diff options
Diffstat (limited to 'drivers/hwmon/abituguru.c')
-rw-r--r-- | drivers/hwmon/abituguru.c | 1415 |
1 files changed, 1415 insertions, 0 deletions
diff --git a/drivers/hwmon/abituguru.c b/drivers/hwmon/abituguru.c new file mode 100644 index 000000000000..59122cc0a50a --- /dev/null +++ b/drivers/hwmon/abituguru.c | |||
@@ -0,0 +1,1415 @@ | |||
1 | /* | ||
2 | abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl> | ||
3 | |||
4 | This program is free software; you can redistribute it and/or modify | ||
5 | it under the terms of the GNU General Public License as published by | ||
6 | the Free Software Foundation; either version 2 of the License, or | ||
7 | (at your option) any later version. | ||
8 | |||
9 | This program is distributed in the hope that it will be useful, | ||
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | GNU General Public License for more details. | ||
13 | |||
14 | You should have received a copy of the GNU General Public License | ||
15 | along with this program; if not, write to the Free Software | ||
16 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
17 | */ | ||
18 | /* | ||
19 | This driver supports the sensor part of the custom Abit uGuru chip found | ||
20 | on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM / | ||
21 | etc voltage & frequency control is not supported! | ||
22 | */ | ||
23 | #include <linux/module.h> | ||
24 | #include <linux/init.h> | ||
25 | #include <linux/slab.h> | ||
26 | #include <linux/jiffies.h> | ||
27 | #include <linux/mutex.h> | ||
28 | #include <linux/err.h> | ||
29 | #include <linux/platform_device.h> | ||
30 | #include <linux/hwmon.h> | ||
31 | #include <linux/hwmon-sysfs.h> | ||
32 | #include <asm/io.h> | ||
33 | |||
34 | /* Banks */ | ||
35 | #define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ | ||
36 | #define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ | ||
37 | #define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ | ||
38 | #define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ | ||
39 | /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */ | ||
40 | #define ABIT_UGURU_MAX_BANK1_SENSORS 16 | ||
41 | /* Warning if you increase one of the 2 MAX defines below to 10 or higher you | ||
42 | should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */ | ||
43 | /* max nr of sensors in bank2, currently mb's with max 6 fans are known */ | ||
44 | #define ABIT_UGURU_MAX_BANK2_SENSORS 6 | ||
45 | /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ | ||
46 | #define ABIT_UGURU_MAX_PWMS 5 | ||
47 | /* uGuru sensor bank 1 flags */ /* Alarm if: */ | ||
48 | #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ | ||
49 | #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ | ||
50 | #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ | ||
51 | #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ | ||
52 | #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ | ||
53 | #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ | ||
54 | /* uGuru sensor bank 2 flags */ /* Alarm if: */ | ||
55 | #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ | ||
56 | /* uGuru sensor bank common flags */ | ||
57 | #define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ | ||
58 | #define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ | ||
59 | /* uGuru fan PWM (speed control) flags */ | ||
60 | #define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ | ||
61 | /* Values used for conversion */ | ||
62 | #define ABIT_UGURU_FAN_MAX 15300 /* RPM */ | ||
63 | /* Bank1 sensor types */ | ||
64 | #define ABIT_UGURU_IN_SENSOR 0 | ||
65 | #define ABIT_UGURU_TEMP_SENSOR 1 | ||
66 | #define ABIT_UGURU_NC 2 | ||
67 | /* Timeouts / Retries, if these turn out to need a lot of fiddling we could | ||
68 | convert them to params. */ | ||
69 | /* 250 was determined by trial and error, 200 works most of the time, but not | ||
70 | always. I assume this is cpu-speed independent, since the ISA-bus and not | ||
71 | the CPU should be the bottleneck. Note that 250 sometimes is still not | ||
72 | enough (only reported on AN7 mb) this is handled by a higher layer. */ | ||
73 | #define ABIT_UGURU_WAIT_TIMEOUT 250 | ||
74 | /* Normally all expected status in abituguru_ready, are reported after the | ||
75 | first read, but sometimes not and we need to poll, 5 polls was not enough | ||
76 | 50 sofar is. */ | ||
77 | #define ABIT_UGURU_READY_TIMEOUT 50 | ||
78 | /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ | ||
79 | #define ABIT_UGURU_MAX_RETRIES 3 | ||
80 | #define ABIT_UGURU_RETRY_DELAY (HZ/5) | ||
81 | /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */ | ||
82 | #define ABIT_UGURU_MAX_TIMEOUTS 2 | ||
83 | /* utility macros */ | ||
84 | #define ABIT_UGURU_NAME "abituguru" | ||
85 | #define ABIT_UGURU_DEBUG(level, format, arg...) \ | ||
86 | if (level <= verbose) \ | ||
87 | printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg) | ||
88 | /* Macros to help calculate the sysfs_names array length */ | ||
89 | /* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0, | ||
90 | in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */ | ||
91 | #define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14) | ||
92 | /* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0, | ||
93 | temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */ | ||
94 | #define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16) | ||
95 | /* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0, | ||
96 | fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */ | ||
97 | #define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14) | ||
98 | /* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0, | ||
99 | pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */ | ||
100 | #define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22) | ||
101 | /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */ | ||
102 | #define ABITUGURU_SYSFS_NAMES_LENGTH ( \ | ||
103 | ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \ | ||
104 | ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \ | ||
105 | ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH) | ||
106 | |||
107 | /* All the macros below are named identical to the oguru and oguru2 programs | ||
108 | reverse engineered by Olle Sandberg, hence the names might not be 100% | ||
109 | logical. I could come up with better names, but I prefer keeping the names | ||
110 | identical so that this driver can be compared with his work more easily. */ | ||
111 | /* Two i/o-ports are used by uGuru */ | ||
112 | #define ABIT_UGURU_BASE 0x00E0 | ||
113 | /* Used to tell uGuru what to read and to read the actual data */ | ||
114 | #define ABIT_UGURU_CMD 0x00 | ||
115 | /* Mostly used to check if uGuru is busy */ | ||
116 | #define ABIT_UGURU_DATA 0x04 | ||
117 | #define ABIT_UGURU_REGION_LENGTH 5 | ||
118 | /* uGuru status' */ | ||
119 | #define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ | ||
120 | #define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ | ||
121 | #define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ | ||
122 | #define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ | ||
123 | |||
124 | /* Constants */ | ||
125 | /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ | ||
126 | static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; | ||
127 | /* Min / Max allowed values for sensor2 (fan) alarm threshold, these values | ||
128 | correspond to 300-3000 RPM */ | ||
129 | static const u8 abituguru_bank2_min_threshold = 5; | ||
130 | static const u8 abituguru_bank2_max_threshold = 50; | ||
131 | /* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 | ||
132 | are temperature trip points. */ | ||
133 | static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; | ||
134 | /* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a | ||
135 | special case the minium allowed pwm% setting for this is 30% (77) on | ||
136 | some MB's this special case is handled in the code! */ | ||
137 | static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; | ||
138 | static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; | ||
139 | |||
140 | |||
141 | /* Insmod parameters */ | ||
142 | static int force; | ||
143 | module_param(force, bool, 0); | ||
144 | MODULE_PARM_DESC(force, "Set to one to force detection."); | ||
145 | static int fan_sensors; | ||
146 | module_param(fan_sensors, int, 0); | ||
147 | MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " | ||
148 | "(0 = autodetect)"); | ||
149 | static int pwms; | ||
150 | module_param(pwms, int, 0); | ||
151 | MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " | ||
152 | "(0 = autodetect)"); | ||
153 | |||
154 | /* Default verbose is 2, since this driver is still in the testing phase */ | ||
155 | static int verbose = 2; | ||
156 | module_param(verbose, int, 0644); | ||
157 | MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" | ||
158 | " 0 normal output\n" | ||
159 | " 1 + verbose error reporting\n" | ||
160 | " 2 + sensors type probing info\n" | ||
161 | " 3 + retryable error reporting"); | ||
162 | |||
163 | |||
164 | /* For the Abit uGuru, we need to keep some data in memory. | ||
165 | The structure is dynamically allocated, at the same time when a new | ||
166 | abituguru device is allocated. */ | ||
167 | struct abituguru_data { | ||
168 | struct class_device *class_dev; /* hwmon registered device */ | ||
169 | struct mutex update_lock; /* protect access to data and uGuru */ | ||
170 | unsigned long last_updated; /* In jiffies */ | ||
171 | unsigned short addr; /* uguru base address */ | ||
172 | char uguru_ready; /* is the uguru in ready state? */ | ||
173 | unsigned char update_timeouts; /* number of update timeouts since last | ||
174 | successful update */ | ||
175 | |||
176 | /* The sysfs attr and their names are generated automatically, for bank1 | ||
177 | we cannot use a predefined array because we don't know beforehand | ||
178 | of a sensor is a volt or a temp sensor, for bank2 and the pwms its | ||
179 | easier todo things the same way. For in sensors we have 9 (temp 7) | ||
180 | sysfs entries per sensor, for bank2 and pwms 6. */ | ||
181 | struct sensor_device_attribute_2 sysfs_attr[ | ||
182 | ABIT_UGURU_MAX_BANK1_SENSORS * 9 + | ||
183 | ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; | ||
184 | /* Buffer to store the dynamically generated sysfs names */ | ||
185 | char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH]; | ||
186 | |||
187 | /* Bank 1 data */ | ||
188 | /* number of and addresses of [0] in, [1] temp sensors */ | ||
189 | u8 bank1_sensors[2]; | ||
190 | u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS]; | ||
191 | u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS]; | ||
192 | /* This array holds 3 entries per sensor for the bank 1 sensor settings | ||
193 | (flags, min, max for voltage / flags, warn, shutdown for temp). */ | ||
194 | u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3]; | ||
195 | /* Maximum value for each sensor used for scaling in mV/millidegrees | ||
196 | Celsius. */ | ||
197 | int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS]; | ||
198 | |||
199 | /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ | ||
200 | u8 bank2_sensors; /* actual number of bank2 sensors found */ | ||
201 | u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; | ||
202 | u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ | ||
203 | |||
204 | /* Alarms 2 bytes for bank1, 1 byte for bank2 */ | ||
205 | u8 alarms[3]; | ||
206 | |||
207 | /* Fan PWM (speed control) 5 bytes per PWM */ | ||
208 | u8 pwms; /* actual number of pwms found */ | ||
209 | u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; | ||
210 | }; | ||
211 | |||
212 | /* wait till the uguru is in the specified state */ | ||
213 | static int abituguru_wait(struct abituguru_data *data, u8 state) | ||
214 | { | ||
215 | int timeout = ABIT_UGURU_WAIT_TIMEOUT; | ||
216 | |||
217 | while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { | ||
218 | timeout--; | ||
219 | if (timeout == 0) | ||
220 | return -EBUSY; | ||
221 | } | ||
222 | return 0; | ||
223 | } | ||
224 | |||
225 | /* Put the uguru in ready for input state */ | ||
226 | static int abituguru_ready(struct abituguru_data *data) | ||
227 | { | ||
228 | int timeout = ABIT_UGURU_READY_TIMEOUT; | ||
229 | |||
230 | if (data->uguru_ready) | ||
231 | return 0; | ||
232 | |||
233 | /* Reset? / Prepare for next read/write cycle */ | ||
234 | outb(0x00, data->addr + ABIT_UGURU_DATA); | ||
235 | |||
236 | /* Wait till the uguru is ready */ | ||
237 | if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { | ||
238 | ABIT_UGURU_DEBUG(1, | ||
239 | "timeout exceeded waiting for ready state\n"); | ||
240 | return -EIO; | ||
241 | } | ||
242 | |||
243 | /* Cmd port MUST be read now and should contain 0xAC */ | ||
244 | while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { | ||
245 | timeout--; | ||
246 | if (timeout == 0) { | ||
247 | ABIT_UGURU_DEBUG(1, | ||
248 | "CMD reg does not hold 0xAC after ready command\n"); | ||
249 | return -EIO; | ||
250 | } | ||
251 | } | ||
252 | |||
253 | /* After this the ABIT_UGURU_DATA port should contain | ||
254 | ABIT_UGURU_STATUS_INPUT */ | ||
255 | timeout = ABIT_UGURU_READY_TIMEOUT; | ||
256 | while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { | ||
257 | timeout--; | ||
258 | if (timeout == 0) { | ||
259 | ABIT_UGURU_DEBUG(1, | ||
260 | "state != more input after ready command\n"); | ||
261 | return -EIO; | ||
262 | } | ||
263 | } | ||
264 | |||
265 | data->uguru_ready = 1; | ||
266 | return 0; | ||
267 | } | ||
268 | |||
269 | /* Send the bank and then sensor address to the uGuru for the next read/write | ||
270 | cycle. This function gets called as the first part of a read/write by | ||
271 | abituguru_read and abituguru_write. This function should never be | ||
272 | called by any other function. */ | ||
273 | static int abituguru_send_address(struct abituguru_data *data, | ||
274 | u8 bank_addr, u8 sensor_addr, int retries) | ||
275 | { | ||
276 | /* assume the caller does error handling itself if it has not requested | ||
277 | any retries, and thus be quiet. */ | ||
278 | int report_errors = retries; | ||
279 | |||
280 | for (;;) { | ||
281 | /* Make sure the uguru is ready and then send the bank address, | ||
282 | after this the uguru is no longer "ready". */ | ||
283 | if (abituguru_ready(data) != 0) | ||
284 | return -EIO; | ||
285 | outb(bank_addr, data->addr + ABIT_UGURU_DATA); | ||
286 | data->uguru_ready = 0; | ||
287 | |||
288 | /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again | ||
289 | and send the sensor addr */ | ||
290 | if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { | ||
291 | if (retries) { | ||
292 | ABIT_UGURU_DEBUG(3, "timeout exceeded " | ||
293 | "waiting for more input state, %d " | ||
294 | "tries remaining\n", retries); | ||
295 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
296 | schedule_timeout(ABIT_UGURU_RETRY_DELAY); | ||
297 | retries--; | ||
298 | continue; | ||
299 | } | ||
300 | if (report_errors) | ||
301 | ABIT_UGURU_DEBUG(1, "timeout exceeded " | ||
302 | "waiting for more input state " | ||
303 | "(bank: %d)\n", (int)bank_addr); | ||
304 | return -EBUSY; | ||
305 | } | ||
306 | outb(sensor_addr, data->addr + ABIT_UGURU_CMD); | ||
307 | return 0; | ||
308 | } | ||
309 | } | ||
310 | |||
311 | /* Read count bytes from sensor sensor_addr in bank bank_addr and store the | ||
312 | result in buf, retry the send address part of the read retries times. */ | ||
313 | static int abituguru_read(struct abituguru_data *data, | ||
314 | u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) | ||
315 | { | ||
316 | int i; | ||
317 | |||
318 | /* Send the address */ | ||
319 | i = abituguru_send_address(data, bank_addr, sensor_addr, retries); | ||
320 | if (i) | ||
321 | return i; | ||
322 | |||
323 | /* And read the data */ | ||
324 | for (i = 0; i < count; i++) { | ||
325 | if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { | ||
326 | ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " | ||
327 | "read state (bank: %d, sensor: %d)\n", | ||
328 | (int)bank_addr, (int)sensor_addr); | ||
329 | break; | ||
330 | } | ||
331 | buf[i] = inb(data->addr + ABIT_UGURU_CMD); | ||
332 | } | ||
333 | |||
334 | /* Last put the chip back in ready state */ | ||
335 | abituguru_ready(data); | ||
336 | |||
337 | return i; | ||
338 | } | ||
339 | |||
340 | /* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send | ||
341 | address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */ | ||
342 | static int abituguru_write(struct abituguru_data *data, | ||
343 | u8 bank_addr, u8 sensor_addr, u8 *buf, int count) | ||
344 | { | ||
345 | int i; | ||
346 | |||
347 | /* Send the address */ | ||
348 | i = abituguru_send_address(data, bank_addr, sensor_addr, | ||
349 | ABIT_UGURU_MAX_RETRIES); | ||
350 | if (i) | ||
351 | return i; | ||
352 | |||
353 | /* And write the data */ | ||
354 | for (i = 0; i < count; i++) { | ||
355 | if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { | ||
356 | ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " | ||
357 | "write state (bank: %d, sensor: %d)\n", | ||
358 | (int)bank_addr, (int)sensor_addr); | ||
359 | break; | ||
360 | } | ||
361 | outb(buf[i], data->addr + ABIT_UGURU_CMD); | ||
362 | } | ||
363 | |||
364 | /* Now we need to wait till the chip is ready to be read again, | ||
365 | don't ask why */ | ||
366 | if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { | ||
367 | ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " | ||
368 | "after write (bank: %d, sensor: %d)\n", (int)bank_addr, | ||
369 | (int)sensor_addr); | ||
370 | return -EIO; | ||
371 | } | ||
372 | |||
373 | /* Cmd port MUST be read now and should contain 0xAC */ | ||
374 | if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { | ||
375 | ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write " | ||
376 | "(bank: %d, sensor: %d)\n", (int)bank_addr, | ||
377 | (int)sensor_addr); | ||
378 | return -EIO; | ||
379 | } | ||
380 | |||
381 | /* Last put the chip back in ready state */ | ||
382 | abituguru_ready(data); | ||
383 | |||
384 | return i; | ||
385 | } | ||
386 | |||
387 | /* Detect sensor type. Temp and Volt sensors are enabled with | ||
388 | different masks and will ignore enable masks not meant for them. | ||
389 | This enables us to test what kind of sensor we're dealing with. | ||
390 | By setting the alarm thresholds so that we will always get an | ||
391 | alarm for sensor type X and then enabling the sensor as sensor type | ||
392 | X, if we then get an alarm it is a sensor of type X. */ | ||
393 | static int __devinit | ||
394 | abituguru_detect_bank1_sensor_type(struct abituguru_data *data, | ||
395 | u8 sensor_addr) | ||
396 | { | ||
397 | u8 val, buf[3]; | ||
398 | int ret = ABIT_UGURU_NC; | ||
399 | |||
400 | /* First read the sensor and the current settings */ | ||
401 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, | ||
402 | 1, ABIT_UGURU_MAX_RETRIES) != 1) | ||
403 | return -ENODEV; | ||
404 | |||
405 | /* Test val is sane / usable for sensor type detection. */ | ||
406 | if ((val < 10u) || (val > 240u)) { | ||
407 | printk(KERN_WARNING ABIT_UGURU_NAME | ||
408 | ": bank1-sensor: %d reading (%d) too close to limits, " | ||
409 | "unable to determine sensor type, skipping sensor\n", | ||
410 | (int)sensor_addr, (int)val); | ||
411 | /* assume no sensor is there for sensors for which we can't | ||
412 | determine the sensor type because their reading is too close | ||
413 | to their limits, this usually means no sensor is there. */ | ||
414 | return ABIT_UGURU_NC; | ||
415 | } | ||
416 | |||
417 | ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); | ||
418 | /* Volt sensor test, enable volt low alarm, set min value ridicously | ||
419 | high. If its a volt sensor this should always give us an alarm. */ | ||
420 | buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; | ||
421 | buf[1] = 245; | ||
422 | buf[2] = 250; | ||
423 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, | ||
424 | buf, 3) != 3) | ||
425 | return -ENODEV; | ||
426 | /* Now we need 20 ms to give the uguru time to read the sensors | ||
427 | and raise a voltage alarm */ | ||
428 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
429 | schedule_timeout(HZ/50); | ||
430 | /* Check for alarm and check the alarm is a volt low alarm. */ | ||
431 | if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, | ||
432 | ABIT_UGURU_MAX_RETRIES) != 3) | ||
433 | return -ENODEV; | ||
434 | if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { | ||
435 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, | ||
436 | sensor_addr, buf, 3, | ||
437 | ABIT_UGURU_MAX_RETRIES) != 3) | ||
438 | return -ENODEV; | ||
439 | if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) { | ||
440 | /* Restore original settings */ | ||
441 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, | ||
442 | sensor_addr, | ||
443 | data->bank1_settings[sensor_addr], | ||
444 | 3) != 3) | ||
445 | return -ENODEV; | ||
446 | ABIT_UGURU_DEBUG(2, " found volt sensor\n"); | ||
447 | return ABIT_UGURU_IN_SENSOR; | ||
448 | } else | ||
449 | ABIT_UGURU_DEBUG(2, " alarm raised during volt " | ||
450 | "sensor test, but volt low flag not set\n"); | ||
451 | } else | ||
452 | ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " | ||
453 | "test\n"); | ||
454 | |||
455 | /* Temp sensor test, enable sensor as a temp sensor, set beep value | ||
456 | ridicously low (but not too low, otherwise uguru ignores it). | ||
457 | If its a temp sensor this should always give us an alarm. */ | ||
458 | buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; | ||
459 | buf[1] = 5; | ||
460 | buf[2] = 10; | ||
461 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, | ||
462 | buf, 3) != 3) | ||
463 | return -ENODEV; | ||
464 | /* Now we need 50 ms to give the uguru time to read the sensors | ||
465 | and raise a temp alarm */ | ||
466 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
467 | schedule_timeout(HZ/20); | ||
468 | /* Check for alarm and check the alarm is a temp high alarm. */ | ||
469 | if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, | ||
470 | ABIT_UGURU_MAX_RETRIES) != 3) | ||
471 | return -ENODEV; | ||
472 | if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { | ||
473 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, | ||
474 | sensor_addr, buf, 3, | ||
475 | ABIT_UGURU_MAX_RETRIES) != 3) | ||
476 | return -ENODEV; | ||
477 | if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { | ||
478 | ret = ABIT_UGURU_TEMP_SENSOR; | ||
479 | ABIT_UGURU_DEBUG(2, " found temp sensor\n"); | ||
480 | } else | ||
481 | ABIT_UGURU_DEBUG(2, " alarm raised during temp " | ||
482 | "sensor test, but temp high flag not set\n"); | ||
483 | } else | ||
484 | ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " | ||
485 | "test\n"); | ||
486 | |||
487 | /* Restore original settings */ | ||
488 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, | ||
489 | data->bank1_settings[sensor_addr], 3) != 3) | ||
490 | return -ENODEV; | ||
491 | |||
492 | return ret; | ||
493 | } | ||
494 | |||
495 | /* These functions try to find out how many sensors there are in bank2 and how | ||
496 | many pwms there are. The purpose of this is to make sure that we don't give | ||
497 | the user the possibility to change settings for non-existent sensors / pwm. | ||
498 | The uGuru will happily read / write whatever memory happens to be after the | ||
499 | memory storing the PWM settings when reading/writing to a PWM which is not | ||
500 | there. Notice even if we detect a PWM which doesn't exist we normally won't | ||
501 | write to it, unless the user tries to change the settings. | ||
502 | |||
503 | Although the uGuru allows reading (settings) from non existing bank2 | ||
504 | sensors, my version of the uGuru does seem to stop writing to them, the | ||
505 | write function above aborts in this case with: | ||
506 | "CMD reg does not hold 0xAC after write" | ||
507 | |||
508 | Notice these 2 tests are non destructive iow read-only tests, otherwise | ||
509 | they would defeat their purpose. Although for the bank2_sensors detection a | ||
510 | read/write test would be feasible because of the reaction above, I've | ||
511 | however opted to stay on the safe side. */ | ||
512 | static void __devinit | ||
513 | abituguru_detect_no_bank2_sensors(struct abituguru_data *data) | ||
514 | { | ||
515 | int i; | ||
516 | |||
517 | if (fan_sensors) { | ||
518 | data->bank2_sensors = fan_sensors; | ||
519 | ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " | ||
520 | "\"fan_sensors\" module param\n", | ||
521 | (int)data->bank2_sensors); | ||
522 | return; | ||
523 | } | ||
524 | |||
525 | ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); | ||
526 | for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { | ||
527 | /* 0x89 are the known used bits: | ||
528 | -0x80 enable shutdown | ||
529 | -0x08 enable beep | ||
530 | -0x01 enable alarm | ||
531 | All other bits should be 0, but on some motherboards | ||
532 | 0x40 (bit 6) is also high for some of the fans?? */ | ||
533 | if (data->bank2_settings[i][0] & ~0xC9) { | ||
534 | ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " | ||
535 | "to be a fan sensor: settings[0] = %02X\n", | ||
536 | i, (unsigned int)data->bank2_settings[i][0]); | ||
537 | break; | ||
538 | } | ||
539 | |||
540 | /* check if the threshold is within the allowed range */ | ||
541 | if (data->bank2_settings[i][1] < | ||
542 | abituguru_bank2_min_threshold) { | ||
543 | ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " | ||
544 | "to be a fan sensor: the threshold (%d) is " | ||
545 | "below the minimum (%d)\n", i, | ||
546 | (int)data->bank2_settings[i][1], | ||
547 | (int)abituguru_bank2_min_threshold); | ||
548 | break; | ||
549 | } | ||
550 | if (data->bank2_settings[i][1] > | ||
551 | abituguru_bank2_max_threshold) { | ||
552 | ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " | ||
553 | "to be a fan sensor: the threshold (%d) is " | ||
554 | "above the maximum (%d)\n", i, | ||
555 | (int)data->bank2_settings[i][1], | ||
556 | (int)abituguru_bank2_max_threshold); | ||
557 | break; | ||
558 | } | ||
559 | } | ||
560 | |||
561 | data->bank2_sensors = i; | ||
562 | ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", | ||
563 | (int)data->bank2_sensors); | ||
564 | } | ||
565 | |||
566 | static void __devinit | ||
567 | abituguru_detect_no_pwms(struct abituguru_data *data) | ||
568 | { | ||
569 | int i, j; | ||
570 | |||
571 | if (pwms) { | ||
572 | data->pwms = pwms; | ||
573 | ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " | ||
574 | "\"pwms\" module param\n", (int)data->pwms); | ||
575 | return; | ||
576 | } | ||
577 | |||
578 | ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); | ||
579 | for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { | ||
580 | /* 0x80 is the enable bit and the low | ||
581 | nibble is which temp sensor to use, | ||
582 | the other bits should be 0 */ | ||
583 | if (data->pwm_settings[i][0] & ~0x8F) { | ||
584 | ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " | ||
585 | "to be a pwm channel: settings[0] = %02X\n", | ||
586 | i, (unsigned int)data->pwm_settings[i][0]); | ||
587 | break; | ||
588 | } | ||
589 | |||
590 | /* the low nibble must correspond to one of the temp sensors | ||
591 | we've found */ | ||
592 | for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; | ||
593 | j++) { | ||
594 | if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == | ||
595 | (data->pwm_settings[i][0] & 0x0F)) | ||
596 | break; | ||
597 | } | ||
598 | if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { | ||
599 | ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " | ||
600 | "to be a pwm channel: %d is not a valid temp " | ||
601 | "sensor address\n", i, | ||
602 | data->pwm_settings[i][0] & 0x0F); | ||
603 | break; | ||
604 | } | ||
605 | |||
606 | /* check if all other settings are within the allowed range */ | ||
607 | for (j = 1; j < 5; j++) { | ||
608 | u8 min; | ||
609 | /* special case pwm1 min pwm% */ | ||
610 | if ((i == 0) && ((j == 1) || (j == 2))) | ||
611 | min = 77; | ||
612 | else | ||
613 | min = abituguru_pwm_min[j]; | ||
614 | if (data->pwm_settings[i][j] < min) { | ||
615 | ABIT_UGURU_DEBUG(2, " pwm channel %d does " | ||
616 | "not seem to be a pwm channel: " | ||
617 | "setting %d (%d) is below the minimum " | ||
618 | "value (%d)\n", i, j, | ||
619 | (int)data->pwm_settings[i][j], | ||
620 | (int)min); | ||
621 | goto abituguru_detect_no_pwms_exit; | ||
622 | } | ||
623 | if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { | ||
624 | ABIT_UGURU_DEBUG(2, " pwm channel %d does " | ||
625 | "not seem to be a pwm channel: " | ||
626 | "setting %d (%d) is above the maximum " | ||
627 | "value (%d)\n", i, j, | ||
628 | (int)data->pwm_settings[i][j], | ||
629 | (int)abituguru_pwm_max[j]); | ||
630 | goto abituguru_detect_no_pwms_exit; | ||
631 | } | ||
632 | } | ||
633 | |||
634 | /* check that min temp < max temp and min pwm < max pwm */ | ||
635 | if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { | ||
636 | ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " | ||
637 | "to be a pwm channel: min pwm (%d) >= " | ||
638 | "max pwm (%d)\n", i, | ||
639 | (int)data->pwm_settings[i][1], | ||
640 | (int)data->pwm_settings[i][2]); | ||
641 | break; | ||
642 | } | ||
643 | if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { | ||
644 | ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " | ||
645 | "to be a pwm channel: min temp (%d) >= " | ||
646 | "max temp (%d)\n", i, | ||
647 | (int)data->pwm_settings[i][3], | ||
648 | (int)data->pwm_settings[i][4]); | ||
649 | break; | ||
650 | } | ||
651 | } | ||
652 | |||
653 | abituguru_detect_no_pwms_exit: | ||
654 | data->pwms = i; | ||
655 | ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); | ||
656 | } | ||
657 | |||
658 | /* Following are the sysfs callback functions. These functions expect: | ||
659 | sensor_device_attribute_2->index: sensor address/offset in the bank | ||
660 | sensor_device_attribute_2->nr: register offset, bitmask or NA. */ | ||
661 | static struct abituguru_data *abituguru_update_device(struct device *dev); | ||
662 | |||
663 | static ssize_t show_bank1_value(struct device *dev, | ||
664 | struct device_attribute *devattr, char *buf) | ||
665 | { | ||
666 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
667 | struct abituguru_data *data = abituguru_update_device(dev); | ||
668 | if (!data) | ||
669 | return -EIO; | ||
670 | return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * | ||
671 | data->bank1_max_value[attr->index] + 128) / 255); | ||
672 | } | ||
673 | |||
674 | static ssize_t show_bank1_setting(struct device *dev, | ||
675 | struct device_attribute *devattr, char *buf) | ||
676 | { | ||
677 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
678 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
679 | return sprintf(buf, "%d\n", | ||
680 | (data->bank1_settings[attr->index][attr->nr] * | ||
681 | data->bank1_max_value[attr->index] + 128) / 255); | ||
682 | } | ||
683 | |||
684 | static ssize_t show_bank2_value(struct device *dev, | ||
685 | struct device_attribute *devattr, char *buf) | ||
686 | { | ||
687 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
688 | struct abituguru_data *data = abituguru_update_device(dev); | ||
689 | if (!data) | ||
690 | return -EIO; | ||
691 | return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * | ||
692 | ABIT_UGURU_FAN_MAX + 128) / 255); | ||
693 | } | ||
694 | |||
695 | static ssize_t show_bank2_setting(struct device *dev, | ||
696 | struct device_attribute *devattr, char *buf) | ||
697 | { | ||
698 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
699 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
700 | return sprintf(buf, "%d\n", | ||
701 | (data->bank2_settings[attr->index][attr->nr] * | ||
702 | ABIT_UGURU_FAN_MAX + 128) / 255); | ||
703 | } | ||
704 | |||
705 | static ssize_t store_bank1_setting(struct device *dev, struct device_attribute | ||
706 | *devattr, const char *buf, size_t count) | ||
707 | { | ||
708 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
709 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
710 | u8 val = (simple_strtoul(buf, NULL, 10) * 255 + | ||
711 | data->bank1_max_value[attr->index]/2) / | ||
712 | data->bank1_max_value[attr->index]; | ||
713 | ssize_t ret = count; | ||
714 | |||
715 | mutex_lock(&data->update_lock); | ||
716 | if (data->bank1_settings[attr->index][attr->nr] != val) { | ||
717 | u8 orig_val = data->bank1_settings[attr->index][attr->nr]; | ||
718 | data->bank1_settings[attr->index][attr->nr] = val; | ||
719 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, | ||
720 | attr->index, data->bank1_settings[attr->index], | ||
721 | 3) <= attr->nr) { | ||
722 | data->bank1_settings[attr->index][attr->nr] = orig_val; | ||
723 | ret = -EIO; | ||
724 | } | ||
725 | } | ||
726 | mutex_unlock(&data->update_lock); | ||
727 | return ret; | ||
728 | } | ||
729 | |||
730 | static ssize_t store_bank2_setting(struct device *dev, struct device_attribute | ||
731 | *devattr, const char *buf, size_t count) | ||
732 | { | ||
733 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
734 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
735 | u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) / | ||
736 | ABIT_UGURU_FAN_MAX; | ||
737 | ssize_t ret = count; | ||
738 | |||
739 | /* this check can be done before taking the lock */ | ||
740 | if ((val < abituguru_bank2_min_threshold) || | ||
741 | (val > abituguru_bank2_max_threshold)) | ||
742 | return -EINVAL; | ||
743 | |||
744 | mutex_lock(&data->update_lock); | ||
745 | if (data->bank2_settings[attr->index][attr->nr] != val) { | ||
746 | u8 orig_val = data->bank2_settings[attr->index][attr->nr]; | ||
747 | data->bank2_settings[attr->index][attr->nr] = val; | ||
748 | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, | ||
749 | attr->index, data->bank2_settings[attr->index], | ||
750 | 2) <= attr->nr) { | ||
751 | data->bank2_settings[attr->index][attr->nr] = orig_val; | ||
752 | ret = -EIO; | ||
753 | } | ||
754 | } | ||
755 | mutex_unlock(&data->update_lock); | ||
756 | return ret; | ||
757 | } | ||
758 | |||
759 | static ssize_t show_bank1_alarm(struct device *dev, | ||
760 | struct device_attribute *devattr, char *buf) | ||
761 | { | ||
762 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
763 | struct abituguru_data *data = abituguru_update_device(dev); | ||
764 | if (!data) | ||
765 | return -EIO; | ||
766 | /* See if the alarm bit for this sensor is set, and if the | ||
767 | alarm matches the type of alarm we're looking for (for volt | ||
768 | it can be either low or high). The type is stored in a few | ||
769 | readonly bits in the settings part of the relevant sensor. | ||
770 | The bitmask of the type is passed to us in attr->nr. */ | ||
771 | if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && | ||
772 | (data->bank1_settings[attr->index][0] & attr->nr)) | ||
773 | return sprintf(buf, "1\n"); | ||
774 | else | ||
775 | return sprintf(buf, "0\n"); | ||
776 | } | ||
777 | |||
778 | static ssize_t show_bank2_alarm(struct device *dev, | ||
779 | struct device_attribute *devattr, char *buf) | ||
780 | { | ||
781 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
782 | struct abituguru_data *data = abituguru_update_device(dev); | ||
783 | if (!data) | ||
784 | return -EIO; | ||
785 | if (data->alarms[2] & (0x01 << attr->index)) | ||
786 | return sprintf(buf, "1\n"); | ||
787 | else | ||
788 | return sprintf(buf, "0\n"); | ||
789 | } | ||
790 | |||
791 | static ssize_t show_bank1_mask(struct device *dev, | ||
792 | struct device_attribute *devattr, char *buf) | ||
793 | { | ||
794 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
795 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
796 | if (data->bank1_settings[attr->index][0] & attr->nr) | ||
797 | return sprintf(buf, "1\n"); | ||
798 | else | ||
799 | return sprintf(buf, "0\n"); | ||
800 | } | ||
801 | |||
802 | static ssize_t show_bank2_mask(struct device *dev, | ||
803 | struct device_attribute *devattr, char *buf) | ||
804 | { | ||
805 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
806 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
807 | if (data->bank2_settings[attr->index][0] & attr->nr) | ||
808 | return sprintf(buf, "1\n"); | ||
809 | else | ||
810 | return sprintf(buf, "0\n"); | ||
811 | } | ||
812 | |||
813 | static ssize_t store_bank1_mask(struct device *dev, | ||
814 | struct device_attribute *devattr, const char *buf, size_t count) | ||
815 | { | ||
816 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
817 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
818 | int mask = simple_strtoul(buf, NULL, 10); | ||
819 | ssize_t ret = count; | ||
820 | u8 orig_val; | ||
821 | |||
822 | mutex_lock(&data->update_lock); | ||
823 | orig_val = data->bank1_settings[attr->index][0]; | ||
824 | |||
825 | if (mask) | ||
826 | data->bank1_settings[attr->index][0] |= attr->nr; | ||
827 | else | ||
828 | data->bank1_settings[attr->index][0] &= ~attr->nr; | ||
829 | |||
830 | if ((data->bank1_settings[attr->index][0] != orig_val) && | ||
831 | (abituguru_write(data, | ||
832 | ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, | ||
833 | data->bank1_settings[attr->index], 3) < 1)) { | ||
834 | data->bank1_settings[attr->index][0] = orig_val; | ||
835 | ret = -EIO; | ||
836 | } | ||
837 | mutex_unlock(&data->update_lock); | ||
838 | return ret; | ||
839 | } | ||
840 | |||
841 | static ssize_t store_bank2_mask(struct device *dev, | ||
842 | struct device_attribute *devattr, const char *buf, size_t count) | ||
843 | { | ||
844 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
845 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
846 | int mask = simple_strtoul(buf, NULL, 10); | ||
847 | ssize_t ret = count; | ||
848 | u8 orig_val; | ||
849 | |||
850 | mutex_lock(&data->update_lock); | ||
851 | orig_val = data->bank2_settings[attr->index][0]; | ||
852 | |||
853 | if (mask) | ||
854 | data->bank2_settings[attr->index][0] |= attr->nr; | ||
855 | else | ||
856 | data->bank2_settings[attr->index][0] &= ~attr->nr; | ||
857 | |||
858 | if ((data->bank2_settings[attr->index][0] != orig_val) && | ||
859 | (abituguru_write(data, | ||
860 | ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, | ||
861 | data->bank2_settings[attr->index], 2) < 1)) { | ||
862 | data->bank2_settings[attr->index][0] = orig_val; | ||
863 | ret = -EIO; | ||
864 | } | ||
865 | mutex_unlock(&data->update_lock); | ||
866 | return ret; | ||
867 | } | ||
868 | |||
869 | /* Fan PWM (speed control) */ | ||
870 | static ssize_t show_pwm_setting(struct device *dev, | ||
871 | struct device_attribute *devattr, char *buf) | ||
872 | { | ||
873 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
874 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
875 | return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * | ||
876 | abituguru_pwm_settings_multiplier[attr->nr]); | ||
877 | } | ||
878 | |||
879 | static ssize_t store_pwm_setting(struct device *dev, struct device_attribute | ||
880 | *devattr, const char *buf, size_t count) | ||
881 | { | ||
882 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
883 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
884 | u8 min, val = (simple_strtoul(buf, NULL, 10) + | ||
885 | abituguru_pwm_settings_multiplier[attr->nr]/2) / | ||
886 | abituguru_pwm_settings_multiplier[attr->nr]; | ||
887 | ssize_t ret = count; | ||
888 | |||
889 | /* special case pwm1 min pwm% */ | ||
890 | if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) | ||
891 | min = 77; | ||
892 | else | ||
893 | min = abituguru_pwm_min[attr->nr]; | ||
894 | |||
895 | /* this check can be done before taking the lock */ | ||
896 | if ((val < min) || (val > abituguru_pwm_max[attr->nr])) | ||
897 | return -EINVAL; | ||
898 | |||
899 | mutex_lock(&data->update_lock); | ||
900 | /* this check needs to be done after taking the lock */ | ||
901 | if ((attr->nr & 1) && | ||
902 | (val >= data->pwm_settings[attr->index][attr->nr + 1])) | ||
903 | ret = -EINVAL; | ||
904 | else if (!(attr->nr & 1) && | ||
905 | (val <= data->pwm_settings[attr->index][attr->nr - 1])) | ||
906 | ret = -EINVAL; | ||
907 | else if (data->pwm_settings[attr->index][attr->nr] != val) { | ||
908 | u8 orig_val = data->pwm_settings[attr->index][attr->nr]; | ||
909 | data->pwm_settings[attr->index][attr->nr] = val; | ||
910 | if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, | ||
911 | attr->index, data->pwm_settings[attr->index], | ||
912 | 5) <= attr->nr) { | ||
913 | data->pwm_settings[attr->index][attr->nr] = | ||
914 | orig_val; | ||
915 | ret = -EIO; | ||
916 | } | ||
917 | } | ||
918 | mutex_unlock(&data->update_lock); | ||
919 | return ret; | ||
920 | } | ||
921 | |||
922 | static ssize_t show_pwm_sensor(struct device *dev, | ||
923 | struct device_attribute *devattr, char *buf) | ||
924 | { | ||
925 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
926 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
927 | int i; | ||
928 | /* We need to walk to the temp sensor addresses to find what | ||
929 | the userspace id of the configured temp sensor is. */ | ||
930 | for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) | ||
931 | if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == | ||
932 | (data->pwm_settings[attr->index][0] & 0x0F)) | ||
933 | return sprintf(buf, "%d\n", i+1); | ||
934 | |||
935 | return -ENXIO; | ||
936 | } | ||
937 | |||
938 | static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute | ||
939 | *devattr, const char *buf, size_t count) | ||
940 | { | ||
941 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
942 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
943 | unsigned long val = simple_strtoul(buf, NULL, 10) - 1; | ||
944 | ssize_t ret = count; | ||
945 | |||
946 | mutex_lock(&data->update_lock); | ||
947 | if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { | ||
948 | u8 orig_val = data->pwm_settings[attr->index][0]; | ||
949 | u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; | ||
950 | data->pwm_settings[attr->index][0] &= 0xF0; | ||
951 | data->pwm_settings[attr->index][0] |= address; | ||
952 | if (data->pwm_settings[attr->index][0] != orig_val) { | ||
953 | if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, | ||
954 | attr->index, | ||
955 | data->pwm_settings[attr->index], | ||
956 | 5) < 1) { | ||
957 | data->pwm_settings[attr->index][0] = orig_val; | ||
958 | ret = -EIO; | ||
959 | } | ||
960 | } | ||
961 | } | ||
962 | else | ||
963 | ret = -EINVAL; | ||
964 | mutex_unlock(&data->update_lock); | ||
965 | return ret; | ||
966 | } | ||
967 | |||
968 | static ssize_t show_pwm_enable(struct device *dev, | ||
969 | struct device_attribute *devattr, char *buf) | ||
970 | { | ||
971 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
972 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
973 | int res = 0; | ||
974 | if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) | ||
975 | res = 2; | ||
976 | return sprintf(buf, "%d\n", res); | ||
977 | } | ||
978 | |||
979 | static ssize_t store_pwm_enable(struct device *dev, struct device_attribute | ||
980 | *devattr, const char *buf, size_t count) | ||
981 | { | ||
982 | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | ||
983 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
984 | u8 orig_val, user_val = simple_strtoul(buf, NULL, 10); | ||
985 | ssize_t ret = count; | ||
986 | |||
987 | mutex_lock(&data->update_lock); | ||
988 | orig_val = data->pwm_settings[attr->index][0]; | ||
989 | switch (user_val) { | ||
990 | case 0: | ||
991 | data->pwm_settings[attr->index][0] &= | ||
992 | ~ABIT_UGURU_FAN_PWM_ENABLE; | ||
993 | break; | ||
994 | case 2: | ||
995 | data->pwm_settings[attr->index][0] |= | ||
996 | ABIT_UGURU_FAN_PWM_ENABLE; | ||
997 | break; | ||
998 | default: | ||
999 | ret = -EINVAL; | ||
1000 | } | ||
1001 | if ((data->pwm_settings[attr->index][0] != orig_val) && | ||
1002 | (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, | ||
1003 | attr->index, data->pwm_settings[attr->index], | ||
1004 | 5) < 1)) { | ||
1005 | data->pwm_settings[attr->index][0] = orig_val; | ||
1006 | ret = -EIO; | ||
1007 | } | ||
1008 | mutex_unlock(&data->update_lock); | ||
1009 | return ret; | ||
1010 | } | ||
1011 | |||
1012 | static ssize_t show_name(struct device *dev, | ||
1013 | struct device_attribute *devattr, char *buf) | ||
1014 | { | ||
1015 | return sprintf(buf, "%s\n", ABIT_UGURU_NAME); | ||
1016 | } | ||
1017 | |||
1018 | /* Sysfs attr templates, the real entries are generated automatically. */ | ||
1019 | static const | ||
1020 | struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { | ||
1021 | { | ||
1022 | SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), | ||
1023 | SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, | ||
1024 | store_bank1_setting, 1, 0), | ||
1025 | SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, | ||
1026 | ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), | ||
1027 | SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, | ||
1028 | store_bank1_setting, 2, 0), | ||
1029 | SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, | ||
1030 | ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), | ||
1031 | SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, | ||
1032 | store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), | ||
1033 | SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, | ||
1034 | store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), | ||
1035 | SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, | ||
1036 | store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), | ||
1037 | SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, | ||
1038 | store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), | ||
1039 | }, { | ||
1040 | SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), | ||
1041 | SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, | ||
1042 | ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), | ||
1043 | SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, | ||
1044 | store_bank1_setting, 1, 0), | ||
1045 | SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, | ||
1046 | store_bank1_setting, 2, 0), | ||
1047 | SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, | ||
1048 | store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), | ||
1049 | SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, | ||
1050 | store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), | ||
1051 | SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, | ||
1052 | store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), | ||
1053 | } | ||
1054 | }; | ||
1055 | |||
1056 | static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { | ||
1057 | SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), | ||
1058 | SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), | ||
1059 | SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, | ||
1060 | store_bank2_setting, 1, 0), | ||
1061 | SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, | ||
1062 | store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), | ||
1063 | SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, | ||
1064 | store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), | ||
1065 | SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, | ||
1066 | store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), | ||
1067 | }; | ||
1068 | |||
1069 | static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { | ||
1070 | SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, | ||
1071 | store_pwm_enable, 0, 0), | ||
1072 | SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, | ||
1073 | store_pwm_sensor, 0, 0), | ||
1074 | SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, | ||
1075 | store_pwm_setting, 1, 0), | ||
1076 | SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, | ||
1077 | store_pwm_setting, 2, 0), | ||
1078 | SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, | ||
1079 | store_pwm_setting, 3, 0), | ||
1080 | SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, | ||
1081 | store_pwm_setting, 4, 0), | ||
1082 | }; | ||
1083 | |||
1084 | static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { | ||
1085 | SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), | ||
1086 | }; | ||
1087 | |||
1088 | static int __devinit abituguru_probe(struct platform_device *pdev) | ||
1089 | { | ||
1090 | struct abituguru_data *data; | ||
1091 | int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV; | ||
1092 | char *sysfs_filename; | ||
1093 | |||
1094 | /* El weirdo probe order, to keep the sysfs order identical to the | ||
1095 | BIOS and window-appliction listing order. */ | ||
1096 | const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = { | ||
1097 | 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02, | ||
1098 | 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; | ||
1099 | |||
1100 | if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL))) | ||
1101 | return -ENOMEM; | ||
1102 | |||
1103 | data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; | ||
1104 | mutex_init(&data->update_lock); | ||
1105 | platform_set_drvdata(pdev, data); | ||
1106 | |||
1107 | /* See if the uGuru is ready */ | ||
1108 | if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) | ||
1109 | data->uguru_ready = 1; | ||
1110 | |||
1111 | /* Completely read the uGuru this has 2 purposes: | ||
1112 | - testread / see if one really is there. | ||
1113 | - make an in memory copy of all the uguru settings for future use. */ | ||
1114 | if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, | ||
1115 | data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) | ||
1116 | goto abituguru_probe_error; | ||
1117 | |||
1118 | for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { | ||
1119 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, | ||
1120 | &data->bank1_value[i], 1, | ||
1121 | ABIT_UGURU_MAX_RETRIES) != 1) | ||
1122 | goto abituguru_probe_error; | ||
1123 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, | ||
1124 | data->bank1_settings[i], 3, | ||
1125 | ABIT_UGURU_MAX_RETRIES) != 3) | ||
1126 | goto abituguru_probe_error; | ||
1127 | } | ||
1128 | /* Note: We don't know how many bank2 sensors / pwms there really are, | ||
1129 | but in order to "detect" this we need to read the maximum amount | ||
1130 | anyways. If we read sensors/pwms not there we'll just read crap | ||
1131 | this can't hurt. We need the detection because we don't want | ||
1132 | unwanted writes, which will hurt! */ | ||
1133 | for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { | ||
1134 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, | ||
1135 | &data->bank2_value[i], 1, | ||
1136 | ABIT_UGURU_MAX_RETRIES) != 1) | ||
1137 | goto abituguru_probe_error; | ||
1138 | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, | ||
1139 | data->bank2_settings[i], 2, | ||
1140 | ABIT_UGURU_MAX_RETRIES) != 2) | ||
1141 | goto abituguru_probe_error; | ||
1142 | } | ||
1143 | for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { | ||
1144 | if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, | ||
1145 | data->pwm_settings[i], 5, | ||
1146 | ABIT_UGURU_MAX_RETRIES) != 5) | ||
1147 | goto abituguru_probe_error; | ||
1148 | } | ||
1149 | data->last_updated = jiffies; | ||
1150 | |||
1151 | /* Detect sensor types and fill the sysfs attr for bank1 */ | ||
1152 | sysfs_attr_i = 0; | ||
1153 | sysfs_filename = data->sysfs_names; | ||
1154 | sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH; | ||
1155 | for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { | ||
1156 | res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); | ||
1157 | if (res < 0) | ||
1158 | goto abituguru_probe_error; | ||
1159 | if (res == ABIT_UGURU_NC) | ||
1160 | continue; | ||
1161 | |||
1162 | /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */ | ||
1163 | for (j = 0; j < (res ? 7 : 9); j++) { | ||
1164 | used = snprintf(sysfs_filename, sysfs_names_free, | ||
1165 | abituguru_sysfs_bank1_templ[res][j].dev_attr. | ||
1166 | attr.name, data->bank1_sensors[res] + res) | ||
1167 | + 1; | ||
1168 | data->sysfs_attr[sysfs_attr_i] = | ||
1169 | abituguru_sysfs_bank1_templ[res][j]; | ||
1170 | data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = | ||
1171 | sysfs_filename; | ||
1172 | data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; | ||
1173 | sysfs_filename += used; | ||
1174 | sysfs_names_free -= used; | ||
1175 | sysfs_attr_i++; | ||
1176 | } | ||
1177 | data->bank1_max_value[probe_order[i]] = | ||
1178 | abituguru_bank1_max_value[res]; | ||
1179 | data->bank1_address[res][data->bank1_sensors[res]] = | ||
1180 | probe_order[i]; | ||
1181 | data->bank1_sensors[res]++; | ||
1182 | } | ||
1183 | /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ | ||
1184 | abituguru_detect_no_bank2_sensors(data); | ||
1185 | for (i = 0; i < data->bank2_sensors; i++) { | ||
1186 | for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) { | ||
1187 | used = snprintf(sysfs_filename, sysfs_names_free, | ||
1188 | abituguru_sysfs_fan_templ[j].dev_attr.attr.name, | ||
1189 | i + 1) + 1; | ||
1190 | data->sysfs_attr[sysfs_attr_i] = | ||
1191 | abituguru_sysfs_fan_templ[j]; | ||
1192 | data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = | ||
1193 | sysfs_filename; | ||
1194 | data->sysfs_attr[sysfs_attr_i].index = i; | ||
1195 | sysfs_filename += used; | ||
1196 | sysfs_names_free -= used; | ||
1197 | sysfs_attr_i++; | ||
1198 | } | ||
1199 | } | ||
1200 | /* Detect number of sensors and fill the sysfs attr for pwms */ | ||
1201 | abituguru_detect_no_pwms(data); | ||
1202 | for (i = 0; i < data->pwms; i++) { | ||
1203 | for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) { | ||
1204 | used = snprintf(sysfs_filename, sysfs_names_free, | ||
1205 | abituguru_sysfs_pwm_templ[j].dev_attr.attr.name, | ||
1206 | i + 1) + 1; | ||
1207 | data->sysfs_attr[sysfs_attr_i] = | ||
1208 | abituguru_sysfs_pwm_templ[j]; | ||
1209 | data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = | ||
1210 | sysfs_filename; | ||
1211 | data->sysfs_attr[sysfs_attr_i].index = i; | ||
1212 | sysfs_filename += used; | ||
1213 | sysfs_names_free -= used; | ||
1214 | sysfs_attr_i++; | ||
1215 | } | ||
1216 | } | ||
1217 | /* Fail safe check, this should never happen! */ | ||
1218 | if (sysfs_names_free < 0) { | ||
1219 | printk(KERN_ERR ABIT_UGURU_NAME ": Fatal error ran out of " | ||
1220 | "space for sysfs attr names. This should never " | ||
1221 | "happen please report to the abituguru maintainer " | ||
1222 | "(see MAINTAINERS)\n"); | ||
1223 | res = -ENAMETOOLONG; | ||
1224 | goto abituguru_probe_error; | ||
1225 | } | ||
1226 | printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n"); | ||
1227 | |||
1228 | /* Register sysfs hooks */ | ||
1229 | data->class_dev = hwmon_device_register(&pdev->dev); | ||
1230 | if (IS_ERR(data->class_dev)) { | ||
1231 | res = PTR_ERR(data->class_dev); | ||
1232 | goto abituguru_probe_error; | ||
1233 | } | ||
1234 | for (i = 0; i < sysfs_attr_i; i++) | ||
1235 | device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); | ||
1236 | for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) | ||
1237 | device_create_file(&pdev->dev, | ||
1238 | &abituguru_sysfs_attr[i].dev_attr); | ||
1239 | |||
1240 | return 0; | ||
1241 | |||
1242 | abituguru_probe_error: | ||
1243 | kfree(data); | ||
1244 | return res; | ||
1245 | } | ||
1246 | |||
1247 | static int __devexit abituguru_remove(struct platform_device *pdev) | ||
1248 | { | ||
1249 | struct abituguru_data *data = platform_get_drvdata(pdev); | ||
1250 | |||
1251 | platform_set_drvdata(pdev, NULL); | ||
1252 | hwmon_device_unregister(data->class_dev); | ||
1253 | kfree(data); | ||
1254 | |||
1255 | return 0; | ||
1256 | } | ||
1257 | |||
1258 | static struct abituguru_data *abituguru_update_device(struct device *dev) | ||
1259 | { | ||
1260 | int i, err; | ||
1261 | struct abituguru_data *data = dev_get_drvdata(dev); | ||
1262 | /* fake a complete successful read if no update necessary. */ | ||
1263 | char success = 1; | ||
1264 | |||
1265 | mutex_lock(&data->update_lock); | ||
1266 | if (time_after(jiffies, data->last_updated + HZ)) { | ||
1267 | success = 0; | ||
1268 | if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, | ||
1269 | data->alarms, 3, 0)) != 3) | ||
1270 | goto LEAVE_UPDATE; | ||
1271 | for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { | ||
1272 | if ((err = abituguru_read(data, | ||
1273 | ABIT_UGURU_SENSOR_BANK1, i, | ||
1274 | &data->bank1_value[i], 1, 0)) != 1) | ||
1275 | goto LEAVE_UPDATE; | ||
1276 | if ((err = abituguru_read(data, | ||
1277 | ABIT_UGURU_SENSOR_BANK1 + 1, i, | ||
1278 | data->bank1_settings[i], 3, 0)) != 3) | ||
1279 | goto LEAVE_UPDATE; | ||
1280 | } | ||
1281 | for (i = 0; i < data->bank2_sensors; i++) | ||
1282 | if ((err = abituguru_read(data, | ||
1283 | ABIT_UGURU_SENSOR_BANK2, i, | ||
1284 | &data->bank2_value[i], 1, 0)) != 1) | ||
1285 | goto LEAVE_UPDATE; | ||
1286 | /* success! */ | ||
1287 | success = 1; | ||
1288 | data->update_timeouts = 0; | ||
1289 | LEAVE_UPDATE: | ||
1290 | /* handle timeout condition */ | ||
1291 | if (err == -EBUSY) { | ||
1292 | /* No overflow please */ | ||
1293 | if (data->update_timeouts < 255u) | ||
1294 | data->update_timeouts++; | ||
1295 | if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { | ||
1296 | ABIT_UGURU_DEBUG(3, "timeout exceeded, will " | ||
1297 | "try again next update\n"); | ||
1298 | /* Just a timeout, fake a successful read */ | ||
1299 | success = 1; | ||
1300 | } else | ||
1301 | ABIT_UGURU_DEBUG(1, "timeout exceeded %d " | ||
1302 | "times waiting for more input state\n", | ||
1303 | (int)data->update_timeouts); | ||
1304 | } | ||
1305 | /* On success set last_updated */ | ||
1306 | if (success) | ||
1307 | data->last_updated = jiffies; | ||
1308 | } | ||
1309 | mutex_unlock(&data->update_lock); | ||
1310 | |||
1311 | if (success) | ||
1312 | return data; | ||
1313 | else | ||
1314 | return NULL; | ||
1315 | } | ||
1316 | |||
1317 | static struct platform_driver abituguru_driver = { | ||
1318 | .driver = { | ||
1319 | .owner = THIS_MODULE, | ||
1320 | .name = ABIT_UGURU_NAME, | ||
1321 | }, | ||
1322 | .probe = abituguru_probe, | ||
1323 | .remove = __devexit_p(abituguru_remove), | ||
1324 | }; | ||
1325 | |||
1326 | static int __init abituguru_detect(void) | ||
1327 | { | ||
1328 | /* See if there is an uguru there. After a reboot uGuru will hold 0x00 | ||
1329 | at DATA and 0xAC, when this driver has already been loaded once | ||
1330 | DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either | ||
1331 | scenario but some will hold 0x00. | ||
1332 | Some uGuru's initally hold 0x09 at DATA and will only hold 0x08 | ||
1333 | after reading CMD first, so CMD must be read first! */ | ||
1334 | u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); | ||
1335 | u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); | ||
1336 | if (((data_val == 0x00) || (data_val == 0x08)) && | ||
1337 | ((cmd_val == 0x00) || (cmd_val == 0xAC))) | ||
1338 | return ABIT_UGURU_BASE; | ||
1339 | |||
1340 | ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " | ||
1341 | "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); | ||
1342 | |||
1343 | if (force) { | ||
1344 | printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is " | ||
1345 | "present because of \"force\" parameter\n"); | ||
1346 | return ABIT_UGURU_BASE; | ||
1347 | } | ||
1348 | |||
1349 | /* No uGuru found */ | ||
1350 | return -ENODEV; | ||
1351 | } | ||
1352 | |||
1353 | static struct platform_device *abituguru_pdev; | ||
1354 | |||
1355 | static int __init abituguru_init(void) | ||
1356 | { | ||
1357 | int address, err; | ||
1358 | struct resource res = { .flags = IORESOURCE_IO }; | ||
1359 | |||
1360 | address = abituguru_detect(); | ||
1361 | if (address < 0) | ||
1362 | return address; | ||
1363 | |||
1364 | err = platform_driver_register(&abituguru_driver); | ||
1365 | if (err) | ||
1366 | goto exit; | ||
1367 | |||
1368 | abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); | ||
1369 | if (!abituguru_pdev) { | ||
1370 | printk(KERN_ERR ABIT_UGURU_NAME | ||
1371 | ": Device allocation failed\n"); | ||
1372 | err = -ENOMEM; | ||
1373 | goto exit_driver_unregister; | ||
1374 | } | ||
1375 | |||
1376 | res.start = address; | ||
1377 | res.end = address + ABIT_UGURU_REGION_LENGTH - 1; | ||
1378 | res.name = ABIT_UGURU_NAME; | ||
1379 | |||
1380 | err = platform_device_add_resources(abituguru_pdev, &res, 1); | ||
1381 | if (err) { | ||
1382 | printk(KERN_ERR ABIT_UGURU_NAME | ||
1383 | ": Device resource addition failed (%d)\n", err); | ||
1384 | goto exit_device_put; | ||
1385 | } | ||
1386 | |||
1387 | err = platform_device_add(abituguru_pdev); | ||
1388 | if (err) { | ||
1389 | printk(KERN_ERR ABIT_UGURU_NAME | ||
1390 | ": Device addition failed (%d)\n", err); | ||
1391 | goto exit_device_put; | ||
1392 | } | ||
1393 | |||
1394 | return 0; | ||
1395 | |||
1396 | exit_device_put: | ||
1397 | platform_device_put(abituguru_pdev); | ||
1398 | exit_driver_unregister: | ||
1399 | platform_driver_unregister(&abituguru_driver); | ||
1400 | exit: | ||
1401 | return err; | ||
1402 | } | ||
1403 | |||
1404 | static void __exit abituguru_exit(void) | ||
1405 | { | ||
1406 | platform_device_unregister(abituguru_pdev); | ||
1407 | platform_driver_unregister(&abituguru_driver); | ||
1408 | } | ||
1409 | |||
1410 | MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>"); | ||
1411 | MODULE_DESCRIPTION("Abit uGuru Sensor device"); | ||
1412 | MODULE_LICENSE("GPL"); | ||
1413 | |||
1414 | module_init(abituguru_init); | ||
1415 | module_exit(abituguru_exit); | ||