diff options
Diffstat (limited to 'drivers/lguest/page_tables.c')
-rw-r--r-- | drivers/lguest/page_tables.c | 329 |
1 files changed, 299 insertions, 30 deletions
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c index 1b0ba09b1269..b7a924ace684 100644 --- a/drivers/lguest/page_tables.c +++ b/drivers/lguest/page_tables.c | |||
@@ -1,5 +1,11 @@ | |||
1 | /* Shadow page table operations. | 1 | /*P:700 The pagetable code, on the other hand, still shows the scars of |
2 | * Copyright (C) Rusty Russell IBM Corporation 2006. | 2 | * previous encounters. It's functional, and as neat as it can be in the |
3 | * circumstances, but be wary, for these things are subtle and break easily. | ||
4 | * The Guest provides a virtual to physical mapping, but we can neither trust | ||
5 | * it nor use it: we verify and convert it here to point the hardware to the | ||
6 | * actual Guest pages when running the Guest. :*/ | ||
7 | |||
8 | /* Copyright (C) Rusty Russell IBM Corporation 2006. | ||
3 | * GPL v2 and any later version */ | 9 | * GPL v2 and any later version */ |
4 | #include <linux/mm.h> | 10 | #include <linux/mm.h> |
5 | #include <linux/types.h> | 11 | #include <linux/types.h> |
@@ -9,38 +15,96 @@ | |||
9 | #include <asm/tlbflush.h> | 15 | #include <asm/tlbflush.h> |
10 | #include "lg.h" | 16 | #include "lg.h" |
11 | 17 | ||
18 | /*M:008 We hold reference to pages, which prevents them from being swapped. | ||
19 | * It'd be nice to have a callback in the "struct mm_struct" when Linux wants | ||
20 | * to swap out. If we had this, and a shrinker callback to trim PTE pages, we | ||
21 | * could probably consider launching Guests as non-root. :*/ | ||
22 | |||
23 | /*H:300 | ||
24 | * The Page Table Code | ||
25 | * | ||
26 | * We use two-level page tables for the Guest. If you're not entirely | ||
27 | * comfortable with virtual addresses, physical addresses and page tables then | ||
28 | * I recommend you review lguest.c's "Page Table Handling" (with diagrams!). | ||
29 | * | ||
30 | * The Guest keeps page tables, but we maintain the actual ones here: these are | ||
31 | * called "shadow" page tables. Which is a very Guest-centric name: these are | ||
32 | * the real page tables the CPU uses, although we keep them up to date to | ||
33 | * reflect the Guest's. (See what I mean about weird naming? Since when do | ||
34 | * shadows reflect anything?) | ||
35 | * | ||
36 | * Anyway, this is the most complicated part of the Host code. There are seven | ||
37 | * parts to this: | ||
38 | * (i) Setting up a page table entry for the Guest when it faults, | ||
39 | * (ii) Setting up the page table entry for the Guest stack, | ||
40 | * (iii) Setting up a page table entry when the Guest tells us it has changed, | ||
41 | * (iv) Switching page tables, | ||
42 | * (v) Flushing (thowing away) page tables, | ||
43 | * (vi) Mapping the Switcher when the Guest is about to run, | ||
44 | * (vii) Setting up the page tables initially. | ||
45 | :*/ | ||
46 | |||
47 | /* Pages a 4k long, and each page table entry is 4 bytes long, giving us 1024 | ||
48 | * (or 2^10) entries per page. */ | ||
12 | #define PTES_PER_PAGE_SHIFT 10 | 49 | #define PTES_PER_PAGE_SHIFT 10 |
13 | #define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT) | 50 | #define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT) |
51 | |||
52 | /* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is | ||
53 | * conveniently placed at the top 4MB, so it uses a separate, complete PTE | ||
54 | * page. */ | ||
14 | #define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1) | 55 | #define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1) |
15 | 56 | ||
57 | /* We actually need a separate PTE page for each CPU. Remember that after the | ||
58 | * Switcher code itself comes two pages for each CPU, and we don't want this | ||
59 | * CPU's guest to see the pages of any other CPU. */ | ||
16 | static DEFINE_PER_CPU(spte_t *, switcher_pte_pages); | 60 | static DEFINE_PER_CPU(spte_t *, switcher_pte_pages); |
17 | #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) | 61 | #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) |
18 | 62 | ||
63 | /*H:320 With our shadow and Guest types established, we need to deal with | ||
64 | * them: the page table code is curly enough to need helper functions to keep | ||
65 | * it clear and clean. | ||
66 | * | ||
67 | * The first helper takes a virtual address, and says which entry in the top | ||
68 | * level page table deals with that address. Since each top level entry deals | ||
69 | * with 4M, this effectively divides by 4M. */ | ||
19 | static unsigned vaddr_to_pgd_index(unsigned long vaddr) | 70 | static unsigned vaddr_to_pgd_index(unsigned long vaddr) |
20 | { | 71 | { |
21 | return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); | 72 | return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); |
22 | } | 73 | } |
23 | 74 | ||
24 | /* These access the shadow versions (ie. the ones used by the CPU). */ | 75 | /* There are two functions which return pointers to the shadow (aka "real") |
76 | * page tables. | ||
77 | * | ||
78 | * spgd_addr() takes the virtual address and returns a pointer to the top-level | ||
79 | * page directory entry for that address. Since we keep track of several page | ||
80 | * tables, the "i" argument tells us which one we're interested in (it's | ||
81 | * usually the current one). */ | ||
25 | static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr) | 82 | static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr) |
26 | { | 83 | { |
27 | unsigned int index = vaddr_to_pgd_index(vaddr); | 84 | unsigned int index = vaddr_to_pgd_index(vaddr); |
28 | 85 | ||
86 | /* We kill any Guest trying to touch the Switcher addresses. */ | ||
29 | if (index >= SWITCHER_PGD_INDEX) { | 87 | if (index >= SWITCHER_PGD_INDEX) { |
30 | kill_guest(lg, "attempt to access switcher pages"); | 88 | kill_guest(lg, "attempt to access switcher pages"); |
31 | index = 0; | 89 | index = 0; |
32 | } | 90 | } |
91 | /* Return a pointer index'th pgd entry for the i'th page table. */ | ||
33 | return &lg->pgdirs[i].pgdir[index]; | 92 | return &lg->pgdirs[i].pgdir[index]; |
34 | } | 93 | } |
35 | 94 | ||
95 | /* This routine then takes the PGD entry given above, which contains the | ||
96 | * address of the PTE page. It then returns a pointer to the PTE entry for the | ||
97 | * given address. */ | ||
36 | static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr) | 98 | static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr) |
37 | { | 99 | { |
38 | spte_t *page = __va(spgd.pfn << PAGE_SHIFT); | 100 | spte_t *page = __va(spgd.pfn << PAGE_SHIFT); |
101 | /* You should never call this if the PGD entry wasn't valid */ | ||
39 | BUG_ON(!(spgd.flags & _PAGE_PRESENT)); | 102 | BUG_ON(!(spgd.flags & _PAGE_PRESENT)); |
40 | return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE]; | 103 | return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE]; |
41 | } | 104 | } |
42 | 105 | ||
43 | /* These access the guest versions. */ | 106 | /* These two functions just like the above two, except they access the Guest |
107 | * page tables. Hence they return a Guest address. */ | ||
44 | static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr) | 108 | static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr) |
45 | { | 109 | { |
46 | unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); | 110 | unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); |
@@ -55,12 +119,24 @@ static unsigned long gpte_addr(struct lguest *lg, | |||
55 | return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t); | 119 | return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t); |
56 | } | 120 | } |
57 | 121 | ||
58 | /* Do a virtual -> physical mapping on a user page. */ | 122 | /*H:350 This routine takes a page number given by the Guest and converts it to |
123 | * an actual, physical page number. It can fail for several reasons: the | ||
124 | * virtual address might not be mapped by the Launcher, the write flag is set | ||
125 | * and the page is read-only, or the write flag was set and the page was | ||
126 | * shared so had to be copied, but we ran out of memory. | ||
127 | * | ||
128 | * This holds a reference to the page, so release_pte() is careful to | ||
129 | * put that back. */ | ||
59 | static unsigned long get_pfn(unsigned long virtpfn, int write) | 130 | static unsigned long get_pfn(unsigned long virtpfn, int write) |
60 | { | 131 | { |
61 | struct page *page; | 132 | struct page *page; |
133 | /* This value indicates failure. */ | ||
62 | unsigned long ret = -1UL; | 134 | unsigned long ret = -1UL; |
63 | 135 | ||
136 | /* get_user_pages() is a complex interface: it gets the "struct | ||
137 | * vm_area_struct" and "struct page" assocated with a range of pages. | ||
138 | * It also needs the task's mmap_sem held, and is not very quick. | ||
139 | * It returns the number of pages it got. */ | ||
64 | down_read(¤t->mm->mmap_sem); | 140 | down_read(¤t->mm->mmap_sem); |
65 | if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT, | 141 | if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT, |
66 | 1, write, 1, &page, NULL) == 1) | 142 | 1, write, 1, &page, NULL) == 1) |
@@ -69,28 +145,47 @@ static unsigned long get_pfn(unsigned long virtpfn, int write) | |||
69 | return ret; | 145 | return ret; |
70 | } | 146 | } |
71 | 147 | ||
148 | /*H:340 Converting a Guest page table entry to a shadow (ie. real) page table | ||
149 | * entry can be a little tricky. The flags are (almost) the same, but the | ||
150 | * Guest PTE contains a virtual page number: the CPU needs the real page | ||
151 | * number. */ | ||
72 | static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write) | 152 | static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write) |
73 | { | 153 | { |
74 | spte_t spte; | 154 | spte_t spte; |
75 | unsigned long pfn; | 155 | unsigned long pfn; |
76 | 156 | ||
77 | /* We ignore the global flag. */ | 157 | /* The Guest sets the global flag, because it thinks that it is using |
158 | * PGE. We only told it to use PGE so it would tell us whether it was | ||
159 | * flushing a kernel mapping or a userspace mapping. We don't actually | ||
160 | * use the global bit, so throw it away. */ | ||
78 | spte.flags = (gpte.flags & ~_PAGE_GLOBAL); | 161 | spte.flags = (gpte.flags & ~_PAGE_GLOBAL); |
162 | |||
163 | /* We need a temporary "unsigned long" variable to hold the answer from | ||
164 | * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't | ||
165 | * fit in spte.pfn. get_pfn() finds the real physical number of the | ||
166 | * page, given the virtual number. */ | ||
79 | pfn = get_pfn(gpte.pfn, write); | 167 | pfn = get_pfn(gpte.pfn, write); |
80 | if (pfn == -1UL) { | 168 | if (pfn == -1UL) { |
81 | kill_guest(lg, "failed to get page %u", gpte.pfn); | 169 | kill_guest(lg, "failed to get page %u", gpte.pfn); |
82 | /* Must not put_page() bogus page on cleanup. */ | 170 | /* When we destroy the Guest, we'll go through the shadow page |
171 | * tables and release_pte() them. Make sure we don't think | ||
172 | * this one is valid! */ | ||
83 | spte.flags = 0; | 173 | spte.flags = 0; |
84 | } | 174 | } |
175 | /* Now we assign the page number, and our shadow PTE is complete. */ | ||
85 | spte.pfn = pfn; | 176 | spte.pfn = pfn; |
86 | return spte; | 177 | return spte; |
87 | } | 178 | } |
88 | 179 | ||
180 | /*H:460 And to complete the chain, release_pte() looks like this: */ | ||
89 | static void release_pte(spte_t pte) | 181 | static void release_pte(spte_t pte) |
90 | { | 182 | { |
183 | /* Remember that get_user_pages() took a reference to the page, in | ||
184 | * get_pfn()? We have to put it back now. */ | ||
91 | if (pte.flags & _PAGE_PRESENT) | 185 | if (pte.flags & _PAGE_PRESENT) |
92 | put_page(pfn_to_page(pte.pfn)); | 186 | put_page(pfn_to_page(pte.pfn)); |
93 | } | 187 | } |
188 | /*:*/ | ||
94 | 189 | ||
95 | static void check_gpte(struct lguest *lg, gpte_t gpte) | 190 | static void check_gpte(struct lguest *lg, gpte_t gpte) |
96 | { | 191 | { |
@@ -104,11 +199,16 @@ static void check_gpgd(struct lguest *lg, gpgd_t gpgd) | |||
104 | kill_guest(lg, "bad page directory entry"); | 199 | kill_guest(lg, "bad page directory entry"); |
105 | } | 200 | } |
106 | 201 | ||
107 | /* FIXME: We hold reference to pages, which prevents them from being | 202 | /*H:330 |
108 | swapped. It'd be nice to have a callback when Linux wants to swap out. */ | 203 | * (i) Setting up a page table entry for the Guest when it faults |
109 | 204 | * | |
110 | /* We fault pages in, which allows us to update accessed/dirty bits. | 205 | * We saw this call in run_guest(): when we see a page fault in the Guest, we |
111 | * Return true if we got page. */ | 206 | * come here. That's because we only set up the shadow page tables lazily as |
207 | * they're needed, so we get page faults all the time and quietly fix them up | ||
208 | * and return to the Guest without it knowing. | ||
209 | * | ||
210 | * If we fixed up the fault (ie. we mapped the address), this routine returns | ||
211 | * true. */ | ||
112 | int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) | 212 | int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) |
113 | { | 213 | { |
114 | gpgd_t gpgd; | 214 | gpgd_t gpgd; |
@@ -117,106 +217,161 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) | |||
117 | gpte_t gpte; | 217 | gpte_t gpte; |
118 | spte_t *spte; | 218 | spte_t *spte; |
119 | 219 | ||
220 | /* First step: get the top-level Guest page table entry. */ | ||
120 | gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr))); | 221 | gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr))); |
222 | /* Toplevel not present? We can't map it in. */ | ||
121 | if (!(gpgd.flags & _PAGE_PRESENT)) | 223 | if (!(gpgd.flags & _PAGE_PRESENT)) |
122 | return 0; | 224 | return 0; |
123 | 225 | ||
226 | /* Now look at the matching shadow entry. */ | ||
124 | spgd = spgd_addr(lg, lg->pgdidx, vaddr); | 227 | spgd = spgd_addr(lg, lg->pgdidx, vaddr); |
125 | if (!(spgd->flags & _PAGE_PRESENT)) { | 228 | if (!(spgd->flags & _PAGE_PRESENT)) { |
126 | /* Get a page of PTEs for them. */ | 229 | /* No shadow entry: allocate a new shadow PTE page. */ |
127 | unsigned long ptepage = get_zeroed_page(GFP_KERNEL); | 230 | unsigned long ptepage = get_zeroed_page(GFP_KERNEL); |
128 | /* FIXME: Steal from self in this case? */ | 231 | /* This is not really the Guest's fault, but killing it is |
232 | * simple for this corner case. */ | ||
129 | if (!ptepage) { | 233 | if (!ptepage) { |
130 | kill_guest(lg, "out of memory allocating pte page"); | 234 | kill_guest(lg, "out of memory allocating pte page"); |
131 | return 0; | 235 | return 0; |
132 | } | 236 | } |
237 | /* We check that the Guest pgd is OK. */ | ||
133 | check_gpgd(lg, gpgd); | 238 | check_gpgd(lg, gpgd); |
239 | /* And we copy the flags to the shadow PGD entry. The page | ||
240 | * number in the shadow PGD is the page we just allocated. */ | ||
134 | spgd->raw.val = (__pa(ptepage) | gpgd.flags); | 241 | spgd->raw.val = (__pa(ptepage) | gpgd.flags); |
135 | } | 242 | } |
136 | 243 | ||
244 | /* OK, now we look at the lower level in the Guest page table: keep its | ||
245 | * address, because we might update it later. */ | ||
137 | gpte_ptr = gpte_addr(lg, gpgd, vaddr); | 246 | gpte_ptr = gpte_addr(lg, gpgd, vaddr); |
138 | gpte = mkgpte(lgread_u32(lg, gpte_ptr)); | 247 | gpte = mkgpte(lgread_u32(lg, gpte_ptr)); |
139 | 248 | ||
140 | /* No page? */ | 249 | /* If this page isn't in the Guest page tables, we can't page it in. */ |
141 | if (!(gpte.flags & _PAGE_PRESENT)) | 250 | if (!(gpte.flags & _PAGE_PRESENT)) |
142 | return 0; | 251 | return 0; |
143 | 252 | ||
144 | /* Write to read-only page? */ | 253 | /* Check they're not trying to write to a page the Guest wants |
254 | * read-only (bit 2 of errcode == write). */ | ||
145 | if ((errcode & 2) && !(gpte.flags & _PAGE_RW)) | 255 | if ((errcode & 2) && !(gpte.flags & _PAGE_RW)) |
146 | return 0; | 256 | return 0; |
147 | 257 | ||
148 | /* User access to a non-user page? */ | 258 | /* User access to a kernel page? (bit 3 == user access) */ |
149 | if ((errcode & 4) && !(gpte.flags & _PAGE_USER)) | 259 | if ((errcode & 4) && !(gpte.flags & _PAGE_USER)) |
150 | return 0; | 260 | return 0; |
151 | 261 | ||
262 | /* Check that the Guest PTE flags are OK, and the page number is below | ||
263 | * the pfn_limit (ie. not mapping the Launcher binary). */ | ||
152 | check_gpte(lg, gpte); | 264 | check_gpte(lg, gpte); |
265 | /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */ | ||
153 | gpte.flags |= _PAGE_ACCESSED; | 266 | gpte.flags |= _PAGE_ACCESSED; |
154 | if (errcode & 2) | 267 | if (errcode & 2) |
155 | gpte.flags |= _PAGE_DIRTY; | 268 | gpte.flags |= _PAGE_DIRTY; |
156 | 269 | ||
157 | /* We're done with the old pte. */ | 270 | /* Get the pointer to the shadow PTE entry we're going to set. */ |
158 | spte = spte_addr(lg, *spgd, vaddr); | 271 | spte = spte_addr(lg, *spgd, vaddr); |
272 | /* If there was a valid shadow PTE entry here before, we release it. | ||
273 | * This can happen with a write to a previously read-only entry. */ | ||
159 | release_pte(*spte); | 274 | release_pte(*spte); |
160 | 275 | ||
161 | /* We don't make it writable if this isn't a write: later | 276 | /* If this is a write, we insist that the Guest page is writable (the |
162 | * write will fault so we can set dirty bit in guest. */ | 277 | * final arg to gpte_to_spte()). */ |
163 | if (gpte.flags & _PAGE_DIRTY) | 278 | if (gpte.flags & _PAGE_DIRTY) |
164 | *spte = gpte_to_spte(lg, gpte, 1); | 279 | *spte = gpte_to_spte(lg, gpte, 1); |
165 | else { | 280 | else { |
281 | /* If this is a read, don't set the "writable" bit in the page | ||
282 | * table entry, even if the Guest says it's writable. That way | ||
283 | * we come back here when a write does actually ocur, so we can | ||
284 | * update the Guest's _PAGE_DIRTY flag. */ | ||
166 | gpte_t ro_gpte = gpte; | 285 | gpte_t ro_gpte = gpte; |
167 | ro_gpte.flags &= ~_PAGE_RW; | 286 | ro_gpte.flags &= ~_PAGE_RW; |
168 | *spte = gpte_to_spte(lg, ro_gpte, 0); | 287 | *spte = gpte_to_spte(lg, ro_gpte, 0); |
169 | } | 288 | } |
170 | 289 | ||
171 | /* Now we update dirty/accessed on guest. */ | 290 | /* Finally, we write the Guest PTE entry back: we've set the |
291 | * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */ | ||
172 | lgwrite_u32(lg, gpte_ptr, gpte.raw.val); | 292 | lgwrite_u32(lg, gpte_ptr, gpte.raw.val); |
293 | |||
294 | /* We succeeded in mapping the page! */ | ||
173 | return 1; | 295 | return 1; |
174 | } | 296 | } |
175 | 297 | ||
176 | /* This is much faster than the full demand_page logic. */ | 298 | /*H:360 (ii) Setting up the page table entry for the Guest stack. |
299 | * | ||
300 | * Remember pin_stack_pages() which makes sure the stack is mapped? It could | ||
301 | * simply call demand_page(), but as we've seen that logic is quite long, and | ||
302 | * usually the stack pages are already mapped anyway, so it's not required. | ||
303 | * | ||
304 | * This is a quick version which answers the question: is this virtual address | ||
305 | * mapped by the shadow page tables, and is it writable? */ | ||
177 | static int page_writable(struct lguest *lg, unsigned long vaddr) | 306 | static int page_writable(struct lguest *lg, unsigned long vaddr) |
178 | { | 307 | { |
179 | spgd_t *spgd; | 308 | spgd_t *spgd; |
180 | unsigned long flags; | 309 | unsigned long flags; |
181 | 310 | ||
311 | /* Look at the top level entry: is it present? */ | ||
182 | spgd = spgd_addr(lg, lg->pgdidx, vaddr); | 312 | spgd = spgd_addr(lg, lg->pgdidx, vaddr); |
183 | if (!(spgd->flags & _PAGE_PRESENT)) | 313 | if (!(spgd->flags & _PAGE_PRESENT)) |
184 | return 0; | 314 | return 0; |
185 | 315 | ||
316 | /* Check the flags on the pte entry itself: it must be present and | ||
317 | * writable. */ | ||
186 | flags = spte_addr(lg, *spgd, vaddr)->flags; | 318 | flags = spte_addr(lg, *spgd, vaddr)->flags; |
187 | return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); | 319 | return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); |
188 | } | 320 | } |
189 | 321 | ||
322 | /* So, when pin_stack_pages() asks us to pin a page, we check if it's already | ||
323 | * in the page tables, and if not, we call demand_page() with error code 2 | ||
324 | * (meaning "write"). */ | ||
190 | void pin_page(struct lguest *lg, unsigned long vaddr) | 325 | void pin_page(struct lguest *lg, unsigned long vaddr) |
191 | { | 326 | { |
192 | if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2)) | 327 | if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2)) |
193 | kill_guest(lg, "bad stack page %#lx", vaddr); | 328 | kill_guest(lg, "bad stack page %#lx", vaddr); |
194 | } | 329 | } |
195 | 330 | ||
331 | /*H:450 If we chase down the release_pgd() code, it looks like this: */ | ||
196 | static void release_pgd(struct lguest *lg, spgd_t *spgd) | 332 | static void release_pgd(struct lguest *lg, spgd_t *spgd) |
197 | { | 333 | { |
334 | /* If the entry's not present, there's nothing to release. */ | ||
198 | if (spgd->flags & _PAGE_PRESENT) { | 335 | if (spgd->flags & _PAGE_PRESENT) { |
199 | unsigned int i; | 336 | unsigned int i; |
337 | /* Converting the pfn to find the actual PTE page is easy: turn | ||
338 | * the page number into a physical address, then convert to a | ||
339 | * virtual address (easy for kernel pages like this one). */ | ||
200 | spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT); | 340 | spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT); |
341 | /* For each entry in the page, we might need to release it. */ | ||
201 | for (i = 0; i < PTES_PER_PAGE; i++) | 342 | for (i = 0; i < PTES_PER_PAGE; i++) |
202 | release_pte(ptepage[i]); | 343 | release_pte(ptepage[i]); |
344 | /* Now we can free the page of PTEs */ | ||
203 | free_page((long)ptepage); | 345 | free_page((long)ptepage); |
346 | /* And zero out the PGD entry we we never release it twice. */ | ||
204 | spgd->raw.val = 0; | 347 | spgd->raw.val = 0; |
205 | } | 348 | } |
206 | } | 349 | } |
207 | 350 | ||
351 | /*H:440 (v) Flushing (thowing away) page tables, | ||
352 | * | ||
353 | * We saw flush_user_mappings() called when we re-used a top-level pgdir page. | ||
354 | * It simply releases every PTE page from 0 up to the kernel address. */ | ||
208 | static void flush_user_mappings(struct lguest *lg, int idx) | 355 | static void flush_user_mappings(struct lguest *lg, int idx) |
209 | { | 356 | { |
210 | unsigned int i; | 357 | unsigned int i; |
358 | /* Release every pgd entry up to the kernel's address. */ | ||
211 | for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++) | 359 | for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++) |
212 | release_pgd(lg, lg->pgdirs[idx].pgdir + i); | 360 | release_pgd(lg, lg->pgdirs[idx].pgdir + i); |
213 | } | 361 | } |
214 | 362 | ||
363 | /* The Guest also has a hypercall to do this manually: it's used when a large | ||
364 | * number of mappings have been changed. */ | ||
215 | void guest_pagetable_flush_user(struct lguest *lg) | 365 | void guest_pagetable_flush_user(struct lguest *lg) |
216 | { | 366 | { |
367 | /* Drop the userspace part of the current page table. */ | ||
217 | flush_user_mappings(lg, lg->pgdidx); | 368 | flush_user_mappings(lg, lg->pgdidx); |
218 | } | 369 | } |
370 | /*:*/ | ||
219 | 371 | ||
372 | /* We keep several page tables. This is a simple routine to find the page | ||
373 | * table (if any) corresponding to this top-level address the Guest has given | ||
374 | * us. */ | ||
220 | static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) | 375 | static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) |
221 | { | 376 | { |
222 | unsigned int i; | 377 | unsigned int i; |
@@ -226,21 +381,30 @@ static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) | |||
226 | return i; | 381 | return i; |
227 | } | 382 | } |
228 | 383 | ||
384 | /*H:435 And this is us, creating the new page directory. If we really do | ||
385 | * allocate a new one (and so the kernel parts are not there), we set | ||
386 | * blank_pgdir. */ | ||
229 | static unsigned int new_pgdir(struct lguest *lg, | 387 | static unsigned int new_pgdir(struct lguest *lg, |
230 | unsigned long cr3, | 388 | unsigned long cr3, |
231 | int *blank_pgdir) | 389 | int *blank_pgdir) |
232 | { | 390 | { |
233 | unsigned int next; | 391 | unsigned int next; |
234 | 392 | ||
393 | /* We pick one entry at random to throw out. Choosing the Least | ||
394 | * Recently Used might be better, but this is easy. */ | ||
235 | next = random32() % ARRAY_SIZE(lg->pgdirs); | 395 | next = random32() % ARRAY_SIZE(lg->pgdirs); |
396 | /* If it's never been allocated at all before, try now. */ | ||
236 | if (!lg->pgdirs[next].pgdir) { | 397 | if (!lg->pgdirs[next].pgdir) { |
237 | lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL); | 398 | lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL); |
399 | /* If the allocation fails, just keep using the one we have */ | ||
238 | if (!lg->pgdirs[next].pgdir) | 400 | if (!lg->pgdirs[next].pgdir) |
239 | next = lg->pgdidx; | 401 | next = lg->pgdidx; |
240 | else | 402 | else |
241 | /* There are no mappings: you'll need to re-pin */ | 403 | /* This is a blank page, so there are no kernel |
404 | * mappings: caller must map the stack! */ | ||
242 | *blank_pgdir = 1; | 405 | *blank_pgdir = 1; |
243 | } | 406 | } |
407 | /* Record which Guest toplevel this shadows. */ | ||
244 | lg->pgdirs[next].cr3 = cr3; | 408 | lg->pgdirs[next].cr3 = cr3; |
245 | /* Release all the non-kernel mappings. */ | 409 | /* Release all the non-kernel mappings. */ |
246 | flush_user_mappings(lg, next); | 410 | flush_user_mappings(lg, next); |
@@ -248,82 +412,161 @@ static unsigned int new_pgdir(struct lguest *lg, | |||
248 | return next; | 412 | return next; |
249 | } | 413 | } |
250 | 414 | ||
415 | /*H:430 (iv) Switching page tables | ||
416 | * | ||
417 | * This is what happens when the Guest changes page tables (ie. changes the | ||
418 | * top-level pgdir). This happens on almost every context switch. */ | ||
251 | void guest_new_pagetable(struct lguest *lg, unsigned long pgtable) | 419 | void guest_new_pagetable(struct lguest *lg, unsigned long pgtable) |
252 | { | 420 | { |
253 | int newpgdir, repin = 0; | 421 | int newpgdir, repin = 0; |
254 | 422 | ||
423 | /* Look to see if we have this one already. */ | ||
255 | newpgdir = find_pgdir(lg, pgtable); | 424 | newpgdir = find_pgdir(lg, pgtable); |
425 | /* If not, we allocate or mug an existing one: if it's a fresh one, | ||
426 | * repin gets set to 1. */ | ||
256 | if (newpgdir == ARRAY_SIZE(lg->pgdirs)) | 427 | if (newpgdir == ARRAY_SIZE(lg->pgdirs)) |
257 | newpgdir = new_pgdir(lg, pgtable, &repin); | 428 | newpgdir = new_pgdir(lg, pgtable, &repin); |
429 | /* Change the current pgd index to the new one. */ | ||
258 | lg->pgdidx = newpgdir; | 430 | lg->pgdidx = newpgdir; |
431 | /* If it was completely blank, we map in the Guest kernel stack */ | ||
259 | if (repin) | 432 | if (repin) |
260 | pin_stack_pages(lg); | 433 | pin_stack_pages(lg); |
261 | } | 434 | } |
262 | 435 | ||
436 | /*H:470 Finally, a routine which throws away everything: all PGD entries in all | ||
437 | * the shadow page tables. This is used when we destroy the Guest. */ | ||
263 | static void release_all_pagetables(struct lguest *lg) | 438 | static void release_all_pagetables(struct lguest *lg) |
264 | { | 439 | { |
265 | unsigned int i, j; | 440 | unsigned int i, j; |
266 | 441 | ||
442 | /* Every shadow pagetable this Guest has */ | ||
267 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 443 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
268 | if (lg->pgdirs[i].pgdir) | 444 | if (lg->pgdirs[i].pgdir) |
445 | /* Every PGD entry except the Switcher at the top */ | ||
269 | for (j = 0; j < SWITCHER_PGD_INDEX; j++) | 446 | for (j = 0; j < SWITCHER_PGD_INDEX; j++) |
270 | release_pgd(lg, lg->pgdirs[i].pgdir + j); | 447 | release_pgd(lg, lg->pgdirs[i].pgdir + j); |
271 | } | 448 | } |
272 | 449 | ||
450 | /* We also throw away everything when a Guest tells us it's changed a kernel | ||
451 | * mapping. Since kernel mappings are in every page table, it's easiest to | ||
452 | * throw them all away. This is amazingly slow, but thankfully rare. */ | ||
273 | void guest_pagetable_clear_all(struct lguest *lg) | 453 | void guest_pagetable_clear_all(struct lguest *lg) |
274 | { | 454 | { |
275 | release_all_pagetables(lg); | 455 | release_all_pagetables(lg); |
456 | /* We need the Guest kernel stack mapped again. */ | ||
276 | pin_stack_pages(lg); | 457 | pin_stack_pages(lg); |
277 | } | 458 | } |
278 | 459 | ||
460 | /*H:420 This is the routine which actually sets the page table entry for then | ||
461 | * "idx"'th shadow page table. | ||
462 | * | ||
463 | * Normally, we can just throw out the old entry and replace it with 0: if they | ||
464 | * use it demand_page() will put the new entry in. We need to do this anyway: | ||
465 | * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page | ||
466 | * is read from, and _PAGE_DIRTY when it's written to. | ||
467 | * | ||
468 | * But Avi Kivity pointed out that most Operating Systems (Linux included) set | ||
469 | * these bits on PTEs immediately anyway. This is done to save the CPU from | ||
470 | * having to update them, but it helps us the same way: if they set | ||
471 | * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if | ||
472 | * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately. | ||
473 | */ | ||
279 | static void do_set_pte(struct lguest *lg, int idx, | 474 | static void do_set_pte(struct lguest *lg, int idx, |
280 | unsigned long vaddr, gpte_t gpte) | 475 | unsigned long vaddr, gpte_t gpte) |
281 | { | 476 | { |
477 | /* Look up the matching shadow page directot entry. */ | ||
282 | spgd_t *spgd = spgd_addr(lg, idx, vaddr); | 478 | spgd_t *spgd = spgd_addr(lg, idx, vaddr); |
479 | |||
480 | /* If the top level isn't present, there's no entry to update. */ | ||
283 | if (spgd->flags & _PAGE_PRESENT) { | 481 | if (spgd->flags & _PAGE_PRESENT) { |
482 | /* Otherwise, we start by releasing the existing entry. */ | ||
284 | spte_t *spte = spte_addr(lg, *spgd, vaddr); | 483 | spte_t *spte = spte_addr(lg, *spgd, vaddr); |
285 | release_pte(*spte); | 484 | release_pte(*spte); |
485 | |||
486 | /* If they're setting this entry as dirty or accessed, we might | ||
487 | * as well put that entry they've given us in now. This shaves | ||
488 | * 10% off a copy-on-write micro-benchmark. */ | ||
286 | if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) { | 489 | if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) { |
287 | check_gpte(lg, gpte); | 490 | check_gpte(lg, gpte); |
288 | *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY); | 491 | *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY); |
289 | } else | 492 | } else |
493 | /* Otherwise we can demand_page() it in later. */ | ||
290 | spte->raw.val = 0; | 494 | spte->raw.val = 0; |
291 | } | 495 | } |
292 | } | 496 | } |
293 | 497 | ||
498 | /*H:410 Updating a PTE entry is a little trickier. | ||
499 | * | ||
500 | * We keep track of several different page tables (the Guest uses one for each | ||
501 | * process, so it makes sense to cache at least a few). Each of these have | ||
502 | * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for | ||
503 | * all processes. So when the page table above that address changes, we update | ||
504 | * all the page tables, not just the current one. This is rare. | ||
505 | * | ||
506 | * The benefit is that when we have to track a new page table, we can copy keep | ||
507 | * all the kernel mappings. This speeds up context switch immensely. */ | ||
294 | void guest_set_pte(struct lguest *lg, | 508 | void guest_set_pte(struct lguest *lg, |
295 | unsigned long cr3, unsigned long vaddr, gpte_t gpte) | 509 | unsigned long cr3, unsigned long vaddr, gpte_t gpte) |
296 | { | 510 | { |
297 | /* Kernel mappings must be changed on all top levels. */ | 511 | /* Kernel mappings must be changed on all top levels. Slow, but |
512 | * doesn't happen often. */ | ||
298 | if (vaddr >= lg->page_offset) { | 513 | if (vaddr >= lg->page_offset) { |
299 | unsigned int i; | 514 | unsigned int i; |
300 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 515 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
301 | if (lg->pgdirs[i].pgdir) | 516 | if (lg->pgdirs[i].pgdir) |
302 | do_set_pte(lg, i, vaddr, gpte); | 517 | do_set_pte(lg, i, vaddr, gpte); |
303 | } else { | 518 | } else { |
519 | /* Is this page table one we have a shadow for? */ | ||
304 | int pgdir = find_pgdir(lg, cr3); | 520 | int pgdir = find_pgdir(lg, cr3); |
305 | if (pgdir != ARRAY_SIZE(lg->pgdirs)) | 521 | if (pgdir != ARRAY_SIZE(lg->pgdirs)) |
522 | /* If so, do the update. */ | ||
306 | do_set_pte(lg, pgdir, vaddr, gpte); | 523 | do_set_pte(lg, pgdir, vaddr, gpte); |
307 | } | 524 | } |
308 | } | 525 | } |
309 | 526 | ||
527 | /*H:400 | ||
528 | * (iii) Setting up a page table entry when the Guest tells us it has changed. | ||
529 | * | ||
530 | * Just like we did in interrupts_and_traps.c, it makes sense for us to deal | ||
531 | * with the other side of page tables while we're here: what happens when the | ||
532 | * Guest asks for a page table to be updated? | ||
533 | * | ||
534 | * We already saw that demand_page() will fill in the shadow page tables when | ||
535 | * needed, so we can simply remove shadow page table entries whenever the Guest | ||
536 | * tells us they've changed. When the Guest tries to use the new entry it will | ||
537 | * fault and demand_page() will fix it up. | ||
538 | * | ||
539 | * So with that in mind here's our code to to update a (top-level) PGD entry: | ||
540 | */ | ||
310 | void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx) | 541 | void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx) |
311 | { | 542 | { |
312 | int pgdir; | 543 | int pgdir; |
313 | 544 | ||
545 | /* The kernel seems to try to initialize this early on: we ignore its | ||
546 | * attempts to map over the Switcher. */ | ||
314 | if (idx >= SWITCHER_PGD_INDEX) | 547 | if (idx >= SWITCHER_PGD_INDEX) |
315 | return; | 548 | return; |
316 | 549 | ||
550 | /* If they're talking about a page table we have a shadow for... */ | ||
317 | pgdir = find_pgdir(lg, cr3); | 551 | pgdir = find_pgdir(lg, cr3); |
318 | if (pgdir < ARRAY_SIZE(lg->pgdirs)) | 552 | if (pgdir < ARRAY_SIZE(lg->pgdirs)) |
553 | /* ... throw it away. */ | ||
319 | release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx); | 554 | release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx); |
320 | } | 555 | } |
321 | 556 | ||
557 | /*H:500 (vii) Setting up the page tables initially. | ||
558 | * | ||
559 | * When a Guest is first created, the Launcher tells us where the toplevel of | ||
560 | * its first page table is. We set some things up here: */ | ||
322 | int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) | 561 | int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) |
323 | { | 562 | { |
324 | /* We assume this in flush_user_mappings, so check now */ | 563 | /* In flush_user_mappings() we loop from 0 to |
564 | * "vaddr_to_pgd_index(lg->page_offset)". This assumes it won't hit | ||
565 | * the Switcher mappings, so check that now. */ | ||
325 | if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX) | 566 | if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX) |
326 | return -EINVAL; | 567 | return -EINVAL; |
568 | /* We start on the first shadow page table, and give it a blank PGD | ||
569 | * page. */ | ||
327 | lg->pgdidx = 0; | 570 | lg->pgdidx = 0; |
328 | lg->pgdirs[lg->pgdidx].cr3 = pgtable; | 571 | lg->pgdirs[lg->pgdidx].cr3 = pgtable; |
329 | lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL); | 572 | lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL); |
@@ -332,33 +575,48 @@ int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) | |||
332 | return 0; | 575 | return 0; |
333 | } | 576 | } |
334 | 577 | ||
578 | /* When a Guest dies, our cleanup is fairly simple. */ | ||
335 | void free_guest_pagetable(struct lguest *lg) | 579 | void free_guest_pagetable(struct lguest *lg) |
336 | { | 580 | { |
337 | unsigned int i; | 581 | unsigned int i; |
338 | 582 | ||
583 | /* Throw away all page table pages. */ | ||
339 | release_all_pagetables(lg); | 584 | release_all_pagetables(lg); |
585 | /* Now free the top levels: free_page() can handle 0 just fine. */ | ||
340 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) | 586 | for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
341 | free_page((long)lg->pgdirs[i].pgdir); | 587 | free_page((long)lg->pgdirs[i].pgdir); |
342 | } | 588 | } |
343 | 589 | ||
344 | /* Caller must be preempt-safe */ | 590 | /*H:480 (vi) Mapping the Switcher when the Guest is about to run. |
591 | * | ||
592 | * The Switcher and the two pages for this CPU need to be available to the | ||
593 | * Guest (and not the pages for other CPUs). We have the appropriate PTE pages | ||
594 | * for each CPU already set up, we just need to hook them in. */ | ||
345 | void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages) | 595 | void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages) |
346 | { | 596 | { |
347 | spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); | 597 | spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); |
348 | spgd_t switcher_pgd; | 598 | spgd_t switcher_pgd; |
349 | spte_t regs_pte; | 599 | spte_t regs_pte; |
350 | 600 | ||
351 | /* Since switcher less that 4MB, we simply mug top pte page. */ | 601 | /* Make the last PGD entry for this Guest point to the Switcher's PTE |
602 | * page for this CPU (with appropriate flags). */ | ||
352 | switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT; | 603 | switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT; |
353 | switcher_pgd.flags = _PAGE_KERNEL; | 604 | switcher_pgd.flags = _PAGE_KERNEL; |
354 | lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; | 605 | lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; |
355 | 606 | ||
356 | /* Map our regs page over stack page. */ | 607 | /* We also change the Switcher PTE page. When we're running the Guest, |
608 | * we want the Guest's "regs" page to appear where the first Switcher | ||
609 | * page for this CPU is. This is an optimization: when the Switcher | ||
610 | * saves the Guest registers, it saves them into the first page of this | ||
611 | * CPU's "struct lguest_pages": if we make sure the Guest's register | ||
612 | * page is already mapped there, we don't have to copy them out | ||
613 | * again. */ | ||
357 | regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT; | 614 | regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT; |
358 | regs_pte.flags = _PAGE_KERNEL; | 615 | regs_pte.flags = _PAGE_KERNEL; |
359 | switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE] | 616 | switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE] |
360 | = regs_pte; | 617 | = regs_pte; |
361 | } | 618 | } |
619 | /*:*/ | ||
362 | 620 | ||
363 | static void free_switcher_pte_pages(void) | 621 | static void free_switcher_pte_pages(void) |
364 | { | 622 | { |
@@ -368,6 +626,10 @@ static void free_switcher_pte_pages(void) | |||
368 | free_page((long)switcher_pte_page(i)); | 626 | free_page((long)switcher_pte_page(i)); |
369 | } | 627 | } |
370 | 628 | ||
629 | /*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given | ||
630 | * the CPU number and the "struct page"s for the Switcher code itself. | ||
631 | * | ||
632 | * Currently the Switcher is less than a page long, so "pages" is always 1. */ | ||
371 | static __init void populate_switcher_pte_page(unsigned int cpu, | 633 | static __init void populate_switcher_pte_page(unsigned int cpu, |
372 | struct page *switcher_page[], | 634 | struct page *switcher_page[], |
373 | unsigned int pages) | 635 | unsigned int pages) |
@@ -375,21 +637,26 @@ static __init void populate_switcher_pte_page(unsigned int cpu, | |||
375 | unsigned int i; | 637 | unsigned int i; |
376 | spte_t *pte = switcher_pte_page(cpu); | 638 | spte_t *pte = switcher_pte_page(cpu); |
377 | 639 | ||
640 | /* The first entries are easy: they map the Switcher code. */ | ||
378 | for (i = 0; i < pages; i++) { | 641 | for (i = 0; i < pages; i++) { |
379 | pte[i].pfn = page_to_pfn(switcher_page[i]); | 642 | pte[i].pfn = page_to_pfn(switcher_page[i]); |
380 | pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED; | 643 | pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED; |
381 | } | 644 | } |
382 | 645 | ||
383 | /* We only map this CPU's pages, so guest can't see others. */ | 646 | /* The only other thing we map is this CPU's pair of pages. */ |
384 | i = pages + cpu*2; | 647 | i = pages + cpu*2; |
385 | 648 | ||
386 | /* First page (regs) is rw, second (state) is ro. */ | 649 | /* First page (Guest registers) is writable from the Guest */ |
387 | pte[i].pfn = page_to_pfn(switcher_page[i]); | 650 | pte[i].pfn = page_to_pfn(switcher_page[i]); |
388 | pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW; | 651 | pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW; |
652 | /* The second page contains the "struct lguest_ro_state", and is | ||
653 | * read-only. */ | ||
389 | pte[i+1].pfn = page_to_pfn(switcher_page[i+1]); | 654 | pte[i+1].pfn = page_to_pfn(switcher_page[i+1]); |
390 | pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED; | 655 | pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED; |
391 | } | 656 | } |
392 | 657 | ||
658 | /*H:510 At boot or module load time, init_pagetables() allocates and populates | ||
659 | * the Switcher PTE page for each CPU. */ | ||
393 | __init int init_pagetables(struct page **switcher_page, unsigned int pages) | 660 | __init int init_pagetables(struct page **switcher_page, unsigned int pages) |
394 | { | 661 | { |
395 | unsigned int i; | 662 | unsigned int i; |
@@ -404,7 +671,9 @@ __init int init_pagetables(struct page **switcher_page, unsigned int pages) | |||
404 | } | 671 | } |
405 | return 0; | 672 | return 0; |
406 | } | 673 | } |
674 | /*:*/ | ||
407 | 675 | ||
676 | /* Cleaning up simply involves freeing the PTE page for each CPU. */ | ||
408 | void free_pagetables(void) | 677 | void free_pagetables(void) |
409 | { | 678 | { |
410 | free_switcher_pte_pages(); | 679 | free_switcher_pte_pages(); |