(&recover);
792
793 while ((bio = bio_list_pop(writes))) {
794 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1);
795 switch (state) {
796 case RH_CLEAN:
797 case RH_DIRTY:
798 this_list = &sync;
799 break;
800
801 case RH_NOSYNC:
802 this_list = &nosync;
803 break;
804
805 case RH_RECOVERING:
806 this_list = &recover;
807 break;
808 }
809
810 bio_list_add(this_list, bio);
811 }
812
813 /*
814 * Increment the pending counts for any regions that will
815 * be written to (writes to recover regions are going to
816 * be delayed).
817 */
818 rh_inc_pending(&ms->rh, &sync);
819 rh_inc_pending(&ms->rh, &nosync);
820 rh_flush(&ms->rh);
821
822 /*
823 * Dispatch io.
824 */
825 while ((bio = bio_list_pop(&sync)))
826 do_write(ms, bio);
827
828 while ((bio = bio_list_pop(&recover)))
829 rh_delay(&ms->rh, bio);
830
831 while ((bio = bio_list_pop(&nosync))) {
832 map_bio(ms, ms->mirror + DEFAULT_MIRROR, bio);
833 generic_make_request(bio);
834 }
835}
836
837/*-----------------------------------------------------------------
838 * kmirrord
839 *---------------------------------------------------------------*/
840static LIST_HEAD(_mirror_sets);
841static DECLARE_RWSEM(_mirror_sets_lock);
842
843static void do_mirror(struct mirror_set *ms)
844{
845 struct bio_list reads, writes;
846
847 spin_lock(&ms->lock);
848 reads = ms->reads;
849 writes = ms->writes;
850 bio_list_init(&ms->reads);
851 bio_list_init(&ms->writes);
852 spin_unlock(&ms->lock);
853
854 rh_update_states(&ms->rh);
855 do_recovery(ms);
856 do_reads(ms, &reads);
857 do_writes(ms, &writes);
858}
859
860static void do_work(void *ignored)
861{
862 struct mirror_set *ms;
863
864 down_read(&_mirror_sets_lock);
865 list_for_each_entry (ms, &_mirror_sets, list)
866 do_mirror(ms);
867 up_read(&_mirror_sets_lock);
868}
869
870/*-----------------------------------------------------------------
871 * Target functions
872 *---------------------------------------------------------------*/
873static struct mirror_set *alloc_context(unsigned int nr_mirrors,
874 uint32_t region_size,
875 struct dm_target *ti,
876 struct dirty_log *dl)
877{
878 size_t len;
879 struct mirror_set *ms = NULL;
880
881 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors))
882 return NULL;
883
884 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
885
886 ms = kmalloc(len, GFP_KERNEL);
887 if (!ms) {
888 ti->error = "dm-mirror: Cannot allocate mirror context";
889 return NULL;
890 }
891
892 memset(ms, 0, len);
893 spin_lock_init(&ms->lock);
894
895 ms->ti = ti;
896 ms->nr_mirrors = nr_mirrors;
897 ms->nr_regions = dm_sector_div_up(ti->len, region_size);
898 ms->in_sync = 0;
899
900 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) {
901 ti->error = "dm-mirror: Error creating dirty region hash";
902 kfree(ms);
903 return NULL;
904 }
905
906 return ms;
907}
908
909static void free_context(struct mirror_set *ms, struct dm_target *ti,
910 unsigned int m)
911{
912 while (m--)
913 dm_put_device(ti, ms->mirror[m].dev);
914
915 rh_exit(&ms->rh);
916 kfree(ms);
917}
918
919static inline int _check_region_size(struct dm_target *ti, uint32_t size)
920{
921 return !(size % (PAGE_SIZE >> 9) || (size & (size - 1)) ||
922 size > ti->len);
923}
924
925static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
926 unsigned int mirror, char **argv)
927{
928 sector_t offset;
929
930 if (sscanf(argv[1], SECTOR_FORMAT, &offset) != 1) {
931 ti->error = "dm-mirror: Invalid offset";
932 return -EINVAL;
933 }
934
935 if (dm_get_device(ti, argv[0], offset, ti->len,
936 dm_table_get_mode(ti->table),
937 &ms->mirror[mirror].dev)) {
938 ti->error = "dm-mirror: Device lookup failure";
939 return -ENXIO;
940 }
941
942 ms->mirror[mirror].offset = offset;
943
944 return 0;
945}
946
947static int add_mirror_set(struct mirror_set *ms)
948{
949 down_write(&_mirror_sets_lock);
950 list_add_tail(&ms->list, &_mirror_sets);
951 up_write(&_mirror_sets_lock);
952 wake();
953
954 return 0;
955}
956
957static void del_mirror_set(struct mirror_set *ms)
958{
959 down_write(&_mirror_sets_lock);
960 list_del(&ms->list);
961 up_write(&_mirror_sets_lock);
962}
963
964/*
965 * Create dirty log: log_type #log_params <log_params>
966 */
967static struct dirty_log *create_dirty_log(struct dm_target *ti,
968 unsigned int argc, char **argv,
969 unsigned int *args_used)
970{
971 unsigned int param_count;
972 struct dirty_log *dl;
973
974 if (argc < 2) {
975 ti->error = "dm-mirror: Insufficient mirror log arguments";
976 return NULL;
977 }
978
979 if (sscanf(argv[1], "%u", &param_count) != 1) {
980 ti->error = "dm-mirror: Invalid mirror log argument count";
981 return NULL;
982 }
983
984 *args_used = 2 + param_count;
985
986 if (argc < *args_used) {
987 ti->error = "dm-mirror: Insufficient mirror log arguments";
988 return NULL;
989 }
990
991 dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2);
992 if (!dl) {
993 ti->error = "dm-mirror: Error creating mirror dirty log";
994 return NULL;
995 }
996
997 if (!_check_region_size(ti, dl->type->get_region_size(dl))) {
998 ti->error = "dm-mirror: Invalid region size";
999 dm_destroy_dirty_log(dl);
1000 return NULL;
1001 }
1002
1003 return dl;
1004}
1005
1006/*
1007 * Construct a mirror mapping:
1008 *
1009 * log_type #log_params <log_params>
1010 * #mirrors [mirror_path offset]{2,}
1011 *
1012 * log_type is "core" or "disk"
1013 * #log_params is between 1 and 3
1014 */
1015#define DM_IO_PAGES 64
1016static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1017{
1018 int r;
1019 unsigned int nr_mirrors, m, args_used;
1020 struct mirror_set *ms;
1021 struct dirty_log *dl;
1022
1023 dl = create_dirty_log(ti, argc, argv, &args_used);
1024 if (!dl)
1025 return -EINVAL;
1026
1027 argv += args_used;
1028 argc -= args_used;
1029
1030 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1031 nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) {
1032 ti->error = "dm-mirror: Invalid number of mirrors";
1033 dm_destroy_dirty_log(dl);
1034 return -EINVAL;
1035 }
1036
1037 argv++, argc--;
1038
1039 if (argc != nr_mirrors * 2) {
1040 ti->error = "dm-mirror: Wrong number of mirror arguments";
1041 dm_destroy_dirty_log(dl);
1042 return -EINVAL;
1043 }
1044
1045 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1046 if (!ms) {
1047 dm_destroy_dirty_log(dl);
1048 return -ENOMEM;
1049 }
1050
1051 /* Get the mirror parameter sets */
1052 for (m = 0; m < nr_mirrors; m++) {
1053 r = get_mirror(ms, ti, m, argv);
1054 if (r) {
1055 free_context(ms, ti, m);
1056 return r;
1057 }
1058 argv += 2;
1059 argc -= 2;
1060 }
1061
1062 ti->private = ms;
1063
1064 r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client);
1065 if (r) {
1066 free_context(ms, ti, ms->nr_mirrors);
1067 return r;
1068 }
1069
1070 add_mirror_set(ms);
1071 return 0;
1072}
1073
1074static void mirror_dtr(struct dm_target *ti)
1075{
1076 struct mirror_set *ms = (struct mirror_set *) ti->private;
1077
1078 del_mirror_set(ms);
1079 kcopyd_client_destroy(ms->kcopyd_client);
1080 free_context(ms, ti, ms->nr_mirrors);
1081}
1082
1083static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
1084{
1085 int should_wake = 0;
1086 struct bio_list *bl;
1087
1088 bl = (rw == WRITE) ? &ms->writes : &ms->reads;
1089 spin_lock(&ms->lock);
1090 should_wake = !(bl->head);
1091 bio_list_add(bl, bio);
1092 spin_unlock(&ms->lock);
1093
1094 if (should_wake)
1095 wake();
1096}
1097
1098/*
1099 * Mirror mapping function
1100 */
1101static int mirror_map(struct dm_target *ti, struct bio *bio,
1102 union map_info *map_context)
1103{
1104 int r, rw = bio_rw(bio);
1105 struct mirror *m;
1106 struct mirror_set *ms = ti->private;
1107
1108 map_context->ll = bio->bi_sector >> ms->rh.region_shift;
1109
1110 if (rw == WRITE) {
1111 queue_bio(ms, bio, rw);
1112 return 0;
1113 }
1114
1115 r = ms->rh.log->type->in_sync(ms->rh.log,
1116 bio_to_region(&ms->rh, bio), 0);
1117 if (r < 0 && r != -EWOULDBLOCK)
1118 return r;
1119
1120 if (r == -EWOULDBLOCK) /* FIXME: ugly */
1121 r = 0;
1122
1123 /*
1124 * We don't want to fast track a recovery just for a read
1125 * ahead. So we just let it silently fail.
1126 * FIXME: get rid of this.
1127 */
1128 if (!r && rw == READA)
1129 return -EIO;
1130
1131 if (!r) {
1132 /* Pass this io over to the daemon */
1133 queue_bio(ms, bio, rw);
1134 return 0;
1135 }
1136
1137 m = choose_mirror(ms, bio->bi_sector);
1138 if (!m)
1139 return -EIO;
1140
1141 map_bio(ms, m, bio);
1142 return 1;
1143}
1144
1145static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1146 int error, union map_info *map_context)
1147{
1148 int rw = bio_rw(bio);
1149 struct mirror_set *ms = (struct mirror_set *) ti->private;
1150 region_t region = map_context->ll;
1151
1152 /*
1153 * We need to dec pending if this was a write.
1154 */
1155 if (rw == WRITE)
1156 rh_dec(&ms->rh, region);
1157
1158 return 0;
1159}
1160
1161static void mirror_postsuspend(struct dm_target *ti)
1162{
1163 struct mirror_set *ms = (struct mirror_set *) ti->private;
1164 struct dirty_log *log = ms->rh.log;
1165
1166 rh_stop_recovery(&ms->rh);
1167 if (log->type->suspend && log->type->suspend(log))
1168 /* FIXME: need better error handling */
1169 DMWARN("log suspend failed");
1170}
1171
1172static void mirror_resume(struct dm_target *ti)
1173{
1174 struct mirror_set *ms = (struct mirror_set *) ti->private;
1175 struct dirty_log *log = ms->rh.log;
1176 if (log->type->resume && log->type->resume(log))
1177 /* FIXME: need better error handling */
1178 DMWARN("log resume failed");
1179 rh_start_recovery(&ms->rh);
1180}
1181
1182static int mirror_status(struct dm_target *ti, status_type_t type,
1183 char *result, unsigned int maxlen)
1184{
1185 unsigned int m, sz;
1186 struct mirror_set *ms = (struct mirror_set *) ti->private;
1187
1188 sz = ms->rh.log->type->status(ms->rh.log, type, result, maxlen);
1189
1190 switch (type) {
1191 case STATUSTYPE_INFO:
1192 DMEMIT("%d ", ms->nr_mirrors);
1193 for (m = 0; m < ms->nr_mirrors; m++)
1194 DMEMIT("%s ", ms->mirror[m].dev->name);
1195
1196 DMEMIT(SECTOR_FORMAT "/" SECTOR_FORMAT,
1197 ms->rh.log->type->get_sync_count(ms->rh.log),
1198 ms->nr_regions);
1199 break;
1200
1201 case STATUSTYPE_TABLE:
1202 DMEMIT("%d ", ms->nr_mirrors);
1203 for (m = 0; m < ms->nr_mirrors; m++)
1204 DMEMIT("%s " SECTOR_FORMAT " ",
1205 ms->mirror[m].dev->name, ms->mirror[m].offset);
1206 }
1207
1208 return 0;
1209}
1210
1211static struct target_type mirror_target = {
1212 .name = "mirror",
1213 .version = {1, 0, 1},
1214 .module = THIS_MODULE,
1215 .ctr = mirror_ctr,
1216 .dtr = mirror_dtr,
1217 .map = mirror_map,
1218 .end_io = mirror_end_io,
1219 .postsuspend = mirror_postsuspend,
1220 .resume = mirror_resume,
1221 .status = mirror_status,
1222};
1223
1224static int __init dm_mirror_init(void)
1225{
1226 int r;
1227
1228 r = dm_dirty_log_init();
1229 if (r)
1230 return r;
1231
1232 _kmirrord_wq = create_workqueue("kmirrord");
1233 if (!_kmirrord_wq) {
1234 DMERR("couldn't start kmirrord");
1235 dm_dirty_log_exit();
1236 return r;
1237 }
1238 INIT_WORK(&_kmirrord_work, do_work, NULL);
1239
1240 r = dm_register_target(&mirror_target);
1241 if (r < 0) {
1242 DMERR("%s: Failed to register mirror target",
1243 mirror_target.name);
1244 dm_dirty_log_exit();
1245 destroy_workqueue(_kmirrord_wq);
1246 }
1247
1248 return r;
1249}
1250
1251static void __exit dm_mirror_exit(void)
1252{
1253 int r;
1254
1255 r = dm_unregister_target(&mirror_target);
1256 if (r < 0)
1257 DMERR("%s: unregister failed %d", mirror_target.name, r);
1258
1259 destroy_workqueue(_kmirrord_wq);
1260 dm_dirty_log_exit();
1261}
1262
1263/* Module hooks */
1264module_init(dm_mirror_init);
1265module_exit(dm_mirror_exit);
1266
1267MODULE_DESCRIPTION(DM_NAME " mirror target");
1268MODULE_AUTHOR("Joe Thornber");
1269MODULE_LICENSE("GPL");