diff options
Diffstat (limited to 'drivers/md/bcache/bcache.h')
-rw-r--r-- | drivers/md/bcache/bcache.h | 1259 |
1 files changed, 1259 insertions, 0 deletions
diff --git a/drivers/md/bcache/bcache.h b/drivers/md/bcache/bcache.h new file mode 100644 index 000000000000..340146d7c17f --- /dev/null +++ b/drivers/md/bcache/bcache.h | |||
@@ -0,0 +1,1259 @@ | |||
1 | #ifndef _BCACHE_H | ||
2 | #define _BCACHE_H | ||
3 | |||
4 | /* | ||
5 | * SOME HIGH LEVEL CODE DOCUMENTATION: | ||
6 | * | ||
7 | * Bcache mostly works with cache sets, cache devices, and backing devices. | ||
8 | * | ||
9 | * Support for multiple cache devices hasn't quite been finished off yet, but | ||
10 | * it's about 95% plumbed through. A cache set and its cache devices is sort of | ||
11 | * like a md raid array and its component devices. Most of the code doesn't care | ||
12 | * about individual cache devices, the main abstraction is the cache set. | ||
13 | * | ||
14 | * Multiple cache devices is intended to give us the ability to mirror dirty | ||
15 | * cached data and metadata, without mirroring clean cached data. | ||
16 | * | ||
17 | * Backing devices are different, in that they have a lifetime independent of a | ||
18 | * cache set. When you register a newly formatted backing device it'll come up | ||
19 | * in passthrough mode, and then you can attach and detach a backing device from | ||
20 | * a cache set at runtime - while it's mounted and in use. Detaching implicitly | ||
21 | * invalidates any cached data for that backing device. | ||
22 | * | ||
23 | * A cache set can have multiple (many) backing devices attached to it. | ||
24 | * | ||
25 | * There's also flash only volumes - this is the reason for the distinction | ||
26 | * between struct cached_dev and struct bcache_device. A flash only volume | ||
27 | * works much like a bcache device that has a backing device, except the | ||
28 | * "cached" data is always dirty. The end result is that we get thin | ||
29 | * provisioning with very little additional code. | ||
30 | * | ||
31 | * Flash only volumes work but they're not production ready because the moving | ||
32 | * garbage collector needs more work. More on that later. | ||
33 | * | ||
34 | * BUCKETS/ALLOCATION: | ||
35 | * | ||
36 | * Bcache is primarily designed for caching, which means that in normal | ||
37 | * operation all of our available space will be allocated. Thus, we need an | ||
38 | * efficient way of deleting things from the cache so we can write new things to | ||
39 | * it. | ||
40 | * | ||
41 | * To do this, we first divide the cache device up into buckets. A bucket is the | ||
42 | * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ | ||
43 | * works efficiently. | ||
44 | * | ||
45 | * Each bucket has a 16 bit priority, and an 8 bit generation associated with | ||
46 | * it. The gens and priorities for all the buckets are stored contiguously and | ||
47 | * packed on disk (in a linked list of buckets - aside from the superblock, all | ||
48 | * of bcache's metadata is stored in buckets). | ||
49 | * | ||
50 | * The priority is used to implement an LRU. We reset a bucket's priority when | ||
51 | * we allocate it or on cache it, and every so often we decrement the priority | ||
52 | * of each bucket. It could be used to implement something more sophisticated, | ||
53 | * if anyone ever gets around to it. | ||
54 | * | ||
55 | * The generation is used for invalidating buckets. Each pointer also has an 8 | ||
56 | * bit generation embedded in it; for a pointer to be considered valid, its gen | ||
57 | * must match the gen of the bucket it points into. Thus, to reuse a bucket all | ||
58 | * we have to do is increment its gen (and write its new gen to disk; we batch | ||
59 | * this up). | ||
60 | * | ||
61 | * Bcache is entirely COW - we never write twice to a bucket, even buckets that | ||
62 | * contain metadata (including btree nodes). | ||
63 | * | ||
64 | * THE BTREE: | ||
65 | * | ||
66 | * Bcache is in large part design around the btree. | ||
67 | * | ||
68 | * At a high level, the btree is just an index of key -> ptr tuples. | ||
69 | * | ||
70 | * Keys represent extents, and thus have a size field. Keys also have a variable | ||
71 | * number of pointers attached to them (potentially zero, which is handy for | ||
72 | * invalidating the cache). | ||
73 | * | ||
74 | * The key itself is an inode:offset pair. The inode number corresponds to a | ||
75 | * backing device or a flash only volume. The offset is the ending offset of the | ||
76 | * extent within the inode - not the starting offset; this makes lookups | ||
77 | * slightly more convenient. | ||
78 | * | ||
79 | * Pointers contain the cache device id, the offset on that device, and an 8 bit | ||
80 | * generation number. More on the gen later. | ||
81 | * | ||
82 | * Index lookups are not fully abstracted - cache lookups in particular are | ||
83 | * still somewhat mixed in with the btree code, but things are headed in that | ||
84 | * direction. | ||
85 | * | ||
86 | * Updates are fairly well abstracted, though. There are two different ways of | ||
87 | * updating the btree; insert and replace. | ||
88 | * | ||
89 | * BTREE_INSERT will just take a list of keys and insert them into the btree - | ||
90 | * overwriting (possibly only partially) any extents they overlap with. This is | ||
91 | * used to update the index after a write. | ||
92 | * | ||
93 | * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is | ||
94 | * overwriting a key that matches another given key. This is used for inserting | ||
95 | * data into the cache after a cache miss, and for background writeback, and for | ||
96 | * the moving garbage collector. | ||
97 | * | ||
98 | * There is no "delete" operation; deleting things from the index is | ||
99 | * accomplished by either by invalidating pointers (by incrementing a bucket's | ||
100 | * gen) or by inserting a key with 0 pointers - which will overwrite anything | ||
101 | * previously present at that location in the index. | ||
102 | * | ||
103 | * This means that there are always stale/invalid keys in the btree. They're | ||
104 | * filtered out by the code that iterates through a btree node, and removed when | ||
105 | * a btree node is rewritten. | ||
106 | * | ||
107 | * BTREE NODES: | ||
108 | * | ||
109 | * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and | ||
110 | * free smaller than a bucket - so, that's how big our btree nodes are. | ||
111 | * | ||
112 | * (If buckets are really big we'll only use part of the bucket for a btree node | ||
113 | * - no less than 1/4th - but a bucket still contains no more than a single | ||
114 | * btree node. I'd actually like to change this, but for now we rely on the | ||
115 | * bucket's gen for deleting btree nodes when we rewrite/split a node.) | ||
116 | * | ||
117 | * Anyways, btree nodes are big - big enough to be inefficient with a textbook | ||
118 | * btree implementation. | ||
119 | * | ||
120 | * The way this is solved is that btree nodes are internally log structured; we | ||
121 | * can append new keys to an existing btree node without rewriting it. This | ||
122 | * means each set of keys we write is sorted, but the node is not. | ||
123 | * | ||
124 | * We maintain this log structure in memory - keeping 1Mb of keys sorted would | ||
125 | * be expensive, and we have to distinguish between the keys we have written and | ||
126 | * the keys we haven't. So to do a lookup in a btree node, we have to search | ||
127 | * each sorted set. But we do merge written sets together lazily, so the cost of | ||
128 | * these extra searches is quite low (normally most of the keys in a btree node | ||
129 | * will be in one big set, and then there'll be one or two sets that are much | ||
130 | * smaller). | ||
131 | * | ||
132 | * This log structure makes bcache's btree more of a hybrid between a | ||
133 | * conventional btree and a compacting data structure, with some of the | ||
134 | * advantages of both. | ||
135 | * | ||
136 | * GARBAGE COLLECTION: | ||
137 | * | ||
138 | * We can't just invalidate any bucket - it might contain dirty data or | ||
139 | * metadata. If it once contained dirty data, other writes might overwrite it | ||
140 | * later, leaving no valid pointers into that bucket in the index. | ||
141 | * | ||
142 | * Thus, the primary purpose of garbage collection is to find buckets to reuse. | ||
143 | * It also counts how much valid data it each bucket currently contains, so that | ||
144 | * allocation can reuse buckets sooner when they've been mostly overwritten. | ||
145 | * | ||
146 | * It also does some things that are really internal to the btree | ||
147 | * implementation. If a btree node contains pointers that are stale by more than | ||
148 | * some threshold, it rewrites the btree node to avoid the bucket's generation | ||
149 | * wrapping around. It also merges adjacent btree nodes if they're empty enough. | ||
150 | * | ||
151 | * THE JOURNAL: | ||
152 | * | ||
153 | * Bcache's journal is not necessary for consistency; we always strictly | ||
154 | * order metadata writes so that the btree and everything else is consistent on | ||
155 | * disk in the event of an unclean shutdown, and in fact bcache had writeback | ||
156 | * caching (with recovery from unclean shutdown) before journalling was | ||
157 | * implemented. | ||
158 | * | ||
159 | * Rather, the journal is purely a performance optimization; we can't complete a | ||
160 | * write until we've updated the index on disk, otherwise the cache would be | ||
161 | * inconsistent in the event of an unclean shutdown. This means that without the | ||
162 | * journal, on random write workloads we constantly have to update all the leaf | ||
163 | * nodes in the btree, and those writes will be mostly empty (appending at most | ||
164 | * a few keys each) - highly inefficient in terms of amount of metadata writes, | ||
165 | * and it puts more strain on the various btree resorting/compacting code. | ||
166 | * | ||
167 | * The journal is just a log of keys we've inserted; on startup we just reinsert | ||
168 | * all the keys in the open journal entries. That means that when we're updating | ||
169 | * a node in the btree, we can wait until a 4k block of keys fills up before | ||
170 | * writing them out. | ||
171 | * | ||
172 | * For simplicity, we only journal updates to leaf nodes; updates to parent | ||
173 | * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth | ||
174 | * the complexity to deal with journalling them (in particular, journal replay) | ||
175 | * - updates to non leaf nodes just happen synchronously (see btree_split()). | ||
176 | */ | ||
177 | |||
178 | #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__ | ||
179 | |||
180 | #include <linux/bio.h> | ||
181 | #include <linux/blktrace_api.h> | ||
182 | #include <linux/kobject.h> | ||
183 | #include <linux/list.h> | ||
184 | #include <linux/mutex.h> | ||
185 | #include <linux/rbtree.h> | ||
186 | #include <linux/rwsem.h> | ||
187 | #include <linux/types.h> | ||
188 | #include <linux/workqueue.h> | ||
189 | |||
190 | #include "util.h" | ||
191 | #include "closure.h" | ||
192 | |||
193 | struct bucket { | ||
194 | atomic_t pin; | ||
195 | uint16_t prio; | ||
196 | uint8_t gen; | ||
197 | uint8_t disk_gen; | ||
198 | uint8_t last_gc; /* Most out of date gen in the btree */ | ||
199 | uint8_t gc_gen; | ||
200 | uint16_t gc_mark; | ||
201 | }; | ||
202 | |||
203 | /* | ||
204 | * I'd use bitfields for these, but I don't trust the compiler not to screw me | ||
205 | * as multiple threads touch struct bucket without locking | ||
206 | */ | ||
207 | |||
208 | BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2); | ||
209 | #define GC_MARK_RECLAIMABLE 0 | ||
210 | #define GC_MARK_DIRTY 1 | ||
211 | #define GC_MARK_METADATA 2 | ||
212 | BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14); | ||
213 | |||
214 | struct bkey { | ||
215 | uint64_t high; | ||
216 | uint64_t low; | ||
217 | uint64_t ptr[]; | ||
218 | }; | ||
219 | |||
220 | /* Enough for a key with 6 pointers */ | ||
221 | #define BKEY_PAD 8 | ||
222 | |||
223 | #define BKEY_PADDED(key) \ | ||
224 | union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; } | ||
225 | |||
226 | /* Version 0: Cache device | ||
227 | * Version 1: Backing device | ||
228 | * Version 2: Seed pointer into btree node checksum | ||
229 | * Version 3: Cache device with new UUID format | ||
230 | * Version 4: Backing device with data offset | ||
231 | */ | ||
232 | #define BCACHE_SB_VERSION_CDEV 0 | ||
233 | #define BCACHE_SB_VERSION_BDEV 1 | ||
234 | #define BCACHE_SB_VERSION_CDEV_WITH_UUID 3 | ||
235 | #define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4 | ||
236 | #define BCACHE_SB_MAX_VERSION 4 | ||
237 | |||
238 | #define SB_SECTOR 8 | ||
239 | #define SB_SIZE 4096 | ||
240 | #define SB_LABEL_SIZE 32 | ||
241 | #define SB_JOURNAL_BUCKETS 256U | ||
242 | /* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */ | ||
243 | #define MAX_CACHES_PER_SET 8 | ||
244 | |||
245 | #define BDEV_DATA_START_DEFAULT 16 /* sectors */ | ||
246 | |||
247 | struct cache_sb { | ||
248 | uint64_t csum; | ||
249 | uint64_t offset; /* sector where this sb was written */ | ||
250 | uint64_t version; | ||
251 | |||
252 | uint8_t magic[16]; | ||
253 | |||
254 | uint8_t uuid[16]; | ||
255 | union { | ||
256 | uint8_t set_uuid[16]; | ||
257 | uint64_t set_magic; | ||
258 | }; | ||
259 | uint8_t label[SB_LABEL_SIZE]; | ||
260 | |||
261 | uint64_t flags; | ||
262 | uint64_t seq; | ||
263 | uint64_t pad[8]; | ||
264 | |||
265 | union { | ||
266 | struct { | ||
267 | /* Cache devices */ | ||
268 | uint64_t nbuckets; /* device size */ | ||
269 | |||
270 | uint16_t block_size; /* sectors */ | ||
271 | uint16_t bucket_size; /* sectors */ | ||
272 | |||
273 | uint16_t nr_in_set; | ||
274 | uint16_t nr_this_dev; | ||
275 | }; | ||
276 | struct { | ||
277 | /* Backing devices */ | ||
278 | uint64_t data_offset; | ||
279 | |||
280 | /* | ||
281 | * block_size from the cache device section is still used by | ||
282 | * backing devices, so don't add anything here until we fix | ||
283 | * things to not need it for backing devices anymore | ||
284 | */ | ||
285 | }; | ||
286 | }; | ||
287 | |||
288 | uint32_t last_mount; /* time_t */ | ||
289 | |||
290 | uint16_t first_bucket; | ||
291 | union { | ||
292 | uint16_t njournal_buckets; | ||
293 | uint16_t keys; | ||
294 | }; | ||
295 | uint64_t d[SB_JOURNAL_BUCKETS]; /* journal buckets */ | ||
296 | }; | ||
297 | |||
298 | BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1); | ||
299 | BITMASK(CACHE_DISCARD, struct cache_sb, flags, 1, 1); | ||
300 | BITMASK(CACHE_REPLACEMENT, struct cache_sb, flags, 2, 3); | ||
301 | #define CACHE_REPLACEMENT_LRU 0U | ||
302 | #define CACHE_REPLACEMENT_FIFO 1U | ||
303 | #define CACHE_REPLACEMENT_RANDOM 2U | ||
304 | |||
305 | BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4); | ||
306 | #define CACHE_MODE_WRITETHROUGH 0U | ||
307 | #define CACHE_MODE_WRITEBACK 1U | ||
308 | #define CACHE_MODE_WRITEAROUND 2U | ||
309 | #define CACHE_MODE_NONE 3U | ||
310 | BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 2); | ||
311 | #define BDEV_STATE_NONE 0U | ||
312 | #define BDEV_STATE_CLEAN 1U | ||
313 | #define BDEV_STATE_DIRTY 2U | ||
314 | #define BDEV_STATE_STALE 3U | ||
315 | |||
316 | /* Version 1: Seed pointer into btree node checksum | ||
317 | */ | ||
318 | #define BCACHE_BSET_VERSION 1 | ||
319 | |||
320 | /* | ||
321 | * This is the on disk format for btree nodes - a btree node on disk is a list | ||
322 | * of these; within each set the keys are sorted | ||
323 | */ | ||
324 | struct bset { | ||
325 | uint64_t csum; | ||
326 | uint64_t magic; | ||
327 | uint64_t seq; | ||
328 | uint32_t version; | ||
329 | uint32_t keys; | ||
330 | |||
331 | union { | ||
332 | struct bkey start[0]; | ||
333 | uint64_t d[0]; | ||
334 | }; | ||
335 | }; | ||
336 | |||
337 | /* | ||
338 | * On disk format for priorities and gens - see super.c near prio_write() for | ||
339 | * more. | ||
340 | */ | ||
341 | struct prio_set { | ||
342 | uint64_t csum; | ||
343 | uint64_t magic; | ||
344 | uint64_t seq; | ||
345 | uint32_t version; | ||
346 | uint32_t pad; | ||
347 | |||
348 | uint64_t next_bucket; | ||
349 | |||
350 | struct bucket_disk { | ||
351 | uint16_t prio; | ||
352 | uint8_t gen; | ||
353 | } __attribute((packed)) data[]; | ||
354 | }; | ||
355 | |||
356 | struct uuid_entry { | ||
357 | union { | ||
358 | struct { | ||
359 | uint8_t uuid[16]; | ||
360 | uint8_t label[32]; | ||
361 | uint32_t first_reg; | ||
362 | uint32_t last_reg; | ||
363 | uint32_t invalidated; | ||
364 | |||
365 | uint32_t flags; | ||
366 | /* Size of flash only volumes */ | ||
367 | uint64_t sectors; | ||
368 | }; | ||
369 | |||
370 | uint8_t pad[128]; | ||
371 | }; | ||
372 | }; | ||
373 | |||
374 | BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1); | ||
375 | |||
376 | #include "journal.h" | ||
377 | #include "stats.h" | ||
378 | struct search; | ||
379 | struct btree; | ||
380 | struct keybuf; | ||
381 | |||
382 | struct keybuf_key { | ||
383 | struct rb_node node; | ||
384 | BKEY_PADDED(key); | ||
385 | void *private; | ||
386 | }; | ||
387 | |||
388 | typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *); | ||
389 | |||
390 | struct keybuf { | ||
391 | keybuf_pred_fn *key_predicate; | ||
392 | |||
393 | struct bkey last_scanned; | ||
394 | spinlock_t lock; | ||
395 | |||
396 | /* | ||
397 | * Beginning and end of range in rb tree - so that we can skip taking | ||
398 | * lock and checking the rb tree when we need to check for overlapping | ||
399 | * keys. | ||
400 | */ | ||
401 | struct bkey start; | ||
402 | struct bkey end; | ||
403 | |||
404 | struct rb_root keys; | ||
405 | |||
406 | #define KEYBUF_NR 100 | ||
407 | DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR); | ||
408 | }; | ||
409 | |||
410 | struct bio_split_pool { | ||
411 | struct bio_set *bio_split; | ||
412 | mempool_t *bio_split_hook; | ||
413 | }; | ||
414 | |||
415 | struct bio_split_hook { | ||
416 | struct closure cl; | ||
417 | struct bio_split_pool *p; | ||
418 | struct bio *bio; | ||
419 | bio_end_io_t *bi_end_io; | ||
420 | void *bi_private; | ||
421 | }; | ||
422 | |||
423 | struct bcache_device { | ||
424 | struct closure cl; | ||
425 | |||
426 | struct kobject kobj; | ||
427 | |||
428 | struct cache_set *c; | ||
429 | unsigned id; | ||
430 | #define BCACHEDEVNAME_SIZE 12 | ||
431 | char name[BCACHEDEVNAME_SIZE]; | ||
432 | |||
433 | struct gendisk *disk; | ||
434 | |||
435 | /* If nonzero, we're closing */ | ||
436 | atomic_t closing; | ||
437 | |||
438 | /* If nonzero, we're detaching/unregistering from cache set */ | ||
439 | atomic_t detaching; | ||
440 | |||
441 | atomic_long_t sectors_dirty; | ||
442 | unsigned long sectors_dirty_gc; | ||
443 | unsigned long sectors_dirty_last; | ||
444 | long sectors_dirty_derivative; | ||
445 | |||
446 | mempool_t *unaligned_bvec; | ||
447 | struct bio_set *bio_split; | ||
448 | |||
449 | unsigned data_csum:1; | ||
450 | |||
451 | int (*cache_miss)(struct btree *, struct search *, | ||
452 | struct bio *, unsigned); | ||
453 | int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long); | ||
454 | |||
455 | struct bio_split_pool bio_split_hook; | ||
456 | }; | ||
457 | |||
458 | struct io { | ||
459 | /* Used to track sequential IO so it can be skipped */ | ||
460 | struct hlist_node hash; | ||
461 | struct list_head lru; | ||
462 | |||
463 | unsigned long jiffies; | ||
464 | unsigned sequential; | ||
465 | sector_t last; | ||
466 | }; | ||
467 | |||
468 | struct cached_dev { | ||
469 | struct list_head list; | ||
470 | struct bcache_device disk; | ||
471 | struct block_device *bdev; | ||
472 | |||
473 | struct cache_sb sb; | ||
474 | struct bio sb_bio; | ||
475 | struct bio_vec sb_bv[1]; | ||
476 | struct closure_with_waitlist sb_write; | ||
477 | |||
478 | /* Refcount on the cache set. Always nonzero when we're caching. */ | ||
479 | atomic_t count; | ||
480 | struct work_struct detach; | ||
481 | |||
482 | /* | ||
483 | * Device might not be running if it's dirty and the cache set hasn't | ||
484 | * showed up yet. | ||
485 | */ | ||
486 | atomic_t running; | ||
487 | |||
488 | /* | ||
489 | * Writes take a shared lock from start to finish; scanning for dirty | ||
490 | * data to refill the rb tree requires an exclusive lock. | ||
491 | */ | ||
492 | struct rw_semaphore writeback_lock; | ||
493 | |||
494 | /* | ||
495 | * Nonzero, and writeback has a refcount (d->count), iff there is dirty | ||
496 | * data in the cache. Protected by writeback_lock; must have an | ||
497 | * shared lock to set and exclusive lock to clear. | ||
498 | */ | ||
499 | atomic_t has_dirty; | ||
500 | |||
501 | struct ratelimit writeback_rate; | ||
502 | struct delayed_work writeback_rate_update; | ||
503 | |||
504 | /* | ||
505 | * Internal to the writeback code, so read_dirty() can keep track of | ||
506 | * where it's at. | ||
507 | */ | ||
508 | sector_t last_read; | ||
509 | |||
510 | /* Number of writeback bios in flight */ | ||
511 | atomic_t in_flight; | ||
512 | struct closure_with_timer writeback; | ||
513 | struct closure_waitlist writeback_wait; | ||
514 | |||
515 | struct keybuf writeback_keys; | ||
516 | |||
517 | /* For tracking sequential IO */ | ||
518 | #define RECENT_IO_BITS 7 | ||
519 | #define RECENT_IO (1 << RECENT_IO_BITS) | ||
520 | struct io io[RECENT_IO]; | ||
521 | struct hlist_head io_hash[RECENT_IO + 1]; | ||
522 | struct list_head io_lru; | ||
523 | spinlock_t io_lock; | ||
524 | |||
525 | struct cache_accounting accounting; | ||
526 | |||
527 | /* The rest of this all shows up in sysfs */ | ||
528 | unsigned sequential_cutoff; | ||
529 | unsigned readahead; | ||
530 | |||
531 | unsigned sequential_merge:1; | ||
532 | unsigned verify:1; | ||
533 | |||
534 | unsigned writeback_metadata:1; | ||
535 | unsigned writeback_running:1; | ||
536 | unsigned char writeback_percent; | ||
537 | unsigned writeback_delay; | ||
538 | |||
539 | int writeback_rate_change; | ||
540 | int64_t writeback_rate_derivative; | ||
541 | uint64_t writeback_rate_target; | ||
542 | |||
543 | unsigned writeback_rate_update_seconds; | ||
544 | unsigned writeback_rate_d_term; | ||
545 | unsigned writeback_rate_p_term_inverse; | ||
546 | unsigned writeback_rate_d_smooth; | ||
547 | }; | ||
548 | |||
549 | enum alloc_watermarks { | ||
550 | WATERMARK_PRIO, | ||
551 | WATERMARK_METADATA, | ||
552 | WATERMARK_MOVINGGC, | ||
553 | WATERMARK_NONE, | ||
554 | WATERMARK_MAX | ||
555 | }; | ||
556 | |||
557 | struct cache { | ||
558 | struct cache_set *set; | ||
559 | struct cache_sb sb; | ||
560 | struct bio sb_bio; | ||
561 | struct bio_vec sb_bv[1]; | ||
562 | |||
563 | struct kobject kobj; | ||
564 | struct block_device *bdev; | ||
565 | |||
566 | unsigned watermark[WATERMARK_MAX]; | ||
567 | |||
568 | struct closure alloc; | ||
569 | struct workqueue_struct *alloc_workqueue; | ||
570 | |||
571 | struct closure prio; | ||
572 | struct prio_set *disk_buckets; | ||
573 | |||
574 | /* | ||
575 | * When allocating new buckets, prio_write() gets first dibs - since we | ||
576 | * may not be allocate at all without writing priorities and gens. | ||
577 | * prio_buckets[] contains the last buckets we wrote priorities to (so | ||
578 | * gc can mark them as metadata), prio_next[] contains the buckets | ||
579 | * allocated for the next prio write. | ||
580 | */ | ||
581 | uint64_t *prio_buckets; | ||
582 | uint64_t *prio_last_buckets; | ||
583 | |||
584 | /* | ||
585 | * free: Buckets that are ready to be used | ||
586 | * | ||
587 | * free_inc: Incoming buckets - these are buckets that currently have | ||
588 | * cached data in them, and we can't reuse them until after we write | ||
589 | * their new gen to disk. After prio_write() finishes writing the new | ||
590 | * gens/prios, they'll be moved to the free list (and possibly discarded | ||
591 | * in the process) | ||
592 | * | ||
593 | * unused: GC found nothing pointing into these buckets (possibly | ||
594 | * because all the data they contained was overwritten), so we only | ||
595 | * need to discard them before they can be moved to the free list. | ||
596 | */ | ||
597 | DECLARE_FIFO(long, free); | ||
598 | DECLARE_FIFO(long, free_inc); | ||
599 | DECLARE_FIFO(long, unused); | ||
600 | |||
601 | size_t fifo_last_bucket; | ||
602 | |||
603 | /* Allocation stuff: */ | ||
604 | struct bucket *buckets; | ||
605 | |||
606 | DECLARE_HEAP(struct bucket *, heap); | ||
607 | |||
608 | /* | ||
609 | * max(gen - disk_gen) for all buckets. When it gets too big we have to | ||
610 | * call prio_write() to keep gens from wrapping. | ||
611 | */ | ||
612 | uint8_t need_save_prio; | ||
613 | unsigned gc_move_threshold; | ||
614 | |||
615 | /* | ||
616 | * If nonzero, we know we aren't going to find any buckets to invalidate | ||
617 | * until a gc finishes - otherwise we could pointlessly burn a ton of | ||
618 | * cpu | ||
619 | */ | ||
620 | unsigned invalidate_needs_gc:1; | ||
621 | |||
622 | bool discard; /* Get rid of? */ | ||
623 | |||
624 | /* | ||
625 | * We preallocate structs for issuing discards to buckets, and keep them | ||
626 | * on this list when they're not in use; do_discard() issues discards | ||
627 | * whenever there's work to do and is called by free_some_buckets() and | ||
628 | * when a discard finishes. | ||
629 | */ | ||
630 | atomic_t discards_in_flight; | ||
631 | struct list_head discards; | ||
632 | |||
633 | struct journal_device journal; | ||
634 | |||
635 | /* The rest of this all shows up in sysfs */ | ||
636 | #define IO_ERROR_SHIFT 20 | ||
637 | atomic_t io_errors; | ||
638 | atomic_t io_count; | ||
639 | |||
640 | atomic_long_t meta_sectors_written; | ||
641 | atomic_long_t btree_sectors_written; | ||
642 | atomic_long_t sectors_written; | ||
643 | |||
644 | struct bio_split_pool bio_split_hook; | ||
645 | }; | ||
646 | |||
647 | struct gc_stat { | ||
648 | size_t nodes; | ||
649 | size_t key_bytes; | ||
650 | |||
651 | size_t nkeys; | ||
652 | uint64_t data; /* sectors */ | ||
653 | uint64_t dirty; /* sectors */ | ||
654 | unsigned in_use; /* percent */ | ||
655 | }; | ||
656 | |||
657 | /* | ||
658 | * Flag bits, for how the cache set is shutting down, and what phase it's at: | ||
659 | * | ||
660 | * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching | ||
661 | * all the backing devices first (their cached data gets invalidated, and they | ||
662 | * won't automatically reattach). | ||
663 | * | ||
664 | * CACHE_SET_STOPPING always gets set first when we're closing down a cache set; | ||
665 | * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e. | ||
666 | * flushing dirty data). | ||
667 | * | ||
668 | * CACHE_SET_STOPPING_2 gets set at the last phase, when it's time to shut down | ||
669 | * the allocation thread. | ||
670 | */ | ||
671 | #define CACHE_SET_UNREGISTERING 0 | ||
672 | #define CACHE_SET_STOPPING 1 | ||
673 | #define CACHE_SET_STOPPING_2 2 | ||
674 | |||
675 | struct cache_set { | ||
676 | struct closure cl; | ||
677 | |||
678 | struct list_head list; | ||
679 | struct kobject kobj; | ||
680 | struct kobject internal; | ||
681 | struct dentry *debug; | ||
682 | struct cache_accounting accounting; | ||
683 | |||
684 | unsigned long flags; | ||
685 | |||
686 | struct cache_sb sb; | ||
687 | |||
688 | struct cache *cache[MAX_CACHES_PER_SET]; | ||
689 | struct cache *cache_by_alloc[MAX_CACHES_PER_SET]; | ||
690 | int caches_loaded; | ||
691 | |||
692 | struct bcache_device **devices; | ||
693 | struct list_head cached_devs; | ||
694 | uint64_t cached_dev_sectors; | ||
695 | struct closure caching; | ||
696 | |||
697 | struct closure_with_waitlist sb_write; | ||
698 | |||
699 | mempool_t *search; | ||
700 | mempool_t *bio_meta; | ||
701 | struct bio_set *bio_split; | ||
702 | |||
703 | /* For the btree cache */ | ||
704 | struct shrinker shrink; | ||
705 | |||
706 | /* For the allocator itself */ | ||
707 | wait_queue_head_t alloc_wait; | ||
708 | |||
709 | /* For the btree cache and anything allocation related */ | ||
710 | struct mutex bucket_lock; | ||
711 | |||
712 | /* log2(bucket_size), in sectors */ | ||
713 | unsigned short bucket_bits; | ||
714 | |||
715 | /* log2(block_size), in sectors */ | ||
716 | unsigned short block_bits; | ||
717 | |||
718 | /* | ||
719 | * Default number of pages for a new btree node - may be less than a | ||
720 | * full bucket | ||
721 | */ | ||
722 | unsigned btree_pages; | ||
723 | |||
724 | /* | ||
725 | * Lists of struct btrees; lru is the list for structs that have memory | ||
726 | * allocated for actual btree node, freed is for structs that do not. | ||
727 | * | ||
728 | * We never free a struct btree, except on shutdown - we just put it on | ||
729 | * the btree_cache_freed list and reuse it later. This simplifies the | ||
730 | * code, and it doesn't cost us much memory as the memory usage is | ||
731 | * dominated by buffers that hold the actual btree node data and those | ||
732 | * can be freed - and the number of struct btrees allocated is | ||
733 | * effectively bounded. | ||
734 | * | ||
735 | * btree_cache_freeable effectively is a small cache - we use it because | ||
736 | * high order page allocations can be rather expensive, and it's quite | ||
737 | * common to delete and allocate btree nodes in quick succession. It | ||
738 | * should never grow past ~2-3 nodes in practice. | ||
739 | */ | ||
740 | struct list_head btree_cache; | ||
741 | struct list_head btree_cache_freeable; | ||
742 | struct list_head btree_cache_freed; | ||
743 | |||
744 | /* Number of elements in btree_cache + btree_cache_freeable lists */ | ||
745 | unsigned bucket_cache_used; | ||
746 | |||
747 | /* | ||
748 | * If we need to allocate memory for a new btree node and that | ||
749 | * allocation fails, we can cannibalize another node in the btree cache | ||
750 | * to satisfy the allocation. However, only one thread can be doing this | ||
751 | * at a time, for obvious reasons - try_harder and try_wait are | ||
752 | * basically a lock for this that we can wait on asynchronously. The | ||
753 | * btree_root() macro releases the lock when it returns. | ||
754 | */ | ||
755 | struct closure *try_harder; | ||
756 | struct closure_waitlist try_wait; | ||
757 | uint64_t try_harder_start; | ||
758 | |||
759 | /* | ||
760 | * When we free a btree node, we increment the gen of the bucket the | ||
761 | * node is in - but we can't rewrite the prios and gens until we | ||
762 | * finished whatever it is we were doing, otherwise after a crash the | ||
763 | * btree node would be freed but for say a split, we might not have the | ||
764 | * pointers to the new nodes inserted into the btree yet. | ||
765 | * | ||
766 | * This is a refcount that blocks prio_write() until the new keys are | ||
767 | * written. | ||
768 | */ | ||
769 | atomic_t prio_blocked; | ||
770 | struct closure_waitlist bucket_wait; | ||
771 | |||
772 | /* | ||
773 | * For any bio we don't skip we subtract the number of sectors from | ||
774 | * rescale; when it hits 0 we rescale all the bucket priorities. | ||
775 | */ | ||
776 | atomic_t rescale; | ||
777 | /* | ||
778 | * When we invalidate buckets, we use both the priority and the amount | ||
779 | * of good data to determine which buckets to reuse first - to weight | ||
780 | * those together consistently we keep track of the smallest nonzero | ||
781 | * priority of any bucket. | ||
782 | */ | ||
783 | uint16_t min_prio; | ||
784 | |||
785 | /* | ||
786 | * max(gen - gc_gen) for all buckets. When it gets too big we have to gc | ||
787 | * to keep gens from wrapping around. | ||
788 | */ | ||
789 | uint8_t need_gc; | ||
790 | struct gc_stat gc_stats; | ||
791 | size_t nbuckets; | ||
792 | |||
793 | struct closure_with_waitlist gc; | ||
794 | /* Where in the btree gc currently is */ | ||
795 | struct bkey gc_done; | ||
796 | |||
797 | /* | ||
798 | * The allocation code needs gc_mark in struct bucket to be correct, but | ||
799 | * it's not while a gc is in progress. Protected by bucket_lock. | ||
800 | */ | ||
801 | int gc_mark_valid; | ||
802 | |||
803 | /* Counts how many sectors bio_insert has added to the cache */ | ||
804 | atomic_t sectors_to_gc; | ||
805 | |||
806 | struct closure moving_gc; | ||
807 | struct closure_waitlist moving_gc_wait; | ||
808 | struct keybuf moving_gc_keys; | ||
809 | /* Number of moving GC bios in flight */ | ||
810 | atomic_t in_flight; | ||
811 | |||
812 | struct btree *root; | ||
813 | |||
814 | #ifdef CONFIG_BCACHE_DEBUG | ||
815 | struct btree *verify_data; | ||
816 | struct mutex verify_lock; | ||
817 | #endif | ||
818 | |||
819 | unsigned nr_uuids; | ||
820 | struct uuid_entry *uuids; | ||
821 | BKEY_PADDED(uuid_bucket); | ||
822 | struct closure_with_waitlist uuid_write; | ||
823 | |||
824 | /* | ||
825 | * A btree node on disk could have too many bsets for an iterator to fit | ||
826 | * on the stack - this is a single element mempool for btree_read_work() | ||
827 | */ | ||
828 | struct mutex fill_lock; | ||
829 | struct btree_iter *fill_iter; | ||
830 | |||
831 | /* | ||
832 | * btree_sort() is a merge sort and requires temporary space - single | ||
833 | * element mempool | ||
834 | */ | ||
835 | struct mutex sort_lock; | ||
836 | struct bset *sort; | ||
837 | |||
838 | /* List of buckets we're currently writing data to */ | ||
839 | struct list_head data_buckets; | ||
840 | spinlock_t data_bucket_lock; | ||
841 | |||
842 | struct journal journal; | ||
843 | |||
844 | #define CONGESTED_MAX 1024 | ||
845 | unsigned congested_last_us; | ||
846 | atomic_t congested; | ||
847 | |||
848 | /* The rest of this all shows up in sysfs */ | ||
849 | unsigned congested_read_threshold_us; | ||
850 | unsigned congested_write_threshold_us; | ||
851 | |||
852 | spinlock_t sort_time_lock; | ||
853 | struct time_stats sort_time; | ||
854 | struct time_stats btree_gc_time; | ||
855 | struct time_stats btree_split_time; | ||
856 | spinlock_t btree_read_time_lock; | ||
857 | struct time_stats btree_read_time; | ||
858 | struct time_stats try_harder_time; | ||
859 | |||
860 | atomic_long_t cache_read_races; | ||
861 | atomic_long_t writeback_keys_done; | ||
862 | atomic_long_t writeback_keys_failed; | ||
863 | unsigned error_limit; | ||
864 | unsigned error_decay; | ||
865 | unsigned short journal_delay_ms; | ||
866 | unsigned verify:1; | ||
867 | unsigned key_merging_disabled:1; | ||
868 | unsigned gc_always_rewrite:1; | ||
869 | unsigned shrinker_disabled:1; | ||
870 | unsigned copy_gc_enabled:1; | ||
871 | |||
872 | #define BUCKET_HASH_BITS 12 | ||
873 | struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS]; | ||
874 | }; | ||
875 | |||
876 | static inline bool key_merging_disabled(struct cache_set *c) | ||
877 | { | ||
878 | #ifdef CONFIG_BCACHE_DEBUG | ||
879 | return c->key_merging_disabled; | ||
880 | #else | ||
881 | return 0; | ||
882 | #endif | ||
883 | } | ||
884 | |||
885 | static inline bool SB_IS_BDEV(const struct cache_sb *sb) | ||
886 | { | ||
887 | return sb->version == BCACHE_SB_VERSION_BDEV | ||
888 | || sb->version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET; | ||
889 | } | ||
890 | |||
891 | struct bbio { | ||
892 | unsigned submit_time_us; | ||
893 | union { | ||
894 | struct bkey key; | ||
895 | uint64_t _pad[3]; | ||
896 | /* | ||
897 | * We only need pad = 3 here because we only ever carry around a | ||
898 | * single pointer - i.e. the pointer we're doing io to/from. | ||
899 | */ | ||
900 | }; | ||
901 | struct bio bio; | ||
902 | }; | ||
903 | |||
904 | static inline unsigned local_clock_us(void) | ||
905 | { | ||
906 | return local_clock() >> 10; | ||
907 | } | ||
908 | |||
909 | #define MAX_BSETS 4U | ||
910 | |||
911 | #define BTREE_PRIO USHRT_MAX | ||
912 | #define INITIAL_PRIO 32768 | ||
913 | |||
914 | #define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE) | ||
915 | #define btree_blocks(b) \ | ||
916 | ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits)) | ||
917 | |||
918 | #define btree_default_blocks(c) \ | ||
919 | ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits)) | ||
920 | |||
921 | #define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS) | ||
922 | #define bucket_bytes(c) ((c)->sb.bucket_size << 9) | ||
923 | #define block_bytes(c) ((c)->sb.block_size << 9) | ||
924 | |||
925 | #define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t)) | ||
926 | #define set_bytes(i) __set_bytes(i, i->keys) | ||
927 | |||
928 | #define __set_blocks(i, k, c) DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c)) | ||
929 | #define set_blocks(i, c) __set_blocks(i, (i)->keys, c) | ||
930 | |||
931 | #define node(i, j) ((struct bkey *) ((i)->d + (j))) | ||
932 | #define end(i) node(i, (i)->keys) | ||
933 | |||
934 | #define index(i, b) \ | ||
935 | ((size_t) (((void *) i - (void *) (b)->sets[0].data) / \ | ||
936 | block_bytes(b->c))) | ||
937 | |||
938 | #define btree_data_space(b) (PAGE_SIZE << (b)->page_order) | ||
939 | |||
940 | #define prios_per_bucket(c) \ | ||
941 | ((bucket_bytes(c) - sizeof(struct prio_set)) / \ | ||
942 | sizeof(struct bucket_disk)) | ||
943 | #define prio_buckets(c) \ | ||
944 | DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c)) | ||
945 | |||
946 | #define JSET_MAGIC 0x245235c1a3625032ULL | ||
947 | #define PSET_MAGIC 0x6750e15f87337f91ULL | ||
948 | #define BSET_MAGIC 0x90135c78b99e07f5ULL | ||
949 | |||
950 | #define jset_magic(c) ((c)->sb.set_magic ^ JSET_MAGIC) | ||
951 | #define pset_magic(c) ((c)->sb.set_magic ^ PSET_MAGIC) | ||
952 | #define bset_magic(c) ((c)->sb.set_magic ^ BSET_MAGIC) | ||
953 | |||
954 | /* Bkey fields: all units are in sectors */ | ||
955 | |||
956 | #define KEY_FIELD(name, field, offset, size) \ | ||
957 | BITMASK(name, struct bkey, field, offset, size) | ||
958 | |||
959 | #define PTR_FIELD(name, offset, size) \ | ||
960 | static inline uint64_t name(const struct bkey *k, unsigned i) \ | ||
961 | { return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); } \ | ||
962 | \ | ||
963 | static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\ | ||
964 | { \ | ||
965 | k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset); \ | ||
966 | k->ptr[i] |= v << offset; \ | ||
967 | } | ||
968 | |||
969 | KEY_FIELD(KEY_PTRS, high, 60, 3) | ||
970 | KEY_FIELD(HEADER_SIZE, high, 58, 2) | ||
971 | KEY_FIELD(KEY_CSUM, high, 56, 2) | ||
972 | KEY_FIELD(KEY_PINNED, high, 55, 1) | ||
973 | KEY_FIELD(KEY_DIRTY, high, 36, 1) | ||
974 | |||
975 | KEY_FIELD(KEY_SIZE, high, 20, 16) | ||
976 | KEY_FIELD(KEY_INODE, high, 0, 20) | ||
977 | |||
978 | /* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */ | ||
979 | |||
980 | static inline uint64_t KEY_OFFSET(const struct bkey *k) | ||
981 | { | ||
982 | return k->low; | ||
983 | } | ||
984 | |||
985 | static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v) | ||
986 | { | ||
987 | k->low = v; | ||
988 | } | ||
989 | |||
990 | PTR_FIELD(PTR_DEV, 51, 12) | ||
991 | PTR_FIELD(PTR_OFFSET, 8, 43) | ||
992 | PTR_FIELD(PTR_GEN, 0, 8) | ||
993 | |||
994 | #define PTR_CHECK_DEV ((1 << 12) - 1) | ||
995 | |||
996 | #define PTR(gen, offset, dev) \ | ||
997 | ((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen) | ||
998 | |||
999 | static inline size_t sector_to_bucket(struct cache_set *c, sector_t s) | ||
1000 | { | ||
1001 | return s >> c->bucket_bits; | ||
1002 | } | ||
1003 | |||
1004 | static inline sector_t bucket_to_sector(struct cache_set *c, size_t b) | ||
1005 | { | ||
1006 | return ((sector_t) b) << c->bucket_bits; | ||
1007 | } | ||
1008 | |||
1009 | static inline sector_t bucket_remainder(struct cache_set *c, sector_t s) | ||
1010 | { | ||
1011 | return s & (c->sb.bucket_size - 1); | ||
1012 | } | ||
1013 | |||
1014 | static inline struct cache *PTR_CACHE(struct cache_set *c, | ||
1015 | const struct bkey *k, | ||
1016 | unsigned ptr) | ||
1017 | { | ||
1018 | return c->cache[PTR_DEV(k, ptr)]; | ||
1019 | } | ||
1020 | |||
1021 | static inline size_t PTR_BUCKET_NR(struct cache_set *c, | ||
1022 | const struct bkey *k, | ||
1023 | unsigned ptr) | ||
1024 | { | ||
1025 | return sector_to_bucket(c, PTR_OFFSET(k, ptr)); | ||
1026 | } | ||
1027 | |||
1028 | static inline struct bucket *PTR_BUCKET(struct cache_set *c, | ||
1029 | const struct bkey *k, | ||
1030 | unsigned ptr) | ||
1031 | { | ||
1032 | return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr); | ||
1033 | } | ||
1034 | |||
1035 | /* Btree key macros */ | ||
1036 | |||
1037 | /* | ||
1038 | * The high bit being set is a relic from when we used it to do binary | ||
1039 | * searches - it told you where a key started. It's not used anymore, | ||
1040 | * and can probably be safely dropped. | ||
1041 | */ | ||
1042 | #define KEY(dev, sector, len) \ | ||
1043 | ((struct bkey) { \ | ||
1044 | .high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev), \ | ||
1045 | .low = (sector) \ | ||
1046 | }) | ||
1047 | |||
1048 | static inline void bkey_init(struct bkey *k) | ||
1049 | { | ||
1050 | *k = KEY(0, 0, 0); | ||
1051 | } | ||
1052 | |||
1053 | #define KEY_START(k) (KEY_OFFSET(k) - KEY_SIZE(k)) | ||
1054 | #define START_KEY(k) KEY(KEY_INODE(k), KEY_START(k), 0) | ||
1055 | #define MAX_KEY KEY(~(~0 << 20), ((uint64_t) ~0) >> 1, 0) | ||
1056 | #define ZERO_KEY KEY(0, 0, 0) | ||
1057 | |||
1058 | /* | ||
1059 | * This is used for various on disk data structures - cache_sb, prio_set, bset, | ||
1060 | * jset: The checksum is _always_ the first 8 bytes of these structs | ||
1061 | */ | ||
1062 | #define csum_set(i) \ | ||
1063 | bch_crc64(((void *) (i)) + sizeof(uint64_t), \ | ||
1064 | ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t))) | ||
1065 | |||
1066 | /* Error handling macros */ | ||
1067 | |||
1068 | #define btree_bug(b, ...) \ | ||
1069 | do { \ | ||
1070 | if (bch_cache_set_error((b)->c, __VA_ARGS__)) \ | ||
1071 | dump_stack(); \ | ||
1072 | } while (0) | ||
1073 | |||
1074 | #define cache_bug(c, ...) \ | ||
1075 | do { \ | ||
1076 | if (bch_cache_set_error(c, __VA_ARGS__)) \ | ||
1077 | dump_stack(); \ | ||
1078 | } while (0) | ||
1079 | |||
1080 | #define btree_bug_on(cond, b, ...) \ | ||
1081 | do { \ | ||
1082 | if (cond) \ | ||
1083 | btree_bug(b, __VA_ARGS__); \ | ||
1084 | } while (0) | ||
1085 | |||
1086 | #define cache_bug_on(cond, c, ...) \ | ||
1087 | do { \ | ||
1088 | if (cond) \ | ||
1089 | cache_bug(c, __VA_ARGS__); \ | ||
1090 | } while (0) | ||
1091 | |||
1092 | #define cache_set_err_on(cond, c, ...) \ | ||
1093 | do { \ | ||
1094 | if (cond) \ | ||
1095 | bch_cache_set_error(c, __VA_ARGS__); \ | ||
1096 | } while (0) | ||
1097 | |||
1098 | /* Looping macros */ | ||
1099 | |||
1100 | #define for_each_cache(ca, cs, iter) \ | ||
1101 | for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++) | ||
1102 | |||
1103 | #define for_each_bucket(b, ca) \ | ||
1104 | for (b = (ca)->buckets + (ca)->sb.first_bucket; \ | ||
1105 | b < (ca)->buckets + (ca)->sb.nbuckets; b++) | ||
1106 | |||
1107 | static inline void __bkey_put(struct cache_set *c, struct bkey *k) | ||
1108 | { | ||
1109 | unsigned i; | ||
1110 | |||
1111 | for (i = 0; i < KEY_PTRS(k); i++) | ||
1112 | atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); | ||
1113 | } | ||
1114 | |||
1115 | /* Blktrace macros */ | ||
1116 | |||
1117 | #define blktrace_msg(c, fmt, ...) \ | ||
1118 | do { \ | ||
1119 | struct request_queue *q = bdev_get_queue(c->bdev); \ | ||
1120 | if (q) \ | ||
1121 | blk_add_trace_msg(q, fmt, ##__VA_ARGS__); \ | ||
1122 | } while (0) | ||
1123 | |||
1124 | #define blktrace_msg_all(s, fmt, ...) \ | ||
1125 | do { \ | ||
1126 | struct cache *_c; \ | ||
1127 | unsigned i; \ | ||
1128 | for_each_cache(_c, (s), i) \ | ||
1129 | blktrace_msg(_c, fmt, ##__VA_ARGS__); \ | ||
1130 | } while (0) | ||
1131 | |||
1132 | static inline void cached_dev_put(struct cached_dev *dc) | ||
1133 | { | ||
1134 | if (atomic_dec_and_test(&dc->count)) | ||
1135 | schedule_work(&dc->detach); | ||
1136 | } | ||
1137 | |||
1138 | static inline bool cached_dev_get(struct cached_dev *dc) | ||
1139 | { | ||
1140 | if (!atomic_inc_not_zero(&dc->count)) | ||
1141 | return false; | ||
1142 | |||
1143 | /* Paired with the mb in cached_dev_attach */ | ||
1144 | smp_mb__after_atomic_inc(); | ||
1145 | return true; | ||
1146 | } | ||
1147 | |||
1148 | /* | ||
1149 | * bucket_gc_gen() returns the difference between the bucket's current gen and | ||
1150 | * the oldest gen of any pointer into that bucket in the btree (last_gc). | ||
1151 | * | ||
1152 | * bucket_disk_gen() returns the difference between the current gen and the gen | ||
1153 | * on disk; they're both used to make sure gens don't wrap around. | ||
1154 | */ | ||
1155 | |||
1156 | static inline uint8_t bucket_gc_gen(struct bucket *b) | ||
1157 | { | ||
1158 | return b->gen - b->last_gc; | ||
1159 | } | ||
1160 | |||
1161 | static inline uint8_t bucket_disk_gen(struct bucket *b) | ||
1162 | { | ||
1163 | return b->gen - b->disk_gen; | ||
1164 | } | ||
1165 | |||
1166 | #define BUCKET_GC_GEN_MAX 96U | ||
1167 | #define BUCKET_DISK_GEN_MAX 64U | ||
1168 | |||
1169 | #define kobj_attribute_write(n, fn) \ | ||
1170 | static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn) | ||
1171 | |||
1172 | #define kobj_attribute_rw(n, show, store) \ | ||
1173 | static struct kobj_attribute ksysfs_##n = \ | ||
1174 | __ATTR(n, S_IWUSR|S_IRUSR, show, store) | ||
1175 | |||
1176 | /* Forward declarations */ | ||
1177 | |||
1178 | void bch_writeback_queue(struct cached_dev *); | ||
1179 | void bch_writeback_add(struct cached_dev *, unsigned); | ||
1180 | |||
1181 | void bch_count_io_errors(struct cache *, int, const char *); | ||
1182 | void bch_bbio_count_io_errors(struct cache_set *, struct bio *, | ||
1183 | int, const char *); | ||
1184 | void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *); | ||
1185 | void bch_bbio_free(struct bio *, struct cache_set *); | ||
1186 | struct bio *bch_bbio_alloc(struct cache_set *); | ||
1187 | |||
1188 | struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *); | ||
1189 | void bch_generic_make_request(struct bio *, struct bio_split_pool *); | ||
1190 | void __bch_submit_bbio(struct bio *, struct cache_set *); | ||
1191 | void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned); | ||
1192 | |||
1193 | uint8_t bch_inc_gen(struct cache *, struct bucket *); | ||
1194 | void bch_rescale_priorities(struct cache_set *, int); | ||
1195 | bool bch_bucket_add_unused(struct cache *, struct bucket *); | ||
1196 | void bch_allocator_thread(struct closure *); | ||
1197 | |||
1198 | long bch_bucket_alloc(struct cache *, unsigned, struct closure *); | ||
1199 | void bch_bucket_free(struct cache_set *, struct bkey *); | ||
1200 | |||
1201 | int __bch_bucket_alloc_set(struct cache_set *, unsigned, | ||
1202 | struct bkey *, int, struct closure *); | ||
1203 | int bch_bucket_alloc_set(struct cache_set *, unsigned, | ||
1204 | struct bkey *, int, struct closure *); | ||
1205 | |||
1206 | __printf(2, 3) | ||
1207 | bool bch_cache_set_error(struct cache_set *, const char *, ...); | ||
1208 | |||
1209 | void bch_prio_write(struct cache *); | ||
1210 | void bch_write_bdev_super(struct cached_dev *, struct closure *); | ||
1211 | |||
1212 | extern struct workqueue_struct *bcache_wq, *bch_gc_wq; | ||
1213 | extern const char * const bch_cache_modes[]; | ||
1214 | extern struct mutex bch_register_lock; | ||
1215 | extern struct list_head bch_cache_sets; | ||
1216 | |||
1217 | extern struct kobj_type bch_cached_dev_ktype; | ||
1218 | extern struct kobj_type bch_flash_dev_ktype; | ||
1219 | extern struct kobj_type bch_cache_set_ktype; | ||
1220 | extern struct kobj_type bch_cache_set_internal_ktype; | ||
1221 | extern struct kobj_type bch_cache_ktype; | ||
1222 | |||
1223 | void bch_cached_dev_release(struct kobject *); | ||
1224 | void bch_flash_dev_release(struct kobject *); | ||
1225 | void bch_cache_set_release(struct kobject *); | ||
1226 | void bch_cache_release(struct kobject *); | ||
1227 | |||
1228 | int bch_uuid_write(struct cache_set *); | ||
1229 | void bcache_write_super(struct cache_set *); | ||
1230 | |||
1231 | int bch_flash_dev_create(struct cache_set *c, uint64_t size); | ||
1232 | |||
1233 | int bch_cached_dev_attach(struct cached_dev *, struct cache_set *); | ||
1234 | void bch_cached_dev_detach(struct cached_dev *); | ||
1235 | void bch_cached_dev_run(struct cached_dev *); | ||
1236 | void bcache_device_stop(struct bcache_device *); | ||
1237 | |||
1238 | void bch_cache_set_unregister(struct cache_set *); | ||
1239 | void bch_cache_set_stop(struct cache_set *); | ||
1240 | |||
1241 | struct cache_set *bch_cache_set_alloc(struct cache_sb *); | ||
1242 | void bch_btree_cache_free(struct cache_set *); | ||
1243 | int bch_btree_cache_alloc(struct cache_set *); | ||
1244 | void bch_writeback_init_cached_dev(struct cached_dev *); | ||
1245 | void bch_moving_init_cache_set(struct cache_set *); | ||
1246 | |||
1247 | void bch_cache_allocator_exit(struct cache *ca); | ||
1248 | int bch_cache_allocator_init(struct cache *ca); | ||
1249 | |||
1250 | void bch_debug_exit(void); | ||
1251 | int bch_debug_init(struct kobject *); | ||
1252 | void bch_writeback_exit(void); | ||
1253 | int bch_writeback_init(void); | ||
1254 | void bch_request_exit(void); | ||
1255 | int bch_request_init(void); | ||
1256 | void bch_btree_exit(void); | ||
1257 | int bch_btree_init(void); | ||
1258 | |||
1259 | #endif /* _BCACHE_H */ | ||