diff options
Diffstat (limited to 'drivers/lguest/hypercalls.c')
-rw-r--r-- | drivers/lguest/hypercalls.c | 144 |
1 files changed, 126 insertions, 18 deletions
diff --git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c index ea52ca451f74..db6caace3b9c 100644 --- a/drivers/lguest/hypercalls.c +++ b/drivers/lguest/hypercalls.c | |||
@@ -1,5 +1,10 @@ | |||
1 | /* Actual hypercalls, which allow guests to actually do something. | 1 | /*P:500 Just as userspace programs request kernel operations through a system |
2 | Copyright (C) 2006 Rusty Russell IBM Corporation | 2 | * call, the Guest requests Host operations through a "hypercall". You might |
3 | * notice this nomenclature doesn't really follow any logic, but the name has | ||
4 | * been around for long enough that we're stuck with it. As you'd expect, this | ||
5 | * code is basically a one big switch statement. :*/ | ||
6 | |||
7 | /* Copyright (C) 2006 Rusty Russell IBM Corporation | ||
3 | 8 | ||
4 | This program is free software; you can redistribute it and/or modify | 9 | This program is free software; you can redistribute it and/or modify |
5 | it under the terms of the GNU General Public License as published by | 10 | it under the terms of the GNU General Public License as published by |
@@ -23,37 +28,55 @@ | |||
23 | #include <irq_vectors.h> | 28 | #include <irq_vectors.h> |
24 | #include "lg.h" | 29 | #include "lg.h" |
25 | 30 | ||
31 | /*H:120 This is the core hypercall routine: where the Guest gets what it | ||
32 | * wants. Or gets killed. Or, in the case of LHCALL_CRASH, both. | ||
33 | * | ||
34 | * Remember from the Guest: %eax == which call to make, and the arguments are | ||
35 | * packed into %edx, %ebx and %ecx if needed. */ | ||
26 | static void do_hcall(struct lguest *lg, struct lguest_regs *regs) | 36 | static void do_hcall(struct lguest *lg, struct lguest_regs *regs) |
27 | { | 37 | { |
28 | switch (regs->eax) { | 38 | switch (regs->eax) { |
29 | case LHCALL_FLUSH_ASYNC: | 39 | case LHCALL_FLUSH_ASYNC: |
40 | /* This call does nothing, except by breaking out of the Guest | ||
41 | * it makes us process all the asynchronous hypercalls. */ | ||
30 | break; | 42 | break; |
31 | case LHCALL_LGUEST_INIT: | 43 | case LHCALL_LGUEST_INIT: |
44 | /* You can't get here unless you're already initialized. Don't | ||
45 | * do that. */ | ||
32 | kill_guest(lg, "already have lguest_data"); | 46 | kill_guest(lg, "already have lguest_data"); |
33 | break; | 47 | break; |
34 | case LHCALL_CRASH: { | 48 | case LHCALL_CRASH: { |
49 | /* Crash is such a trivial hypercall that we do it in four | ||
50 | * lines right here. */ | ||
35 | char msg[128]; | 51 | char msg[128]; |
52 | /* If the lgread fails, it will call kill_guest() itself; the | ||
53 | * kill_guest() with the message will be ignored. */ | ||
36 | lgread(lg, msg, regs->edx, sizeof(msg)); | 54 | lgread(lg, msg, regs->edx, sizeof(msg)); |
37 | msg[sizeof(msg)-1] = '\0'; | 55 | msg[sizeof(msg)-1] = '\0'; |
38 | kill_guest(lg, "CRASH: %s", msg); | 56 | kill_guest(lg, "CRASH: %s", msg); |
39 | break; | 57 | break; |
40 | } | 58 | } |
41 | case LHCALL_FLUSH_TLB: | 59 | case LHCALL_FLUSH_TLB: |
60 | /* FLUSH_TLB comes in two flavors, depending on the | ||
61 | * argument: */ | ||
42 | if (regs->edx) | 62 | if (regs->edx) |
43 | guest_pagetable_clear_all(lg); | 63 | guest_pagetable_clear_all(lg); |
44 | else | 64 | else |
45 | guest_pagetable_flush_user(lg); | 65 | guest_pagetable_flush_user(lg); |
46 | break; | 66 | break; |
47 | case LHCALL_GET_WALLCLOCK: { | ||
48 | struct timespec ts; | ||
49 | ktime_get_real_ts(&ts); | ||
50 | regs->eax = ts.tv_sec; | ||
51 | break; | ||
52 | } | ||
53 | case LHCALL_BIND_DMA: | 67 | case LHCALL_BIND_DMA: |
68 | /* BIND_DMA really wants four arguments, but it's the only call | ||
69 | * which does. So the Guest packs the number of buffers and | ||
70 | * the interrupt number into the final argument, and we decode | ||
71 | * it here. This can legitimately fail, since we currently | ||
72 | * place a limit on the number of DMA pools a Guest can have. | ||
73 | * So we return true or false from this call. */ | ||
54 | regs->eax = bind_dma(lg, regs->edx, regs->ebx, | 74 | regs->eax = bind_dma(lg, regs->edx, regs->ebx, |
55 | regs->ecx >> 8, regs->ecx & 0xFF); | 75 | regs->ecx >> 8, regs->ecx & 0xFF); |
56 | break; | 76 | break; |
77 | |||
78 | /* All these calls simply pass the arguments through to the right | ||
79 | * routines. */ | ||
57 | case LHCALL_SEND_DMA: | 80 | case LHCALL_SEND_DMA: |
58 | send_dma(lg, regs->edx, regs->ebx); | 81 | send_dma(lg, regs->edx, regs->ebx); |
59 | break; | 82 | break; |
@@ -81,10 +104,13 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs) | |||
81 | case LHCALL_SET_CLOCKEVENT: | 104 | case LHCALL_SET_CLOCKEVENT: |
82 | guest_set_clockevent(lg, regs->edx); | 105 | guest_set_clockevent(lg, regs->edx); |
83 | break; | 106 | break; |
107 | |||
84 | case LHCALL_TS: | 108 | case LHCALL_TS: |
109 | /* This sets the TS flag, as we saw used in run_guest(). */ | ||
85 | lg->ts = regs->edx; | 110 | lg->ts = regs->edx; |
86 | break; | 111 | break; |
87 | case LHCALL_HALT: | 112 | case LHCALL_HALT: |
113 | /* Similarly, this sets the halted flag for run_guest(). */ | ||
88 | lg->halted = 1; | 114 | lg->halted = 1; |
89 | break; | 115 | break; |
90 | default: | 116 | default: |
@@ -92,25 +118,42 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs) | |||
92 | } | 118 | } |
93 | } | 119 | } |
94 | 120 | ||
95 | /* We always do queued calls before actual hypercall. */ | 121 | /* Asynchronous hypercalls are easy: we just look in the array in the Guest's |
122 | * "struct lguest_data" and see if there are any new ones marked "ready". | ||
123 | * | ||
124 | * We are careful to do these in order: obviously we respect the order the | ||
125 | * Guest put them in the ring, but we also promise the Guest that they will | ||
126 | * happen before any normal hypercall (which is why we check this before | ||
127 | * checking for a normal hcall). */ | ||
96 | static void do_async_hcalls(struct lguest *lg) | 128 | static void do_async_hcalls(struct lguest *lg) |
97 | { | 129 | { |
98 | unsigned int i; | 130 | unsigned int i; |
99 | u8 st[LHCALL_RING_SIZE]; | 131 | u8 st[LHCALL_RING_SIZE]; |
100 | 132 | ||
133 | /* For simplicity, we copy the entire call status array in at once. */ | ||
101 | if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st))) | 134 | if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st))) |
102 | return; | 135 | return; |
103 | 136 | ||
137 | |||
138 | /* We process "struct lguest_data"s hcalls[] ring once. */ | ||
104 | for (i = 0; i < ARRAY_SIZE(st); i++) { | 139 | for (i = 0; i < ARRAY_SIZE(st); i++) { |
105 | struct lguest_regs regs; | 140 | struct lguest_regs regs; |
141 | /* We remember where we were up to from last time. This makes | ||
142 | * sure that the hypercalls are done in the order the Guest | ||
143 | * places them in the ring. */ | ||
106 | unsigned int n = lg->next_hcall; | 144 | unsigned int n = lg->next_hcall; |
107 | 145 | ||
146 | /* 0xFF means there's no call here (yet). */ | ||
108 | if (st[n] == 0xFF) | 147 | if (st[n] == 0xFF) |
109 | break; | 148 | break; |
110 | 149 | ||
150 | /* OK, we have hypercall. Increment the "next_hcall" cursor, | ||
151 | * and wrap back to 0 if we reach the end. */ | ||
111 | if (++lg->next_hcall == LHCALL_RING_SIZE) | 152 | if (++lg->next_hcall == LHCALL_RING_SIZE) |
112 | lg->next_hcall = 0; | 153 | lg->next_hcall = 0; |
113 | 154 | ||
155 | /* We copy the hypercall arguments into a fake register | ||
156 | * structure. This makes life simple for do_hcall(). */ | ||
114 | if (get_user(regs.eax, &lg->lguest_data->hcalls[n].eax) | 157 | if (get_user(regs.eax, &lg->lguest_data->hcalls[n].eax) |
115 | || get_user(regs.edx, &lg->lguest_data->hcalls[n].edx) | 158 | || get_user(regs.edx, &lg->lguest_data->hcalls[n].edx) |
116 | || get_user(regs.ecx, &lg->lguest_data->hcalls[n].ecx) | 159 | || get_user(regs.ecx, &lg->lguest_data->hcalls[n].ecx) |
@@ -119,74 +162,139 @@ static void do_async_hcalls(struct lguest *lg) | |||
119 | break; | 162 | break; |
120 | } | 163 | } |
121 | 164 | ||
165 | /* Do the hypercall, same as a normal one. */ | ||
122 | do_hcall(lg, ®s); | 166 | do_hcall(lg, ®s); |
167 | |||
168 | /* Mark the hypercall done. */ | ||
123 | if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) { | 169 | if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) { |
124 | kill_guest(lg, "Writing result for async hypercall"); | 170 | kill_guest(lg, "Writing result for async hypercall"); |
125 | break; | 171 | break; |
126 | } | 172 | } |
127 | 173 | ||
174 | /* Stop doing hypercalls if we've just done a DMA to the | ||
175 | * Launcher: it needs to service this first. */ | ||
128 | if (lg->dma_is_pending) | 176 | if (lg->dma_is_pending) |
129 | break; | 177 | break; |
130 | } | 178 | } |
131 | } | 179 | } |
132 | 180 | ||
181 | /* Last of all, we look at what happens first of all. The very first time the | ||
182 | * Guest makes a hypercall, we end up here to set things up: */ | ||
133 | static void initialize(struct lguest *lg) | 183 | static void initialize(struct lguest *lg) |
134 | { | 184 | { |
135 | u32 tsc_speed; | 185 | u32 tsc_speed; |
136 | 186 | ||
187 | /* You can't do anything until you're initialized. The Guest knows the | ||
188 | * rules, so we're unforgiving here. */ | ||
137 | if (lg->regs->eax != LHCALL_LGUEST_INIT) { | 189 | if (lg->regs->eax != LHCALL_LGUEST_INIT) { |
138 | kill_guest(lg, "hypercall %li before LGUEST_INIT", | 190 | kill_guest(lg, "hypercall %li before LGUEST_INIT", |
139 | lg->regs->eax); | 191 | lg->regs->eax); |
140 | return; | 192 | return; |
141 | } | 193 | } |
142 | 194 | ||
143 | /* We only tell the guest to use the TSC if it's reliable. */ | 195 | /* We insist that the Time Stamp Counter exist and doesn't change with |
196 | * cpu frequency. Some devious chip manufacturers decided that TSC | ||
197 | * changes could be handled in software. I decided that time going | ||
198 | * backwards might be good for benchmarks, but it's bad for users. | ||
199 | * | ||
200 | * We also insist that the TSC be stable: the kernel detects unreliable | ||
201 | * TSCs for its own purposes, and we use that here. */ | ||
144 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable()) | 202 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable()) |
145 | tsc_speed = tsc_khz; | 203 | tsc_speed = tsc_khz; |
146 | else | 204 | else |
147 | tsc_speed = 0; | 205 | tsc_speed = 0; |
148 | 206 | ||
207 | /* The pointer to the Guest's "struct lguest_data" is the only | ||
208 | * argument. */ | ||
149 | lg->lguest_data = (struct lguest_data __user *)lg->regs->edx; | 209 | lg->lguest_data = (struct lguest_data __user *)lg->regs->edx; |
150 | /* We check here so we can simply copy_to_user/from_user */ | 210 | /* If we check the address they gave is OK now, we can simply |
211 | * copy_to_user/from_user from now on rather than using lgread/lgwrite. | ||
212 | * I put this in to show that I'm not immune to writing stupid | ||
213 | * optimizations. */ | ||
151 | if (!lguest_address_ok(lg, lg->regs->edx, sizeof(*lg->lguest_data))) { | 214 | if (!lguest_address_ok(lg, lg->regs->edx, sizeof(*lg->lguest_data))) { |
152 | kill_guest(lg, "bad guest page %p", lg->lguest_data); | 215 | kill_guest(lg, "bad guest page %p", lg->lguest_data); |
153 | return; | 216 | return; |
154 | } | 217 | } |
218 | /* The Guest tells us where we're not to deliver interrupts by putting | ||
219 | * the range of addresses into "struct lguest_data". */ | ||
155 | if (get_user(lg->noirq_start, &lg->lguest_data->noirq_start) | 220 | if (get_user(lg->noirq_start, &lg->lguest_data->noirq_start) |
156 | || get_user(lg->noirq_end, &lg->lguest_data->noirq_end) | 221 | || get_user(lg->noirq_end, &lg->lguest_data->noirq_end) |
157 | /* We reserve the top pgd entry. */ | 222 | /* We tell the Guest that it can't use the top 4MB of virtual |
223 | * addresses used by the Switcher. */ | ||
158 | || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem) | 224 | || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem) |
159 | || put_user(tsc_speed, &lg->lguest_data->tsc_khz) | 225 | || put_user(tsc_speed, &lg->lguest_data->tsc_khz) |
226 | /* We also give the Guest a unique id, as used in lguest_net.c. */ | ||
160 | || put_user(lg->guestid, &lg->lguest_data->guestid)) | 227 | || put_user(lg->guestid, &lg->lguest_data->guestid)) |
161 | kill_guest(lg, "bad guest page %p", lg->lguest_data); | 228 | kill_guest(lg, "bad guest page %p", lg->lguest_data); |
162 | 229 | ||
163 | /* This is the one case where the above accesses might have | 230 | /* We write the current time into the Guest's data page once now. */ |
164 | * been the first write to a Guest page. This may have caused | 231 | write_timestamp(lg); |
165 | * a copy-on-write fault, but the Guest might be referring to | 232 | |
166 | * the old (read-only) page. */ | 233 | /* This is the one case where the above accesses might have been the |
234 | * first write to a Guest page. This may have caused a copy-on-write | ||
235 | * fault, but the Guest might be referring to the old (read-only) | ||
236 | * page. */ | ||
167 | guest_pagetable_clear_all(lg); | 237 | guest_pagetable_clear_all(lg); |
168 | } | 238 | } |
239 | /* Now we've examined the hypercall code; our Guest can make requests. There | ||
240 | * is one other way we can do things for the Guest, as we see in | ||
241 | * emulate_insn(). */ | ||
169 | 242 | ||
170 | /* Even if we go out to userspace and come back, we don't want to do | 243 | /*H:110 Tricky point: we mark the hypercall as "done" once we've done it. |
171 | * the hypercall again. */ | 244 | * Normally we don't need to do this: the Guest will run again and update the |
245 | * trap number before we come back around the run_guest() loop to | ||
246 | * do_hypercalls(). | ||
247 | * | ||
248 | * However, if we are signalled or the Guest sends DMA to the Launcher, that | ||
249 | * loop will exit without running the Guest. When it comes back it would try | ||
250 | * to re-run the hypercall. */ | ||
172 | static void clear_hcall(struct lguest *lg) | 251 | static void clear_hcall(struct lguest *lg) |
173 | { | 252 | { |
174 | lg->regs->trapnum = 255; | 253 | lg->regs->trapnum = 255; |
175 | } | 254 | } |
176 | 255 | ||
256 | /*H:100 | ||
257 | * Hypercalls | ||
258 | * | ||
259 | * Remember from the Guest, hypercalls come in two flavors: normal and | ||
260 | * asynchronous. This file handles both of types. | ||
261 | */ | ||
177 | void do_hypercalls(struct lguest *lg) | 262 | void do_hypercalls(struct lguest *lg) |
178 | { | 263 | { |
264 | /* Not initialized yet? */ | ||
179 | if (unlikely(!lg->lguest_data)) { | 265 | if (unlikely(!lg->lguest_data)) { |
266 | /* Did the Guest make a hypercall? We might have come back for | ||
267 | * some other reason (an interrupt, a different trap). */ | ||
180 | if (lg->regs->trapnum == LGUEST_TRAP_ENTRY) { | 268 | if (lg->regs->trapnum == LGUEST_TRAP_ENTRY) { |
269 | /* Set up the "struct lguest_data" */ | ||
181 | initialize(lg); | 270 | initialize(lg); |
271 | /* The hypercall is done. */ | ||
182 | clear_hcall(lg); | 272 | clear_hcall(lg); |
183 | } | 273 | } |
184 | return; | 274 | return; |
185 | } | 275 | } |
186 | 276 | ||
277 | /* The Guest has initialized. | ||
278 | * | ||
279 | * Look in the hypercall ring for the async hypercalls: */ | ||
187 | do_async_hcalls(lg); | 280 | do_async_hcalls(lg); |
281 | |||
282 | /* If we stopped reading the hypercall ring because the Guest did a | ||
283 | * SEND_DMA to the Launcher, we want to return now. Otherwise if the | ||
284 | * Guest asked us to do a hypercall, we do it. */ | ||
188 | if (!lg->dma_is_pending && lg->regs->trapnum == LGUEST_TRAP_ENTRY) { | 285 | if (!lg->dma_is_pending && lg->regs->trapnum == LGUEST_TRAP_ENTRY) { |
189 | do_hcall(lg, lg->regs); | 286 | do_hcall(lg, lg->regs); |
287 | /* The hypercall is done. */ | ||
190 | clear_hcall(lg); | 288 | clear_hcall(lg); |
191 | } | 289 | } |
192 | } | 290 | } |
291 | |||
292 | /* This routine supplies the Guest with time: it's used for wallclock time at | ||
293 | * initial boot and as a rough time source if the TSC isn't available. */ | ||
294 | void write_timestamp(struct lguest *lg) | ||
295 | { | ||
296 | struct timespec now; | ||
297 | ktime_get_real_ts(&now); | ||
298 | if (put_user(now, &lg->lguest_data->time)) | ||
299 | kill_guest(lg, "Writing timestamp"); | ||
300 | } | ||