diff options
Diffstat (limited to 'drivers/lguest/segments.c')
-rw-r--r-- | drivers/lguest/segments.c | 48 |
1 files changed, 29 insertions, 19 deletions
diff --git a/drivers/lguest/segments.c b/drivers/lguest/segments.c index c2434ec99f7b..9e189cbec7dd 100644 --- a/drivers/lguest/segments.c +++ b/drivers/lguest/segments.c | |||
@@ -12,8 +12,6 @@ | |||
12 | #include "lg.h" | 12 | #include "lg.h" |
13 | 13 | ||
14 | /*H:600 | 14 | /*H:600 |
15 | * We've almost completed the Host; there's just one file to go! | ||
16 | * | ||
17 | * Segments & The Global Descriptor Table | 15 | * Segments & The Global Descriptor Table |
18 | * | 16 | * |
19 | * (That title sounds like a bad Nerdcore group. Not to suggest that there are | 17 | * (That title sounds like a bad Nerdcore group. Not to suggest that there are |
@@ -55,7 +53,7 @@ static int ignored_gdt(unsigned int num) | |||
55 | || num == GDT_ENTRY_DOUBLEFAULT_TSS); | 53 | || num == GDT_ENTRY_DOUBLEFAULT_TSS); |
56 | } | 54 | } |
57 | 55 | ||
58 | /*H:610 Once the GDT has been changed, we fix the new entries up a little. We | 56 | /*H:630 Once the Guest gave us new GDT entries, we fix them up a little. We |
59 | * don't care if they're invalid: the worst that can happen is a General | 57 | * don't care if they're invalid: the worst that can happen is a General |
60 | * Protection Fault in the Switcher when it restores a Guest segment register | 58 | * Protection Fault in the Switcher when it restores a Guest segment register |
61 | * which tries to use that entry. Then we kill the Guest for causing such a | 59 | * which tries to use that entry. Then we kill the Guest for causing such a |
@@ -84,25 +82,33 @@ static void fixup_gdt_table(struct lguest *lg, unsigned start, unsigned end) | |||
84 | } | 82 | } |
85 | } | 83 | } |
86 | 84 | ||
87 | /* This routine is called at boot or modprobe time for each CPU to set up the | 85 | /*H:610 Like the IDT, we never simply use the GDT the Guest gives us. We keep |
88 | * "constant" GDT entries for Guests running on that CPU. */ | 86 | * a GDT for each CPU, and copy across the Guest's entries each time we want to |
87 | * run the Guest on that CPU. | ||
88 | * | ||
89 | * This routine is called at boot or modprobe time for each CPU to set up the | ||
90 | * constant GDT entries: the ones which are the same no matter what Guest we're | ||
91 | * running. */ | ||
89 | void setup_default_gdt_entries(struct lguest_ro_state *state) | 92 | void setup_default_gdt_entries(struct lguest_ro_state *state) |
90 | { | 93 | { |
91 | struct desc_struct *gdt = state->guest_gdt; | 94 | struct desc_struct *gdt = state->guest_gdt; |
92 | unsigned long tss = (unsigned long)&state->guest_tss; | 95 | unsigned long tss = (unsigned long)&state->guest_tss; |
93 | 96 | ||
94 | /* The hypervisor segments are full 0-4G segments, privilege level 0 */ | 97 | /* The Switcher segments are full 0-4G segments, privilege level 0 */ |
95 | gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT; | 98 | gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT; |
96 | gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT; | 99 | gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT; |
97 | 100 | ||
98 | /* The TSS segment refers to the TSS entry for this CPU, so we cannot | 101 | /* The TSS segment refers to the TSS entry for this particular CPU. |
99 | * copy it from the Guest. Forgive the magic flags */ | 102 | * Forgive the magic flags: the 0x8900 means the entry is Present, it's |
103 | * privilege level 0 Available 386 TSS system segment, and the 0x67 | ||
104 | * means Saturn is eclipsed by Mercury in the twelfth house. */ | ||
100 | gdt[GDT_ENTRY_TSS].a = 0x00000067 | (tss << 16); | 105 | gdt[GDT_ENTRY_TSS].a = 0x00000067 | (tss << 16); |
101 | gdt[GDT_ENTRY_TSS].b = 0x00008900 | (tss & 0xFF000000) | 106 | gdt[GDT_ENTRY_TSS].b = 0x00008900 | (tss & 0xFF000000) |
102 | | ((tss >> 16) & 0x000000FF); | 107 | | ((tss >> 16) & 0x000000FF); |
103 | } | 108 | } |
104 | 109 | ||
105 | /* This routine is called before the Guest is run for the first time. */ | 110 | /* This routine sets up the initial Guest GDT for booting. All entries start |
111 | * as 0 (unusable). */ | ||
106 | void setup_guest_gdt(struct lguest *lg) | 112 | void setup_guest_gdt(struct lguest *lg) |
107 | { | 113 | { |
108 | /* Start with full 0-4G segments... */ | 114 | /* Start with full 0-4G segments... */ |
@@ -114,13 +120,8 @@ void setup_guest_gdt(struct lguest *lg) | |||
114 | lg->arch.gdt[GDT_ENTRY_KERNEL_DS].b |= (GUEST_PL << 13); | 120 | lg->arch.gdt[GDT_ENTRY_KERNEL_DS].b |= (GUEST_PL << 13); |
115 | } | 121 | } |
116 | 122 | ||
117 | /* Like the IDT, we never simply use the GDT the Guest gives us. We set up the | 123 | /*H:650 An optimization of copy_gdt(), for just the three "thead-local storage" |
118 | * GDTs for each CPU, then we copy across the entries each time we want to run | 124 | * entries. */ |
119 | * a different Guest on that CPU. */ | ||
120 | |||
121 | /* A partial GDT load, for the three "thead-local storage" entries. Otherwise | ||
122 | * it's just like load_guest_gdt(). So much, in fact, it would probably be | ||
123 | * neater to have a single hypercall to cover both. */ | ||
124 | void copy_gdt_tls(const struct lguest *lg, struct desc_struct *gdt) | 125 | void copy_gdt_tls(const struct lguest *lg, struct desc_struct *gdt) |
125 | { | 126 | { |
126 | unsigned int i; | 127 | unsigned int i; |
@@ -129,7 +130,9 @@ void copy_gdt_tls(const struct lguest *lg, struct desc_struct *gdt) | |||
129 | gdt[i] = lg->arch.gdt[i]; | 130 | gdt[i] = lg->arch.gdt[i]; |
130 | } | 131 | } |
131 | 132 | ||
132 | /* This is the full version */ | 133 | /*H:640 When the Guest is run on a different CPU, or the GDT entries have |
134 | * changed, copy_gdt() is called to copy the Guest's GDT entries across to this | ||
135 | * CPU's GDT. */ | ||
133 | void copy_gdt(const struct lguest *lg, struct desc_struct *gdt) | 136 | void copy_gdt(const struct lguest *lg, struct desc_struct *gdt) |
134 | { | 137 | { |
135 | unsigned int i; | 138 | unsigned int i; |
@@ -141,7 +144,8 @@ void copy_gdt(const struct lguest *lg, struct desc_struct *gdt) | |||
141 | gdt[i] = lg->arch.gdt[i]; | 144 | gdt[i] = lg->arch.gdt[i]; |
142 | } | 145 | } |
143 | 146 | ||
144 | /* This is where the Guest asks us to load a new GDT (LHCALL_LOAD_GDT). */ | 147 | /*H:620 This is where the Guest asks us to load a new GDT (LHCALL_LOAD_GDT). |
148 | * We copy it from the Guest and tweak the entries. */ | ||
145 | void load_guest_gdt(struct lguest *lg, unsigned long table, u32 num) | 149 | void load_guest_gdt(struct lguest *lg, unsigned long table, u32 num) |
146 | { | 150 | { |
147 | /* We assume the Guest has the same number of GDT entries as the | 151 | /* We assume the Guest has the same number of GDT entries as the |
@@ -157,16 +161,22 @@ void load_guest_gdt(struct lguest *lg, unsigned long table, u32 num) | |||
157 | lg->changed |= CHANGED_GDT; | 161 | lg->changed |= CHANGED_GDT; |
158 | } | 162 | } |
159 | 163 | ||
164 | /* This is the fast-track version for just changing the three TLS entries. | ||
165 | * Remember that this happens on every context switch, so it's worth | ||
166 | * optimizing. But wouldn't it be neater to have a single hypercall to cover | ||
167 | * both cases? */ | ||
160 | void guest_load_tls(struct lguest *lg, unsigned long gtls) | 168 | void guest_load_tls(struct lguest *lg, unsigned long gtls) |
161 | { | 169 | { |
162 | struct desc_struct *tls = &lg->arch.gdt[GDT_ENTRY_TLS_MIN]; | 170 | struct desc_struct *tls = &lg->arch.gdt[GDT_ENTRY_TLS_MIN]; |
163 | 171 | ||
164 | __lgread(lg, tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES); | 172 | __lgread(lg, tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES); |
165 | fixup_gdt_table(lg, GDT_ENTRY_TLS_MIN, GDT_ENTRY_TLS_MAX+1); | 173 | fixup_gdt_table(lg, GDT_ENTRY_TLS_MIN, GDT_ENTRY_TLS_MAX+1); |
174 | /* Note that just the TLS entries have changed. */ | ||
166 | lg->changed |= CHANGED_GDT_TLS; | 175 | lg->changed |= CHANGED_GDT_TLS; |
167 | } | 176 | } |
177 | /*:*/ | ||
168 | 178 | ||
169 | /* | 179 | /*H:660 |
170 | * With this, we have finished the Host. | 180 | * With this, we have finished the Host. |
171 | * | 181 | * |
172 | * Five of the seven parts of our task are complete. You have made it through | 182 | * Five of the seven parts of our task are complete. You have made it through |