diff options
Diffstat (limited to 'drivers/ide/ide-iops.c')
-rw-r--r-- | drivers/ide/ide-iops.c | 1285 |
1 files changed, 1285 insertions, 0 deletions
diff --git a/drivers/ide/ide-iops.c b/drivers/ide/ide-iops.c new file mode 100644 index 000000000000..53024942a7eb --- /dev/null +++ b/drivers/ide/ide-iops.c | |||
@@ -0,0 +1,1285 @@ | |||
1 | /* | ||
2 | * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003 | ||
3 | * | ||
4 | * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org> | ||
5 | * Copyright (C) 2003 Red Hat <alan@redhat.com> | ||
6 | * | ||
7 | */ | ||
8 | |||
9 | #include <linux/config.h> | ||
10 | #include <linux/module.h> | ||
11 | #include <linux/types.h> | ||
12 | #include <linux/string.h> | ||
13 | #include <linux/kernel.h> | ||
14 | #include <linux/timer.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/interrupt.h> | ||
17 | #include <linux/major.h> | ||
18 | #include <linux/errno.h> | ||
19 | #include <linux/genhd.h> | ||
20 | #include <linux/blkpg.h> | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/pci.h> | ||
23 | #include <linux/delay.h> | ||
24 | #include <linux/hdreg.h> | ||
25 | #include <linux/ide.h> | ||
26 | #include <linux/bitops.h> | ||
27 | |||
28 | #include <asm/byteorder.h> | ||
29 | #include <asm/irq.h> | ||
30 | #include <asm/uaccess.h> | ||
31 | #include <asm/io.h> | ||
32 | |||
33 | /* | ||
34 | * Conventional PIO operations for ATA devices | ||
35 | */ | ||
36 | |||
37 | static u8 ide_inb (unsigned long port) | ||
38 | { | ||
39 | return (u8) inb(port); | ||
40 | } | ||
41 | |||
42 | static u16 ide_inw (unsigned long port) | ||
43 | { | ||
44 | return (u16) inw(port); | ||
45 | } | ||
46 | |||
47 | static void ide_insw (unsigned long port, void *addr, u32 count) | ||
48 | { | ||
49 | insw(port, addr, count); | ||
50 | } | ||
51 | |||
52 | static u32 ide_inl (unsigned long port) | ||
53 | { | ||
54 | return (u32) inl(port); | ||
55 | } | ||
56 | |||
57 | static void ide_insl (unsigned long port, void *addr, u32 count) | ||
58 | { | ||
59 | insl(port, addr, count); | ||
60 | } | ||
61 | |||
62 | static void ide_outb (u8 val, unsigned long port) | ||
63 | { | ||
64 | outb(val, port); | ||
65 | } | ||
66 | |||
67 | static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port) | ||
68 | { | ||
69 | outb(addr, port); | ||
70 | } | ||
71 | |||
72 | static void ide_outw (u16 val, unsigned long port) | ||
73 | { | ||
74 | outw(val, port); | ||
75 | } | ||
76 | |||
77 | static void ide_outsw (unsigned long port, void *addr, u32 count) | ||
78 | { | ||
79 | outsw(port, addr, count); | ||
80 | } | ||
81 | |||
82 | static void ide_outl (u32 val, unsigned long port) | ||
83 | { | ||
84 | outl(val, port); | ||
85 | } | ||
86 | |||
87 | static void ide_outsl (unsigned long port, void *addr, u32 count) | ||
88 | { | ||
89 | outsl(port, addr, count); | ||
90 | } | ||
91 | |||
92 | void default_hwif_iops (ide_hwif_t *hwif) | ||
93 | { | ||
94 | hwif->OUTB = ide_outb; | ||
95 | hwif->OUTBSYNC = ide_outbsync; | ||
96 | hwif->OUTW = ide_outw; | ||
97 | hwif->OUTL = ide_outl; | ||
98 | hwif->OUTSW = ide_outsw; | ||
99 | hwif->OUTSL = ide_outsl; | ||
100 | hwif->INB = ide_inb; | ||
101 | hwif->INW = ide_inw; | ||
102 | hwif->INL = ide_inl; | ||
103 | hwif->INSW = ide_insw; | ||
104 | hwif->INSL = ide_insl; | ||
105 | } | ||
106 | |||
107 | EXPORT_SYMBOL(default_hwif_iops); | ||
108 | |||
109 | /* | ||
110 | * MMIO operations, typically used for SATA controllers | ||
111 | */ | ||
112 | |||
113 | static u8 ide_mm_inb (unsigned long port) | ||
114 | { | ||
115 | return (u8) readb((void __iomem *) port); | ||
116 | } | ||
117 | |||
118 | static u16 ide_mm_inw (unsigned long port) | ||
119 | { | ||
120 | return (u16) readw((void __iomem *) port); | ||
121 | } | ||
122 | |||
123 | static void ide_mm_insw (unsigned long port, void *addr, u32 count) | ||
124 | { | ||
125 | __ide_mm_insw((void __iomem *) port, addr, count); | ||
126 | } | ||
127 | |||
128 | static u32 ide_mm_inl (unsigned long port) | ||
129 | { | ||
130 | return (u32) readl((void __iomem *) port); | ||
131 | } | ||
132 | |||
133 | static void ide_mm_insl (unsigned long port, void *addr, u32 count) | ||
134 | { | ||
135 | __ide_mm_insl((void __iomem *) port, addr, count); | ||
136 | } | ||
137 | |||
138 | static void ide_mm_outb (u8 value, unsigned long port) | ||
139 | { | ||
140 | writeb(value, (void __iomem *) port); | ||
141 | } | ||
142 | |||
143 | static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port) | ||
144 | { | ||
145 | writeb(value, (void __iomem *) port); | ||
146 | } | ||
147 | |||
148 | static void ide_mm_outw (u16 value, unsigned long port) | ||
149 | { | ||
150 | writew(value, (void __iomem *) port); | ||
151 | } | ||
152 | |||
153 | static void ide_mm_outsw (unsigned long port, void *addr, u32 count) | ||
154 | { | ||
155 | __ide_mm_outsw((void __iomem *) port, addr, count); | ||
156 | } | ||
157 | |||
158 | static void ide_mm_outl (u32 value, unsigned long port) | ||
159 | { | ||
160 | writel(value, (void __iomem *) port); | ||
161 | } | ||
162 | |||
163 | static void ide_mm_outsl (unsigned long port, void *addr, u32 count) | ||
164 | { | ||
165 | __ide_mm_outsl((void __iomem *) port, addr, count); | ||
166 | } | ||
167 | |||
168 | void default_hwif_mmiops (ide_hwif_t *hwif) | ||
169 | { | ||
170 | hwif->OUTB = ide_mm_outb; | ||
171 | /* Most systems will need to override OUTBSYNC, alas however | ||
172 | this one is controller specific! */ | ||
173 | hwif->OUTBSYNC = ide_mm_outbsync; | ||
174 | hwif->OUTW = ide_mm_outw; | ||
175 | hwif->OUTL = ide_mm_outl; | ||
176 | hwif->OUTSW = ide_mm_outsw; | ||
177 | hwif->OUTSL = ide_mm_outsl; | ||
178 | hwif->INB = ide_mm_inb; | ||
179 | hwif->INW = ide_mm_inw; | ||
180 | hwif->INL = ide_mm_inl; | ||
181 | hwif->INSW = ide_mm_insw; | ||
182 | hwif->INSL = ide_mm_insl; | ||
183 | } | ||
184 | |||
185 | EXPORT_SYMBOL(default_hwif_mmiops); | ||
186 | |||
187 | u32 ide_read_24 (ide_drive_t *drive) | ||
188 | { | ||
189 | u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG); | ||
190 | u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG); | ||
191 | u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG); | ||
192 | return (hcyl<<16)|(lcyl<<8)|sect; | ||
193 | } | ||
194 | |||
195 | void SELECT_DRIVE (ide_drive_t *drive) | ||
196 | { | ||
197 | if (HWIF(drive)->selectproc) | ||
198 | HWIF(drive)->selectproc(drive); | ||
199 | HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG); | ||
200 | } | ||
201 | |||
202 | EXPORT_SYMBOL(SELECT_DRIVE); | ||
203 | |||
204 | void SELECT_INTERRUPT (ide_drive_t *drive) | ||
205 | { | ||
206 | if (HWIF(drive)->intrproc) | ||
207 | HWIF(drive)->intrproc(drive); | ||
208 | else | ||
209 | HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG); | ||
210 | } | ||
211 | |||
212 | void SELECT_MASK (ide_drive_t *drive, int mask) | ||
213 | { | ||
214 | if (HWIF(drive)->maskproc) | ||
215 | HWIF(drive)->maskproc(drive, mask); | ||
216 | } | ||
217 | |||
218 | void QUIRK_LIST (ide_drive_t *drive) | ||
219 | { | ||
220 | if (HWIF(drive)->quirkproc) | ||
221 | drive->quirk_list = HWIF(drive)->quirkproc(drive); | ||
222 | } | ||
223 | |||
224 | /* | ||
225 | * Some localbus EIDE interfaces require a special access sequence | ||
226 | * when using 32-bit I/O instructions to transfer data. We call this | ||
227 | * the "vlb_sync" sequence, which consists of three successive reads | ||
228 | * of the sector count register location, with interrupts disabled | ||
229 | * to ensure that the reads all happen together. | ||
230 | */ | ||
231 | static void ata_vlb_sync(ide_drive_t *drive, unsigned long port) | ||
232 | { | ||
233 | (void) HWIF(drive)->INB(port); | ||
234 | (void) HWIF(drive)->INB(port); | ||
235 | (void) HWIF(drive)->INB(port); | ||
236 | } | ||
237 | |||
238 | /* | ||
239 | * This is used for most PIO data transfers *from* the IDE interface | ||
240 | */ | ||
241 | static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount) | ||
242 | { | ||
243 | ide_hwif_t *hwif = HWIF(drive); | ||
244 | u8 io_32bit = drive->io_32bit; | ||
245 | |||
246 | if (io_32bit) { | ||
247 | if (io_32bit & 2) { | ||
248 | unsigned long flags; | ||
249 | local_irq_save(flags); | ||
250 | ata_vlb_sync(drive, IDE_NSECTOR_REG); | ||
251 | hwif->INSL(IDE_DATA_REG, buffer, wcount); | ||
252 | local_irq_restore(flags); | ||
253 | } else | ||
254 | hwif->INSL(IDE_DATA_REG, buffer, wcount); | ||
255 | } else { | ||
256 | hwif->INSW(IDE_DATA_REG, buffer, wcount<<1); | ||
257 | } | ||
258 | } | ||
259 | |||
260 | /* | ||
261 | * This is used for most PIO data transfers *to* the IDE interface | ||
262 | */ | ||
263 | static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount) | ||
264 | { | ||
265 | ide_hwif_t *hwif = HWIF(drive); | ||
266 | u8 io_32bit = drive->io_32bit; | ||
267 | |||
268 | if (io_32bit) { | ||
269 | if (io_32bit & 2) { | ||
270 | unsigned long flags; | ||
271 | local_irq_save(flags); | ||
272 | ata_vlb_sync(drive, IDE_NSECTOR_REG); | ||
273 | hwif->OUTSL(IDE_DATA_REG, buffer, wcount); | ||
274 | local_irq_restore(flags); | ||
275 | } else | ||
276 | hwif->OUTSL(IDE_DATA_REG, buffer, wcount); | ||
277 | } else { | ||
278 | hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1); | ||
279 | } | ||
280 | } | ||
281 | |||
282 | /* | ||
283 | * The following routines are mainly used by the ATAPI drivers. | ||
284 | * | ||
285 | * These routines will round up any request for an odd number of bytes, | ||
286 | * so if an odd bytecount is specified, be sure that there's at least one | ||
287 | * extra byte allocated for the buffer. | ||
288 | */ | ||
289 | |||
290 | static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) | ||
291 | { | ||
292 | ide_hwif_t *hwif = HWIF(drive); | ||
293 | |||
294 | ++bytecount; | ||
295 | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) | ||
296 | if (MACH_IS_ATARI || MACH_IS_Q40) { | ||
297 | /* Atari has a byte-swapped IDE interface */ | ||
298 | insw_swapw(IDE_DATA_REG, buffer, bytecount / 2); | ||
299 | return; | ||
300 | } | ||
301 | #endif /* CONFIG_ATARI || CONFIG_Q40 */ | ||
302 | hwif->ata_input_data(drive, buffer, bytecount / 4); | ||
303 | if ((bytecount & 0x03) >= 2) | ||
304 | hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1); | ||
305 | } | ||
306 | |||
307 | static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) | ||
308 | { | ||
309 | ide_hwif_t *hwif = HWIF(drive); | ||
310 | |||
311 | ++bytecount; | ||
312 | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) | ||
313 | if (MACH_IS_ATARI || MACH_IS_Q40) { | ||
314 | /* Atari has a byte-swapped IDE interface */ | ||
315 | outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2); | ||
316 | return; | ||
317 | } | ||
318 | #endif /* CONFIG_ATARI || CONFIG_Q40 */ | ||
319 | hwif->ata_output_data(drive, buffer, bytecount / 4); | ||
320 | if ((bytecount & 0x03) >= 2) | ||
321 | hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1); | ||
322 | } | ||
323 | |||
324 | void default_hwif_transport(ide_hwif_t *hwif) | ||
325 | { | ||
326 | hwif->ata_input_data = ata_input_data; | ||
327 | hwif->ata_output_data = ata_output_data; | ||
328 | hwif->atapi_input_bytes = atapi_input_bytes; | ||
329 | hwif->atapi_output_bytes = atapi_output_bytes; | ||
330 | } | ||
331 | |||
332 | EXPORT_SYMBOL(default_hwif_transport); | ||
333 | |||
334 | /* | ||
335 | * Beginning of Taskfile OPCODE Library and feature sets. | ||
336 | */ | ||
337 | void ide_fix_driveid (struct hd_driveid *id) | ||
338 | { | ||
339 | #ifndef __LITTLE_ENDIAN | ||
340 | # ifdef __BIG_ENDIAN | ||
341 | int i; | ||
342 | u16 *stringcast; | ||
343 | |||
344 | id->config = __le16_to_cpu(id->config); | ||
345 | id->cyls = __le16_to_cpu(id->cyls); | ||
346 | id->reserved2 = __le16_to_cpu(id->reserved2); | ||
347 | id->heads = __le16_to_cpu(id->heads); | ||
348 | id->track_bytes = __le16_to_cpu(id->track_bytes); | ||
349 | id->sector_bytes = __le16_to_cpu(id->sector_bytes); | ||
350 | id->sectors = __le16_to_cpu(id->sectors); | ||
351 | id->vendor0 = __le16_to_cpu(id->vendor0); | ||
352 | id->vendor1 = __le16_to_cpu(id->vendor1); | ||
353 | id->vendor2 = __le16_to_cpu(id->vendor2); | ||
354 | stringcast = (u16 *)&id->serial_no[0]; | ||
355 | for (i = 0; i < (20/2); i++) | ||
356 | stringcast[i] = __le16_to_cpu(stringcast[i]); | ||
357 | id->buf_type = __le16_to_cpu(id->buf_type); | ||
358 | id->buf_size = __le16_to_cpu(id->buf_size); | ||
359 | id->ecc_bytes = __le16_to_cpu(id->ecc_bytes); | ||
360 | stringcast = (u16 *)&id->fw_rev[0]; | ||
361 | for (i = 0; i < (8/2); i++) | ||
362 | stringcast[i] = __le16_to_cpu(stringcast[i]); | ||
363 | stringcast = (u16 *)&id->model[0]; | ||
364 | for (i = 0; i < (40/2); i++) | ||
365 | stringcast[i] = __le16_to_cpu(stringcast[i]); | ||
366 | id->dword_io = __le16_to_cpu(id->dword_io); | ||
367 | id->reserved50 = __le16_to_cpu(id->reserved50); | ||
368 | id->field_valid = __le16_to_cpu(id->field_valid); | ||
369 | id->cur_cyls = __le16_to_cpu(id->cur_cyls); | ||
370 | id->cur_heads = __le16_to_cpu(id->cur_heads); | ||
371 | id->cur_sectors = __le16_to_cpu(id->cur_sectors); | ||
372 | id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0); | ||
373 | id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1); | ||
374 | id->lba_capacity = __le32_to_cpu(id->lba_capacity); | ||
375 | id->dma_1word = __le16_to_cpu(id->dma_1word); | ||
376 | id->dma_mword = __le16_to_cpu(id->dma_mword); | ||
377 | id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes); | ||
378 | id->eide_dma_min = __le16_to_cpu(id->eide_dma_min); | ||
379 | id->eide_dma_time = __le16_to_cpu(id->eide_dma_time); | ||
380 | id->eide_pio = __le16_to_cpu(id->eide_pio); | ||
381 | id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy); | ||
382 | for (i = 0; i < 2; ++i) | ||
383 | id->words69_70[i] = __le16_to_cpu(id->words69_70[i]); | ||
384 | for (i = 0; i < 4; ++i) | ||
385 | id->words71_74[i] = __le16_to_cpu(id->words71_74[i]); | ||
386 | id->queue_depth = __le16_to_cpu(id->queue_depth); | ||
387 | for (i = 0; i < 4; ++i) | ||
388 | id->words76_79[i] = __le16_to_cpu(id->words76_79[i]); | ||
389 | id->major_rev_num = __le16_to_cpu(id->major_rev_num); | ||
390 | id->minor_rev_num = __le16_to_cpu(id->minor_rev_num); | ||
391 | id->command_set_1 = __le16_to_cpu(id->command_set_1); | ||
392 | id->command_set_2 = __le16_to_cpu(id->command_set_2); | ||
393 | id->cfsse = __le16_to_cpu(id->cfsse); | ||
394 | id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1); | ||
395 | id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2); | ||
396 | id->csf_default = __le16_to_cpu(id->csf_default); | ||
397 | id->dma_ultra = __le16_to_cpu(id->dma_ultra); | ||
398 | id->trseuc = __le16_to_cpu(id->trseuc); | ||
399 | id->trsEuc = __le16_to_cpu(id->trsEuc); | ||
400 | id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues); | ||
401 | id->mprc = __le16_to_cpu(id->mprc); | ||
402 | id->hw_config = __le16_to_cpu(id->hw_config); | ||
403 | id->acoustic = __le16_to_cpu(id->acoustic); | ||
404 | id->msrqs = __le16_to_cpu(id->msrqs); | ||
405 | id->sxfert = __le16_to_cpu(id->sxfert); | ||
406 | id->sal = __le16_to_cpu(id->sal); | ||
407 | id->spg = __le32_to_cpu(id->spg); | ||
408 | id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2); | ||
409 | for (i = 0; i < 22; i++) | ||
410 | id->words104_125[i] = __le16_to_cpu(id->words104_125[i]); | ||
411 | id->last_lun = __le16_to_cpu(id->last_lun); | ||
412 | id->word127 = __le16_to_cpu(id->word127); | ||
413 | id->dlf = __le16_to_cpu(id->dlf); | ||
414 | id->csfo = __le16_to_cpu(id->csfo); | ||
415 | for (i = 0; i < 26; i++) | ||
416 | id->words130_155[i] = __le16_to_cpu(id->words130_155[i]); | ||
417 | id->word156 = __le16_to_cpu(id->word156); | ||
418 | for (i = 0; i < 3; i++) | ||
419 | id->words157_159[i] = __le16_to_cpu(id->words157_159[i]); | ||
420 | id->cfa_power = __le16_to_cpu(id->cfa_power); | ||
421 | for (i = 0; i < 14; i++) | ||
422 | id->words161_175[i] = __le16_to_cpu(id->words161_175[i]); | ||
423 | for (i = 0; i < 31; i++) | ||
424 | id->words176_205[i] = __le16_to_cpu(id->words176_205[i]); | ||
425 | for (i = 0; i < 48; i++) | ||
426 | id->words206_254[i] = __le16_to_cpu(id->words206_254[i]); | ||
427 | id->integrity_word = __le16_to_cpu(id->integrity_word); | ||
428 | # else | ||
429 | # error "Please fix <asm/byteorder.h>" | ||
430 | # endif | ||
431 | #endif | ||
432 | } | ||
433 | |||
434 | /* FIXME: exported for use by the USB storage (isd200.c) code only */ | ||
435 | EXPORT_SYMBOL(ide_fix_driveid); | ||
436 | |||
437 | void ide_fixstring (u8 *s, const int bytecount, const int byteswap) | ||
438 | { | ||
439 | u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ | ||
440 | |||
441 | if (byteswap) { | ||
442 | /* convert from big-endian to host byte order */ | ||
443 | for (p = end ; p != s;) { | ||
444 | unsigned short *pp = (unsigned short *) (p -= 2); | ||
445 | *pp = ntohs(*pp); | ||
446 | } | ||
447 | } | ||
448 | /* strip leading blanks */ | ||
449 | while (s != end && *s == ' ') | ||
450 | ++s; | ||
451 | /* compress internal blanks and strip trailing blanks */ | ||
452 | while (s != end && *s) { | ||
453 | if (*s++ != ' ' || (s != end && *s && *s != ' ')) | ||
454 | *p++ = *(s-1); | ||
455 | } | ||
456 | /* wipe out trailing garbage */ | ||
457 | while (p != end) | ||
458 | *p++ = '\0'; | ||
459 | } | ||
460 | |||
461 | EXPORT_SYMBOL(ide_fixstring); | ||
462 | |||
463 | /* | ||
464 | * Needed for PCI irq sharing | ||
465 | */ | ||
466 | int drive_is_ready (ide_drive_t *drive) | ||
467 | { | ||
468 | ide_hwif_t *hwif = HWIF(drive); | ||
469 | u8 stat = 0; | ||
470 | |||
471 | if (drive->waiting_for_dma) | ||
472 | return hwif->ide_dma_test_irq(drive); | ||
473 | |||
474 | #if 0 | ||
475 | /* need to guarantee 400ns since last command was issued */ | ||
476 | udelay(1); | ||
477 | #endif | ||
478 | |||
479 | #ifdef CONFIG_IDEPCI_SHARE_IRQ | ||
480 | /* | ||
481 | * We do a passive status test under shared PCI interrupts on | ||
482 | * cards that truly share the ATA side interrupt, but may also share | ||
483 | * an interrupt with another pci card/device. We make no assumptions | ||
484 | * about possible isa-pnp and pci-pnp issues yet. | ||
485 | */ | ||
486 | if (IDE_CONTROL_REG) | ||
487 | stat = hwif->INB(IDE_ALTSTATUS_REG); | ||
488 | else | ||
489 | #endif /* CONFIG_IDEPCI_SHARE_IRQ */ | ||
490 | /* Note: this may clear a pending IRQ!! */ | ||
491 | stat = hwif->INB(IDE_STATUS_REG); | ||
492 | |||
493 | if (stat & BUSY_STAT) | ||
494 | /* drive busy: definitely not interrupting */ | ||
495 | return 0; | ||
496 | |||
497 | /* drive ready: *might* be interrupting */ | ||
498 | return 1; | ||
499 | } | ||
500 | |||
501 | EXPORT_SYMBOL(drive_is_ready); | ||
502 | |||
503 | /* | ||
504 | * Global for All, and taken from ide-pmac.c. Can be called | ||
505 | * with spinlock held & IRQs disabled, so don't schedule ! | ||
506 | */ | ||
507 | int wait_for_ready (ide_drive_t *drive, int timeout) | ||
508 | { | ||
509 | ide_hwif_t *hwif = HWIF(drive); | ||
510 | u8 stat = 0; | ||
511 | |||
512 | while(--timeout) { | ||
513 | stat = hwif->INB(IDE_STATUS_REG); | ||
514 | if (!(stat & BUSY_STAT)) { | ||
515 | if (drive->ready_stat == 0) | ||
516 | break; | ||
517 | else if ((stat & drive->ready_stat)||(stat & ERR_STAT)) | ||
518 | break; | ||
519 | } | ||
520 | mdelay(1); | ||
521 | } | ||
522 | if ((stat & ERR_STAT) || timeout <= 0) { | ||
523 | if (stat & ERR_STAT) { | ||
524 | printk(KERN_ERR "%s: wait_for_ready, " | ||
525 | "error status: %x\n", drive->name, stat); | ||
526 | } | ||
527 | return 1; | ||
528 | } | ||
529 | return 0; | ||
530 | } | ||
531 | |||
532 | EXPORT_SYMBOL(wait_for_ready); | ||
533 | |||
534 | /* | ||
535 | * This routine busy-waits for the drive status to be not "busy". | ||
536 | * It then checks the status for all of the "good" bits and none | ||
537 | * of the "bad" bits, and if all is okay it returns 0. All other | ||
538 | * cases return 1 after invoking ide_error() -- caller should just return. | ||
539 | * | ||
540 | * This routine should get fixed to not hog the cpu during extra long waits.. | ||
541 | * That could be done by busy-waiting for the first jiffy or two, and then | ||
542 | * setting a timer to wake up at half second intervals thereafter, | ||
543 | * until timeout is achieved, before timing out. | ||
544 | */ | ||
545 | int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) | ||
546 | { | ||
547 | ide_hwif_t *hwif = HWIF(drive); | ||
548 | u8 stat; | ||
549 | int i; | ||
550 | unsigned long flags; | ||
551 | |||
552 | /* bail early if we've exceeded max_failures */ | ||
553 | if (drive->max_failures && (drive->failures > drive->max_failures)) { | ||
554 | *startstop = ide_stopped; | ||
555 | return 1; | ||
556 | } | ||
557 | |||
558 | udelay(1); /* spec allows drive 400ns to assert "BUSY" */ | ||
559 | if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | ||
560 | local_irq_set(flags); | ||
561 | timeout += jiffies; | ||
562 | while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | ||
563 | if (time_after(jiffies, timeout)) { | ||
564 | /* | ||
565 | * One last read after the timeout in case | ||
566 | * heavy interrupt load made us not make any | ||
567 | * progress during the timeout.. | ||
568 | */ | ||
569 | stat = hwif->INB(IDE_STATUS_REG); | ||
570 | if (!(stat & BUSY_STAT)) | ||
571 | break; | ||
572 | |||
573 | local_irq_restore(flags); | ||
574 | *startstop = ide_error(drive, "status timeout", stat); | ||
575 | return 1; | ||
576 | } | ||
577 | } | ||
578 | local_irq_restore(flags); | ||
579 | } | ||
580 | /* | ||
581 | * Allow status to settle, then read it again. | ||
582 | * A few rare drives vastly violate the 400ns spec here, | ||
583 | * so we'll wait up to 10usec for a "good" status | ||
584 | * rather than expensively fail things immediately. | ||
585 | * This fix courtesy of Matthew Faupel & Niccolo Rigacci. | ||
586 | */ | ||
587 | for (i = 0; i < 10; i++) { | ||
588 | udelay(1); | ||
589 | if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) | ||
590 | return 0; | ||
591 | } | ||
592 | *startstop = ide_error(drive, "status error", stat); | ||
593 | return 1; | ||
594 | } | ||
595 | |||
596 | EXPORT_SYMBOL(ide_wait_stat); | ||
597 | |||
598 | /* | ||
599 | * All hosts that use the 80c ribbon must use! | ||
600 | * The name is derived from upper byte of word 93 and the 80c ribbon. | ||
601 | */ | ||
602 | u8 eighty_ninty_three (ide_drive_t *drive) | ||
603 | { | ||
604 | #if 0 | ||
605 | if (!HWIF(drive)->udma_four) | ||
606 | return 0; | ||
607 | |||
608 | if (drive->id->major_rev_num) { | ||
609 | int hssbd = 0; | ||
610 | int i; | ||
611 | /* | ||
612 | * Determine highest Supported SPEC | ||
613 | */ | ||
614 | for (i=1; i<=15; i++) | ||
615 | if (drive->id->major_rev_num & (1<<i)) | ||
616 | hssbd++; | ||
617 | |||
618 | switch (hssbd) { | ||
619 | case 7: | ||
620 | case 6: | ||
621 | case 5: | ||
622 | /* ATA-4 and older do not support above Ultra 33 */ | ||
623 | default: | ||
624 | return 0; | ||
625 | } | ||
626 | } | ||
627 | |||
628 | return ((u8) ( | ||
629 | #ifndef CONFIG_IDEDMA_IVB | ||
630 | (drive->id->hw_config & 0x4000) && | ||
631 | #endif /* CONFIG_IDEDMA_IVB */ | ||
632 | (drive->id->hw_config & 0x6000)) ? 1 : 0); | ||
633 | |||
634 | #else | ||
635 | |||
636 | return ((u8) ((HWIF(drive)->udma_four) && | ||
637 | #ifndef CONFIG_IDEDMA_IVB | ||
638 | (drive->id->hw_config & 0x4000) && | ||
639 | #endif /* CONFIG_IDEDMA_IVB */ | ||
640 | (drive->id->hw_config & 0x6000)) ? 1 : 0); | ||
641 | #endif | ||
642 | } | ||
643 | |||
644 | EXPORT_SYMBOL(eighty_ninty_three); | ||
645 | |||
646 | int ide_ata66_check (ide_drive_t *drive, ide_task_t *args) | ||
647 | { | ||
648 | if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) && | ||
649 | (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) && | ||
650 | (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) { | ||
651 | #ifndef CONFIG_IDEDMA_IVB | ||
652 | if ((drive->id->hw_config & 0x6000) == 0) { | ||
653 | #else /* !CONFIG_IDEDMA_IVB */ | ||
654 | if (((drive->id->hw_config & 0x2000) == 0) || | ||
655 | ((drive->id->hw_config & 0x4000) == 0)) { | ||
656 | #endif /* CONFIG_IDEDMA_IVB */ | ||
657 | printk("%s: Speed warnings UDMA 3/4/5 is not " | ||
658 | "functional.\n", drive->name); | ||
659 | return 1; | ||
660 | } | ||
661 | if (!HWIF(drive)->udma_four) { | ||
662 | printk("%s: Speed warnings UDMA 3/4/5 is not " | ||
663 | "functional.\n", | ||
664 | HWIF(drive)->name); | ||
665 | return 1; | ||
666 | } | ||
667 | } | ||
668 | return 0; | ||
669 | } | ||
670 | |||
671 | /* | ||
672 | * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER. | ||
673 | * 1 : Safe to update drive->id DMA registers. | ||
674 | * 0 : OOPs not allowed. | ||
675 | */ | ||
676 | int set_transfer (ide_drive_t *drive, ide_task_t *args) | ||
677 | { | ||
678 | if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) && | ||
679 | (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) && | ||
680 | (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) && | ||
681 | (drive->id->dma_ultra || | ||
682 | drive->id->dma_mword || | ||
683 | drive->id->dma_1word)) | ||
684 | return 1; | ||
685 | |||
686 | return 0; | ||
687 | } | ||
688 | |||
689 | #ifdef CONFIG_BLK_DEV_IDEDMA | ||
690 | static u8 ide_auto_reduce_xfer (ide_drive_t *drive) | ||
691 | { | ||
692 | if (!drive->crc_count) | ||
693 | return drive->current_speed; | ||
694 | drive->crc_count = 0; | ||
695 | |||
696 | switch(drive->current_speed) { | ||
697 | case XFER_UDMA_7: return XFER_UDMA_6; | ||
698 | case XFER_UDMA_6: return XFER_UDMA_5; | ||
699 | case XFER_UDMA_5: return XFER_UDMA_4; | ||
700 | case XFER_UDMA_4: return XFER_UDMA_3; | ||
701 | case XFER_UDMA_3: return XFER_UDMA_2; | ||
702 | case XFER_UDMA_2: return XFER_UDMA_1; | ||
703 | case XFER_UDMA_1: return XFER_UDMA_0; | ||
704 | /* | ||
705 | * OOPS we do not goto non Ultra DMA modes | ||
706 | * without iCRC's available we force | ||
707 | * the system to PIO and make the user | ||
708 | * invoke the ATA-1 ATA-2 DMA modes. | ||
709 | */ | ||
710 | case XFER_UDMA_0: | ||
711 | default: return XFER_PIO_4; | ||
712 | } | ||
713 | } | ||
714 | #endif /* CONFIG_BLK_DEV_IDEDMA */ | ||
715 | |||
716 | /* | ||
717 | * Update the | ||
718 | */ | ||
719 | int ide_driveid_update (ide_drive_t *drive) | ||
720 | { | ||
721 | ide_hwif_t *hwif = HWIF(drive); | ||
722 | struct hd_driveid *id; | ||
723 | #if 0 | ||
724 | id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); | ||
725 | if (!id) | ||
726 | return 0; | ||
727 | |||
728 | taskfile_lib_get_identify(drive, (char *)&id); | ||
729 | |||
730 | ide_fix_driveid(id); | ||
731 | if (id) { | ||
732 | drive->id->dma_ultra = id->dma_ultra; | ||
733 | drive->id->dma_mword = id->dma_mword; | ||
734 | drive->id->dma_1word = id->dma_1word; | ||
735 | /* anything more ? */ | ||
736 | kfree(id); | ||
737 | } | ||
738 | return 1; | ||
739 | #else | ||
740 | /* | ||
741 | * Re-read drive->id for possible DMA mode | ||
742 | * change (copied from ide-probe.c) | ||
743 | */ | ||
744 | unsigned long timeout, flags; | ||
745 | |||
746 | SELECT_MASK(drive, 1); | ||
747 | if (IDE_CONTROL_REG) | ||
748 | hwif->OUTB(drive->ctl,IDE_CONTROL_REG); | ||
749 | msleep(50); | ||
750 | hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG); | ||
751 | timeout = jiffies + WAIT_WORSTCASE; | ||
752 | do { | ||
753 | if (time_after(jiffies, timeout)) { | ||
754 | SELECT_MASK(drive, 0); | ||
755 | return 0; /* drive timed-out */ | ||
756 | } | ||
757 | msleep(50); /* give drive a breather */ | ||
758 | } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT); | ||
759 | msleep(50); /* wait for IRQ and DRQ_STAT */ | ||
760 | if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) { | ||
761 | SELECT_MASK(drive, 0); | ||
762 | printk("%s: CHECK for good STATUS\n", drive->name); | ||
763 | return 0; | ||
764 | } | ||
765 | local_irq_save(flags); | ||
766 | SELECT_MASK(drive, 0); | ||
767 | id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); | ||
768 | if (!id) { | ||
769 | local_irq_restore(flags); | ||
770 | return 0; | ||
771 | } | ||
772 | ata_input_data(drive, id, SECTOR_WORDS); | ||
773 | (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */ | ||
774 | local_irq_enable(); | ||
775 | local_irq_restore(flags); | ||
776 | ide_fix_driveid(id); | ||
777 | if (id) { | ||
778 | drive->id->dma_ultra = id->dma_ultra; | ||
779 | drive->id->dma_mword = id->dma_mword; | ||
780 | drive->id->dma_1word = id->dma_1word; | ||
781 | /* anything more ? */ | ||
782 | kfree(id); | ||
783 | } | ||
784 | |||
785 | return 1; | ||
786 | #endif | ||
787 | } | ||
788 | |||
789 | /* | ||
790 | * Similar to ide_wait_stat(), except it never calls ide_error internally. | ||
791 | * This is a kludge to handle the new ide_config_drive_speed() function, | ||
792 | * and should not otherwise be used anywhere. Eventually, the tuneproc's | ||
793 | * should be updated to return ide_startstop_t, in which case we can get | ||
794 | * rid of this abomination again. :) -ml | ||
795 | * | ||
796 | * It is gone.......... | ||
797 | * | ||
798 | * const char *msg == consider adding for verbose errors. | ||
799 | */ | ||
800 | int ide_config_drive_speed (ide_drive_t *drive, u8 speed) | ||
801 | { | ||
802 | ide_hwif_t *hwif = HWIF(drive); | ||
803 | int i, error = 1; | ||
804 | u8 stat; | ||
805 | |||
806 | // while (HWGROUP(drive)->busy) | ||
807 | // msleep(50); | ||
808 | |||
809 | #ifdef CONFIG_BLK_DEV_IDEDMA | ||
810 | if (hwif->ide_dma_check) /* check if host supports DMA */ | ||
811 | hwif->ide_dma_host_off(drive); | ||
812 | #endif | ||
813 | |||
814 | /* | ||
815 | * Don't use ide_wait_cmd here - it will | ||
816 | * attempt to set_geometry and recalibrate, | ||
817 | * but for some reason these don't work at | ||
818 | * this point (lost interrupt). | ||
819 | */ | ||
820 | /* | ||
821 | * Select the drive, and issue the SETFEATURES command | ||
822 | */ | ||
823 | disable_irq_nosync(hwif->irq); | ||
824 | |||
825 | /* | ||
826 | * FIXME: we race against the running IRQ here if | ||
827 | * this is called from non IRQ context. If we use | ||
828 | * disable_irq() we hang on the error path. Work | ||
829 | * is needed. | ||
830 | */ | ||
831 | |||
832 | udelay(1); | ||
833 | SELECT_DRIVE(drive); | ||
834 | SELECT_MASK(drive, 0); | ||
835 | udelay(1); | ||
836 | if (IDE_CONTROL_REG) | ||
837 | hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG); | ||
838 | hwif->OUTB(speed, IDE_NSECTOR_REG); | ||
839 | hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); | ||
840 | hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG); | ||
841 | if ((IDE_CONTROL_REG) && (drive->quirk_list == 2)) | ||
842 | hwif->OUTB(drive->ctl, IDE_CONTROL_REG); | ||
843 | udelay(1); | ||
844 | /* | ||
845 | * Wait for drive to become non-BUSY | ||
846 | */ | ||
847 | if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | ||
848 | unsigned long flags, timeout; | ||
849 | local_irq_set(flags); | ||
850 | timeout = jiffies + WAIT_CMD; | ||
851 | while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | ||
852 | if (time_after(jiffies, timeout)) | ||
853 | break; | ||
854 | } | ||
855 | local_irq_restore(flags); | ||
856 | } | ||
857 | |||
858 | /* | ||
859 | * Allow status to settle, then read it again. | ||
860 | * A few rare drives vastly violate the 400ns spec here, | ||
861 | * so we'll wait up to 10usec for a "good" status | ||
862 | * rather than expensively fail things immediately. | ||
863 | * This fix courtesy of Matthew Faupel & Niccolo Rigacci. | ||
864 | */ | ||
865 | for (i = 0; i < 10; i++) { | ||
866 | udelay(1); | ||
867 | if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) { | ||
868 | error = 0; | ||
869 | break; | ||
870 | } | ||
871 | } | ||
872 | |||
873 | SELECT_MASK(drive, 0); | ||
874 | |||
875 | enable_irq(hwif->irq); | ||
876 | |||
877 | if (error) { | ||
878 | (void) ide_dump_status(drive, "set_drive_speed_status", stat); | ||
879 | return error; | ||
880 | } | ||
881 | |||
882 | drive->id->dma_ultra &= ~0xFF00; | ||
883 | drive->id->dma_mword &= ~0x0F00; | ||
884 | drive->id->dma_1word &= ~0x0F00; | ||
885 | |||
886 | #ifdef CONFIG_BLK_DEV_IDEDMA | ||
887 | if (speed >= XFER_SW_DMA_0) | ||
888 | hwif->ide_dma_host_on(drive); | ||
889 | else if (hwif->ide_dma_check) /* check if host supports DMA */ | ||
890 | hwif->ide_dma_off_quietly(drive); | ||
891 | #endif | ||
892 | |||
893 | switch(speed) { | ||
894 | case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break; | ||
895 | case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break; | ||
896 | case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break; | ||
897 | case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break; | ||
898 | case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break; | ||
899 | case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break; | ||
900 | case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break; | ||
901 | case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break; | ||
902 | case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break; | ||
903 | case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break; | ||
904 | case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break; | ||
905 | case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break; | ||
906 | case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break; | ||
907 | case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break; | ||
908 | default: break; | ||
909 | } | ||
910 | if (!drive->init_speed) | ||
911 | drive->init_speed = speed; | ||
912 | drive->current_speed = speed; | ||
913 | return error; | ||
914 | } | ||
915 | |||
916 | EXPORT_SYMBOL(ide_config_drive_speed); | ||
917 | |||
918 | |||
919 | /* | ||
920 | * This should get invoked any time we exit the driver to | ||
921 | * wait for an interrupt response from a drive. handler() points | ||
922 | * at the appropriate code to handle the next interrupt, and a | ||
923 | * timer is started to prevent us from waiting forever in case | ||
924 | * something goes wrong (see the ide_timer_expiry() handler later on). | ||
925 | * | ||
926 | * See also ide_execute_command | ||
927 | */ | ||
928 | static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | ||
929 | unsigned int timeout, ide_expiry_t *expiry) | ||
930 | { | ||
931 | ide_hwgroup_t *hwgroup = HWGROUP(drive); | ||
932 | |||
933 | if (hwgroup->handler != NULL) { | ||
934 | printk(KERN_CRIT "%s: ide_set_handler: handler not null; " | ||
935 | "old=%p, new=%p\n", | ||
936 | drive->name, hwgroup->handler, handler); | ||
937 | } | ||
938 | hwgroup->handler = handler; | ||
939 | hwgroup->expiry = expiry; | ||
940 | hwgroup->timer.expires = jiffies + timeout; | ||
941 | add_timer(&hwgroup->timer); | ||
942 | } | ||
943 | |||
944 | void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | ||
945 | unsigned int timeout, ide_expiry_t *expiry) | ||
946 | { | ||
947 | unsigned long flags; | ||
948 | spin_lock_irqsave(&ide_lock, flags); | ||
949 | __ide_set_handler(drive, handler, timeout, expiry); | ||
950 | spin_unlock_irqrestore(&ide_lock, flags); | ||
951 | } | ||
952 | |||
953 | EXPORT_SYMBOL(ide_set_handler); | ||
954 | |||
955 | /** | ||
956 | * ide_execute_command - execute an IDE command | ||
957 | * @drive: IDE drive to issue the command against | ||
958 | * @command: command byte to write | ||
959 | * @handler: handler for next phase | ||
960 | * @timeout: timeout for command | ||
961 | * @expiry: handler to run on timeout | ||
962 | * | ||
963 | * Helper function to issue an IDE command. This handles the | ||
964 | * atomicity requirements, command timing and ensures that the | ||
965 | * handler and IRQ setup do not race. All IDE command kick off | ||
966 | * should go via this function or do equivalent locking. | ||
967 | */ | ||
968 | |||
969 | void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry) | ||
970 | { | ||
971 | unsigned long flags; | ||
972 | ide_hwgroup_t *hwgroup = HWGROUP(drive); | ||
973 | ide_hwif_t *hwif = HWIF(drive); | ||
974 | |||
975 | spin_lock_irqsave(&ide_lock, flags); | ||
976 | |||
977 | if(hwgroup->handler) | ||
978 | BUG(); | ||
979 | hwgroup->handler = handler; | ||
980 | hwgroup->expiry = expiry; | ||
981 | hwgroup->timer.expires = jiffies + timeout; | ||
982 | add_timer(&hwgroup->timer); | ||
983 | hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG); | ||
984 | /* Drive takes 400nS to respond, we must avoid the IRQ being | ||
985 | serviced before that. | ||
986 | |||
987 | FIXME: we could skip this delay with care on non shared | ||
988 | devices | ||
989 | */ | ||
990 | ndelay(400); | ||
991 | spin_unlock_irqrestore(&ide_lock, flags); | ||
992 | } | ||
993 | |||
994 | EXPORT_SYMBOL(ide_execute_command); | ||
995 | |||
996 | |||
997 | /* needed below */ | ||
998 | static ide_startstop_t do_reset1 (ide_drive_t *, int); | ||
999 | |||
1000 | /* | ||
1001 | * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms | ||
1002 | * during an atapi drive reset operation. If the drive has not yet responded, | ||
1003 | * and we have not yet hit our maximum waiting time, then the timer is restarted | ||
1004 | * for another 50ms. | ||
1005 | */ | ||
1006 | static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) | ||
1007 | { | ||
1008 | ide_hwgroup_t *hwgroup = HWGROUP(drive); | ||
1009 | ide_hwif_t *hwif = HWIF(drive); | ||
1010 | u8 stat; | ||
1011 | |||
1012 | SELECT_DRIVE(drive); | ||
1013 | udelay (10); | ||
1014 | |||
1015 | if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) { | ||
1016 | printk("%s: ATAPI reset complete\n", drive->name); | ||
1017 | } else { | ||
1018 | if (time_before(jiffies, hwgroup->poll_timeout)) { | ||
1019 | if (HWGROUP(drive)->handler != NULL) | ||
1020 | BUG(); | ||
1021 | ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | ||
1022 | /* continue polling */ | ||
1023 | return ide_started; | ||
1024 | } | ||
1025 | /* end of polling */ | ||
1026 | hwgroup->polling = 0; | ||
1027 | printk("%s: ATAPI reset timed-out, status=0x%02x\n", | ||
1028 | drive->name, stat); | ||
1029 | /* do it the old fashioned way */ | ||
1030 | return do_reset1(drive, 1); | ||
1031 | } | ||
1032 | /* done polling */ | ||
1033 | hwgroup->polling = 0; | ||
1034 | return ide_stopped; | ||
1035 | } | ||
1036 | |||
1037 | /* | ||
1038 | * reset_pollfunc() gets invoked to poll the interface for completion every 50ms | ||
1039 | * during an ide reset operation. If the drives have not yet responded, | ||
1040 | * and we have not yet hit our maximum waiting time, then the timer is restarted | ||
1041 | * for another 50ms. | ||
1042 | */ | ||
1043 | static ide_startstop_t reset_pollfunc (ide_drive_t *drive) | ||
1044 | { | ||
1045 | ide_hwgroup_t *hwgroup = HWGROUP(drive); | ||
1046 | ide_hwif_t *hwif = HWIF(drive); | ||
1047 | u8 tmp; | ||
1048 | |||
1049 | if (hwif->reset_poll != NULL) { | ||
1050 | if (hwif->reset_poll(drive)) { | ||
1051 | printk(KERN_ERR "%s: host reset_poll failure for %s.\n", | ||
1052 | hwif->name, drive->name); | ||
1053 | return ide_stopped; | ||
1054 | } | ||
1055 | } | ||
1056 | |||
1057 | if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) { | ||
1058 | if (time_before(jiffies, hwgroup->poll_timeout)) { | ||
1059 | if (HWGROUP(drive)->handler != NULL) | ||
1060 | BUG(); | ||
1061 | ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | ||
1062 | /* continue polling */ | ||
1063 | return ide_started; | ||
1064 | } | ||
1065 | printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); | ||
1066 | drive->failures++; | ||
1067 | } else { | ||
1068 | printk("%s: reset: ", hwif->name); | ||
1069 | if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) { | ||
1070 | printk("success\n"); | ||
1071 | drive->failures = 0; | ||
1072 | } else { | ||
1073 | drive->failures++; | ||
1074 | printk("master: "); | ||
1075 | switch (tmp & 0x7f) { | ||
1076 | case 1: printk("passed"); | ||
1077 | break; | ||
1078 | case 2: printk("formatter device error"); | ||
1079 | break; | ||
1080 | case 3: printk("sector buffer error"); | ||
1081 | break; | ||
1082 | case 4: printk("ECC circuitry error"); | ||
1083 | break; | ||
1084 | case 5: printk("controlling MPU error"); | ||
1085 | break; | ||
1086 | default:printk("error (0x%02x?)", tmp); | ||
1087 | } | ||
1088 | if (tmp & 0x80) | ||
1089 | printk("; slave: failed"); | ||
1090 | printk("\n"); | ||
1091 | } | ||
1092 | } | ||
1093 | hwgroup->polling = 0; /* done polling */ | ||
1094 | return ide_stopped; | ||
1095 | } | ||
1096 | |||
1097 | static void check_dma_crc(ide_drive_t *drive) | ||
1098 | { | ||
1099 | #ifdef CONFIG_BLK_DEV_IDEDMA | ||
1100 | if (drive->crc_count) { | ||
1101 | (void) HWIF(drive)->ide_dma_off_quietly(drive); | ||
1102 | ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive)); | ||
1103 | if (drive->current_speed >= XFER_SW_DMA_0) | ||
1104 | (void) HWIF(drive)->ide_dma_on(drive); | ||
1105 | } else | ||
1106 | (void)__ide_dma_off(drive); | ||
1107 | #endif | ||
1108 | } | ||
1109 | |||
1110 | static void ide_disk_pre_reset(ide_drive_t *drive) | ||
1111 | { | ||
1112 | int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1; | ||
1113 | |||
1114 | drive->special.all = 0; | ||
1115 | drive->special.b.set_geometry = legacy; | ||
1116 | drive->special.b.recalibrate = legacy; | ||
1117 | if (OK_TO_RESET_CONTROLLER) | ||
1118 | drive->mult_count = 0; | ||
1119 | if (!drive->keep_settings && !drive->using_dma) | ||
1120 | drive->mult_req = 0; | ||
1121 | if (drive->mult_req != drive->mult_count) | ||
1122 | drive->special.b.set_multmode = 1; | ||
1123 | } | ||
1124 | |||
1125 | static void pre_reset(ide_drive_t *drive) | ||
1126 | { | ||
1127 | if (drive->media == ide_disk) | ||
1128 | ide_disk_pre_reset(drive); | ||
1129 | else | ||
1130 | drive->post_reset = 1; | ||
1131 | |||
1132 | if (!drive->keep_settings) { | ||
1133 | if (drive->using_dma) { | ||
1134 | check_dma_crc(drive); | ||
1135 | } else { | ||
1136 | drive->unmask = 0; | ||
1137 | drive->io_32bit = 0; | ||
1138 | } | ||
1139 | return; | ||
1140 | } | ||
1141 | if (drive->using_dma) | ||
1142 | check_dma_crc(drive); | ||
1143 | |||
1144 | if (HWIF(drive)->pre_reset != NULL) | ||
1145 | HWIF(drive)->pre_reset(drive); | ||
1146 | |||
1147 | } | ||
1148 | |||
1149 | /* | ||
1150 | * do_reset1() attempts to recover a confused drive by resetting it. | ||
1151 | * Unfortunately, resetting a disk drive actually resets all devices on | ||
1152 | * the same interface, so it can really be thought of as resetting the | ||
1153 | * interface rather than resetting the drive. | ||
1154 | * | ||
1155 | * ATAPI devices have their own reset mechanism which allows them to be | ||
1156 | * individually reset without clobbering other devices on the same interface. | ||
1157 | * | ||
1158 | * Unfortunately, the IDE interface does not generate an interrupt to let | ||
1159 | * us know when the reset operation has finished, so we must poll for this. | ||
1160 | * Equally poor, though, is the fact that this may a very long time to complete, | ||
1161 | * (up to 30 seconds worstcase). So, instead of busy-waiting here for it, | ||
1162 | * we set a timer to poll at 50ms intervals. | ||
1163 | */ | ||
1164 | static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) | ||
1165 | { | ||
1166 | unsigned int unit; | ||
1167 | unsigned long flags; | ||
1168 | ide_hwif_t *hwif; | ||
1169 | ide_hwgroup_t *hwgroup; | ||
1170 | |||
1171 | spin_lock_irqsave(&ide_lock, flags); | ||
1172 | hwif = HWIF(drive); | ||
1173 | hwgroup = HWGROUP(drive); | ||
1174 | |||
1175 | /* We must not reset with running handlers */ | ||
1176 | if(hwgroup->handler != NULL) | ||
1177 | BUG(); | ||
1178 | |||
1179 | /* For an ATAPI device, first try an ATAPI SRST. */ | ||
1180 | if (drive->media != ide_disk && !do_not_try_atapi) { | ||
1181 | pre_reset(drive); | ||
1182 | SELECT_DRIVE(drive); | ||
1183 | udelay (20); | ||
1184 | hwif->OUTB(WIN_SRST, IDE_COMMAND_REG); | ||
1185 | hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | ||
1186 | hwgroup->polling = 1; | ||
1187 | __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | ||
1188 | spin_unlock_irqrestore(&ide_lock, flags); | ||
1189 | return ide_started; | ||
1190 | } | ||
1191 | |||
1192 | /* | ||
1193 | * First, reset any device state data we were maintaining | ||
1194 | * for any of the drives on this interface. | ||
1195 | */ | ||
1196 | for (unit = 0; unit < MAX_DRIVES; ++unit) | ||
1197 | pre_reset(&hwif->drives[unit]); | ||
1198 | |||
1199 | #if OK_TO_RESET_CONTROLLER | ||
1200 | if (!IDE_CONTROL_REG) { | ||
1201 | spin_unlock_irqrestore(&ide_lock, flags); | ||
1202 | return ide_stopped; | ||
1203 | } | ||
1204 | |||
1205 | /* | ||
1206 | * Note that we also set nIEN while resetting the device, | ||
1207 | * to mask unwanted interrupts from the interface during the reset. | ||
1208 | * However, due to the design of PC hardware, this will cause an | ||
1209 | * immediate interrupt due to the edge transition it produces. | ||
1210 | * This single interrupt gives us a "fast poll" for drives that | ||
1211 | * recover from reset very quickly, saving us the first 50ms wait time. | ||
1212 | */ | ||
1213 | /* set SRST and nIEN */ | ||
1214 | hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG); | ||
1215 | /* more than enough time */ | ||
1216 | udelay(10); | ||
1217 | if (drive->quirk_list == 2) { | ||
1218 | /* clear SRST and nIEN */ | ||
1219 | hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG); | ||
1220 | } else { | ||
1221 | /* clear SRST, leave nIEN */ | ||
1222 | hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG); | ||
1223 | } | ||
1224 | /* more than enough time */ | ||
1225 | udelay(10); | ||
1226 | hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | ||
1227 | hwgroup->polling = 1; | ||
1228 | __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | ||
1229 | |||
1230 | /* | ||
1231 | * Some weird controller like resetting themselves to a strange | ||
1232 | * state when the disks are reset this way. At least, the Winbond | ||
1233 | * 553 documentation says that | ||
1234 | */ | ||
1235 | if (hwif->resetproc != NULL) { | ||
1236 | hwif->resetproc(drive); | ||
1237 | } | ||
1238 | |||
1239 | #endif /* OK_TO_RESET_CONTROLLER */ | ||
1240 | |||
1241 | spin_unlock_irqrestore(&ide_lock, flags); | ||
1242 | return ide_started; | ||
1243 | } | ||
1244 | |||
1245 | /* | ||
1246 | * ide_do_reset() is the entry point to the drive/interface reset code. | ||
1247 | */ | ||
1248 | |||
1249 | ide_startstop_t ide_do_reset (ide_drive_t *drive) | ||
1250 | { | ||
1251 | return do_reset1(drive, 0); | ||
1252 | } | ||
1253 | |||
1254 | EXPORT_SYMBOL(ide_do_reset); | ||
1255 | |||
1256 | /* | ||
1257 | * ide_wait_not_busy() waits for the currently selected device on the hwif | ||
1258 | * to report a non-busy status, see comments in probe_hwif(). | ||
1259 | */ | ||
1260 | int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) | ||
1261 | { | ||
1262 | u8 stat = 0; | ||
1263 | |||
1264 | while(timeout--) { | ||
1265 | /* | ||
1266 | * Turn this into a schedule() sleep once I'm sure | ||
1267 | * about locking issues (2.5 work ?). | ||
1268 | */ | ||
1269 | mdelay(1); | ||
1270 | stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | ||
1271 | if ((stat & BUSY_STAT) == 0) | ||
1272 | return 0; | ||
1273 | /* | ||
1274 | * Assume a value of 0xff means nothing is connected to | ||
1275 | * the interface and it doesn't implement the pull-down | ||
1276 | * resistor on D7. | ||
1277 | */ | ||
1278 | if (stat == 0xff) | ||
1279 | return -ENODEV; | ||
1280 | } | ||
1281 | return -EBUSY; | ||
1282 | } | ||
1283 | |||
1284 | EXPORT_SYMBOL_GPL(ide_wait_not_busy); | ||
1285 | |||