diff options
Diffstat (limited to 'drivers/lguest/page_tables.c')
-rw-r--r-- | drivers/lguest/page_tables.c | 489 |
1 files changed, 336 insertions, 153 deletions
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c index a6fe1abda240..a8d0aee3bc0e 100644 --- a/drivers/lguest/page_tables.c +++ b/drivers/lguest/page_tables.c | |||
@@ -1,9 +1,11 @@ | |||
1 | /*P:700 The pagetable code, on the other hand, still shows the scars of | 1 | /*P:700 |
2 | * The pagetable code, on the other hand, still shows the scars of | ||
2 | * previous encounters. It's functional, and as neat as it can be in the | 3 | * previous encounters. It's functional, and as neat as it can be in the |
3 | * circumstances, but be wary, for these things are subtle and break easily. | 4 | * circumstances, but be wary, for these things are subtle and break easily. |
4 | * The Guest provides a virtual to physical mapping, but we can neither trust | 5 | * The Guest provides a virtual to physical mapping, but we can neither trust |
5 | * it nor use it: we verify and convert it here then point the CPU to the | 6 | * it nor use it: we verify and convert it here then point the CPU to the |
6 | * converted Guest pages when running the Guest. :*/ | 7 | * converted Guest pages when running the Guest. |
8 | :*/ | ||
7 | 9 | ||
8 | /* Copyright (C) Rusty Russell IBM Corporation 2006. | 10 | /* Copyright (C) Rusty Russell IBM Corporation 2006. |
9 | * GPL v2 and any later version */ | 11 | * GPL v2 and any later version */ |
@@ -17,18 +19,20 @@ | |||
17 | #include <asm/bootparam.h> | 19 | #include <asm/bootparam.h> |
18 | #include "lg.h" | 20 | #include "lg.h" |
19 | 21 | ||
20 | /*M:008 We hold reference to pages, which prevents them from being swapped. | 22 | /*M:008 |
23 | * We hold reference to pages, which prevents them from being swapped. | ||
21 | * It'd be nice to have a callback in the "struct mm_struct" when Linux wants | 24 | * It'd be nice to have a callback in the "struct mm_struct" when Linux wants |
22 | * to swap out. If we had this, and a shrinker callback to trim PTE pages, we | 25 | * to swap out. If we had this, and a shrinker callback to trim PTE pages, we |
23 | * could probably consider launching Guests as non-root. :*/ | 26 | * could probably consider launching Guests as non-root. |
27 | :*/ | ||
24 | 28 | ||
25 | /*H:300 | 29 | /*H:300 |
26 | * The Page Table Code | 30 | * The Page Table Code |
27 | * | 31 | * |
28 | * We use two-level page tables for the Guest. If you're not entirely | 32 | * We use two-level page tables for the Guest, or three-level with PAE. If |
29 | * comfortable with virtual addresses, physical addresses and page tables then | 33 | * you're not entirely comfortable with virtual addresses, physical addresses |
30 | * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with | 34 | * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page |
31 | * diagrams!). | 35 | * Table Handling" (with diagrams!). |
32 | * | 36 | * |
33 | * The Guest keeps page tables, but we maintain the actual ones here: these are | 37 | * The Guest keeps page tables, but we maintain the actual ones here: these are |
34 | * called "shadow" page tables. Which is a very Guest-centric name: these are | 38 | * called "shadow" page tables. Which is a very Guest-centric name: these are |
@@ -45,16 +49,18 @@ | |||
45 | * (v) Flushing (throwing away) page tables, | 49 | * (v) Flushing (throwing away) page tables, |
46 | * (vi) Mapping the Switcher when the Guest is about to run, | 50 | * (vi) Mapping the Switcher when the Guest is about to run, |
47 | * (vii) Setting up the page tables initially. | 51 | * (vii) Setting up the page tables initially. |
48 | :*/ | 52 | :*/ |
49 | 53 | ||
50 | 54 | /* | |
51 | /* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is | 55 | * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB) |
52 | * conveniently placed at the top 4MB, so it uses a separate, complete PTE | 56 | * or 512 PTE entries with PAE (2MB). |
53 | * page. */ | 57 | */ |
54 | #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1) | 58 | #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1) |
55 | 59 | ||
56 | /* For PAE we need the PMD index as well. We use the last 2MB, so we | 60 | /* |
57 | * will need the last pmd entry of the last pmd page. */ | 61 | * For PAE we need the PMD index as well. We use the last 2MB, so we |
62 | * will need the last pmd entry of the last pmd page. | ||
63 | */ | ||
58 | #ifdef CONFIG_X86_PAE | 64 | #ifdef CONFIG_X86_PAE |
59 | #define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1) | 65 | #define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1) |
60 | #define RESERVE_MEM 2U | 66 | #define RESERVE_MEM 2U |
@@ -64,14 +70,18 @@ | |||
64 | #define CHECK_GPGD_MASK _PAGE_TABLE | 70 | #define CHECK_GPGD_MASK _PAGE_TABLE |
65 | #endif | 71 | #endif |
66 | 72 | ||
67 | /* We actually need a separate PTE page for each CPU. Remember that after the | 73 | /* |
74 | * We actually need a separate PTE page for each CPU. Remember that after the | ||
68 | * Switcher code itself comes two pages for each CPU, and we don't want this | 75 | * Switcher code itself comes two pages for each CPU, and we don't want this |
69 | * CPU's guest to see the pages of any other CPU. */ | 76 | * CPU's guest to see the pages of any other CPU. |
77 | */ | ||
70 | static DEFINE_PER_CPU(pte_t *, switcher_pte_pages); | 78 | static DEFINE_PER_CPU(pte_t *, switcher_pte_pages); |
71 | #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) | 79 | #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) |
72 | 80 | ||
73 | /*H:320 The page table code is curly enough to need helper functions to keep it | 81 | /*H:320 |
74 | * clear and clean. | 82 | * The page table code is curly enough to need helper functions to keep it |
83 | * clear and clean. The kernel itself provides many of them; one advantage | ||
84 | * of insisting that the Guest and Host use the same CONFIG_PAE setting. | ||
75 | * | 85 | * |
76 | * There are two functions which return pointers to the shadow (aka "real") | 86 | * There are two functions which return pointers to the shadow (aka "real") |
77 | * page tables. | 87 | * page tables. |
@@ -79,7 +89,8 @@ static DEFINE_PER_CPU(pte_t *, switcher_pte_pages); | |||
79 | * spgd_addr() takes the virtual address and returns a pointer to the top-level | 89 | * spgd_addr() takes the virtual address and returns a pointer to the top-level |
80 | * page directory entry (PGD) for that address. Since we keep track of several | 90 | * page directory entry (PGD) for that address. Since we keep track of several |
81 | * page tables, the "i" argument tells us which one we're interested in (it's | 91 | * page tables, the "i" argument tells us which one we're interested in (it's |
82 | * usually the current one). */ | 92 | * usually the current one). |
93 | */ | ||
83 | static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr) | 94 | static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr) |
84 | { | 95 | { |
85 | unsigned int index = pgd_index(vaddr); | 96 | unsigned int index = pgd_index(vaddr); |
@@ -96,9 +107,11 @@ static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr) | |||
96 | } | 107 | } |
97 | 108 | ||
98 | #ifdef CONFIG_X86_PAE | 109 | #ifdef CONFIG_X86_PAE |
99 | /* This routine then takes the PGD entry given above, which contains the | 110 | /* |
111 | * This routine then takes the PGD entry given above, which contains the | ||
100 | * address of the PMD page. It then returns a pointer to the PMD entry for the | 112 | * address of the PMD page. It then returns a pointer to the PMD entry for the |
101 | * given address. */ | 113 | * given address. |
114 | */ | ||
102 | static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) | 115 | static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) |
103 | { | 116 | { |
104 | unsigned int index = pmd_index(vaddr); | 117 | unsigned int index = pmd_index(vaddr); |
@@ -119,9 +132,11 @@ static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) | |||
119 | } | 132 | } |
120 | #endif | 133 | #endif |
121 | 134 | ||
122 | /* This routine then takes the page directory entry returned above, which | 135 | /* |
136 | * This routine then takes the page directory entry returned above, which | ||
123 | * contains the address of the page table entry (PTE) page. It then returns a | 137 | * contains the address of the page table entry (PTE) page. It then returns a |
124 | * pointer to the PTE entry for the given address. */ | 138 | * pointer to the PTE entry for the given address. |
139 | */ | ||
125 | static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) | 140 | static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) |
126 | { | 141 | { |
127 | #ifdef CONFIG_X86_PAE | 142 | #ifdef CONFIG_X86_PAE |
@@ -139,8 +154,10 @@ static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) | |||
139 | return &page[pte_index(vaddr)]; | 154 | return &page[pte_index(vaddr)]; |
140 | } | 155 | } |
141 | 156 | ||
142 | /* These two functions just like the above two, except they access the Guest | 157 | /* |
143 | * page tables. Hence they return a Guest address. */ | 158 | * These functions are just like the above two, except they access the Guest |
159 | * page tables. Hence they return a Guest address. | ||
160 | */ | ||
144 | static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr) | 161 | static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr) |
145 | { | 162 | { |
146 | unsigned int index = vaddr >> (PGDIR_SHIFT); | 163 | unsigned int index = vaddr >> (PGDIR_SHIFT); |
@@ -148,6 +165,7 @@ static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr) | |||
148 | } | 165 | } |
149 | 166 | ||
150 | #ifdef CONFIG_X86_PAE | 167 | #ifdef CONFIG_X86_PAE |
168 | /* Follow the PGD to the PMD. */ | ||
151 | static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr) | 169 | static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr) |
152 | { | 170 | { |
153 | unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT; | 171 | unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT; |
@@ -155,6 +173,7 @@ static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr) | |||
155 | return gpage + pmd_index(vaddr) * sizeof(pmd_t); | 173 | return gpage + pmd_index(vaddr) * sizeof(pmd_t); |
156 | } | 174 | } |
157 | 175 | ||
176 | /* Follow the PMD to the PTE. */ | ||
158 | static unsigned long gpte_addr(struct lg_cpu *cpu, | 177 | static unsigned long gpte_addr(struct lg_cpu *cpu, |
159 | pmd_t gpmd, unsigned long vaddr) | 178 | pmd_t gpmd, unsigned long vaddr) |
160 | { | 179 | { |
@@ -164,6 +183,7 @@ static unsigned long gpte_addr(struct lg_cpu *cpu, | |||
164 | return gpage + pte_index(vaddr) * sizeof(pte_t); | 183 | return gpage + pte_index(vaddr) * sizeof(pte_t); |
165 | } | 184 | } |
166 | #else | 185 | #else |
186 | /* Follow the PGD to the PTE (no mid-level for !PAE). */ | ||
167 | static unsigned long gpte_addr(struct lg_cpu *cpu, | 187 | static unsigned long gpte_addr(struct lg_cpu *cpu, |
168 | pgd_t gpgd, unsigned long vaddr) | 188 | pgd_t gpgd, unsigned long vaddr) |
169 | { | 189 | { |
@@ -175,17 +195,21 @@ static unsigned long gpte_addr(struct lg_cpu *cpu, | |||
175 | #endif | 195 | #endif |
176 | /*:*/ | 196 | /*:*/ |
177 | 197 | ||
178 | /*M:014 get_pfn is slow: we could probably try to grab batches of pages here as | 198 | /*M:014 |
179 | * an optimization (ie. pre-faulting). :*/ | 199 | * get_pfn is slow: we could probably try to grab batches of pages here as |
200 | * an optimization (ie. pre-faulting). | ||
201 | :*/ | ||
180 | 202 | ||
181 | /*H:350 This routine takes a page number given by the Guest and converts it to | 203 | /*H:350 |
204 | * This routine takes a page number given by the Guest and converts it to | ||
182 | * an actual, physical page number. It can fail for several reasons: the | 205 | * an actual, physical page number. It can fail for several reasons: the |
183 | * virtual address might not be mapped by the Launcher, the write flag is set | 206 | * virtual address might not be mapped by the Launcher, the write flag is set |
184 | * and the page is read-only, or the write flag was set and the page was | 207 | * and the page is read-only, or the write flag was set and the page was |
185 | * shared so had to be copied, but we ran out of memory. | 208 | * shared so had to be copied, but we ran out of memory. |
186 | * | 209 | * |
187 | * This holds a reference to the page, so release_pte() is careful to put that | 210 | * This holds a reference to the page, so release_pte() is careful to put that |
188 | * back. */ | 211 | * back. |
212 | */ | ||
189 | static unsigned long get_pfn(unsigned long virtpfn, int write) | 213 | static unsigned long get_pfn(unsigned long virtpfn, int write) |
190 | { | 214 | { |
191 | struct page *page; | 215 | struct page *page; |
@@ -198,33 +222,41 @@ static unsigned long get_pfn(unsigned long virtpfn, int write) | |||
198 | return -1UL; | 222 | return -1UL; |
199 | } | 223 | } |
200 | 224 | ||
201 | /*H:340 Converting a Guest page table entry to a shadow (ie. real) page table | 225 | /*H:340 |
226 | * Converting a Guest page table entry to a shadow (ie. real) page table | ||
202 | * entry can be a little tricky. The flags are (almost) the same, but the | 227 | * entry can be a little tricky. The flags are (almost) the same, but the |
203 | * Guest PTE contains a virtual page number: the CPU needs the real page | 228 | * Guest PTE contains a virtual page number: the CPU needs the real page |
204 | * number. */ | 229 | * number. |
230 | */ | ||
205 | static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write) | 231 | static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write) |
206 | { | 232 | { |
207 | unsigned long pfn, base, flags; | 233 | unsigned long pfn, base, flags; |
208 | 234 | ||
209 | /* The Guest sets the global flag, because it thinks that it is using | 235 | /* |
236 | * The Guest sets the global flag, because it thinks that it is using | ||
210 | * PGE. We only told it to use PGE so it would tell us whether it was | 237 | * PGE. We only told it to use PGE so it would tell us whether it was |
211 | * flushing a kernel mapping or a userspace mapping. We don't actually | 238 | * flushing a kernel mapping or a userspace mapping. We don't actually |
212 | * use the global bit, so throw it away. */ | 239 | * use the global bit, so throw it away. |
240 | */ | ||
213 | flags = (pte_flags(gpte) & ~_PAGE_GLOBAL); | 241 | flags = (pte_flags(gpte) & ~_PAGE_GLOBAL); |
214 | 242 | ||
215 | /* The Guest's pages are offset inside the Launcher. */ | 243 | /* The Guest's pages are offset inside the Launcher. */ |
216 | base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE; | 244 | base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE; |
217 | 245 | ||
218 | /* We need a temporary "unsigned long" variable to hold the answer from | 246 | /* |
247 | * We need a temporary "unsigned long" variable to hold the answer from | ||
219 | * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't | 248 | * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't |
220 | * fit in spte.pfn. get_pfn() finds the real physical number of the | 249 | * fit in spte.pfn. get_pfn() finds the real physical number of the |
221 | * page, given the virtual number. */ | 250 | * page, given the virtual number. |
251 | */ | ||
222 | pfn = get_pfn(base + pte_pfn(gpte), write); | 252 | pfn = get_pfn(base + pte_pfn(gpte), write); |
223 | if (pfn == -1UL) { | 253 | if (pfn == -1UL) { |
224 | kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte)); | 254 | kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte)); |
225 | /* When we destroy the Guest, we'll go through the shadow page | 255 | /* |
256 | * When we destroy the Guest, we'll go through the shadow page | ||
226 | * tables and release_pte() them. Make sure we don't think | 257 | * tables and release_pte() them. Make sure we don't think |
227 | * this one is valid! */ | 258 | * this one is valid! |
259 | */ | ||
228 | flags = 0; | 260 | flags = 0; |
229 | } | 261 | } |
230 | /* Now we assemble our shadow PTE from the page number and flags. */ | 262 | /* Now we assemble our shadow PTE from the page number and flags. */ |
@@ -234,8 +266,10 @@ static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write) | |||
234 | /*H:460 And to complete the chain, release_pte() looks like this: */ | 266 | /*H:460 And to complete the chain, release_pte() looks like this: */ |
235 | static void release_pte(pte_t pte) | 267 | static void release_pte(pte_t pte) |
236 | { | 268 | { |
237 | /* Remember that get_user_pages_fast() took a reference to the page, in | 269 | /* |
238 | * get_pfn()? We have to put it back now. */ | 270 | * Remember that get_user_pages_fast() took a reference to the page, in |
271 | * get_pfn()? We have to put it back now. | ||
272 | */ | ||
239 | if (pte_flags(pte) & _PAGE_PRESENT) | 273 | if (pte_flags(pte) & _PAGE_PRESENT) |
240 | put_page(pte_page(pte)); | 274 | put_page(pte_page(pte)); |
241 | } | 275 | } |
@@ -273,7 +307,8 @@ static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd) | |||
273 | * and return to the Guest without it knowing. | 307 | * and return to the Guest without it knowing. |
274 | * | 308 | * |
275 | * If we fixed up the fault (ie. we mapped the address), this routine returns | 309 | * If we fixed up the fault (ie. we mapped the address), this routine returns |
276 | * true. Otherwise, it was a real fault and we need to tell the Guest. */ | 310 | * true. Otherwise, it was a real fault and we need to tell the Guest. |
311 | */ | ||
277 | bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) | 312 | bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) |
278 | { | 313 | { |
279 | pgd_t gpgd; | 314 | pgd_t gpgd; |
@@ -282,6 +317,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) | |||
282 | pte_t gpte; | 317 | pte_t gpte; |
283 | pte_t *spte; | 318 | pte_t *spte; |
284 | 319 | ||
320 | /* Mid level for PAE. */ | ||
285 | #ifdef CONFIG_X86_PAE | 321 | #ifdef CONFIG_X86_PAE |
286 | pmd_t *spmd; | 322 | pmd_t *spmd; |
287 | pmd_t gpmd; | 323 | pmd_t gpmd; |
@@ -298,22 +334,26 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) | |||
298 | if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) { | 334 | if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) { |
299 | /* No shadow entry: allocate a new shadow PTE page. */ | 335 | /* No shadow entry: allocate a new shadow PTE page. */ |
300 | unsigned long ptepage = get_zeroed_page(GFP_KERNEL); | 336 | unsigned long ptepage = get_zeroed_page(GFP_KERNEL); |
301 | /* This is not really the Guest's fault, but killing it is | 337 | /* |
302 | * simple for this corner case. */ | 338 | * This is not really the Guest's fault, but killing it is |
339 | * simple for this corner case. | ||
340 | */ | ||
303 | if (!ptepage) { | 341 | if (!ptepage) { |
304 | kill_guest(cpu, "out of memory allocating pte page"); | 342 | kill_guest(cpu, "out of memory allocating pte page"); |
305 | return false; | 343 | return false; |
306 | } | 344 | } |
307 | /* We check that the Guest pgd is OK. */ | 345 | /* We check that the Guest pgd is OK. */ |
308 | check_gpgd(cpu, gpgd); | 346 | check_gpgd(cpu, gpgd); |
309 | /* And we copy the flags to the shadow PGD entry. The page | 347 | /* |
310 | * number in the shadow PGD is the page we just allocated. */ | 348 | * And we copy the flags to the shadow PGD entry. The page |
349 | * number in the shadow PGD is the page we just allocated. | ||
350 | */ | ||
311 | set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd))); | 351 | set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd))); |
312 | } | 352 | } |
313 | 353 | ||
314 | #ifdef CONFIG_X86_PAE | 354 | #ifdef CONFIG_X86_PAE |
315 | gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t); | 355 | gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t); |
316 | /* middle level not present? We can't map it in. */ | 356 | /* Middle level not present? We can't map it in. */ |
317 | if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) | 357 | if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) |
318 | return false; | 358 | return false; |
319 | 359 | ||
@@ -324,8 +364,10 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) | |||
324 | /* No shadow entry: allocate a new shadow PTE page. */ | 364 | /* No shadow entry: allocate a new shadow PTE page. */ |
325 | unsigned long ptepage = get_zeroed_page(GFP_KERNEL); | 365 | unsigned long ptepage = get_zeroed_page(GFP_KERNEL); |
326 | 366 | ||
327 | /* This is not really the Guest's fault, but killing it is | 367 | /* |
328 | * simple for this corner case. */ | 368 | * This is not really the Guest's fault, but killing it is |
369 | * simple for this corner case. | ||
370 | */ | ||
329 | if (!ptepage) { | 371 | if (!ptepage) { |
330 | kill_guest(cpu, "out of memory allocating pte page"); | 372 | kill_guest(cpu, "out of memory allocating pte page"); |
331 | return false; | 373 | return false; |
@@ -334,27 +376,37 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) | |||
334 | /* We check that the Guest pmd is OK. */ | 376 | /* We check that the Guest pmd is OK. */ |
335 | check_gpmd(cpu, gpmd); | 377 | check_gpmd(cpu, gpmd); |
336 | 378 | ||
337 | /* And we copy the flags to the shadow PMD entry. The page | 379 | /* |
338 | * number in the shadow PMD is the page we just allocated. */ | 380 | * And we copy the flags to the shadow PMD entry. The page |
381 | * number in the shadow PMD is the page we just allocated. | ||
382 | */ | ||
339 | native_set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd))); | 383 | native_set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd))); |
340 | } | 384 | } |
341 | 385 | ||
342 | /* OK, now we look at the lower level in the Guest page table: keep its | 386 | /* |
343 | * address, because we might update it later. */ | 387 | * OK, now we look at the lower level in the Guest page table: keep its |
388 | * address, because we might update it later. | ||
389 | */ | ||
344 | gpte_ptr = gpte_addr(cpu, gpmd, vaddr); | 390 | gpte_ptr = gpte_addr(cpu, gpmd, vaddr); |
345 | #else | 391 | #else |
346 | /* OK, now we look at the lower level in the Guest page table: keep its | 392 | /* |
347 | * address, because we might update it later. */ | 393 | * OK, now we look at the lower level in the Guest page table: keep its |
394 | * address, because we might update it later. | ||
395 | */ | ||
348 | gpte_ptr = gpte_addr(cpu, gpgd, vaddr); | 396 | gpte_ptr = gpte_addr(cpu, gpgd, vaddr); |
349 | #endif | 397 | #endif |
398 | |||
399 | /* Read the actual PTE value. */ | ||
350 | gpte = lgread(cpu, gpte_ptr, pte_t); | 400 | gpte = lgread(cpu, gpte_ptr, pte_t); |
351 | 401 | ||
352 | /* If this page isn't in the Guest page tables, we can't page it in. */ | 402 | /* If this page isn't in the Guest page tables, we can't page it in. */ |
353 | if (!(pte_flags(gpte) & _PAGE_PRESENT)) | 403 | if (!(pte_flags(gpte) & _PAGE_PRESENT)) |
354 | return false; | 404 | return false; |
355 | 405 | ||
356 | /* Check they're not trying to write to a page the Guest wants | 406 | /* |
357 | * read-only (bit 2 of errcode == write). */ | 407 | * Check they're not trying to write to a page the Guest wants |
408 | * read-only (bit 2 of errcode == write). | ||
409 | */ | ||
358 | if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW)) | 410 | if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW)) |
359 | return false; | 411 | return false; |
360 | 412 | ||
@@ -362,8 +414,10 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) | |||
362 | if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER)) | 414 | if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER)) |
363 | return false; | 415 | return false; |
364 | 416 | ||
365 | /* Check that the Guest PTE flags are OK, and the page number is below | 417 | /* |
366 | * the pfn_limit (ie. not mapping the Launcher binary). */ | 418 | * Check that the Guest PTE flags are OK, and the page number is below |
419 | * the pfn_limit (ie. not mapping the Launcher binary). | ||
420 | */ | ||
367 | check_gpte(cpu, gpte); | 421 | check_gpte(cpu, gpte); |
368 | 422 | ||
369 | /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */ | 423 | /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */ |
@@ -373,29 +427,40 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) | |||
373 | 427 | ||
374 | /* Get the pointer to the shadow PTE entry we're going to set. */ | 428 | /* Get the pointer to the shadow PTE entry we're going to set. */ |
375 | spte = spte_addr(cpu, *spgd, vaddr); | 429 | spte = spte_addr(cpu, *spgd, vaddr); |
376 | /* If there was a valid shadow PTE entry here before, we release it. | 430 | |
377 | * This can happen with a write to a previously read-only entry. */ | 431 | /* |
432 | * If there was a valid shadow PTE entry here before, we release it. | ||
433 | * This can happen with a write to a previously read-only entry. | ||
434 | */ | ||
378 | release_pte(*spte); | 435 | release_pte(*spte); |
379 | 436 | ||
380 | /* If this is a write, we insist that the Guest page is writable (the | 437 | /* |
381 | * final arg to gpte_to_spte()). */ | 438 | * If this is a write, we insist that the Guest page is writable (the |
439 | * final arg to gpte_to_spte()). | ||
440 | */ | ||
382 | if (pte_dirty(gpte)) | 441 | if (pte_dirty(gpte)) |
383 | *spte = gpte_to_spte(cpu, gpte, 1); | 442 | *spte = gpte_to_spte(cpu, gpte, 1); |
384 | else | 443 | else |
385 | /* If this is a read, don't set the "writable" bit in the page | 444 | /* |
445 | * If this is a read, don't set the "writable" bit in the page | ||
386 | * table entry, even if the Guest says it's writable. That way | 446 | * table entry, even if the Guest says it's writable. That way |
387 | * we will come back here when a write does actually occur, so | 447 | * we will come back here when a write does actually occur, so |
388 | * we can update the Guest's _PAGE_DIRTY flag. */ | 448 | * we can update the Guest's _PAGE_DIRTY flag. |
449 | */ | ||
389 | native_set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0)); | 450 | native_set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0)); |
390 | 451 | ||
391 | /* Finally, we write the Guest PTE entry back: we've set the | 452 | /* |
392 | * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */ | 453 | * Finally, we write the Guest PTE entry back: we've set the |
454 | * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. | ||
455 | */ | ||
393 | lgwrite(cpu, gpte_ptr, pte_t, gpte); | 456 | lgwrite(cpu, gpte_ptr, pte_t, gpte); |
394 | 457 | ||
395 | /* The fault is fixed, the page table is populated, the mapping | 458 | /* |
459 | * The fault is fixed, the page table is populated, the mapping | ||
396 | * manipulated, the result returned and the code complete. A small | 460 | * manipulated, the result returned and the code complete. A small |
397 | * delay and a trace of alliteration are the only indications the Guest | 461 | * delay and a trace of alliteration are the only indications the Guest |
398 | * has that a page fault occurred at all. */ | 462 | * has that a page fault occurred at all. |
463 | */ | ||
399 | return true; | 464 | return true; |
400 | } | 465 | } |
401 | 466 | ||
@@ -408,7 +473,8 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) | |||
408 | * mapped, so it's overkill. | 473 | * mapped, so it's overkill. |
409 | * | 474 | * |
410 | * This is a quick version which answers the question: is this virtual address | 475 | * This is a quick version which answers the question: is this virtual address |
411 | * mapped by the shadow page tables, and is it writable? */ | 476 | * mapped by the shadow page tables, and is it writable? |
477 | */ | ||
412 | static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr) | 478 | static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr) |
413 | { | 479 | { |
414 | pgd_t *spgd; | 480 | pgd_t *spgd; |
@@ -428,21 +494,26 @@ static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr) | |||
428 | return false; | 494 | return false; |
429 | #endif | 495 | #endif |
430 | 496 | ||
431 | /* Check the flags on the pte entry itself: it must be present and | 497 | /* |
432 | * writable. */ | 498 | * Check the flags on the pte entry itself: it must be present and |
499 | * writable. | ||
500 | */ | ||
433 | flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr))); | 501 | flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr))); |
434 | 502 | ||
435 | return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); | 503 | return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); |
436 | } | 504 | } |
437 | 505 | ||
438 | /* So, when pin_stack_pages() asks us to pin a page, we check if it's already | 506 | /* |
507 | * So, when pin_stack_pages() asks us to pin a page, we check if it's already | ||
439 | * in the page tables, and if not, we call demand_page() with error code 2 | 508 | * in the page tables, and if not, we call demand_page() with error code 2 |
440 | * (meaning "write"). */ | 509 | * (meaning "write"). |
510 | */ | ||
441 | void pin_page(struct lg_cpu *cpu, unsigned long vaddr) | 511 | void pin_page(struct lg_cpu *cpu, unsigned long vaddr) |
442 | { | 512 | { |
443 | if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2)) | 513 | if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2)) |
444 | kill_guest(cpu, "bad stack page %#lx", vaddr); | 514 | kill_guest(cpu, "bad stack page %#lx", vaddr); |
445 | } | 515 | } |
516 | /*:*/ | ||
446 | 517 | ||
447 | #ifdef CONFIG_X86_PAE | 518 | #ifdef CONFIG_X86_PAE |
448 | static void release_pmd(pmd_t *spmd) | 519 | static void release_pmd(pmd_t *spmd) |
@@ -479,15 +550,21 @@ static void release_pgd(pgd_t *spgd) | |||
479 | } | 550 | } |
480 | 551 | ||
481 | #else /* !CONFIG_X86_PAE */ | 552 | #else /* !CONFIG_X86_PAE */ |
482 | /*H:450 If we chase down the release_pgd() code, it looks like this: */ | 553 | /*H:450 |
554 | * If we chase down the release_pgd() code, the non-PAE version looks like | ||
555 | * this. The PAE version is almost identical, but instead of calling | ||
556 | * release_pte it calls release_pmd(), which looks much like this. | ||
557 | */ | ||
483 | static void release_pgd(pgd_t *spgd) | 558 | static void release_pgd(pgd_t *spgd) |
484 | { | 559 | { |
485 | /* If the entry's not present, there's nothing to release. */ | 560 | /* If the entry's not present, there's nothing to release. */ |
486 | if (pgd_flags(*spgd) & _PAGE_PRESENT) { | 561 | if (pgd_flags(*spgd) & _PAGE_PRESENT) { |
487 | unsigned int i; | 562 | unsigned int i; |
488 | /* Converting the pfn to find the actual PTE page is easy: turn | 563 | /* |
564 | * Converting the pfn to find the actual PTE page is easy: turn | ||
489 | * the page number into a physical address, then convert to a | 565 | * the page number into a physical address, then convert to a |
490 | * virtual address (easy for kernel pages like this one). */ | 566 | * virtual address (easy for kernel pages like this one). |
567 | */ | ||
491 | pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); | 568 | pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); |
492 | /* For each entry in the page, we might need to release it. */ | 569 | /* For each entry in the page, we might need to release it. */ |
493 | for (i = 0; i < PTRS_PER_PTE; i++) | 570 | for (i = 0; i < PTRS_PER_PTE; i++) |
@@ -499,9 +576,12 @@ static void release_pgd(pgd_t *spgd) | |||
499 | } | 576 | } |
500 | } | 577 | } |
501 | #endif | 578 | #endif |
502 | /*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings() | 579 | |
580 | /*H:445 | ||
581 | * We saw flush_user_mappings() twice: once from the flush_user_mappings() | ||
503 | * hypercall and once in new_pgdir() when we re-used a top-level pgdir page. | 582 | * hypercall and once in new_pgdir() when we re-used a top-level pgdir page. |
504 | * It simply releases every PTE page from 0 up to the Guest's kernel address. */ | 583 | * It simply releases every PTE page from 0 up to the Guest's kernel address. |
584 | */ | ||
505 | static void flush_user_mappings(struct lguest *lg, int idx) | 585 | static void flush_user_mappings(struct lguest *lg, int idx) |
506 | { | 586 | { |
507 | unsigned int i; | 587 | unsigned int i; |
@@ -510,10 +590,12 @@ static void flush_user_mappings(struct lguest *lg, int idx) | |||
510 | release_pgd(lg->pgdirs[idx].pgdir + i); | 590 | release_pgd(lg->pgdirs[idx].pgdir + i); |
511 | } | 591 | } |
512 | 592 | ||
513 | /*H:440 (v) Flushing (throwing away) page tables, | 593 | /*H:440 |
594 | * (v) Flushing (throwing away) page tables, | ||
514 | * | 595 | * |
515 | * The Guest has a hypercall to throw away the page tables: it's used when a | 596 | * The Guest has a hypercall to throw away the page tables: it's used when a |
516 | * large number of mappings have been changed. */ | 597 | * large number of mappings have been changed. |
598 | */ | ||
517 | void guest_pagetable_flush_user(struct lg_cpu *cpu) | 599 | void guest_pagetable_flush_user(struct lg_cpu *cpu) |
518 | { | 600 | { |
519 | /* Drop the userspace part of the current page table. */ | 601 | /* Drop the userspace part of the current page table. */ |
@@ -551,9 +633,11 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr) | |||
551 | return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK); | 633 | return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK); |
552 | } | 634 | } |
553 | 635 | ||
554 | /* We keep several page tables. This is a simple routine to find the page | 636 | /* |
637 | * We keep several page tables. This is a simple routine to find the page | ||
555 | * table (if any) corresponding to this top-level address the Guest has given | 638 | * table (if any) corresponding to this top-level address the Guest has given |
556 | * us. */ | 639 | * us. |
640 | */ | ||
557 | static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) | 641 | static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) |
558 | { | 642 | { |
559 | unsigned int i; | 643 | unsigned int i; |
@@ -563,9 +647,11 @@ static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) | |||
563 | return i; | 647 | return i; |
564 | } | 648 | } |
565 | 649 | ||
566 | /*H:435 And this is us, creating the new page directory. If we really do | 650 | /*H:435 |
651 | * And this is us, creating the new page directory. If we really do | ||
567 | * allocate a new one (and so the kernel parts are not there), we set | 652 | * allocate a new one (and so the kernel parts are not there), we set |
568 | * blank_pgdir. */ | 653 | * blank_pgdir. |
654 | */ | ||
569 | static unsigned int new_pgdir(struct lg_cpu *cpu, | 655 | static unsigned int new_pgdir(struct lg_cpu *cpu, |
570 | unsigned long gpgdir, | 656 | unsigned long gpgdir, |
571 | int *blank_pgdir) | 657 | int *blank_pgdir) |
@@ -575,8 +661,10 @@ static unsigned int new_pgdir(struct lg_cpu *cpu, | |||
575 | pmd_t *pmd_table; | 661 | pmd_t *pmd_table; |
576 | #endif | 662 | #endif |
577 | 663 | ||
578 | /* We pick one entry at random to throw out. Choosing the Least | 664 | /* |
579 | * Recently Used might be better, but this is easy. */ | 665 | * We pick one entry at random to throw out. Choosing the Least |
666 | * Recently Used might be better, but this is easy. | ||
667 | */ | ||
580 | next = random32() % ARRAY_SIZE(cpu->lg->pgdirs); | 668 | next = random32() % ARRAY_SIZE(cpu->lg->pgdirs); |
581 | /* If it's never been allocated at all before, try now. */ | 669 | /* If it's never been allocated at all before, try now. */ |
582 | if (!cpu->lg->pgdirs[next].pgdir) { | 670 | if (!cpu->lg->pgdirs[next].pgdir) { |
@@ -587,8 +675,10 @@ static unsigned int new_pgdir(struct lg_cpu *cpu, | |||
587 | next = cpu->cpu_pgd; | 675 | next = cpu->cpu_pgd; |
588 | else { | 676 | else { |
589 | #ifdef CONFIG_X86_PAE | 677 | #ifdef CONFIG_X86_PAE |
590 | /* In PAE mode, allocate a pmd page and populate the | 678 | /* |
591 | * last pgd entry. */ | 679 | * In PAE mode, allocate a pmd page and populate the |
680 | * last pgd entry. | ||
681 | */ | ||
592 | pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL); | 682 | pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL); |
593 | if (!pmd_table) { | 683 | if (!pmd_table) { |
594 | free_page((long)cpu->lg->pgdirs[next].pgdir); | 684 | free_page((long)cpu->lg->pgdirs[next].pgdir); |
@@ -598,8 +688,10 @@ static unsigned int new_pgdir(struct lg_cpu *cpu, | |||
598 | set_pgd(cpu->lg->pgdirs[next].pgdir + | 688 | set_pgd(cpu->lg->pgdirs[next].pgdir + |
599 | SWITCHER_PGD_INDEX, | 689 | SWITCHER_PGD_INDEX, |
600 | __pgd(__pa(pmd_table) | _PAGE_PRESENT)); | 690 | __pgd(__pa(pmd_table) | _PAGE_PRESENT)); |
601 | /* This is a blank page, so there are no kernel | 691 | /* |
602 | * mappings: caller must map the stack! */ | 692 | * This is a blank page, so there are no kernel |
693 | * mappings: caller must map the stack! | ||
694 | */ | ||
603 | *blank_pgdir = 1; | 695 | *blank_pgdir = 1; |
604 | } | 696 | } |
605 | #else | 697 | #else |
@@ -615,19 +707,23 @@ static unsigned int new_pgdir(struct lg_cpu *cpu, | |||
615 | return next; | 707 | return next; |
616 | } | 708 | } |
617 | 709 | ||
618 | /*H:430 (iv) Switching page tables | 710 | /*H:430 |
711 | * (iv) Switching page tables | ||
619 | * | 712 | * |
620 | * Now we've seen all the page table setting and manipulation, let's see | 713 | * Now we've seen all the page table setting and manipulation, let's see |
621 | * what happens when the Guest changes page tables (ie. changes the top-level | 714 | * what happens when the Guest changes page tables (ie. changes the top-level |
622 | * pgdir). This occurs on almost every context switch. */ | 715 | * pgdir). This occurs on almost every context switch. |
716 | */ | ||
623 | void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable) | 717 | void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable) |
624 | { | 718 | { |
625 | int newpgdir, repin = 0; | 719 | int newpgdir, repin = 0; |
626 | 720 | ||
627 | /* Look to see if we have this one already. */ | 721 | /* Look to see if we have this one already. */ |
628 | newpgdir = find_pgdir(cpu->lg, pgtable); | 722 | newpgdir = find_pgdir(cpu->lg, pgtable); |
629 | /* If not, we allocate or mug an existing one: if it's a fresh one, | 723 | /* |
630 | * repin gets set to 1. */ | 724 | * If not, we allocate or mug an existing one: if it's a fresh one, |
725 | * repin gets set to 1. | ||
726 | */ | ||
631 | if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs)) | 727 | if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs)) |
632 | newpgdir = new_pgdir(cpu, pgtable, &repin); | 728 | newpgdir = new_pgdir(cpu, pgtable, &repin); |
633 | /* Change the current pgd index to the new one. */ | 729 | /* Change the current pgd index to the new one. */ |
@@ -637,9 +733,11 @@ void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable) | |||
637 | pin_stack_pages(cpu); | 733 | pin_stack_pages(cpu); |
638 | } | 734 | } |
639 | 735 | ||
640 | /*H:470 Finally, a routine which throws away everything: all PGD entries in all | 736 | /*H:470 |
737 | * Finally, a routine which throws away everything: all PGD entries in all | ||
641 | * the shadow page tables, including the Guest's kernel mappings. This is used | 738 | * the shadow page tables, including the Guest's kernel mappings. This is used |
642 | * when we destroy the Guest. */ | 739 | * when we destroy the Guest. |
740 | */ | ||
643 | static void release_all_pagetables(struct lguest *lg) | 741 | static void release_all_pagetables(struct lguest *lg) |
644 | { | 742 | { |
645 | unsigned int i, j; | 743 | unsigned int i, j; |
@@ -656,8 +754,10 @@ static void release_all_pagetables(struct lguest *lg) | |||
656 | spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX; | 754 | spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX; |
657 | pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); | 755 | pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); |
658 | 756 | ||
659 | /* And release the pmd entries of that pmd page, | 757 | /* |
660 | * except for the switcher pmd. */ | 758 | * And release the pmd entries of that pmd page, |
759 | * except for the switcher pmd. | ||
760 | */ | ||
661 | for (k = 0; k < SWITCHER_PMD_INDEX; k++) | 761 | for (k = 0; k < SWITCHER_PMD_INDEX; k++) |
662 | release_pmd(&pmdpage[k]); | 762 | release_pmd(&pmdpage[k]); |
663 | #endif | 763 | #endif |
@@ -667,10 +767,12 @@ static void release_all_pagetables(struct lguest *lg) | |||
667 | } | 767 | } |
668 | } | 768 | } |
669 | 769 | ||
670 | /* We also throw away everything when a Guest tells us it's changed a kernel | 770 | /* |
771 | * We also throw away everything when a Guest tells us it's changed a kernel | ||
671 | * mapping. Since kernel mappings are in every page table, it's easiest to | 772 | * mapping. Since kernel mappings are in every page table, it's easiest to |
672 | * throw them all away. This traps the Guest in amber for a while as | 773 | * throw them all away. This traps the Guest in amber for a while as |
673 | * everything faults back in, but it's rare. */ | 774 | * everything faults back in, but it's rare. |
775 | */ | ||
674 | void guest_pagetable_clear_all(struct lg_cpu *cpu) | 776 | void guest_pagetable_clear_all(struct lg_cpu *cpu) |
675 | { | 777 | { |
676 | release_all_pagetables(cpu->lg); | 778 | release_all_pagetables(cpu->lg); |
@@ -678,15 +780,19 @@ void guest_pagetable_clear_all(struct lg_cpu *cpu) | |||
678 | pin_stack_pages(cpu); | 780 | pin_stack_pages(cpu); |
679 | } | 781 | } |
680 | /*:*/ | 782 | /*:*/ |
681 | /*M:009 Since we throw away all mappings when a kernel mapping changes, our | 783 | |
784 | /*M:009 | ||
785 | * Since we throw away all mappings when a kernel mapping changes, our | ||
682 | * performance sucks for guests using highmem. In fact, a guest with | 786 | * performance sucks for guests using highmem. In fact, a guest with |
683 | * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is | 787 | * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is |
684 | * usually slower than a Guest with less memory. | 788 | * usually slower than a Guest with less memory. |
685 | * | 789 | * |
686 | * This, of course, cannot be fixed. It would take some kind of... well, I | 790 | * This, of course, cannot be fixed. It would take some kind of... well, I |
687 | * don't know, but the term "puissant code-fu" comes to mind. :*/ | 791 | * don't know, but the term "puissant code-fu" comes to mind. |
792 | :*/ | ||
688 | 793 | ||
689 | /*H:420 This is the routine which actually sets the page table entry for then | 794 | /*H:420 |
795 | * This is the routine which actually sets the page table entry for then | ||
690 | * "idx"'th shadow page table. | 796 | * "idx"'th shadow page table. |
691 | * | 797 | * |
692 | * Normally, we can just throw out the old entry and replace it with 0: if they | 798 | * Normally, we can just throw out the old entry and replace it with 0: if they |
@@ -715,31 +821,36 @@ static void do_set_pte(struct lg_cpu *cpu, int idx, | |||
715 | spmd = spmd_addr(cpu, *spgd, vaddr); | 821 | spmd = spmd_addr(cpu, *spgd, vaddr); |
716 | if (pmd_flags(*spmd) & _PAGE_PRESENT) { | 822 | if (pmd_flags(*spmd) & _PAGE_PRESENT) { |
717 | #endif | 823 | #endif |
718 | /* Otherwise, we start by releasing | 824 | /* Otherwise, start by releasing the existing entry. */ |
719 | * the existing entry. */ | ||
720 | pte_t *spte = spte_addr(cpu, *spgd, vaddr); | 825 | pte_t *spte = spte_addr(cpu, *spgd, vaddr); |
721 | release_pte(*spte); | 826 | release_pte(*spte); |
722 | 827 | ||
723 | /* If they're setting this entry as dirty or accessed, | 828 | /* |
724 | * we might as well put that entry they've given us | 829 | * If they're setting this entry as dirty or accessed, |
725 | * in now. This shaves 10% off a | 830 | * we might as well put that entry they've given us in |
726 | * copy-on-write micro-benchmark. */ | 831 | * now. This shaves 10% off a copy-on-write |
832 | * micro-benchmark. | ||
833 | */ | ||
727 | if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) { | 834 | if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) { |
728 | check_gpte(cpu, gpte); | 835 | check_gpte(cpu, gpte); |
729 | native_set_pte(spte, | 836 | native_set_pte(spte, |
730 | gpte_to_spte(cpu, gpte, | 837 | gpte_to_spte(cpu, gpte, |
731 | pte_flags(gpte) & _PAGE_DIRTY)); | 838 | pte_flags(gpte) & _PAGE_DIRTY)); |
732 | } else | 839 | } else { |
733 | /* Otherwise kill it and we can demand_page() | 840 | /* |
734 | * it in later. */ | 841 | * Otherwise kill it and we can demand_page() |
842 | * it in later. | ||
843 | */ | ||
735 | native_set_pte(spte, __pte(0)); | 844 | native_set_pte(spte, __pte(0)); |
845 | } | ||
736 | #ifdef CONFIG_X86_PAE | 846 | #ifdef CONFIG_X86_PAE |
737 | } | 847 | } |
738 | #endif | 848 | #endif |
739 | } | 849 | } |
740 | } | 850 | } |
741 | 851 | ||
742 | /*H:410 Updating a PTE entry is a little trickier. | 852 | /*H:410 |
853 | * Updating a PTE entry is a little trickier. | ||
743 | * | 854 | * |
744 | * We keep track of several different page tables (the Guest uses one for each | 855 | * We keep track of several different page tables (the Guest uses one for each |
745 | * process, so it makes sense to cache at least a few). Each of these have | 856 | * process, so it makes sense to cache at least a few). Each of these have |
@@ -748,12 +859,15 @@ static void do_set_pte(struct lg_cpu *cpu, int idx, | |||
748 | * all the page tables, not just the current one. This is rare. | 859 | * all the page tables, not just the current one. This is rare. |
749 | * | 860 | * |
750 | * The benefit is that when we have to track a new page table, we can keep all | 861 | * The benefit is that when we have to track a new page table, we can keep all |
751 | * the kernel mappings. This speeds up context switch immensely. */ | 862 | * the kernel mappings. This speeds up context switch immensely. |
863 | */ | ||
752 | void guest_set_pte(struct lg_cpu *cpu, | 864 | void guest_set_pte(struct lg_cpu *cpu, |
753 | unsigned long gpgdir, unsigned long vaddr, pte_t gpte) | 865 | unsigned long gpgdir, unsigned long vaddr, pte_t gpte) |
754 | { | 866 | { |
755 | /* Kernel mappings must be changed on all top levels. Slow, but doesn't | 867 | /* |
756 | * happen often. */ | 868 | * Kernel mappings must be changed on all top levels. Slow, but doesn't |
869 | * happen often. | ||
870 | */ | ||
757 | if (vaddr >= cpu->lg->kernel_address) { | 871 | if (vaddr >= cpu->lg->kernel_address) { |
758 | unsigned int i; | 872 | unsigned int i; |
759 | for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++) | 873 | for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++) |
@@ -795,19 +909,25 @@ void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx) | |||
795 | /* ... throw it away. */ | 909 | /* ... throw it away. */ |
796 | release_pgd(lg->pgdirs[pgdir].pgdir + idx); | 910 | release_pgd(lg->pgdirs[pgdir].pgdir + idx); |
797 | } | 911 | } |
912 | |||
798 | #ifdef CONFIG_X86_PAE | 913 | #ifdef CONFIG_X86_PAE |
914 | /* For setting a mid-level, we just throw everything away. It's easy. */ | ||
799 | void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx) | 915 | void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx) |
800 | { | 916 | { |
801 | guest_pagetable_clear_all(&lg->cpus[0]); | 917 | guest_pagetable_clear_all(&lg->cpus[0]); |
802 | } | 918 | } |
803 | #endif | 919 | #endif |
804 | 920 | ||
805 | /* Once we know how much memory we have we can construct simple identity | 921 | /*H:505 |
806 | * (which set virtual == physical) and linear mappings | 922 | * To get through boot, we construct simple identity page mappings (which |
807 | * which will get the Guest far enough into the boot to create its own. | 923 | * set virtual == physical) and linear mappings which will get the Guest far |
924 | * enough into the boot to create its own. The linear mapping means we | ||
925 | * simplify the Guest boot, but it makes assumptions about their PAGE_OFFSET, | ||
926 | * as you'll see. | ||
808 | * | 927 | * |
809 | * We lay them out of the way, just below the initrd (which is why we need to | 928 | * We lay them out of the way, just below the initrd (which is why we need to |
810 | * know its size here). */ | 929 | * know its size here). |
930 | */ | ||
811 | static unsigned long setup_pagetables(struct lguest *lg, | 931 | static unsigned long setup_pagetables(struct lguest *lg, |
812 | unsigned long mem, | 932 | unsigned long mem, |
813 | unsigned long initrd_size) | 933 | unsigned long initrd_size) |
@@ -825,8 +945,10 @@ static unsigned long setup_pagetables(struct lguest *lg, | |||
825 | unsigned int phys_linear; | 945 | unsigned int phys_linear; |
826 | #endif | 946 | #endif |
827 | 947 | ||
828 | /* We have mapped_pages frames to map, so we need | 948 | /* |
829 | * linear_pages page tables to map them. */ | 949 | * We have mapped_pages frames to map, so we need linear_pages page |
950 | * tables to map them. | ||
951 | */ | ||
830 | mapped_pages = mem / PAGE_SIZE; | 952 | mapped_pages = mem / PAGE_SIZE; |
831 | linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE; | 953 | linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE; |
832 | 954 | ||
@@ -837,10 +959,16 @@ static unsigned long setup_pagetables(struct lguest *lg, | |||
837 | linear = (void *)pgdir - linear_pages * PAGE_SIZE; | 959 | linear = (void *)pgdir - linear_pages * PAGE_SIZE; |
838 | 960 | ||
839 | #ifdef CONFIG_X86_PAE | 961 | #ifdef CONFIG_X86_PAE |
962 | /* | ||
963 | * And the single mid page goes below that. We only use one, but | ||
964 | * that's enough to map 1G, which definitely gets us through boot. | ||
965 | */ | ||
840 | pmds = (void *)linear - PAGE_SIZE; | 966 | pmds = (void *)linear - PAGE_SIZE; |
841 | #endif | 967 | #endif |
842 | /* Linear mapping is easy: put every page's address into the | 968 | /* |
843 | * mapping in order. */ | 969 | * Linear mapping is easy: put every page's address into the |
970 | * mapping in order. | ||
971 | */ | ||
844 | for (i = 0; i < mapped_pages; i++) { | 972 | for (i = 0; i < mapped_pages; i++) { |
845 | pte_t pte; | 973 | pte_t pte; |
846 | pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER)); | 974 | pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER)); |
@@ -848,11 +976,14 @@ static unsigned long setup_pagetables(struct lguest *lg, | |||
848 | return -EFAULT; | 976 | return -EFAULT; |
849 | } | 977 | } |
850 | 978 | ||
851 | /* The top level points to the linear page table pages above. | ||
852 | * We setup the identity and linear mappings here. */ | ||
853 | #ifdef CONFIG_X86_PAE | 979 | #ifdef CONFIG_X86_PAE |
980 | /* | ||
981 | * Make the Guest PMD entries point to the corresponding place in the | ||
982 | * linear mapping (up to one page worth of PMD). | ||
983 | */ | ||
854 | for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD; | 984 | for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD; |
855 | i += PTRS_PER_PTE, j++) { | 985 | i += PTRS_PER_PTE, j++) { |
986 | /* FIXME: native_set_pmd is overkill here. */ | ||
856 | native_set_pmd(&pmd, __pmd(((unsigned long)(linear + i) | 987 | native_set_pmd(&pmd, __pmd(((unsigned long)(linear + i) |
857 | - mem_base) | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER)); | 988 | - mem_base) | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER)); |
858 | 989 | ||
@@ -860,18 +991,36 @@ static unsigned long setup_pagetables(struct lguest *lg, | |||
860 | return -EFAULT; | 991 | return -EFAULT; |
861 | } | 992 | } |
862 | 993 | ||
994 | /* One PGD entry, pointing to that PMD page. */ | ||
863 | set_pgd(&pgd, __pgd(((u32)pmds - mem_base) | _PAGE_PRESENT)); | 995 | set_pgd(&pgd, __pgd(((u32)pmds - mem_base) | _PAGE_PRESENT)); |
996 | /* Copy it in as the first PGD entry (ie. addresses 0-1G). */ | ||
864 | if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0) | 997 | if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0) |
865 | return -EFAULT; | 998 | return -EFAULT; |
999 | /* | ||
1000 | * And the third PGD entry (ie. addresses 3G-4G). | ||
1001 | * | ||
1002 | * FIXME: This assumes that PAGE_OFFSET for the Guest is 0xC0000000. | ||
1003 | */ | ||
866 | if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0) | 1004 | if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0) |
867 | return -EFAULT; | 1005 | return -EFAULT; |
868 | #else | 1006 | #else |
1007 | /* | ||
1008 | * The top level points to the linear page table pages above. | ||
1009 | * We setup the identity and linear mappings here. | ||
1010 | */ | ||
869 | phys_linear = (unsigned long)linear - mem_base; | 1011 | phys_linear = (unsigned long)linear - mem_base; |
870 | for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) { | 1012 | for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) { |
871 | pgd_t pgd; | 1013 | pgd_t pgd; |
1014 | /* | ||
1015 | * Create a PGD entry which points to the right part of the | ||
1016 | * linear PTE pages. | ||
1017 | */ | ||
872 | pgd = __pgd((phys_linear + i * sizeof(pte_t)) | | 1018 | pgd = __pgd((phys_linear + i * sizeof(pte_t)) | |
873 | (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER)); | 1019 | (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER)); |
874 | 1020 | ||
1021 | /* | ||
1022 | * Copy it into the PGD page at 0 and PAGE_OFFSET. | ||
1023 | */ | ||
875 | if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd)) | 1024 | if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd)) |
876 | || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET) | 1025 | || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET) |
877 | + i / PTRS_PER_PTE], | 1026 | + i / PTRS_PER_PTE], |
@@ -880,15 +1029,19 @@ static unsigned long setup_pagetables(struct lguest *lg, | |||
880 | } | 1029 | } |
881 | #endif | 1030 | #endif |
882 | 1031 | ||
883 | /* We return the top level (guest-physical) address: remember where | 1032 | /* |
884 | * this is. */ | 1033 | * We return the top level (guest-physical) address: we remember where |
1034 | * this is to write it into lguest_data when the Guest initializes. | ||
1035 | */ | ||
885 | return (unsigned long)pgdir - mem_base; | 1036 | return (unsigned long)pgdir - mem_base; |
886 | } | 1037 | } |
887 | 1038 | ||
888 | /*H:500 (vii) Setting up the page tables initially. | 1039 | /*H:500 |
1040 | * (vii) Setting up the page tables initially. | ||
889 | * | 1041 | * |
890 | * When a Guest is first created, the Launcher tells us where the toplevel of | 1042 | * When a Guest is first created, the Launcher tells us where the toplevel of |
891 | * its first page table is. We set some things up here: */ | 1043 | * its first page table is. We set some things up here: |
1044 | */ | ||
892 | int init_guest_pagetable(struct lguest *lg) | 1045 | int init_guest_pagetable(struct lguest *lg) |
893 | { | 1046 | { |
894 | u64 mem; | 1047 | u64 mem; |
@@ -898,21 +1051,27 @@ int init_guest_pagetable(struct lguest *lg) | |||
898 | pgd_t *pgd; | 1051 | pgd_t *pgd; |
899 | pmd_t *pmd_table; | 1052 | pmd_t *pmd_table; |
900 | #endif | 1053 | #endif |
901 | /* Get the Guest memory size and the ramdisk size from the boot header | 1054 | /* |
902 | * located at lg->mem_base (Guest address 0). */ | 1055 | * Get the Guest memory size and the ramdisk size from the boot header |
1056 | * located at lg->mem_base (Guest address 0). | ||
1057 | */ | ||
903 | if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem)) | 1058 | if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem)) |
904 | || get_user(initrd_size, &boot->hdr.ramdisk_size)) | 1059 | || get_user(initrd_size, &boot->hdr.ramdisk_size)) |
905 | return -EFAULT; | 1060 | return -EFAULT; |
906 | 1061 | ||
907 | /* We start on the first shadow page table, and give it a blank PGD | 1062 | /* |
908 | * page. */ | 1063 | * We start on the first shadow page table, and give it a blank PGD |
1064 | * page. | ||
1065 | */ | ||
909 | lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size); | 1066 | lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size); |
910 | if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir)) | 1067 | if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir)) |
911 | return lg->pgdirs[0].gpgdir; | 1068 | return lg->pgdirs[0].gpgdir; |
912 | lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL); | 1069 | lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL); |
913 | if (!lg->pgdirs[0].pgdir) | 1070 | if (!lg->pgdirs[0].pgdir) |
914 | return -ENOMEM; | 1071 | return -ENOMEM; |
1072 | |||
915 | #ifdef CONFIG_X86_PAE | 1073 | #ifdef CONFIG_X86_PAE |
1074 | /* For PAE, we also create the initial mid-level. */ | ||
916 | pgd = lg->pgdirs[0].pgdir; | 1075 | pgd = lg->pgdirs[0].pgdir; |
917 | pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL); | 1076 | pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL); |
918 | if (!pmd_table) | 1077 | if (!pmd_table) |
@@ -921,27 +1080,33 @@ int init_guest_pagetable(struct lguest *lg) | |||
921 | set_pgd(pgd + SWITCHER_PGD_INDEX, | 1080 | set_pgd(pgd + SWITCHER_PGD_INDEX, |
922 | __pgd(__pa(pmd_table) | _PAGE_PRESENT)); | 1081 | __pgd(__pa(pmd_table) | _PAGE_PRESENT)); |
923 | #endif | 1082 | #endif |
1083 | |||
1084 | /* This is the current page table. */ | ||
924 | lg->cpus[0].cpu_pgd = 0; | 1085 | lg->cpus[0].cpu_pgd = 0; |
925 | return 0; | 1086 | return 0; |
926 | } | 1087 | } |
927 | 1088 | ||
928 | /* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */ | 1089 | /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */ |
929 | void page_table_guest_data_init(struct lg_cpu *cpu) | 1090 | void page_table_guest_data_init(struct lg_cpu *cpu) |
930 | { | 1091 | { |
931 | /* We get the kernel address: above this is all kernel memory. */ | 1092 | /* We get the kernel address: above this is all kernel memory. */ |
932 | if (get_user(cpu->lg->kernel_address, | 1093 | if (get_user(cpu->lg->kernel_address, |
933 | &cpu->lg->lguest_data->kernel_address) | 1094 | &cpu->lg->lguest_data->kernel_address) |
934 | /* We tell the Guest that it can't use the top 2 or 4 MB | 1095 | /* |
935 | * of virtual addresses used by the Switcher. */ | 1096 | * We tell the Guest that it can't use the top 2 or 4 MB |
1097 | * of virtual addresses used by the Switcher. | ||
1098 | */ | ||
936 | || put_user(RESERVE_MEM * 1024 * 1024, | 1099 | || put_user(RESERVE_MEM * 1024 * 1024, |
937 | &cpu->lg->lguest_data->reserve_mem) | 1100 | &cpu->lg->lguest_data->reserve_mem) |
938 | || put_user(cpu->lg->pgdirs[0].gpgdir, | 1101 | || put_user(cpu->lg->pgdirs[0].gpgdir, |
939 | &cpu->lg->lguest_data->pgdir)) | 1102 | &cpu->lg->lguest_data->pgdir)) |
940 | kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data); | 1103 | kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data); |
941 | 1104 | ||
942 | /* In flush_user_mappings() we loop from 0 to | 1105 | /* |
1106 | * In flush_user_mappings() we loop from 0 to | ||
943 | * "pgd_index(lg->kernel_address)". This assumes it won't hit the | 1107 | * "pgd_index(lg->kernel_address)". This assumes it won't hit the |
944 | * Switcher mappings, so check that now. */ | 1108 | * Switcher mappings, so check that now. |
1109 | */ | ||
945 | #ifdef CONFIG_X86_PAE | 1110 | #ifdef CONFIG_X86_PAE |
946 | if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX && | 1111 | if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX && |
947 | pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX) | 1112 | pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX) |
@@ -964,12 +1129,14 @@ void free_guest_pagetable(struct lguest *lg) | |||
964 | free_page((long)lg->pgdirs[i].pgdir); | 1129 | free_page((long)lg->pgdirs[i].pgdir); |
965 | } | 1130 | } |
966 | 1131 | ||
967 | /*H:480 (vi) Mapping the Switcher when the Guest is about to run. | 1132 | /*H:480 |
1133 | * (vi) Mapping the Switcher when the Guest is about to run. | ||
968 | * | 1134 | * |
969 | * The Switcher and the two pages for this CPU need to be visible in the | 1135 | * The Switcher and the two pages for this CPU need to be visible in the |
970 | * Guest (and not the pages for other CPUs). We have the appropriate PTE pages | 1136 | * Guest (and not the pages for other CPUs). We have the appropriate PTE pages |
971 | * for each CPU already set up, we just need to hook them in now we know which | 1137 | * for each CPU already set up, we just need to hook them in now we know which |
972 | * Guest is about to run on this CPU. */ | 1138 | * Guest is about to run on this CPU. |
1139 | */ | ||
973 | void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) | 1140 | void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) |
974 | { | 1141 | { |
975 | pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); | 1142 | pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); |
@@ -980,30 +1147,38 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) | |||
980 | pmd_t switcher_pmd; | 1147 | pmd_t switcher_pmd; |
981 | pmd_t *pmd_table; | 1148 | pmd_t *pmd_table; |
982 | 1149 | ||
1150 | /* FIXME: native_set_pmd is overkill here. */ | ||
983 | native_set_pmd(&switcher_pmd, pfn_pmd(__pa(switcher_pte_page) >> | 1151 | native_set_pmd(&switcher_pmd, pfn_pmd(__pa(switcher_pte_page) >> |
984 | PAGE_SHIFT, PAGE_KERNEL_EXEC)); | 1152 | PAGE_SHIFT, PAGE_KERNEL_EXEC)); |
985 | 1153 | ||
1154 | /* Figure out where the pmd page is, by reading the PGD, and converting | ||
1155 | * it to a virtual address. */ | ||
986 | pmd_table = __va(pgd_pfn(cpu->lg-> | 1156 | pmd_table = __va(pgd_pfn(cpu->lg-> |
987 | pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX]) | 1157 | pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX]) |
988 | << PAGE_SHIFT); | 1158 | << PAGE_SHIFT); |
1159 | /* Now write it into the shadow page table. */ | ||
989 | native_set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd); | 1160 | native_set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd); |
990 | #else | 1161 | #else |
991 | pgd_t switcher_pgd; | 1162 | pgd_t switcher_pgd; |
992 | 1163 | ||
993 | /* Make the last PGD entry for this Guest point to the Switcher's PTE | 1164 | /* |
994 | * page for this CPU (with appropriate flags). */ | 1165 | * Make the last PGD entry for this Guest point to the Switcher's PTE |
1166 | * page for this CPU (with appropriate flags). | ||
1167 | */ | ||
995 | switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC); | 1168 | switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC); |
996 | 1169 | ||
997 | cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; | 1170 | cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; |
998 | 1171 | ||
999 | #endif | 1172 | #endif |
1000 | /* We also change the Switcher PTE page. When we're running the Guest, | 1173 | /* |
1174 | * We also change the Switcher PTE page. When we're running the Guest, | ||
1001 | * we want the Guest's "regs" page to appear where the first Switcher | 1175 | * we want the Guest's "regs" page to appear where the first Switcher |
1002 | * page for this CPU is. This is an optimization: when the Switcher | 1176 | * page for this CPU is. This is an optimization: when the Switcher |
1003 | * saves the Guest registers, it saves them into the first page of this | 1177 | * saves the Guest registers, it saves them into the first page of this |
1004 | * CPU's "struct lguest_pages": if we make sure the Guest's register | 1178 | * CPU's "struct lguest_pages": if we make sure the Guest's register |
1005 | * page is already mapped there, we don't have to copy them out | 1179 | * page is already mapped there, we don't have to copy them out |
1006 | * again. */ | 1180 | * again. |
1181 | */ | ||
1007 | pfn = __pa(cpu->regs_page) >> PAGE_SHIFT; | 1182 | pfn = __pa(cpu->regs_page) >> PAGE_SHIFT; |
1008 | native_set_pte(®s_pte, pfn_pte(pfn, PAGE_KERNEL)); | 1183 | native_set_pte(®s_pte, pfn_pte(pfn, PAGE_KERNEL)); |
1009 | native_set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], | 1184 | native_set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], |
@@ -1019,10 +1194,12 @@ static void free_switcher_pte_pages(void) | |||
1019 | free_page((long)switcher_pte_page(i)); | 1194 | free_page((long)switcher_pte_page(i)); |
1020 | } | 1195 | } |
1021 | 1196 | ||
1022 | /*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given | 1197 | /*H:520 |
1198 | * Setting up the Switcher PTE page for given CPU is fairly easy, given | ||
1023 | * the CPU number and the "struct page"s for the Switcher code itself. | 1199 | * the CPU number and the "struct page"s for the Switcher code itself. |
1024 | * | 1200 | * |
1025 | * Currently the Switcher is less than a page long, so "pages" is always 1. */ | 1201 | * Currently the Switcher is less than a page long, so "pages" is always 1. |
1202 | */ | ||
1026 | static __init void populate_switcher_pte_page(unsigned int cpu, | 1203 | static __init void populate_switcher_pte_page(unsigned int cpu, |
1027 | struct page *switcher_page[], | 1204 | struct page *switcher_page[], |
1028 | unsigned int pages) | 1205 | unsigned int pages) |
@@ -1043,13 +1220,16 @@ static __init void populate_switcher_pte_page(unsigned int cpu, | |||
1043 | native_set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]), | 1220 | native_set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]), |
1044 | __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW))); | 1221 | __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW))); |
1045 | 1222 | ||
1046 | /* The second page contains the "struct lguest_ro_state", and is | 1223 | /* |
1047 | * read-only. */ | 1224 | * The second page contains the "struct lguest_ro_state", and is |
1225 | * read-only. | ||
1226 | */ | ||
1048 | native_set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]), | 1227 | native_set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]), |
1049 | __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED))); | 1228 | __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED))); |
1050 | } | 1229 | } |
1051 | 1230 | ||
1052 | /* We've made it through the page table code. Perhaps our tired brains are | 1231 | /* |
1232 | * We've made it through the page table code. Perhaps our tired brains are | ||
1053 | * still processing the details, or perhaps we're simply glad it's over. | 1233 | * still processing the details, or perhaps we're simply glad it's over. |
1054 | * | 1234 | * |
1055 | * If nothing else, note that all this complexity in juggling shadow page tables | 1235 | * If nothing else, note that all this complexity in juggling shadow page tables |
@@ -1058,10 +1238,13 @@ static __init void populate_switcher_pte_page(unsigned int cpu, | |||
1058 | * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD | 1238 | * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD |
1059 | * have implemented shadow page table support directly into hardware. | 1239 | * have implemented shadow page table support directly into hardware. |
1060 | * | 1240 | * |
1061 | * There is just one file remaining in the Host. */ | 1241 | * There is just one file remaining in the Host. |
1242 | */ | ||
1062 | 1243 | ||
1063 | /*H:510 At boot or module load time, init_pagetables() allocates and populates | 1244 | /*H:510 |
1064 | * the Switcher PTE page for each CPU. */ | 1245 | * At boot or module load time, init_pagetables() allocates and populates |
1246 | * the Switcher PTE page for each CPU. | ||
1247 | */ | ||
1065 | __init int init_pagetables(struct page **switcher_page, unsigned int pages) | 1248 | __init int init_pagetables(struct page **switcher_page, unsigned int pages) |
1066 | { | 1249 | { |
1067 | unsigned int i; | 1250 | unsigned int i; |