aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/kvm/x86.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/kvm/x86.c')
-rw-r--r--drivers/kvm/x86.c3148
1 files changed, 0 insertions, 3148 deletions
diff --git a/drivers/kvm/x86.c b/drivers/kvm/x86.c
deleted file mode 100644
index b37c0093d728..000000000000
--- a/drivers/kvm/x86.c
+++ /dev/null
@@ -1,3148 +0,0 @@
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17#include "kvm.h"
18#include "x86.h"
19#include "x86_emulate.h"
20#include "segment_descriptor.h"
21#include "irq.h"
22#include "mmu.h"
23
24#include <linux/kvm.h>
25#include <linux/fs.h>
26#include <linux/vmalloc.h>
27#include <linux/module.h>
28#include <linux/mman.h>
29#include <linux/highmem.h>
30
31#include <asm/uaccess.h>
32#include <asm/msr.h>
33
34#define MAX_IO_MSRS 256
35#define CR0_RESERVED_BITS \
36 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
37 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
38 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
39#define CR4_RESERVED_BITS \
40 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
41 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
42 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
43 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
44
45#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
46#define EFER_RESERVED_BITS 0xfffffffffffff2fe
47
48#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
49#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
50
51struct kvm_x86_ops *kvm_x86_ops;
52
53struct kvm_stats_debugfs_item debugfs_entries[] = {
54 { "pf_fixed", VCPU_STAT(pf_fixed) },
55 { "pf_guest", VCPU_STAT(pf_guest) },
56 { "tlb_flush", VCPU_STAT(tlb_flush) },
57 { "invlpg", VCPU_STAT(invlpg) },
58 { "exits", VCPU_STAT(exits) },
59 { "io_exits", VCPU_STAT(io_exits) },
60 { "mmio_exits", VCPU_STAT(mmio_exits) },
61 { "signal_exits", VCPU_STAT(signal_exits) },
62 { "irq_window", VCPU_STAT(irq_window_exits) },
63 { "halt_exits", VCPU_STAT(halt_exits) },
64 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
65 { "request_irq", VCPU_STAT(request_irq_exits) },
66 { "irq_exits", VCPU_STAT(irq_exits) },
67 { "host_state_reload", VCPU_STAT(host_state_reload) },
68 { "efer_reload", VCPU_STAT(efer_reload) },
69 { "fpu_reload", VCPU_STAT(fpu_reload) },
70 { "insn_emulation", VCPU_STAT(insn_emulation) },
71 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
72 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
73 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
74 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
75 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
76 { "mmu_flooded", VM_STAT(mmu_flooded) },
77 { "mmu_recycled", VM_STAT(mmu_recycled) },
78 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
79 { NULL }
80};
81
82
83unsigned long segment_base(u16 selector)
84{
85 struct descriptor_table gdt;
86 struct segment_descriptor *d;
87 unsigned long table_base;
88 unsigned long v;
89
90 if (selector == 0)
91 return 0;
92
93 asm("sgdt %0" : "=m"(gdt));
94 table_base = gdt.base;
95
96 if (selector & 4) { /* from ldt */
97 u16 ldt_selector;
98
99 asm("sldt %0" : "=g"(ldt_selector));
100 table_base = segment_base(ldt_selector);
101 }
102 d = (struct segment_descriptor *)(table_base + (selector & ~7));
103 v = d->base_low | ((unsigned long)d->base_mid << 16) |
104 ((unsigned long)d->base_high << 24);
105#ifdef CONFIG_X86_64
106 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
107 v |= ((unsigned long) \
108 ((struct segment_descriptor_64 *)d)->base_higher) << 32;
109#endif
110 return v;
111}
112EXPORT_SYMBOL_GPL(segment_base);
113
114u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
115{
116 if (irqchip_in_kernel(vcpu->kvm))
117 return vcpu->arch.apic_base;
118 else
119 return vcpu->arch.apic_base;
120}
121EXPORT_SYMBOL_GPL(kvm_get_apic_base);
122
123void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
124{
125 /* TODO: reserve bits check */
126 if (irqchip_in_kernel(vcpu->kvm))
127 kvm_lapic_set_base(vcpu, data);
128 else
129 vcpu->arch.apic_base = data;
130}
131EXPORT_SYMBOL_GPL(kvm_set_apic_base);
132
133void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
134{
135 WARN_ON(vcpu->arch.exception.pending);
136 vcpu->arch.exception.pending = true;
137 vcpu->arch.exception.has_error_code = false;
138 vcpu->arch.exception.nr = nr;
139}
140EXPORT_SYMBOL_GPL(kvm_queue_exception);
141
142void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
143 u32 error_code)
144{
145 ++vcpu->stat.pf_guest;
146 if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
147 printk(KERN_DEBUG "kvm: inject_page_fault:"
148 " double fault 0x%lx\n", addr);
149 vcpu->arch.exception.nr = DF_VECTOR;
150 vcpu->arch.exception.error_code = 0;
151 return;
152 }
153 vcpu->arch.cr2 = addr;
154 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
155}
156
157void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
158{
159 WARN_ON(vcpu->arch.exception.pending);
160 vcpu->arch.exception.pending = true;
161 vcpu->arch.exception.has_error_code = true;
162 vcpu->arch.exception.nr = nr;
163 vcpu->arch.exception.error_code = error_code;
164}
165EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
166
167static void __queue_exception(struct kvm_vcpu *vcpu)
168{
169 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
170 vcpu->arch.exception.has_error_code,
171 vcpu->arch.exception.error_code);
172}
173
174/*
175 * Load the pae pdptrs. Return true is they are all valid.
176 */
177int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
178{
179 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
180 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
181 int i;
182 int ret;
183 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
184
185 mutex_lock(&vcpu->kvm->lock);
186 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
187 offset * sizeof(u64), sizeof(pdpte));
188 if (ret < 0) {
189 ret = 0;
190 goto out;
191 }
192 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
193 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
194 ret = 0;
195 goto out;
196 }
197 }
198 ret = 1;
199
200 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
201out:
202 mutex_unlock(&vcpu->kvm->lock);
203
204 return ret;
205}
206
207static bool pdptrs_changed(struct kvm_vcpu *vcpu)
208{
209 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
210 bool changed = true;
211 int r;
212
213 if (is_long_mode(vcpu) || !is_pae(vcpu))
214 return false;
215
216 mutex_lock(&vcpu->kvm->lock);
217 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
218 if (r < 0)
219 goto out;
220 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
221out:
222 mutex_unlock(&vcpu->kvm->lock);
223
224 return changed;
225}
226
227void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
228{
229 if (cr0 & CR0_RESERVED_BITS) {
230 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
231 cr0, vcpu->arch.cr0);
232 kvm_inject_gp(vcpu, 0);
233 return;
234 }
235
236 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
237 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
238 kvm_inject_gp(vcpu, 0);
239 return;
240 }
241
242 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
243 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
244 "and a clear PE flag\n");
245 kvm_inject_gp(vcpu, 0);
246 return;
247 }
248
249 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
250#ifdef CONFIG_X86_64
251 if ((vcpu->arch.shadow_efer & EFER_LME)) {
252 int cs_db, cs_l;
253
254 if (!is_pae(vcpu)) {
255 printk(KERN_DEBUG "set_cr0: #GP, start paging "
256 "in long mode while PAE is disabled\n");
257 kvm_inject_gp(vcpu, 0);
258 return;
259 }
260 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
261 if (cs_l) {
262 printk(KERN_DEBUG "set_cr0: #GP, start paging "
263 "in long mode while CS.L == 1\n");
264 kvm_inject_gp(vcpu, 0);
265 return;
266
267 }
268 } else
269#endif
270 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
271 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
272 "reserved bits\n");
273 kvm_inject_gp(vcpu, 0);
274 return;
275 }
276
277 }
278
279 kvm_x86_ops->set_cr0(vcpu, cr0);
280 vcpu->arch.cr0 = cr0;
281
282 mutex_lock(&vcpu->kvm->lock);
283 kvm_mmu_reset_context(vcpu);
284 mutex_unlock(&vcpu->kvm->lock);
285 return;
286}
287EXPORT_SYMBOL_GPL(set_cr0);
288
289void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
290{
291 set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
292}
293EXPORT_SYMBOL_GPL(lmsw);
294
295void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
296{
297 if (cr4 & CR4_RESERVED_BITS) {
298 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
299 kvm_inject_gp(vcpu, 0);
300 return;
301 }
302
303 if (is_long_mode(vcpu)) {
304 if (!(cr4 & X86_CR4_PAE)) {
305 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
306 "in long mode\n");
307 kvm_inject_gp(vcpu, 0);
308 return;
309 }
310 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
311 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
312 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
313 kvm_inject_gp(vcpu, 0);
314 return;
315 }
316
317 if (cr4 & X86_CR4_VMXE) {
318 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
319 kvm_inject_gp(vcpu, 0);
320 return;
321 }
322 kvm_x86_ops->set_cr4(vcpu, cr4);
323 vcpu->arch.cr4 = cr4;
324 mutex_lock(&vcpu->kvm->lock);
325 kvm_mmu_reset_context(vcpu);
326 mutex_unlock(&vcpu->kvm->lock);
327}
328EXPORT_SYMBOL_GPL(set_cr4);
329
330void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
331{
332 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
333 kvm_mmu_flush_tlb(vcpu);
334 return;
335 }
336
337 if (is_long_mode(vcpu)) {
338 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
339 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
340 kvm_inject_gp(vcpu, 0);
341 return;
342 }
343 } else {
344 if (is_pae(vcpu)) {
345 if (cr3 & CR3_PAE_RESERVED_BITS) {
346 printk(KERN_DEBUG
347 "set_cr3: #GP, reserved bits\n");
348 kvm_inject_gp(vcpu, 0);
349 return;
350 }
351 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
352 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
353 "reserved bits\n");
354 kvm_inject_gp(vcpu, 0);
355 return;
356 }
357 }
358 /*
359 * We don't check reserved bits in nonpae mode, because
360 * this isn't enforced, and VMware depends on this.
361 */
362 }
363
364 mutex_lock(&vcpu->kvm->lock);
365 /*
366 * Does the new cr3 value map to physical memory? (Note, we
367 * catch an invalid cr3 even in real-mode, because it would
368 * cause trouble later on when we turn on paging anyway.)
369 *
370 * A real CPU would silently accept an invalid cr3 and would
371 * attempt to use it - with largely undefined (and often hard
372 * to debug) behavior on the guest side.
373 */
374 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
375 kvm_inject_gp(vcpu, 0);
376 else {
377 vcpu->arch.cr3 = cr3;
378 vcpu->arch.mmu.new_cr3(vcpu);
379 }
380 mutex_unlock(&vcpu->kvm->lock);
381}
382EXPORT_SYMBOL_GPL(set_cr3);
383
384void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
385{
386 if (cr8 & CR8_RESERVED_BITS) {
387 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
388 kvm_inject_gp(vcpu, 0);
389 return;
390 }
391 if (irqchip_in_kernel(vcpu->kvm))
392 kvm_lapic_set_tpr(vcpu, cr8);
393 else
394 vcpu->arch.cr8 = cr8;
395}
396EXPORT_SYMBOL_GPL(set_cr8);
397
398unsigned long get_cr8(struct kvm_vcpu *vcpu)
399{
400 if (irqchip_in_kernel(vcpu->kvm))
401 return kvm_lapic_get_cr8(vcpu);
402 else
403 return vcpu->arch.cr8;
404}
405EXPORT_SYMBOL_GPL(get_cr8);
406
407/*
408 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
409 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
410 *
411 * This list is modified at module load time to reflect the
412 * capabilities of the host cpu.
413 */
414static u32 msrs_to_save[] = {
415 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
416 MSR_K6_STAR,
417#ifdef CONFIG_X86_64
418 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
419#endif
420 MSR_IA32_TIME_STAMP_COUNTER,
421};
422
423static unsigned num_msrs_to_save;
424
425static u32 emulated_msrs[] = {
426 MSR_IA32_MISC_ENABLE,
427};
428
429#ifdef CONFIG_X86_64
430
431static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
432{
433 if (efer & EFER_RESERVED_BITS) {
434 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
435 efer);
436 kvm_inject_gp(vcpu, 0);
437 return;
438 }
439
440 if (is_paging(vcpu)
441 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
442 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
443 kvm_inject_gp(vcpu, 0);
444 return;
445 }
446
447 kvm_x86_ops->set_efer(vcpu, efer);
448
449 efer &= ~EFER_LMA;
450 efer |= vcpu->arch.shadow_efer & EFER_LMA;
451
452 vcpu->arch.shadow_efer = efer;
453}
454
455#endif
456
457/*
458 * Writes msr value into into the appropriate "register".
459 * Returns 0 on success, non-0 otherwise.
460 * Assumes vcpu_load() was already called.
461 */
462int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
463{
464 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
465}
466
467/*
468 * Adapt set_msr() to msr_io()'s calling convention
469 */
470static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
471{
472 return kvm_set_msr(vcpu, index, *data);
473}
474
475
476int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
477{
478 switch (msr) {
479#ifdef CONFIG_X86_64
480 case MSR_EFER:
481 set_efer(vcpu, data);
482 break;
483#endif
484 case MSR_IA32_MC0_STATUS:
485 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
486 __FUNCTION__, data);
487 break;
488 case MSR_IA32_MCG_STATUS:
489 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
490 __FUNCTION__, data);
491 break;
492 case MSR_IA32_UCODE_REV:
493 case MSR_IA32_UCODE_WRITE:
494 case 0x200 ... 0x2ff: /* MTRRs */
495 break;
496 case MSR_IA32_APICBASE:
497 kvm_set_apic_base(vcpu, data);
498 break;
499 case MSR_IA32_MISC_ENABLE:
500 vcpu->arch.ia32_misc_enable_msr = data;
501 break;
502 default:
503 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
504 return 1;
505 }
506 return 0;
507}
508EXPORT_SYMBOL_GPL(kvm_set_msr_common);
509
510
511/*
512 * Reads an msr value (of 'msr_index') into 'pdata'.
513 * Returns 0 on success, non-0 otherwise.
514 * Assumes vcpu_load() was already called.
515 */
516int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
517{
518 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
519}
520
521int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
522{
523 u64 data;
524
525 switch (msr) {
526 case 0xc0010010: /* SYSCFG */
527 case 0xc0010015: /* HWCR */
528 case MSR_IA32_PLATFORM_ID:
529 case MSR_IA32_P5_MC_ADDR:
530 case MSR_IA32_P5_MC_TYPE:
531 case MSR_IA32_MC0_CTL:
532 case MSR_IA32_MCG_STATUS:
533 case MSR_IA32_MCG_CAP:
534 case MSR_IA32_MC0_MISC:
535 case MSR_IA32_MC0_MISC+4:
536 case MSR_IA32_MC0_MISC+8:
537 case MSR_IA32_MC0_MISC+12:
538 case MSR_IA32_MC0_MISC+16:
539 case MSR_IA32_UCODE_REV:
540 case MSR_IA32_PERF_STATUS:
541 case MSR_IA32_EBL_CR_POWERON:
542 /* MTRR registers */
543 case 0xfe:
544 case 0x200 ... 0x2ff:
545 data = 0;
546 break;
547 case 0xcd: /* fsb frequency */
548 data = 3;
549 break;
550 case MSR_IA32_APICBASE:
551 data = kvm_get_apic_base(vcpu);
552 break;
553 case MSR_IA32_MISC_ENABLE:
554 data = vcpu->arch.ia32_misc_enable_msr;
555 break;
556#ifdef CONFIG_X86_64
557 case MSR_EFER:
558 data = vcpu->arch.shadow_efer;
559 break;
560#endif
561 default:
562 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
563 return 1;
564 }
565 *pdata = data;
566 return 0;
567}
568EXPORT_SYMBOL_GPL(kvm_get_msr_common);
569
570/*
571 * Read or write a bunch of msrs. All parameters are kernel addresses.
572 *
573 * @return number of msrs set successfully.
574 */
575static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
576 struct kvm_msr_entry *entries,
577 int (*do_msr)(struct kvm_vcpu *vcpu,
578 unsigned index, u64 *data))
579{
580 int i;
581
582 vcpu_load(vcpu);
583
584 for (i = 0; i < msrs->nmsrs; ++i)
585 if (do_msr(vcpu, entries[i].index, &entries[i].data))
586 break;
587
588 vcpu_put(vcpu);
589
590 return i;
591}
592
593/*
594 * Read or write a bunch of msrs. Parameters are user addresses.
595 *
596 * @return number of msrs set successfully.
597 */
598static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
599 int (*do_msr)(struct kvm_vcpu *vcpu,
600 unsigned index, u64 *data),
601 int writeback)
602{
603 struct kvm_msrs msrs;
604 struct kvm_msr_entry *entries;
605 int r, n;
606 unsigned size;
607
608 r = -EFAULT;
609 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
610 goto out;
611
612 r = -E2BIG;
613 if (msrs.nmsrs >= MAX_IO_MSRS)
614 goto out;
615
616 r = -ENOMEM;
617 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
618 entries = vmalloc(size);
619 if (!entries)
620 goto out;
621
622 r = -EFAULT;
623 if (copy_from_user(entries, user_msrs->entries, size))
624 goto out_free;
625
626 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
627 if (r < 0)
628 goto out_free;
629
630 r = -EFAULT;
631 if (writeback && copy_to_user(user_msrs->entries, entries, size))
632 goto out_free;
633
634 r = n;
635
636out_free:
637 vfree(entries);
638out:
639 return r;
640}
641
642/*
643 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
644 * cached on it.
645 */
646void decache_vcpus_on_cpu(int cpu)
647{
648 struct kvm *vm;
649 struct kvm_vcpu *vcpu;
650 int i;
651
652 spin_lock(&kvm_lock);
653 list_for_each_entry(vm, &vm_list, vm_list)
654 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
655 vcpu = vm->vcpus[i];
656 if (!vcpu)
657 continue;
658 /*
659 * If the vcpu is locked, then it is running on some
660 * other cpu and therefore it is not cached on the
661 * cpu in question.
662 *
663 * If it's not locked, check the last cpu it executed
664 * on.
665 */
666 if (mutex_trylock(&vcpu->mutex)) {
667 if (vcpu->cpu == cpu) {
668 kvm_x86_ops->vcpu_decache(vcpu);
669 vcpu->cpu = -1;
670 }
671 mutex_unlock(&vcpu->mutex);
672 }
673 }
674 spin_unlock(&kvm_lock);
675}
676
677int kvm_dev_ioctl_check_extension(long ext)
678{
679 int r;
680
681 switch (ext) {
682 case KVM_CAP_IRQCHIP:
683 case KVM_CAP_HLT:
684 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
685 case KVM_CAP_USER_MEMORY:
686 case KVM_CAP_SET_TSS_ADDR:
687 case KVM_CAP_EXT_CPUID:
688 r = 1;
689 break;
690 default:
691 r = 0;
692 break;
693 }
694 return r;
695
696}
697
698long kvm_arch_dev_ioctl(struct file *filp,
699 unsigned int ioctl, unsigned long arg)
700{
701 void __user *argp = (void __user *)arg;
702 long r;
703
704 switch (ioctl) {
705 case KVM_GET_MSR_INDEX_LIST: {
706 struct kvm_msr_list __user *user_msr_list = argp;
707 struct kvm_msr_list msr_list;
708 unsigned n;
709
710 r = -EFAULT;
711 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
712 goto out;
713 n = msr_list.nmsrs;
714 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
715 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
716 goto out;
717 r = -E2BIG;
718 if (n < num_msrs_to_save)
719 goto out;
720 r = -EFAULT;
721 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
722 num_msrs_to_save * sizeof(u32)))
723 goto out;
724 if (copy_to_user(user_msr_list->indices
725 + num_msrs_to_save * sizeof(u32),
726 &emulated_msrs,
727 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
728 goto out;
729 r = 0;
730 break;
731 }
732 default:
733 r = -EINVAL;
734 }
735out:
736 return r;
737}
738
739void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
740{
741 kvm_x86_ops->vcpu_load(vcpu, cpu);
742}
743
744void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
745{
746 kvm_x86_ops->vcpu_put(vcpu);
747 kvm_put_guest_fpu(vcpu);
748}
749
750static int is_efer_nx(void)
751{
752 u64 efer;
753
754 rdmsrl(MSR_EFER, efer);
755 return efer & EFER_NX;
756}
757
758static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
759{
760 int i;
761 struct kvm_cpuid_entry2 *e, *entry;
762
763 entry = NULL;
764 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
765 e = &vcpu->arch.cpuid_entries[i];
766 if (e->function == 0x80000001) {
767 entry = e;
768 break;
769 }
770 }
771 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
772 entry->edx &= ~(1 << 20);
773 printk(KERN_INFO "kvm: guest NX capability removed\n");
774 }
775}
776
777/* when an old userspace process fills a new kernel module */
778static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
779 struct kvm_cpuid *cpuid,
780 struct kvm_cpuid_entry __user *entries)
781{
782 int r, i;
783 struct kvm_cpuid_entry *cpuid_entries;
784
785 r = -E2BIG;
786 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
787 goto out;
788 r = -ENOMEM;
789 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
790 if (!cpuid_entries)
791 goto out;
792 r = -EFAULT;
793 if (copy_from_user(cpuid_entries, entries,
794 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
795 goto out_free;
796 for (i = 0; i < cpuid->nent; i++) {
797 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
798 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
799 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
800 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
801 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
802 vcpu->arch.cpuid_entries[i].index = 0;
803 vcpu->arch.cpuid_entries[i].flags = 0;
804 vcpu->arch.cpuid_entries[i].padding[0] = 0;
805 vcpu->arch.cpuid_entries[i].padding[1] = 0;
806 vcpu->arch.cpuid_entries[i].padding[2] = 0;
807 }
808 vcpu->arch.cpuid_nent = cpuid->nent;
809 cpuid_fix_nx_cap(vcpu);
810 r = 0;
811
812out_free:
813 vfree(cpuid_entries);
814out:
815 return r;
816}
817
818static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
819 struct kvm_cpuid2 *cpuid,
820 struct kvm_cpuid_entry2 __user *entries)
821{
822 int r;
823
824 r = -E2BIG;
825 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
826 goto out;
827 r = -EFAULT;
828 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
829 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
830 goto out;
831 vcpu->arch.cpuid_nent = cpuid->nent;
832 return 0;
833
834out:
835 return r;
836}
837
838static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
839 struct kvm_cpuid2 *cpuid,
840 struct kvm_cpuid_entry2 __user *entries)
841{
842 int r;
843
844 r = -E2BIG;
845 if (cpuid->nent < vcpu->arch.cpuid_nent)
846 goto out;
847 r = -EFAULT;
848 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
849 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
850 goto out;
851 return 0;
852
853out:
854 cpuid->nent = vcpu->arch.cpuid_nent;
855 return r;
856}
857
858static inline u32 bit(int bitno)
859{
860 return 1 << (bitno & 31);
861}
862
863static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
864 u32 index)
865{
866 entry->function = function;
867 entry->index = index;
868 cpuid_count(entry->function, entry->index,
869 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
870 entry->flags = 0;
871}
872
873static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
874 u32 index, int *nent, int maxnent)
875{
876 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
877 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
878 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
879 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
880 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
881 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
882 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
883 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
884 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
885 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
886 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
887 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
888 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
889 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
890 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
891 bit(X86_FEATURE_PGE) |
892 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
893 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
894 bit(X86_FEATURE_SYSCALL) |
895 (bit(X86_FEATURE_NX) && is_efer_nx()) |
896#ifdef CONFIG_X86_64
897 bit(X86_FEATURE_LM) |
898#endif
899 bit(X86_FEATURE_MMXEXT) |
900 bit(X86_FEATURE_3DNOWEXT) |
901 bit(X86_FEATURE_3DNOW);
902 const u32 kvm_supported_word3_x86_features =
903 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
904 const u32 kvm_supported_word6_x86_features =
905 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
906
907 /* all func 2 cpuid_count() should be called on the same cpu */
908 get_cpu();
909 do_cpuid_1_ent(entry, function, index);
910 ++*nent;
911
912 switch (function) {
913 case 0:
914 entry->eax = min(entry->eax, (u32)0xb);
915 break;
916 case 1:
917 entry->edx &= kvm_supported_word0_x86_features;
918 entry->ecx &= kvm_supported_word3_x86_features;
919 break;
920 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
921 * may return different values. This forces us to get_cpu() before
922 * issuing the first command, and also to emulate this annoying behavior
923 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
924 case 2: {
925 int t, times = entry->eax & 0xff;
926
927 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
928 for (t = 1; t < times && *nent < maxnent; ++t) {
929 do_cpuid_1_ent(&entry[t], function, 0);
930 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
931 ++*nent;
932 }
933 break;
934 }
935 /* function 4 and 0xb have additional index. */
936 case 4: {
937 int index, cache_type;
938
939 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
940 /* read more entries until cache_type is zero */
941 for (index = 1; *nent < maxnent; ++index) {
942 cache_type = entry[index - 1].eax & 0x1f;
943 if (!cache_type)
944 break;
945 do_cpuid_1_ent(&entry[index], function, index);
946 entry[index].flags |=
947 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
948 ++*nent;
949 }
950 break;
951 }
952 case 0xb: {
953 int index, level_type;
954
955 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
956 /* read more entries until level_type is zero */
957 for (index = 1; *nent < maxnent; ++index) {
958 level_type = entry[index - 1].ecx & 0xff;
959 if (!level_type)
960 break;
961 do_cpuid_1_ent(&entry[index], function, index);
962 entry[index].flags |=
963 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
964 ++*nent;
965 }
966 break;
967 }
968 case 0x80000000:
969 entry->eax = min(entry->eax, 0x8000001a);
970 break;
971 case 0x80000001:
972 entry->edx &= kvm_supported_word1_x86_features;
973 entry->ecx &= kvm_supported_word6_x86_features;
974 break;
975 }
976 put_cpu();
977}
978
979static int kvm_vm_ioctl_get_supported_cpuid(struct kvm *kvm,
980 struct kvm_cpuid2 *cpuid,
981 struct kvm_cpuid_entry2 __user *entries)
982{
983 struct kvm_cpuid_entry2 *cpuid_entries;
984 int limit, nent = 0, r = -E2BIG;
985 u32 func;
986
987 if (cpuid->nent < 1)
988 goto out;
989 r = -ENOMEM;
990 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
991 if (!cpuid_entries)
992 goto out;
993
994 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
995 limit = cpuid_entries[0].eax;
996 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
997 do_cpuid_ent(&cpuid_entries[nent], func, 0,
998 &nent, cpuid->nent);
999 r = -E2BIG;
1000 if (nent >= cpuid->nent)
1001 goto out_free;
1002
1003 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1004 limit = cpuid_entries[nent - 1].eax;
1005 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1006 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1007 &nent, cpuid->nent);
1008 r = -EFAULT;
1009 if (copy_to_user(entries, cpuid_entries,
1010 nent * sizeof(struct kvm_cpuid_entry2)))
1011 goto out_free;
1012 cpuid->nent = nent;
1013 r = 0;
1014
1015out_free:
1016 vfree(cpuid_entries);
1017out:
1018 return r;
1019}
1020
1021static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1022 struct kvm_lapic_state *s)
1023{
1024 vcpu_load(vcpu);
1025 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1026 vcpu_put(vcpu);
1027
1028 return 0;
1029}
1030
1031static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1032 struct kvm_lapic_state *s)
1033{
1034 vcpu_load(vcpu);
1035 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1036 kvm_apic_post_state_restore(vcpu);
1037 vcpu_put(vcpu);
1038
1039 return 0;
1040}
1041
1042static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1043 struct kvm_interrupt *irq)
1044{
1045 if (irq->irq < 0 || irq->irq >= 256)
1046 return -EINVAL;
1047 if (irqchip_in_kernel(vcpu->kvm))
1048 return -ENXIO;
1049 vcpu_load(vcpu);
1050
1051 set_bit(irq->irq, vcpu->arch.irq_pending);
1052 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1053
1054 vcpu_put(vcpu);
1055
1056 return 0;
1057}
1058
1059long kvm_arch_vcpu_ioctl(struct file *filp,
1060 unsigned int ioctl, unsigned long arg)
1061{
1062 struct kvm_vcpu *vcpu = filp->private_data;
1063 void __user *argp = (void __user *)arg;
1064 int r;
1065
1066 switch (ioctl) {
1067 case KVM_GET_LAPIC: {
1068 struct kvm_lapic_state lapic;
1069
1070 memset(&lapic, 0, sizeof lapic);
1071 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1072 if (r)
1073 goto out;
1074 r = -EFAULT;
1075 if (copy_to_user(argp, &lapic, sizeof lapic))
1076 goto out;
1077 r = 0;
1078 break;
1079 }
1080 case KVM_SET_LAPIC: {
1081 struct kvm_lapic_state lapic;
1082
1083 r = -EFAULT;
1084 if (copy_from_user(&lapic, argp, sizeof lapic))
1085 goto out;
1086 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1087 if (r)
1088 goto out;
1089 r = 0;
1090 break;
1091 }
1092 case KVM_INTERRUPT: {
1093 struct kvm_interrupt irq;
1094
1095 r = -EFAULT;
1096 if (copy_from_user(&irq, argp, sizeof irq))
1097 goto out;
1098 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1099 if (r)
1100 goto out;
1101 r = 0;
1102 break;
1103 }
1104 case KVM_SET_CPUID: {
1105 struct kvm_cpuid __user *cpuid_arg = argp;
1106 struct kvm_cpuid cpuid;
1107
1108 r = -EFAULT;
1109 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1110 goto out;
1111 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1112 if (r)
1113 goto out;
1114 break;
1115 }
1116 case KVM_SET_CPUID2: {
1117 struct kvm_cpuid2 __user *cpuid_arg = argp;
1118 struct kvm_cpuid2 cpuid;
1119
1120 r = -EFAULT;
1121 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1122 goto out;
1123 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1124 cpuid_arg->entries);
1125 if (r)
1126 goto out;
1127 break;
1128 }
1129 case KVM_GET_CPUID2: {
1130 struct kvm_cpuid2 __user *cpuid_arg = argp;
1131 struct kvm_cpuid2 cpuid;
1132
1133 r = -EFAULT;
1134 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1135 goto out;
1136 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1137 cpuid_arg->entries);
1138 if (r)
1139 goto out;
1140 r = -EFAULT;
1141 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1142 goto out;
1143 r = 0;
1144 break;
1145 }
1146 case KVM_GET_MSRS:
1147 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1148 break;
1149 case KVM_SET_MSRS:
1150 r = msr_io(vcpu, argp, do_set_msr, 0);
1151 break;
1152 default:
1153 r = -EINVAL;
1154 }
1155out:
1156 return r;
1157}
1158
1159static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1160{
1161 int ret;
1162
1163 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1164 return -1;
1165 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1166 return ret;
1167}
1168
1169static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1170 u32 kvm_nr_mmu_pages)
1171{
1172 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1173 return -EINVAL;
1174
1175 mutex_lock(&kvm->lock);
1176
1177 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1178 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1179
1180 mutex_unlock(&kvm->lock);
1181 return 0;
1182}
1183
1184static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1185{
1186 return kvm->arch.n_alloc_mmu_pages;
1187}
1188
1189gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1190{
1191 int i;
1192 struct kvm_mem_alias *alias;
1193
1194 for (i = 0; i < kvm->arch.naliases; ++i) {
1195 alias = &kvm->arch.aliases[i];
1196 if (gfn >= alias->base_gfn
1197 && gfn < alias->base_gfn + alias->npages)
1198 return alias->target_gfn + gfn - alias->base_gfn;
1199 }
1200 return gfn;
1201}
1202
1203/*
1204 * Set a new alias region. Aliases map a portion of physical memory into
1205 * another portion. This is useful for memory windows, for example the PC
1206 * VGA region.
1207 */
1208static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1209 struct kvm_memory_alias *alias)
1210{
1211 int r, n;
1212 struct kvm_mem_alias *p;
1213
1214 r = -EINVAL;
1215 /* General sanity checks */
1216 if (alias->memory_size & (PAGE_SIZE - 1))
1217 goto out;
1218 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1219 goto out;
1220 if (alias->slot >= KVM_ALIAS_SLOTS)
1221 goto out;
1222 if (alias->guest_phys_addr + alias->memory_size
1223 < alias->guest_phys_addr)
1224 goto out;
1225 if (alias->target_phys_addr + alias->memory_size
1226 < alias->target_phys_addr)
1227 goto out;
1228
1229 mutex_lock(&kvm->lock);
1230
1231 p = &kvm->arch.aliases[alias->slot];
1232 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1233 p->npages = alias->memory_size >> PAGE_SHIFT;
1234 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1235
1236 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1237 if (kvm->arch.aliases[n - 1].npages)
1238 break;
1239 kvm->arch.naliases = n;
1240
1241 kvm_mmu_zap_all(kvm);
1242
1243 mutex_unlock(&kvm->lock);
1244
1245 return 0;
1246
1247out:
1248 return r;
1249}
1250
1251static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1252{
1253 int r;
1254
1255 r = 0;
1256 switch (chip->chip_id) {
1257 case KVM_IRQCHIP_PIC_MASTER:
1258 memcpy(&chip->chip.pic,
1259 &pic_irqchip(kvm)->pics[0],
1260 sizeof(struct kvm_pic_state));
1261 break;
1262 case KVM_IRQCHIP_PIC_SLAVE:
1263 memcpy(&chip->chip.pic,
1264 &pic_irqchip(kvm)->pics[1],
1265 sizeof(struct kvm_pic_state));
1266 break;
1267 case KVM_IRQCHIP_IOAPIC:
1268 memcpy(&chip->chip.ioapic,
1269 ioapic_irqchip(kvm),
1270 sizeof(struct kvm_ioapic_state));
1271 break;
1272 default:
1273 r = -EINVAL;
1274 break;
1275 }
1276 return r;
1277}
1278
1279static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1280{
1281 int r;
1282
1283 r = 0;
1284 switch (chip->chip_id) {
1285 case KVM_IRQCHIP_PIC_MASTER:
1286 memcpy(&pic_irqchip(kvm)->pics[0],
1287 &chip->chip.pic,
1288 sizeof(struct kvm_pic_state));
1289 break;
1290 case KVM_IRQCHIP_PIC_SLAVE:
1291 memcpy(&pic_irqchip(kvm)->pics[1],
1292 &chip->chip.pic,
1293 sizeof(struct kvm_pic_state));
1294 break;
1295 case KVM_IRQCHIP_IOAPIC:
1296 memcpy(ioapic_irqchip(kvm),
1297 &chip->chip.ioapic,
1298 sizeof(struct kvm_ioapic_state));
1299 break;
1300 default:
1301 r = -EINVAL;
1302 break;
1303 }
1304 kvm_pic_update_irq(pic_irqchip(kvm));
1305 return r;
1306}
1307
1308/*
1309 * Get (and clear) the dirty memory log for a memory slot.
1310 */
1311int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1312 struct kvm_dirty_log *log)
1313{
1314 int r;
1315 int n;
1316 struct kvm_memory_slot *memslot;
1317 int is_dirty = 0;
1318
1319 mutex_lock(&kvm->lock);
1320
1321 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1322 if (r)
1323 goto out;
1324
1325 /* If nothing is dirty, don't bother messing with page tables. */
1326 if (is_dirty) {
1327 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1328 kvm_flush_remote_tlbs(kvm);
1329 memslot = &kvm->memslots[log->slot];
1330 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1331 memset(memslot->dirty_bitmap, 0, n);
1332 }
1333 r = 0;
1334out:
1335 mutex_unlock(&kvm->lock);
1336 return r;
1337}
1338
1339long kvm_arch_vm_ioctl(struct file *filp,
1340 unsigned int ioctl, unsigned long arg)
1341{
1342 struct kvm *kvm = filp->private_data;
1343 void __user *argp = (void __user *)arg;
1344 int r = -EINVAL;
1345
1346 switch (ioctl) {
1347 case KVM_SET_TSS_ADDR:
1348 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1349 if (r < 0)
1350 goto out;
1351 break;
1352 case KVM_SET_MEMORY_REGION: {
1353 struct kvm_memory_region kvm_mem;
1354 struct kvm_userspace_memory_region kvm_userspace_mem;
1355
1356 r = -EFAULT;
1357 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1358 goto out;
1359 kvm_userspace_mem.slot = kvm_mem.slot;
1360 kvm_userspace_mem.flags = kvm_mem.flags;
1361 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1362 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1363 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1364 if (r)
1365 goto out;
1366 break;
1367 }
1368 case KVM_SET_NR_MMU_PAGES:
1369 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1370 if (r)
1371 goto out;
1372 break;
1373 case KVM_GET_NR_MMU_PAGES:
1374 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1375 break;
1376 case KVM_SET_MEMORY_ALIAS: {
1377 struct kvm_memory_alias alias;
1378
1379 r = -EFAULT;
1380 if (copy_from_user(&alias, argp, sizeof alias))
1381 goto out;
1382 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1383 if (r)
1384 goto out;
1385 break;
1386 }
1387 case KVM_CREATE_IRQCHIP:
1388 r = -ENOMEM;
1389 kvm->arch.vpic = kvm_create_pic(kvm);
1390 if (kvm->arch.vpic) {
1391 r = kvm_ioapic_init(kvm);
1392 if (r) {
1393 kfree(kvm->arch.vpic);
1394 kvm->arch.vpic = NULL;
1395 goto out;
1396 }
1397 } else
1398 goto out;
1399 break;
1400 case KVM_IRQ_LINE: {
1401 struct kvm_irq_level irq_event;
1402
1403 r = -EFAULT;
1404 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1405 goto out;
1406 if (irqchip_in_kernel(kvm)) {
1407 mutex_lock(&kvm->lock);
1408 if (irq_event.irq < 16)
1409 kvm_pic_set_irq(pic_irqchip(kvm),
1410 irq_event.irq,
1411 irq_event.level);
1412 kvm_ioapic_set_irq(kvm->arch.vioapic,
1413 irq_event.irq,
1414 irq_event.level);
1415 mutex_unlock(&kvm->lock);
1416 r = 0;
1417 }
1418 break;
1419 }
1420 case KVM_GET_IRQCHIP: {
1421 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1422 struct kvm_irqchip chip;
1423
1424 r = -EFAULT;
1425 if (copy_from_user(&chip, argp, sizeof chip))
1426 goto out;
1427 r = -ENXIO;
1428 if (!irqchip_in_kernel(kvm))
1429 goto out;
1430 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1431 if (r)
1432 goto out;
1433 r = -EFAULT;
1434 if (copy_to_user(argp, &chip, sizeof chip))
1435 goto out;
1436 r = 0;
1437 break;
1438 }
1439 case KVM_SET_IRQCHIP: {
1440 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1441 struct kvm_irqchip chip;
1442
1443 r = -EFAULT;
1444 if (copy_from_user(&chip, argp, sizeof chip))
1445 goto out;
1446 r = -ENXIO;
1447 if (!irqchip_in_kernel(kvm))
1448 goto out;
1449 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1450 if (r)
1451 goto out;
1452 r = 0;
1453 break;
1454 }
1455 case KVM_GET_SUPPORTED_CPUID: {
1456 struct kvm_cpuid2 __user *cpuid_arg = argp;
1457 struct kvm_cpuid2 cpuid;
1458
1459 r = -EFAULT;
1460 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1461 goto out;
1462 r = kvm_vm_ioctl_get_supported_cpuid(kvm, &cpuid,
1463 cpuid_arg->entries);
1464 if (r)
1465 goto out;
1466
1467 r = -EFAULT;
1468 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1469 goto out;
1470 r = 0;
1471 break;
1472 }
1473 default:
1474 ;
1475 }
1476out:
1477 return r;
1478}
1479
1480static void kvm_init_msr_list(void)
1481{
1482 u32 dummy[2];
1483 unsigned i, j;
1484
1485 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1486 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1487 continue;
1488 if (j < i)
1489 msrs_to_save[j] = msrs_to_save[i];
1490 j++;
1491 }
1492 num_msrs_to_save = j;
1493}
1494
1495/*
1496 * Only apic need an MMIO device hook, so shortcut now..
1497 */
1498static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1499 gpa_t addr)
1500{
1501 struct kvm_io_device *dev;
1502
1503 if (vcpu->arch.apic) {
1504 dev = &vcpu->arch.apic->dev;
1505 if (dev->in_range(dev, addr))
1506 return dev;
1507 }
1508 return NULL;
1509}
1510
1511
1512static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1513 gpa_t addr)
1514{
1515 struct kvm_io_device *dev;
1516
1517 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1518 if (dev == NULL)
1519 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1520 return dev;
1521}
1522
1523int emulator_read_std(unsigned long addr,
1524 void *val,
1525 unsigned int bytes,
1526 struct kvm_vcpu *vcpu)
1527{
1528 void *data = val;
1529
1530 while (bytes) {
1531 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1532 unsigned offset = addr & (PAGE_SIZE-1);
1533 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1534 int ret;
1535
1536 if (gpa == UNMAPPED_GVA)
1537 return X86EMUL_PROPAGATE_FAULT;
1538 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1539 if (ret < 0)
1540 return X86EMUL_UNHANDLEABLE;
1541
1542 bytes -= tocopy;
1543 data += tocopy;
1544 addr += tocopy;
1545 }
1546
1547 return X86EMUL_CONTINUE;
1548}
1549EXPORT_SYMBOL_GPL(emulator_read_std);
1550
1551static int emulator_read_emulated(unsigned long addr,
1552 void *val,
1553 unsigned int bytes,
1554 struct kvm_vcpu *vcpu)
1555{
1556 struct kvm_io_device *mmio_dev;
1557 gpa_t gpa;
1558
1559 if (vcpu->mmio_read_completed) {
1560 memcpy(val, vcpu->mmio_data, bytes);
1561 vcpu->mmio_read_completed = 0;
1562 return X86EMUL_CONTINUE;
1563 }
1564
1565 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1566
1567 /* For APIC access vmexit */
1568 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1569 goto mmio;
1570
1571 if (emulator_read_std(addr, val, bytes, vcpu)
1572 == X86EMUL_CONTINUE)
1573 return X86EMUL_CONTINUE;
1574 if (gpa == UNMAPPED_GVA)
1575 return X86EMUL_PROPAGATE_FAULT;
1576
1577mmio:
1578 /*
1579 * Is this MMIO handled locally?
1580 */
1581 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1582 if (mmio_dev) {
1583 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1584 return X86EMUL_CONTINUE;
1585 }
1586
1587 vcpu->mmio_needed = 1;
1588 vcpu->mmio_phys_addr = gpa;
1589 vcpu->mmio_size = bytes;
1590 vcpu->mmio_is_write = 0;
1591
1592 return X86EMUL_UNHANDLEABLE;
1593}
1594
1595static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1596 const void *val, int bytes)
1597{
1598 int ret;
1599
1600 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1601 if (ret < 0)
1602 return 0;
1603 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1604 return 1;
1605}
1606
1607static int emulator_write_emulated_onepage(unsigned long addr,
1608 const void *val,
1609 unsigned int bytes,
1610 struct kvm_vcpu *vcpu)
1611{
1612 struct kvm_io_device *mmio_dev;
1613 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1614
1615 if (gpa == UNMAPPED_GVA) {
1616 kvm_inject_page_fault(vcpu, addr, 2);
1617 return X86EMUL_PROPAGATE_FAULT;
1618 }
1619
1620 /* For APIC access vmexit */
1621 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1622 goto mmio;
1623
1624 if (emulator_write_phys(vcpu, gpa, val, bytes))
1625 return X86EMUL_CONTINUE;
1626
1627mmio:
1628 /*
1629 * Is this MMIO handled locally?
1630 */
1631 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1632 if (mmio_dev) {
1633 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1634 return X86EMUL_CONTINUE;
1635 }
1636
1637 vcpu->mmio_needed = 1;
1638 vcpu->mmio_phys_addr = gpa;
1639 vcpu->mmio_size = bytes;
1640 vcpu->mmio_is_write = 1;
1641 memcpy(vcpu->mmio_data, val, bytes);
1642
1643 return X86EMUL_CONTINUE;
1644}
1645
1646int emulator_write_emulated(unsigned long addr,
1647 const void *val,
1648 unsigned int bytes,
1649 struct kvm_vcpu *vcpu)
1650{
1651 /* Crossing a page boundary? */
1652 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1653 int rc, now;
1654
1655 now = -addr & ~PAGE_MASK;
1656 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1657 if (rc != X86EMUL_CONTINUE)
1658 return rc;
1659 addr += now;
1660 val += now;
1661 bytes -= now;
1662 }
1663 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1664}
1665EXPORT_SYMBOL_GPL(emulator_write_emulated);
1666
1667static int emulator_cmpxchg_emulated(unsigned long addr,
1668 const void *old,
1669 const void *new,
1670 unsigned int bytes,
1671 struct kvm_vcpu *vcpu)
1672{
1673 static int reported;
1674
1675 if (!reported) {
1676 reported = 1;
1677 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1678 }
1679#ifndef CONFIG_X86_64
1680 /* guests cmpxchg8b have to be emulated atomically */
1681 if (bytes == 8) {
1682 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1683 struct page *page;
1684 char *addr;
1685 u64 val;
1686
1687 if (gpa == UNMAPPED_GVA ||
1688 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1689 goto emul_write;
1690
1691 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1692 goto emul_write;
1693
1694 val = *(u64 *)new;
1695 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1696 addr = kmap_atomic(page, KM_USER0);
1697 set_64bit((u64 *)(addr + offset_in_page(gpa)), val);
1698 kunmap_atomic(addr, KM_USER0);
1699 kvm_release_page_dirty(page);
1700 }
1701emul_write:
1702#endif
1703
1704 return emulator_write_emulated(addr, new, bytes, vcpu);
1705}
1706
1707static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1708{
1709 return kvm_x86_ops->get_segment_base(vcpu, seg);
1710}
1711
1712int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1713{
1714 return X86EMUL_CONTINUE;
1715}
1716
1717int emulate_clts(struct kvm_vcpu *vcpu)
1718{
1719 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1720 return X86EMUL_CONTINUE;
1721}
1722
1723int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1724{
1725 struct kvm_vcpu *vcpu = ctxt->vcpu;
1726
1727 switch (dr) {
1728 case 0 ... 3:
1729 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1730 return X86EMUL_CONTINUE;
1731 default:
1732 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1733 return X86EMUL_UNHANDLEABLE;
1734 }
1735}
1736
1737int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1738{
1739 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1740 int exception;
1741
1742 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1743 if (exception) {
1744 /* FIXME: better handling */
1745 return X86EMUL_UNHANDLEABLE;
1746 }
1747 return X86EMUL_CONTINUE;
1748}
1749
1750void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1751{
1752 static int reported;
1753 u8 opcodes[4];
1754 unsigned long rip = vcpu->arch.rip;
1755 unsigned long rip_linear;
1756
1757 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1758
1759 if (reported)
1760 return;
1761
1762 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1763
1764 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1765 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1766 reported = 1;
1767}
1768EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1769
1770struct x86_emulate_ops emulate_ops = {
1771 .read_std = emulator_read_std,
1772 .read_emulated = emulator_read_emulated,
1773 .write_emulated = emulator_write_emulated,
1774 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1775};
1776
1777int emulate_instruction(struct kvm_vcpu *vcpu,
1778 struct kvm_run *run,
1779 unsigned long cr2,
1780 u16 error_code,
1781 int no_decode)
1782{
1783 int r;
1784
1785 vcpu->arch.mmio_fault_cr2 = cr2;
1786 kvm_x86_ops->cache_regs(vcpu);
1787
1788 vcpu->mmio_is_write = 0;
1789 vcpu->arch.pio.string = 0;
1790
1791 if (!no_decode) {
1792 int cs_db, cs_l;
1793 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1794
1795 vcpu->arch.emulate_ctxt.vcpu = vcpu;
1796 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1797 vcpu->arch.emulate_ctxt.mode =
1798 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
1799 ? X86EMUL_MODE_REAL : cs_l
1800 ? X86EMUL_MODE_PROT64 : cs_db
1801 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1802
1803 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1804 vcpu->arch.emulate_ctxt.cs_base = 0;
1805 vcpu->arch.emulate_ctxt.ds_base = 0;
1806 vcpu->arch.emulate_ctxt.es_base = 0;
1807 vcpu->arch.emulate_ctxt.ss_base = 0;
1808 } else {
1809 vcpu->arch.emulate_ctxt.cs_base =
1810 get_segment_base(vcpu, VCPU_SREG_CS);
1811 vcpu->arch.emulate_ctxt.ds_base =
1812 get_segment_base(vcpu, VCPU_SREG_DS);
1813 vcpu->arch.emulate_ctxt.es_base =
1814 get_segment_base(vcpu, VCPU_SREG_ES);
1815 vcpu->arch.emulate_ctxt.ss_base =
1816 get_segment_base(vcpu, VCPU_SREG_SS);
1817 }
1818
1819 vcpu->arch.emulate_ctxt.gs_base =
1820 get_segment_base(vcpu, VCPU_SREG_GS);
1821 vcpu->arch.emulate_ctxt.fs_base =
1822 get_segment_base(vcpu, VCPU_SREG_FS);
1823
1824 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
1825 ++vcpu->stat.insn_emulation;
1826 if (r) {
1827 ++vcpu->stat.insn_emulation_fail;
1828 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1829 return EMULATE_DONE;
1830 return EMULATE_FAIL;
1831 }
1832 }
1833
1834 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
1835
1836 if (vcpu->arch.pio.string)
1837 return EMULATE_DO_MMIO;
1838
1839 if ((r || vcpu->mmio_is_write) && run) {
1840 run->exit_reason = KVM_EXIT_MMIO;
1841 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1842 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1843 run->mmio.len = vcpu->mmio_size;
1844 run->mmio.is_write = vcpu->mmio_is_write;
1845 }
1846
1847 if (r) {
1848 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1849 return EMULATE_DONE;
1850 if (!vcpu->mmio_needed) {
1851 kvm_report_emulation_failure(vcpu, "mmio");
1852 return EMULATE_FAIL;
1853 }
1854 return EMULATE_DO_MMIO;
1855 }
1856
1857 kvm_x86_ops->decache_regs(vcpu);
1858 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
1859
1860 if (vcpu->mmio_is_write) {
1861 vcpu->mmio_needed = 0;
1862 return EMULATE_DO_MMIO;
1863 }
1864
1865 return EMULATE_DONE;
1866}
1867EXPORT_SYMBOL_GPL(emulate_instruction);
1868
1869static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
1870{
1871 int i;
1872
1873 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
1874 if (vcpu->arch.pio.guest_pages[i]) {
1875 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
1876 vcpu->arch.pio.guest_pages[i] = NULL;
1877 }
1878}
1879
1880static int pio_copy_data(struct kvm_vcpu *vcpu)
1881{
1882 void *p = vcpu->arch.pio_data;
1883 void *q;
1884 unsigned bytes;
1885 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
1886
1887 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1888 PAGE_KERNEL);
1889 if (!q) {
1890 free_pio_guest_pages(vcpu);
1891 return -ENOMEM;
1892 }
1893 q += vcpu->arch.pio.guest_page_offset;
1894 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
1895 if (vcpu->arch.pio.in)
1896 memcpy(q, p, bytes);
1897 else
1898 memcpy(p, q, bytes);
1899 q -= vcpu->arch.pio.guest_page_offset;
1900 vunmap(q);
1901 free_pio_guest_pages(vcpu);
1902 return 0;
1903}
1904
1905int complete_pio(struct kvm_vcpu *vcpu)
1906{
1907 struct kvm_pio_request *io = &vcpu->arch.pio;
1908 long delta;
1909 int r;
1910
1911 kvm_x86_ops->cache_regs(vcpu);
1912
1913 if (!io->string) {
1914 if (io->in)
1915 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
1916 io->size);
1917 } else {
1918 if (io->in) {
1919 r = pio_copy_data(vcpu);
1920 if (r) {
1921 kvm_x86_ops->cache_regs(vcpu);
1922 return r;
1923 }
1924 }
1925
1926 delta = 1;
1927 if (io->rep) {
1928 delta *= io->cur_count;
1929 /*
1930 * The size of the register should really depend on
1931 * current address size.
1932 */
1933 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
1934 }
1935 if (io->down)
1936 delta = -delta;
1937 delta *= io->size;
1938 if (io->in)
1939 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
1940 else
1941 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
1942 }
1943
1944 kvm_x86_ops->decache_regs(vcpu);
1945
1946 io->count -= io->cur_count;
1947 io->cur_count = 0;
1948
1949 return 0;
1950}
1951
1952static void kernel_pio(struct kvm_io_device *pio_dev,
1953 struct kvm_vcpu *vcpu,
1954 void *pd)
1955{
1956 /* TODO: String I/O for in kernel device */
1957
1958 mutex_lock(&vcpu->kvm->lock);
1959 if (vcpu->arch.pio.in)
1960 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
1961 vcpu->arch.pio.size,
1962 pd);
1963 else
1964 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
1965 vcpu->arch.pio.size,
1966 pd);
1967 mutex_unlock(&vcpu->kvm->lock);
1968}
1969
1970static void pio_string_write(struct kvm_io_device *pio_dev,
1971 struct kvm_vcpu *vcpu)
1972{
1973 struct kvm_pio_request *io = &vcpu->arch.pio;
1974 void *pd = vcpu->arch.pio_data;
1975 int i;
1976
1977 mutex_lock(&vcpu->kvm->lock);
1978 for (i = 0; i < io->cur_count; i++) {
1979 kvm_iodevice_write(pio_dev, io->port,
1980 io->size,
1981 pd);
1982 pd += io->size;
1983 }
1984 mutex_unlock(&vcpu->kvm->lock);
1985}
1986
1987static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1988 gpa_t addr)
1989{
1990 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1991}
1992
1993int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1994 int size, unsigned port)
1995{
1996 struct kvm_io_device *pio_dev;
1997
1998 vcpu->run->exit_reason = KVM_EXIT_IO;
1999 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2000 vcpu->run->io.size = vcpu->arch.pio.size = size;
2001 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2002 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2003 vcpu->run->io.port = vcpu->arch.pio.port = port;
2004 vcpu->arch.pio.in = in;
2005 vcpu->arch.pio.string = 0;
2006 vcpu->arch.pio.down = 0;
2007 vcpu->arch.pio.guest_page_offset = 0;
2008 vcpu->arch.pio.rep = 0;
2009
2010 kvm_x86_ops->cache_regs(vcpu);
2011 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2012 kvm_x86_ops->decache_regs(vcpu);
2013
2014 kvm_x86_ops->skip_emulated_instruction(vcpu);
2015
2016 pio_dev = vcpu_find_pio_dev(vcpu, port);
2017 if (pio_dev) {
2018 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2019 complete_pio(vcpu);
2020 return 1;
2021 }
2022 return 0;
2023}
2024EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2025
2026int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2027 int size, unsigned long count, int down,
2028 gva_t address, int rep, unsigned port)
2029{
2030 unsigned now, in_page;
2031 int i, ret = 0;
2032 int nr_pages = 1;
2033 struct page *page;
2034 struct kvm_io_device *pio_dev;
2035
2036 vcpu->run->exit_reason = KVM_EXIT_IO;
2037 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2038 vcpu->run->io.size = vcpu->arch.pio.size = size;
2039 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2040 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2041 vcpu->run->io.port = vcpu->arch.pio.port = port;
2042 vcpu->arch.pio.in = in;
2043 vcpu->arch.pio.string = 1;
2044 vcpu->arch.pio.down = down;
2045 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2046 vcpu->arch.pio.rep = rep;
2047
2048 if (!count) {
2049 kvm_x86_ops->skip_emulated_instruction(vcpu);
2050 return 1;
2051 }
2052
2053 if (!down)
2054 in_page = PAGE_SIZE - offset_in_page(address);
2055 else
2056 in_page = offset_in_page(address) + size;
2057 now = min(count, (unsigned long)in_page / size);
2058 if (!now) {
2059 /*
2060 * String I/O straddles page boundary. Pin two guest pages
2061 * so that we satisfy atomicity constraints. Do just one
2062 * transaction to avoid complexity.
2063 */
2064 nr_pages = 2;
2065 now = 1;
2066 }
2067 if (down) {
2068 /*
2069 * String I/O in reverse. Yuck. Kill the guest, fix later.
2070 */
2071 pr_unimpl(vcpu, "guest string pio down\n");
2072 kvm_inject_gp(vcpu, 0);
2073 return 1;
2074 }
2075 vcpu->run->io.count = now;
2076 vcpu->arch.pio.cur_count = now;
2077
2078 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2079 kvm_x86_ops->skip_emulated_instruction(vcpu);
2080
2081 for (i = 0; i < nr_pages; ++i) {
2082 mutex_lock(&vcpu->kvm->lock);
2083 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2084 vcpu->arch.pio.guest_pages[i] = page;
2085 mutex_unlock(&vcpu->kvm->lock);
2086 if (!page) {
2087 kvm_inject_gp(vcpu, 0);
2088 free_pio_guest_pages(vcpu);
2089 return 1;
2090 }
2091 }
2092
2093 pio_dev = vcpu_find_pio_dev(vcpu, port);
2094 if (!vcpu->arch.pio.in) {
2095 /* string PIO write */
2096 ret = pio_copy_data(vcpu);
2097 if (ret >= 0 && pio_dev) {
2098 pio_string_write(pio_dev, vcpu);
2099 complete_pio(vcpu);
2100 if (vcpu->arch.pio.count == 0)
2101 ret = 1;
2102 }
2103 } else if (pio_dev)
2104 pr_unimpl(vcpu, "no string pio read support yet, "
2105 "port %x size %d count %ld\n",
2106 port, size, count);
2107
2108 return ret;
2109}
2110EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2111
2112int kvm_arch_init(void *opaque)
2113{
2114 int r;
2115 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2116
2117 r = kvm_mmu_module_init();
2118 if (r)
2119 goto out_fail;
2120
2121 kvm_init_msr_list();
2122
2123 if (kvm_x86_ops) {
2124 printk(KERN_ERR "kvm: already loaded the other module\n");
2125 r = -EEXIST;
2126 goto out;
2127 }
2128
2129 if (!ops->cpu_has_kvm_support()) {
2130 printk(KERN_ERR "kvm: no hardware support\n");
2131 r = -EOPNOTSUPP;
2132 goto out;
2133 }
2134 if (ops->disabled_by_bios()) {
2135 printk(KERN_ERR "kvm: disabled by bios\n");
2136 r = -EOPNOTSUPP;
2137 goto out;
2138 }
2139
2140 kvm_x86_ops = ops;
2141 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2142 return 0;
2143
2144out:
2145 kvm_mmu_module_exit();
2146out_fail:
2147 return r;
2148}
2149
2150void kvm_arch_exit(void)
2151{
2152 kvm_x86_ops = NULL;
2153 kvm_mmu_module_exit();
2154}
2155
2156int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2157{
2158 ++vcpu->stat.halt_exits;
2159 if (irqchip_in_kernel(vcpu->kvm)) {
2160 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2161 kvm_vcpu_block(vcpu);
2162 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2163 return -EINTR;
2164 return 1;
2165 } else {
2166 vcpu->run->exit_reason = KVM_EXIT_HLT;
2167 return 0;
2168 }
2169}
2170EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2171
2172int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2173{
2174 unsigned long nr, a0, a1, a2, a3, ret;
2175
2176 kvm_x86_ops->cache_regs(vcpu);
2177
2178 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2179 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2180 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2181 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2182 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2183
2184 if (!is_long_mode(vcpu)) {
2185 nr &= 0xFFFFFFFF;
2186 a0 &= 0xFFFFFFFF;
2187 a1 &= 0xFFFFFFFF;
2188 a2 &= 0xFFFFFFFF;
2189 a3 &= 0xFFFFFFFF;
2190 }
2191
2192 switch (nr) {
2193 default:
2194 ret = -KVM_ENOSYS;
2195 break;
2196 }
2197 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2198 kvm_x86_ops->decache_regs(vcpu);
2199 return 0;
2200}
2201EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2202
2203int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2204{
2205 char instruction[3];
2206 int ret = 0;
2207
2208 mutex_lock(&vcpu->kvm->lock);
2209
2210 /*
2211 * Blow out the MMU to ensure that no other VCPU has an active mapping
2212 * to ensure that the updated hypercall appears atomically across all
2213 * VCPUs.
2214 */
2215 kvm_mmu_zap_all(vcpu->kvm);
2216
2217 kvm_x86_ops->cache_regs(vcpu);
2218 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2219 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2220 != X86EMUL_CONTINUE)
2221 ret = -EFAULT;
2222
2223 mutex_unlock(&vcpu->kvm->lock);
2224
2225 return ret;
2226}
2227
2228static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2229{
2230 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2231}
2232
2233void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2234{
2235 struct descriptor_table dt = { limit, base };
2236
2237 kvm_x86_ops->set_gdt(vcpu, &dt);
2238}
2239
2240void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2241{
2242 struct descriptor_table dt = { limit, base };
2243
2244 kvm_x86_ops->set_idt(vcpu, &dt);
2245}
2246
2247void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2248 unsigned long *rflags)
2249{
2250 lmsw(vcpu, msw);
2251 *rflags = kvm_x86_ops->get_rflags(vcpu);
2252}
2253
2254unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2255{
2256 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2257 switch (cr) {
2258 case 0:
2259 return vcpu->arch.cr0;
2260 case 2:
2261 return vcpu->arch.cr2;
2262 case 3:
2263 return vcpu->arch.cr3;
2264 case 4:
2265 return vcpu->arch.cr4;
2266 case 8:
2267 return get_cr8(vcpu);
2268 default:
2269 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2270 return 0;
2271 }
2272}
2273
2274void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2275 unsigned long *rflags)
2276{
2277 switch (cr) {
2278 case 0:
2279 set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2280 *rflags = kvm_x86_ops->get_rflags(vcpu);
2281 break;
2282 case 2:
2283 vcpu->arch.cr2 = val;
2284 break;
2285 case 3:
2286 set_cr3(vcpu, val);
2287 break;
2288 case 4:
2289 set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2290 break;
2291 case 8:
2292 set_cr8(vcpu, val & 0xfUL);
2293 break;
2294 default:
2295 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2296 }
2297}
2298
2299static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2300{
2301 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2302 int j, nent = vcpu->arch.cpuid_nent;
2303
2304 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2305 /* when no next entry is found, the current entry[i] is reselected */
2306 for (j = i + 1; j == i; j = (j + 1) % nent) {
2307 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2308 if (ej->function == e->function) {
2309 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2310 return j;
2311 }
2312 }
2313 return 0; /* silence gcc, even though control never reaches here */
2314}
2315
2316/* find an entry with matching function, matching index (if needed), and that
2317 * should be read next (if it's stateful) */
2318static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2319 u32 function, u32 index)
2320{
2321 if (e->function != function)
2322 return 0;
2323 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2324 return 0;
2325 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2326 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2327 return 0;
2328 return 1;
2329}
2330
2331void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2332{
2333 int i;
2334 u32 function, index;
2335 struct kvm_cpuid_entry2 *e, *best;
2336
2337 kvm_x86_ops->cache_regs(vcpu);
2338 function = vcpu->arch.regs[VCPU_REGS_RAX];
2339 index = vcpu->arch.regs[VCPU_REGS_RCX];
2340 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2341 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2342 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2343 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2344 best = NULL;
2345 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2346 e = &vcpu->arch.cpuid_entries[i];
2347 if (is_matching_cpuid_entry(e, function, index)) {
2348 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2349 move_to_next_stateful_cpuid_entry(vcpu, i);
2350 best = e;
2351 break;
2352 }
2353 /*
2354 * Both basic or both extended?
2355 */
2356 if (((e->function ^ function) & 0x80000000) == 0)
2357 if (!best || e->function > best->function)
2358 best = e;
2359 }
2360 if (best) {
2361 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2362 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2363 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2364 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2365 }
2366 kvm_x86_ops->decache_regs(vcpu);
2367 kvm_x86_ops->skip_emulated_instruction(vcpu);
2368}
2369EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2370
2371/*
2372 * Check if userspace requested an interrupt window, and that the
2373 * interrupt window is open.
2374 *
2375 * No need to exit to userspace if we already have an interrupt queued.
2376 */
2377static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2378 struct kvm_run *kvm_run)
2379{
2380 return (!vcpu->arch.irq_summary &&
2381 kvm_run->request_interrupt_window &&
2382 vcpu->arch.interrupt_window_open &&
2383 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2384}
2385
2386static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2387 struct kvm_run *kvm_run)
2388{
2389 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2390 kvm_run->cr8 = get_cr8(vcpu);
2391 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2392 if (irqchip_in_kernel(vcpu->kvm))
2393 kvm_run->ready_for_interrupt_injection = 1;
2394 else
2395 kvm_run->ready_for_interrupt_injection =
2396 (vcpu->arch.interrupt_window_open &&
2397 vcpu->arch.irq_summary == 0);
2398}
2399
2400static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2401{
2402 int r;
2403
2404 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2405 pr_debug("vcpu %d received sipi with vector # %x\n",
2406 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2407 kvm_lapic_reset(vcpu);
2408 r = kvm_x86_ops->vcpu_reset(vcpu);
2409 if (r)
2410 return r;
2411 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2412 }
2413
2414preempted:
2415 if (vcpu->guest_debug.enabled)
2416 kvm_x86_ops->guest_debug_pre(vcpu);
2417
2418again:
2419 r = kvm_mmu_reload(vcpu);
2420 if (unlikely(r))
2421 goto out;
2422
2423 kvm_inject_pending_timer_irqs(vcpu);
2424
2425 preempt_disable();
2426
2427 kvm_x86_ops->prepare_guest_switch(vcpu);
2428 kvm_load_guest_fpu(vcpu);
2429
2430 local_irq_disable();
2431
2432 if (signal_pending(current)) {
2433 local_irq_enable();
2434 preempt_enable();
2435 r = -EINTR;
2436 kvm_run->exit_reason = KVM_EXIT_INTR;
2437 ++vcpu->stat.signal_exits;
2438 goto out;
2439 }
2440
2441 if (vcpu->arch.exception.pending)
2442 __queue_exception(vcpu);
2443 else if (irqchip_in_kernel(vcpu->kvm))
2444 kvm_x86_ops->inject_pending_irq(vcpu);
2445 else
2446 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2447
2448 vcpu->guest_mode = 1;
2449 kvm_guest_enter();
2450
2451 if (vcpu->requests)
2452 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2453 kvm_x86_ops->tlb_flush(vcpu);
2454
2455 kvm_x86_ops->run(vcpu, kvm_run);
2456
2457 vcpu->guest_mode = 0;
2458 local_irq_enable();
2459
2460 ++vcpu->stat.exits;
2461
2462 /*
2463 * We must have an instruction between local_irq_enable() and
2464 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2465 * the interrupt shadow. The stat.exits increment will do nicely.
2466 * But we need to prevent reordering, hence this barrier():
2467 */
2468 barrier();
2469
2470 kvm_guest_exit();
2471
2472 preempt_enable();
2473
2474 /*
2475 * Profile KVM exit RIPs:
2476 */
2477 if (unlikely(prof_on == KVM_PROFILING)) {
2478 kvm_x86_ops->cache_regs(vcpu);
2479 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2480 }
2481
2482 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2483 vcpu->arch.exception.pending = false;
2484
2485 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2486
2487 if (r > 0) {
2488 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2489 r = -EINTR;
2490 kvm_run->exit_reason = KVM_EXIT_INTR;
2491 ++vcpu->stat.request_irq_exits;
2492 goto out;
2493 }
2494 if (!need_resched())
2495 goto again;
2496 }
2497
2498out:
2499 if (r > 0) {
2500 kvm_resched(vcpu);
2501 goto preempted;
2502 }
2503
2504 post_kvm_run_save(vcpu, kvm_run);
2505
2506 return r;
2507}
2508
2509int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2510{
2511 int r;
2512 sigset_t sigsaved;
2513
2514 vcpu_load(vcpu);
2515
2516 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2517 kvm_vcpu_block(vcpu);
2518 vcpu_put(vcpu);
2519 return -EAGAIN;
2520 }
2521
2522 if (vcpu->sigset_active)
2523 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2524
2525 /* re-sync apic's tpr */
2526 if (!irqchip_in_kernel(vcpu->kvm))
2527 set_cr8(vcpu, kvm_run->cr8);
2528
2529 if (vcpu->arch.pio.cur_count) {
2530 r = complete_pio(vcpu);
2531 if (r)
2532 goto out;
2533 }
2534#if CONFIG_HAS_IOMEM
2535 if (vcpu->mmio_needed) {
2536 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2537 vcpu->mmio_read_completed = 1;
2538 vcpu->mmio_needed = 0;
2539 r = emulate_instruction(vcpu, kvm_run,
2540 vcpu->arch.mmio_fault_cr2, 0, 1);
2541 if (r == EMULATE_DO_MMIO) {
2542 /*
2543 * Read-modify-write. Back to userspace.
2544 */
2545 r = 0;
2546 goto out;
2547 }
2548 }
2549#endif
2550 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2551 kvm_x86_ops->cache_regs(vcpu);
2552 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2553 kvm_x86_ops->decache_regs(vcpu);
2554 }
2555
2556 r = __vcpu_run(vcpu, kvm_run);
2557
2558out:
2559 if (vcpu->sigset_active)
2560 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2561
2562 vcpu_put(vcpu);
2563 return r;
2564}
2565
2566int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2567{
2568 vcpu_load(vcpu);
2569
2570 kvm_x86_ops->cache_regs(vcpu);
2571
2572 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2573 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2574 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2575 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2576 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2577 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2578 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2579 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2580#ifdef CONFIG_X86_64
2581 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2582 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2583 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2584 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2585 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2586 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2587 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2588 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2589#endif
2590
2591 regs->rip = vcpu->arch.rip;
2592 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2593
2594 /*
2595 * Don't leak debug flags in case they were set for guest debugging
2596 */
2597 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2598 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2599
2600 vcpu_put(vcpu);
2601
2602 return 0;
2603}
2604
2605int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2606{
2607 vcpu_load(vcpu);
2608
2609 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2610 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2611 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2612 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2613 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2614 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2615 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2616 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2617#ifdef CONFIG_X86_64
2618 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2619 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2620 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2621 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2622 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2623 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2624 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2625 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2626#endif
2627
2628 vcpu->arch.rip = regs->rip;
2629 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2630
2631 kvm_x86_ops->decache_regs(vcpu);
2632
2633 vcpu_put(vcpu);
2634
2635 return 0;
2636}
2637
2638static void get_segment(struct kvm_vcpu *vcpu,
2639 struct kvm_segment *var, int seg)
2640{
2641 return kvm_x86_ops->get_segment(vcpu, var, seg);
2642}
2643
2644void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2645{
2646 struct kvm_segment cs;
2647
2648 get_segment(vcpu, &cs, VCPU_SREG_CS);
2649 *db = cs.db;
2650 *l = cs.l;
2651}
2652EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2653
2654int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2655 struct kvm_sregs *sregs)
2656{
2657 struct descriptor_table dt;
2658 int pending_vec;
2659
2660 vcpu_load(vcpu);
2661
2662 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2663 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2664 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2665 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2666 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2667 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2668
2669 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2670 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2671
2672 kvm_x86_ops->get_idt(vcpu, &dt);
2673 sregs->idt.limit = dt.limit;
2674 sregs->idt.base = dt.base;
2675 kvm_x86_ops->get_gdt(vcpu, &dt);
2676 sregs->gdt.limit = dt.limit;
2677 sregs->gdt.base = dt.base;
2678
2679 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2680 sregs->cr0 = vcpu->arch.cr0;
2681 sregs->cr2 = vcpu->arch.cr2;
2682 sregs->cr3 = vcpu->arch.cr3;
2683 sregs->cr4 = vcpu->arch.cr4;
2684 sregs->cr8 = get_cr8(vcpu);
2685 sregs->efer = vcpu->arch.shadow_efer;
2686 sregs->apic_base = kvm_get_apic_base(vcpu);
2687
2688 if (irqchip_in_kernel(vcpu->kvm)) {
2689 memset(sregs->interrupt_bitmap, 0,
2690 sizeof sregs->interrupt_bitmap);
2691 pending_vec = kvm_x86_ops->get_irq(vcpu);
2692 if (pending_vec >= 0)
2693 set_bit(pending_vec,
2694 (unsigned long *)sregs->interrupt_bitmap);
2695 } else
2696 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
2697 sizeof sregs->interrupt_bitmap);
2698
2699 vcpu_put(vcpu);
2700
2701 return 0;
2702}
2703
2704static void set_segment(struct kvm_vcpu *vcpu,
2705 struct kvm_segment *var, int seg)
2706{
2707 return kvm_x86_ops->set_segment(vcpu, var, seg);
2708}
2709
2710int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2711 struct kvm_sregs *sregs)
2712{
2713 int mmu_reset_needed = 0;
2714 int i, pending_vec, max_bits;
2715 struct descriptor_table dt;
2716
2717 vcpu_load(vcpu);
2718
2719 dt.limit = sregs->idt.limit;
2720 dt.base = sregs->idt.base;
2721 kvm_x86_ops->set_idt(vcpu, &dt);
2722 dt.limit = sregs->gdt.limit;
2723 dt.base = sregs->gdt.base;
2724 kvm_x86_ops->set_gdt(vcpu, &dt);
2725
2726 vcpu->arch.cr2 = sregs->cr2;
2727 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
2728 vcpu->arch.cr3 = sregs->cr3;
2729
2730 set_cr8(vcpu, sregs->cr8);
2731
2732 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
2733#ifdef CONFIG_X86_64
2734 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2735#endif
2736 kvm_set_apic_base(vcpu, sregs->apic_base);
2737
2738 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2739
2740 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
2741 vcpu->arch.cr0 = sregs->cr0;
2742 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2743
2744 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
2745 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2746 if (!is_long_mode(vcpu) && is_pae(vcpu))
2747 load_pdptrs(vcpu, vcpu->arch.cr3);
2748
2749 if (mmu_reset_needed)
2750 kvm_mmu_reset_context(vcpu);
2751
2752 if (!irqchip_in_kernel(vcpu->kvm)) {
2753 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
2754 sizeof vcpu->arch.irq_pending);
2755 vcpu->arch.irq_summary = 0;
2756 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
2757 if (vcpu->arch.irq_pending[i])
2758 __set_bit(i, &vcpu->arch.irq_summary);
2759 } else {
2760 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2761 pending_vec = find_first_bit(
2762 (const unsigned long *)sregs->interrupt_bitmap,
2763 max_bits);
2764 /* Only pending external irq is handled here */
2765 if (pending_vec < max_bits) {
2766 kvm_x86_ops->set_irq(vcpu, pending_vec);
2767 pr_debug("Set back pending irq %d\n",
2768 pending_vec);
2769 }
2770 }
2771
2772 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2773 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2774 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2775 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2776 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2777 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2778
2779 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2780 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2781
2782 vcpu_put(vcpu);
2783
2784 return 0;
2785}
2786
2787int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2788 struct kvm_debug_guest *dbg)
2789{
2790 int r;
2791
2792 vcpu_load(vcpu);
2793
2794 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2795
2796 vcpu_put(vcpu);
2797
2798 return r;
2799}
2800
2801/*
2802 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2803 * we have asm/x86/processor.h
2804 */
2805struct fxsave {
2806 u16 cwd;
2807 u16 swd;
2808 u16 twd;
2809 u16 fop;
2810 u64 rip;
2811 u64 rdp;
2812 u32 mxcsr;
2813 u32 mxcsr_mask;
2814 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2815#ifdef CONFIG_X86_64
2816 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2817#else
2818 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2819#endif
2820};
2821
2822/*
2823 * Translate a guest virtual address to a guest physical address.
2824 */
2825int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2826 struct kvm_translation *tr)
2827{
2828 unsigned long vaddr = tr->linear_address;
2829 gpa_t gpa;
2830
2831 vcpu_load(vcpu);
2832 mutex_lock(&vcpu->kvm->lock);
2833 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
2834 tr->physical_address = gpa;
2835 tr->valid = gpa != UNMAPPED_GVA;
2836 tr->writeable = 1;
2837 tr->usermode = 0;
2838 mutex_unlock(&vcpu->kvm->lock);
2839 vcpu_put(vcpu);
2840
2841 return 0;
2842}
2843
2844int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2845{
2846 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
2847
2848 vcpu_load(vcpu);
2849
2850 memcpy(fpu->fpr, fxsave->st_space, 128);
2851 fpu->fcw = fxsave->cwd;
2852 fpu->fsw = fxsave->swd;
2853 fpu->ftwx = fxsave->twd;
2854 fpu->last_opcode = fxsave->fop;
2855 fpu->last_ip = fxsave->rip;
2856 fpu->last_dp = fxsave->rdp;
2857 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2858
2859 vcpu_put(vcpu);
2860
2861 return 0;
2862}
2863
2864int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2865{
2866 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
2867
2868 vcpu_load(vcpu);
2869
2870 memcpy(fxsave->st_space, fpu->fpr, 128);
2871 fxsave->cwd = fpu->fcw;
2872 fxsave->swd = fpu->fsw;
2873 fxsave->twd = fpu->ftwx;
2874 fxsave->fop = fpu->last_opcode;
2875 fxsave->rip = fpu->last_ip;
2876 fxsave->rdp = fpu->last_dp;
2877 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2878
2879 vcpu_put(vcpu);
2880
2881 return 0;
2882}
2883
2884void fx_init(struct kvm_vcpu *vcpu)
2885{
2886 unsigned after_mxcsr_mask;
2887
2888 /* Initialize guest FPU by resetting ours and saving into guest's */
2889 preempt_disable();
2890 fx_save(&vcpu->arch.host_fx_image);
2891 fpu_init();
2892 fx_save(&vcpu->arch.guest_fx_image);
2893 fx_restore(&vcpu->arch.host_fx_image);
2894 preempt_enable();
2895
2896 vcpu->arch.cr0 |= X86_CR0_ET;
2897 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
2898 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
2899 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
2900 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
2901}
2902EXPORT_SYMBOL_GPL(fx_init);
2903
2904void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
2905{
2906 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
2907 return;
2908
2909 vcpu->guest_fpu_loaded = 1;
2910 fx_save(&vcpu->arch.host_fx_image);
2911 fx_restore(&vcpu->arch.guest_fx_image);
2912}
2913EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
2914
2915void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
2916{
2917 if (!vcpu->guest_fpu_loaded)
2918 return;
2919
2920 vcpu->guest_fpu_loaded = 0;
2921 fx_save(&vcpu->arch.guest_fx_image);
2922 fx_restore(&vcpu->arch.host_fx_image);
2923 ++vcpu->stat.fpu_reload;
2924}
2925EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
2926
2927void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
2928{
2929 kvm_x86_ops->vcpu_free(vcpu);
2930}
2931
2932struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
2933 unsigned int id)
2934{
2935 return kvm_x86_ops->vcpu_create(kvm, id);
2936}
2937
2938int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
2939{
2940 int r;
2941
2942 /* We do fxsave: this must be aligned. */
2943 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
2944
2945 vcpu_load(vcpu);
2946 r = kvm_arch_vcpu_reset(vcpu);
2947 if (r == 0)
2948 r = kvm_mmu_setup(vcpu);
2949 vcpu_put(vcpu);
2950 if (r < 0)
2951 goto free_vcpu;
2952
2953 return 0;
2954free_vcpu:
2955 kvm_x86_ops->vcpu_free(vcpu);
2956 return r;
2957}
2958
2959void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
2960{
2961 vcpu_load(vcpu);
2962 kvm_mmu_unload(vcpu);
2963 vcpu_put(vcpu);
2964
2965 kvm_x86_ops->vcpu_free(vcpu);
2966}
2967
2968int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
2969{
2970 return kvm_x86_ops->vcpu_reset(vcpu);
2971}
2972
2973void kvm_arch_hardware_enable(void *garbage)
2974{
2975 kvm_x86_ops->hardware_enable(garbage);
2976}
2977
2978void kvm_arch_hardware_disable(void *garbage)
2979{
2980 kvm_x86_ops->hardware_disable(garbage);
2981}
2982
2983int kvm_arch_hardware_setup(void)
2984{
2985 return kvm_x86_ops->hardware_setup();
2986}
2987
2988void kvm_arch_hardware_unsetup(void)
2989{
2990 kvm_x86_ops->hardware_unsetup();
2991}
2992
2993void kvm_arch_check_processor_compat(void *rtn)
2994{
2995 kvm_x86_ops->check_processor_compatibility(rtn);
2996}
2997
2998int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
2999{
3000 struct page *page;
3001 struct kvm *kvm;
3002 int r;
3003
3004 BUG_ON(vcpu->kvm == NULL);
3005 kvm = vcpu->kvm;
3006
3007 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3008 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3009 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3010 else
3011 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3012
3013 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3014 if (!page) {
3015 r = -ENOMEM;
3016 goto fail;
3017 }
3018 vcpu->arch.pio_data = page_address(page);
3019
3020 r = kvm_mmu_create(vcpu);
3021 if (r < 0)
3022 goto fail_free_pio_data;
3023
3024 if (irqchip_in_kernel(kvm)) {
3025 r = kvm_create_lapic(vcpu);
3026 if (r < 0)
3027 goto fail_mmu_destroy;
3028 }
3029
3030 return 0;
3031
3032fail_mmu_destroy:
3033 kvm_mmu_destroy(vcpu);
3034fail_free_pio_data:
3035 free_page((unsigned long)vcpu->arch.pio_data);
3036fail:
3037 return r;
3038}
3039
3040void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3041{
3042 kvm_free_lapic(vcpu);
3043 kvm_mmu_destroy(vcpu);
3044 free_page((unsigned long)vcpu->arch.pio_data);
3045}
3046
3047struct kvm *kvm_arch_create_vm(void)
3048{
3049 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3050
3051 if (!kvm)
3052 return ERR_PTR(-ENOMEM);
3053
3054 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3055
3056 return kvm;
3057}
3058
3059static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3060{
3061 vcpu_load(vcpu);
3062 kvm_mmu_unload(vcpu);
3063 vcpu_put(vcpu);
3064}
3065
3066static void kvm_free_vcpus(struct kvm *kvm)
3067{
3068 unsigned int i;
3069
3070 /*
3071 * Unpin any mmu pages first.
3072 */
3073 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3074 if (kvm->vcpus[i])
3075 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3076 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3077 if (kvm->vcpus[i]) {
3078 kvm_arch_vcpu_free(kvm->vcpus[i]);
3079 kvm->vcpus[i] = NULL;
3080 }
3081 }
3082
3083}
3084
3085void kvm_arch_destroy_vm(struct kvm *kvm)
3086{
3087 kfree(kvm->arch.vpic);
3088 kfree(kvm->arch.vioapic);
3089 kvm_free_vcpus(kvm);
3090 kvm_free_physmem(kvm);
3091 kfree(kvm);
3092}
3093
3094int kvm_arch_set_memory_region(struct kvm *kvm,
3095 struct kvm_userspace_memory_region *mem,
3096 struct kvm_memory_slot old,
3097 int user_alloc)
3098{
3099 int npages = mem->memory_size >> PAGE_SHIFT;
3100 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3101
3102 /*To keep backward compatibility with older userspace,
3103 *x86 needs to hanlde !user_alloc case.
3104 */
3105 if (!user_alloc) {
3106 if (npages && !old.rmap) {
3107 down_write(&current->mm->mmap_sem);
3108 memslot->userspace_addr = do_mmap(NULL, 0,
3109 npages * PAGE_SIZE,
3110 PROT_READ | PROT_WRITE,
3111 MAP_SHARED | MAP_ANONYMOUS,
3112 0);
3113 up_write(&current->mm->mmap_sem);
3114
3115 if (IS_ERR((void *)memslot->userspace_addr))
3116 return PTR_ERR((void *)memslot->userspace_addr);
3117 } else {
3118 if (!old.user_alloc && old.rmap) {
3119 int ret;
3120
3121 down_write(&current->mm->mmap_sem);
3122 ret = do_munmap(current->mm, old.userspace_addr,
3123 old.npages * PAGE_SIZE);
3124 up_write(&current->mm->mmap_sem);
3125 if (ret < 0)
3126 printk(KERN_WARNING
3127 "kvm_vm_ioctl_set_memory_region: "
3128 "failed to munmap memory\n");
3129 }
3130 }
3131 }
3132
3133 if (!kvm->arch.n_requested_mmu_pages) {
3134 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3135 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3136 }
3137
3138 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3139 kvm_flush_remote_tlbs(kvm);
3140
3141 return 0;
3142}
3143
3144int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3145{
3146 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3147 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3148}