diff options
Diffstat (limited to 'drivers/lguest/page_tables.c')
-rw-r--r-- | drivers/lguest/page_tables.c | 314 |
1 files changed, 286 insertions, 28 deletions
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c index f9ca50d80466..cd047e81cd63 100644 --- a/drivers/lguest/page_tables.c +++ b/drivers/lguest/page_tables.c | |||
@@ -15,38 +15,91 @@ | |||
15 | #include <asm/tlbflush.h> | 15 | #include <asm/tlbflush.h> |
16 | #include "lg.h" | 16 | #include "lg.h" |
17 | 17 | ||
18 | /*H:300 | ||
19 | * The Page Table Code | ||
20 | * | ||
21 | * We use two-level page tables for the Guest. If you're not entirely | ||
22 | * comfortable with virtual addresses, physical addresses and page tables then | ||
23 | * I recommend you review lguest.c's "Page Table Handling" (with diagrams!). | ||
24 | * | ||
25 | * The Guest keeps page tables, but we maintain the actual ones here: these are | ||
26 | * called "shadow" page tables. Which is a very Guest-centric name: these are | ||
27 | * the real page tables the CPU uses, although we keep them up to date to | ||
28 | * reflect the Guest's. (See what I mean about weird naming? Since when do | ||
29 | * shadows reflect anything?) | ||
30 | * | ||
31 | * Anyway, this is the most complicated part of the Host code. There are seven | ||
32 | * parts to this: | ||
33 | * (i) Setting up a page table entry for the Guest when it faults, | ||
34 | * (ii) Setting up the page table entry for the Guest stack, | ||
35 | * (iii) Setting up a page table entry when the Guest tells us it has changed, | ||
36 | * (iv) Switching page tables, | ||
37 | * (v) Flushing (thowing away) page tables, | ||
38 | * (vi) Mapping the Switcher when the Guest is about to run, | ||
39 | * (vii) Setting up the page tables initially. | ||
40 | :*/ | ||
41 | |||
42 | /* Pages a 4k long, and each page table entry is 4 bytes long, giving us 1024 | ||
43 | * (or 2^10) entries per page. */ | ||
18 | #define PTES_PER_PAGE_SHIFT 10 | 44 | #define PTES_PER_PAGE_SHIFT 10 |
19 | #define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT) | 45 | #define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT) |
46 | |||
47 | /* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is | ||
48 | * conveniently placed at the top 4MB, so it uses a separate, complete PTE | ||
49 | * page. */ | ||
20 | #define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1) | 50 | #define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1) |
21 | 51 | ||
52 | /* We actually need a separate PTE page for each CPU. Remember that after the | ||
53 | * Switcher code itself comes two pages for each CPU, and we don't want this | ||
54 | * CPU's guest to see the pages of any other CPU. */ | ||
22 | static DEFINE_PER_CPU(spte_t *, switcher_pte_pages); | 55 | static DEFINE_PER_CPU(spte_t *, switcher_pte_pages); |
23 | #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) | 56 | #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) |
24 | 57 | ||
58 | /*H:320 With our shadow and Guest types established, we need to deal with | ||
59 | * them: the page table code is curly enough to need helper functions to keep | ||
60 | * it clear and clean. | ||
61 | * | ||
62 | * The first helper takes a virtual address, and says which entry in the top | ||
63 | * level page table deals with that address. Since each top level entry deals | ||
64 | * with 4M, this effectively divides by 4M. */ | ||
25 | static unsigned vaddr_to_pgd_index(unsigned long vaddr) | 65 | static unsigned vaddr_to_pgd_index(unsigned long vaddr) |
26 | { | 66 | { |
27 | return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); | 67 | return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); |
28 | } | 68 | } |
29 | 69 | ||
30 | /* These access the shadow versions (ie. the ones used by the CPU). */ | 70 | /* There are two functions which return pointers to the shadow (aka "real") |
71 | * page tables. | ||
72 | * | ||
73 | * spgd_addr() takes the virtual address and returns a pointer to the top-level | ||
74 | * page directory entry for that address. Since we keep track of several page | ||
75 | * tables, the "i" argument tells us which one we're interested in (it's | ||
76 | * usually the current one). */ | ||
31 | static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr) | 77 | static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr) |
32 | { | 78 | { |
33 | unsigned int index = vaddr_to_pgd_index(vaddr); | 79 | unsigned int index = vaddr_to_pgd_index(vaddr); |
34 | 80 | ||
81 | /* We kill any Guest trying to touch the Switcher addresses. */ | ||
35 | if (index >= SWITCHER_PGD_INDEX) { | 82 | if (index >= SWITCHER_PGD_INDEX) { |
36 | kill_guest(lg, "attempt to access switcher pages"); | 83 | kill_guest(lg, "attempt to access switcher pages"); |
37 | index = 0; | 84 | index = 0; |
38 | } | 85 | } |
86 | /* Return a pointer index'th pgd entry for the i'th page table. */ | ||
39 | return &lg->pgdirs[i].pgdir[index]; | 87 | return &lg->pgdirs[i].pgdir[index]; |
40 | } | 88 | } |
41 | 89 | ||
90 | /* This routine then takes the PGD entry given above, which contains the | ||
91 | * address of the PTE page. It then returns a pointer to the PTE entry for the | ||
92 | * given address. */ | ||
42 | static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr) | 93 | static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr) |
43 | { | 94 | { |
44 | spte_t *page = __va(spgd.pfn << PAGE_SHIFT); | 95 | spte_t *page = __va(spgd.pfn << PAGE_SHIFT); |
96 | /* You should never call this if the PGD entry wasn't valid */ | ||
45 | BUG_ON(!(spgd.flags & _PAGE_PRESENT)); | 97 | BUG_ON(!(spgd.flags & _PAGE_PRESENT)); |
46 | return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE]; | 98 | return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE]; |
47 | } | 99 | } |
48 | 100 | ||
49 | /* These access the guest versions. */ | 101 | /* These two functions just like the above two, except they access the Guest |
102 | * page tables. Hence they return a Guest address. */ | ||
50 | static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr) | 103 | static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr) |
51 | { | 104 | { |
52 | unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); | 105 | unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); |
@@ -61,12 +114,24 @@ static unsigned long gpte_addr(struct lguest *lg, | |||
61 | return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t); | 114 | return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t); |
62 | } | 115 | } |
63 | 116 | ||
64 | /* Do a virtual -> physical mapping on a user page. */ | 117 | /*H:350 This routine takes a page number given by the Guest and converts it to |
118 | * an actual, physical page number. It can fail for several reasons: the | ||
119 | * virtual address might not be mapped by the Launcher, the write flag is set | ||
120 | * and the page is read-only, or the write flag was set and the page was | ||
121 | * shared so had to be copied, but we ran out of memory. | ||
122 | * | ||
123 | * This holds a reference to the page, so release_pte() is careful to | ||
124 | * put that back. */ | ||
65 | static unsigned long get_pfn(unsigned long virtpfn, int write) | 125 | static unsigned long get_pfn(unsigned long virtpfn, int write) |
66 | { | 126 | { |
67 | struct page *page; | 127 | struct page *page; |
128 | /* This value indicates failure. */ | ||
68 | unsigned long ret = -1UL; | 129 | unsigned long ret = -1UL; |
69 | 130 | ||
131 | /* get_user_pages() is a complex interface: it gets the "struct | ||
132 | * vm_area_struct" and "struct page" assocated with a range of pages. | ||
133 | * It also needs the task's mmap_sem held, and is not very quick. | ||
134 | * It returns the number of pages it got. */ | ||
70 | down_read(¤t->mm->mmap_sem); | 135 | down_read(¤t->mm->mmap_sem); |
71 | if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT, | 136 | if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT, |
72 | 1, write, 1, &page, NULL) == 1) | 137 | 1, write, 1, &page, NULL) == 1) |
@@ -75,28 +140,47 @@ static unsigned long get_pfn(unsigned long virtpfn, int write) | |||
75 | return ret; | 140 | return ret; |
76 | } | 141 | } |
77 | 142 | ||
143 | /*H:340 Converting a Guest page table entry to a shadow (ie. real) page table | ||
144 | * entry can be a little tricky. The flags are (almost) the same, but the | ||
145 | * Guest PTE contains a virtual page number: the CPU needs the real page | ||
146 | * number. */ | ||
78 | static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write) | 147 | static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write) |
79 | { | 148 | { |
80 | spte_t spte; | 149 | spte_t spte; |
81 | unsigned long pfn; | 150 | unsigned long pfn; |
82 | 151 | ||
83 | /* We ignore the global flag. */ | 152 | /* The Guest sets the global flag, because it thinks that it is using |
153 | * PGE. We only told it to use PGE so it would tell us whether it was | ||
154 | * flushing a kernel mapping or a userspace mapping. We don't actually | ||
155 | * use the global bit, so throw it away. */ | ||
84 | spte.flags = (gpte.flags & ~_PAGE_GLOBAL); | 156 | spte.flags = (gpte.flags & ~_PAGE_GLOBAL); |
157 | |||
158 | /* We need a temporary "unsigned long" variable to hold the answer from | ||
159 | * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't | ||
160 | * fit in spte.pfn. get_pfn() finds the real physical number of the | ||
161 | * page, given the virtual number. */ | ||
85 | pfn = get_pfn(gpte.pfn, write); | 162 | pfn = get_pfn(gpte.pfn, write); |
86 | if (pfn == -1UL) { | 163 | if (pfn == -1UL) { |
87 | kill_guest(lg, "failed to get page %u", gpte.pfn); | 164 | kill_guest(lg, "failed to get page %u", gpte.pfn); |
88 | /* Must not put_page() bogus page on cleanup. */ | 165 | /* When we destroy the Guest, we'll go through the shadow page |
166 | * tables and release_pte() them. Make sure we don't think | ||
167 | * this one is valid! */ | ||
89 | spte.flags = 0; | 168 | spte.flags = 0; |
90 | } | 169 | } |
170 | /* Now we assign the page number, and our shadow PTE is complete. */ | ||
91 | spte.pfn = pfn; | 171 | spte.pfn = pfn; |
92 | return spte; | 172 | return spte; |
93 | } | 173 | } |
94 | 174 | ||
175 | /*H:460 And to complete the chain, release_pte() looks like this: */ | ||
95 | static void release_pte(spte_t pte) | 176 | static void release_pte(spte_t pte) |
96 | { | 177 | { |
178 | /* Remember that get_user_pages() took a reference to the page, in | ||
179 | * get_pfn()? We have to put it back now. */ | ||
97 | if (pte.flags & _PAGE_PRESENT) | 180 | if (pte.flags & _PAGE_PRESENT) |
98 | put_page(pfn_to_page(pte.pfn)); | 181 | put_page(pfn_to_page(pte.pfn)); |
99 | } | 182 | } |
183 | /*:*/ | ||
100 | 184 | ||
101 | static void check_gpte(struct lguest *lg, gpte_t gpte) | 185 | static void check_gpte(struct lguest *lg, gpte_t gpte) |
102 | { | 186 | { |
@@ -110,11 +194,16 @@ static void check_gpgd(struct lguest *lg, gpgd_t gpgd) | |||
110 | kill_guest(lg, "bad page directory entry"); | 194 | kill_guest(lg, "bad page directory entry"); |
111 | } | 195 | } |
112 | 196 | ||
113 | /* FIXME: We hold reference to pages, which prevents them from being | 197 | /*H:330 |
114 | swapped. It'd be nice to have a callback when Linux wants to swap out. */ | 198 | * (i) Setting up a page table entry for the Guest when it faults |
115 | 199 | * | |
116 | /* We fault pages in, which allows us to update accessed/dirty bits. | 200 | * We saw this call in run_guest(): when we see a page fault in the Guest, we |
117 | * Return true if we got page. */ | 201 | * come here. That's because we only set up the shadow page tables lazily as |
202 | * they're needed, so we get page faults all the time and quietly fix them up | ||
203 | * and return to the Guest without it knowing. | ||
204 | * | ||
205 | * If we fixed up the fault (ie. we mapped the address), this routine returns | ||
206 | * true. */ | ||
118 | int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) | 207 | int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) |
119 | { | 208 | { |
120 | gpgd_t gpgd; | 209 | gpgd_t gpgd; |
@@ -123,106 +212,161 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) | |||
123 | gpte_t gpte; | 212 | gpte_t gpte; |
124 | spte_t *spte; | 213 | spte_t *spte; |
125 | 214 | ||
215 | /* First step: get the top-level Guest page table entry. */ | ||
126 | gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr))); | 216 | gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr))); |
217 | /* Toplevel not present? We can't map it in. */ | ||
127 | if (!(gpgd.flags & _PAGE_PRESENT)) | 218 | if (!(gpgd.flags & _PAGE_PRESENT)) |
128 | return 0; | 219 | return 0; |
129 | 220 | ||
221 | /* Now look at the matching shadow entry. */ | ||
130 | spgd = spgd_addr(lg, lg->pgdidx, vaddr); | 222 | spgd = spgd_addr(lg, lg->pgdidx, vaddr); |
131 | if (!(spgd->flags & _PAGE_PRESENT)) { | 223 | if (!(spgd->flags & _PAGE_PRESENT)) { |
132 | /* Get a page of PTEs for them. */ | 224 | /* No shadow entry: allocate a new shadow PTE page. */ |
133 | unsigned long ptepage = get_zeroed_page(GFP_KERNEL); | 225 | unsigned long ptepage = get_zeroed_page(GFP_KERNEL); |
134 | /* FIXME: Steal from self in this case? */ | 226 | /* This is not really the Guest's fault, but killing it is |
227 | * simple for this corner case. */ | ||
135 | if (!ptepage) { | 228 | if (!ptepage) { |
136 | kill_guest(lg, "out of memory allocating pte page"); | 229 | kill_guest(lg, "out of memory allocating pte page"); |
137 | return 0; | 230 | return 0; |
138 | } | 231 | } |
232 | /* We check that the Guest pgd is OK. */ | ||
139 | check_gpgd(lg, gpgd); | 233 | check_gpgd(lg, gpgd); |
234 | /* And we copy the flags to the shadow PGD entry. The page | ||
235 | * number in the shadow PGD is the page we just allocated. */ | ||
140 | spgd->raw.val = (__pa(ptepage) | gpgd.flags); | 236 | spgd->raw.val = (__pa(ptepage) | gpgd.flags); |
141 | } | 237 | } |
142 | 238 | ||
239 | /* OK, now we look at the lower level in the Guest page table: keep its | ||
240 | * address, because we might update it later. */ | ||
143 | gpte_ptr = gpte_addr(lg, gpgd, vaddr); | 241 | gpte_ptr = gpte_addr(lg, gpgd, vaddr); |
144 | gpte = mkgpte(lgread_u32(lg, gpte_ptr)); | 242 | gpte = mkgpte(lgread_u32(lg, gpte_ptr)); |
145 | 243 | ||
146 | /* No page? */ | 244 | /* If this page isn't in the Guest page tables, we can't page it in. */ |
147 | if (!(gpte.flags & _PAGE_PRESENT)) | 245 | if (!(gpte.flags & _PAGE_PRESENT)) |
148 | return 0; | 246 | return 0; |
149 | 247 | ||
150 | /* Write to read-only page? */ | 248 | /* Check they're not trying to write to a page the Guest wants |
249 | * read-only (bit 2 of errcode == write). */ | ||
151 | if ((errcode & 2) && !(gpte.flags & _PAGE_RW)) | 250 | if ((errcode & 2) && !(gpte.flags & _PAGE_RW)) |
152 | return 0; | 251 | return 0; |
153 | 252 | ||
154 | /* User access to a non-user page? */ | 253 | /* User access to a kernel page? (bit 3 == user access) */ |
155 | if ((errcode & 4) && !(gpte.flags & _PAGE_USER)) | 254 | if ((errcode & 4) && !(gpte.flags & _PAGE_USER)) |
156 | return 0; | 255 | return 0; |
157 | 256 | ||
257 | /* Check that the Guest PTE flags are OK, and the page number is below | ||
258 | * the pfn_limit (ie. not mapping the Launcher binary). */ | ||
158 | check_gpte(lg, gpte); | 259 | check_gpte(lg, gpte); |
260 | /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */ | ||
159 | gpte.flags |= _PAGE_ACCESSED; | 261 | gpte.flags |= _PAGE_ACCESSED; |
160 | if (errcode & 2) | 262 | if (errcode & 2) |
161 | gpte.flags |= _PAGE_DIRTY; | 263 | gpte.flags |= _PAGE_DIRTY; |
162 | 264 | ||
163 | /* We're done with the old pte. */ | 265 | /* Get the pointer to the shadow PTE entry we're going to set. */ |
164 | spte = spte_addr(lg, *spgd, vaddr); | 266 | spte = spte_addr(lg, *spgd, vaddr); |
267 | /* If there was a valid shadow PTE entry here before, we release it. | ||
268 | * This can happen with a write to a previously read-only entry. */ | ||
165 | release_pte(*spte); | 269 | release_pte(*spte); |
166 | 270 | ||
167 | /* We don't make it writable if this isn't a write: later | 271 | /* If this is a write, we insist that the Guest page is writable (the |
168 | * write will fault so we can set dirty bit in guest. */ | 272 | * final arg to gpte_to_spte()). */ |
169 | if (gpte.flags & _PAGE_DIRTY) | 273 | if (gpte.flags & _PAGE_DIRTY) |
170 | *spte = gpte_to_spte(lg, gpte, 1); | 274 | *spte = gpte_to_spte(lg, gpte, 1); |
171 | else { | 275 | else { |
276 | /* If this is a read, don't set the "writable" bit in the page | ||
277 | * table entry, even if the Guest says it's writable. That way | ||
278 | * we come back here when a write does actually ocur, so we can | ||
279 | * update the Guest's _PAGE_DIRTY flag. */ | ||
172 | gpte_t ro_gpte = gpte; | 280 | gpte_t ro_gpte = gpte; |
173 | ro_gpte.flags &= ~_PAGE_RW; | 281 | ro_gpte.flags &= ~_PAGE_RW; |
174 | *spte = gpte_to_spte(lg, ro_gpte, 0); | 282 | *spte = gpte_to_spte(lg, ro_gpte, 0); |
175 | } | 283 | } |
176 | 284 | ||
177 | /* Now we update dirty/accessed on guest. */ | 285 | /* Finally, we write the Guest PTE entry back: we've set the |
286 | * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */ | ||
178 | lgwrite_u32(lg, gpte_ptr, gpte.raw.val); | 287 | lgwrite_u32(lg, gpte_ptr, gpte.raw.val); |
288 | |||
289 | /* We succeeded in mapping the page! */ | ||
179 | return 1; | 290 | return 1; |
180 | } | 291 | } |
181 | 292 | ||
182 | /* This is much faster than the full demand_page logic. */ | 293 | /*H:360 (ii) Setting up the page table entry for the Guest stack. |
294 | * | ||
295 | * Remember pin_stack_pages() which makes sure the stack is mapped? It could | ||
296 | * simply call demand_page(), but as we've seen that logic is quite long, and | ||
297 | * usually the stack pages are already mapped anyway, so it's not required. | ||
298 | * | ||
299 | * This is a quick version which answers the question: is this virtual address | ||
300 | * mapped by the shadow page tables, and is it writable? */ | ||
183 | static int page_writable(struct lguest *lg, unsigned long vaddr) | 301 | static int page_writable(struct lguest *lg, unsigned long vaddr) |
184 | { | 302 | { |
185 | spgd_t *spgd; | 303 | spgd_t *spgd; |
186 | unsigned long flags; | 304 | unsigned long flags; |
187 | 305 | ||
306 | /* Look at the top level entry: is it present? */ | ||
188 | spgd = spgd_addr(lg, lg->pgdidx, vaddr); | 307 | spgd = spgd_addr(lg, lg->pgdidx, vaddr); |
189 | if (!(spgd->flags & _PAGE_PRESENT)) | 308 | if (!(spgd->flags & _PAGE_PRESENT)) |
190 | return 0; | 309 | return 0; |
191 | 310 | ||
311 | /* Check the flags on the pte entry itself: it must be present and | ||
312 | * writable. */ | ||
192 | flags = spte_addr(lg, *spgd, vaddr)->flags; | 313 | flags = spte_addr(lg, *spgd, vaddr)->flags; |
193 | return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); | 314 | return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); |
194 | } | 315 | } |
195 | 316 | ||
317 | /* So, when pin_stack_pages() asks us to pin a page, we check if it's already | ||
318 | * in the page tables, and if not, we call demand_page() with error code 2 | ||
319 | * (meaning "write"). */ | ||
196 | void pin_page(struct lguest *lg, unsigned long vaddr) | 320 | void pin_page(struct lguest *lg, unsigned long vaddr) |
197 | { | 321 | { |
198 | if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2)) | 322 | if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2)) |
199 | kill_guest(lg, "bad stack page %#lx", vaddr); | 323 | kill_guest(lg, "bad stack page %#lx", vaddr); |
200 | } | 324 | } |
201 | 325 | ||
326 | /*H:450 If we chase down the release_pgd() code, it looks like this: */ | ||
202 | static void release_pgd(struct lguest *lg, spgd_t *spgd) | 327 | static void release_pgd(struct lguest *lg, spgd_t *spgd) |
203 | { | 328 | { |
329 | /* If the entry's not present, there's nothing to release. */ | ||
204 | if (spgd->flags & _PAGE_PRESENT) { | 330 | if (spgd->flags & _PAGE_PRESENT) { |
205 | unsigned int i; | 331 | unsigned int i; |
332 | /* Converting the pfn to find the actual PTE page is easy: turn | ||
333 | * the page number into a physical address, then convert to a | ||
334 | * virtual address (easy for kernel pages like this one). */ | ||
206 | spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT); | 335 | spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT); |
336 | /* For each entry in the page, we might need to release it. */ | ||
207 | for (i = 0; i < PTES_PER_PAGE; i++) | 337 | for (i = 0; i < PTES_PER_PAGE; i++) |
208 | release_pte(ptepage[i]); | 338 | release_pte(ptepage[i]); |
339 | /* Now we can free the page of PTEs */ | ||
209 | free_page((long)ptepage); | 340 | free_page((long)ptepage); |
341 | /* And zero out the PGD entry we we never release it twice. */ | ||
210 | spgd->raw.val = 0; | 342 | spgd->raw.val = 0; |
211 | } | 343 | } |
212 | } | 344 | } |
213 | 345 | ||
346 | /*H:440 (v) Flushing (thowing away) page tables, | ||
347 | * | ||
348 | * We saw flush_user_mappings() called when we re-used a top-level pgdir page. | ||
349 | * It simply releases every PTE page from 0 up to the kernel address. */ | ||
214 | static void flush_user_mappings(struct lguest *lg, int idx) | 350 | static void flush_user_mappings(struct lguest *lg, int idx) |
215 | { | 351 | { |
216 | unsigned int i; | 352 | unsigned int i; |
353 | /* Release every pgd entry up to the kernel's address. */ | ||
217 | for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++) | 354 | for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++) |
218 | release_pgd(lg, lg->pgdirs[idx].pgdir + i); | 355 | release_pgd(lg, lg->pgdirs[idx].pgdir + i); |
219 | } | 356 | } |
220 | 357 | ||
358 | /* The Guest also has a hypercall to do this manually: it's used when a large | ||
359 | * number of mappings have been changed. */ | ||
221 | void guest_pagetable_flush_user(struct lguest *lg) | 360 | void guest_pagetable_flush_user(struct lguest *lg) |
222 | { | 361 | { |
362 | /* Drop the userspace part of the current page table. */ | ||
223 | flush_user_mappings(lg, lg->pgdidx); | 363 | flush_user_mappings(lg, lg->pgdidx); |
224 | } | 364 | } |
365 | /*:*/ | ||
225 | 366 | ||
367 | /* We keep several page tables. This is a simple routine to find the page | ||
368 | * table (if any) corresponding to this top-level address the Guest has given | ||
369 | * us. */ | ||
226 | static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) | 370 | static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) |
227 | { | 371 | { |
228 | unsigned int i; | 372 | unsigned int i; |
@@ -232,21 +376,30 @@ static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) | |||
232 | return i; | 376 | return i; |
233 | } | 377 | } |
234 | 378 | ||
379 | /*H:435 And this is us, creating the new page directory. If we really do | ||
380 | * allocate a new one (and so the kernel parts are not there), we set | ||
381 | * blank_pgdir. */ | ||
235 | static unsigned int new_pgdir(struct lguest *lg, | 382 | static unsigned int new_pgdir(struct lguest *lg, |
236 | unsigned long cr3, | 383 | unsigned long cr3, |
237 | int *blank_pgdir) | 384 | int *blank_pgdir) |
238 | { | 385 | { |
239 | unsigned int next; | 386 | unsigned int next; |
240 | 387 | ||
388 | /* We pick one entry at random to throw out. Choosing the Least | ||
389 | * Recently Used might be better, but this is easy. */ | ||
241 | next = random32() % ARRAY_SIZE(lg->pgdirs); | 390 | next = random32() % ARRAY_SIZE(lg->pgdirs); |
391 | /* If it's never been allocated at all before, try now. */ | ||
242 | if (!lg->pgdirs[next].pgdir) { | 392 | if (!lg->pgdirs[next].pgdir) { |
243 | lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL); | 393 | lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL); |
394 | /* If the allocation fails, just keep using the one we have */ | ||
244 | if (!lg->pgdirs[next].pgdir) | 395 | if (!lg->pgdirs[next].pgdir) |
245 | next = lg->pgdidx; | 396 | next = lg->pgdidx; |
246 | else | 397 | else |
247 | /* There are no mappings: you'll need to re-pin */ | 398 | /* This is a blank page, so there are no kernel |
399 | * mappings: caller must map the stack! */ | ||
248 | *blank_pgdir = 1; | 400 | *blank_pgdir = 1; |
249 | } | 401 | } |
402 | /* Record which Guest toplevel this shadows. */ | ||
250 | lg->pgdirs[next].cr3 = cr3; | 403 | lg->pgdirs[next].cr3 = cr3; |
251 | /* Release all the non-kernel mappings. */ | 404 | /* Release all the non-kernel mappings. */ |
252 | flush_user_mappings(lg, next); | 405 | flush_user_mappings(lg, next); |
@@ -254,82 +407,161 @@ static unsigned int new_pgdir(struct lguest *lg, | |||
254 | return next; | 407 | return next; |
255 | } | 408 | } |
256 | 409 | ||
410 | /*H:430 (iv) Switching page tables | ||
411 | * | ||
412 | * This is what happens when the Guest changes page tables (ie. changes the | ||
413 | * top-level pgdir). This happens on almost every context switch. */ | ||
257 | void guest_new_pagetable(struct lguest *lg, unsigned long pgtable) | 414 | void guest_new_pagetable(struct lguest *lg, unsigned long pgtable) |
258 | { | 415 | { |
259 | int newpgdir, repin = 0; | 416 | int newpgdir, repin = 0; |
260 | 417 | ||
418 | /* Look to see if we have this one already. */ | ||
261 | newpgdir = find_pgdir(lg, pgtable); | 419 | newpgdir = find_pgdir(lg, pgtable); |
420 | /* If not, we allocate or mug an existing one: if it's a fresh one, | ||
421 | * repin gets set to 1. */ | ||
262 | if (newpgdir == ARRAY_SIZE(lg->pgdirs)) | 422 | if (newpgdir == ARRAY_SIZE(lg->pgdirs)) |
263 | newpgdir = new_pgdir(lg, pgtable, &repin); | 423 | newpgdir = new_pgdir(lg, pgtable, &repin); |
424 | /* Change the current pgd index to the new one. */ | ||
264 | lg->pgdidx = newpgdir; | 425 | lg->pgdidx = newpgdir; |
426 | /* If it was completely blank, we map in the Guest kernel stack */ | ||
265 | if (repin) | 427 | if (repin) |
266 | pin_stack_pages(lg); | 428 | pin_stack_pages(lg); |
267 | } | 429 | } |
268 | 430 | ||
431 | /*H:470 Finally, a routine which throws away everything: all PGD entries in all | ||
432 | * the shadow page tables. This is used when we destroy the Guest. */ | ||
269 | static void release_all_pagetables(struct lguest *lg) | 433 | static void release_all_pagetables(struct lguest *lg) |
270 | { | 434 | { |
271 | unsigned int i, j; | 435 | unsigned int i, j; |
272 | 436 | ||
437 | /* Every shadow pagetable this Guest has */ | ||
273 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 438 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
274 | if (lg->pgdirs[i].pgdir) | 439 | if (lg->pgdirs[i].pgdir) |
440 | /* Every PGD entry except the Switcher at the top */ | ||
275 | for (j = 0; j < SWITCHER_PGD_INDEX; j++) | 441 | for (j = 0; j < SWITCHER_PGD_INDEX; j++) |
276 | release_pgd(lg, lg->pgdirs[i].pgdir + j); | 442 | release_pgd(lg, lg->pgdirs[i].pgdir + j); |
277 | } | 443 | } |
278 | 444 | ||
445 | /* We also throw away everything when a Guest tells us it's changed a kernel | ||
446 | * mapping. Since kernel mappings are in every page table, it's easiest to | ||
447 | * throw them all away. This is amazingly slow, but thankfully rare. */ | ||
279 | void guest_pagetable_clear_all(struct lguest *lg) | 448 | void guest_pagetable_clear_all(struct lguest *lg) |
280 | { | 449 | { |
281 | release_all_pagetables(lg); | 450 | release_all_pagetables(lg); |
451 | /* We need the Guest kernel stack mapped again. */ | ||
282 | pin_stack_pages(lg); | 452 | pin_stack_pages(lg); |
283 | } | 453 | } |
284 | 454 | ||
455 | /*H:420 This is the routine which actually sets the page table entry for then | ||
456 | * "idx"'th shadow page table. | ||
457 | * | ||
458 | * Normally, we can just throw out the old entry and replace it with 0: if they | ||
459 | * use it demand_page() will put the new entry in. We need to do this anyway: | ||
460 | * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page | ||
461 | * is read from, and _PAGE_DIRTY when it's written to. | ||
462 | * | ||
463 | * But Avi Kivity pointed out that most Operating Systems (Linux included) set | ||
464 | * these bits on PTEs immediately anyway. This is done to save the CPU from | ||
465 | * having to update them, but it helps us the same way: if they set | ||
466 | * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if | ||
467 | * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately. | ||
468 | */ | ||
285 | static void do_set_pte(struct lguest *lg, int idx, | 469 | static void do_set_pte(struct lguest *lg, int idx, |
286 | unsigned long vaddr, gpte_t gpte) | 470 | unsigned long vaddr, gpte_t gpte) |
287 | { | 471 | { |
472 | /* Look up the matching shadow page directot entry. */ | ||
288 | spgd_t *spgd = spgd_addr(lg, idx, vaddr); | 473 | spgd_t *spgd = spgd_addr(lg, idx, vaddr); |
474 | |||
475 | /* If the top level isn't present, there's no entry to update. */ | ||
289 | if (spgd->flags & _PAGE_PRESENT) { | 476 | if (spgd->flags & _PAGE_PRESENT) { |
477 | /* Otherwise, we start by releasing the existing entry. */ | ||
290 | spte_t *spte = spte_addr(lg, *spgd, vaddr); | 478 | spte_t *spte = spte_addr(lg, *spgd, vaddr); |
291 | release_pte(*spte); | 479 | release_pte(*spte); |
480 | |||
481 | /* If they're setting this entry as dirty or accessed, we might | ||
482 | * as well put that entry they've given us in now. This shaves | ||
483 | * 10% off a copy-on-write micro-benchmark. */ | ||
292 | if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) { | 484 | if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) { |
293 | check_gpte(lg, gpte); | 485 | check_gpte(lg, gpte); |
294 | *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY); | 486 | *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY); |
295 | } else | 487 | } else |
488 | /* Otherwise we can demand_page() it in later. */ | ||
296 | spte->raw.val = 0; | 489 | spte->raw.val = 0; |
297 | } | 490 | } |
298 | } | 491 | } |
299 | 492 | ||
493 | /*H:410 Updating a PTE entry is a little trickier. | ||
494 | * | ||
495 | * We keep track of several different page tables (the Guest uses one for each | ||
496 | * process, so it makes sense to cache at least a few). Each of these have | ||
497 | * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for | ||
498 | * all processes. So when the page table above that address changes, we update | ||
499 | * all the page tables, not just the current one. This is rare. | ||
500 | * | ||
501 | * The benefit is that when we have to track a new page table, we can copy keep | ||
502 | * all the kernel mappings. This speeds up context switch immensely. */ | ||
300 | void guest_set_pte(struct lguest *lg, | 503 | void guest_set_pte(struct lguest *lg, |
301 | unsigned long cr3, unsigned long vaddr, gpte_t gpte) | 504 | unsigned long cr3, unsigned long vaddr, gpte_t gpte) |
302 | { | 505 | { |
303 | /* Kernel mappings must be changed on all top levels. */ | 506 | /* Kernel mappings must be changed on all top levels. Slow, but |
507 | * doesn't happen often. */ | ||
304 | if (vaddr >= lg->page_offset) { | 508 | if (vaddr >= lg->page_offset) { |
305 | unsigned int i; | 509 | unsigned int i; |
306 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 510 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
307 | if (lg->pgdirs[i].pgdir) | 511 | if (lg->pgdirs[i].pgdir) |
308 | do_set_pte(lg, i, vaddr, gpte); | 512 | do_set_pte(lg, i, vaddr, gpte); |
309 | } else { | 513 | } else { |
514 | /* Is this page table one we have a shadow for? */ | ||
310 | int pgdir = find_pgdir(lg, cr3); | 515 | int pgdir = find_pgdir(lg, cr3); |
311 | if (pgdir != ARRAY_SIZE(lg->pgdirs)) | 516 | if (pgdir != ARRAY_SIZE(lg->pgdirs)) |
517 | /* If so, do the update. */ | ||
312 | do_set_pte(lg, pgdir, vaddr, gpte); | 518 | do_set_pte(lg, pgdir, vaddr, gpte); |
313 | } | 519 | } |
314 | } | 520 | } |
315 | 521 | ||
522 | /*H:400 | ||
523 | * (iii) Setting up a page table entry when the Guest tells us it has changed. | ||
524 | * | ||
525 | * Just like we did in interrupts_and_traps.c, it makes sense for us to deal | ||
526 | * with the other side of page tables while we're here: what happens when the | ||
527 | * Guest asks for a page table to be updated? | ||
528 | * | ||
529 | * We already saw that demand_page() will fill in the shadow page tables when | ||
530 | * needed, so we can simply remove shadow page table entries whenever the Guest | ||
531 | * tells us they've changed. When the Guest tries to use the new entry it will | ||
532 | * fault and demand_page() will fix it up. | ||
533 | * | ||
534 | * So with that in mind here's our code to to update a (top-level) PGD entry: | ||
535 | */ | ||
316 | void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx) | 536 | void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx) |
317 | { | 537 | { |
318 | int pgdir; | 538 | int pgdir; |
319 | 539 | ||
540 | /* The kernel seems to try to initialize this early on: we ignore its | ||
541 | * attempts to map over the Switcher. */ | ||
320 | if (idx >= SWITCHER_PGD_INDEX) | 542 | if (idx >= SWITCHER_PGD_INDEX) |
321 | return; | 543 | return; |
322 | 544 | ||
545 | /* If they're talking about a page table we have a shadow for... */ | ||
323 | pgdir = find_pgdir(lg, cr3); | 546 | pgdir = find_pgdir(lg, cr3); |
324 | if (pgdir < ARRAY_SIZE(lg->pgdirs)) | 547 | if (pgdir < ARRAY_SIZE(lg->pgdirs)) |
548 | /* ... throw it away. */ | ||
325 | release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx); | 549 | release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx); |
326 | } | 550 | } |
327 | 551 | ||
552 | /*H:500 (vii) Setting up the page tables initially. | ||
553 | * | ||
554 | * When a Guest is first created, the Launcher tells us where the toplevel of | ||
555 | * its first page table is. We set some things up here: */ | ||
328 | int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) | 556 | int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) |
329 | { | 557 | { |
330 | /* We assume this in flush_user_mappings, so check now */ | 558 | /* In flush_user_mappings() we loop from 0 to |
559 | * "vaddr_to_pgd_index(lg->page_offset)". This assumes it won't hit | ||
560 | * the Switcher mappings, so check that now. */ | ||
331 | if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX) | 561 | if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX) |
332 | return -EINVAL; | 562 | return -EINVAL; |
563 | /* We start on the first shadow page table, and give it a blank PGD | ||
564 | * page. */ | ||
333 | lg->pgdidx = 0; | 565 | lg->pgdidx = 0; |
334 | lg->pgdirs[lg->pgdidx].cr3 = pgtable; | 566 | lg->pgdirs[lg->pgdidx].cr3 = pgtable; |
335 | lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL); | 567 | lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL); |
@@ -338,33 +570,48 @@ int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) | |||
338 | return 0; | 570 | return 0; |
339 | } | 571 | } |
340 | 572 | ||
573 | /* When a Guest dies, our cleanup is fairly simple. */ | ||
341 | void free_guest_pagetable(struct lguest *lg) | 574 | void free_guest_pagetable(struct lguest *lg) |
342 | { | 575 | { |
343 | unsigned int i; | 576 | unsigned int i; |
344 | 577 | ||
578 | /* Throw away all page table pages. */ | ||
345 | release_all_pagetables(lg); | 579 | release_all_pagetables(lg); |
580 | /* Now free the top levels: free_page() can handle 0 just fine. */ | ||
346 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 581 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
347 | free_page((long)lg->pgdirs[i].pgdir); | 582 | free_page((long)lg->pgdirs[i].pgdir); |
348 | } | 583 | } |
349 | 584 | ||
350 | /* Caller must be preempt-safe */ | 585 | /*H:480 (vi) Mapping the Switcher when the Guest is about to run. |
586 | * | ||
587 | * The Switcher and the two pages for this CPU need to be available to the | ||
588 | * Guest (and not the pages for other CPUs). We have the appropriate PTE pages | ||
589 | * for each CPU already set up, we just need to hook them in. */ | ||
351 | void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages) | 590 | void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages) |
352 | { | 591 | { |
353 | spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); | 592 | spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); |
354 | spgd_t switcher_pgd; | 593 | spgd_t switcher_pgd; |
355 | spte_t regs_pte; | 594 | spte_t regs_pte; |
356 | 595 | ||
357 | /* Since switcher less that 4MB, we simply mug top pte page. */ | 596 | /* Make the last PGD entry for this Guest point to the Switcher's PTE |
597 | * page for this CPU (with appropriate flags). */ | ||
358 | switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT; | 598 | switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT; |
359 | switcher_pgd.flags = _PAGE_KERNEL; | 599 | switcher_pgd.flags = _PAGE_KERNEL; |
360 | lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; | 600 | lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; |
361 | 601 | ||
362 | /* Map our regs page over stack page. */ | 602 | /* We also change the Switcher PTE page. When we're running the Guest, |
603 | * we want the Guest's "regs" page to appear where the first Switcher | ||
604 | * page for this CPU is. This is an optimization: when the Switcher | ||
605 | * saves the Guest registers, it saves them into the first page of this | ||
606 | * CPU's "struct lguest_pages": if we make sure the Guest's register | ||
607 | * page is already mapped there, we don't have to copy them out | ||
608 | * again. */ | ||
363 | regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT; | 609 | regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT; |
364 | regs_pte.flags = _PAGE_KERNEL; | 610 | regs_pte.flags = _PAGE_KERNEL; |
365 | switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE] | 611 | switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE] |
366 | = regs_pte; | 612 | = regs_pte; |
367 | } | 613 | } |
614 | /*:*/ | ||
368 | 615 | ||
369 | static void free_switcher_pte_pages(void) | 616 | static void free_switcher_pte_pages(void) |
370 | { | 617 | { |
@@ -374,6 +621,10 @@ static void free_switcher_pte_pages(void) | |||
374 | free_page((long)switcher_pte_page(i)); | 621 | free_page((long)switcher_pte_page(i)); |
375 | } | 622 | } |
376 | 623 | ||
624 | /*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given | ||
625 | * the CPU number and the "struct page"s for the Switcher code itself. | ||
626 | * | ||
627 | * Currently the Switcher is less than a page long, so "pages" is always 1. */ | ||
377 | static __init void populate_switcher_pte_page(unsigned int cpu, | 628 | static __init void populate_switcher_pte_page(unsigned int cpu, |
378 | struct page *switcher_page[], | 629 | struct page *switcher_page[], |
379 | unsigned int pages) | 630 | unsigned int pages) |
@@ -381,21 +632,26 @@ static __init void populate_switcher_pte_page(unsigned int cpu, | |||
381 | unsigned int i; | 632 | unsigned int i; |
382 | spte_t *pte = switcher_pte_page(cpu); | 633 | spte_t *pte = switcher_pte_page(cpu); |
383 | 634 | ||
635 | /* The first entries are easy: they map the Switcher code. */ | ||
384 | for (i = 0; i < pages; i++) { | 636 | for (i = 0; i < pages; i++) { |
385 | pte[i].pfn = page_to_pfn(switcher_page[i]); | 637 | pte[i].pfn = page_to_pfn(switcher_page[i]); |
386 | pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED; | 638 | pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED; |
387 | } | 639 | } |
388 | 640 | ||
389 | /* We only map this CPU's pages, so guest can't see others. */ | 641 | /* The only other thing we map is this CPU's pair of pages. */ |
390 | i = pages + cpu*2; | 642 | i = pages + cpu*2; |
391 | 643 | ||
392 | /* First page (regs) is rw, second (state) is ro. */ | 644 | /* First page (Guest registers) is writable from the Guest */ |
393 | pte[i].pfn = page_to_pfn(switcher_page[i]); | 645 | pte[i].pfn = page_to_pfn(switcher_page[i]); |
394 | pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW; | 646 | pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW; |
647 | /* The second page contains the "struct lguest_ro_state", and is | ||
648 | * read-only. */ | ||
395 | pte[i+1].pfn = page_to_pfn(switcher_page[i+1]); | 649 | pte[i+1].pfn = page_to_pfn(switcher_page[i+1]); |
396 | pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED; | 650 | pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED; |
397 | } | 651 | } |
398 | 652 | ||
653 | /*H:510 At boot or module load time, init_pagetables() allocates and populates | ||
654 | * the Switcher PTE page for each CPU. */ | ||
399 | __init int init_pagetables(struct page **switcher_page, unsigned int pages) | 655 | __init int init_pagetables(struct page **switcher_page, unsigned int pages) |
400 | { | 656 | { |
401 | unsigned int i; | 657 | unsigned int i; |
@@ -410,7 +666,9 @@ __init int init_pagetables(struct page **switcher_page, unsigned int pages) | |||
410 | } | 666 | } |
411 | return 0; | 667 | return 0; |
412 | } | 668 | } |
669 | /*:*/ | ||
413 | 670 | ||
671 | /* Cleaning up simply involves freeing the PTE page for each CPU. */ | ||
414 | void free_pagetables(void) | 672 | void free_pagetables(void) |
415 | { | 673 | { |
416 | free_switcher_pte_pages(); | 674 | free_switcher_pte_pages(); |