aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/lguest/page_tables.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/lguest/page_tables.c')
-rw-r--r--drivers/lguest/page_tables.c411
1 files changed, 411 insertions, 0 deletions
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c
new file mode 100644
index 000000000000..1b0ba09b1269
--- /dev/null
+++ b/drivers/lguest/page_tables.c
@@ -0,0 +1,411 @@
1/* Shadow page table operations.
2 * Copyright (C) Rusty Russell IBM Corporation 2006.
3 * GPL v2 and any later version */
4#include <linux/mm.h>
5#include <linux/types.h>
6#include <linux/spinlock.h>
7#include <linux/random.h>
8#include <linux/percpu.h>
9#include <asm/tlbflush.h>
10#include "lg.h"
11
12#define PTES_PER_PAGE_SHIFT 10
13#define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT)
14#define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1)
15
16static DEFINE_PER_CPU(spte_t *, switcher_pte_pages);
17#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
18
19static unsigned vaddr_to_pgd_index(unsigned long vaddr)
20{
21 return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
22}
23
24/* These access the shadow versions (ie. the ones used by the CPU). */
25static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
26{
27 unsigned int index = vaddr_to_pgd_index(vaddr);
28
29 if (index >= SWITCHER_PGD_INDEX) {
30 kill_guest(lg, "attempt to access switcher pages");
31 index = 0;
32 }
33 return &lg->pgdirs[i].pgdir[index];
34}
35
36static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr)
37{
38 spte_t *page = __va(spgd.pfn << PAGE_SHIFT);
39 BUG_ON(!(spgd.flags & _PAGE_PRESENT));
40 return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE];
41}
42
43/* These access the guest versions. */
44static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
45{
46 unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
47 return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(gpgd_t);
48}
49
50static unsigned long gpte_addr(struct lguest *lg,
51 gpgd_t gpgd, unsigned long vaddr)
52{
53 unsigned long gpage = gpgd.pfn << PAGE_SHIFT;
54 BUG_ON(!(gpgd.flags & _PAGE_PRESENT));
55 return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t);
56}
57
58/* Do a virtual -> physical mapping on a user page. */
59static unsigned long get_pfn(unsigned long virtpfn, int write)
60{
61 struct page *page;
62 unsigned long ret = -1UL;
63
64 down_read(&current->mm->mmap_sem);
65 if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
66 1, write, 1, &page, NULL) == 1)
67 ret = page_to_pfn(page);
68 up_read(&current->mm->mmap_sem);
69 return ret;
70}
71
72static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write)
73{
74 spte_t spte;
75 unsigned long pfn;
76
77 /* We ignore the global flag. */
78 spte.flags = (gpte.flags & ~_PAGE_GLOBAL);
79 pfn = get_pfn(gpte.pfn, write);
80 if (pfn == -1UL) {
81 kill_guest(lg, "failed to get page %u", gpte.pfn);
82 /* Must not put_page() bogus page on cleanup. */
83 spte.flags = 0;
84 }
85 spte.pfn = pfn;
86 return spte;
87}
88
89static void release_pte(spte_t pte)
90{
91 if (pte.flags & _PAGE_PRESENT)
92 put_page(pfn_to_page(pte.pfn));
93}
94
95static void check_gpte(struct lguest *lg, gpte_t gpte)
96{
97 if ((gpte.flags & (_PAGE_PWT|_PAGE_PSE)) || gpte.pfn >= lg->pfn_limit)
98 kill_guest(lg, "bad page table entry");
99}
100
101static void check_gpgd(struct lguest *lg, gpgd_t gpgd)
102{
103 if ((gpgd.flags & ~_PAGE_TABLE) || gpgd.pfn >= lg->pfn_limit)
104 kill_guest(lg, "bad page directory entry");
105}
106
107/* FIXME: We hold reference to pages, which prevents them from being
108 swapped. It'd be nice to have a callback when Linux wants to swap out. */
109
110/* We fault pages in, which allows us to update accessed/dirty bits.
111 * Return true if we got page. */
112int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
113{
114 gpgd_t gpgd;
115 spgd_t *spgd;
116 unsigned long gpte_ptr;
117 gpte_t gpte;
118 spte_t *spte;
119
120 gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr)));
121 if (!(gpgd.flags & _PAGE_PRESENT))
122 return 0;
123
124 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
125 if (!(spgd->flags & _PAGE_PRESENT)) {
126 /* Get a page of PTEs for them. */
127 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
128 /* FIXME: Steal from self in this case? */
129 if (!ptepage) {
130 kill_guest(lg, "out of memory allocating pte page");
131 return 0;
132 }
133 check_gpgd(lg, gpgd);
134 spgd->raw.val = (__pa(ptepage) | gpgd.flags);
135 }
136
137 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
138 gpte = mkgpte(lgread_u32(lg, gpte_ptr));
139
140 /* No page? */
141 if (!(gpte.flags & _PAGE_PRESENT))
142 return 0;
143
144 /* Write to read-only page? */
145 if ((errcode & 2) && !(gpte.flags & _PAGE_RW))
146 return 0;
147
148 /* User access to a non-user page? */
149 if ((errcode & 4) && !(gpte.flags & _PAGE_USER))
150 return 0;
151
152 check_gpte(lg, gpte);
153 gpte.flags |= _PAGE_ACCESSED;
154 if (errcode & 2)
155 gpte.flags |= _PAGE_DIRTY;
156
157 /* We're done with the old pte. */
158 spte = spte_addr(lg, *spgd, vaddr);
159 release_pte(*spte);
160
161 /* We don't make it writable if this isn't a write: later
162 * write will fault so we can set dirty bit in guest. */
163 if (gpte.flags & _PAGE_DIRTY)
164 *spte = gpte_to_spte(lg, gpte, 1);
165 else {
166 gpte_t ro_gpte = gpte;
167 ro_gpte.flags &= ~_PAGE_RW;
168 *spte = gpte_to_spte(lg, ro_gpte, 0);
169 }
170
171 /* Now we update dirty/accessed on guest. */
172 lgwrite_u32(lg, gpte_ptr, gpte.raw.val);
173 return 1;
174}
175
176/* This is much faster than the full demand_page logic. */
177static int page_writable(struct lguest *lg, unsigned long vaddr)
178{
179 spgd_t *spgd;
180 unsigned long flags;
181
182 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
183 if (!(spgd->flags & _PAGE_PRESENT))
184 return 0;
185
186 flags = spte_addr(lg, *spgd, vaddr)->flags;
187 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
188}
189
190void pin_page(struct lguest *lg, unsigned long vaddr)
191{
192 if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
193 kill_guest(lg, "bad stack page %#lx", vaddr);
194}
195
196static void release_pgd(struct lguest *lg, spgd_t *spgd)
197{
198 if (spgd->flags & _PAGE_PRESENT) {
199 unsigned int i;
200 spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT);
201 for (i = 0; i < PTES_PER_PAGE; i++)
202 release_pte(ptepage[i]);
203 free_page((long)ptepage);
204 spgd->raw.val = 0;
205 }
206}
207
208static void flush_user_mappings(struct lguest *lg, int idx)
209{
210 unsigned int i;
211 for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++)
212 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
213}
214
215void guest_pagetable_flush_user(struct lguest *lg)
216{
217 flush_user_mappings(lg, lg->pgdidx);
218}
219
220static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
221{
222 unsigned int i;
223 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
224 if (lg->pgdirs[i].cr3 == pgtable)
225 break;
226 return i;
227}
228
229static unsigned int new_pgdir(struct lguest *lg,
230 unsigned long cr3,
231 int *blank_pgdir)
232{
233 unsigned int next;
234
235 next = random32() % ARRAY_SIZE(lg->pgdirs);
236 if (!lg->pgdirs[next].pgdir) {
237 lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL);
238 if (!lg->pgdirs[next].pgdir)
239 next = lg->pgdidx;
240 else
241 /* There are no mappings: you'll need to re-pin */
242 *blank_pgdir = 1;
243 }
244 lg->pgdirs[next].cr3 = cr3;
245 /* Release all the non-kernel mappings. */
246 flush_user_mappings(lg, next);
247
248 return next;
249}
250
251void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
252{
253 int newpgdir, repin = 0;
254
255 newpgdir = find_pgdir(lg, pgtable);
256 if (newpgdir == ARRAY_SIZE(lg->pgdirs))
257 newpgdir = new_pgdir(lg, pgtable, &repin);
258 lg->pgdidx = newpgdir;
259 if (repin)
260 pin_stack_pages(lg);
261}
262
263static void release_all_pagetables(struct lguest *lg)
264{
265 unsigned int i, j;
266
267 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
268 if (lg->pgdirs[i].pgdir)
269 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
270 release_pgd(lg, lg->pgdirs[i].pgdir + j);
271}
272
273void guest_pagetable_clear_all(struct lguest *lg)
274{
275 release_all_pagetables(lg);
276 pin_stack_pages(lg);
277}
278
279static void do_set_pte(struct lguest *lg, int idx,
280 unsigned long vaddr, gpte_t gpte)
281{
282 spgd_t *spgd = spgd_addr(lg, idx, vaddr);
283 if (spgd->flags & _PAGE_PRESENT) {
284 spte_t *spte = spte_addr(lg, *spgd, vaddr);
285 release_pte(*spte);
286 if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
287 check_gpte(lg, gpte);
288 *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY);
289 } else
290 spte->raw.val = 0;
291 }
292}
293
294void guest_set_pte(struct lguest *lg,
295 unsigned long cr3, unsigned long vaddr, gpte_t gpte)
296{
297 /* Kernel mappings must be changed on all top levels. */
298 if (vaddr >= lg->page_offset) {
299 unsigned int i;
300 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
301 if (lg->pgdirs[i].pgdir)
302 do_set_pte(lg, i, vaddr, gpte);
303 } else {
304 int pgdir = find_pgdir(lg, cr3);
305 if (pgdir != ARRAY_SIZE(lg->pgdirs))
306 do_set_pte(lg, pgdir, vaddr, gpte);
307 }
308}
309
310void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx)
311{
312 int pgdir;
313
314 if (idx >= SWITCHER_PGD_INDEX)
315 return;
316
317 pgdir = find_pgdir(lg, cr3);
318 if (pgdir < ARRAY_SIZE(lg->pgdirs))
319 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
320}
321
322int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
323{
324 /* We assume this in flush_user_mappings, so check now */
325 if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX)
326 return -EINVAL;
327 lg->pgdidx = 0;
328 lg->pgdirs[lg->pgdidx].cr3 = pgtable;
329 lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL);
330 if (!lg->pgdirs[lg->pgdidx].pgdir)
331 return -ENOMEM;
332 return 0;
333}
334
335void free_guest_pagetable(struct lguest *lg)
336{
337 unsigned int i;
338
339 release_all_pagetables(lg);
340 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
341 free_page((long)lg->pgdirs[i].pgdir);
342}
343
344/* Caller must be preempt-safe */
345void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
346{
347 spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
348 spgd_t switcher_pgd;
349 spte_t regs_pte;
350
351 /* Since switcher less that 4MB, we simply mug top pte page. */
352 switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT;
353 switcher_pgd.flags = _PAGE_KERNEL;
354 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
355
356 /* Map our regs page over stack page. */
357 regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT;
358 regs_pte.flags = _PAGE_KERNEL;
359 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE]
360 = regs_pte;
361}
362
363static void free_switcher_pte_pages(void)
364{
365 unsigned int i;
366
367 for_each_possible_cpu(i)
368 free_page((long)switcher_pte_page(i));
369}
370
371static __init void populate_switcher_pte_page(unsigned int cpu,
372 struct page *switcher_page[],
373 unsigned int pages)
374{
375 unsigned int i;
376 spte_t *pte = switcher_pte_page(cpu);
377
378 for (i = 0; i < pages; i++) {
379 pte[i].pfn = page_to_pfn(switcher_page[i]);
380 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
381 }
382
383 /* We only map this CPU's pages, so guest can't see others. */
384 i = pages + cpu*2;
385
386 /* First page (regs) is rw, second (state) is ro. */
387 pte[i].pfn = page_to_pfn(switcher_page[i]);
388 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW;
389 pte[i+1].pfn = page_to_pfn(switcher_page[i+1]);
390 pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
391}
392
393__init int init_pagetables(struct page **switcher_page, unsigned int pages)
394{
395 unsigned int i;
396
397 for_each_possible_cpu(i) {
398 switcher_pte_page(i) = (spte_t *)get_zeroed_page(GFP_KERNEL);
399 if (!switcher_pte_page(i)) {
400 free_switcher_pte_pages();
401 return -ENOMEM;
402 }
403 populate_switcher_pte_page(i, switcher_page, pages);
404 }
405 return 0;
406}
407
408void free_pagetables(void)
409{
410 free_switcher_pte_pages();
411}