aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/hwmon/abituguru.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/hwmon/abituguru.c')
-rw-r--r--drivers/hwmon/abituguru.c1415
1 files changed, 1415 insertions, 0 deletions
diff --git a/drivers/hwmon/abituguru.c b/drivers/hwmon/abituguru.c
new file mode 100644
index 000000000000..59122cc0a50a
--- /dev/null
+++ b/drivers/hwmon/abituguru.c
@@ -0,0 +1,1415 @@
1/*
2 abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl>
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17*/
18/*
19 This driver supports the sensor part of the custom Abit uGuru chip found
20 on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM /
21 etc voltage & frequency control is not supported!
22*/
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/slab.h>
26#include <linux/jiffies.h>
27#include <linux/mutex.h>
28#include <linux/err.h>
29#include <linux/platform_device.h>
30#include <linux/hwmon.h>
31#include <linux/hwmon-sysfs.h>
32#include <asm/io.h>
33
34/* Banks */
35#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
36#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
37#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
38#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
39/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
40#define ABIT_UGURU_MAX_BANK1_SENSORS 16
41/* Warning if you increase one of the 2 MAX defines below to 10 or higher you
42 should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */
43/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
44#define ABIT_UGURU_MAX_BANK2_SENSORS 6
45/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
46#define ABIT_UGURU_MAX_PWMS 5
47/* uGuru sensor bank 1 flags */ /* Alarm if: */
48#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
49#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
50#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
51#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
52#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
53#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
54/* uGuru sensor bank 2 flags */ /* Alarm if: */
55#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
56/* uGuru sensor bank common flags */
57#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
58#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
59/* uGuru fan PWM (speed control) flags */
60#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
61/* Values used for conversion */
62#define ABIT_UGURU_FAN_MAX 15300 /* RPM */
63/* Bank1 sensor types */
64#define ABIT_UGURU_IN_SENSOR 0
65#define ABIT_UGURU_TEMP_SENSOR 1
66#define ABIT_UGURU_NC 2
67/* Timeouts / Retries, if these turn out to need a lot of fiddling we could
68 convert them to params. */
69/* 250 was determined by trial and error, 200 works most of the time, but not
70 always. I assume this is cpu-speed independent, since the ISA-bus and not
71 the CPU should be the bottleneck. Note that 250 sometimes is still not
72 enough (only reported on AN7 mb) this is handled by a higher layer. */
73#define ABIT_UGURU_WAIT_TIMEOUT 250
74/* Normally all expected status in abituguru_ready, are reported after the
75 first read, but sometimes not and we need to poll, 5 polls was not enough
76 50 sofar is. */
77#define ABIT_UGURU_READY_TIMEOUT 50
78/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
79#define ABIT_UGURU_MAX_RETRIES 3
80#define ABIT_UGURU_RETRY_DELAY (HZ/5)
81/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
82#define ABIT_UGURU_MAX_TIMEOUTS 2
83/* utility macros */
84#define ABIT_UGURU_NAME "abituguru"
85#define ABIT_UGURU_DEBUG(level, format, arg...) \
86 if (level <= verbose) \
87 printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg)
88/* Macros to help calculate the sysfs_names array length */
89/* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
90 in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */
91#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
92/* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
93 temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */
94#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
95/* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
96 fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */
97#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
98/* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
99 pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */
100#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
101/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
102#define ABITUGURU_SYSFS_NAMES_LENGTH ( \
103 ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
104 ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
105 ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
106
107/* All the macros below are named identical to the oguru and oguru2 programs
108 reverse engineered by Olle Sandberg, hence the names might not be 100%
109 logical. I could come up with better names, but I prefer keeping the names
110 identical so that this driver can be compared with his work more easily. */
111/* Two i/o-ports are used by uGuru */
112#define ABIT_UGURU_BASE 0x00E0
113/* Used to tell uGuru what to read and to read the actual data */
114#define ABIT_UGURU_CMD 0x00
115/* Mostly used to check if uGuru is busy */
116#define ABIT_UGURU_DATA 0x04
117#define ABIT_UGURU_REGION_LENGTH 5
118/* uGuru status' */
119#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
120#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
121#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
122#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
123
124/* Constants */
125/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
126static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
127/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
128 correspond to 300-3000 RPM */
129static const u8 abituguru_bank2_min_threshold = 5;
130static const u8 abituguru_bank2_max_threshold = 50;
131/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
132 are temperature trip points. */
133static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
134/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
135 special case the minium allowed pwm% setting for this is 30% (77) on
136 some MB's this special case is handled in the code! */
137static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
138static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
139
140
141/* Insmod parameters */
142static int force;
143module_param(force, bool, 0);
144MODULE_PARM_DESC(force, "Set to one to force detection.");
145static int fan_sensors;
146module_param(fan_sensors, int, 0);
147MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
148 "(0 = autodetect)");
149static int pwms;
150module_param(pwms, int, 0);
151MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
152 "(0 = autodetect)");
153
154/* Default verbose is 2, since this driver is still in the testing phase */
155static int verbose = 2;
156module_param(verbose, int, 0644);
157MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
158 " 0 normal output\n"
159 " 1 + verbose error reporting\n"
160 " 2 + sensors type probing info\n"
161 " 3 + retryable error reporting");
162
163
164/* For the Abit uGuru, we need to keep some data in memory.
165 The structure is dynamically allocated, at the same time when a new
166 abituguru device is allocated. */
167struct abituguru_data {
168 struct class_device *class_dev; /* hwmon registered device */
169 struct mutex update_lock; /* protect access to data and uGuru */
170 unsigned long last_updated; /* In jiffies */
171 unsigned short addr; /* uguru base address */
172 char uguru_ready; /* is the uguru in ready state? */
173 unsigned char update_timeouts; /* number of update timeouts since last
174 successful update */
175
176 /* The sysfs attr and their names are generated automatically, for bank1
177 we cannot use a predefined array because we don't know beforehand
178 of a sensor is a volt or a temp sensor, for bank2 and the pwms its
179 easier todo things the same way. For in sensors we have 9 (temp 7)
180 sysfs entries per sensor, for bank2 and pwms 6. */
181 struct sensor_device_attribute_2 sysfs_attr[
182 ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
183 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
184 /* Buffer to store the dynamically generated sysfs names */
185 char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
186
187 /* Bank 1 data */
188 /* number of and addresses of [0] in, [1] temp sensors */
189 u8 bank1_sensors[2];
190 u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
191 u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
192 /* This array holds 3 entries per sensor for the bank 1 sensor settings
193 (flags, min, max for voltage / flags, warn, shutdown for temp). */
194 u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
195 /* Maximum value for each sensor used for scaling in mV/millidegrees
196 Celsius. */
197 int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
198
199 /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
200 u8 bank2_sensors; /* actual number of bank2 sensors found */
201 u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
202 u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
203
204 /* Alarms 2 bytes for bank1, 1 byte for bank2 */
205 u8 alarms[3];
206
207 /* Fan PWM (speed control) 5 bytes per PWM */
208 u8 pwms; /* actual number of pwms found */
209 u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
210};
211
212/* wait till the uguru is in the specified state */
213static int abituguru_wait(struct abituguru_data *data, u8 state)
214{
215 int timeout = ABIT_UGURU_WAIT_TIMEOUT;
216
217 while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
218 timeout--;
219 if (timeout == 0)
220 return -EBUSY;
221 }
222 return 0;
223}
224
225/* Put the uguru in ready for input state */
226static int abituguru_ready(struct abituguru_data *data)
227{
228 int timeout = ABIT_UGURU_READY_TIMEOUT;
229
230 if (data->uguru_ready)
231 return 0;
232
233 /* Reset? / Prepare for next read/write cycle */
234 outb(0x00, data->addr + ABIT_UGURU_DATA);
235
236 /* Wait till the uguru is ready */
237 if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
238 ABIT_UGURU_DEBUG(1,
239 "timeout exceeded waiting for ready state\n");
240 return -EIO;
241 }
242
243 /* Cmd port MUST be read now and should contain 0xAC */
244 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
245 timeout--;
246 if (timeout == 0) {
247 ABIT_UGURU_DEBUG(1,
248 "CMD reg does not hold 0xAC after ready command\n");
249 return -EIO;
250 }
251 }
252
253 /* After this the ABIT_UGURU_DATA port should contain
254 ABIT_UGURU_STATUS_INPUT */
255 timeout = ABIT_UGURU_READY_TIMEOUT;
256 while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
257 timeout--;
258 if (timeout == 0) {
259 ABIT_UGURU_DEBUG(1,
260 "state != more input after ready command\n");
261 return -EIO;
262 }
263 }
264
265 data->uguru_ready = 1;
266 return 0;
267}
268
269/* Send the bank and then sensor address to the uGuru for the next read/write
270 cycle. This function gets called as the first part of a read/write by
271 abituguru_read and abituguru_write. This function should never be
272 called by any other function. */
273static int abituguru_send_address(struct abituguru_data *data,
274 u8 bank_addr, u8 sensor_addr, int retries)
275{
276 /* assume the caller does error handling itself if it has not requested
277 any retries, and thus be quiet. */
278 int report_errors = retries;
279
280 for (;;) {
281 /* Make sure the uguru is ready and then send the bank address,
282 after this the uguru is no longer "ready". */
283 if (abituguru_ready(data) != 0)
284 return -EIO;
285 outb(bank_addr, data->addr + ABIT_UGURU_DATA);
286 data->uguru_ready = 0;
287
288 /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
289 and send the sensor addr */
290 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
291 if (retries) {
292 ABIT_UGURU_DEBUG(3, "timeout exceeded "
293 "waiting for more input state, %d "
294 "tries remaining\n", retries);
295 set_current_state(TASK_UNINTERRUPTIBLE);
296 schedule_timeout(ABIT_UGURU_RETRY_DELAY);
297 retries--;
298 continue;
299 }
300 if (report_errors)
301 ABIT_UGURU_DEBUG(1, "timeout exceeded "
302 "waiting for more input state "
303 "(bank: %d)\n", (int)bank_addr);
304 return -EBUSY;
305 }
306 outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
307 return 0;
308 }
309}
310
311/* Read count bytes from sensor sensor_addr in bank bank_addr and store the
312 result in buf, retry the send address part of the read retries times. */
313static int abituguru_read(struct abituguru_data *data,
314 u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
315{
316 int i;
317
318 /* Send the address */
319 i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
320 if (i)
321 return i;
322
323 /* And read the data */
324 for (i = 0; i < count; i++) {
325 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
326 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
327 "read state (bank: %d, sensor: %d)\n",
328 (int)bank_addr, (int)sensor_addr);
329 break;
330 }
331 buf[i] = inb(data->addr + ABIT_UGURU_CMD);
332 }
333
334 /* Last put the chip back in ready state */
335 abituguru_ready(data);
336
337 return i;
338}
339
340/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
341 address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
342static int abituguru_write(struct abituguru_data *data,
343 u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
344{
345 int i;
346
347 /* Send the address */
348 i = abituguru_send_address(data, bank_addr, sensor_addr,
349 ABIT_UGURU_MAX_RETRIES);
350 if (i)
351 return i;
352
353 /* And write the data */
354 for (i = 0; i < count; i++) {
355 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
356 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
357 "write state (bank: %d, sensor: %d)\n",
358 (int)bank_addr, (int)sensor_addr);
359 break;
360 }
361 outb(buf[i], data->addr + ABIT_UGURU_CMD);
362 }
363
364 /* Now we need to wait till the chip is ready to be read again,
365 don't ask why */
366 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
367 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
368 "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
369 (int)sensor_addr);
370 return -EIO;
371 }
372
373 /* Cmd port MUST be read now and should contain 0xAC */
374 if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
375 ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write "
376 "(bank: %d, sensor: %d)\n", (int)bank_addr,
377 (int)sensor_addr);
378 return -EIO;
379 }
380
381 /* Last put the chip back in ready state */
382 abituguru_ready(data);
383
384 return i;
385}
386
387/* Detect sensor type. Temp and Volt sensors are enabled with
388 different masks and will ignore enable masks not meant for them.
389 This enables us to test what kind of sensor we're dealing with.
390 By setting the alarm thresholds so that we will always get an
391 alarm for sensor type X and then enabling the sensor as sensor type
392 X, if we then get an alarm it is a sensor of type X. */
393static int __devinit
394abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
395 u8 sensor_addr)
396{
397 u8 val, buf[3];
398 int ret = ABIT_UGURU_NC;
399
400 /* First read the sensor and the current settings */
401 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
402 1, ABIT_UGURU_MAX_RETRIES) != 1)
403 return -ENODEV;
404
405 /* Test val is sane / usable for sensor type detection. */
406 if ((val < 10u) || (val > 240u)) {
407 printk(KERN_WARNING ABIT_UGURU_NAME
408 ": bank1-sensor: %d reading (%d) too close to limits, "
409 "unable to determine sensor type, skipping sensor\n",
410 (int)sensor_addr, (int)val);
411 /* assume no sensor is there for sensors for which we can't
412 determine the sensor type because their reading is too close
413 to their limits, this usually means no sensor is there. */
414 return ABIT_UGURU_NC;
415 }
416
417 ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
418 /* Volt sensor test, enable volt low alarm, set min value ridicously
419 high. If its a volt sensor this should always give us an alarm. */
420 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
421 buf[1] = 245;
422 buf[2] = 250;
423 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
424 buf, 3) != 3)
425 return -ENODEV;
426 /* Now we need 20 ms to give the uguru time to read the sensors
427 and raise a voltage alarm */
428 set_current_state(TASK_UNINTERRUPTIBLE);
429 schedule_timeout(HZ/50);
430 /* Check for alarm and check the alarm is a volt low alarm. */
431 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
432 ABIT_UGURU_MAX_RETRIES) != 3)
433 return -ENODEV;
434 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
435 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
436 sensor_addr, buf, 3,
437 ABIT_UGURU_MAX_RETRIES) != 3)
438 return -ENODEV;
439 if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) {
440 /* Restore original settings */
441 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
442 sensor_addr,
443 data->bank1_settings[sensor_addr],
444 3) != 3)
445 return -ENODEV;
446 ABIT_UGURU_DEBUG(2, " found volt sensor\n");
447 return ABIT_UGURU_IN_SENSOR;
448 } else
449 ABIT_UGURU_DEBUG(2, " alarm raised during volt "
450 "sensor test, but volt low flag not set\n");
451 } else
452 ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
453 "test\n");
454
455 /* Temp sensor test, enable sensor as a temp sensor, set beep value
456 ridicously low (but not too low, otherwise uguru ignores it).
457 If its a temp sensor this should always give us an alarm. */
458 buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
459 buf[1] = 5;
460 buf[2] = 10;
461 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
462 buf, 3) != 3)
463 return -ENODEV;
464 /* Now we need 50 ms to give the uguru time to read the sensors
465 and raise a temp alarm */
466 set_current_state(TASK_UNINTERRUPTIBLE);
467 schedule_timeout(HZ/20);
468 /* Check for alarm and check the alarm is a temp high alarm. */
469 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
470 ABIT_UGURU_MAX_RETRIES) != 3)
471 return -ENODEV;
472 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
473 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
474 sensor_addr, buf, 3,
475 ABIT_UGURU_MAX_RETRIES) != 3)
476 return -ENODEV;
477 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
478 ret = ABIT_UGURU_TEMP_SENSOR;
479 ABIT_UGURU_DEBUG(2, " found temp sensor\n");
480 } else
481 ABIT_UGURU_DEBUG(2, " alarm raised during temp "
482 "sensor test, but temp high flag not set\n");
483 } else
484 ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
485 "test\n");
486
487 /* Restore original settings */
488 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
489 data->bank1_settings[sensor_addr], 3) != 3)
490 return -ENODEV;
491
492 return ret;
493}
494
495/* These functions try to find out how many sensors there are in bank2 and how
496 many pwms there are. The purpose of this is to make sure that we don't give
497 the user the possibility to change settings for non-existent sensors / pwm.
498 The uGuru will happily read / write whatever memory happens to be after the
499 memory storing the PWM settings when reading/writing to a PWM which is not
500 there. Notice even if we detect a PWM which doesn't exist we normally won't
501 write to it, unless the user tries to change the settings.
502
503 Although the uGuru allows reading (settings) from non existing bank2
504 sensors, my version of the uGuru does seem to stop writing to them, the
505 write function above aborts in this case with:
506 "CMD reg does not hold 0xAC after write"
507
508 Notice these 2 tests are non destructive iow read-only tests, otherwise
509 they would defeat their purpose. Although for the bank2_sensors detection a
510 read/write test would be feasible because of the reaction above, I've
511 however opted to stay on the safe side. */
512static void __devinit
513abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
514{
515 int i;
516
517 if (fan_sensors) {
518 data->bank2_sensors = fan_sensors;
519 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
520 "\"fan_sensors\" module param\n",
521 (int)data->bank2_sensors);
522 return;
523 }
524
525 ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
526 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
527 /* 0x89 are the known used bits:
528 -0x80 enable shutdown
529 -0x08 enable beep
530 -0x01 enable alarm
531 All other bits should be 0, but on some motherboards
532 0x40 (bit 6) is also high for some of the fans?? */
533 if (data->bank2_settings[i][0] & ~0xC9) {
534 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
535 "to be a fan sensor: settings[0] = %02X\n",
536 i, (unsigned int)data->bank2_settings[i][0]);
537 break;
538 }
539
540 /* check if the threshold is within the allowed range */
541 if (data->bank2_settings[i][1] <
542 abituguru_bank2_min_threshold) {
543 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
544 "to be a fan sensor: the threshold (%d) is "
545 "below the minimum (%d)\n", i,
546 (int)data->bank2_settings[i][1],
547 (int)abituguru_bank2_min_threshold);
548 break;
549 }
550 if (data->bank2_settings[i][1] >
551 abituguru_bank2_max_threshold) {
552 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
553 "to be a fan sensor: the threshold (%d) is "
554 "above the maximum (%d)\n", i,
555 (int)data->bank2_settings[i][1],
556 (int)abituguru_bank2_max_threshold);
557 break;
558 }
559 }
560
561 data->bank2_sensors = i;
562 ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
563 (int)data->bank2_sensors);
564}
565
566static void __devinit
567abituguru_detect_no_pwms(struct abituguru_data *data)
568{
569 int i, j;
570
571 if (pwms) {
572 data->pwms = pwms;
573 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
574 "\"pwms\" module param\n", (int)data->pwms);
575 return;
576 }
577
578 ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
579 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
580 /* 0x80 is the enable bit and the low
581 nibble is which temp sensor to use,
582 the other bits should be 0 */
583 if (data->pwm_settings[i][0] & ~0x8F) {
584 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
585 "to be a pwm channel: settings[0] = %02X\n",
586 i, (unsigned int)data->pwm_settings[i][0]);
587 break;
588 }
589
590 /* the low nibble must correspond to one of the temp sensors
591 we've found */
592 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
593 j++) {
594 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
595 (data->pwm_settings[i][0] & 0x0F))
596 break;
597 }
598 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
599 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
600 "to be a pwm channel: %d is not a valid temp "
601 "sensor address\n", i,
602 data->pwm_settings[i][0] & 0x0F);
603 break;
604 }
605
606 /* check if all other settings are within the allowed range */
607 for (j = 1; j < 5; j++) {
608 u8 min;
609 /* special case pwm1 min pwm% */
610 if ((i == 0) && ((j == 1) || (j == 2)))
611 min = 77;
612 else
613 min = abituguru_pwm_min[j];
614 if (data->pwm_settings[i][j] < min) {
615 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
616 "not seem to be a pwm channel: "
617 "setting %d (%d) is below the minimum "
618 "value (%d)\n", i, j,
619 (int)data->pwm_settings[i][j],
620 (int)min);
621 goto abituguru_detect_no_pwms_exit;
622 }
623 if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
624 ABIT_UGURU_DEBUG(2, " pwm channel %d does "
625 "not seem to be a pwm channel: "
626 "setting %d (%d) is above the maximum "
627 "value (%d)\n", i, j,
628 (int)data->pwm_settings[i][j],
629 (int)abituguru_pwm_max[j]);
630 goto abituguru_detect_no_pwms_exit;
631 }
632 }
633
634 /* check that min temp < max temp and min pwm < max pwm */
635 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
636 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
637 "to be a pwm channel: min pwm (%d) >= "
638 "max pwm (%d)\n", i,
639 (int)data->pwm_settings[i][1],
640 (int)data->pwm_settings[i][2]);
641 break;
642 }
643 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
644 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
645 "to be a pwm channel: min temp (%d) >= "
646 "max temp (%d)\n", i,
647 (int)data->pwm_settings[i][3],
648 (int)data->pwm_settings[i][4]);
649 break;
650 }
651 }
652
653abituguru_detect_no_pwms_exit:
654 data->pwms = i;
655 ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
656}
657
658/* Following are the sysfs callback functions. These functions expect:
659 sensor_device_attribute_2->index: sensor address/offset in the bank
660 sensor_device_attribute_2->nr: register offset, bitmask or NA. */
661static struct abituguru_data *abituguru_update_device(struct device *dev);
662
663static ssize_t show_bank1_value(struct device *dev,
664 struct device_attribute *devattr, char *buf)
665{
666 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
667 struct abituguru_data *data = abituguru_update_device(dev);
668 if (!data)
669 return -EIO;
670 return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
671 data->bank1_max_value[attr->index] + 128) / 255);
672}
673
674static ssize_t show_bank1_setting(struct device *dev,
675 struct device_attribute *devattr, char *buf)
676{
677 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
678 struct abituguru_data *data = dev_get_drvdata(dev);
679 return sprintf(buf, "%d\n",
680 (data->bank1_settings[attr->index][attr->nr] *
681 data->bank1_max_value[attr->index] + 128) / 255);
682}
683
684static ssize_t show_bank2_value(struct device *dev,
685 struct device_attribute *devattr, char *buf)
686{
687 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
688 struct abituguru_data *data = abituguru_update_device(dev);
689 if (!data)
690 return -EIO;
691 return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
692 ABIT_UGURU_FAN_MAX + 128) / 255);
693}
694
695static ssize_t show_bank2_setting(struct device *dev,
696 struct device_attribute *devattr, char *buf)
697{
698 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
699 struct abituguru_data *data = dev_get_drvdata(dev);
700 return sprintf(buf, "%d\n",
701 (data->bank2_settings[attr->index][attr->nr] *
702 ABIT_UGURU_FAN_MAX + 128) / 255);
703}
704
705static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
706 *devattr, const char *buf, size_t count)
707{
708 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
709 struct abituguru_data *data = dev_get_drvdata(dev);
710 u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
711 data->bank1_max_value[attr->index]/2) /
712 data->bank1_max_value[attr->index];
713 ssize_t ret = count;
714
715 mutex_lock(&data->update_lock);
716 if (data->bank1_settings[attr->index][attr->nr] != val) {
717 u8 orig_val = data->bank1_settings[attr->index][attr->nr];
718 data->bank1_settings[attr->index][attr->nr] = val;
719 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
720 attr->index, data->bank1_settings[attr->index],
721 3) <= attr->nr) {
722 data->bank1_settings[attr->index][attr->nr] = orig_val;
723 ret = -EIO;
724 }
725 }
726 mutex_unlock(&data->update_lock);
727 return ret;
728}
729
730static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
731 *devattr, const char *buf, size_t count)
732{
733 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
734 struct abituguru_data *data = dev_get_drvdata(dev);
735 u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
736 ABIT_UGURU_FAN_MAX;
737 ssize_t ret = count;
738
739 /* this check can be done before taking the lock */
740 if ((val < abituguru_bank2_min_threshold) ||
741 (val > abituguru_bank2_max_threshold))
742 return -EINVAL;
743
744 mutex_lock(&data->update_lock);
745 if (data->bank2_settings[attr->index][attr->nr] != val) {
746 u8 orig_val = data->bank2_settings[attr->index][attr->nr];
747 data->bank2_settings[attr->index][attr->nr] = val;
748 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
749 attr->index, data->bank2_settings[attr->index],
750 2) <= attr->nr) {
751 data->bank2_settings[attr->index][attr->nr] = orig_val;
752 ret = -EIO;
753 }
754 }
755 mutex_unlock(&data->update_lock);
756 return ret;
757}
758
759static ssize_t show_bank1_alarm(struct device *dev,
760 struct device_attribute *devattr, char *buf)
761{
762 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
763 struct abituguru_data *data = abituguru_update_device(dev);
764 if (!data)
765 return -EIO;
766 /* See if the alarm bit for this sensor is set, and if the
767 alarm matches the type of alarm we're looking for (for volt
768 it can be either low or high). The type is stored in a few
769 readonly bits in the settings part of the relevant sensor.
770 The bitmask of the type is passed to us in attr->nr. */
771 if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
772 (data->bank1_settings[attr->index][0] & attr->nr))
773 return sprintf(buf, "1\n");
774 else
775 return sprintf(buf, "0\n");
776}
777
778static ssize_t show_bank2_alarm(struct device *dev,
779 struct device_attribute *devattr, char *buf)
780{
781 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
782 struct abituguru_data *data = abituguru_update_device(dev);
783 if (!data)
784 return -EIO;
785 if (data->alarms[2] & (0x01 << attr->index))
786 return sprintf(buf, "1\n");
787 else
788 return sprintf(buf, "0\n");
789}
790
791static ssize_t show_bank1_mask(struct device *dev,
792 struct device_attribute *devattr, char *buf)
793{
794 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
795 struct abituguru_data *data = dev_get_drvdata(dev);
796 if (data->bank1_settings[attr->index][0] & attr->nr)
797 return sprintf(buf, "1\n");
798 else
799 return sprintf(buf, "0\n");
800}
801
802static ssize_t show_bank2_mask(struct device *dev,
803 struct device_attribute *devattr, char *buf)
804{
805 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
806 struct abituguru_data *data = dev_get_drvdata(dev);
807 if (data->bank2_settings[attr->index][0] & attr->nr)
808 return sprintf(buf, "1\n");
809 else
810 return sprintf(buf, "0\n");
811}
812
813static ssize_t store_bank1_mask(struct device *dev,
814 struct device_attribute *devattr, const char *buf, size_t count)
815{
816 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
817 struct abituguru_data *data = dev_get_drvdata(dev);
818 int mask = simple_strtoul(buf, NULL, 10);
819 ssize_t ret = count;
820 u8 orig_val;
821
822 mutex_lock(&data->update_lock);
823 orig_val = data->bank1_settings[attr->index][0];
824
825 if (mask)
826 data->bank1_settings[attr->index][0] |= attr->nr;
827 else
828 data->bank1_settings[attr->index][0] &= ~attr->nr;
829
830 if ((data->bank1_settings[attr->index][0] != orig_val) &&
831 (abituguru_write(data,
832 ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
833 data->bank1_settings[attr->index], 3) < 1)) {
834 data->bank1_settings[attr->index][0] = orig_val;
835 ret = -EIO;
836 }
837 mutex_unlock(&data->update_lock);
838 return ret;
839}
840
841static ssize_t store_bank2_mask(struct device *dev,
842 struct device_attribute *devattr, const char *buf, size_t count)
843{
844 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
845 struct abituguru_data *data = dev_get_drvdata(dev);
846 int mask = simple_strtoul(buf, NULL, 10);
847 ssize_t ret = count;
848 u8 orig_val;
849
850 mutex_lock(&data->update_lock);
851 orig_val = data->bank2_settings[attr->index][0];
852
853 if (mask)
854 data->bank2_settings[attr->index][0] |= attr->nr;
855 else
856 data->bank2_settings[attr->index][0] &= ~attr->nr;
857
858 if ((data->bank2_settings[attr->index][0] != orig_val) &&
859 (abituguru_write(data,
860 ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
861 data->bank2_settings[attr->index], 2) < 1)) {
862 data->bank2_settings[attr->index][0] = orig_val;
863 ret = -EIO;
864 }
865 mutex_unlock(&data->update_lock);
866 return ret;
867}
868
869/* Fan PWM (speed control) */
870static ssize_t show_pwm_setting(struct device *dev,
871 struct device_attribute *devattr, char *buf)
872{
873 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
874 struct abituguru_data *data = dev_get_drvdata(dev);
875 return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
876 abituguru_pwm_settings_multiplier[attr->nr]);
877}
878
879static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
880 *devattr, const char *buf, size_t count)
881{
882 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
883 struct abituguru_data *data = dev_get_drvdata(dev);
884 u8 min, val = (simple_strtoul(buf, NULL, 10) +
885 abituguru_pwm_settings_multiplier[attr->nr]/2) /
886 abituguru_pwm_settings_multiplier[attr->nr];
887 ssize_t ret = count;
888
889 /* special case pwm1 min pwm% */
890 if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
891 min = 77;
892 else
893 min = abituguru_pwm_min[attr->nr];
894
895 /* this check can be done before taking the lock */
896 if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
897 return -EINVAL;
898
899 mutex_lock(&data->update_lock);
900 /* this check needs to be done after taking the lock */
901 if ((attr->nr & 1) &&
902 (val >= data->pwm_settings[attr->index][attr->nr + 1]))
903 ret = -EINVAL;
904 else if (!(attr->nr & 1) &&
905 (val <= data->pwm_settings[attr->index][attr->nr - 1]))
906 ret = -EINVAL;
907 else if (data->pwm_settings[attr->index][attr->nr] != val) {
908 u8 orig_val = data->pwm_settings[attr->index][attr->nr];
909 data->pwm_settings[attr->index][attr->nr] = val;
910 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
911 attr->index, data->pwm_settings[attr->index],
912 5) <= attr->nr) {
913 data->pwm_settings[attr->index][attr->nr] =
914 orig_val;
915 ret = -EIO;
916 }
917 }
918 mutex_unlock(&data->update_lock);
919 return ret;
920}
921
922static ssize_t show_pwm_sensor(struct device *dev,
923 struct device_attribute *devattr, char *buf)
924{
925 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
926 struct abituguru_data *data = dev_get_drvdata(dev);
927 int i;
928 /* We need to walk to the temp sensor addresses to find what
929 the userspace id of the configured temp sensor is. */
930 for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
931 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
932 (data->pwm_settings[attr->index][0] & 0x0F))
933 return sprintf(buf, "%d\n", i+1);
934
935 return -ENXIO;
936}
937
938static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
939 *devattr, const char *buf, size_t count)
940{
941 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
942 struct abituguru_data *data = dev_get_drvdata(dev);
943 unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
944 ssize_t ret = count;
945
946 mutex_lock(&data->update_lock);
947 if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
948 u8 orig_val = data->pwm_settings[attr->index][0];
949 u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
950 data->pwm_settings[attr->index][0] &= 0xF0;
951 data->pwm_settings[attr->index][0] |= address;
952 if (data->pwm_settings[attr->index][0] != orig_val) {
953 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
954 attr->index,
955 data->pwm_settings[attr->index],
956 5) < 1) {
957 data->pwm_settings[attr->index][0] = orig_val;
958 ret = -EIO;
959 }
960 }
961 }
962 else
963 ret = -EINVAL;
964 mutex_unlock(&data->update_lock);
965 return ret;
966}
967
968static ssize_t show_pwm_enable(struct device *dev,
969 struct device_attribute *devattr, char *buf)
970{
971 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
972 struct abituguru_data *data = dev_get_drvdata(dev);
973 int res = 0;
974 if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
975 res = 2;
976 return sprintf(buf, "%d\n", res);
977}
978
979static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
980 *devattr, const char *buf, size_t count)
981{
982 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
983 struct abituguru_data *data = dev_get_drvdata(dev);
984 u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
985 ssize_t ret = count;
986
987 mutex_lock(&data->update_lock);
988 orig_val = data->pwm_settings[attr->index][0];
989 switch (user_val) {
990 case 0:
991 data->pwm_settings[attr->index][0] &=
992 ~ABIT_UGURU_FAN_PWM_ENABLE;
993 break;
994 case 2:
995 data->pwm_settings[attr->index][0] |=
996 ABIT_UGURU_FAN_PWM_ENABLE;
997 break;
998 default:
999 ret = -EINVAL;
1000 }
1001 if ((data->pwm_settings[attr->index][0] != orig_val) &&
1002 (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1003 attr->index, data->pwm_settings[attr->index],
1004 5) < 1)) {
1005 data->pwm_settings[attr->index][0] = orig_val;
1006 ret = -EIO;
1007 }
1008 mutex_unlock(&data->update_lock);
1009 return ret;
1010}
1011
1012static ssize_t show_name(struct device *dev,
1013 struct device_attribute *devattr, char *buf)
1014{
1015 return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1016}
1017
1018/* Sysfs attr templates, the real entries are generated automatically. */
1019static const
1020struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1021 {
1022 SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1023 SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1024 store_bank1_setting, 1, 0),
1025 SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1026 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1027 SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1028 store_bank1_setting, 2, 0),
1029 SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1030 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1031 SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1032 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1033 SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1034 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1035 SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1036 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1037 SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1038 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1039 }, {
1040 SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1041 SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1042 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1043 SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1044 store_bank1_setting, 1, 0),
1045 SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1046 store_bank1_setting, 2, 0),
1047 SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1048 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1049 SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1050 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1051 SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1052 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1053 }
1054};
1055
1056static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1057 SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1058 SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1059 SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1060 store_bank2_setting, 1, 0),
1061 SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1062 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1063 SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1064 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1065 SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1066 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1067};
1068
1069static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1070 SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1071 store_pwm_enable, 0, 0),
1072 SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1073 store_pwm_sensor, 0, 0),
1074 SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1075 store_pwm_setting, 1, 0),
1076 SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1077 store_pwm_setting, 2, 0),
1078 SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1079 store_pwm_setting, 3, 0),
1080 SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1081 store_pwm_setting, 4, 0),
1082};
1083
1084static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1085 SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1086};
1087
1088static int __devinit abituguru_probe(struct platform_device *pdev)
1089{
1090 struct abituguru_data *data;
1091 int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1092 char *sysfs_filename;
1093
1094 /* El weirdo probe order, to keep the sysfs order identical to the
1095 BIOS and window-appliction listing order. */
1096 const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1097 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1098 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1099
1100 if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
1101 return -ENOMEM;
1102
1103 data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1104 mutex_init(&data->update_lock);
1105 platform_set_drvdata(pdev, data);
1106
1107 /* See if the uGuru is ready */
1108 if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1109 data->uguru_ready = 1;
1110
1111 /* Completely read the uGuru this has 2 purposes:
1112 - testread / see if one really is there.
1113 - make an in memory copy of all the uguru settings for future use. */
1114 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1115 data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1116 goto abituguru_probe_error;
1117
1118 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1119 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1120 &data->bank1_value[i], 1,
1121 ABIT_UGURU_MAX_RETRIES) != 1)
1122 goto abituguru_probe_error;
1123 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1124 data->bank1_settings[i], 3,
1125 ABIT_UGURU_MAX_RETRIES) != 3)
1126 goto abituguru_probe_error;
1127 }
1128 /* Note: We don't know how many bank2 sensors / pwms there really are,
1129 but in order to "detect" this we need to read the maximum amount
1130 anyways. If we read sensors/pwms not there we'll just read crap
1131 this can't hurt. We need the detection because we don't want
1132 unwanted writes, which will hurt! */
1133 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1134 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1135 &data->bank2_value[i], 1,
1136 ABIT_UGURU_MAX_RETRIES) != 1)
1137 goto abituguru_probe_error;
1138 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1139 data->bank2_settings[i], 2,
1140 ABIT_UGURU_MAX_RETRIES) != 2)
1141 goto abituguru_probe_error;
1142 }
1143 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1144 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1145 data->pwm_settings[i], 5,
1146 ABIT_UGURU_MAX_RETRIES) != 5)
1147 goto abituguru_probe_error;
1148 }
1149 data->last_updated = jiffies;
1150
1151 /* Detect sensor types and fill the sysfs attr for bank1 */
1152 sysfs_attr_i = 0;
1153 sysfs_filename = data->sysfs_names;
1154 sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1155 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1156 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1157 if (res < 0)
1158 goto abituguru_probe_error;
1159 if (res == ABIT_UGURU_NC)
1160 continue;
1161
1162 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1163 for (j = 0; j < (res ? 7 : 9); j++) {
1164 used = snprintf(sysfs_filename, sysfs_names_free,
1165 abituguru_sysfs_bank1_templ[res][j].dev_attr.
1166 attr.name, data->bank1_sensors[res] + res)
1167 + 1;
1168 data->sysfs_attr[sysfs_attr_i] =
1169 abituguru_sysfs_bank1_templ[res][j];
1170 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1171 sysfs_filename;
1172 data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1173 sysfs_filename += used;
1174 sysfs_names_free -= used;
1175 sysfs_attr_i++;
1176 }
1177 data->bank1_max_value[probe_order[i]] =
1178 abituguru_bank1_max_value[res];
1179 data->bank1_address[res][data->bank1_sensors[res]] =
1180 probe_order[i];
1181 data->bank1_sensors[res]++;
1182 }
1183 /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1184 abituguru_detect_no_bank2_sensors(data);
1185 for (i = 0; i < data->bank2_sensors; i++) {
1186 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1187 used = snprintf(sysfs_filename, sysfs_names_free,
1188 abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1189 i + 1) + 1;
1190 data->sysfs_attr[sysfs_attr_i] =
1191 abituguru_sysfs_fan_templ[j];
1192 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1193 sysfs_filename;
1194 data->sysfs_attr[sysfs_attr_i].index = i;
1195 sysfs_filename += used;
1196 sysfs_names_free -= used;
1197 sysfs_attr_i++;
1198 }
1199 }
1200 /* Detect number of sensors and fill the sysfs attr for pwms */
1201 abituguru_detect_no_pwms(data);
1202 for (i = 0; i < data->pwms; i++) {
1203 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1204 used = snprintf(sysfs_filename, sysfs_names_free,
1205 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1206 i + 1) + 1;
1207 data->sysfs_attr[sysfs_attr_i] =
1208 abituguru_sysfs_pwm_templ[j];
1209 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1210 sysfs_filename;
1211 data->sysfs_attr[sysfs_attr_i].index = i;
1212 sysfs_filename += used;
1213 sysfs_names_free -= used;
1214 sysfs_attr_i++;
1215 }
1216 }
1217 /* Fail safe check, this should never happen! */
1218 if (sysfs_names_free < 0) {
1219 printk(KERN_ERR ABIT_UGURU_NAME ": Fatal error ran out of "
1220 "space for sysfs attr names. This should never "
1221 "happen please report to the abituguru maintainer "
1222 "(see MAINTAINERS)\n");
1223 res = -ENAMETOOLONG;
1224 goto abituguru_probe_error;
1225 }
1226 printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n");
1227
1228 /* Register sysfs hooks */
1229 data->class_dev = hwmon_device_register(&pdev->dev);
1230 if (IS_ERR(data->class_dev)) {
1231 res = PTR_ERR(data->class_dev);
1232 goto abituguru_probe_error;
1233 }
1234 for (i = 0; i < sysfs_attr_i; i++)
1235 device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1236 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1237 device_create_file(&pdev->dev,
1238 &abituguru_sysfs_attr[i].dev_attr);
1239
1240 return 0;
1241
1242abituguru_probe_error:
1243 kfree(data);
1244 return res;
1245}
1246
1247static int __devexit abituguru_remove(struct platform_device *pdev)
1248{
1249 struct abituguru_data *data = platform_get_drvdata(pdev);
1250
1251 platform_set_drvdata(pdev, NULL);
1252 hwmon_device_unregister(data->class_dev);
1253 kfree(data);
1254
1255 return 0;
1256}
1257
1258static struct abituguru_data *abituguru_update_device(struct device *dev)
1259{
1260 int i, err;
1261 struct abituguru_data *data = dev_get_drvdata(dev);
1262 /* fake a complete successful read if no update necessary. */
1263 char success = 1;
1264
1265 mutex_lock(&data->update_lock);
1266 if (time_after(jiffies, data->last_updated + HZ)) {
1267 success = 0;
1268 if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1269 data->alarms, 3, 0)) != 3)
1270 goto LEAVE_UPDATE;
1271 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1272 if ((err = abituguru_read(data,
1273 ABIT_UGURU_SENSOR_BANK1, i,
1274 &data->bank1_value[i], 1, 0)) != 1)
1275 goto LEAVE_UPDATE;
1276 if ((err = abituguru_read(data,
1277 ABIT_UGURU_SENSOR_BANK1 + 1, i,
1278 data->bank1_settings[i], 3, 0)) != 3)
1279 goto LEAVE_UPDATE;
1280 }
1281 for (i = 0; i < data->bank2_sensors; i++)
1282 if ((err = abituguru_read(data,
1283 ABIT_UGURU_SENSOR_BANK2, i,
1284 &data->bank2_value[i], 1, 0)) != 1)
1285 goto LEAVE_UPDATE;
1286 /* success! */
1287 success = 1;
1288 data->update_timeouts = 0;
1289LEAVE_UPDATE:
1290 /* handle timeout condition */
1291 if (err == -EBUSY) {
1292 /* No overflow please */
1293 if (data->update_timeouts < 255u)
1294 data->update_timeouts++;
1295 if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1296 ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1297 "try again next update\n");
1298 /* Just a timeout, fake a successful read */
1299 success = 1;
1300 } else
1301 ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1302 "times waiting for more input state\n",
1303 (int)data->update_timeouts);
1304 }
1305 /* On success set last_updated */
1306 if (success)
1307 data->last_updated = jiffies;
1308 }
1309 mutex_unlock(&data->update_lock);
1310
1311 if (success)
1312 return data;
1313 else
1314 return NULL;
1315}
1316
1317static struct platform_driver abituguru_driver = {
1318 .driver = {
1319 .owner = THIS_MODULE,
1320 .name = ABIT_UGURU_NAME,
1321 },
1322 .probe = abituguru_probe,
1323 .remove = __devexit_p(abituguru_remove),
1324};
1325
1326static int __init abituguru_detect(void)
1327{
1328 /* See if there is an uguru there. After a reboot uGuru will hold 0x00
1329 at DATA and 0xAC, when this driver has already been loaded once
1330 DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1331 scenario but some will hold 0x00.
1332 Some uGuru's initally hold 0x09 at DATA and will only hold 0x08
1333 after reading CMD first, so CMD must be read first! */
1334 u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1335 u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1336 if (((data_val == 0x00) || (data_val == 0x08)) &&
1337 ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1338 return ABIT_UGURU_BASE;
1339
1340 ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1341 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1342
1343 if (force) {
1344 printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is "
1345 "present because of \"force\" parameter\n");
1346 return ABIT_UGURU_BASE;
1347 }
1348
1349 /* No uGuru found */
1350 return -ENODEV;
1351}
1352
1353static struct platform_device *abituguru_pdev;
1354
1355static int __init abituguru_init(void)
1356{
1357 int address, err;
1358 struct resource res = { .flags = IORESOURCE_IO };
1359
1360 address = abituguru_detect();
1361 if (address < 0)
1362 return address;
1363
1364 err = platform_driver_register(&abituguru_driver);
1365 if (err)
1366 goto exit;
1367
1368 abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1369 if (!abituguru_pdev) {
1370 printk(KERN_ERR ABIT_UGURU_NAME
1371 ": Device allocation failed\n");
1372 err = -ENOMEM;
1373 goto exit_driver_unregister;
1374 }
1375
1376 res.start = address;
1377 res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1378 res.name = ABIT_UGURU_NAME;
1379
1380 err = platform_device_add_resources(abituguru_pdev, &res, 1);
1381 if (err) {
1382 printk(KERN_ERR ABIT_UGURU_NAME
1383 ": Device resource addition failed (%d)\n", err);
1384 goto exit_device_put;
1385 }
1386
1387 err = platform_device_add(abituguru_pdev);
1388 if (err) {
1389 printk(KERN_ERR ABIT_UGURU_NAME
1390 ": Device addition failed (%d)\n", err);
1391 goto exit_device_put;
1392 }
1393
1394 return 0;
1395
1396exit_device_put:
1397 platform_device_put(abituguru_pdev);
1398exit_driver_unregister:
1399 platform_driver_unregister(&abituguru_driver);
1400exit:
1401 return err;
1402}
1403
1404static void __exit abituguru_exit(void)
1405{
1406 platform_device_unregister(abituguru_pdev);
1407 platform_driver_unregister(&abituguru_driver);
1408}
1409
1410MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>");
1411MODULE_DESCRIPTION("Abit uGuru Sensor device");
1412MODULE_LICENSE("GPL");
1413
1414module_init(abituguru_init);
1415module_exit(abituguru_exit);