diff options
Diffstat (limited to 'drivers/ide/cris/ide-v10.c')
-rw-r--r-- | drivers/ide/cris/ide-v10.c | 842 |
1 files changed, 842 insertions, 0 deletions
diff --git a/drivers/ide/cris/ide-v10.c b/drivers/ide/cris/ide-v10.c new file mode 100644 index 000000000000..5b40220d3ddc --- /dev/null +++ b/drivers/ide/cris/ide-v10.c | |||
@@ -0,0 +1,842 @@ | |||
1 | /* $Id: ide.c,v 1.4 2004/10/12 07:55:48 starvik Exp $ | ||
2 | * | ||
3 | * Etrax specific IDE functions, like init and PIO-mode setting etc. | ||
4 | * Almost the entire ide.c is used for the rest of the Etrax ATA driver. | ||
5 | * Copyright (c) 2000-2004 Axis Communications AB | ||
6 | * | ||
7 | * Authors: Bjorn Wesen (initial version) | ||
8 | * Mikael Starvik (pio setup stuff, Linux 2.6 port) | ||
9 | */ | ||
10 | |||
11 | /* Regarding DMA: | ||
12 | * | ||
13 | * There are two forms of DMA - "DMA handshaking" between the interface and the drive, | ||
14 | * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's | ||
15 | * something built-in in the Etrax. However only some drives support the DMA-mode handshaking | ||
16 | * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the | ||
17 | * device can't do DMA handshaking for some stupid reason. We don't need to do that. | ||
18 | */ | ||
19 | |||
20 | #undef REALLY_SLOW_IO /* most systems can safely undef this */ | ||
21 | |||
22 | #include <linux/config.h> | ||
23 | #include <linux/types.h> | ||
24 | #include <linux/kernel.h> | ||
25 | #include <linux/timer.h> | ||
26 | #include <linux/mm.h> | ||
27 | #include <linux/interrupt.h> | ||
28 | #include <linux/delay.h> | ||
29 | #include <linux/blkdev.h> | ||
30 | #include <linux/hdreg.h> | ||
31 | #include <linux/ide.h> | ||
32 | #include <linux/init.h> | ||
33 | #include <linux/scatterlist.h> | ||
34 | |||
35 | #include <asm/io.h> | ||
36 | #include <asm/arch/svinto.h> | ||
37 | #include <asm/dma.h> | ||
38 | |||
39 | /* number of Etrax DMA descriptors */ | ||
40 | #define MAX_DMA_DESCRS 64 | ||
41 | |||
42 | /* number of times to retry busy-flags when reading/writing IDE-registers | ||
43 | * this can't be too high because a hung harddisk might cause the watchdog | ||
44 | * to trigger (sometimes INB and OUTB are called with irq's disabled) | ||
45 | */ | ||
46 | |||
47 | #define IDE_REGISTER_TIMEOUT 300 | ||
48 | |||
49 | static int e100_read_command = 0; | ||
50 | |||
51 | #define LOWDB(x) | ||
52 | #define D(x) | ||
53 | |||
54 | static int e100_ide_build_dmatable (ide_drive_t *drive); | ||
55 | static ide_startstop_t etrax_dma_intr (ide_drive_t *drive); | ||
56 | |||
57 | void | ||
58 | etrax100_ide_outw(unsigned short data, unsigned long reg) { | ||
59 | int timeleft; | ||
60 | LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg)); | ||
61 | |||
62 | /* note the lack of handling any timeouts. we stop waiting, but we don't | ||
63 | * really notify anybody. | ||
64 | */ | ||
65 | |||
66 | timeleft = IDE_REGISTER_TIMEOUT; | ||
67 | /* wait for busy flag */ | ||
68 | while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))) | ||
69 | timeleft--; | ||
70 | |||
71 | /* | ||
72 | * Fall through at a timeout, so the ongoing command will be | ||
73 | * aborted by the write below, which is expected to be a dummy | ||
74 | * command to the command register. This happens when a faulty | ||
75 | * drive times out on a command. See comment on timeout in | ||
76 | * INB. | ||
77 | */ | ||
78 | if(!timeleft) | ||
79 | printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data); | ||
80 | |||
81 | *R_ATA_CTRL_DATA = reg | data; /* write data to the drive's register */ | ||
82 | |||
83 | timeleft = IDE_REGISTER_TIMEOUT; | ||
84 | /* wait for transmitter ready */ | ||
85 | while(timeleft && !(*R_ATA_STATUS_DATA & | ||
86 | IO_MASK(R_ATA_STATUS_DATA, tr_rdy))) | ||
87 | timeleft--; | ||
88 | } | ||
89 | |||
90 | void | ||
91 | etrax100_ide_outb(unsigned char data, unsigned long reg) | ||
92 | { | ||
93 | etrax100_ide_outw(data, reg); | ||
94 | } | ||
95 | |||
96 | void | ||
97 | etrax100_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port) | ||
98 | { | ||
99 | etrax100_ide_outw(addr, port); | ||
100 | } | ||
101 | |||
102 | unsigned short | ||
103 | etrax100_ide_inw(unsigned long reg) { | ||
104 | int status; | ||
105 | int timeleft; | ||
106 | |||
107 | timeleft = IDE_REGISTER_TIMEOUT; | ||
108 | /* wait for busy flag */ | ||
109 | while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))) | ||
110 | timeleft--; | ||
111 | |||
112 | if(!timeleft) { | ||
113 | /* | ||
114 | * If we're asked to read the status register, like for | ||
115 | * example when a command does not complete for an | ||
116 | * extended time, but the ATA interface is stuck in a | ||
117 | * busy state at the *ETRAX* ATA interface level (as has | ||
118 | * happened repeatedly with at least one bad disk), then | ||
119 | * the best thing to do is to pretend that we read | ||
120 | * "busy" in the status register, so the IDE driver will | ||
121 | * time-out, abort the ongoing command and perform a | ||
122 | * reset sequence. Note that the subsequent OUT_BYTE | ||
123 | * call will also timeout on busy, but as long as the | ||
124 | * write is still performed, everything will be fine. | ||
125 | */ | ||
126 | if ((reg & IO_MASK (R_ATA_CTRL_DATA, addr)) | ||
127 | == IO_FIELD (R_ATA_CTRL_DATA, addr, IDE_STATUS_OFFSET)) | ||
128 | return BUSY_STAT; | ||
129 | else | ||
130 | /* For other rare cases we assume 0 is good enough. */ | ||
131 | return 0; | ||
132 | } | ||
133 | |||
134 | *R_ATA_CTRL_DATA = reg | IO_STATE(R_ATA_CTRL_DATA, rw, read); /* read data */ | ||
135 | |||
136 | timeleft = IDE_REGISTER_TIMEOUT; | ||
137 | /* wait for available */ | ||
138 | while(timeleft && !((status = *R_ATA_STATUS_DATA) & | ||
139 | IO_MASK(R_ATA_STATUS_DATA, dav))) | ||
140 | timeleft--; | ||
141 | |||
142 | if(!timeleft) | ||
143 | return 0; | ||
144 | |||
145 | LOWDB(printk("inb: 0x%x from reg 0x%x\n", status & 0xff, reg)); | ||
146 | |||
147 | return (unsigned short)status; | ||
148 | } | ||
149 | |||
150 | unsigned char | ||
151 | etrax100_ide_inb(unsigned long reg) | ||
152 | { | ||
153 | return (unsigned char)etrax100_ide_inw(reg); | ||
154 | } | ||
155 | |||
156 | /* PIO timing (in R_ATA_CONFIG) | ||
157 | * | ||
158 | * _____________________________ | ||
159 | * ADDRESS : ________/ | ||
160 | * | ||
161 | * _______________ | ||
162 | * DIOR : ____________/ \__________ | ||
163 | * | ||
164 | * _______________ | ||
165 | * DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX | ||
166 | * | ||
167 | * | ||
168 | * DIOR is unbuffered while address and data is buffered. | ||
169 | * This creates two problems: | ||
170 | * 1. The DIOR pulse is to early (because it is unbuffered) | ||
171 | * 2. The rise time of DIOR is long | ||
172 | * | ||
173 | * There are at least three different plausible solutions | ||
174 | * 1. Use a pad capable of larger currents in Etrax | ||
175 | * 2. Use an external buffer | ||
176 | * 3. Make the strobe pulse longer | ||
177 | * | ||
178 | * Some of the strobe timings below are modified to compensate | ||
179 | * for this. This implies a slight performance decrease. | ||
180 | * | ||
181 | * THIS SHOULD NEVER BE CHANGED! | ||
182 | * | ||
183 | * TODO: Is this true for the latest LX boards still ? | ||
184 | */ | ||
185 | |||
186 | #define ATA_DMA2_STROBE 4 | ||
187 | #define ATA_DMA2_HOLD 0 | ||
188 | #define ATA_DMA1_STROBE 4 | ||
189 | #define ATA_DMA1_HOLD 1 | ||
190 | #define ATA_DMA0_STROBE 12 | ||
191 | #define ATA_DMA0_HOLD 9 | ||
192 | #define ATA_PIO4_SETUP 1 | ||
193 | #define ATA_PIO4_STROBE 5 | ||
194 | #define ATA_PIO4_HOLD 0 | ||
195 | #define ATA_PIO3_SETUP 1 | ||
196 | #define ATA_PIO3_STROBE 5 | ||
197 | #define ATA_PIO3_HOLD 1 | ||
198 | #define ATA_PIO2_SETUP 1 | ||
199 | #define ATA_PIO2_STROBE 6 | ||
200 | #define ATA_PIO2_HOLD 2 | ||
201 | #define ATA_PIO1_SETUP 2 | ||
202 | #define ATA_PIO1_STROBE 11 | ||
203 | #define ATA_PIO1_HOLD 4 | ||
204 | #define ATA_PIO0_SETUP 4 | ||
205 | #define ATA_PIO0_STROBE 19 | ||
206 | #define ATA_PIO0_HOLD 4 | ||
207 | |||
208 | static int e100_dma_check (ide_drive_t *drive); | ||
209 | static void e100_dma_start(ide_drive_t *drive); | ||
210 | static int e100_dma_end (ide_drive_t *drive); | ||
211 | static void e100_ide_input_data (ide_drive_t *drive, void *, unsigned int); | ||
212 | static void e100_ide_output_data (ide_drive_t *drive, void *, unsigned int); | ||
213 | static void e100_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int); | ||
214 | static void e100_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int); | ||
215 | static int e100_dma_off (ide_drive_t *drive); | ||
216 | |||
217 | |||
218 | /* | ||
219 | * good_dma_drives() lists the model names (from "hdparm -i") | ||
220 | * of drives which do not support mword2 DMA but which are | ||
221 | * known to work fine with this interface under Linux. | ||
222 | */ | ||
223 | |||
224 | const char *good_dma_drives[] = {"Micropolis 2112A", | ||
225 | "CONNER CTMA 4000", | ||
226 | "CONNER CTT8000-A", | ||
227 | NULL}; | ||
228 | |||
229 | static void tune_e100_ide(ide_drive_t *drive, byte pio) | ||
230 | { | ||
231 | pio = 4; | ||
232 | /* pio = ide_get_best_pio_mode(drive, pio, 4, NULL); */ | ||
233 | |||
234 | /* set pio mode! */ | ||
235 | |||
236 | switch(pio) { | ||
237 | case 0: | ||
238 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | | ||
239 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | | ||
240 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | | ||
241 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO0_SETUP ) | | ||
242 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO0_STROBE ) | | ||
243 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO0_HOLD ) ); | ||
244 | break; | ||
245 | case 1: | ||
246 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | | ||
247 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | | ||
248 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | | ||
249 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO1_SETUP ) | | ||
250 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO1_STROBE ) | | ||
251 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO1_HOLD ) ); | ||
252 | break; | ||
253 | case 2: | ||
254 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | | ||
255 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | | ||
256 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | | ||
257 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO2_SETUP ) | | ||
258 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO2_STROBE ) | | ||
259 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO2_HOLD ) ); | ||
260 | break; | ||
261 | case 3: | ||
262 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | | ||
263 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | | ||
264 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | | ||
265 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO3_SETUP ) | | ||
266 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO3_STROBE ) | | ||
267 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO3_HOLD ) ); | ||
268 | break; | ||
269 | case 4: | ||
270 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | | ||
271 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | | ||
272 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | | ||
273 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO4_SETUP ) | | ||
274 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) | | ||
275 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO4_HOLD ) ); | ||
276 | break; | ||
277 | } | ||
278 | } | ||
279 | |||
280 | static int e100_dma_setup(ide_drive_t *drive) | ||
281 | { | ||
282 | struct request *rq = drive->hwif->hwgroup->rq; | ||
283 | |||
284 | if (rq_data_dir(rq)) { | ||
285 | e100_read_command = 0; | ||
286 | |||
287 | RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ | ||
288 | WAIT_DMA(ATA_TX_DMA_NBR); | ||
289 | } else { | ||
290 | e100_read_command = 1; | ||
291 | |||
292 | RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ | ||
293 | WAIT_DMA(ATA_RX_DMA_NBR); | ||
294 | } | ||
295 | |||
296 | /* set up the Etrax DMA descriptors */ | ||
297 | if (e100_ide_build_dmatable(drive)) { | ||
298 | ide_map_sg(drive, rq); | ||
299 | return 1; | ||
300 | } | ||
301 | |||
302 | return 0; | ||
303 | } | ||
304 | |||
305 | static void e100_dma_exec_cmd(ide_drive_t *drive, u8 command) | ||
306 | { | ||
307 | /* set the irq handler which will finish the request when DMA is done */ | ||
308 | ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL); | ||
309 | |||
310 | /* issue cmd to drive */ | ||
311 | etrax100_ide_outb(command, IDE_COMMAND_REG); | ||
312 | } | ||
313 | |||
314 | void __init | ||
315 | init_e100_ide (void) | ||
316 | { | ||
317 | volatile unsigned int dummy; | ||
318 | int h; | ||
319 | |||
320 | printk("ide: ETRAX 100LX built-in ATA DMA controller\n"); | ||
321 | |||
322 | /* first fill in some stuff in the ide_hwifs fields */ | ||
323 | |||
324 | for(h = 0; h < MAX_HWIFS; h++) { | ||
325 | ide_hwif_t *hwif = &ide_hwifs[h]; | ||
326 | hwif->mmio = 2; | ||
327 | hwif->chipset = ide_etrax100; | ||
328 | hwif->tuneproc = &tune_e100_ide; | ||
329 | hwif->ata_input_data = &e100_ide_input_data; | ||
330 | hwif->ata_output_data = &e100_ide_output_data; | ||
331 | hwif->atapi_input_bytes = &e100_atapi_input_bytes; | ||
332 | hwif->atapi_output_bytes = &e100_atapi_output_bytes; | ||
333 | hwif->ide_dma_check = &e100_dma_check; | ||
334 | hwif->ide_dma_end = &e100_dma_end; | ||
335 | hwif->dma_setup = &e100_dma_setup; | ||
336 | hwif->dma_exec_cmd = &e100_dma_exec_cmd; | ||
337 | hwif->dma_start = &e100_dma_start; | ||
338 | hwif->OUTB = &etrax100_ide_outb; | ||
339 | hwif->OUTW = &etrax100_ide_outw; | ||
340 | hwif->OUTBSYNC = &etrax100_ide_outbsync; | ||
341 | hwif->INB = &etrax100_ide_inb; | ||
342 | hwif->INW = &etrax100_ide_inw; | ||
343 | hwif->ide_dma_off_quietly = &e100_dma_off; | ||
344 | } | ||
345 | |||
346 | /* actually reset and configure the etrax100 ide/ata interface */ | ||
347 | |||
348 | *R_ATA_CTRL_DATA = 0; | ||
349 | *R_ATA_TRANSFER_CNT = 0; | ||
350 | *R_ATA_CONFIG = 0; | ||
351 | |||
352 | genconfig_shadow = (genconfig_shadow & | ||
353 | ~IO_MASK(R_GEN_CONFIG, dma2) & | ||
354 | ~IO_MASK(R_GEN_CONFIG, dma3) & | ||
355 | ~IO_MASK(R_GEN_CONFIG, ata)) | | ||
356 | ( IO_STATE( R_GEN_CONFIG, dma3, ata ) | | ||
357 | IO_STATE( R_GEN_CONFIG, dma2, ata ) | | ||
358 | IO_STATE( R_GEN_CONFIG, ata, select ) ); | ||
359 | |||
360 | *R_GEN_CONFIG = genconfig_shadow; | ||
361 | |||
362 | /* pull the chosen /reset-line low */ | ||
363 | |||
364 | #ifdef CONFIG_ETRAX_IDE_G27_RESET | ||
365 | REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 0); | ||
366 | #endif | ||
367 | #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET | ||
368 | REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 0); | ||
369 | #endif | ||
370 | #ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET | ||
371 | REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 0); | ||
372 | #endif | ||
373 | #ifdef CONFIG_ETRAX_IDE_PB7_RESET | ||
374 | port_pb_dir_shadow = port_pb_dir_shadow | | ||
375 | IO_STATE(R_PORT_PB_DIR, dir7, output); | ||
376 | *R_PORT_PB_DIR = port_pb_dir_shadow; | ||
377 | REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, 1); | ||
378 | #endif | ||
379 | |||
380 | /* wait some */ | ||
381 | |||
382 | udelay(25); | ||
383 | |||
384 | /* de-assert bus-reset */ | ||
385 | |||
386 | #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET | ||
387 | REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 1); | ||
388 | #endif | ||
389 | #ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET | ||
390 | REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 1); | ||
391 | #endif | ||
392 | #ifdef CONFIG_ETRAX_IDE_G27_RESET | ||
393 | REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 1); | ||
394 | #endif | ||
395 | |||
396 | /* make a dummy read to set the ata controller in a proper state */ | ||
397 | dummy = *R_ATA_STATUS_DATA; | ||
398 | |||
399 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | | ||
400 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | | ||
401 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | | ||
402 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO4_SETUP ) | | ||
403 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) | | ||
404 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO4_HOLD ) ); | ||
405 | |||
406 | *R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) | | ||
407 | IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) ); | ||
408 | |||
409 | while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/ | ||
410 | |||
411 | *R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) | | ||
412 | IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) | | ||
413 | IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) | | ||
414 | IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) ); | ||
415 | |||
416 | printk("ide: waiting %d seconds for drives to regain consciousness\n", | ||
417 | CONFIG_ETRAX_IDE_DELAY); | ||
418 | |||
419 | h = jiffies + (CONFIG_ETRAX_IDE_DELAY * HZ); | ||
420 | while(time_before(jiffies, h)) /* nothing */ ; | ||
421 | |||
422 | /* reset the dma channels we will use */ | ||
423 | |||
424 | RESET_DMA(ATA_TX_DMA_NBR); | ||
425 | RESET_DMA(ATA_RX_DMA_NBR); | ||
426 | WAIT_DMA(ATA_TX_DMA_NBR); | ||
427 | WAIT_DMA(ATA_RX_DMA_NBR); | ||
428 | |||
429 | } | ||
430 | |||
431 | static int e100_dma_off (ide_drive_t *drive) | ||
432 | { | ||
433 | return 0; | ||
434 | } | ||
435 | |||
436 | static etrax_dma_descr mydescr; | ||
437 | |||
438 | /* | ||
439 | * The following routines are mainly used by the ATAPI drivers. | ||
440 | * | ||
441 | * These routines will round up any request for an odd number of bytes, | ||
442 | * so if an odd bytecount is specified, be sure that there's at least one | ||
443 | * extra byte allocated for the buffer. | ||
444 | */ | ||
445 | static void | ||
446 | e100_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) | ||
447 | { | ||
448 | unsigned long data_reg = IDE_DATA_REG; | ||
449 | |||
450 | D(printk("atapi_input_bytes, dreg 0x%x, buffer 0x%x, count %d\n", | ||
451 | data_reg, buffer, bytecount)); | ||
452 | |||
453 | if(bytecount & 1) { | ||
454 | printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount); | ||
455 | bytecount++; /* to round off */ | ||
456 | } | ||
457 | |||
458 | /* make sure the DMA channel is available */ | ||
459 | RESET_DMA(ATA_RX_DMA_NBR); | ||
460 | WAIT_DMA(ATA_RX_DMA_NBR); | ||
461 | |||
462 | /* setup DMA descriptor */ | ||
463 | |||
464 | mydescr.sw_len = bytecount; | ||
465 | mydescr.ctrl = d_eol; | ||
466 | mydescr.buf = virt_to_phys(buffer); | ||
467 | |||
468 | /* start the dma channel */ | ||
469 | |||
470 | *R_DMA_CH3_FIRST = virt_to_phys(&mydescr); | ||
471 | *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); | ||
472 | |||
473 | /* initiate a multi word dma read using PIO handshaking */ | ||
474 | |||
475 | *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1); | ||
476 | |||
477 | *R_ATA_CTRL_DATA = data_reg | | ||
478 | IO_STATE(R_ATA_CTRL_DATA, rw, read) | | ||
479 | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | | ||
480 | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | | ||
481 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | | ||
482 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); | ||
483 | |||
484 | /* wait for completion */ | ||
485 | |||
486 | LED_DISK_READ(1); | ||
487 | WAIT_DMA(ATA_RX_DMA_NBR); | ||
488 | LED_DISK_READ(0); | ||
489 | |||
490 | #if 0 | ||
491 | /* old polled transfer code | ||
492 | * this should be moved into a new function that can do polled | ||
493 | * transfers if DMA is not available | ||
494 | */ | ||
495 | |||
496 | /* initiate a multi word read */ | ||
497 | |||
498 | *R_ATA_TRANSFER_CNT = wcount << 1; | ||
499 | |||
500 | *R_ATA_CTRL_DATA = data_reg | | ||
501 | IO_STATE(R_ATA_CTRL_DATA, rw, read) | | ||
502 | IO_STATE(R_ATA_CTRL_DATA, src_dst, register) | | ||
503 | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | | ||
504 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | | ||
505 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); | ||
506 | |||
507 | /* svinto has a latency until the busy bit actually is set */ | ||
508 | |||
509 | nop(); nop(); | ||
510 | nop(); nop(); | ||
511 | nop(); nop(); | ||
512 | nop(); nop(); | ||
513 | nop(); nop(); | ||
514 | |||
515 | /* unit should be busy during multi transfer */ | ||
516 | while((status = *R_ATA_STATUS_DATA) & IO_MASK(R_ATA_STATUS_DATA, busy)) { | ||
517 | while(!(status & IO_MASK(R_ATA_STATUS_DATA, dav))) | ||
518 | status = *R_ATA_STATUS_DATA; | ||
519 | *ptr++ = (unsigned short)(status & 0xffff); | ||
520 | } | ||
521 | #endif | ||
522 | } | ||
523 | |||
524 | static void | ||
525 | e100_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) | ||
526 | { | ||
527 | unsigned long data_reg = IDE_DATA_REG; | ||
528 | |||
529 | D(printk("atapi_output_bytes, dreg 0x%x, buffer 0x%x, count %d\n", | ||
530 | data_reg, buffer, bytecount)); | ||
531 | |||
532 | if(bytecount & 1) { | ||
533 | printk("odd bytecount %d in atapi_out_bytes!\n", bytecount); | ||
534 | bytecount++; | ||
535 | } | ||
536 | |||
537 | /* make sure the DMA channel is available */ | ||
538 | RESET_DMA(ATA_TX_DMA_NBR); | ||
539 | WAIT_DMA(ATA_TX_DMA_NBR); | ||
540 | |||
541 | /* setup DMA descriptor */ | ||
542 | |||
543 | mydescr.sw_len = bytecount; | ||
544 | mydescr.ctrl = d_eol; | ||
545 | mydescr.buf = virt_to_phys(buffer); | ||
546 | |||
547 | /* start the dma channel */ | ||
548 | |||
549 | *R_DMA_CH2_FIRST = virt_to_phys(&mydescr); | ||
550 | *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); | ||
551 | |||
552 | /* initiate a multi word dma write using PIO handshaking */ | ||
553 | |||
554 | *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1); | ||
555 | |||
556 | *R_ATA_CTRL_DATA = data_reg | | ||
557 | IO_STATE(R_ATA_CTRL_DATA, rw, write) | | ||
558 | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | | ||
559 | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | | ||
560 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | | ||
561 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); | ||
562 | |||
563 | /* wait for completion */ | ||
564 | |||
565 | LED_DISK_WRITE(1); | ||
566 | WAIT_DMA(ATA_TX_DMA_NBR); | ||
567 | LED_DISK_WRITE(0); | ||
568 | |||
569 | #if 0 | ||
570 | /* old polled write code - see comment in input_bytes */ | ||
571 | |||
572 | /* wait for busy flag */ | ||
573 | while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); | ||
574 | |||
575 | /* initiate a multi word write */ | ||
576 | |||
577 | *R_ATA_TRANSFER_CNT = bytecount >> 1; | ||
578 | |||
579 | ctrl = data_reg | | ||
580 | IO_STATE(R_ATA_CTRL_DATA, rw, write) | | ||
581 | IO_STATE(R_ATA_CTRL_DATA, src_dst, register) | | ||
582 | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | | ||
583 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | | ||
584 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); | ||
585 | |||
586 | LED_DISK_WRITE(1); | ||
587 | |||
588 | /* Etrax will set busy = 1 until the multi pio transfer has finished | ||
589 | * and tr_rdy = 1 after each successful word transfer. | ||
590 | * When the last byte has been transferred Etrax will first set tr_tdy = 1 | ||
591 | * and then busy = 0 (not in the same cycle). If we read busy before it | ||
592 | * has been set to 0 we will think that we should transfer more bytes | ||
593 | * and then tr_rdy would be 0 forever. This is solved by checking busy | ||
594 | * in the inner loop. | ||
595 | */ | ||
596 | |||
597 | do { | ||
598 | *R_ATA_CTRL_DATA = ctrl | *ptr++; | ||
599 | while(!(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy)) && | ||
600 | (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))); | ||
601 | } while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); | ||
602 | |||
603 | LED_DISK_WRITE(0); | ||
604 | #endif | ||
605 | |||
606 | } | ||
607 | |||
608 | /* | ||
609 | * This is used for most PIO data transfers *from* the IDE interface | ||
610 | */ | ||
611 | static void | ||
612 | e100_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount) | ||
613 | { | ||
614 | e100_atapi_input_bytes(drive, buffer, wcount << 2); | ||
615 | } | ||
616 | |||
617 | /* | ||
618 | * This is used for most PIO data transfers *to* the IDE interface | ||
619 | */ | ||
620 | static void | ||
621 | e100_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount) | ||
622 | { | ||
623 | e100_atapi_output_bytes(drive, buffer, wcount << 2); | ||
624 | } | ||
625 | |||
626 | /* we only have one DMA channel on the chip for ATA, so we can keep these statically */ | ||
627 | static etrax_dma_descr ata_descrs[MAX_DMA_DESCRS]; | ||
628 | static unsigned int ata_tot_size; | ||
629 | |||
630 | /* | ||
631 | * e100_ide_build_dmatable() prepares a dma request. | ||
632 | * Returns 0 if all went okay, returns 1 otherwise. | ||
633 | */ | ||
634 | static int e100_ide_build_dmatable (ide_drive_t *drive) | ||
635 | { | ||
636 | ide_hwif_t *hwif = HWIF(drive); | ||
637 | struct scatterlist* sg; | ||
638 | struct request *rq = HWGROUP(drive)->rq; | ||
639 | unsigned long size, addr; | ||
640 | unsigned int count = 0; | ||
641 | int i = 0; | ||
642 | |||
643 | sg = hwif->sg_table; | ||
644 | |||
645 | ata_tot_size = 0; | ||
646 | |||
647 | ide_map_sg(drive, rq); | ||
648 | |||
649 | i = hwif->sg_nents; | ||
650 | |||
651 | while(i) { | ||
652 | /* | ||
653 | * Determine addr and size of next buffer area. We assume that | ||
654 | * individual virtual buffers are always composed linearly in | ||
655 | * physical memory. For example, we assume that any 8kB buffer | ||
656 | * is always composed of two adjacent physical 4kB pages rather | ||
657 | * than two possibly non-adjacent physical 4kB pages. | ||
658 | */ | ||
659 | /* group sequential buffers into one large buffer */ | ||
660 | addr = page_to_phys(sg->page) + sg->offset; | ||
661 | size = sg_dma_len(sg); | ||
662 | while (sg++, --i) { | ||
663 | if ((addr + size) != page_to_phys(sg->page) + sg->offset) | ||
664 | break; | ||
665 | size += sg_dma_len(sg); | ||
666 | } | ||
667 | |||
668 | /* did we run out of descriptors? */ | ||
669 | |||
670 | if(count >= MAX_DMA_DESCRS) { | ||
671 | printk("%s: too few DMA descriptors\n", drive->name); | ||
672 | return 1; | ||
673 | } | ||
674 | |||
675 | /* however, this case is more difficult - R_ATA_TRANSFER_CNT cannot be more | ||
676 | than 65536 words per transfer, so in that case we need to either | ||
677 | 1) use a DMA interrupt to re-trigger R_ATA_TRANSFER_CNT and continue with | ||
678 | the descriptors, or | ||
679 | 2) simply do the request here, and get dma_intr to only ide_end_request on | ||
680 | those blocks that were actually set-up for transfer. | ||
681 | */ | ||
682 | |||
683 | if(ata_tot_size + size > 131072) { | ||
684 | printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size); | ||
685 | return 1; | ||
686 | } | ||
687 | |||
688 | /* If size > 65536 it has to be splitted into new descriptors. Since we don't handle | ||
689 | size > 131072 only one split is necessary */ | ||
690 | |||
691 | if(size > 65536) { | ||
692 | /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */ | ||
693 | ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */ | ||
694 | ata_descrs[count].ctrl = 0; | ||
695 | ata_descrs[count].buf = addr; | ||
696 | ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]); | ||
697 | count++; | ||
698 | ata_tot_size += 65536; | ||
699 | /* size and addr should refere to not handled data */ | ||
700 | size -= 65536; | ||
701 | addr += 65536; | ||
702 | } | ||
703 | /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */ | ||
704 | if(size == 65536) { | ||
705 | ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */ | ||
706 | } else { | ||
707 | ata_descrs[count].sw_len = size; | ||
708 | } | ||
709 | ata_descrs[count].ctrl = 0; | ||
710 | ata_descrs[count].buf = addr; | ||
711 | ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]); | ||
712 | count++; | ||
713 | ata_tot_size += size; | ||
714 | } | ||
715 | |||
716 | if (count) { | ||
717 | /* set the end-of-list flag on the last descriptor */ | ||
718 | ata_descrs[count - 1].ctrl |= d_eol; | ||
719 | /* return and say all is ok */ | ||
720 | return 0; | ||
721 | } | ||
722 | |||
723 | printk("%s: empty DMA table?\n", drive->name); | ||
724 | return 1; /* let the PIO routines handle this weirdness */ | ||
725 | } | ||
726 | |||
727 | static int config_drive_for_dma (ide_drive_t *drive) | ||
728 | { | ||
729 | const char **list; | ||
730 | struct hd_driveid *id = drive->id; | ||
731 | |||
732 | if (id && (id->capability & 1)) { | ||
733 | /* Enable DMA on any drive that supports mword2 DMA */ | ||
734 | if ((id->field_valid & 2) && (id->dma_mword & 0x404) == 0x404) { | ||
735 | drive->using_dma = 1; | ||
736 | return 0; /* DMA enabled */ | ||
737 | } | ||
738 | |||
739 | /* Consult the list of known "good" drives */ | ||
740 | list = good_dma_drives; | ||
741 | while (*list) { | ||
742 | if (!strcmp(*list++,id->model)) { | ||
743 | drive->using_dma = 1; | ||
744 | return 0; /* DMA enabled */ | ||
745 | } | ||
746 | } | ||
747 | } | ||
748 | return 1; /* DMA not enabled */ | ||
749 | } | ||
750 | |||
751 | /* | ||
752 | * etrax_dma_intr() is the handler for disk read/write DMA interrupts | ||
753 | */ | ||
754 | static ide_startstop_t etrax_dma_intr (ide_drive_t *drive) | ||
755 | { | ||
756 | LED_DISK_READ(0); | ||
757 | LED_DISK_WRITE(0); | ||
758 | |||
759 | return ide_dma_intr(drive); | ||
760 | } | ||
761 | |||
762 | /* | ||
763 | * Functions below initiates/aborts DMA read/write operations on a drive. | ||
764 | * | ||
765 | * The caller is assumed to have selected the drive and programmed the drive's | ||
766 | * sector address using CHS or LBA. All that remains is to prepare for DMA | ||
767 | * and then issue the actual read/write DMA/PIO command to the drive. | ||
768 | * | ||
769 | * Returns 0 if all went well. | ||
770 | * Returns 1 if DMA read/write could not be started, in which case | ||
771 | * the caller should revert to PIO for the current request. | ||
772 | */ | ||
773 | |||
774 | static int e100_dma_check(ide_drive_t *drive) | ||
775 | { | ||
776 | return config_drive_for_dma (drive); | ||
777 | } | ||
778 | |||
779 | static int e100_dma_end(ide_drive_t *drive) | ||
780 | { | ||
781 | /* TODO: check if something went wrong with the DMA */ | ||
782 | return 0; | ||
783 | } | ||
784 | |||
785 | static void e100_dma_start(ide_drive_t *drive) | ||
786 | { | ||
787 | if (e100_read_command) { | ||
788 | /* begin DMA */ | ||
789 | |||
790 | /* need to do this before RX DMA due to a chip bug | ||
791 | * it is enough to just flush the part of the cache that | ||
792 | * corresponds to the buffers we start, but since HD transfers | ||
793 | * usually are more than 8 kB, it is easier to optimize for the | ||
794 | * normal case and just flush the entire cache. its the only | ||
795 | * way to be sure! (OB movie quote) | ||
796 | */ | ||
797 | flush_etrax_cache(); | ||
798 | *R_DMA_CH3_FIRST = virt_to_phys(ata_descrs); | ||
799 | *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); | ||
800 | |||
801 | /* initiate a multi word dma read using DMA handshaking */ | ||
802 | |||
803 | *R_ATA_TRANSFER_CNT = | ||
804 | IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1); | ||
805 | |||
806 | *R_ATA_CTRL_DATA = | ||
807 | IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | | ||
808 | IO_STATE(R_ATA_CTRL_DATA, rw, read) | | ||
809 | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | | ||
810 | IO_STATE(R_ATA_CTRL_DATA, handsh, dma) | | ||
811 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | | ||
812 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); | ||
813 | |||
814 | LED_DISK_READ(1); | ||
815 | |||
816 | D(printk("dma read of %d bytes.\n", ata_tot_size)); | ||
817 | |||
818 | } else { | ||
819 | /* writing */ | ||
820 | /* begin DMA */ | ||
821 | |||
822 | *R_DMA_CH2_FIRST = virt_to_phys(ata_descrs); | ||
823 | *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); | ||
824 | |||
825 | /* initiate a multi word dma write using DMA handshaking */ | ||
826 | |||
827 | *R_ATA_TRANSFER_CNT = | ||
828 | IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1); | ||
829 | |||
830 | *R_ATA_CTRL_DATA = | ||
831 | IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | | ||
832 | IO_STATE(R_ATA_CTRL_DATA, rw, write) | | ||
833 | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | | ||
834 | IO_STATE(R_ATA_CTRL_DATA, handsh, dma) | | ||
835 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | | ||
836 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); | ||
837 | |||
838 | LED_DISK_WRITE(1); | ||
839 | |||
840 | D(printk("dma write of %d bytes.\n", ata_tot_size)); | ||
841 | } | ||
842 | } | ||