aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/lguest/page_tables.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/lguest/page_tables.c')
-rw-r--r--drivers/lguest/page_tables.c11
1 files changed, 6 insertions, 5 deletions
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c
index f19add469944..e34c81636a8c 100644
--- a/drivers/lguest/page_tables.c
+++ b/drivers/lguest/page_tables.c
@@ -432,9 +432,10 @@ static unsigned int new_pgdir(struct lguest *lg,
432 * Now we've seen all the page table setting and manipulation, let's see what 432 * Now we've seen all the page table setting and manipulation, let's see what
433 * what happens when the Guest changes page tables (ie. changes the top-level 433 * what happens when the Guest changes page tables (ie. changes the top-level
434 * pgdir). This occurs on almost every context switch. */ 434 * pgdir). This occurs on almost every context switch. */
435void guest_new_pagetable(struct lguest *lg, unsigned long pgtable) 435void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
436{ 436{
437 int newpgdir, repin = 0; 437 int newpgdir, repin = 0;
438 struct lguest *lg = cpu->lg;
438 439
439 /* Look to see if we have this one already. */ 440 /* Look to see if we have this one already. */
440 newpgdir = find_pgdir(lg, pgtable); 441 newpgdir = find_pgdir(lg, pgtable);
@@ -446,7 +447,7 @@ void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
446 lg->pgdidx = newpgdir; 447 lg->pgdidx = newpgdir;
447 /* If it was completely blank, we map in the Guest kernel stack */ 448 /* If it was completely blank, we map in the Guest kernel stack */
448 if (repin) 449 if (repin)
449 pin_stack_pages(lg); 450 pin_stack_pages(cpu);
450} 451}
451 452
452/*H:470 Finally, a routine which throws away everything: all PGD entries in all 453/*H:470 Finally, a routine which throws away everything: all PGD entries in all
@@ -468,11 +469,11 @@ static void release_all_pagetables(struct lguest *lg)
468 * mapping. Since kernel mappings are in every page table, it's easiest to 469 * mapping. Since kernel mappings are in every page table, it's easiest to
469 * throw them all away. This traps the Guest in amber for a while as 470 * throw them all away. This traps the Guest in amber for a while as
470 * everything faults back in, but it's rare. */ 471 * everything faults back in, but it's rare. */
471void guest_pagetable_clear_all(struct lguest *lg) 472void guest_pagetable_clear_all(struct lg_cpu *cpu)
472{ 473{
473 release_all_pagetables(lg); 474 release_all_pagetables(cpu->lg);
474 /* We need the Guest kernel stack mapped again. */ 475 /* We need the Guest kernel stack mapped again. */
475 pin_stack_pages(lg); 476 pin_stack_pages(cpu);
476} 477}
477/*:*/ 478/*:*/
478/*M:009 Since we throw away all mappings when a kernel mapping changes, our 479/*M:009 Since we throw away all mappings when a kernel mapping changes, our