diff options
Diffstat (limited to 'drivers/iommu/intel-iommu.c')
-rw-r--r-- | drivers/iommu/intel-iommu.c | 4173 |
1 files changed, 4173 insertions, 0 deletions
diff --git a/drivers/iommu/intel-iommu.c b/drivers/iommu/intel-iommu.c new file mode 100644 index 000000000000..bcbd693b351a --- /dev/null +++ b/drivers/iommu/intel-iommu.c | |||
@@ -0,0 +1,4173 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006, Intel Corporation. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify it | ||
5 | * under the terms and conditions of the GNU General Public License, | ||
6 | * version 2, as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
11 | * more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public License along with | ||
14 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | ||
15 | * Place - Suite 330, Boston, MA 02111-1307 USA. | ||
16 | * | ||
17 | * Copyright (C) 2006-2008 Intel Corporation | ||
18 | * Author: Ashok Raj <ashok.raj@intel.com> | ||
19 | * Author: Shaohua Li <shaohua.li@intel.com> | ||
20 | * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | ||
21 | * Author: Fenghua Yu <fenghua.yu@intel.com> | ||
22 | */ | ||
23 | |||
24 | #include <linux/init.h> | ||
25 | #include <linux/bitmap.h> | ||
26 | #include <linux/debugfs.h> | ||
27 | #include <linux/export.h> | ||
28 | #include <linux/slab.h> | ||
29 | #include <linux/irq.h> | ||
30 | #include <linux/interrupt.h> | ||
31 | #include <linux/spinlock.h> | ||
32 | #include <linux/pci.h> | ||
33 | #include <linux/dmar.h> | ||
34 | #include <linux/dma-mapping.h> | ||
35 | #include <linux/mempool.h> | ||
36 | #include <linux/timer.h> | ||
37 | #include <linux/iova.h> | ||
38 | #include <linux/iommu.h> | ||
39 | #include <linux/intel-iommu.h> | ||
40 | #include <linux/syscore_ops.h> | ||
41 | #include <linux/tboot.h> | ||
42 | #include <linux/dmi.h> | ||
43 | #include <linux/pci-ats.h> | ||
44 | #include <asm/cacheflush.h> | ||
45 | #include <asm/iommu.h> | ||
46 | |||
47 | #define ROOT_SIZE VTD_PAGE_SIZE | ||
48 | #define CONTEXT_SIZE VTD_PAGE_SIZE | ||
49 | |||
50 | #define IS_BRIDGE_HOST_DEVICE(pdev) \ | ||
51 | ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST) | ||
52 | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) | ||
53 | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) | ||
54 | #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) | ||
55 | |||
56 | #define IOAPIC_RANGE_START (0xfee00000) | ||
57 | #define IOAPIC_RANGE_END (0xfeefffff) | ||
58 | #define IOVA_START_ADDR (0x1000) | ||
59 | |||
60 | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 | ||
61 | |||
62 | #define MAX_AGAW_WIDTH 64 | ||
63 | |||
64 | #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1) | ||
65 | #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1) | ||
66 | |||
67 | /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR | ||
68 | to match. That way, we can use 'unsigned long' for PFNs with impunity. */ | ||
69 | #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ | ||
70 | __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) | ||
71 | #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) | ||
72 | |||
73 | #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) | ||
74 | #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32)) | ||
75 | #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64)) | ||
76 | |||
77 | /* page table handling */ | ||
78 | #define LEVEL_STRIDE (9) | ||
79 | #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) | ||
80 | |||
81 | static inline int agaw_to_level(int agaw) | ||
82 | { | ||
83 | return agaw + 2; | ||
84 | } | ||
85 | |||
86 | static inline int agaw_to_width(int agaw) | ||
87 | { | ||
88 | return 30 + agaw * LEVEL_STRIDE; | ||
89 | } | ||
90 | |||
91 | static inline int width_to_agaw(int width) | ||
92 | { | ||
93 | return (width - 30) / LEVEL_STRIDE; | ||
94 | } | ||
95 | |||
96 | static inline unsigned int level_to_offset_bits(int level) | ||
97 | { | ||
98 | return (level - 1) * LEVEL_STRIDE; | ||
99 | } | ||
100 | |||
101 | static inline int pfn_level_offset(unsigned long pfn, int level) | ||
102 | { | ||
103 | return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; | ||
104 | } | ||
105 | |||
106 | static inline unsigned long level_mask(int level) | ||
107 | { | ||
108 | return -1UL << level_to_offset_bits(level); | ||
109 | } | ||
110 | |||
111 | static inline unsigned long level_size(int level) | ||
112 | { | ||
113 | return 1UL << level_to_offset_bits(level); | ||
114 | } | ||
115 | |||
116 | static inline unsigned long align_to_level(unsigned long pfn, int level) | ||
117 | { | ||
118 | return (pfn + level_size(level) - 1) & level_mask(level); | ||
119 | } | ||
120 | |||
121 | static inline unsigned long lvl_to_nr_pages(unsigned int lvl) | ||
122 | { | ||
123 | return 1 << ((lvl - 1) * LEVEL_STRIDE); | ||
124 | } | ||
125 | |||
126 | /* VT-d pages must always be _smaller_ than MM pages. Otherwise things | ||
127 | are never going to work. */ | ||
128 | static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) | ||
129 | { | ||
130 | return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); | ||
131 | } | ||
132 | |||
133 | static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) | ||
134 | { | ||
135 | return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); | ||
136 | } | ||
137 | static inline unsigned long page_to_dma_pfn(struct page *pg) | ||
138 | { | ||
139 | return mm_to_dma_pfn(page_to_pfn(pg)); | ||
140 | } | ||
141 | static inline unsigned long virt_to_dma_pfn(void *p) | ||
142 | { | ||
143 | return page_to_dma_pfn(virt_to_page(p)); | ||
144 | } | ||
145 | |||
146 | /* global iommu list, set NULL for ignored DMAR units */ | ||
147 | static struct intel_iommu **g_iommus; | ||
148 | |||
149 | static void __init check_tylersburg_isoch(void); | ||
150 | static int rwbf_quirk; | ||
151 | |||
152 | /* | ||
153 | * set to 1 to panic kernel if can't successfully enable VT-d | ||
154 | * (used when kernel is launched w/ TXT) | ||
155 | */ | ||
156 | static int force_on = 0; | ||
157 | |||
158 | /* | ||
159 | * 0: Present | ||
160 | * 1-11: Reserved | ||
161 | * 12-63: Context Ptr (12 - (haw-1)) | ||
162 | * 64-127: Reserved | ||
163 | */ | ||
164 | struct root_entry { | ||
165 | u64 val; | ||
166 | u64 rsvd1; | ||
167 | }; | ||
168 | #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) | ||
169 | static inline bool root_present(struct root_entry *root) | ||
170 | { | ||
171 | return (root->val & 1); | ||
172 | } | ||
173 | static inline void set_root_present(struct root_entry *root) | ||
174 | { | ||
175 | root->val |= 1; | ||
176 | } | ||
177 | static inline void set_root_value(struct root_entry *root, unsigned long value) | ||
178 | { | ||
179 | root->val |= value & VTD_PAGE_MASK; | ||
180 | } | ||
181 | |||
182 | static inline struct context_entry * | ||
183 | get_context_addr_from_root(struct root_entry *root) | ||
184 | { | ||
185 | return (struct context_entry *) | ||
186 | (root_present(root)?phys_to_virt( | ||
187 | root->val & VTD_PAGE_MASK) : | ||
188 | NULL); | ||
189 | } | ||
190 | |||
191 | /* | ||
192 | * low 64 bits: | ||
193 | * 0: present | ||
194 | * 1: fault processing disable | ||
195 | * 2-3: translation type | ||
196 | * 12-63: address space root | ||
197 | * high 64 bits: | ||
198 | * 0-2: address width | ||
199 | * 3-6: aval | ||
200 | * 8-23: domain id | ||
201 | */ | ||
202 | struct context_entry { | ||
203 | u64 lo; | ||
204 | u64 hi; | ||
205 | }; | ||
206 | |||
207 | static inline bool context_present(struct context_entry *context) | ||
208 | { | ||
209 | return (context->lo & 1); | ||
210 | } | ||
211 | static inline void context_set_present(struct context_entry *context) | ||
212 | { | ||
213 | context->lo |= 1; | ||
214 | } | ||
215 | |||
216 | static inline void context_set_fault_enable(struct context_entry *context) | ||
217 | { | ||
218 | context->lo &= (((u64)-1) << 2) | 1; | ||
219 | } | ||
220 | |||
221 | static inline void context_set_translation_type(struct context_entry *context, | ||
222 | unsigned long value) | ||
223 | { | ||
224 | context->lo &= (((u64)-1) << 4) | 3; | ||
225 | context->lo |= (value & 3) << 2; | ||
226 | } | ||
227 | |||
228 | static inline void context_set_address_root(struct context_entry *context, | ||
229 | unsigned long value) | ||
230 | { | ||
231 | context->lo |= value & VTD_PAGE_MASK; | ||
232 | } | ||
233 | |||
234 | static inline void context_set_address_width(struct context_entry *context, | ||
235 | unsigned long value) | ||
236 | { | ||
237 | context->hi |= value & 7; | ||
238 | } | ||
239 | |||
240 | static inline void context_set_domain_id(struct context_entry *context, | ||
241 | unsigned long value) | ||
242 | { | ||
243 | context->hi |= (value & ((1 << 16) - 1)) << 8; | ||
244 | } | ||
245 | |||
246 | static inline void context_clear_entry(struct context_entry *context) | ||
247 | { | ||
248 | context->lo = 0; | ||
249 | context->hi = 0; | ||
250 | } | ||
251 | |||
252 | /* | ||
253 | * 0: readable | ||
254 | * 1: writable | ||
255 | * 2-6: reserved | ||
256 | * 7: super page | ||
257 | * 8-10: available | ||
258 | * 11: snoop behavior | ||
259 | * 12-63: Host physcial address | ||
260 | */ | ||
261 | struct dma_pte { | ||
262 | u64 val; | ||
263 | }; | ||
264 | |||
265 | static inline void dma_clear_pte(struct dma_pte *pte) | ||
266 | { | ||
267 | pte->val = 0; | ||
268 | } | ||
269 | |||
270 | static inline void dma_set_pte_readable(struct dma_pte *pte) | ||
271 | { | ||
272 | pte->val |= DMA_PTE_READ; | ||
273 | } | ||
274 | |||
275 | static inline void dma_set_pte_writable(struct dma_pte *pte) | ||
276 | { | ||
277 | pte->val |= DMA_PTE_WRITE; | ||
278 | } | ||
279 | |||
280 | static inline void dma_set_pte_snp(struct dma_pte *pte) | ||
281 | { | ||
282 | pte->val |= DMA_PTE_SNP; | ||
283 | } | ||
284 | |||
285 | static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot) | ||
286 | { | ||
287 | pte->val = (pte->val & ~3) | (prot & 3); | ||
288 | } | ||
289 | |||
290 | static inline u64 dma_pte_addr(struct dma_pte *pte) | ||
291 | { | ||
292 | #ifdef CONFIG_64BIT | ||
293 | return pte->val & VTD_PAGE_MASK; | ||
294 | #else | ||
295 | /* Must have a full atomic 64-bit read */ | ||
296 | return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK; | ||
297 | #endif | ||
298 | } | ||
299 | |||
300 | static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn) | ||
301 | { | ||
302 | pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT; | ||
303 | } | ||
304 | |||
305 | static inline bool dma_pte_present(struct dma_pte *pte) | ||
306 | { | ||
307 | return (pte->val & 3) != 0; | ||
308 | } | ||
309 | |||
310 | static inline bool dma_pte_superpage(struct dma_pte *pte) | ||
311 | { | ||
312 | return (pte->val & (1 << 7)); | ||
313 | } | ||
314 | |||
315 | static inline int first_pte_in_page(struct dma_pte *pte) | ||
316 | { | ||
317 | return !((unsigned long)pte & ~VTD_PAGE_MASK); | ||
318 | } | ||
319 | |||
320 | /* | ||
321 | * This domain is a statically identity mapping domain. | ||
322 | * 1. This domain creats a static 1:1 mapping to all usable memory. | ||
323 | * 2. It maps to each iommu if successful. | ||
324 | * 3. Each iommu mapps to this domain if successful. | ||
325 | */ | ||
326 | static struct dmar_domain *si_domain; | ||
327 | static int hw_pass_through = 1; | ||
328 | |||
329 | /* devices under the same p2p bridge are owned in one domain */ | ||
330 | #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0) | ||
331 | |||
332 | /* domain represents a virtual machine, more than one devices | ||
333 | * across iommus may be owned in one domain, e.g. kvm guest. | ||
334 | */ | ||
335 | #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1) | ||
336 | |||
337 | /* si_domain contains mulitple devices */ | ||
338 | #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2) | ||
339 | |||
340 | struct dmar_domain { | ||
341 | int id; /* domain id */ | ||
342 | int nid; /* node id */ | ||
343 | unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/ | ||
344 | |||
345 | struct list_head devices; /* all devices' list */ | ||
346 | struct iova_domain iovad; /* iova's that belong to this domain */ | ||
347 | |||
348 | struct dma_pte *pgd; /* virtual address */ | ||
349 | int gaw; /* max guest address width */ | ||
350 | |||
351 | /* adjusted guest address width, 0 is level 2 30-bit */ | ||
352 | int agaw; | ||
353 | |||
354 | int flags; /* flags to find out type of domain */ | ||
355 | |||
356 | int iommu_coherency;/* indicate coherency of iommu access */ | ||
357 | int iommu_snooping; /* indicate snooping control feature*/ | ||
358 | int iommu_count; /* reference count of iommu */ | ||
359 | int iommu_superpage;/* Level of superpages supported: | ||
360 | 0 == 4KiB (no superpages), 1 == 2MiB, | ||
361 | 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */ | ||
362 | spinlock_t iommu_lock; /* protect iommu set in domain */ | ||
363 | u64 max_addr; /* maximum mapped address */ | ||
364 | }; | ||
365 | |||
366 | /* PCI domain-device relationship */ | ||
367 | struct device_domain_info { | ||
368 | struct list_head link; /* link to domain siblings */ | ||
369 | struct list_head global; /* link to global list */ | ||
370 | int segment; /* PCI domain */ | ||
371 | u8 bus; /* PCI bus number */ | ||
372 | u8 devfn; /* PCI devfn number */ | ||
373 | struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */ | ||
374 | struct intel_iommu *iommu; /* IOMMU used by this device */ | ||
375 | struct dmar_domain *domain; /* pointer to domain */ | ||
376 | }; | ||
377 | |||
378 | static void flush_unmaps_timeout(unsigned long data); | ||
379 | |||
380 | DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0); | ||
381 | |||
382 | #define HIGH_WATER_MARK 250 | ||
383 | struct deferred_flush_tables { | ||
384 | int next; | ||
385 | struct iova *iova[HIGH_WATER_MARK]; | ||
386 | struct dmar_domain *domain[HIGH_WATER_MARK]; | ||
387 | }; | ||
388 | |||
389 | static struct deferred_flush_tables *deferred_flush; | ||
390 | |||
391 | /* bitmap for indexing intel_iommus */ | ||
392 | static int g_num_of_iommus; | ||
393 | |||
394 | static DEFINE_SPINLOCK(async_umap_flush_lock); | ||
395 | static LIST_HEAD(unmaps_to_do); | ||
396 | |||
397 | static int timer_on; | ||
398 | static long list_size; | ||
399 | |||
400 | static void domain_remove_dev_info(struct dmar_domain *domain); | ||
401 | |||
402 | #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON | ||
403 | int dmar_disabled = 0; | ||
404 | #else | ||
405 | int dmar_disabled = 1; | ||
406 | #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/ | ||
407 | |||
408 | static int dmar_map_gfx = 1; | ||
409 | static int dmar_forcedac; | ||
410 | static int intel_iommu_strict; | ||
411 | static int intel_iommu_superpage = 1; | ||
412 | |||
413 | int intel_iommu_gfx_mapped; | ||
414 | EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); | ||
415 | |||
416 | #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) | ||
417 | static DEFINE_SPINLOCK(device_domain_lock); | ||
418 | static LIST_HEAD(device_domain_list); | ||
419 | |||
420 | static struct iommu_ops intel_iommu_ops; | ||
421 | |||
422 | static int __init intel_iommu_setup(char *str) | ||
423 | { | ||
424 | if (!str) | ||
425 | return -EINVAL; | ||
426 | while (*str) { | ||
427 | if (!strncmp(str, "on", 2)) { | ||
428 | dmar_disabled = 0; | ||
429 | printk(KERN_INFO "Intel-IOMMU: enabled\n"); | ||
430 | } else if (!strncmp(str, "off", 3)) { | ||
431 | dmar_disabled = 1; | ||
432 | printk(KERN_INFO "Intel-IOMMU: disabled\n"); | ||
433 | } else if (!strncmp(str, "igfx_off", 8)) { | ||
434 | dmar_map_gfx = 0; | ||
435 | printk(KERN_INFO | ||
436 | "Intel-IOMMU: disable GFX device mapping\n"); | ||
437 | } else if (!strncmp(str, "forcedac", 8)) { | ||
438 | printk(KERN_INFO | ||
439 | "Intel-IOMMU: Forcing DAC for PCI devices\n"); | ||
440 | dmar_forcedac = 1; | ||
441 | } else if (!strncmp(str, "strict", 6)) { | ||
442 | printk(KERN_INFO | ||
443 | "Intel-IOMMU: disable batched IOTLB flush\n"); | ||
444 | intel_iommu_strict = 1; | ||
445 | } else if (!strncmp(str, "sp_off", 6)) { | ||
446 | printk(KERN_INFO | ||
447 | "Intel-IOMMU: disable supported super page\n"); | ||
448 | intel_iommu_superpage = 0; | ||
449 | } | ||
450 | |||
451 | str += strcspn(str, ","); | ||
452 | while (*str == ',') | ||
453 | str++; | ||
454 | } | ||
455 | return 0; | ||
456 | } | ||
457 | __setup("intel_iommu=", intel_iommu_setup); | ||
458 | |||
459 | static struct kmem_cache *iommu_domain_cache; | ||
460 | static struct kmem_cache *iommu_devinfo_cache; | ||
461 | static struct kmem_cache *iommu_iova_cache; | ||
462 | |||
463 | static inline void *alloc_pgtable_page(int node) | ||
464 | { | ||
465 | struct page *page; | ||
466 | void *vaddr = NULL; | ||
467 | |||
468 | page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); | ||
469 | if (page) | ||
470 | vaddr = page_address(page); | ||
471 | return vaddr; | ||
472 | } | ||
473 | |||
474 | static inline void free_pgtable_page(void *vaddr) | ||
475 | { | ||
476 | free_page((unsigned long)vaddr); | ||
477 | } | ||
478 | |||
479 | static inline void *alloc_domain_mem(void) | ||
480 | { | ||
481 | return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); | ||
482 | } | ||
483 | |||
484 | static void free_domain_mem(void *vaddr) | ||
485 | { | ||
486 | kmem_cache_free(iommu_domain_cache, vaddr); | ||
487 | } | ||
488 | |||
489 | static inline void * alloc_devinfo_mem(void) | ||
490 | { | ||
491 | return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); | ||
492 | } | ||
493 | |||
494 | static inline void free_devinfo_mem(void *vaddr) | ||
495 | { | ||
496 | kmem_cache_free(iommu_devinfo_cache, vaddr); | ||
497 | } | ||
498 | |||
499 | struct iova *alloc_iova_mem(void) | ||
500 | { | ||
501 | return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC); | ||
502 | } | ||
503 | |||
504 | void free_iova_mem(struct iova *iova) | ||
505 | { | ||
506 | kmem_cache_free(iommu_iova_cache, iova); | ||
507 | } | ||
508 | |||
509 | |||
510 | static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) | ||
511 | { | ||
512 | unsigned long sagaw; | ||
513 | int agaw = -1; | ||
514 | |||
515 | sagaw = cap_sagaw(iommu->cap); | ||
516 | for (agaw = width_to_agaw(max_gaw); | ||
517 | agaw >= 0; agaw--) { | ||
518 | if (test_bit(agaw, &sagaw)) | ||
519 | break; | ||
520 | } | ||
521 | |||
522 | return agaw; | ||
523 | } | ||
524 | |||
525 | /* | ||
526 | * Calculate max SAGAW for each iommu. | ||
527 | */ | ||
528 | int iommu_calculate_max_sagaw(struct intel_iommu *iommu) | ||
529 | { | ||
530 | return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); | ||
531 | } | ||
532 | |||
533 | /* | ||
534 | * calculate agaw for each iommu. | ||
535 | * "SAGAW" may be different across iommus, use a default agaw, and | ||
536 | * get a supported less agaw for iommus that don't support the default agaw. | ||
537 | */ | ||
538 | int iommu_calculate_agaw(struct intel_iommu *iommu) | ||
539 | { | ||
540 | return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); | ||
541 | } | ||
542 | |||
543 | /* This functionin only returns single iommu in a domain */ | ||
544 | static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) | ||
545 | { | ||
546 | int iommu_id; | ||
547 | |||
548 | /* si_domain and vm domain should not get here. */ | ||
549 | BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE); | ||
550 | BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY); | ||
551 | |||
552 | iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); | ||
553 | if (iommu_id < 0 || iommu_id >= g_num_of_iommus) | ||
554 | return NULL; | ||
555 | |||
556 | return g_iommus[iommu_id]; | ||
557 | } | ||
558 | |||
559 | static void domain_update_iommu_coherency(struct dmar_domain *domain) | ||
560 | { | ||
561 | int i; | ||
562 | |||
563 | domain->iommu_coherency = 1; | ||
564 | |||
565 | for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) { | ||
566 | if (!ecap_coherent(g_iommus[i]->ecap)) { | ||
567 | domain->iommu_coherency = 0; | ||
568 | break; | ||
569 | } | ||
570 | } | ||
571 | } | ||
572 | |||
573 | static void domain_update_iommu_snooping(struct dmar_domain *domain) | ||
574 | { | ||
575 | int i; | ||
576 | |||
577 | domain->iommu_snooping = 1; | ||
578 | |||
579 | for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) { | ||
580 | if (!ecap_sc_support(g_iommus[i]->ecap)) { | ||
581 | domain->iommu_snooping = 0; | ||
582 | break; | ||
583 | } | ||
584 | } | ||
585 | } | ||
586 | |||
587 | static void domain_update_iommu_superpage(struct dmar_domain *domain) | ||
588 | { | ||
589 | struct dmar_drhd_unit *drhd; | ||
590 | struct intel_iommu *iommu = NULL; | ||
591 | int mask = 0xf; | ||
592 | |||
593 | if (!intel_iommu_superpage) { | ||
594 | domain->iommu_superpage = 0; | ||
595 | return; | ||
596 | } | ||
597 | |||
598 | /* set iommu_superpage to the smallest common denominator */ | ||
599 | for_each_active_iommu(iommu, drhd) { | ||
600 | mask &= cap_super_page_val(iommu->cap); | ||
601 | if (!mask) { | ||
602 | break; | ||
603 | } | ||
604 | } | ||
605 | domain->iommu_superpage = fls(mask); | ||
606 | } | ||
607 | |||
608 | /* Some capabilities may be different across iommus */ | ||
609 | static void domain_update_iommu_cap(struct dmar_domain *domain) | ||
610 | { | ||
611 | domain_update_iommu_coherency(domain); | ||
612 | domain_update_iommu_snooping(domain); | ||
613 | domain_update_iommu_superpage(domain); | ||
614 | } | ||
615 | |||
616 | static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn) | ||
617 | { | ||
618 | struct dmar_drhd_unit *drhd = NULL; | ||
619 | int i; | ||
620 | |||
621 | for_each_drhd_unit(drhd) { | ||
622 | if (drhd->ignored) | ||
623 | continue; | ||
624 | if (segment != drhd->segment) | ||
625 | continue; | ||
626 | |||
627 | for (i = 0; i < drhd->devices_cnt; i++) { | ||
628 | if (drhd->devices[i] && | ||
629 | drhd->devices[i]->bus->number == bus && | ||
630 | drhd->devices[i]->devfn == devfn) | ||
631 | return drhd->iommu; | ||
632 | if (drhd->devices[i] && | ||
633 | drhd->devices[i]->subordinate && | ||
634 | drhd->devices[i]->subordinate->number <= bus && | ||
635 | drhd->devices[i]->subordinate->subordinate >= bus) | ||
636 | return drhd->iommu; | ||
637 | } | ||
638 | |||
639 | if (drhd->include_all) | ||
640 | return drhd->iommu; | ||
641 | } | ||
642 | |||
643 | return NULL; | ||
644 | } | ||
645 | |||
646 | static void domain_flush_cache(struct dmar_domain *domain, | ||
647 | void *addr, int size) | ||
648 | { | ||
649 | if (!domain->iommu_coherency) | ||
650 | clflush_cache_range(addr, size); | ||
651 | } | ||
652 | |||
653 | /* Gets context entry for a given bus and devfn */ | ||
654 | static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, | ||
655 | u8 bus, u8 devfn) | ||
656 | { | ||
657 | struct root_entry *root; | ||
658 | struct context_entry *context; | ||
659 | unsigned long phy_addr; | ||
660 | unsigned long flags; | ||
661 | |||
662 | spin_lock_irqsave(&iommu->lock, flags); | ||
663 | root = &iommu->root_entry[bus]; | ||
664 | context = get_context_addr_from_root(root); | ||
665 | if (!context) { | ||
666 | context = (struct context_entry *) | ||
667 | alloc_pgtable_page(iommu->node); | ||
668 | if (!context) { | ||
669 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
670 | return NULL; | ||
671 | } | ||
672 | __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); | ||
673 | phy_addr = virt_to_phys((void *)context); | ||
674 | set_root_value(root, phy_addr); | ||
675 | set_root_present(root); | ||
676 | __iommu_flush_cache(iommu, root, sizeof(*root)); | ||
677 | } | ||
678 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
679 | return &context[devfn]; | ||
680 | } | ||
681 | |||
682 | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) | ||
683 | { | ||
684 | struct root_entry *root; | ||
685 | struct context_entry *context; | ||
686 | int ret; | ||
687 | unsigned long flags; | ||
688 | |||
689 | spin_lock_irqsave(&iommu->lock, flags); | ||
690 | root = &iommu->root_entry[bus]; | ||
691 | context = get_context_addr_from_root(root); | ||
692 | if (!context) { | ||
693 | ret = 0; | ||
694 | goto out; | ||
695 | } | ||
696 | ret = context_present(&context[devfn]); | ||
697 | out: | ||
698 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
699 | return ret; | ||
700 | } | ||
701 | |||
702 | static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) | ||
703 | { | ||
704 | struct root_entry *root; | ||
705 | struct context_entry *context; | ||
706 | unsigned long flags; | ||
707 | |||
708 | spin_lock_irqsave(&iommu->lock, flags); | ||
709 | root = &iommu->root_entry[bus]; | ||
710 | context = get_context_addr_from_root(root); | ||
711 | if (context) { | ||
712 | context_clear_entry(&context[devfn]); | ||
713 | __iommu_flush_cache(iommu, &context[devfn], \ | ||
714 | sizeof(*context)); | ||
715 | } | ||
716 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
717 | } | ||
718 | |||
719 | static void free_context_table(struct intel_iommu *iommu) | ||
720 | { | ||
721 | struct root_entry *root; | ||
722 | int i; | ||
723 | unsigned long flags; | ||
724 | struct context_entry *context; | ||
725 | |||
726 | spin_lock_irqsave(&iommu->lock, flags); | ||
727 | if (!iommu->root_entry) { | ||
728 | goto out; | ||
729 | } | ||
730 | for (i = 0; i < ROOT_ENTRY_NR; i++) { | ||
731 | root = &iommu->root_entry[i]; | ||
732 | context = get_context_addr_from_root(root); | ||
733 | if (context) | ||
734 | free_pgtable_page(context); | ||
735 | } | ||
736 | free_pgtable_page(iommu->root_entry); | ||
737 | iommu->root_entry = NULL; | ||
738 | out: | ||
739 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
740 | } | ||
741 | |||
742 | static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, | ||
743 | unsigned long pfn, int target_level) | ||
744 | { | ||
745 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | ||
746 | struct dma_pte *parent, *pte = NULL; | ||
747 | int level = agaw_to_level(domain->agaw); | ||
748 | int offset; | ||
749 | |||
750 | BUG_ON(!domain->pgd); | ||
751 | BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width); | ||
752 | parent = domain->pgd; | ||
753 | |||
754 | while (level > 0) { | ||
755 | void *tmp_page; | ||
756 | |||
757 | offset = pfn_level_offset(pfn, level); | ||
758 | pte = &parent[offset]; | ||
759 | if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) | ||
760 | break; | ||
761 | if (level == target_level) | ||
762 | break; | ||
763 | |||
764 | if (!dma_pte_present(pte)) { | ||
765 | uint64_t pteval; | ||
766 | |||
767 | tmp_page = alloc_pgtable_page(domain->nid); | ||
768 | |||
769 | if (!tmp_page) | ||
770 | return NULL; | ||
771 | |||
772 | domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); | ||
773 | pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; | ||
774 | if (cmpxchg64(&pte->val, 0ULL, pteval)) { | ||
775 | /* Someone else set it while we were thinking; use theirs. */ | ||
776 | free_pgtable_page(tmp_page); | ||
777 | } else { | ||
778 | dma_pte_addr(pte); | ||
779 | domain_flush_cache(domain, pte, sizeof(*pte)); | ||
780 | } | ||
781 | } | ||
782 | parent = phys_to_virt(dma_pte_addr(pte)); | ||
783 | level--; | ||
784 | } | ||
785 | |||
786 | return pte; | ||
787 | } | ||
788 | |||
789 | |||
790 | /* return address's pte at specific level */ | ||
791 | static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, | ||
792 | unsigned long pfn, | ||
793 | int level, int *large_page) | ||
794 | { | ||
795 | struct dma_pte *parent, *pte = NULL; | ||
796 | int total = agaw_to_level(domain->agaw); | ||
797 | int offset; | ||
798 | |||
799 | parent = domain->pgd; | ||
800 | while (level <= total) { | ||
801 | offset = pfn_level_offset(pfn, total); | ||
802 | pte = &parent[offset]; | ||
803 | if (level == total) | ||
804 | return pte; | ||
805 | |||
806 | if (!dma_pte_present(pte)) { | ||
807 | *large_page = total; | ||
808 | break; | ||
809 | } | ||
810 | |||
811 | if (pte->val & DMA_PTE_LARGE_PAGE) { | ||
812 | *large_page = total; | ||
813 | return pte; | ||
814 | } | ||
815 | |||
816 | parent = phys_to_virt(dma_pte_addr(pte)); | ||
817 | total--; | ||
818 | } | ||
819 | return NULL; | ||
820 | } | ||
821 | |||
822 | /* clear last level pte, a tlb flush should be followed */ | ||
823 | static int dma_pte_clear_range(struct dmar_domain *domain, | ||
824 | unsigned long start_pfn, | ||
825 | unsigned long last_pfn) | ||
826 | { | ||
827 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | ||
828 | unsigned int large_page = 1; | ||
829 | struct dma_pte *first_pte, *pte; | ||
830 | int order; | ||
831 | |||
832 | BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); | ||
833 | BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); | ||
834 | BUG_ON(start_pfn > last_pfn); | ||
835 | |||
836 | /* we don't need lock here; nobody else touches the iova range */ | ||
837 | do { | ||
838 | large_page = 1; | ||
839 | first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); | ||
840 | if (!pte) { | ||
841 | start_pfn = align_to_level(start_pfn + 1, large_page + 1); | ||
842 | continue; | ||
843 | } | ||
844 | do { | ||
845 | dma_clear_pte(pte); | ||
846 | start_pfn += lvl_to_nr_pages(large_page); | ||
847 | pte++; | ||
848 | } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); | ||
849 | |||
850 | domain_flush_cache(domain, first_pte, | ||
851 | (void *)pte - (void *)first_pte); | ||
852 | |||
853 | } while (start_pfn && start_pfn <= last_pfn); | ||
854 | |||
855 | order = (large_page - 1) * 9; | ||
856 | return order; | ||
857 | } | ||
858 | |||
859 | /* free page table pages. last level pte should already be cleared */ | ||
860 | static void dma_pte_free_pagetable(struct dmar_domain *domain, | ||
861 | unsigned long start_pfn, | ||
862 | unsigned long last_pfn) | ||
863 | { | ||
864 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | ||
865 | struct dma_pte *first_pte, *pte; | ||
866 | int total = agaw_to_level(domain->agaw); | ||
867 | int level; | ||
868 | unsigned long tmp; | ||
869 | int large_page = 2; | ||
870 | |||
871 | BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); | ||
872 | BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); | ||
873 | BUG_ON(start_pfn > last_pfn); | ||
874 | |||
875 | /* We don't need lock here; nobody else touches the iova range */ | ||
876 | level = 2; | ||
877 | while (level <= total) { | ||
878 | tmp = align_to_level(start_pfn, level); | ||
879 | |||
880 | /* If we can't even clear one PTE at this level, we're done */ | ||
881 | if (tmp + level_size(level) - 1 > last_pfn) | ||
882 | return; | ||
883 | |||
884 | do { | ||
885 | large_page = level; | ||
886 | first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page); | ||
887 | if (large_page > level) | ||
888 | level = large_page + 1; | ||
889 | if (!pte) { | ||
890 | tmp = align_to_level(tmp + 1, level + 1); | ||
891 | continue; | ||
892 | } | ||
893 | do { | ||
894 | if (dma_pte_present(pte)) { | ||
895 | free_pgtable_page(phys_to_virt(dma_pte_addr(pte))); | ||
896 | dma_clear_pte(pte); | ||
897 | } | ||
898 | pte++; | ||
899 | tmp += level_size(level); | ||
900 | } while (!first_pte_in_page(pte) && | ||
901 | tmp + level_size(level) - 1 <= last_pfn); | ||
902 | |||
903 | domain_flush_cache(domain, first_pte, | ||
904 | (void *)pte - (void *)first_pte); | ||
905 | |||
906 | } while (tmp && tmp + level_size(level) - 1 <= last_pfn); | ||
907 | level++; | ||
908 | } | ||
909 | /* free pgd */ | ||
910 | if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { | ||
911 | free_pgtable_page(domain->pgd); | ||
912 | domain->pgd = NULL; | ||
913 | } | ||
914 | } | ||
915 | |||
916 | /* iommu handling */ | ||
917 | static int iommu_alloc_root_entry(struct intel_iommu *iommu) | ||
918 | { | ||
919 | struct root_entry *root; | ||
920 | unsigned long flags; | ||
921 | |||
922 | root = (struct root_entry *)alloc_pgtable_page(iommu->node); | ||
923 | if (!root) | ||
924 | return -ENOMEM; | ||
925 | |||
926 | __iommu_flush_cache(iommu, root, ROOT_SIZE); | ||
927 | |||
928 | spin_lock_irqsave(&iommu->lock, flags); | ||
929 | iommu->root_entry = root; | ||
930 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
931 | |||
932 | return 0; | ||
933 | } | ||
934 | |||
935 | static void iommu_set_root_entry(struct intel_iommu *iommu) | ||
936 | { | ||
937 | void *addr; | ||
938 | u32 sts; | ||
939 | unsigned long flag; | ||
940 | |||
941 | addr = iommu->root_entry; | ||
942 | |||
943 | raw_spin_lock_irqsave(&iommu->register_lock, flag); | ||
944 | dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); | ||
945 | |||
946 | writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); | ||
947 | |||
948 | /* Make sure hardware complete it */ | ||
949 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
950 | readl, (sts & DMA_GSTS_RTPS), sts); | ||
951 | |||
952 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
953 | } | ||
954 | |||
955 | static void iommu_flush_write_buffer(struct intel_iommu *iommu) | ||
956 | { | ||
957 | u32 val; | ||
958 | unsigned long flag; | ||
959 | |||
960 | if (!rwbf_quirk && !cap_rwbf(iommu->cap)) | ||
961 | return; | ||
962 | |||
963 | raw_spin_lock_irqsave(&iommu->register_lock, flag); | ||
964 | writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); | ||
965 | |||
966 | /* Make sure hardware complete it */ | ||
967 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
968 | readl, (!(val & DMA_GSTS_WBFS)), val); | ||
969 | |||
970 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
971 | } | ||
972 | |||
973 | /* return value determine if we need a write buffer flush */ | ||
974 | static void __iommu_flush_context(struct intel_iommu *iommu, | ||
975 | u16 did, u16 source_id, u8 function_mask, | ||
976 | u64 type) | ||
977 | { | ||
978 | u64 val = 0; | ||
979 | unsigned long flag; | ||
980 | |||
981 | switch (type) { | ||
982 | case DMA_CCMD_GLOBAL_INVL: | ||
983 | val = DMA_CCMD_GLOBAL_INVL; | ||
984 | break; | ||
985 | case DMA_CCMD_DOMAIN_INVL: | ||
986 | val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); | ||
987 | break; | ||
988 | case DMA_CCMD_DEVICE_INVL: | ||
989 | val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | ||
990 | | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); | ||
991 | break; | ||
992 | default: | ||
993 | BUG(); | ||
994 | } | ||
995 | val |= DMA_CCMD_ICC; | ||
996 | |||
997 | raw_spin_lock_irqsave(&iommu->register_lock, flag); | ||
998 | dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); | ||
999 | |||
1000 | /* Make sure hardware complete it */ | ||
1001 | IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, | ||
1002 | dmar_readq, (!(val & DMA_CCMD_ICC)), val); | ||
1003 | |||
1004 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1005 | } | ||
1006 | |||
1007 | /* return value determine if we need a write buffer flush */ | ||
1008 | static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, | ||
1009 | u64 addr, unsigned int size_order, u64 type) | ||
1010 | { | ||
1011 | int tlb_offset = ecap_iotlb_offset(iommu->ecap); | ||
1012 | u64 val = 0, val_iva = 0; | ||
1013 | unsigned long flag; | ||
1014 | |||
1015 | switch (type) { | ||
1016 | case DMA_TLB_GLOBAL_FLUSH: | ||
1017 | /* global flush doesn't need set IVA_REG */ | ||
1018 | val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; | ||
1019 | break; | ||
1020 | case DMA_TLB_DSI_FLUSH: | ||
1021 | val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | ||
1022 | break; | ||
1023 | case DMA_TLB_PSI_FLUSH: | ||
1024 | val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | ||
1025 | /* Note: always flush non-leaf currently */ | ||
1026 | val_iva = size_order | addr; | ||
1027 | break; | ||
1028 | default: | ||
1029 | BUG(); | ||
1030 | } | ||
1031 | /* Note: set drain read/write */ | ||
1032 | #if 0 | ||
1033 | /* | ||
1034 | * This is probably to be super secure.. Looks like we can | ||
1035 | * ignore it without any impact. | ||
1036 | */ | ||
1037 | if (cap_read_drain(iommu->cap)) | ||
1038 | val |= DMA_TLB_READ_DRAIN; | ||
1039 | #endif | ||
1040 | if (cap_write_drain(iommu->cap)) | ||
1041 | val |= DMA_TLB_WRITE_DRAIN; | ||
1042 | |||
1043 | raw_spin_lock_irqsave(&iommu->register_lock, flag); | ||
1044 | /* Note: Only uses first TLB reg currently */ | ||
1045 | if (val_iva) | ||
1046 | dmar_writeq(iommu->reg + tlb_offset, val_iva); | ||
1047 | dmar_writeq(iommu->reg + tlb_offset + 8, val); | ||
1048 | |||
1049 | /* Make sure hardware complete it */ | ||
1050 | IOMMU_WAIT_OP(iommu, tlb_offset + 8, | ||
1051 | dmar_readq, (!(val & DMA_TLB_IVT)), val); | ||
1052 | |||
1053 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1054 | |||
1055 | /* check IOTLB invalidation granularity */ | ||
1056 | if (DMA_TLB_IAIG(val) == 0) | ||
1057 | printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); | ||
1058 | if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) | ||
1059 | pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", | ||
1060 | (unsigned long long)DMA_TLB_IIRG(type), | ||
1061 | (unsigned long long)DMA_TLB_IAIG(val)); | ||
1062 | } | ||
1063 | |||
1064 | static struct device_domain_info *iommu_support_dev_iotlb( | ||
1065 | struct dmar_domain *domain, int segment, u8 bus, u8 devfn) | ||
1066 | { | ||
1067 | int found = 0; | ||
1068 | unsigned long flags; | ||
1069 | struct device_domain_info *info; | ||
1070 | struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn); | ||
1071 | |||
1072 | if (!ecap_dev_iotlb_support(iommu->ecap)) | ||
1073 | return NULL; | ||
1074 | |||
1075 | if (!iommu->qi) | ||
1076 | return NULL; | ||
1077 | |||
1078 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1079 | list_for_each_entry(info, &domain->devices, link) | ||
1080 | if (info->bus == bus && info->devfn == devfn) { | ||
1081 | found = 1; | ||
1082 | break; | ||
1083 | } | ||
1084 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1085 | |||
1086 | if (!found || !info->dev) | ||
1087 | return NULL; | ||
1088 | |||
1089 | if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS)) | ||
1090 | return NULL; | ||
1091 | |||
1092 | if (!dmar_find_matched_atsr_unit(info->dev)) | ||
1093 | return NULL; | ||
1094 | |||
1095 | info->iommu = iommu; | ||
1096 | |||
1097 | return info; | ||
1098 | } | ||
1099 | |||
1100 | static void iommu_enable_dev_iotlb(struct device_domain_info *info) | ||
1101 | { | ||
1102 | if (!info) | ||
1103 | return; | ||
1104 | |||
1105 | pci_enable_ats(info->dev, VTD_PAGE_SHIFT); | ||
1106 | } | ||
1107 | |||
1108 | static void iommu_disable_dev_iotlb(struct device_domain_info *info) | ||
1109 | { | ||
1110 | if (!info->dev || !pci_ats_enabled(info->dev)) | ||
1111 | return; | ||
1112 | |||
1113 | pci_disable_ats(info->dev); | ||
1114 | } | ||
1115 | |||
1116 | static void iommu_flush_dev_iotlb(struct dmar_domain *domain, | ||
1117 | u64 addr, unsigned mask) | ||
1118 | { | ||
1119 | u16 sid, qdep; | ||
1120 | unsigned long flags; | ||
1121 | struct device_domain_info *info; | ||
1122 | |||
1123 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1124 | list_for_each_entry(info, &domain->devices, link) { | ||
1125 | if (!info->dev || !pci_ats_enabled(info->dev)) | ||
1126 | continue; | ||
1127 | |||
1128 | sid = info->bus << 8 | info->devfn; | ||
1129 | qdep = pci_ats_queue_depth(info->dev); | ||
1130 | qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask); | ||
1131 | } | ||
1132 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1133 | } | ||
1134 | |||
1135 | static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, | ||
1136 | unsigned long pfn, unsigned int pages, int map) | ||
1137 | { | ||
1138 | unsigned int mask = ilog2(__roundup_pow_of_two(pages)); | ||
1139 | uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; | ||
1140 | |||
1141 | BUG_ON(pages == 0); | ||
1142 | |||
1143 | /* | ||
1144 | * Fallback to domain selective flush if no PSI support or the size is | ||
1145 | * too big. | ||
1146 | * PSI requires page size to be 2 ^ x, and the base address is naturally | ||
1147 | * aligned to the size | ||
1148 | */ | ||
1149 | if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap)) | ||
1150 | iommu->flush.flush_iotlb(iommu, did, 0, 0, | ||
1151 | DMA_TLB_DSI_FLUSH); | ||
1152 | else | ||
1153 | iommu->flush.flush_iotlb(iommu, did, addr, mask, | ||
1154 | DMA_TLB_PSI_FLUSH); | ||
1155 | |||
1156 | /* | ||
1157 | * In caching mode, changes of pages from non-present to present require | ||
1158 | * flush. However, device IOTLB doesn't need to be flushed in this case. | ||
1159 | */ | ||
1160 | if (!cap_caching_mode(iommu->cap) || !map) | ||
1161 | iommu_flush_dev_iotlb(iommu->domains[did], addr, mask); | ||
1162 | } | ||
1163 | |||
1164 | static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) | ||
1165 | { | ||
1166 | u32 pmen; | ||
1167 | unsigned long flags; | ||
1168 | |||
1169 | raw_spin_lock_irqsave(&iommu->register_lock, flags); | ||
1170 | pmen = readl(iommu->reg + DMAR_PMEN_REG); | ||
1171 | pmen &= ~DMA_PMEN_EPM; | ||
1172 | writel(pmen, iommu->reg + DMAR_PMEN_REG); | ||
1173 | |||
1174 | /* wait for the protected region status bit to clear */ | ||
1175 | IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, | ||
1176 | readl, !(pmen & DMA_PMEN_PRS), pmen); | ||
1177 | |||
1178 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); | ||
1179 | } | ||
1180 | |||
1181 | static int iommu_enable_translation(struct intel_iommu *iommu) | ||
1182 | { | ||
1183 | u32 sts; | ||
1184 | unsigned long flags; | ||
1185 | |||
1186 | raw_spin_lock_irqsave(&iommu->register_lock, flags); | ||
1187 | iommu->gcmd |= DMA_GCMD_TE; | ||
1188 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | ||
1189 | |||
1190 | /* Make sure hardware complete it */ | ||
1191 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
1192 | readl, (sts & DMA_GSTS_TES), sts); | ||
1193 | |||
1194 | raw_spin_unlock_irqrestore(&iommu->register_lock, flags); | ||
1195 | return 0; | ||
1196 | } | ||
1197 | |||
1198 | static int iommu_disable_translation(struct intel_iommu *iommu) | ||
1199 | { | ||
1200 | u32 sts; | ||
1201 | unsigned long flag; | ||
1202 | |||
1203 | raw_spin_lock_irqsave(&iommu->register_lock, flag); | ||
1204 | iommu->gcmd &= ~DMA_GCMD_TE; | ||
1205 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | ||
1206 | |||
1207 | /* Make sure hardware complete it */ | ||
1208 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
1209 | readl, (!(sts & DMA_GSTS_TES)), sts); | ||
1210 | |||
1211 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1212 | return 0; | ||
1213 | } | ||
1214 | |||
1215 | |||
1216 | static int iommu_init_domains(struct intel_iommu *iommu) | ||
1217 | { | ||
1218 | unsigned long ndomains; | ||
1219 | unsigned long nlongs; | ||
1220 | |||
1221 | ndomains = cap_ndoms(iommu->cap); | ||
1222 | pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id, | ||
1223 | ndomains); | ||
1224 | nlongs = BITS_TO_LONGS(ndomains); | ||
1225 | |||
1226 | spin_lock_init(&iommu->lock); | ||
1227 | |||
1228 | /* TBD: there might be 64K domains, | ||
1229 | * consider other allocation for future chip | ||
1230 | */ | ||
1231 | iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); | ||
1232 | if (!iommu->domain_ids) { | ||
1233 | printk(KERN_ERR "Allocating domain id array failed\n"); | ||
1234 | return -ENOMEM; | ||
1235 | } | ||
1236 | iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), | ||
1237 | GFP_KERNEL); | ||
1238 | if (!iommu->domains) { | ||
1239 | printk(KERN_ERR "Allocating domain array failed\n"); | ||
1240 | return -ENOMEM; | ||
1241 | } | ||
1242 | |||
1243 | /* | ||
1244 | * if Caching mode is set, then invalid translations are tagged | ||
1245 | * with domainid 0. Hence we need to pre-allocate it. | ||
1246 | */ | ||
1247 | if (cap_caching_mode(iommu->cap)) | ||
1248 | set_bit(0, iommu->domain_ids); | ||
1249 | return 0; | ||
1250 | } | ||
1251 | |||
1252 | |||
1253 | static void domain_exit(struct dmar_domain *domain); | ||
1254 | static void vm_domain_exit(struct dmar_domain *domain); | ||
1255 | |||
1256 | void free_dmar_iommu(struct intel_iommu *iommu) | ||
1257 | { | ||
1258 | struct dmar_domain *domain; | ||
1259 | int i; | ||
1260 | unsigned long flags; | ||
1261 | |||
1262 | if ((iommu->domains) && (iommu->domain_ids)) { | ||
1263 | for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) { | ||
1264 | domain = iommu->domains[i]; | ||
1265 | clear_bit(i, iommu->domain_ids); | ||
1266 | |||
1267 | spin_lock_irqsave(&domain->iommu_lock, flags); | ||
1268 | if (--domain->iommu_count == 0) { | ||
1269 | if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) | ||
1270 | vm_domain_exit(domain); | ||
1271 | else | ||
1272 | domain_exit(domain); | ||
1273 | } | ||
1274 | spin_unlock_irqrestore(&domain->iommu_lock, flags); | ||
1275 | } | ||
1276 | } | ||
1277 | |||
1278 | if (iommu->gcmd & DMA_GCMD_TE) | ||
1279 | iommu_disable_translation(iommu); | ||
1280 | |||
1281 | if (iommu->irq) { | ||
1282 | irq_set_handler_data(iommu->irq, NULL); | ||
1283 | /* This will mask the irq */ | ||
1284 | free_irq(iommu->irq, iommu); | ||
1285 | destroy_irq(iommu->irq); | ||
1286 | } | ||
1287 | |||
1288 | kfree(iommu->domains); | ||
1289 | kfree(iommu->domain_ids); | ||
1290 | |||
1291 | g_iommus[iommu->seq_id] = NULL; | ||
1292 | |||
1293 | /* if all iommus are freed, free g_iommus */ | ||
1294 | for (i = 0; i < g_num_of_iommus; i++) { | ||
1295 | if (g_iommus[i]) | ||
1296 | break; | ||
1297 | } | ||
1298 | |||
1299 | if (i == g_num_of_iommus) | ||
1300 | kfree(g_iommus); | ||
1301 | |||
1302 | /* free context mapping */ | ||
1303 | free_context_table(iommu); | ||
1304 | } | ||
1305 | |||
1306 | static struct dmar_domain *alloc_domain(void) | ||
1307 | { | ||
1308 | struct dmar_domain *domain; | ||
1309 | |||
1310 | domain = alloc_domain_mem(); | ||
1311 | if (!domain) | ||
1312 | return NULL; | ||
1313 | |||
1314 | domain->nid = -1; | ||
1315 | memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); | ||
1316 | domain->flags = 0; | ||
1317 | |||
1318 | return domain; | ||
1319 | } | ||
1320 | |||
1321 | static int iommu_attach_domain(struct dmar_domain *domain, | ||
1322 | struct intel_iommu *iommu) | ||
1323 | { | ||
1324 | int num; | ||
1325 | unsigned long ndomains; | ||
1326 | unsigned long flags; | ||
1327 | |||
1328 | ndomains = cap_ndoms(iommu->cap); | ||
1329 | |||
1330 | spin_lock_irqsave(&iommu->lock, flags); | ||
1331 | |||
1332 | num = find_first_zero_bit(iommu->domain_ids, ndomains); | ||
1333 | if (num >= ndomains) { | ||
1334 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1335 | printk(KERN_ERR "IOMMU: no free domain ids\n"); | ||
1336 | return -ENOMEM; | ||
1337 | } | ||
1338 | |||
1339 | domain->id = num; | ||
1340 | set_bit(num, iommu->domain_ids); | ||
1341 | set_bit(iommu->seq_id, &domain->iommu_bmp); | ||
1342 | iommu->domains[num] = domain; | ||
1343 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1344 | |||
1345 | return 0; | ||
1346 | } | ||
1347 | |||
1348 | static void iommu_detach_domain(struct dmar_domain *domain, | ||
1349 | struct intel_iommu *iommu) | ||
1350 | { | ||
1351 | unsigned long flags; | ||
1352 | int num, ndomains; | ||
1353 | int found = 0; | ||
1354 | |||
1355 | spin_lock_irqsave(&iommu->lock, flags); | ||
1356 | ndomains = cap_ndoms(iommu->cap); | ||
1357 | for_each_set_bit(num, iommu->domain_ids, ndomains) { | ||
1358 | if (iommu->domains[num] == domain) { | ||
1359 | found = 1; | ||
1360 | break; | ||
1361 | } | ||
1362 | } | ||
1363 | |||
1364 | if (found) { | ||
1365 | clear_bit(num, iommu->domain_ids); | ||
1366 | clear_bit(iommu->seq_id, &domain->iommu_bmp); | ||
1367 | iommu->domains[num] = NULL; | ||
1368 | } | ||
1369 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1370 | } | ||
1371 | |||
1372 | static struct iova_domain reserved_iova_list; | ||
1373 | static struct lock_class_key reserved_rbtree_key; | ||
1374 | |||
1375 | static int dmar_init_reserved_ranges(void) | ||
1376 | { | ||
1377 | struct pci_dev *pdev = NULL; | ||
1378 | struct iova *iova; | ||
1379 | int i; | ||
1380 | |||
1381 | init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); | ||
1382 | |||
1383 | lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, | ||
1384 | &reserved_rbtree_key); | ||
1385 | |||
1386 | /* IOAPIC ranges shouldn't be accessed by DMA */ | ||
1387 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), | ||
1388 | IOVA_PFN(IOAPIC_RANGE_END)); | ||
1389 | if (!iova) { | ||
1390 | printk(KERN_ERR "Reserve IOAPIC range failed\n"); | ||
1391 | return -ENODEV; | ||
1392 | } | ||
1393 | |||
1394 | /* Reserve all PCI MMIO to avoid peer-to-peer access */ | ||
1395 | for_each_pci_dev(pdev) { | ||
1396 | struct resource *r; | ||
1397 | |||
1398 | for (i = 0; i < PCI_NUM_RESOURCES; i++) { | ||
1399 | r = &pdev->resource[i]; | ||
1400 | if (!r->flags || !(r->flags & IORESOURCE_MEM)) | ||
1401 | continue; | ||
1402 | iova = reserve_iova(&reserved_iova_list, | ||
1403 | IOVA_PFN(r->start), | ||
1404 | IOVA_PFN(r->end)); | ||
1405 | if (!iova) { | ||
1406 | printk(KERN_ERR "Reserve iova failed\n"); | ||
1407 | return -ENODEV; | ||
1408 | } | ||
1409 | } | ||
1410 | } | ||
1411 | return 0; | ||
1412 | } | ||
1413 | |||
1414 | static void domain_reserve_special_ranges(struct dmar_domain *domain) | ||
1415 | { | ||
1416 | copy_reserved_iova(&reserved_iova_list, &domain->iovad); | ||
1417 | } | ||
1418 | |||
1419 | static inline int guestwidth_to_adjustwidth(int gaw) | ||
1420 | { | ||
1421 | int agaw; | ||
1422 | int r = (gaw - 12) % 9; | ||
1423 | |||
1424 | if (r == 0) | ||
1425 | agaw = gaw; | ||
1426 | else | ||
1427 | agaw = gaw + 9 - r; | ||
1428 | if (agaw > 64) | ||
1429 | agaw = 64; | ||
1430 | return agaw; | ||
1431 | } | ||
1432 | |||
1433 | static int domain_init(struct dmar_domain *domain, int guest_width) | ||
1434 | { | ||
1435 | struct intel_iommu *iommu; | ||
1436 | int adjust_width, agaw; | ||
1437 | unsigned long sagaw; | ||
1438 | |||
1439 | init_iova_domain(&domain->iovad, DMA_32BIT_PFN); | ||
1440 | spin_lock_init(&domain->iommu_lock); | ||
1441 | |||
1442 | domain_reserve_special_ranges(domain); | ||
1443 | |||
1444 | /* calculate AGAW */ | ||
1445 | iommu = domain_get_iommu(domain); | ||
1446 | if (guest_width > cap_mgaw(iommu->cap)) | ||
1447 | guest_width = cap_mgaw(iommu->cap); | ||
1448 | domain->gaw = guest_width; | ||
1449 | adjust_width = guestwidth_to_adjustwidth(guest_width); | ||
1450 | agaw = width_to_agaw(adjust_width); | ||
1451 | sagaw = cap_sagaw(iommu->cap); | ||
1452 | if (!test_bit(agaw, &sagaw)) { | ||
1453 | /* hardware doesn't support it, choose a bigger one */ | ||
1454 | pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); | ||
1455 | agaw = find_next_bit(&sagaw, 5, agaw); | ||
1456 | if (agaw >= 5) | ||
1457 | return -ENODEV; | ||
1458 | } | ||
1459 | domain->agaw = agaw; | ||
1460 | INIT_LIST_HEAD(&domain->devices); | ||
1461 | |||
1462 | if (ecap_coherent(iommu->ecap)) | ||
1463 | domain->iommu_coherency = 1; | ||
1464 | else | ||
1465 | domain->iommu_coherency = 0; | ||
1466 | |||
1467 | if (ecap_sc_support(iommu->ecap)) | ||
1468 | domain->iommu_snooping = 1; | ||
1469 | else | ||
1470 | domain->iommu_snooping = 0; | ||
1471 | |||
1472 | domain->iommu_superpage = fls(cap_super_page_val(iommu->cap)); | ||
1473 | domain->iommu_count = 1; | ||
1474 | domain->nid = iommu->node; | ||
1475 | |||
1476 | /* always allocate the top pgd */ | ||
1477 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); | ||
1478 | if (!domain->pgd) | ||
1479 | return -ENOMEM; | ||
1480 | __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE); | ||
1481 | return 0; | ||
1482 | } | ||
1483 | |||
1484 | static void domain_exit(struct dmar_domain *domain) | ||
1485 | { | ||
1486 | struct dmar_drhd_unit *drhd; | ||
1487 | struct intel_iommu *iommu; | ||
1488 | |||
1489 | /* Domain 0 is reserved, so dont process it */ | ||
1490 | if (!domain) | ||
1491 | return; | ||
1492 | |||
1493 | /* Flush any lazy unmaps that may reference this domain */ | ||
1494 | if (!intel_iommu_strict) | ||
1495 | flush_unmaps_timeout(0); | ||
1496 | |||
1497 | domain_remove_dev_info(domain); | ||
1498 | /* destroy iovas */ | ||
1499 | put_iova_domain(&domain->iovad); | ||
1500 | |||
1501 | /* clear ptes */ | ||
1502 | dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | ||
1503 | |||
1504 | /* free page tables */ | ||
1505 | dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | ||
1506 | |||
1507 | for_each_active_iommu(iommu, drhd) | ||
1508 | if (test_bit(iommu->seq_id, &domain->iommu_bmp)) | ||
1509 | iommu_detach_domain(domain, iommu); | ||
1510 | |||
1511 | free_domain_mem(domain); | ||
1512 | } | ||
1513 | |||
1514 | static int domain_context_mapping_one(struct dmar_domain *domain, int segment, | ||
1515 | u8 bus, u8 devfn, int translation) | ||
1516 | { | ||
1517 | struct context_entry *context; | ||
1518 | unsigned long flags; | ||
1519 | struct intel_iommu *iommu; | ||
1520 | struct dma_pte *pgd; | ||
1521 | unsigned long num; | ||
1522 | unsigned long ndomains; | ||
1523 | int id; | ||
1524 | int agaw; | ||
1525 | struct device_domain_info *info = NULL; | ||
1526 | |||
1527 | pr_debug("Set context mapping for %02x:%02x.%d\n", | ||
1528 | bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); | ||
1529 | |||
1530 | BUG_ON(!domain->pgd); | ||
1531 | BUG_ON(translation != CONTEXT_TT_PASS_THROUGH && | ||
1532 | translation != CONTEXT_TT_MULTI_LEVEL); | ||
1533 | |||
1534 | iommu = device_to_iommu(segment, bus, devfn); | ||
1535 | if (!iommu) | ||
1536 | return -ENODEV; | ||
1537 | |||
1538 | context = device_to_context_entry(iommu, bus, devfn); | ||
1539 | if (!context) | ||
1540 | return -ENOMEM; | ||
1541 | spin_lock_irqsave(&iommu->lock, flags); | ||
1542 | if (context_present(context)) { | ||
1543 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1544 | return 0; | ||
1545 | } | ||
1546 | |||
1547 | id = domain->id; | ||
1548 | pgd = domain->pgd; | ||
1549 | |||
1550 | if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || | ||
1551 | domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) { | ||
1552 | int found = 0; | ||
1553 | |||
1554 | /* find an available domain id for this device in iommu */ | ||
1555 | ndomains = cap_ndoms(iommu->cap); | ||
1556 | for_each_set_bit(num, iommu->domain_ids, ndomains) { | ||
1557 | if (iommu->domains[num] == domain) { | ||
1558 | id = num; | ||
1559 | found = 1; | ||
1560 | break; | ||
1561 | } | ||
1562 | } | ||
1563 | |||
1564 | if (found == 0) { | ||
1565 | num = find_first_zero_bit(iommu->domain_ids, ndomains); | ||
1566 | if (num >= ndomains) { | ||
1567 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1568 | printk(KERN_ERR "IOMMU: no free domain ids\n"); | ||
1569 | return -EFAULT; | ||
1570 | } | ||
1571 | |||
1572 | set_bit(num, iommu->domain_ids); | ||
1573 | iommu->domains[num] = domain; | ||
1574 | id = num; | ||
1575 | } | ||
1576 | |||
1577 | /* Skip top levels of page tables for | ||
1578 | * iommu which has less agaw than default. | ||
1579 | * Unnecessary for PT mode. | ||
1580 | */ | ||
1581 | if (translation != CONTEXT_TT_PASS_THROUGH) { | ||
1582 | for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) { | ||
1583 | pgd = phys_to_virt(dma_pte_addr(pgd)); | ||
1584 | if (!dma_pte_present(pgd)) { | ||
1585 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1586 | return -ENOMEM; | ||
1587 | } | ||
1588 | } | ||
1589 | } | ||
1590 | } | ||
1591 | |||
1592 | context_set_domain_id(context, id); | ||
1593 | |||
1594 | if (translation != CONTEXT_TT_PASS_THROUGH) { | ||
1595 | info = iommu_support_dev_iotlb(domain, segment, bus, devfn); | ||
1596 | translation = info ? CONTEXT_TT_DEV_IOTLB : | ||
1597 | CONTEXT_TT_MULTI_LEVEL; | ||
1598 | } | ||
1599 | /* | ||
1600 | * In pass through mode, AW must be programmed to indicate the largest | ||
1601 | * AGAW value supported by hardware. And ASR is ignored by hardware. | ||
1602 | */ | ||
1603 | if (unlikely(translation == CONTEXT_TT_PASS_THROUGH)) | ||
1604 | context_set_address_width(context, iommu->msagaw); | ||
1605 | else { | ||
1606 | context_set_address_root(context, virt_to_phys(pgd)); | ||
1607 | context_set_address_width(context, iommu->agaw); | ||
1608 | } | ||
1609 | |||
1610 | context_set_translation_type(context, translation); | ||
1611 | context_set_fault_enable(context); | ||
1612 | context_set_present(context); | ||
1613 | domain_flush_cache(domain, context, sizeof(*context)); | ||
1614 | |||
1615 | /* | ||
1616 | * It's a non-present to present mapping. If hardware doesn't cache | ||
1617 | * non-present entry we only need to flush the write-buffer. If the | ||
1618 | * _does_ cache non-present entries, then it does so in the special | ||
1619 | * domain #0, which we have to flush: | ||
1620 | */ | ||
1621 | if (cap_caching_mode(iommu->cap)) { | ||
1622 | iommu->flush.flush_context(iommu, 0, | ||
1623 | (((u16)bus) << 8) | devfn, | ||
1624 | DMA_CCMD_MASK_NOBIT, | ||
1625 | DMA_CCMD_DEVICE_INVL); | ||
1626 | iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH); | ||
1627 | } else { | ||
1628 | iommu_flush_write_buffer(iommu); | ||
1629 | } | ||
1630 | iommu_enable_dev_iotlb(info); | ||
1631 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1632 | |||
1633 | spin_lock_irqsave(&domain->iommu_lock, flags); | ||
1634 | if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) { | ||
1635 | domain->iommu_count++; | ||
1636 | if (domain->iommu_count == 1) | ||
1637 | domain->nid = iommu->node; | ||
1638 | domain_update_iommu_cap(domain); | ||
1639 | } | ||
1640 | spin_unlock_irqrestore(&domain->iommu_lock, flags); | ||
1641 | return 0; | ||
1642 | } | ||
1643 | |||
1644 | static int | ||
1645 | domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev, | ||
1646 | int translation) | ||
1647 | { | ||
1648 | int ret; | ||
1649 | struct pci_dev *tmp, *parent; | ||
1650 | |||
1651 | ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus), | ||
1652 | pdev->bus->number, pdev->devfn, | ||
1653 | translation); | ||
1654 | if (ret) | ||
1655 | return ret; | ||
1656 | |||
1657 | /* dependent device mapping */ | ||
1658 | tmp = pci_find_upstream_pcie_bridge(pdev); | ||
1659 | if (!tmp) | ||
1660 | return 0; | ||
1661 | /* Secondary interface's bus number and devfn 0 */ | ||
1662 | parent = pdev->bus->self; | ||
1663 | while (parent != tmp) { | ||
1664 | ret = domain_context_mapping_one(domain, | ||
1665 | pci_domain_nr(parent->bus), | ||
1666 | parent->bus->number, | ||
1667 | parent->devfn, translation); | ||
1668 | if (ret) | ||
1669 | return ret; | ||
1670 | parent = parent->bus->self; | ||
1671 | } | ||
1672 | if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ | ||
1673 | return domain_context_mapping_one(domain, | ||
1674 | pci_domain_nr(tmp->subordinate), | ||
1675 | tmp->subordinate->number, 0, | ||
1676 | translation); | ||
1677 | else /* this is a legacy PCI bridge */ | ||
1678 | return domain_context_mapping_one(domain, | ||
1679 | pci_domain_nr(tmp->bus), | ||
1680 | tmp->bus->number, | ||
1681 | tmp->devfn, | ||
1682 | translation); | ||
1683 | } | ||
1684 | |||
1685 | static int domain_context_mapped(struct pci_dev *pdev) | ||
1686 | { | ||
1687 | int ret; | ||
1688 | struct pci_dev *tmp, *parent; | ||
1689 | struct intel_iommu *iommu; | ||
1690 | |||
1691 | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, | ||
1692 | pdev->devfn); | ||
1693 | if (!iommu) | ||
1694 | return -ENODEV; | ||
1695 | |||
1696 | ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn); | ||
1697 | if (!ret) | ||
1698 | return ret; | ||
1699 | /* dependent device mapping */ | ||
1700 | tmp = pci_find_upstream_pcie_bridge(pdev); | ||
1701 | if (!tmp) | ||
1702 | return ret; | ||
1703 | /* Secondary interface's bus number and devfn 0 */ | ||
1704 | parent = pdev->bus->self; | ||
1705 | while (parent != tmp) { | ||
1706 | ret = device_context_mapped(iommu, parent->bus->number, | ||
1707 | parent->devfn); | ||
1708 | if (!ret) | ||
1709 | return ret; | ||
1710 | parent = parent->bus->self; | ||
1711 | } | ||
1712 | if (pci_is_pcie(tmp)) | ||
1713 | return device_context_mapped(iommu, tmp->subordinate->number, | ||
1714 | 0); | ||
1715 | else | ||
1716 | return device_context_mapped(iommu, tmp->bus->number, | ||
1717 | tmp->devfn); | ||
1718 | } | ||
1719 | |||
1720 | /* Returns a number of VTD pages, but aligned to MM page size */ | ||
1721 | static inline unsigned long aligned_nrpages(unsigned long host_addr, | ||
1722 | size_t size) | ||
1723 | { | ||
1724 | host_addr &= ~PAGE_MASK; | ||
1725 | return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; | ||
1726 | } | ||
1727 | |||
1728 | /* Return largest possible superpage level for a given mapping */ | ||
1729 | static inline int hardware_largepage_caps(struct dmar_domain *domain, | ||
1730 | unsigned long iov_pfn, | ||
1731 | unsigned long phy_pfn, | ||
1732 | unsigned long pages) | ||
1733 | { | ||
1734 | int support, level = 1; | ||
1735 | unsigned long pfnmerge; | ||
1736 | |||
1737 | support = domain->iommu_superpage; | ||
1738 | |||
1739 | /* To use a large page, the virtual *and* physical addresses | ||
1740 | must be aligned to 2MiB/1GiB/etc. Lower bits set in either | ||
1741 | of them will mean we have to use smaller pages. So just | ||
1742 | merge them and check both at once. */ | ||
1743 | pfnmerge = iov_pfn | phy_pfn; | ||
1744 | |||
1745 | while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { | ||
1746 | pages >>= VTD_STRIDE_SHIFT; | ||
1747 | if (!pages) | ||
1748 | break; | ||
1749 | pfnmerge >>= VTD_STRIDE_SHIFT; | ||
1750 | level++; | ||
1751 | support--; | ||
1752 | } | ||
1753 | return level; | ||
1754 | } | ||
1755 | |||
1756 | static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | ||
1757 | struct scatterlist *sg, unsigned long phys_pfn, | ||
1758 | unsigned long nr_pages, int prot) | ||
1759 | { | ||
1760 | struct dma_pte *first_pte = NULL, *pte = NULL; | ||
1761 | phys_addr_t uninitialized_var(pteval); | ||
1762 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | ||
1763 | unsigned long sg_res; | ||
1764 | unsigned int largepage_lvl = 0; | ||
1765 | unsigned long lvl_pages = 0; | ||
1766 | |||
1767 | BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width); | ||
1768 | |||
1769 | if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) | ||
1770 | return -EINVAL; | ||
1771 | |||
1772 | prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP; | ||
1773 | |||
1774 | if (sg) | ||
1775 | sg_res = 0; | ||
1776 | else { | ||
1777 | sg_res = nr_pages + 1; | ||
1778 | pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot; | ||
1779 | } | ||
1780 | |||
1781 | while (nr_pages > 0) { | ||
1782 | uint64_t tmp; | ||
1783 | |||
1784 | if (!sg_res) { | ||
1785 | sg_res = aligned_nrpages(sg->offset, sg->length); | ||
1786 | sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset; | ||
1787 | sg->dma_length = sg->length; | ||
1788 | pteval = page_to_phys(sg_page(sg)) | prot; | ||
1789 | phys_pfn = pteval >> VTD_PAGE_SHIFT; | ||
1790 | } | ||
1791 | |||
1792 | if (!pte) { | ||
1793 | largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res); | ||
1794 | |||
1795 | first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl); | ||
1796 | if (!pte) | ||
1797 | return -ENOMEM; | ||
1798 | /* It is large page*/ | ||
1799 | if (largepage_lvl > 1) | ||
1800 | pteval |= DMA_PTE_LARGE_PAGE; | ||
1801 | else | ||
1802 | pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; | ||
1803 | |||
1804 | } | ||
1805 | /* We don't need lock here, nobody else | ||
1806 | * touches the iova range | ||
1807 | */ | ||
1808 | tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); | ||
1809 | if (tmp) { | ||
1810 | static int dumps = 5; | ||
1811 | printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", | ||
1812 | iov_pfn, tmp, (unsigned long long)pteval); | ||
1813 | if (dumps) { | ||
1814 | dumps--; | ||
1815 | debug_dma_dump_mappings(NULL); | ||
1816 | } | ||
1817 | WARN_ON(1); | ||
1818 | } | ||
1819 | |||
1820 | lvl_pages = lvl_to_nr_pages(largepage_lvl); | ||
1821 | |||
1822 | BUG_ON(nr_pages < lvl_pages); | ||
1823 | BUG_ON(sg_res < lvl_pages); | ||
1824 | |||
1825 | nr_pages -= lvl_pages; | ||
1826 | iov_pfn += lvl_pages; | ||
1827 | phys_pfn += lvl_pages; | ||
1828 | pteval += lvl_pages * VTD_PAGE_SIZE; | ||
1829 | sg_res -= lvl_pages; | ||
1830 | |||
1831 | /* If the next PTE would be the first in a new page, then we | ||
1832 | need to flush the cache on the entries we've just written. | ||
1833 | And then we'll need to recalculate 'pte', so clear it and | ||
1834 | let it get set again in the if (!pte) block above. | ||
1835 | |||
1836 | If we're done (!nr_pages) we need to flush the cache too. | ||
1837 | |||
1838 | Also if we've been setting superpages, we may need to | ||
1839 | recalculate 'pte' and switch back to smaller pages for the | ||
1840 | end of the mapping, if the trailing size is not enough to | ||
1841 | use another superpage (i.e. sg_res < lvl_pages). */ | ||
1842 | pte++; | ||
1843 | if (!nr_pages || first_pte_in_page(pte) || | ||
1844 | (largepage_lvl > 1 && sg_res < lvl_pages)) { | ||
1845 | domain_flush_cache(domain, first_pte, | ||
1846 | (void *)pte - (void *)first_pte); | ||
1847 | pte = NULL; | ||
1848 | } | ||
1849 | |||
1850 | if (!sg_res && nr_pages) | ||
1851 | sg = sg_next(sg); | ||
1852 | } | ||
1853 | return 0; | ||
1854 | } | ||
1855 | |||
1856 | static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | ||
1857 | struct scatterlist *sg, unsigned long nr_pages, | ||
1858 | int prot) | ||
1859 | { | ||
1860 | return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot); | ||
1861 | } | ||
1862 | |||
1863 | static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | ||
1864 | unsigned long phys_pfn, unsigned long nr_pages, | ||
1865 | int prot) | ||
1866 | { | ||
1867 | return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot); | ||
1868 | } | ||
1869 | |||
1870 | static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn) | ||
1871 | { | ||
1872 | if (!iommu) | ||
1873 | return; | ||
1874 | |||
1875 | clear_context_table(iommu, bus, devfn); | ||
1876 | iommu->flush.flush_context(iommu, 0, 0, 0, | ||
1877 | DMA_CCMD_GLOBAL_INVL); | ||
1878 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | ||
1879 | } | ||
1880 | |||
1881 | static void domain_remove_dev_info(struct dmar_domain *domain) | ||
1882 | { | ||
1883 | struct device_domain_info *info; | ||
1884 | unsigned long flags; | ||
1885 | struct intel_iommu *iommu; | ||
1886 | |||
1887 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1888 | while (!list_empty(&domain->devices)) { | ||
1889 | info = list_entry(domain->devices.next, | ||
1890 | struct device_domain_info, link); | ||
1891 | list_del(&info->link); | ||
1892 | list_del(&info->global); | ||
1893 | if (info->dev) | ||
1894 | info->dev->dev.archdata.iommu = NULL; | ||
1895 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1896 | |||
1897 | iommu_disable_dev_iotlb(info); | ||
1898 | iommu = device_to_iommu(info->segment, info->bus, info->devfn); | ||
1899 | iommu_detach_dev(iommu, info->bus, info->devfn); | ||
1900 | free_devinfo_mem(info); | ||
1901 | |||
1902 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1903 | } | ||
1904 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1905 | } | ||
1906 | |||
1907 | /* | ||
1908 | * find_domain | ||
1909 | * Note: we use struct pci_dev->dev.archdata.iommu stores the info | ||
1910 | */ | ||
1911 | static struct dmar_domain * | ||
1912 | find_domain(struct pci_dev *pdev) | ||
1913 | { | ||
1914 | struct device_domain_info *info; | ||
1915 | |||
1916 | /* No lock here, assumes no domain exit in normal case */ | ||
1917 | info = pdev->dev.archdata.iommu; | ||
1918 | if (info) | ||
1919 | return info->domain; | ||
1920 | return NULL; | ||
1921 | } | ||
1922 | |||
1923 | /* domain is initialized */ | ||
1924 | static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) | ||
1925 | { | ||
1926 | struct dmar_domain *domain, *found = NULL; | ||
1927 | struct intel_iommu *iommu; | ||
1928 | struct dmar_drhd_unit *drhd; | ||
1929 | struct device_domain_info *info, *tmp; | ||
1930 | struct pci_dev *dev_tmp; | ||
1931 | unsigned long flags; | ||
1932 | int bus = 0, devfn = 0; | ||
1933 | int segment; | ||
1934 | int ret; | ||
1935 | |||
1936 | domain = find_domain(pdev); | ||
1937 | if (domain) | ||
1938 | return domain; | ||
1939 | |||
1940 | segment = pci_domain_nr(pdev->bus); | ||
1941 | |||
1942 | dev_tmp = pci_find_upstream_pcie_bridge(pdev); | ||
1943 | if (dev_tmp) { | ||
1944 | if (pci_is_pcie(dev_tmp)) { | ||
1945 | bus = dev_tmp->subordinate->number; | ||
1946 | devfn = 0; | ||
1947 | } else { | ||
1948 | bus = dev_tmp->bus->number; | ||
1949 | devfn = dev_tmp->devfn; | ||
1950 | } | ||
1951 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1952 | list_for_each_entry(info, &device_domain_list, global) { | ||
1953 | if (info->segment == segment && | ||
1954 | info->bus == bus && info->devfn == devfn) { | ||
1955 | found = info->domain; | ||
1956 | break; | ||
1957 | } | ||
1958 | } | ||
1959 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1960 | /* pcie-pci bridge already has a domain, uses it */ | ||
1961 | if (found) { | ||
1962 | domain = found; | ||
1963 | goto found_domain; | ||
1964 | } | ||
1965 | } | ||
1966 | |||
1967 | domain = alloc_domain(); | ||
1968 | if (!domain) | ||
1969 | goto error; | ||
1970 | |||
1971 | /* Allocate new domain for the device */ | ||
1972 | drhd = dmar_find_matched_drhd_unit(pdev); | ||
1973 | if (!drhd) { | ||
1974 | printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", | ||
1975 | pci_name(pdev)); | ||
1976 | return NULL; | ||
1977 | } | ||
1978 | iommu = drhd->iommu; | ||
1979 | |||
1980 | ret = iommu_attach_domain(domain, iommu); | ||
1981 | if (ret) { | ||
1982 | free_domain_mem(domain); | ||
1983 | goto error; | ||
1984 | } | ||
1985 | |||
1986 | if (domain_init(domain, gaw)) { | ||
1987 | domain_exit(domain); | ||
1988 | goto error; | ||
1989 | } | ||
1990 | |||
1991 | /* register pcie-to-pci device */ | ||
1992 | if (dev_tmp) { | ||
1993 | info = alloc_devinfo_mem(); | ||
1994 | if (!info) { | ||
1995 | domain_exit(domain); | ||
1996 | goto error; | ||
1997 | } | ||
1998 | info->segment = segment; | ||
1999 | info->bus = bus; | ||
2000 | info->devfn = devfn; | ||
2001 | info->dev = NULL; | ||
2002 | info->domain = domain; | ||
2003 | /* This domain is shared by devices under p2p bridge */ | ||
2004 | domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES; | ||
2005 | |||
2006 | /* pcie-to-pci bridge already has a domain, uses it */ | ||
2007 | found = NULL; | ||
2008 | spin_lock_irqsave(&device_domain_lock, flags); | ||
2009 | list_for_each_entry(tmp, &device_domain_list, global) { | ||
2010 | if (tmp->segment == segment && | ||
2011 | tmp->bus == bus && tmp->devfn == devfn) { | ||
2012 | found = tmp->domain; | ||
2013 | break; | ||
2014 | } | ||
2015 | } | ||
2016 | if (found) { | ||
2017 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2018 | free_devinfo_mem(info); | ||
2019 | domain_exit(domain); | ||
2020 | domain = found; | ||
2021 | } else { | ||
2022 | list_add(&info->link, &domain->devices); | ||
2023 | list_add(&info->global, &device_domain_list); | ||
2024 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2025 | } | ||
2026 | } | ||
2027 | |||
2028 | found_domain: | ||
2029 | info = alloc_devinfo_mem(); | ||
2030 | if (!info) | ||
2031 | goto error; | ||
2032 | info->segment = segment; | ||
2033 | info->bus = pdev->bus->number; | ||
2034 | info->devfn = pdev->devfn; | ||
2035 | info->dev = pdev; | ||
2036 | info->domain = domain; | ||
2037 | spin_lock_irqsave(&device_domain_lock, flags); | ||
2038 | /* somebody is fast */ | ||
2039 | found = find_domain(pdev); | ||
2040 | if (found != NULL) { | ||
2041 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2042 | if (found != domain) { | ||
2043 | domain_exit(domain); | ||
2044 | domain = found; | ||
2045 | } | ||
2046 | free_devinfo_mem(info); | ||
2047 | return domain; | ||
2048 | } | ||
2049 | list_add(&info->link, &domain->devices); | ||
2050 | list_add(&info->global, &device_domain_list); | ||
2051 | pdev->dev.archdata.iommu = info; | ||
2052 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2053 | return domain; | ||
2054 | error: | ||
2055 | /* recheck it here, maybe others set it */ | ||
2056 | return find_domain(pdev); | ||
2057 | } | ||
2058 | |||
2059 | static int iommu_identity_mapping; | ||
2060 | #define IDENTMAP_ALL 1 | ||
2061 | #define IDENTMAP_GFX 2 | ||
2062 | #define IDENTMAP_AZALIA 4 | ||
2063 | |||
2064 | static int iommu_domain_identity_map(struct dmar_domain *domain, | ||
2065 | unsigned long long start, | ||
2066 | unsigned long long end) | ||
2067 | { | ||
2068 | unsigned long first_vpfn = start >> VTD_PAGE_SHIFT; | ||
2069 | unsigned long last_vpfn = end >> VTD_PAGE_SHIFT; | ||
2070 | |||
2071 | if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn), | ||
2072 | dma_to_mm_pfn(last_vpfn))) { | ||
2073 | printk(KERN_ERR "IOMMU: reserve iova failed\n"); | ||
2074 | return -ENOMEM; | ||
2075 | } | ||
2076 | |||
2077 | pr_debug("Mapping reserved region %llx-%llx for domain %d\n", | ||
2078 | start, end, domain->id); | ||
2079 | /* | ||
2080 | * RMRR range might have overlap with physical memory range, | ||
2081 | * clear it first | ||
2082 | */ | ||
2083 | dma_pte_clear_range(domain, first_vpfn, last_vpfn); | ||
2084 | |||
2085 | return domain_pfn_mapping(domain, first_vpfn, first_vpfn, | ||
2086 | last_vpfn - first_vpfn + 1, | ||
2087 | DMA_PTE_READ|DMA_PTE_WRITE); | ||
2088 | } | ||
2089 | |||
2090 | static int iommu_prepare_identity_map(struct pci_dev *pdev, | ||
2091 | unsigned long long start, | ||
2092 | unsigned long long end) | ||
2093 | { | ||
2094 | struct dmar_domain *domain; | ||
2095 | int ret; | ||
2096 | |||
2097 | domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); | ||
2098 | if (!domain) | ||
2099 | return -ENOMEM; | ||
2100 | |||
2101 | /* For _hardware_ passthrough, don't bother. But for software | ||
2102 | passthrough, we do it anyway -- it may indicate a memory | ||
2103 | range which is reserved in E820, so which didn't get set | ||
2104 | up to start with in si_domain */ | ||
2105 | if (domain == si_domain && hw_pass_through) { | ||
2106 | printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n", | ||
2107 | pci_name(pdev), start, end); | ||
2108 | return 0; | ||
2109 | } | ||
2110 | |||
2111 | printk(KERN_INFO | ||
2112 | "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", | ||
2113 | pci_name(pdev), start, end); | ||
2114 | |||
2115 | if (end < start) { | ||
2116 | WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n" | ||
2117 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | ||
2118 | dmi_get_system_info(DMI_BIOS_VENDOR), | ||
2119 | dmi_get_system_info(DMI_BIOS_VERSION), | ||
2120 | dmi_get_system_info(DMI_PRODUCT_VERSION)); | ||
2121 | ret = -EIO; | ||
2122 | goto error; | ||
2123 | } | ||
2124 | |||
2125 | if (end >> agaw_to_width(domain->agaw)) { | ||
2126 | WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n" | ||
2127 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | ||
2128 | agaw_to_width(domain->agaw), | ||
2129 | dmi_get_system_info(DMI_BIOS_VENDOR), | ||
2130 | dmi_get_system_info(DMI_BIOS_VERSION), | ||
2131 | dmi_get_system_info(DMI_PRODUCT_VERSION)); | ||
2132 | ret = -EIO; | ||
2133 | goto error; | ||
2134 | } | ||
2135 | |||
2136 | ret = iommu_domain_identity_map(domain, start, end); | ||
2137 | if (ret) | ||
2138 | goto error; | ||
2139 | |||
2140 | /* context entry init */ | ||
2141 | ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL); | ||
2142 | if (ret) | ||
2143 | goto error; | ||
2144 | |||
2145 | return 0; | ||
2146 | |||
2147 | error: | ||
2148 | domain_exit(domain); | ||
2149 | return ret; | ||
2150 | } | ||
2151 | |||
2152 | static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, | ||
2153 | struct pci_dev *pdev) | ||
2154 | { | ||
2155 | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) | ||
2156 | return 0; | ||
2157 | return iommu_prepare_identity_map(pdev, rmrr->base_address, | ||
2158 | rmrr->end_address); | ||
2159 | } | ||
2160 | |||
2161 | #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA | ||
2162 | static inline void iommu_prepare_isa(void) | ||
2163 | { | ||
2164 | struct pci_dev *pdev; | ||
2165 | int ret; | ||
2166 | |||
2167 | pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); | ||
2168 | if (!pdev) | ||
2169 | return; | ||
2170 | |||
2171 | printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n"); | ||
2172 | ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1); | ||
2173 | |||
2174 | if (ret) | ||
2175 | printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; " | ||
2176 | "floppy might not work\n"); | ||
2177 | |||
2178 | } | ||
2179 | #else | ||
2180 | static inline void iommu_prepare_isa(void) | ||
2181 | { | ||
2182 | return; | ||
2183 | } | ||
2184 | #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */ | ||
2185 | |||
2186 | static int md_domain_init(struct dmar_domain *domain, int guest_width); | ||
2187 | |||
2188 | static int __init si_domain_init(int hw) | ||
2189 | { | ||
2190 | struct dmar_drhd_unit *drhd; | ||
2191 | struct intel_iommu *iommu; | ||
2192 | int nid, ret = 0; | ||
2193 | |||
2194 | si_domain = alloc_domain(); | ||
2195 | if (!si_domain) | ||
2196 | return -EFAULT; | ||
2197 | |||
2198 | pr_debug("Identity mapping domain is domain %d\n", si_domain->id); | ||
2199 | |||
2200 | for_each_active_iommu(iommu, drhd) { | ||
2201 | ret = iommu_attach_domain(si_domain, iommu); | ||
2202 | if (ret) { | ||
2203 | domain_exit(si_domain); | ||
2204 | return -EFAULT; | ||
2205 | } | ||
2206 | } | ||
2207 | |||
2208 | if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { | ||
2209 | domain_exit(si_domain); | ||
2210 | return -EFAULT; | ||
2211 | } | ||
2212 | |||
2213 | si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY; | ||
2214 | |||
2215 | if (hw) | ||
2216 | return 0; | ||
2217 | |||
2218 | for_each_online_node(nid) { | ||
2219 | unsigned long start_pfn, end_pfn; | ||
2220 | int i; | ||
2221 | |||
2222 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | ||
2223 | ret = iommu_domain_identity_map(si_domain, | ||
2224 | PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); | ||
2225 | if (ret) | ||
2226 | return ret; | ||
2227 | } | ||
2228 | } | ||
2229 | |||
2230 | return 0; | ||
2231 | } | ||
2232 | |||
2233 | static void domain_remove_one_dev_info(struct dmar_domain *domain, | ||
2234 | struct pci_dev *pdev); | ||
2235 | static int identity_mapping(struct pci_dev *pdev) | ||
2236 | { | ||
2237 | struct device_domain_info *info; | ||
2238 | |||
2239 | if (likely(!iommu_identity_mapping)) | ||
2240 | return 0; | ||
2241 | |||
2242 | info = pdev->dev.archdata.iommu; | ||
2243 | if (info && info != DUMMY_DEVICE_DOMAIN_INFO) | ||
2244 | return (info->domain == si_domain); | ||
2245 | |||
2246 | return 0; | ||
2247 | } | ||
2248 | |||
2249 | static int domain_add_dev_info(struct dmar_domain *domain, | ||
2250 | struct pci_dev *pdev, | ||
2251 | int translation) | ||
2252 | { | ||
2253 | struct device_domain_info *info; | ||
2254 | unsigned long flags; | ||
2255 | int ret; | ||
2256 | |||
2257 | info = alloc_devinfo_mem(); | ||
2258 | if (!info) | ||
2259 | return -ENOMEM; | ||
2260 | |||
2261 | ret = domain_context_mapping(domain, pdev, translation); | ||
2262 | if (ret) { | ||
2263 | free_devinfo_mem(info); | ||
2264 | return ret; | ||
2265 | } | ||
2266 | |||
2267 | info->segment = pci_domain_nr(pdev->bus); | ||
2268 | info->bus = pdev->bus->number; | ||
2269 | info->devfn = pdev->devfn; | ||
2270 | info->dev = pdev; | ||
2271 | info->domain = domain; | ||
2272 | |||
2273 | spin_lock_irqsave(&device_domain_lock, flags); | ||
2274 | list_add(&info->link, &domain->devices); | ||
2275 | list_add(&info->global, &device_domain_list); | ||
2276 | pdev->dev.archdata.iommu = info; | ||
2277 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2278 | |||
2279 | return 0; | ||
2280 | } | ||
2281 | |||
2282 | static int iommu_should_identity_map(struct pci_dev *pdev, int startup) | ||
2283 | { | ||
2284 | if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) | ||
2285 | return 1; | ||
2286 | |||
2287 | if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) | ||
2288 | return 1; | ||
2289 | |||
2290 | if (!(iommu_identity_mapping & IDENTMAP_ALL)) | ||
2291 | return 0; | ||
2292 | |||
2293 | /* | ||
2294 | * We want to start off with all devices in the 1:1 domain, and | ||
2295 | * take them out later if we find they can't access all of memory. | ||
2296 | * | ||
2297 | * However, we can't do this for PCI devices behind bridges, | ||
2298 | * because all PCI devices behind the same bridge will end up | ||
2299 | * with the same source-id on their transactions. | ||
2300 | * | ||
2301 | * Practically speaking, we can't change things around for these | ||
2302 | * devices at run-time, because we can't be sure there'll be no | ||
2303 | * DMA transactions in flight for any of their siblings. | ||
2304 | * | ||
2305 | * So PCI devices (unless they're on the root bus) as well as | ||
2306 | * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of | ||
2307 | * the 1:1 domain, just in _case_ one of their siblings turns out | ||
2308 | * not to be able to map all of memory. | ||
2309 | */ | ||
2310 | if (!pci_is_pcie(pdev)) { | ||
2311 | if (!pci_is_root_bus(pdev->bus)) | ||
2312 | return 0; | ||
2313 | if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI) | ||
2314 | return 0; | ||
2315 | } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE) | ||
2316 | return 0; | ||
2317 | |||
2318 | /* | ||
2319 | * At boot time, we don't yet know if devices will be 64-bit capable. | ||
2320 | * Assume that they will -- if they turn out not to be, then we can | ||
2321 | * take them out of the 1:1 domain later. | ||
2322 | */ | ||
2323 | if (!startup) { | ||
2324 | /* | ||
2325 | * If the device's dma_mask is less than the system's memory | ||
2326 | * size then this is not a candidate for identity mapping. | ||
2327 | */ | ||
2328 | u64 dma_mask = pdev->dma_mask; | ||
2329 | |||
2330 | if (pdev->dev.coherent_dma_mask && | ||
2331 | pdev->dev.coherent_dma_mask < dma_mask) | ||
2332 | dma_mask = pdev->dev.coherent_dma_mask; | ||
2333 | |||
2334 | return dma_mask >= dma_get_required_mask(&pdev->dev); | ||
2335 | } | ||
2336 | |||
2337 | return 1; | ||
2338 | } | ||
2339 | |||
2340 | static int __init iommu_prepare_static_identity_mapping(int hw) | ||
2341 | { | ||
2342 | struct pci_dev *pdev = NULL; | ||
2343 | int ret; | ||
2344 | |||
2345 | ret = si_domain_init(hw); | ||
2346 | if (ret) | ||
2347 | return -EFAULT; | ||
2348 | |||
2349 | for_each_pci_dev(pdev) { | ||
2350 | /* Skip Host/PCI Bridge devices */ | ||
2351 | if (IS_BRIDGE_HOST_DEVICE(pdev)) | ||
2352 | continue; | ||
2353 | if (iommu_should_identity_map(pdev, 1)) { | ||
2354 | printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n", | ||
2355 | hw ? "hardware" : "software", pci_name(pdev)); | ||
2356 | |||
2357 | ret = domain_add_dev_info(si_domain, pdev, | ||
2358 | hw ? CONTEXT_TT_PASS_THROUGH : | ||
2359 | CONTEXT_TT_MULTI_LEVEL); | ||
2360 | if (ret) | ||
2361 | return ret; | ||
2362 | } | ||
2363 | } | ||
2364 | |||
2365 | return 0; | ||
2366 | } | ||
2367 | |||
2368 | static int __init init_dmars(void) | ||
2369 | { | ||
2370 | struct dmar_drhd_unit *drhd; | ||
2371 | struct dmar_rmrr_unit *rmrr; | ||
2372 | struct pci_dev *pdev; | ||
2373 | struct intel_iommu *iommu; | ||
2374 | int i, ret; | ||
2375 | |||
2376 | /* | ||
2377 | * for each drhd | ||
2378 | * allocate root | ||
2379 | * initialize and program root entry to not present | ||
2380 | * endfor | ||
2381 | */ | ||
2382 | for_each_drhd_unit(drhd) { | ||
2383 | g_num_of_iommus++; | ||
2384 | /* | ||
2385 | * lock not needed as this is only incremented in the single | ||
2386 | * threaded kernel __init code path all other access are read | ||
2387 | * only | ||
2388 | */ | ||
2389 | } | ||
2390 | |||
2391 | g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), | ||
2392 | GFP_KERNEL); | ||
2393 | if (!g_iommus) { | ||
2394 | printk(KERN_ERR "Allocating global iommu array failed\n"); | ||
2395 | ret = -ENOMEM; | ||
2396 | goto error; | ||
2397 | } | ||
2398 | |||
2399 | deferred_flush = kzalloc(g_num_of_iommus * | ||
2400 | sizeof(struct deferred_flush_tables), GFP_KERNEL); | ||
2401 | if (!deferred_flush) { | ||
2402 | ret = -ENOMEM; | ||
2403 | goto error; | ||
2404 | } | ||
2405 | |||
2406 | for_each_drhd_unit(drhd) { | ||
2407 | if (drhd->ignored) | ||
2408 | continue; | ||
2409 | |||
2410 | iommu = drhd->iommu; | ||
2411 | g_iommus[iommu->seq_id] = iommu; | ||
2412 | |||
2413 | ret = iommu_init_domains(iommu); | ||
2414 | if (ret) | ||
2415 | goto error; | ||
2416 | |||
2417 | /* | ||
2418 | * TBD: | ||
2419 | * we could share the same root & context tables | ||
2420 | * among all IOMMU's. Need to Split it later. | ||
2421 | */ | ||
2422 | ret = iommu_alloc_root_entry(iommu); | ||
2423 | if (ret) { | ||
2424 | printk(KERN_ERR "IOMMU: allocate root entry failed\n"); | ||
2425 | goto error; | ||
2426 | } | ||
2427 | if (!ecap_pass_through(iommu->ecap)) | ||
2428 | hw_pass_through = 0; | ||
2429 | } | ||
2430 | |||
2431 | /* | ||
2432 | * Start from the sane iommu hardware state. | ||
2433 | */ | ||
2434 | for_each_drhd_unit(drhd) { | ||
2435 | if (drhd->ignored) | ||
2436 | continue; | ||
2437 | |||
2438 | iommu = drhd->iommu; | ||
2439 | |||
2440 | /* | ||
2441 | * If the queued invalidation is already initialized by us | ||
2442 | * (for example, while enabling interrupt-remapping) then | ||
2443 | * we got the things already rolling from a sane state. | ||
2444 | */ | ||
2445 | if (iommu->qi) | ||
2446 | continue; | ||
2447 | |||
2448 | /* | ||
2449 | * Clear any previous faults. | ||
2450 | */ | ||
2451 | dmar_fault(-1, iommu); | ||
2452 | /* | ||
2453 | * Disable queued invalidation if supported and already enabled | ||
2454 | * before OS handover. | ||
2455 | */ | ||
2456 | dmar_disable_qi(iommu); | ||
2457 | } | ||
2458 | |||
2459 | for_each_drhd_unit(drhd) { | ||
2460 | if (drhd->ignored) | ||
2461 | continue; | ||
2462 | |||
2463 | iommu = drhd->iommu; | ||
2464 | |||
2465 | if (dmar_enable_qi(iommu)) { | ||
2466 | /* | ||
2467 | * Queued Invalidate not enabled, use Register Based | ||
2468 | * Invalidate | ||
2469 | */ | ||
2470 | iommu->flush.flush_context = __iommu_flush_context; | ||
2471 | iommu->flush.flush_iotlb = __iommu_flush_iotlb; | ||
2472 | printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based " | ||
2473 | "invalidation\n", | ||
2474 | iommu->seq_id, | ||
2475 | (unsigned long long)drhd->reg_base_addr); | ||
2476 | } else { | ||
2477 | iommu->flush.flush_context = qi_flush_context; | ||
2478 | iommu->flush.flush_iotlb = qi_flush_iotlb; | ||
2479 | printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued " | ||
2480 | "invalidation\n", | ||
2481 | iommu->seq_id, | ||
2482 | (unsigned long long)drhd->reg_base_addr); | ||
2483 | } | ||
2484 | } | ||
2485 | |||
2486 | if (iommu_pass_through) | ||
2487 | iommu_identity_mapping |= IDENTMAP_ALL; | ||
2488 | |||
2489 | #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA | ||
2490 | iommu_identity_mapping |= IDENTMAP_GFX; | ||
2491 | #endif | ||
2492 | |||
2493 | check_tylersburg_isoch(); | ||
2494 | |||
2495 | /* | ||
2496 | * If pass through is not set or not enabled, setup context entries for | ||
2497 | * identity mappings for rmrr, gfx, and isa and may fall back to static | ||
2498 | * identity mapping if iommu_identity_mapping is set. | ||
2499 | */ | ||
2500 | if (iommu_identity_mapping) { | ||
2501 | ret = iommu_prepare_static_identity_mapping(hw_pass_through); | ||
2502 | if (ret) { | ||
2503 | printk(KERN_CRIT "Failed to setup IOMMU pass-through\n"); | ||
2504 | goto error; | ||
2505 | } | ||
2506 | } | ||
2507 | /* | ||
2508 | * For each rmrr | ||
2509 | * for each dev attached to rmrr | ||
2510 | * do | ||
2511 | * locate drhd for dev, alloc domain for dev | ||
2512 | * allocate free domain | ||
2513 | * allocate page table entries for rmrr | ||
2514 | * if context not allocated for bus | ||
2515 | * allocate and init context | ||
2516 | * set present in root table for this bus | ||
2517 | * init context with domain, translation etc | ||
2518 | * endfor | ||
2519 | * endfor | ||
2520 | */ | ||
2521 | printk(KERN_INFO "IOMMU: Setting RMRR:\n"); | ||
2522 | for_each_rmrr_units(rmrr) { | ||
2523 | for (i = 0; i < rmrr->devices_cnt; i++) { | ||
2524 | pdev = rmrr->devices[i]; | ||
2525 | /* | ||
2526 | * some BIOS lists non-exist devices in DMAR | ||
2527 | * table. | ||
2528 | */ | ||
2529 | if (!pdev) | ||
2530 | continue; | ||
2531 | ret = iommu_prepare_rmrr_dev(rmrr, pdev); | ||
2532 | if (ret) | ||
2533 | printk(KERN_ERR | ||
2534 | "IOMMU: mapping reserved region failed\n"); | ||
2535 | } | ||
2536 | } | ||
2537 | |||
2538 | iommu_prepare_isa(); | ||
2539 | |||
2540 | /* | ||
2541 | * for each drhd | ||
2542 | * enable fault log | ||
2543 | * global invalidate context cache | ||
2544 | * global invalidate iotlb | ||
2545 | * enable translation | ||
2546 | */ | ||
2547 | for_each_drhd_unit(drhd) { | ||
2548 | if (drhd->ignored) { | ||
2549 | /* | ||
2550 | * we always have to disable PMRs or DMA may fail on | ||
2551 | * this device | ||
2552 | */ | ||
2553 | if (force_on) | ||
2554 | iommu_disable_protect_mem_regions(drhd->iommu); | ||
2555 | continue; | ||
2556 | } | ||
2557 | iommu = drhd->iommu; | ||
2558 | |||
2559 | iommu_flush_write_buffer(iommu); | ||
2560 | |||
2561 | ret = dmar_set_interrupt(iommu); | ||
2562 | if (ret) | ||
2563 | goto error; | ||
2564 | |||
2565 | iommu_set_root_entry(iommu); | ||
2566 | |||
2567 | iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); | ||
2568 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | ||
2569 | |||
2570 | ret = iommu_enable_translation(iommu); | ||
2571 | if (ret) | ||
2572 | goto error; | ||
2573 | |||
2574 | iommu_disable_protect_mem_regions(iommu); | ||
2575 | } | ||
2576 | |||
2577 | return 0; | ||
2578 | error: | ||
2579 | for_each_drhd_unit(drhd) { | ||
2580 | if (drhd->ignored) | ||
2581 | continue; | ||
2582 | iommu = drhd->iommu; | ||
2583 | free_iommu(iommu); | ||
2584 | } | ||
2585 | kfree(g_iommus); | ||
2586 | return ret; | ||
2587 | } | ||
2588 | |||
2589 | /* This takes a number of _MM_ pages, not VTD pages */ | ||
2590 | static struct iova *intel_alloc_iova(struct device *dev, | ||
2591 | struct dmar_domain *domain, | ||
2592 | unsigned long nrpages, uint64_t dma_mask) | ||
2593 | { | ||
2594 | struct pci_dev *pdev = to_pci_dev(dev); | ||
2595 | struct iova *iova = NULL; | ||
2596 | |||
2597 | /* Restrict dma_mask to the width that the iommu can handle */ | ||
2598 | dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask); | ||
2599 | |||
2600 | if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { | ||
2601 | /* | ||
2602 | * First try to allocate an io virtual address in | ||
2603 | * DMA_BIT_MASK(32) and if that fails then try allocating | ||
2604 | * from higher range | ||
2605 | */ | ||
2606 | iova = alloc_iova(&domain->iovad, nrpages, | ||
2607 | IOVA_PFN(DMA_BIT_MASK(32)), 1); | ||
2608 | if (iova) | ||
2609 | return iova; | ||
2610 | } | ||
2611 | iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1); | ||
2612 | if (unlikely(!iova)) { | ||
2613 | printk(KERN_ERR "Allocating %ld-page iova for %s failed", | ||
2614 | nrpages, pci_name(pdev)); | ||
2615 | return NULL; | ||
2616 | } | ||
2617 | |||
2618 | return iova; | ||
2619 | } | ||
2620 | |||
2621 | static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev) | ||
2622 | { | ||
2623 | struct dmar_domain *domain; | ||
2624 | int ret; | ||
2625 | |||
2626 | domain = get_domain_for_dev(pdev, | ||
2627 | DEFAULT_DOMAIN_ADDRESS_WIDTH); | ||
2628 | if (!domain) { | ||
2629 | printk(KERN_ERR | ||
2630 | "Allocating domain for %s failed", pci_name(pdev)); | ||
2631 | return NULL; | ||
2632 | } | ||
2633 | |||
2634 | /* make sure context mapping is ok */ | ||
2635 | if (unlikely(!domain_context_mapped(pdev))) { | ||
2636 | ret = domain_context_mapping(domain, pdev, | ||
2637 | CONTEXT_TT_MULTI_LEVEL); | ||
2638 | if (ret) { | ||
2639 | printk(KERN_ERR | ||
2640 | "Domain context map for %s failed", | ||
2641 | pci_name(pdev)); | ||
2642 | return NULL; | ||
2643 | } | ||
2644 | } | ||
2645 | |||
2646 | return domain; | ||
2647 | } | ||
2648 | |||
2649 | static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev) | ||
2650 | { | ||
2651 | struct device_domain_info *info; | ||
2652 | |||
2653 | /* No lock here, assumes no domain exit in normal case */ | ||
2654 | info = dev->dev.archdata.iommu; | ||
2655 | if (likely(info)) | ||
2656 | return info->domain; | ||
2657 | |||
2658 | return __get_valid_domain_for_dev(dev); | ||
2659 | } | ||
2660 | |||
2661 | static int iommu_dummy(struct pci_dev *pdev) | ||
2662 | { | ||
2663 | return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO; | ||
2664 | } | ||
2665 | |||
2666 | /* Check if the pdev needs to go through non-identity map and unmap process.*/ | ||
2667 | static int iommu_no_mapping(struct device *dev) | ||
2668 | { | ||
2669 | struct pci_dev *pdev; | ||
2670 | int found; | ||
2671 | |||
2672 | if (unlikely(dev->bus != &pci_bus_type)) | ||
2673 | return 1; | ||
2674 | |||
2675 | pdev = to_pci_dev(dev); | ||
2676 | if (iommu_dummy(pdev)) | ||
2677 | return 1; | ||
2678 | |||
2679 | if (!iommu_identity_mapping) | ||
2680 | return 0; | ||
2681 | |||
2682 | found = identity_mapping(pdev); | ||
2683 | if (found) { | ||
2684 | if (iommu_should_identity_map(pdev, 0)) | ||
2685 | return 1; | ||
2686 | else { | ||
2687 | /* | ||
2688 | * 32 bit DMA is removed from si_domain and fall back | ||
2689 | * to non-identity mapping. | ||
2690 | */ | ||
2691 | domain_remove_one_dev_info(si_domain, pdev); | ||
2692 | printk(KERN_INFO "32bit %s uses non-identity mapping\n", | ||
2693 | pci_name(pdev)); | ||
2694 | return 0; | ||
2695 | } | ||
2696 | } else { | ||
2697 | /* | ||
2698 | * In case of a detached 64 bit DMA device from vm, the device | ||
2699 | * is put into si_domain for identity mapping. | ||
2700 | */ | ||
2701 | if (iommu_should_identity_map(pdev, 0)) { | ||
2702 | int ret; | ||
2703 | ret = domain_add_dev_info(si_domain, pdev, | ||
2704 | hw_pass_through ? | ||
2705 | CONTEXT_TT_PASS_THROUGH : | ||
2706 | CONTEXT_TT_MULTI_LEVEL); | ||
2707 | if (!ret) { | ||
2708 | printk(KERN_INFO "64bit %s uses identity mapping\n", | ||
2709 | pci_name(pdev)); | ||
2710 | return 1; | ||
2711 | } | ||
2712 | } | ||
2713 | } | ||
2714 | |||
2715 | return 0; | ||
2716 | } | ||
2717 | |||
2718 | static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr, | ||
2719 | size_t size, int dir, u64 dma_mask) | ||
2720 | { | ||
2721 | struct pci_dev *pdev = to_pci_dev(hwdev); | ||
2722 | struct dmar_domain *domain; | ||
2723 | phys_addr_t start_paddr; | ||
2724 | struct iova *iova; | ||
2725 | int prot = 0; | ||
2726 | int ret; | ||
2727 | struct intel_iommu *iommu; | ||
2728 | unsigned long paddr_pfn = paddr >> PAGE_SHIFT; | ||
2729 | |||
2730 | BUG_ON(dir == DMA_NONE); | ||
2731 | |||
2732 | if (iommu_no_mapping(hwdev)) | ||
2733 | return paddr; | ||
2734 | |||
2735 | domain = get_valid_domain_for_dev(pdev); | ||
2736 | if (!domain) | ||
2737 | return 0; | ||
2738 | |||
2739 | iommu = domain_get_iommu(domain); | ||
2740 | size = aligned_nrpages(paddr, size); | ||
2741 | |||
2742 | iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask); | ||
2743 | if (!iova) | ||
2744 | goto error; | ||
2745 | |||
2746 | /* | ||
2747 | * Check if DMAR supports zero-length reads on write only | ||
2748 | * mappings.. | ||
2749 | */ | ||
2750 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | ||
2751 | !cap_zlr(iommu->cap)) | ||
2752 | prot |= DMA_PTE_READ; | ||
2753 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | ||
2754 | prot |= DMA_PTE_WRITE; | ||
2755 | /* | ||
2756 | * paddr - (paddr + size) might be partial page, we should map the whole | ||
2757 | * page. Note: if two part of one page are separately mapped, we | ||
2758 | * might have two guest_addr mapping to the same host paddr, but this | ||
2759 | * is not a big problem | ||
2760 | */ | ||
2761 | ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo), | ||
2762 | mm_to_dma_pfn(paddr_pfn), size, prot); | ||
2763 | if (ret) | ||
2764 | goto error; | ||
2765 | |||
2766 | /* it's a non-present to present mapping. Only flush if caching mode */ | ||
2767 | if (cap_caching_mode(iommu->cap)) | ||
2768 | iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1); | ||
2769 | else | ||
2770 | iommu_flush_write_buffer(iommu); | ||
2771 | |||
2772 | start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT; | ||
2773 | start_paddr += paddr & ~PAGE_MASK; | ||
2774 | return start_paddr; | ||
2775 | |||
2776 | error: | ||
2777 | if (iova) | ||
2778 | __free_iova(&domain->iovad, iova); | ||
2779 | printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n", | ||
2780 | pci_name(pdev), size, (unsigned long long)paddr, dir); | ||
2781 | return 0; | ||
2782 | } | ||
2783 | |||
2784 | static dma_addr_t intel_map_page(struct device *dev, struct page *page, | ||
2785 | unsigned long offset, size_t size, | ||
2786 | enum dma_data_direction dir, | ||
2787 | struct dma_attrs *attrs) | ||
2788 | { | ||
2789 | return __intel_map_single(dev, page_to_phys(page) + offset, size, | ||
2790 | dir, to_pci_dev(dev)->dma_mask); | ||
2791 | } | ||
2792 | |||
2793 | static void flush_unmaps(void) | ||
2794 | { | ||
2795 | int i, j; | ||
2796 | |||
2797 | timer_on = 0; | ||
2798 | |||
2799 | /* just flush them all */ | ||
2800 | for (i = 0; i < g_num_of_iommus; i++) { | ||
2801 | struct intel_iommu *iommu = g_iommus[i]; | ||
2802 | if (!iommu) | ||
2803 | continue; | ||
2804 | |||
2805 | if (!deferred_flush[i].next) | ||
2806 | continue; | ||
2807 | |||
2808 | /* In caching mode, global flushes turn emulation expensive */ | ||
2809 | if (!cap_caching_mode(iommu->cap)) | ||
2810 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | ||
2811 | DMA_TLB_GLOBAL_FLUSH); | ||
2812 | for (j = 0; j < deferred_flush[i].next; j++) { | ||
2813 | unsigned long mask; | ||
2814 | struct iova *iova = deferred_flush[i].iova[j]; | ||
2815 | struct dmar_domain *domain = deferred_flush[i].domain[j]; | ||
2816 | |||
2817 | /* On real hardware multiple invalidations are expensive */ | ||
2818 | if (cap_caching_mode(iommu->cap)) | ||
2819 | iommu_flush_iotlb_psi(iommu, domain->id, | ||
2820 | iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0); | ||
2821 | else { | ||
2822 | mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1)); | ||
2823 | iommu_flush_dev_iotlb(deferred_flush[i].domain[j], | ||
2824 | (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask); | ||
2825 | } | ||
2826 | __free_iova(&deferred_flush[i].domain[j]->iovad, iova); | ||
2827 | } | ||
2828 | deferred_flush[i].next = 0; | ||
2829 | } | ||
2830 | |||
2831 | list_size = 0; | ||
2832 | } | ||
2833 | |||
2834 | static void flush_unmaps_timeout(unsigned long data) | ||
2835 | { | ||
2836 | unsigned long flags; | ||
2837 | |||
2838 | spin_lock_irqsave(&async_umap_flush_lock, flags); | ||
2839 | flush_unmaps(); | ||
2840 | spin_unlock_irqrestore(&async_umap_flush_lock, flags); | ||
2841 | } | ||
2842 | |||
2843 | static void add_unmap(struct dmar_domain *dom, struct iova *iova) | ||
2844 | { | ||
2845 | unsigned long flags; | ||
2846 | int next, iommu_id; | ||
2847 | struct intel_iommu *iommu; | ||
2848 | |||
2849 | spin_lock_irqsave(&async_umap_flush_lock, flags); | ||
2850 | if (list_size == HIGH_WATER_MARK) | ||
2851 | flush_unmaps(); | ||
2852 | |||
2853 | iommu = domain_get_iommu(dom); | ||
2854 | iommu_id = iommu->seq_id; | ||
2855 | |||
2856 | next = deferred_flush[iommu_id].next; | ||
2857 | deferred_flush[iommu_id].domain[next] = dom; | ||
2858 | deferred_flush[iommu_id].iova[next] = iova; | ||
2859 | deferred_flush[iommu_id].next++; | ||
2860 | |||
2861 | if (!timer_on) { | ||
2862 | mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10)); | ||
2863 | timer_on = 1; | ||
2864 | } | ||
2865 | list_size++; | ||
2866 | spin_unlock_irqrestore(&async_umap_flush_lock, flags); | ||
2867 | } | ||
2868 | |||
2869 | static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, | ||
2870 | size_t size, enum dma_data_direction dir, | ||
2871 | struct dma_attrs *attrs) | ||
2872 | { | ||
2873 | struct pci_dev *pdev = to_pci_dev(dev); | ||
2874 | struct dmar_domain *domain; | ||
2875 | unsigned long start_pfn, last_pfn; | ||
2876 | struct iova *iova; | ||
2877 | struct intel_iommu *iommu; | ||
2878 | |||
2879 | if (iommu_no_mapping(dev)) | ||
2880 | return; | ||
2881 | |||
2882 | domain = find_domain(pdev); | ||
2883 | BUG_ON(!domain); | ||
2884 | |||
2885 | iommu = domain_get_iommu(domain); | ||
2886 | |||
2887 | iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); | ||
2888 | if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n", | ||
2889 | (unsigned long long)dev_addr)) | ||
2890 | return; | ||
2891 | |||
2892 | start_pfn = mm_to_dma_pfn(iova->pfn_lo); | ||
2893 | last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; | ||
2894 | |||
2895 | pr_debug("Device %s unmapping: pfn %lx-%lx\n", | ||
2896 | pci_name(pdev), start_pfn, last_pfn); | ||
2897 | |||
2898 | /* clear the whole page */ | ||
2899 | dma_pte_clear_range(domain, start_pfn, last_pfn); | ||
2900 | |||
2901 | /* free page tables */ | ||
2902 | dma_pte_free_pagetable(domain, start_pfn, last_pfn); | ||
2903 | |||
2904 | if (intel_iommu_strict) { | ||
2905 | iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, | ||
2906 | last_pfn - start_pfn + 1, 0); | ||
2907 | /* free iova */ | ||
2908 | __free_iova(&domain->iovad, iova); | ||
2909 | } else { | ||
2910 | add_unmap(domain, iova); | ||
2911 | /* | ||
2912 | * queue up the release of the unmap to save the 1/6th of the | ||
2913 | * cpu used up by the iotlb flush operation... | ||
2914 | */ | ||
2915 | } | ||
2916 | } | ||
2917 | |||
2918 | static void *intel_alloc_coherent(struct device *hwdev, size_t size, | ||
2919 | dma_addr_t *dma_handle, gfp_t flags) | ||
2920 | { | ||
2921 | void *vaddr; | ||
2922 | int order; | ||
2923 | |||
2924 | size = PAGE_ALIGN(size); | ||
2925 | order = get_order(size); | ||
2926 | |||
2927 | if (!iommu_no_mapping(hwdev)) | ||
2928 | flags &= ~(GFP_DMA | GFP_DMA32); | ||
2929 | else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) { | ||
2930 | if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32)) | ||
2931 | flags |= GFP_DMA; | ||
2932 | else | ||
2933 | flags |= GFP_DMA32; | ||
2934 | } | ||
2935 | |||
2936 | vaddr = (void *)__get_free_pages(flags, order); | ||
2937 | if (!vaddr) | ||
2938 | return NULL; | ||
2939 | memset(vaddr, 0, size); | ||
2940 | |||
2941 | *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size, | ||
2942 | DMA_BIDIRECTIONAL, | ||
2943 | hwdev->coherent_dma_mask); | ||
2944 | if (*dma_handle) | ||
2945 | return vaddr; | ||
2946 | free_pages((unsigned long)vaddr, order); | ||
2947 | return NULL; | ||
2948 | } | ||
2949 | |||
2950 | static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr, | ||
2951 | dma_addr_t dma_handle) | ||
2952 | { | ||
2953 | int order; | ||
2954 | |||
2955 | size = PAGE_ALIGN(size); | ||
2956 | order = get_order(size); | ||
2957 | |||
2958 | intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL); | ||
2959 | free_pages((unsigned long)vaddr, order); | ||
2960 | } | ||
2961 | |||
2962 | static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, | ||
2963 | int nelems, enum dma_data_direction dir, | ||
2964 | struct dma_attrs *attrs) | ||
2965 | { | ||
2966 | struct pci_dev *pdev = to_pci_dev(hwdev); | ||
2967 | struct dmar_domain *domain; | ||
2968 | unsigned long start_pfn, last_pfn; | ||
2969 | struct iova *iova; | ||
2970 | struct intel_iommu *iommu; | ||
2971 | |||
2972 | if (iommu_no_mapping(hwdev)) | ||
2973 | return; | ||
2974 | |||
2975 | domain = find_domain(pdev); | ||
2976 | BUG_ON(!domain); | ||
2977 | |||
2978 | iommu = domain_get_iommu(domain); | ||
2979 | |||
2980 | iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); | ||
2981 | if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n", | ||
2982 | (unsigned long long)sglist[0].dma_address)) | ||
2983 | return; | ||
2984 | |||
2985 | start_pfn = mm_to_dma_pfn(iova->pfn_lo); | ||
2986 | last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; | ||
2987 | |||
2988 | /* clear the whole page */ | ||
2989 | dma_pte_clear_range(domain, start_pfn, last_pfn); | ||
2990 | |||
2991 | /* free page tables */ | ||
2992 | dma_pte_free_pagetable(domain, start_pfn, last_pfn); | ||
2993 | |||
2994 | if (intel_iommu_strict) { | ||
2995 | iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, | ||
2996 | last_pfn - start_pfn + 1, 0); | ||
2997 | /* free iova */ | ||
2998 | __free_iova(&domain->iovad, iova); | ||
2999 | } else { | ||
3000 | add_unmap(domain, iova); | ||
3001 | /* | ||
3002 | * queue up the release of the unmap to save the 1/6th of the | ||
3003 | * cpu used up by the iotlb flush operation... | ||
3004 | */ | ||
3005 | } | ||
3006 | } | ||
3007 | |||
3008 | static int intel_nontranslate_map_sg(struct device *hddev, | ||
3009 | struct scatterlist *sglist, int nelems, int dir) | ||
3010 | { | ||
3011 | int i; | ||
3012 | struct scatterlist *sg; | ||
3013 | |||
3014 | for_each_sg(sglist, sg, nelems, i) { | ||
3015 | BUG_ON(!sg_page(sg)); | ||
3016 | sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset; | ||
3017 | sg->dma_length = sg->length; | ||
3018 | } | ||
3019 | return nelems; | ||
3020 | } | ||
3021 | |||
3022 | static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, | ||
3023 | enum dma_data_direction dir, struct dma_attrs *attrs) | ||
3024 | { | ||
3025 | int i; | ||
3026 | struct pci_dev *pdev = to_pci_dev(hwdev); | ||
3027 | struct dmar_domain *domain; | ||
3028 | size_t size = 0; | ||
3029 | int prot = 0; | ||
3030 | struct iova *iova = NULL; | ||
3031 | int ret; | ||
3032 | struct scatterlist *sg; | ||
3033 | unsigned long start_vpfn; | ||
3034 | struct intel_iommu *iommu; | ||
3035 | |||
3036 | BUG_ON(dir == DMA_NONE); | ||
3037 | if (iommu_no_mapping(hwdev)) | ||
3038 | return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); | ||
3039 | |||
3040 | domain = get_valid_domain_for_dev(pdev); | ||
3041 | if (!domain) | ||
3042 | return 0; | ||
3043 | |||
3044 | iommu = domain_get_iommu(domain); | ||
3045 | |||
3046 | for_each_sg(sglist, sg, nelems, i) | ||
3047 | size += aligned_nrpages(sg->offset, sg->length); | ||
3048 | |||
3049 | iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), | ||
3050 | pdev->dma_mask); | ||
3051 | if (!iova) { | ||
3052 | sglist->dma_length = 0; | ||
3053 | return 0; | ||
3054 | } | ||
3055 | |||
3056 | /* | ||
3057 | * Check if DMAR supports zero-length reads on write only | ||
3058 | * mappings.. | ||
3059 | */ | ||
3060 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | ||
3061 | !cap_zlr(iommu->cap)) | ||
3062 | prot |= DMA_PTE_READ; | ||
3063 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | ||
3064 | prot |= DMA_PTE_WRITE; | ||
3065 | |||
3066 | start_vpfn = mm_to_dma_pfn(iova->pfn_lo); | ||
3067 | |||
3068 | ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot); | ||
3069 | if (unlikely(ret)) { | ||
3070 | /* clear the page */ | ||
3071 | dma_pte_clear_range(domain, start_vpfn, | ||
3072 | start_vpfn + size - 1); | ||
3073 | /* free page tables */ | ||
3074 | dma_pte_free_pagetable(domain, start_vpfn, | ||
3075 | start_vpfn + size - 1); | ||
3076 | /* free iova */ | ||
3077 | __free_iova(&domain->iovad, iova); | ||
3078 | return 0; | ||
3079 | } | ||
3080 | |||
3081 | /* it's a non-present to present mapping. Only flush if caching mode */ | ||
3082 | if (cap_caching_mode(iommu->cap)) | ||
3083 | iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1); | ||
3084 | else | ||
3085 | iommu_flush_write_buffer(iommu); | ||
3086 | |||
3087 | return nelems; | ||
3088 | } | ||
3089 | |||
3090 | static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr) | ||
3091 | { | ||
3092 | return !dma_addr; | ||
3093 | } | ||
3094 | |||
3095 | struct dma_map_ops intel_dma_ops = { | ||
3096 | .alloc_coherent = intel_alloc_coherent, | ||
3097 | .free_coherent = intel_free_coherent, | ||
3098 | .map_sg = intel_map_sg, | ||
3099 | .unmap_sg = intel_unmap_sg, | ||
3100 | .map_page = intel_map_page, | ||
3101 | .unmap_page = intel_unmap_page, | ||
3102 | .mapping_error = intel_mapping_error, | ||
3103 | }; | ||
3104 | |||
3105 | static inline int iommu_domain_cache_init(void) | ||
3106 | { | ||
3107 | int ret = 0; | ||
3108 | |||
3109 | iommu_domain_cache = kmem_cache_create("iommu_domain", | ||
3110 | sizeof(struct dmar_domain), | ||
3111 | 0, | ||
3112 | SLAB_HWCACHE_ALIGN, | ||
3113 | |||
3114 | NULL); | ||
3115 | if (!iommu_domain_cache) { | ||
3116 | printk(KERN_ERR "Couldn't create iommu_domain cache\n"); | ||
3117 | ret = -ENOMEM; | ||
3118 | } | ||
3119 | |||
3120 | return ret; | ||
3121 | } | ||
3122 | |||
3123 | static inline int iommu_devinfo_cache_init(void) | ||
3124 | { | ||
3125 | int ret = 0; | ||
3126 | |||
3127 | iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", | ||
3128 | sizeof(struct device_domain_info), | ||
3129 | 0, | ||
3130 | SLAB_HWCACHE_ALIGN, | ||
3131 | NULL); | ||
3132 | if (!iommu_devinfo_cache) { | ||
3133 | printk(KERN_ERR "Couldn't create devinfo cache\n"); | ||
3134 | ret = -ENOMEM; | ||
3135 | } | ||
3136 | |||
3137 | return ret; | ||
3138 | } | ||
3139 | |||
3140 | static inline int iommu_iova_cache_init(void) | ||
3141 | { | ||
3142 | int ret = 0; | ||
3143 | |||
3144 | iommu_iova_cache = kmem_cache_create("iommu_iova", | ||
3145 | sizeof(struct iova), | ||
3146 | 0, | ||
3147 | SLAB_HWCACHE_ALIGN, | ||
3148 | NULL); | ||
3149 | if (!iommu_iova_cache) { | ||
3150 | printk(KERN_ERR "Couldn't create iova cache\n"); | ||
3151 | ret = -ENOMEM; | ||
3152 | } | ||
3153 | |||
3154 | return ret; | ||
3155 | } | ||
3156 | |||
3157 | static int __init iommu_init_mempool(void) | ||
3158 | { | ||
3159 | int ret; | ||
3160 | ret = iommu_iova_cache_init(); | ||
3161 | if (ret) | ||
3162 | return ret; | ||
3163 | |||
3164 | ret = iommu_domain_cache_init(); | ||
3165 | if (ret) | ||
3166 | goto domain_error; | ||
3167 | |||
3168 | ret = iommu_devinfo_cache_init(); | ||
3169 | if (!ret) | ||
3170 | return ret; | ||
3171 | |||
3172 | kmem_cache_destroy(iommu_domain_cache); | ||
3173 | domain_error: | ||
3174 | kmem_cache_destroy(iommu_iova_cache); | ||
3175 | |||
3176 | return -ENOMEM; | ||
3177 | } | ||
3178 | |||
3179 | static void __init iommu_exit_mempool(void) | ||
3180 | { | ||
3181 | kmem_cache_destroy(iommu_devinfo_cache); | ||
3182 | kmem_cache_destroy(iommu_domain_cache); | ||
3183 | kmem_cache_destroy(iommu_iova_cache); | ||
3184 | |||
3185 | } | ||
3186 | |||
3187 | static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev) | ||
3188 | { | ||
3189 | struct dmar_drhd_unit *drhd; | ||
3190 | u32 vtbar; | ||
3191 | int rc; | ||
3192 | |||
3193 | /* We know that this device on this chipset has its own IOMMU. | ||
3194 | * If we find it under a different IOMMU, then the BIOS is lying | ||
3195 | * to us. Hope that the IOMMU for this device is actually | ||
3196 | * disabled, and it needs no translation... | ||
3197 | */ | ||
3198 | rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); | ||
3199 | if (rc) { | ||
3200 | /* "can't" happen */ | ||
3201 | dev_info(&pdev->dev, "failed to run vt-d quirk\n"); | ||
3202 | return; | ||
3203 | } | ||
3204 | vtbar &= 0xffff0000; | ||
3205 | |||
3206 | /* we know that the this iommu should be at offset 0xa000 from vtbar */ | ||
3207 | drhd = dmar_find_matched_drhd_unit(pdev); | ||
3208 | if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000, | ||
3209 | TAINT_FIRMWARE_WORKAROUND, | ||
3210 | "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n")) | ||
3211 | pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; | ||
3212 | } | ||
3213 | DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu); | ||
3214 | |||
3215 | static void __init init_no_remapping_devices(void) | ||
3216 | { | ||
3217 | struct dmar_drhd_unit *drhd; | ||
3218 | |||
3219 | for_each_drhd_unit(drhd) { | ||
3220 | if (!drhd->include_all) { | ||
3221 | int i; | ||
3222 | for (i = 0; i < drhd->devices_cnt; i++) | ||
3223 | if (drhd->devices[i] != NULL) | ||
3224 | break; | ||
3225 | /* ignore DMAR unit if no pci devices exist */ | ||
3226 | if (i == drhd->devices_cnt) | ||
3227 | drhd->ignored = 1; | ||
3228 | } | ||
3229 | } | ||
3230 | |||
3231 | for_each_drhd_unit(drhd) { | ||
3232 | int i; | ||
3233 | if (drhd->ignored || drhd->include_all) | ||
3234 | continue; | ||
3235 | |||
3236 | for (i = 0; i < drhd->devices_cnt; i++) | ||
3237 | if (drhd->devices[i] && | ||
3238 | !IS_GFX_DEVICE(drhd->devices[i])) | ||
3239 | break; | ||
3240 | |||
3241 | if (i < drhd->devices_cnt) | ||
3242 | continue; | ||
3243 | |||
3244 | /* This IOMMU has *only* gfx devices. Either bypass it or | ||
3245 | set the gfx_mapped flag, as appropriate */ | ||
3246 | if (dmar_map_gfx) { | ||
3247 | intel_iommu_gfx_mapped = 1; | ||
3248 | } else { | ||
3249 | drhd->ignored = 1; | ||
3250 | for (i = 0; i < drhd->devices_cnt; i++) { | ||
3251 | if (!drhd->devices[i]) | ||
3252 | continue; | ||
3253 | drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; | ||
3254 | } | ||
3255 | } | ||
3256 | } | ||
3257 | } | ||
3258 | |||
3259 | #ifdef CONFIG_SUSPEND | ||
3260 | static int init_iommu_hw(void) | ||
3261 | { | ||
3262 | struct dmar_drhd_unit *drhd; | ||
3263 | struct intel_iommu *iommu = NULL; | ||
3264 | |||
3265 | for_each_active_iommu(iommu, drhd) | ||
3266 | if (iommu->qi) | ||
3267 | dmar_reenable_qi(iommu); | ||
3268 | |||
3269 | for_each_iommu(iommu, drhd) { | ||
3270 | if (drhd->ignored) { | ||
3271 | /* | ||
3272 | * we always have to disable PMRs or DMA may fail on | ||
3273 | * this device | ||
3274 | */ | ||
3275 | if (force_on) | ||
3276 | iommu_disable_protect_mem_regions(iommu); | ||
3277 | continue; | ||
3278 | } | ||
3279 | |||
3280 | iommu_flush_write_buffer(iommu); | ||
3281 | |||
3282 | iommu_set_root_entry(iommu); | ||
3283 | |||
3284 | iommu->flush.flush_context(iommu, 0, 0, 0, | ||
3285 | DMA_CCMD_GLOBAL_INVL); | ||
3286 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | ||
3287 | DMA_TLB_GLOBAL_FLUSH); | ||
3288 | if (iommu_enable_translation(iommu)) | ||
3289 | return 1; | ||
3290 | iommu_disable_protect_mem_regions(iommu); | ||
3291 | } | ||
3292 | |||
3293 | return 0; | ||
3294 | } | ||
3295 | |||
3296 | static void iommu_flush_all(void) | ||
3297 | { | ||
3298 | struct dmar_drhd_unit *drhd; | ||
3299 | struct intel_iommu *iommu; | ||
3300 | |||
3301 | for_each_active_iommu(iommu, drhd) { | ||
3302 | iommu->flush.flush_context(iommu, 0, 0, 0, | ||
3303 | DMA_CCMD_GLOBAL_INVL); | ||
3304 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | ||
3305 | DMA_TLB_GLOBAL_FLUSH); | ||
3306 | } | ||
3307 | } | ||
3308 | |||
3309 | static int iommu_suspend(void) | ||
3310 | { | ||
3311 | struct dmar_drhd_unit *drhd; | ||
3312 | struct intel_iommu *iommu = NULL; | ||
3313 | unsigned long flag; | ||
3314 | |||
3315 | for_each_active_iommu(iommu, drhd) { | ||
3316 | iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS, | ||
3317 | GFP_ATOMIC); | ||
3318 | if (!iommu->iommu_state) | ||
3319 | goto nomem; | ||
3320 | } | ||
3321 | |||
3322 | iommu_flush_all(); | ||
3323 | |||
3324 | for_each_active_iommu(iommu, drhd) { | ||
3325 | iommu_disable_translation(iommu); | ||
3326 | |||
3327 | raw_spin_lock_irqsave(&iommu->register_lock, flag); | ||
3328 | |||
3329 | iommu->iommu_state[SR_DMAR_FECTL_REG] = | ||
3330 | readl(iommu->reg + DMAR_FECTL_REG); | ||
3331 | iommu->iommu_state[SR_DMAR_FEDATA_REG] = | ||
3332 | readl(iommu->reg + DMAR_FEDATA_REG); | ||
3333 | iommu->iommu_state[SR_DMAR_FEADDR_REG] = | ||
3334 | readl(iommu->reg + DMAR_FEADDR_REG); | ||
3335 | iommu->iommu_state[SR_DMAR_FEUADDR_REG] = | ||
3336 | readl(iommu->reg + DMAR_FEUADDR_REG); | ||
3337 | |||
3338 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
3339 | } | ||
3340 | return 0; | ||
3341 | |||
3342 | nomem: | ||
3343 | for_each_active_iommu(iommu, drhd) | ||
3344 | kfree(iommu->iommu_state); | ||
3345 | |||
3346 | return -ENOMEM; | ||
3347 | } | ||
3348 | |||
3349 | static void iommu_resume(void) | ||
3350 | { | ||
3351 | struct dmar_drhd_unit *drhd; | ||
3352 | struct intel_iommu *iommu = NULL; | ||
3353 | unsigned long flag; | ||
3354 | |||
3355 | if (init_iommu_hw()) { | ||
3356 | if (force_on) | ||
3357 | panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); | ||
3358 | else | ||
3359 | WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); | ||
3360 | return; | ||
3361 | } | ||
3362 | |||
3363 | for_each_active_iommu(iommu, drhd) { | ||
3364 | |||
3365 | raw_spin_lock_irqsave(&iommu->register_lock, flag); | ||
3366 | |||
3367 | writel(iommu->iommu_state[SR_DMAR_FECTL_REG], | ||
3368 | iommu->reg + DMAR_FECTL_REG); | ||
3369 | writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], | ||
3370 | iommu->reg + DMAR_FEDATA_REG); | ||
3371 | writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], | ||
3372 | iommu->reg + DMAR_FEADDR_REG); | ||
3373 | writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], | ||
3374 | iommu->reg + DMAR_FEUADDR_REG); | ||
3375 | |||
3376 | raw_spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
3377 | } | ||
3378 | |||
3379 | for_each_active_iommu(iommu, drhd) | ||
3380 | kfree(iommu->iommu_state); | ||
3381 | } | ||
3382 | |||
3383 | static struct syscore_ops iommu_syscore_ops = { | ||
3384 | .resume = iommu_resume, | ||
3385 | .suspend = iommu_suspend, | ||
3386 | }; | ||
3387 | |||
3388 | static void __init init_iommu_pm_ops(void) | ||
3389 | { | ||
3390 | register_syscore_ops(&iommu_syscore_ops); | ||
3391 | } | ||
3392 | |||
3393 | #else | ||
3394 | static inline void init_iommu_pm_ops(void) {} | ||
3395 | #endif /* CONFIG_PM */ | ||
3396 | |||
3397 | LIST_HEAD(dmar_rmrr_units); | ||
3398 | |||
3399 | static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr) | ||
3400 | { | ||
3401 | list_add(&rmrr->list, &dmar_rmrr_units); | ||
3402 | } | ||
3403 | |||
3404 | |||
3405 | int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header) | ||
3406 | { | ||
3407 | struct acpi_dmar_reserved_memory *rmrr; | ||
3408 | struct dmar_rmrr_unit *rmrru; | ||
3409 | |||
3410 | rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); | ||
3411 | if (!rmrru) | ||
3412 | return -ENOMEM; | ||
3413 | |||
3414 | rmrru->hdr = header; | ||
3415 | rmrr = (struct acpi_dmar_reserved_memory *)header; | ||
3416 | rmrru->base_address = rmrr->base_address; | ||
3417 | rmrru->end_address = rmrr->end_address; | ||
3418 | |||
3419 | dmar_register_rmrr_unit(rmrru); | ||
3420 | return 0; | ||
3421 | } | ||
3422 | |||
3423 | static int __init | ||
3424 | rmrr_parse_dev(struct dmar_rmrr_unit *rmrru) | ||
3425 | { | ||
3426 | struct acpi_dmar_reserved_memory *rmrr; | ||
3427 | int ret; | ||
3428 | |||
3429 | rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr; | ||
3430 | ret = dmar_parse_dev_scope((void *)(rmrr + 1), | ||
3431 | ((void *)rmrr) + rmrr->header.length, | ||
3432 | &rmrru->devices_cnt, &rmrru->devices, rmrr->segment); | ||
3433 | |||
3434 | if (ret || (rmrru->devices_cnt == 0)) { | ||
3435 | list_del(&rmrru->list); | ||
3436 | kfree(rmrru); | ||
3437 | } | ||
3438 | return ret; | ||
3439 | } | ||
3440 | |||
3441 | static LIST_HEAD(dmar_atsr_units); | ||
3442 | |||
3443 | int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr) | ||
3444 | { | ||
3445 | struct acpi_dmar_atsr *atsr; | ||
3446 | struct dmar_atsr_unit *atsru; | ||
3447 | |||
3448 | atsr = container_of(hdr, struct acpi_dmar_atsr, header); | ||
3449 | atsru = kzalloc(sizeof(*atsru), GFP_KERNEL); | ||
3450 | if (!atsru) | ||
3451 | return -ENOMEM; | ||
3452 | |||
3453 | atsru->hdr = hdr; | ||
3454 | atsru->include_all = atsr->flags & 0x1; | ||
3455 | |||
3456 | list_add(&atsru->list, &dmar_atsr_units); | ||
3457 | |||
3458 | return 0; | ||
3459 | } | ||
3460 | |||
3461 | static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru) | ||
3462 | { | ||
3463 | int rc; | ||
3464 | struct acpi_dmar_atsr *atsr; | ||
3465 | |||
3466 | if (atsru->include_all) | ||
3467 | return 0; | ||
3468 | |||
3469 | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); | ||
3470 | rc = dmar_parse_dev_scope((void *)(atsr + 1), | ||
3471 | (void *)atsr + atsr->header.length, | ||
3472 | &atsru->devices_cnt, &atsru->devices, | ||
3473 | atsr->segment); | ||
3474 | if (rc || !atsru->devices_cnt) { | ||
3475 | list_del(&atsru->list); | ||
3476 | kfree(atsru); | ||
3477 | } | ||
3478 | |||
3479 | return rc; | ||
3480 | } | ||
3481 | |||
3482 | int dmar_find_matched_atsr_unit(struct pci_dev *dev) | ||
3483 | { | ||
3484 | int i; | ||
3485 | struct pci_bus *bus; | ||
3486 | struct acpi_dmar_atsr *atsr; | ||
3487 | struct dmar_atsr_unit *atsru; | ||
3488 | |||
3489 | dev = pci_physfn(dev); | ||
3490 | |||
3491 | list_for_each_entry(atsru, &dmar_atsr_units, list) { | ||
3492 | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); | ||
3493 | if (atsr->segment == pci_domain_nr(dev->bus)) | ||
3494 | goto found; | ||
3495 | } | ||
3496 | |||
3497 | return 0; | ||
3498 | |||
3499 | found: | ||
3500 | for (bus = dev->bus; bus; bus = bus->parent) { | ||
3501 | struct pci_dev *bridge = bus->self; | ||
3502 | |||
3503 | if (!bridge || !pci_is_pcie(bridge) || | ||
3504 | bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE) | ||
3505 | return 0; | ||
3506 | |||
3507 | if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) { | ||
3508 | for (i = 0; i < atsru->devices_cnt; i++) | ||
3509 | if (atsru->devices[i] == bridge) | ||
3510 | return 1; | ||
3511 | break; | ||
3512 | } | ||
3513 | } | ||
3514 | |||
3515 | if (atsru->include_all) | ||
3516 | return 1; | ||
3517 | |||
3518 | return 0; | ||
3519 | } | ||
3520 | |||
3521 | int dmar_parse_rmrr_atsr_dev(void) | ||
3522 | { | ||
3523 | struct dmar_rmrr_unit *rmrr, *rmrr_n; | ||
3524 | struct dmar_atsr_unit *atsr, *atsr_n; | ||
3525 | int ret = 0; | ||
3526 | |||
3527 | list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) { | ||
3528 | ret = rmrr_parse_dev(rmrr); | ||
3529 | if (ret) | ||
3530 | return ret; | ||
3531 | } | ||
3532 | |||
3533 | list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) { | ||
3534 | ret = atsr_parse_dev(atsr); | ||
3535 | if (ret) | ||
3536 | return ret; | ||
3537 | } | ||
3538 | |||
3539 | return ret; | ||
3540 | } | ||
3541 | |||
3542 | /* | ||
3543 | * Here we only respond to action of unbound device from driver. | ||
3544 | * | ||
3545 | * Added device is not attached to its DMAR domain here yet. That will happen | ||
3546 | * when mapping the device to iova. | ||
3547 | */ | ||
3548 | static int device_notifier(struct notifier_block *nb, | ||
3549 | unsigned long action, void *data) | ||
3550 | { | ||
3551 | struct device *dev = data; | ||
3552 | struct pci_dev *pdev = to_pci_dev(dev); | ||
3553 | struct dmar_domain *domain; | ||
3554 | |||
3555 | if (iommu_no_mapping(dev)) | ||
3556 | return 0; | ||
3557 | |||
3558 | domain = find_domain(pdev); | ||
3559 | if (!domain) | ||
3560 | return 0; | ||
3561 | |||
3562 | if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) { | ||
3563 | domain_remove_one_dev_info(domain, pdev); | ||
3564 | |||
3565 | if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && | ||
3566 | !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) && | ||
3567 | list_empty(&domain->devices)) | ||
3568 | domain_exit(domain); | ||
3569 | } | ||
3570 | |||
3571 | return 0; | ||
3572 | } | ||
3573 | |||
3574 | static struct notifier_block device_nb = { | ||
3575 | .notifier_call = device_notifier, | ||
3576 | }; | ||
3577 | |||
3578 | int __init intel_iommu_init(void) | ||
3579 | { | ||
3580 | int ret = 0; | ||
3581 | |||
3582 | /* VT-d is required for a TXT/tboot launch, so enforce that */ | ||
3583 | force_on = tboot_force_iommu(); | ||
3584 | |||
3585 | if (dmar_table_init()) { | ||
3586 | if (force_on) | ||
3587 | panic("tboot: Failed to initialize DMAR table\n"); | ||
3588 | return -ENODEV; | ||
3589 | } | ||
3590 | |||
3591 | if (dmar_dev_scope_init() < 0) { | ||
3592 | if (force_on) | ||
3593 | panic("tboot: Failed to initialize DMAR device scope\n"); | ||
3594 | return -ENODEV; | ||
3595 | } | ||
3596 | |||
3597 | if (no_iommu || dmar_disabled) | ||
3598 | return -ENODEV; | ||
3599 | |||
3600 | if (iommu_init_mempool()) { | ||
3601 | if (force_on) | ||
3602 | panic("tboot: Failed to initialize iommu memory\n"); | ||
3603 | return -ENODEV; | ||
3604 | } | ||
3605 | |||
3606 | if (list_empty(&dmar_rmrr_units)) | ||
3607 | printk(KERN_INFO "DMAR: No RMRR found\n"); | ||
3608 | |||
3609 | if (list_empty(&dmar_atsr_units)) | ||
3610 | printk(KERN_INFO "DMAR: No ATSR found\n"); | ||
3611 | |||
3612 | if (dmar_init_reserved_ranges()) { | ||
3613 | if (force_on) | ||
3614 | panic("tboot: Failed to reserve iommu ranges\n"); | ||
3615 | return -ENODEV; | ||
3616 | } | ||
3617 | |||
3618 | init_no_remapping_devices(); | ||
3619 | |||
3620 | ret = init_dmars(); | ||
3621 | if (ret) { | ||
3622 | if (force_on) | ||
3623 | panic("tboot: Failed to initialize DMARs\n"); | ||
3624 | printk(KERN_ERR "IOMMU: dmar init failed\n"); | ||
3625 | put_iova_domain(&reserved_iova_list); | ||
3626 | iommu_exit_mempool(); | ||
3627 | return ret; | ||
3628 | } | ||
3629 | printk(KERN_INFO | ||
3630 | "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); | ||
3631 | |||
3632 | init_timer(&unmap_timer); | ||
3633 | #ifdef CONFIG_SWIOTLB | ||
3634 | swiotlb = 0; | ||
3635 | #endif | ||
3636 | dma_ops = &intel_dma_ops; | ||
3637 | |||
3638 | init_iommu_pm_ops(); | ||
3639 | |||
3640 | bus_set_iommu(&pci_bus_type, &intel_iommu_ops); | ||
3641 | |||
3642 | bus_register_notifier(&pci_bus_type, &device_nb); | ||
3643 | |||
3644 | return 0; | ||
3645 | } | ||
3646 | |||
3647 | static void iommu_detach_dependent_devices(struct intel_iommu *iommu, | ||
3648 | struct pci_dev *pdev) | ||
3649 | { | ||
3650 | struct pci_dev *tmp, *parent; | ||
3651 | |||
3652 | if (!iommu || !pdev) | ||
3653 | return; | ||
3654 | |||
3655 | /* dependent device detach */ | ||
3656 | tmp = pci_find_upstream_pcie_bridge(pdev); | ||
3657 | /* Secondary interface's bus number and devfn 0 */ | ||
3658 | if (tmp) { | ||
3659 | parent = pdev->bus->self; | ||
3660 | while (parent != tmp) { | ||
3661 | iommu_detach_dev(iommu, parent->bus->number, | ||
3662 | parent->devfn); | ||
3663 | parent = parent->bus->self; | ||
3664 | } | ||
3665 | if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ | ||
3666 | iommu_detach_dev(iommu, | ||
3667 | tmp->subordinate->number, 0); | ||
3668 | else /* this is a legacy PCI bridge */ | ||
3669 | iommu_detach_dev(iommu, tmp->bus->number, | ||
3670 | tmp->devfn); | ||
3671 | } | ||
3672 | } | ||
3673 | |||
3674 | static void domain_remove_one_dev_info(struct dmar_domain *domain, | ||
3675 | struct pci_dev *pdev) | ||
3676 | { | ||
3677 | struct device_domain_info *info; | ||
3678 | struct intel_iommu *iommu; | ||
3679 | unsigned long flags; | ||
3680 | int found = 0; | ||
3681 | struct list_head *entry, *tmp; | ||
3682 | |||
3683 | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, | ||
3684 | pdev->devfn); | ||
3685 | if (!iommu) | ||
3686 | return; | ||
3687 | |||
3688 | spin_lock_irqsave(&device_domain_lock, flags); | ||
3689 | list_for_each_safe(entry, tmp, &domain->devices) { | ||
3690 | info = list_entry(entry, struct device_domain_info, link); | ||
3691 | if (info->segment == pci_domain_nr(pdev->bus) && | ||
3692 | info->bus == pdev->bus->number && | ||
3693 | info->devfn == pdev->devfn) { | ||
3694 | list_del(&info->link); | ||
3695 | list_del(&info->global); | ||
3696 | if (info->dev) | ||
3697 | info->dev->dev.archdata.iommu = NULL; | ||
3698 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
3699 | |||
3700 | iommu_disable_dev_iotlb(info); | ||
3701 | iommu_detach_dev(iommu, info->bus, info->devfn); | ||
3702 | iommu_detach_dependent_devices(iommu, pdev); | ||
3703 | free_devinfo_mem(info); | ||
3704 | |||
3705 | spin_lock_irqsave(&device_domain_lock, flags); | ||
3706 | |||
3707 | if (found) | ||
3708 | break; | ||
3709 | else | ||
3710 | continue; | ||
3711 | } | ||
3712 | |||
3713 | /* if there is no other devices under the same iommu | ||
3714 | * owned by this domain, clear this iommu in iommu_bmp | ||
3715 | * update iommu count and coherency | ||
3716 | */ | ||
3717 | if (iommu == device_to_iommu(info->segment, info->bus, | ||
3718 | info->devfn)) | ||
3719 | found = 1; | ||
3720 | } | ||
3721 | |||
3722 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
3723 | |||
3724 | if (found == 0) { | ||
3725 | unsigned long tmp_flags; | ||
3726 | spin_lock_irqsave(&domain->iommu_lock, tmp_flags); | ||
3727 | clear_bit(iommu->seq_id, &domain->iommu_bmp); | ||
3728 | domain->iommu_count--; | ||
3729 | domain_update_iommu_cap(domain); | ||
3730 | spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags); | ||
3731 | |||
3732 | if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && | ||
3733 | !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) { | ||
3734 | spin_lock_irqsave(&iommu->lock, tmp_flags); | ||
3735 | clear_bit(domain->id, iommu->domain_ids); | ||
3736 | iommu->domains[domain->id] = NULL; | ||
3737 | spin_unlock_irqrestore(&iommu->lock, tmp_flags); | ||
3738 | } | ||
3739 | } | ||
3740 | } | ||
3741 | |||
3742 | static void vm_domain_remove_all_dev_info(struct dmar_domain *domain) | ||
3743 | { | ||
3744 | struct device_domain_info *info; | ||
3745 | struct intel_iommu *iommu; | ||
3746 | unsigned long flags1, flags2; | ||
3747 | |||
3748 | spin_lock_irqsave(&device_domain_lock, flags1); | ||
3749 | while (!list_empty(&domain->devices)) { | ||
3750 | info = list_entry(domain->devices.next, | ||
3751 | struct device_domain_info, link); | ||
3752 | list_del(&info->link); | ||
3753 | list_del(&info->global); | ||
3754 | if (info->dev) | ||
3755 | info->dev->dev.archdata.iommu = NULL; | ||
3756 | |||
3757 | spin_unlock_irqrestore(&device_domain_lock, flags1); | ||
3758 | |||
3759 | iommu_disable_dev_iotlb(info); | ||
3760 | iommu = device_to_iommu(info->segment, info->bus, info->devfn); | ||
3761 | iommu_detach_dev(iommu, info->bus, info->devfn); | ||
3762 | iommu_detach_dependent_devices(iommu, info->dev); | ||
3763 | |||
3764 | /* clear this iommu in iommu_bmp, update iommu count | ||
3765 | * and capabilities | ||
3766 | */ | ||
3767 | spin_lock_irqsave(&domain->iommu_lock, flags2); | ||
3768 | if (test_and_clear_bit(iommu->seq_id, | ||
3769 | &domain->iommu_bmp)) { | ||
3770 | domain->iommu_count--; | ||
3771 | domain_update_iommu_cap(domain); | ||
3772 | } | ||
3773 | spin_unlock_irqrestore(&domain->iommu_lock, flags2); | ||
3774 | |||
3775 | free_devinfo_mem(info); | ||
3776 | spin_lock_irqsave(&device_domain_lock, flags1); | ||
3777 | } | ||
3778 | spin_unlock_irqrestore(&device_domain_lock, flags1); | ||
3779 | } | ||
3780 | |||
3781 | /* domain id for virtual machine, it won't be set in context */ | ||
3782 | static unsigned long vm_domid; | ||
3783 | |||
3784 | static struct dmar_domain *iommu_alloc_vm_domain(void) | ||
3785 | { | ||
3786 | struct dmar_domain *domain; | ||
3787 | |||
3788 | domain = alloc_domain_mem(); | ||
3789 | if (!domain) | ||
3790 | return NULL; | ||
3791 | |||
3792 | domain->id = vm_domid++; | ||
3793 | domain->nid = -1; | ||
3794 | memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); | ||
3795 | domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE; | ||
3796 | |||
3797 | return domain; | ||
3798 | } | ||
3799 | |||
3800 | static int md_domain_init(struct dmar_domain *domain, int guest_width) | ||
3801 | { | ||
3802 | int adjust_width; | ||
3803 | |||
3804 | init_iova_domain(&domain->iovad, DMA_32BIT_PFN); | ||
3805 | spin_lock_init(&domain->iommu_lock); | ||
3806 | |||
3807 | domain_reserve_special_ranges(domain); | ||
3808 | |||
3809 | /* calculate AGAW */ | ||
3810 | domain->gaw = guest_width; | ||
3811 | adjust_width = guestwidth_to_adjustwidth(guest_width); | ||
3812 | domain->agaw = width_to_agaw(adjust_width); | ||
3813 | |||
3814 | INIT_LIST_HEAD(&domain->devices); | ||
3815 | |||
3816 | domain->iommu_count = 0; | ||
3817 | domain->iommu_coherency = 0; | ||
3818 | domain->iommu_snooping = 0; | ||
3819 | domain->iommu_superpage = 0; | ||
3820 | domain->max_addr = 0; | ||
3821 | domain->nid = -1; | ||
3822 | |||
3823 | /* always allocate the top pgd */ | ||
3824 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); | ||
3825 | if (!domain->pgd) | ||
3826 | return -ENOMEM; | ||
3827 | domain_flush_cache(domain, domain->pgd, PAGE_SIZE); | ||
3828 | return 0; | ||
3829 | } | ||
3830 | |||
3831 | static void iommu_free_vm_domain(struct dmar_domain *domain) | ||
3832 | { | ||
3833 | unsigned long flags; | ||
3834 | struct dmar_drhd_unit *drhd; | ||
3835 | struct intel_iommu *iommu; | ||
3836 | unsigned long i; | ||
3837 | unsigned long ndomains; | ||
3838 | |||
3839 | for_each_drhd_unit(drhd) { | ||
3840 | if (drhd->ignored) | ||
3841 | continue; | ||
3842 | iommu = drhd->iommu; | ||
3843 | |||
3844 | ndomains = cap_ndoms(iommu->cap); | ||
3845 | for_each_set_bit(i, iommu->domain_ids, ndomains) { | ||
3846 | if (iommu->domains[i] == domain) { | ||
3847 | spin_lock_irqsave(&iommu->lock, flags); | ||
3848 | clear_bit(i, iommu->domain_ids); | ||
3849 | iommu->domains[i] = NULL; | ||
3850 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
3851 | break; | ||
3852 | } | ||
3853 | } | ||
3854 | } | ||
3855 | } | ||
3856 | |||
3857 | static void vm_domain_exit(struct dmar_domain *domain) | ||
3858 | { | ||
3859 | /* Domain 0 is reserved, so dont process it */ | ||
3860 | if (!domain) | ||
3861 | return; | ||
3862 | |||
3863 | vm_domain_remove_all_dev_info(domain); | ||
3864 | /* destroy iovas */ | ||
3865 | put_iova_domain(&domain->iovad); | ||
3866 | |||
3867 | /* clear ptes */ | ||
3868 | dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | ||
3869 | |||
3870 | /* free page tables */ | ||
3871 | dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | ||
3872 | |||
3873 | iommu_free_vm_domain(domain); | ||
3874 | free_domain_mem(domain); | ||
3875 | } | ||
3876 | |||
3877 | static int intel_iommu_domain_init(struct iommu_domain *domain) | ||
3878 | { | ||
3879 | struct dmar_domain *dmar_domain; | ||
3880 | |||
3881 | dmar_domain = iommu_alloc_vm_domain(); | ||
3882 | if (!dmar_domain) { | ||
3883 | printk(KERN_ERR | ||
3884 | "intel_iommu_domain_init: dmar_domain == NULL\n"); | ||
3885 | return -ENOMEM; | ||
3886 | } | ||
3887 | if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { | ||
3888 | printk(KERN_ERR | ||
3889 | "intel_iommu_domain_init() failed\n"); | ||
3890 | vm_domain_exit(dmar_domain); | ||
3891 | return -ENOMEM; | ||
3892 | } | ||
3893 | domain_update_iommu_cap(dmar_domain); | ||
3894 | domain->priv = dmar_domain; | ||
3895 | |||
3896 | return 0; | ||
3897 | } | ||
3898 | |||
3899 | static void intel_iommu_domain_destroy(struct iommu_domain *domain) | ||
3900 | { | ||
3901 | struct dmar_domain *dmar_domain = domain->priv; | ||
3902 | |||
3903 | domain->priv = NULL; | ||
3904 | vm_domain_exit(dmar_domain); | ||
3905 | } | ||
3906 | |||
3907 | static int intel_iommu_attach_device(struct iommu_domain *domain, | ||
3908 | struct device *dev) | ||
3909 | { | ||
3910 | struct dmar_domain *dmar_domain = domain->priv; | ||
3911 | struct pci_dev *pdev = to_pci_dev(dev); | ||
3912 | struct intel_iommu *iommu; | ||
3913 | int addr_width; | ||
3914 | |||
3915 | /* normally pdev is not mapped */ | ||
3916 | if (unlikely(domain_context_mapped(pdev))) { | ||
3917 | struct dmar_domain *old_domain; | ||
3918 | |||
3919 | old_domain = find_domain(pdev); | ||
3920 | if (old_domain) { | ||
3921 | if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || | ||
3922 | dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) | ||
3923 | domain_remove_one_dev_info(old_domain, pdev); | ||
3924 | else | ||
3925 | domain_remove_dev_info(old_domain); | ||
3926 | } | ||
3927 | } | ||
3928 | |||
3929 | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, | ||
3930 | pdev->devfn); | ||
3931 | if (!iommu) | ||
3932 | return -ENODEV; | ||
3933 | |||
3934 | /* check if this iommu agaw is sufficient for max mapped address */ | ||
3935 | addr_width = agaw_to_width(iommu->agaw); | ||
3936 | if (addr_width > cap_mgaw(iommu->cap)) | ||
3937 | addr_width = cap_mgaw(iommu->cap); | ||
3938 | |||
3939 | if (dmar_domain->max_addr > (1LL << addr_width)) { | ||
3940 | printk(KERN_ERR "%s: iommu width (%d) is not " | ||
3941 | "sufficient for the mapped address (%llx)\n", | ||
3942 | __func__, addr_width, dmar_domain->max_addr); | ||
3943 | return -EFAULT; | ||
3944 | } | ||
3945 | dmar_domain->gaw = addr_width; | ||
3946 | |||
3947 | /* | ||
3948 | * Knock out extra levels of page tables if necessary | ||
3949 | */ | ||
3950 | while (iommu->agaw < dmar_domain->agaw) { | ||
3951 | struct dma_pte *pte; | ||
3952 | |||
3953 | pte = dmar_domain->pgd; | ||
3954 | if (dma_pte_present(pte)) { | ||
3955 | dmar_domain->pgd = (struct dma_pte *) | ||
3956 | phys_to_virt(dma_pte_addr(pte)); | ||
3957 | free_pgtable_page(pte); | ||
3958 | } | ||
3959 | dmar_domain->agaw--; | ||
3960 | } | ||
3961 | |||
3962 | return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL); | ||
3963 | } | ||
3964 | |||
3965 | static void intel_iommu_detach_device(struct iommu_domain *domain, | ||
3966 | struct device *dev) | ||
3967 | { | ||
3968 | struct dmar_domain *dmar_domain = domain->priv; | ||
3969 | struct pci_dev *pdev = to_pci_dev(dev); | ||
3970 | |||
3971 | domain_remove_one_dev_info(dmar_domain, pdev); | ||
3972 | } | ||
3973 | |||
3974 | static int intel_iommu_map(struct iommu_domain *domain, | ||
3975 | unsigned long iova, phys_addr_t hpa, | ||
3976 | int gfp_order, int iommu_prot) | ||
3977 | { | ||
3978 | struct dmar_domain *dmar_domain = domain->priv; | ||
3979 | u64 max_addr; | ||
3980 | int prot = 0; | ||
3981 | size_t size; | ||
3982 | int ret; | ||
3983 | |||
3984 | if (iommu_prot & IOMMU_READ) | ||
3985 | prot |= DMA_PTE_READ; | ||
3986 | if (iommu_prot & IOMMU_WRITE) | ||
3987 | prot |= DMA_PTE_WRITE; | ||
3988 | if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) | ||
3989 | prot |= DMA_PTE_SNP; | ||
3990 | |||
3991 | size = PAGE_SIZE << gfp_order; | ||
3992 | max_addr = iova + size; | ||
3993 | if (dmar_domain->max_addr < max_addr) { | ||
3994 | u64 end; | ||
3995 | |||
3996 | /* check if minimum agaw is sufficient for mapped address */ | ||
3997 | end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; | ||
3998 | if (end < max_addr) { | ||
3999 | printk(KERN_ERR "%s: iommu width (%d) is not " | ||
4000 | "sufficient for the mapped address (%llx)\n", | ||
4001 | __func__, dmar_domain->gaw, max_addr); | ||
4002 | return -EFAULT; | ||
4003 | } | ||
4004 | dmar_domain->max_addr = max_addr; | ||
4005 | } | ||
4006 | /* Round up size to next multiple of PAGE_SIZE, if it and | ||
4007 | the low bits of hpa would take us onto the next page */ | ||
4008 | size = aligned_nrpages(hpa, size); | ||
4009 | ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, | ||
4010 | hpa >> VTD_PAGE_SHIFT, size, prot); | ||
4011 | return ret; | ||
4012 | } | ||
4013 | |||
4014 | static int intel_iommu_unmap(struct iommu_domain *domain, | ||
4015 | unsigned long iova, int gfp_order) | ||
4016 | { | ||
4017 | struct dmar_domain *dmar_domain = domain->priv; | ||
4018 | size_t size = PAGE_SIZE << gfp_order; | ||
4019 | int order; | ||
4020 | |||
4021 | order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT, | ||
4022 | (iova + size - 1) >> VTD_PAGE_SHIFT); | ||
4023 | |||
4024 | if (dmar_domain->max_addr == iova + size) | ||
4025 | dmar_domain->max_addr = iova; | ||
4026 | |||
4027 | return order; | ||
4028 | } | ||
4029 | |||
4030 | static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, | ||
4031 | unsigned long iova) | ||
4032 | { | ||
4033 | struct dmar_domain *dmar_domain = domain->priv; | ||
4034 | struct dma_pte *pte; | ||
4035 | u64 phys = 0; | ||
4036 | |||
4037 | pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0); | ||
4038 | if (pte) | ||
4039 | phys = dma_pte_addr(pte); | ||
4040 | |||
4041 | return phys; | ||
4042 | } | ||
4043 | |||
4044 | static int intel_iommu_domain_has_cap(struct iommu_domain *domain, | ||
4045 | unsigned long cap) | ||
4046 | { | ||
4047 | struct dmar_domain *dmar_domain = domain->priv; | ||
4048 | |||
4049 | if (cap == IOMMU_CAP_CACHE_COHERENCY) | ||
4050 | return dmar_domain->iommu_snooping; | ||
4051 | if (cap == IOMMU_CAP_INTR_REMAP) | ||
4052 | return intr_remapping_enabled; | ||
4053 | |||
4054 | return 0; | ||
4055 | } | ||
4056 | |||
4057 | static struct iommu_ops intel_iommu_ops = { | ||
4058 | .domain_init = intel_iommu_domain_init, | ||
4059 | .domain_destroy = intel_iommu_domain_destroy, | ||
4060 | .attach_dev = intel_iommu_attach_device, | ||
4061 | .detach_dev = intel_iommu_detach_device, | ||
4062 | .map = intel_iommu_map, | ||
4063 | .unmap = intel_iommu_unmap, | ||
4064 | .iova_to_phys = intel_iommu_iova_to_phys, | ||
4065 | .domain_has_cap = intel_iommu_domain_has_cap, | ||
4066 | }; | ||
4067 | |||
4068 | static void __devinit quirk_iommu_rwbf(struct pci_dev *dev) | ||
4069 | { | ||
4070 | /* | ||
4071 | * Mobile 4 Series Chipset neglects to set RWBF capability, | ||
4072 | * but needs it: | ||
4073 | */ | ||
4074 | printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n"); | ||
4075 | rwbf_quirk = 1; | ||
4076 | |||
4077 | /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */ | ||
4078 | if (dev->revision == 0x07) { | ||
4079 | printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n"); | ||
4080 | dmar_map_gfx = 0; | ||
4081 | } | ||
4082 | } | ||
4083 | |||
4084 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); | ||
4085 | |||
4086 | #define GGC 0x52 | ||
4087 | #define GGC_MEMORY_SIZE_MASK (0xf << 8) | ||
4088 | #define GGC_MEMORY_SIZE_NONE (0x0 << 8) | ||
4089 | #define GGC_MEMORY_SIZE_1M (0x1 << 8) | ||
4090 | #define GGC_MEMORY_SIZE_2M (0x3 << 8) | ||
4091 | #define GGC_MEMORY_VT_ENABLED (0x8 << 8) | ||
4092 | #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) | ||
4093 | #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) | ||
4094 | #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) | ||
4095 | |||
4096 | static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev) | ||
4097 | { | ||
4098 | unsigned short ggc; | ||
4099 | |||
4100 | if (pci_read_config_word(dev, GGC, &ggc)) | ||
4101 | return; | ||
4102 | |||
4103 | if (!(ggc & GGC_MEMORY_VT_ENABLED)) { | ||
4104 | printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); | ||
4105 | dmar_map_gfx = 0; | ||
4106 | } else if (dmar_map_gfx) { | ||
4107 | /* we have to ensure the gfx device is idle before we flush */ | ||
4108 | printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n"); | ||
4109 | intel_iommu_strict = 1; | ||
4110 | } | ||
4111 | } | ||
4112 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); | ||
4113 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); | ||
4114 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); | ||
4115 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); | ||
4116 | |||
4117 | /* On Tylersburg chipsets, some BIOSes have been known to enable the | ||
4118 | ISOCH DMAR unit for the Azalia sound device, but not give it any | ||
4119 | TLB entries, which causes it to deadlock. Check for that. We do | ||
4120 | this in a function called from init_dmars(), instead of in a PCI | ||
4121 | quirk, because we don't want to print the obnoxious "BIOS broken" | ||
4122 | message if VT-d is actually disabled. | ||
4123 | */ | ||
4124 | static void __init check_tylersburg_isoch(void) | ||
4125 | { | ||
4126 | struct pci_dev *pdev; | ||
4127 | uint32_t vtisochctrl; | ||
4128 | |||
4129 | /* If there's no Azalia in the system anyway, forget it. */ | ||
4130 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); | ||
4131 | if (!pdev) | ||
4132 | return; | ||
4133 | pci_dev_put(pdev); | ||
4134 | |||
4135 | /* System Management Registers. Might be hidden, in which case | ||
4136 | we can't do the sanity check. But that's OK, because the | ||
4137 | known-broken BIOSes _don't_ actually hide it, so far. */ | ||
4138 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); | ||
4139 | if (!pdev) | ||
4140 | return; | ||
4141 | |||
4142 | if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { | ||
4143 | pci_dev_put(pdev); | ||
4144 | return; | ||
4145 | } | ||
4146 | |||
4147 | pci_dev_put(pdev); | ||
4148 | |||
4149 | /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ | ||
4150 | if (vtisochctrl & 1) | ||
4151 | return; | ||
4152 | |||
4153 | /* Drop all bits other than the number of TLB entries */ | ||
4154 | vtisochctrl &= 0x1c; | ||
4155 | |||
4156 | /* If we have the recommended number of TLB entries (16), fine. */ | ||
4157 | if (vtisochctrl == 0x10) | ||
4158 | return; | ||
4159 | |||
4160 | /* Zero TLB entries? You get to ride the short bus to school. */ | ||
4161 | if (!vtisochctrl) { | ||
4162 | WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" | ||
4163 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | ||
4164 | dmi_get_system_info(DMI_BIOS_VENDOR), | ||
4165 | dmi_get_system_info(DMI_BIOS_VERSION), | ||
4166 | dmi_get_system_info(DMI_PRODUCT_VERSION)); | ||
4167 | iommu_identity_mapping |= IDENTMAP_AZALIA; | ||
4168 | return; | ||
4169 | } | ||
4170 | |||
4171 | printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", | ||
4172 | vtisochctrl); | ||
4173 | } | ||