diff options
Diffstat (limited to 'drivers/lguest/x86')
-rw-r--r-- | drivers/lguest/x86/core.c | 120 | ||||
-rw-r--r-- | drivers/lguest/x86/switcher_32.S | 71 |
2 files changed, 113 insertions, 78 deletions
diff --git a/drivers/lguest/x86/core.c b/drivers/lguest/x86/core.c index 09d9207420dc..482aec2a9631 100644 --- a/drivers/lguest/x86/core.c +++ b/drivers/lguest/x86/core.c | |||
@@ -63,7 +63,7 @@ static struct lguest_pages *lguest_pages(unsigned int cpu) | |||
63 | static DEFINE_PER_CPU(struct lguest *, last_guest); | 63 | static DEFINE_PER_CPU(struct lguest *, last_guest); |
64 | 64 | ||
65 | /*S:010 | 65 | /*S:010 |
66 | * We are getting close to the Switcher. | 66 | * We approach the Switcher. |
67 | * | 67 | * |
68 | * Remember that each CPU has two pages which are visible to the Guest when it | 68 | * Remember that each CPU has two pages which are visible to the Guest when it |
69 | * runs on that CPU. This has to contain the state for that Guest: we copy the | 69 | * runs on that CPU. This has to contain the state for that Guest: we copy the |
@@ -134,7 +134,7 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages) | |||
134 | * | 134 | * |
135 | * The lcall also pushes the old code segment (KERNEL_CS) onto the | 135 | * The lcall also pushes the old code segment (KERNEL_CS) onto the |
136 | * stack, then the address of this call. This stack layout happens to | 136 | * stack, then the address of this call. This stack layout happens to |
137 | * exactly match the stack of an interrupt... */ | 137 | * exactly match the stack layout created by an interrupt... */ |
138 | asm volatile("pushf; lcall *lguest_entry" | 138 | asm volatile("pushf; lcall *lguest_entry" |
139 | /* This is how we tell GCC that %eax ("a") and %ebx ("b") | 139 | /* This is how we tell GCC that %eax ("a") and %ebx ("b") |
140 | * are changed by this routine. The "=" means output. */ | 140 | * are changed by this routine. The "=" means output. */ |
@@ -151,40 +151,46 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages) | |||
151 | } | 151 | } |
152 | /*:*/ | 152 | /*:*/ |
153 | 153 | ||
154 | /*M:002 There are hooks in the scheduler which we can register to tell when we | ||
155 | * get kicked off the CPU (preempt_notifier_register()). This would allow us | ||
156 | * to lazily disable SYSENTER which would regain some performance, and should | ||
157 | * also simplify copy_in_guest_info(). Note that we'd still need to restore | ||
158 | * things when we exit to Launcher userspace, but that's fairly easy. | ||
159 | * | ||
160 | * The hooks were designed for KVM, but we can also put them to good use. :*/ | ||
161 | |||
154 | /*H:040 This is the i386-specific code to setup and run the Guest. Interrupts | 162 | /*H:040 This is the i386-specific code to setup and run the Guest. Interrupts |
155 | * are disabled: we own the CPU. */ | 163 | * are disabled: we own the CPU. */ |
156 | void lguest_arch_run_guest(struct lguest *lg) | 164 | void lguest_arch_run_guest(struct lguest *lg) |
157 | { | 165 | { |
158 | /* Remember the awfully-named TS bit? If the Guest has asked | 166 | /* Remember the awfully-named TS bit? If the Guest has asked to set it |
159 | * to set it we set it now, so we can trap and pass that trap | 167 | * we set it now, so we can trap and pass that trap to the Guest if it |
160 | * to the Guest if it uses the FPU. */ | 168 | * uses the FPU. */ |
161 | if (lg->ts) | 169 | if (lg->ts) |
162 | lguest_set_ts(); | 170 | lguest_set_ts(); |
163 | 171 | ||
164 | /* SYSENTER is an optimized way of doing system calls. We | 172 | /* SYSENTER is an optimized way of doing system calls. We can't allow |
165 | * can't allow it because it always jumps to privilege level 0. | 173 | * it because it always jumps to privilege level 0. A normal Guest |
166 | * A normal Guest won't try it because we don't advertise it in | 174 | * won't try it because we don't advertise it in CPUID, but a malicious |
167 | * CPUID, but a malicious Guest (or malicious Guest userspace | 175 | * Guest (or malicious Guest userspace program) could, so we tell the |
168 | * program) could, so we tell the CPU to disable it before | 176 | * CPU to disable it before running the Guest. */ |
169 | * running the Guest. */ | ||
170 | if (boot_cpu_has(X86_FEATURE_SEP)) | 177 | if (boot_cpu_has(X86_FEATURE_SEP)) |
171 | wrmsr(MSR_IA32_SYSENTER_CS, 0, 0); | 178 | wrmsr(MSR_IA32_SYSENTER_CS, 0, 0); |
172 | 179 | ||
173 | /* Now we actually run the Guest. It will pop back out when | 180 | /* Now we actually run the Guest. It will return when something |
174 | * something interesting happens, and we can examine its | 181 | * interesting happens, and we can examine its registers to see what it |
175 | * registers to see what it was doing. */ | 182 | * was doing. */ |
176 | run_guest_once(lg, lguest_pages(raw_smp_processor_id())); | 183 | run_guest_once(lg, lguest_pages(raw_smp_processor_id())); |
177 | 184 | ||
178 | /* The "regs" pointer contains two extra entries which are not | 185 | /* Note that the "regs" pointer contains two extra entries which are |
179 | * really registers: a trap number which says what interrupt or | 186 | * not really registers: a trap number which says what interrupt or |
180 | * trap made the switcher code come back, and an error code | 187 | * trap made the switcher code come back, and an error code which some |
181 | * which some traps set. */ | 188 | * traps set. */ |
182 | 189 | ||
183 | /* If the Guest page faulted, then the cr2 register will tell | 190 | /* If the Guest page faulted, then the cr2 register will tell us the |
184 | * us the bad virtual address. We have to grab this now, | 191 | * bad virtual address. We have to grab this now, because once we |
185 | * because once we re-enable interrupts an interrupt could | 192 | * re-enable interrupts an interrupt could fault and thus overwrite |
186 | * fault and thus overwrite cr2, or we could even move off to a | 193 | * cr2, or we could even move off to a different CPU. */ |
187 | * different CPU. */ | ||
188 | if (lg->regs->trapnum == 14) | 194 | if (lg->regs->trapnum == 14) |
189 | lg->arch.last_pagefault = read_cr2(); | 195 | lg->arch.last_pagefault = read_cr2(); |
190 | /* Similarly, if we took a trap because the Guest used the FPU, | 196 | /* Similarly, if we took a trap because the Guest used the FPU, |
@@ -197,14 +203,15 @@ void lguest_arch_run_guest(struct lguest *lg) | |||
197 | wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); | 203 | wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); |
198 | } | 204 | } |
199 | 205 | ||
200 | /*H:130 Our Guest is usually so well behaved; it never tries to do things it | 206 | /*H:130 Now we've examined the hypercall code; our Guest can make requests. |
201 | * isn't allowed to. Unfortunately, Linux's paravirtual infrastructure isn't | 207 | * Our Guest is usually so well behaved; it never tries to do things it isn't |
202 | * quite complete, because it doesn't contain replacements for the Intel I/O | 208 | * allowed to, and uses hypercalls instead. Unfortunately, Linux's paravirtual |
203 | * instructions. As a result, the Guest sometimes fumbles across one during | 209 | * infrastructure isn't quite complete, because it doesn't contain replacements |
204 | * the boot process as it probes for various things which are usually attached | 210 | * for the Intel I/O instructions. As a result, the Guest sometimes fumbles |
205 | * to a PC. | 211 | * across one during the boot process as it probes for various things which are |
212 | * usually attached to a PC. | ||
206 | * | 213 | * |
207 | * When the Guest uses one of these instructions, we get trap #13 (General | 214 | * When the Guest uses one of these instructions, we get a trap (General |
208 | * Protection Fault) and come here. We see if it's one of those troublesome | 215 | * Protection Fault) and come here. We see if it's one of those troublesome |
209 | * instructions and skip over it. We return true if we did. */ | 216 | * instructions and skip over it. We return true if we did. */ |
210 | static int emulate_insn(struct lguest *lg) | 217 | static int emulate_insn(struct lguest *lg) |
@@ -275,43 +282,43 @@ static int emulate_insn(struct lguest *lg) | |||
275 | void lguest_arch_handle_trap(struct lguest *lg) | 282 | void lguest_arch_handle_trap(struct lguest *lg) |
276 | { | 283 | { |
277 | switch (lg->regs->trapnum) { | 284 | switch (lg->regs->trapnum) { |
278 | case 13: /* We've intercepted a GPF. */ | 285 | case 13: /* We've intercepted a General Protection Fault. */ |
279 | /* Check if this was one of those annoying IN or OUT | 286 | /* Check if this was one of those annoying IN or OUT |
280 | * instructions which we need to emulate. If so, we | 287 | * instructions which we need to emulate. If so, we just go |
281 | * just go back into the Guest after we've done it. */ | 288 | * back into the Guest after we've done it. */ |
282 | if (lg->regs->errcode == 0) { | 289 | if (lg->regs->errcode == 0) { |
283 | if (emulate_insn(lg)) | 290 | if (emulate_insn(lg)) |
284 | return; | 291 | return; |
285 | } | 292 | } |
286 | break; | 293 | break; |
287 | case 14: /* We've intercepted a page fault. */ | 294 | case 14: /* We've intercepted a Page Fault. */ |
288 | /* The Guest accessed a virtual address that wasn't | 295 | /* The Guest accessed a virtual address that wasn't mapped. |
289 | * mapped. This happens a lot: we don't actually set | 296 | * This happens a lot: we don't actually set up most of the |
290 | * up most of the page tables for the Guest at all when | 297 | * page tables for the Guest at all when we start: as it runs |
291 | * we start: as it runs it asks for more and more, and | 298 | * it asks for more and more, and we set them up as |
292 | * we set them up as required. In this case, we don't | 299 | * required. In this case, we don't even tell the Guest that |
293 | * even tell the Guest that the fault happened. | 300 | * the fault happened. |
294 | * | 301 | * |
295 | * The errcode tells whether this was a read or a | 302 | * The errcode tells whether this was a read or a write, and |
296 | * write, and whether kernel or userspace code. */ | 303 | * whether kernel or userspace code. */ |
297 | if (demand_page(lg, lg->arch.last_pagefault, lg->regs->errcode)) | 304 | if (demand_page(lg, lg->arch.last_pagefault, lg->regs->errcode)) |
298 | return; | 305 | return; |
299 | 306 | ||
300 | /* OK, it's really not there (or not OK): the Guest | 307 | /* OK, it's really not there (or not OK): the Guest needs to |
301 | * needs to know. We write out the cr2 value so it | 308 | * know. We write out the cr2 value so it knows where the |
302 | * knows where the fault occurred. | 309 | * fault occurred. |
303 | * | 310 | * |
304 | * Note that if the Guest were really messed up, this | 311 | * Note that if the Guest were really messed up, this could |
305 | * could happen before it's done the INITIALIZE | 312 | * happen before it's done the LHCALL_LGUEST_INIT hypercall, so |
306 | * hypercall, so lg->lguest_data will be NULL */ | 313 | * lg->lguest_data could be NULL */ |
307 | if (lg->lguest_data && | 314 | if (lg->lguest_data && |
308 | put_user(lg->arch.last_pagefault, &lg->lguest_data->cr2)) | 315 | put_user(lg->arch.last_pagefault, &lg->lguest_data->cr2)) |
309 | kill_guest(lg, "Writing cr2"); | 316 | kill_guest(lg, "Writing cr2"); |
310 | break; | 317 | break; |
311 | case 7: /* We've intercepted a Device Not Available fault. */ | 318 | case 7: /* We've intercepted a Device Not Available fault. */ |
312 | /* If the Guest doesn't want to know, we already | 319 | /* If the Guest doesn't want to know, we already restored the |
313 | * restored the Floating Point Unit, so we just | 320 | * Floating Point Unit, so we just continue without telling |
314 | * continue without telling it. */ | 321 | * it. */ |
315 | if (!lg->ts) | 322 | if (!lg->ts) |
316 | return; | 323 | return; |
317 | break; | 324 | break; |
@@ -536,9 +543,6 @@ int lguest_arch_init_hypercalls(struct lguest *lg) | |||
536 | 543 | ||
537 | return 0; | 544 | return 0; |
538 | } | 545 | } |
539 | /* Now we've examined the hypercall code; our Guest can make requests. There | ||
540 | * is one other way we can do things for the Guest, as we see in | ||
541 | * emulate_insn(). :*/ | ||
542 | 546 | ||
543 | /*L:030 lguest_arch_setup_regs() | 547 | /*L:030 lguest_arch_setup_regs() |
544 | * | 548 | * |
@@ -570,8 +574,8 @@ void lguest_arch_setup_regs(struct lguest *lg, unsigned long start) | |||
570 | 574 | ||
571 | /* %esi points to our boot information, at physical address 0, so don't | 575 | /* %esi points to our boot information, at physical address 0, so don't |
572 | * touch it. */ | 576 | * touch it. */ |
577 | |||
573 | /* There are a couple of GDT entries the Guest expects when first | 578 | /* There are a couple of GDT entries the Guest expects when first |
574 | * booting. */ | 579 | * booting. */ |
575 | |||
576 | setup_guest_gdt(lg); | 580 | setup_guest_gdt(lg); |
577 | } | 581 | } |
diff --git a/drivers/lguest/x86/switcher_32.S b/drivers/lguest/x86/switcher_32.S index 1010b90b11fc..0af8baaa0d4a 100644 --- a/drivers/lguest/x86/switcher_32.S +++ b/drivers/lguest/x86/switcher_32.S | |||
@@ -6,6 +6,37 @@ | |||
6 | * are feeling invigorated and refreshed then the next, more challenging stage | 6 | * are feeling invigorated and refreshed then the next, more challenging stage |
7 | * can be found in "make Guest". :*/ | 7 | * can be found in "make Guest". :*/ |
8 | 8 | ||
9 | /*M:012 Lguest is meant to be simple: my rule of thumb is that 1% more LOC must | ||
10 | * gain at least 1% more performance. Since neither LOC nor performance can be | ||
11 | * measured beforehand, it generally means implementing a feature then deciding | ||
12 | * if it's worth it. And once it's implemented, who can say no? | ||
13 | * | ||
14 | * This is why I haven't implemented this idea myself. I want to, but I | ||
15 | * haven't. You could, though. | ||
16 | * | ||
17 | * The main place where lguest performance sucks is Guest page faulting. When | ||
18 | * a Guest userspace process hits an unmapped page we switch back to the Host, | ||
19 | * walk the page tables, find it's not mapped, switch back to the Guest page | ||
20 | * fault handler, which calls a hypercall to set the page table entry, then | ||
21 | * finally returns to userspace. That's two round-trips. | ||
22 | * | ||
23 | * If we had a small walker in the Switcher, we could quickly check the Guest | ||
24 | * page table and if the page isn't mapped, immediately reflect the fault back | ||
25 | * into the Guest. This means the Switcher would have to know the top of the | ||
26 | * Guest page table and the page fault handler address. | ||
27 | * | ||
28 | * For simplicity, the Guest should only handle the case where the privilege | ||
29 | * level of the fault is 3 and probably only not present or write faults. It | ||
30 | * should also detect recursive faults, and hand the original fault to the | ||
31 | * Host (which is actually really easy). | ||
32 | * | ||
33 | * Two questions remain. Would the performance gain outweigh the complexity? | ||
34 | * And who would write the verse documenting it? :*/ | ||
35 | |||
36 | /*M:011 Lguest64 handles NMI. This gave me NMI envy (until I looked at their | ||
37 | * code). It's worth doing though, since it would let us use oprofile in the | ||
38 | * Host when a Guest is running. :*/ | ||
39 | |||
9 | /*S:100 | 40 | /*S:100 |
10 | * Welcome to the Switcher itself! | 41 | * Welcome to the Switcher itself! |
11 | * | 42 | * |
@@ -88,7 +119,7 @@ ENTRY(switch_to_guest) | |||
88 | 119 | ||
89 | // All saved and there's now five steps before us: | 120 | // All saved and there's now five steps before us: |
90 | // Stack, GDT, IDT, TSS | 121 | // Stack, GDT, IDT, TSS |
91 | // And last of all the page tables are flipped. | 122 | // Then last of all the page tables are flipped. |
92 | 123 | ||
93 | // Yet beware that our stack pointer must be | 124 | // Yet beware that our stack pointer must be |
94 | // Always valid lest an NMI hits | 125 | // Always valid lest an NMI hits |
@@ -103,25 +134,25 @@ ENTRY(switch_to_guest) | |||
103 | lgdt LGUEST_PAGES_guest_gdt_desc(%eax) | 134 | lgdt LGUEST_PAGES_guest_gdt_desc(%eax) |
104 | 135 | ||
105 | // The Guest's IDT we did partially | 136 | // The Guest's IDT we did partially |
106 | // Move to the "struct lguest_pages" as well. | 137 | // Copy to "struct lguest_pages" as well. |
107 | lidt LGUEST_PAGES_guest_idt_desc(%eax) | 138 | lidt LGUEST_PAGES_guest_idt_desc(%eax) |
108 | 139 | ||
109 | // The TSS entry which controls traps | 140 | // The TSS entry which controls traps |
110 | // Must be loaded up with "ltr" now: | 141 | // Must be loaded up with "ltr" now: |
142 | // The GDT entry that TSS uses | ||
143 | // Changes type when we load it: damn Intel! | ||
111 | // For after we switch over our page tables | 144 | // For after we switch over our page tables |
112 | // It (as the rest) will be writable no more. | 145 | // That entry will be read-only: we'd crash. |
113 | // (The GDT entry TSS needs | ||
114 | // Changes type when we load it: damn Intel!) | ||
115 | movl $(GDT_ENTRY_TSS*8), %edx | 146 | movl $(GDT_ENTRY_TSS*8), %edx |
116 | ltr %dx | 147 | ltr %dx |
117 | 148 | ||
118 | // Look back now, before we take this last step! | 149 | // Look back now, before we take this last step! |
119 | // The Host's TSS entry was also marked used; | 150 | // The Host's TSS entry was also marked used; |
120 | // Let's clear it again, ere we return. | 151 | // Let's clear it again for our return. |
121 | // The GDT descriptor of the Host | 152 | // The GDT descriptor of the Host |
122 | // Points to the table after two "size" bytes | 153 | // Points to the table after two "size" bytes |
123 | movl (LGUEST_PAGES_host_gdt_desc+2)(%eax), %edx | 154 | movl (LGUEST_PAGES_host_gdt_desc+2)(%eax), %edx |
124 | // Clear the type field of "used" (byte 5, bit 2) | 155 | // Clear "used" from type field (byte 5, bit 2) |
125 | andb $0xFD, (GDT_ENTRY_TSS*8 + 5)(%edx) | 156 | andb $0xFD, (GDT_ENTRY_TSS*8 + 5)(%edx) |
126 | 157 | ||
127 | // Once our page table's switched, the Guest is live! | 158 | // Once our page table's switched, the Guest is live! |
@@ -131,7 +162,7 @@ ENTRY(switch_to_guest) | |||
131 | 162 | ||
132 | // The page table change did one tricky thing: | 163 | // The page table change did one tricky thing: |
133 | // The Guest's register page has been mapped | 164 | // The Guest's register page has been mapped |
134 | // Writable onto our %esp (stack) -- | 165 | // Writable under our %esp (stack) -- |
135 | // We can simply pop off all Guest regs. | 166 | // We can simply pop off all Guest regs. |
136 | popl %eax | 167 | popl %eax |
137 | popl %ebx | 168 | popl %ebx |
@@ -152,16 +183,15 @@ ENTRY(switch_to_guest) | |||
152 | addl $8, %esp | 183 | addl $8, %esp |
153 | 184 | ||
154 | // The last five stack slots hold return address | 185 | // The last five stack slots hold return address |
155 | // And everything needed to change privilege | 186 | // And everything needed to switch privilege |
156 | // Into the Guest privilege level of 1, | 187 | // From Switcher's level 0 to Guest's 1, |
157 | // And the stack where the Guest had last left it. | 188 | // And the stack where the Guest had last left it. |
158 | // Interrupts are turned back on: we are Guest. | 189 | // Interrupts are turned back on: we are Guest. |
159 | iret | 190 | iret |
160 | 191 | ||
161 | // There are two paths where we switch to the Host | 192 | // We treat two paths to switch back to the Host |
193 | // Yet both must save Guest state and restore Host | ||
162 | // So we put the routine in a macro. | 194 | // So we put the routine in a macro. |
163 | // We are on our way home, back to the Host | ||
164 | // Interrupted out of the Guest, we come here. | ||
165 | #define SWITCH_TO_HOST \ | 195 | #define SWITCH_TO_HOST \ |
166 | /* We save the Guest state: all registers first \ | 196 | /* We save the Guest state: all registers first \ |
167 | * Laid out just as "struct lguest_regs" defines */ \ | 197 | * Laid out just as "struct lguest_regs" defines */ \ |
@@ -194,7 +224,7 @@ ENTRY(switch_to_guest) | |||
194 | movl %esp, %eax; \ | 224 | movl %esp, %eax; \ |
195 | andl $(~(1 << PAGE_SHIFT - 1)), %eax; \ | 225 | andl $(~(1 << PAGE_SHIFT - 1)), %eax; \ |
196 | /* Save our trap number: the switch will obscure it \ | 226 | /* Save our trap number: the switch will obscure it \ |
197 | * (The Guest regs are not mapped here in the Host) \ | 227 | * (In the Host the Guest regs are not mapped here) \ |
198 | * %ebx holds it safe for deliver_to_host */ \ | 228 | * %ebx holds it safe for deliver_to_host */ \ |
199 | movl LGUEST_PAGES_regs_trapnum(%eax), %ebx; \ | 229 | movl LGUEST_PAGES_regs_trapnum(%eax), %ebx; \ |
200 | /* The Host GDT, IDT and stack! \ | 230 | /* The Host GDT, IDT and stack! \ |
@@ -210,9 +240,9 @@ ENTRY(switch_to_guest) | |||
210 | /* Switch to Host's GDT, IDT. */ \ | 240 | /* Switch to Host's GDT, IDT. */ \ |
211 | lgdt LGUEST_PAGES_host_gdt_desc(%eax); \ | 241 | lgdt LGUEST_PAGES_host_gdt_desc(%eax); \ |
212 | lidt LGUEST_PAGES_host_idt_desc(%eax); \ | 242 | lidt LGUEST_PAGES_host_idt_desc(%eax); \ |
213 | /* Restore the Host's stack where it's saved regs lie */ \ | 243 | /* Restore the Host's stack where its saved regs lie */ \ |
214 | movl LGUEST_PAGES_host_sp(%eax), %esp; \ | 244 | movl LGUEST_PAGES_host_sp(%eax), %esp; \ |
215 | /* Last the TSS: our Host is complete */ \ | 245 | /* Last the TSS: our Host is returned */ \ |
216 | movl $(GDT_ENTRY_TSS*8), %edx; \ | 246 | movl $(GDT_ENTRY_TSS*8), %edx; \ |
217 | ltr %dx; \ | 247 | ltr %dx; \ |
218 | /* Restore now the regs saved right at the first. */ \ | 248 | /* Restore now the regs saved right at the first. */ \ |
@@ -222,14 +252,15 @@ ENTRY(switch_to_guest) | |||
222 | popl %ds; \ | 252 | popl %ds; \ |
223 | popl %es | 253 | popl %es |
224 | 254 | ||
225 | // Here's where we come when the Guest has just trapped: | 255 | // The first path is trod when the Guest has trapped: |
226 | // (Which trap we'll see has been pushed on the stack). | 256 | // (Which trap it was has been pushed on the stack). |
227 | // We need only switch back, and the Host will decode | 257 | // We need only switch back, and the Host will decode |
228 | // Why we came home, and what needs to be done. | 258 | // Why we came home, and what needs to be done. |
229 | return_to_host: | 259 | return_to_host: |
230 | SWITCH_TO_HOST | 260 | SWITCH_TO_HOST |
231 | iret | 261 | iret |
232 | 262 | ||
263 | // We are lead to the second path like so: | ||
233 | // An interrupt, with some cause external | 264 | // An interrupt, with some cause external |
234 | // Has ajerked us rudely from the Guest's code | 265 | // Has ajerked us rudely from the Guest's code |
235 | // Again we must return home to the Host | 266 | // Again we must return home to the Host |
@@ -238,7 +269,7 @@ deliver_to_host: | |||
238 | // But now we must go home via that place | 269 | // But now we must go home via that place |
239 | // Where that interrupt was supposed to go | 270 | // Where that interrupt was supposed to go |
240 | // Had we not been ensconced, running the Guest. | 271 | // Had we not been ensconced, running the Guest. |
241 | // Here we see the cleverness of our stack: | 272 | // Here we see the trickness of run_guest_once(): |
242 | // The Host stack is formed like an interrupt | 273 | // The Host stack is formed like an interrupt |
243 | // With EIP, CS and EFLAGS layered. | 274 | // With EIP, CS and EFLAGS layered. |
244 | // Interrupt handlers end with "iret" | 275 | // Interrupt handlers end with "iret" |
@@ -263,7 +294,7 @@ deliver_to_host: | |||
263 | xorw %ax, %ax | 294 | xorw %ax, %ax |
264 | orl %eax, %edx | 295 | orl %eax, %edx |
265 | // Now the address of the handler's in %edx | 296 | // Now the address of the handler's in %edx |
266 | // We call it now: its "iret" takes us home. | 297 | // We call it now: its "iret" drops us home. |
267 | jmp *%edx | 298 | jmp *%edx |
268 | 299 | ||
269 | // Every interrupt can come to us here | 300 | // Every interrupt can come to us here |