aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/intel_display.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/intel_display.c')
-rw-r--r--drivers/gpu/drm/i915/intel_display.c1667
1 files changed, 1667 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/intel_display.c b/drivers/gpu/drm/i915/intel_display.c
new file mode 100644
index 000000000000..bbdd72909a11
--- /dev/null
+++ b/drivers/gpu/drm/i915/intel_display.c
@@ -0,0 +1,1667 @@
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/i2c.h>
28#include "drmP.h"
29#include "intel_drv.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32
33#include "drm_crtc_helper.h"
34
35bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
36
37typedef struct {
38 /* given values */
39 int n;
40 int m1, m2;
41 int p1, p2;
42 /* derived values */
43 int dot;
44 int vco;
45 int m;
46 int p;
47} intel_clock_t;
48
49typedef struct {
50 int min, max;
51} intel_range_t;
52
53typedef struct {
54 int dot_limit;
55 int p2_slow, p2_fast;
56} intel_p2_t;
57
58#define INTEL_P2_NUM 2
59
60typedef struct {
61 intel_range_t dot, vco, n, m, m1, m2, p, p1;
62 intel_p2_t p2;
63} intel_limit_t;
64
65#define I8XX_DOT_MIN 25000
66#define I8XX_DOT_MAX 350000
67#define I8XX_VCO_MIN 930000
68#define I8XX_VCO_MAX 1400000
69#define I8XX_N_MIN 3
70#define I8XX_N_MAX 16
71#define I8XX_M_MIN 96
72#define I8XX_M_MAX 140
73#define I8XX_M1_MIN 18
74#define I8XX_M1_MAX 26
75#define I8XX_M2_MIN 6
76#define I8XX_M2_MAX 16
77#define I8XX_P_MIN 4
78#define I8XX_P_MAX 128
79#define I8XX_P1_MIN 2
80#define I8XX_P1_MAX 33
81#define I8XX_P1_LVDS_MIN 1
82#define I8XX_P1_LVDS_MAX 6
83#define I8XX_P2_SLOW 4
84#define I8XX_P2_FAST 2
85#define I8XX_P2_LVDS_SLOW 14
86#define I8XX_P2_LVDS_FAST 14 /* No fast option */
87#define I8XX_P2_SLOW_LIMIT 165000
88
89#define I9XX_DOT_MIN 20000
90#define I9XX_DOT_MAX 400000
91#define I9XX_VCO_MIN 1400000
92#define I9XX_VCO_MAX 2800000
93#define I9XX_N_MIN 3
94#define I9XX_N_MAX 8
95#define I9XX_M_MIN 70
96#define I9XX_M_MAX 120
97#define I9XX_M1_MIN 10
98#define I9XX_M1_MAX 20
99#define I9XX_M2_MIN 5
100#define I9XX_M2_MAX 9
101#define I9XX_P_SDVO_DAC_MIN 5
102#define I9XX_P_SDVO_DAC_MAX 80
103#define I9XX_P_LVDS_MIN 7
104#define I9XX_P_LVDS_MAX 98
105#define I9XX_P1_MIN 1
106#define I9XX_P1_MAX 8
107#define I9XX_P2_SDVO_DAC_SLOW 10
108#define I9XX_P2_SDVO_DAC_FAST 5
109#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
110#define I9XX_P2_LVDS_SLOW 14
111#define I9XX_P2_LVDS_FAST 7
112#define I9XX_P2_LVDS_SLOW_LIMIT 112000
113
114#define INTEL_LIMIT_I8XX_DVO_DAC 0
115#define INTEL_LIMIT_I8XX_LVDS 1
116#define INTEL_LIMIT_I9XX_SDVO_DAC 2
117#define INTEL_LIMIT_I9XX_LVDS 3
118
119static const intel_limit_t intel_limits[] = {
120 { /* INTEL_LIMIT_I8XX_DVO_DAC */
121 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
122 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
123 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
124 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
125 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
126 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
127 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
128 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
129 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
130 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
131 },
132 { /* INTEL_LIMIT_I8XX_LVDS */
133 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
134 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
135 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
136 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
137 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
138 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
139 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
140 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
141 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
142 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
143 },
144 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
145 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
146 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
147 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
148 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
149 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
150 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
151 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
152 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
153 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
154 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
155 },
156 { /* INTEL_LIMIT_I9XX_LVDS */
157 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
158 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
159 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
160 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
161 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
162 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
163 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
164 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
165 /* The single-channel range is 25-112Mhz, and dual-channel
166 * is 80-224Mhz. Prefer single channel as much as possible.
167 */
168 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
169 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
170 },
171};
172
173static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
174{
175 struct drm_device *dev = crtc->dev;
176 const intel_limit_t *limit;
177
178 if (IS_I9XX(dev)) {
179 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
180 limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
181 else
182 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
183 } else {
184 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
185 limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
186 else
187 limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
188 }
189 return limit;
190}
191
192/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
193
194static void i8xx_clock(int refclk, intel_clock_t *clock)
195{
196 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
197 clock->p = clock->p1 * clock->p2;
198 clock->vco = refclk * clock->m / (clock->n + 2);
199 clock->dot = clock->vco / clock->p;
200}
201
202/** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
203
204static void i9xx_clock(int refclk, intel_clock_t *clock)
205{
206 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
207 clock->p = clock->p1 * clock->p2;
208 clock->vco = refclk * clock->m / (clock->n + 2);
209 clock->dot = clock->vco / clock->p;
210}
211
212static void intel_clock(struct drm_device *dev, int refclk,
213 intel_clock_t *clock)
214{
215 if (IS_I9XX(dev))
216 i9xx_clock (refclk, clock);
217 else
218 i8xx_clock (refclk, clock);
219}
220
221/**
222 * Returns whether any output on the specified pipe is of the specified type
223 */
224bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
225{
226 struct drm_device *dev = crtc->dev;
227 struct drm_mode_config *mode_config = &dev->mode_config;
228 struct drm_connector *l_entry;
229
230 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
231 if (l_entry->encoder &&
232 l_entry->encoder->crtc == crtc) {
233 struct intel_output *intel_output = to_intel_output(l_entry);
234 if (intel_output->type == type)
235 return true;
236 }
237 }
238 return false;
239}
240
241#define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
242/**
243 * Returns whether the given set of divisors are valid for a given refclk with
244 * the given connectors.
245 */
246
247static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
248{
249 const intel_limit_t *limit = intel_limit (crtc);
250
251 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
252 INTELPllInvalid ("p1 out of range\n");
253 if (clock->p < limit->p.min || limit->p.max < clock->p)
254 INTELPllInvalid ("p out of range\n");
255 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
256 INTELPllInvalid ("m2 out of range\n");
257 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
258 INTELPllInvalid ("m1 out of range\n");
259 if (clock->m1 <= clock->m2)
260 INTELPllInvalid ("m1 <= m2\n");
261 if (clock->m < limit->m.min || limit->m.max < clock->m)
262 INTELPllInvalid ("m out of range\n");
263 if (clock->n < limit->n.min || limit->n.max < clock->n)
264 INTELPllInvalid ("n out of range\n");
265 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
266 INTELPllInvalid ("vco out of range\n");
267 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
268 * connector, etc., rather than just a single range.
269 */
270 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
271 INTELPllInvalid ("dot out of range\n");
272
273 return true;
274}
275
276/**
277 * Returns a set of divisors for the desired target clock with the given
278 * refclk, or FALSE. The returned values represent the clock equation:
279 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
280 */
281static bool intel_find_best_PLL(struct drm_crtc *crtc, int target,
282 int refclk, intel_clock_t *best_clock)
283{
284 struct drm_device *dev = crtc->dev;
285 struct drm_i915_private *dev_priv = dev->dev_private;
286 intel_clock_t clock;
287 const intel_limit_t *limit = intel_limit(crtc);
288 int err = target;
289
290 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
291 (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
292 /*
293 * For LVDS, if the panel is on, just rely on its current
294 * settings for dual-channel. We haven't figured out how to
295 * reliably set up different single/dual channel state, if we
296 * even can.
297 */
298 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
299 LVDS_CLKB_POWER_UP)
300 clock.p2 = limit->p2.p2_fast;
301 else
302 clock.p2 = limit->p2.p2_slow;
303 } else {
304 if (target < limit->p2.dot_limit)
305 clock.p2 = limit->p2.p2_slow;
306 else
307 clock.p2 = limit->p2.p2_fast;
308 }
309
310 memset (best_clock, 0, sizeof (*best_clock));
311
312 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
313 for (clock.m2 = limit->m2.min; clock.m2 < clock.m1 &&
314 clock.m2 <= limit->m2.max; clock.m2++) {
315 for (clock.n = limit->n.min; clock.n <= limit->n.max;
316 clock.n++) {
317 for (clock.p1 = limit->p1.min;
318 clock.p1 <= limit->p1.max; clock.p1++) {
319 int this_err;
320
321 intel_clock(dev, refclk, &clock);
322
323 if (!intel_PLL_is_valid(crtc, &clock))
324 continue;
325
326 this_err = abs(clock.dot - target);
327 if (this_err < err) {
328 *best_clock = clock;
329 err = this_err;
330 }
331 }
332 }
333 }
334 }
335
336 return (err != target);
337}
338
339void
340intel_wait_for_vblank(struct drm_device *dev)
341{
342 /* Wait for 20ms, i.e. one cycle at 50hz. */
343 udelay(20000);
344}
345
346static void
347intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
348 struct drm_framebuffer *old_fb)
349{
350 struct drm_device *dev = crtc->dev;
351 struct drm_i915_private *dev_priv = dev->dev_private;
352 struct drm_i915_master_private *master_priv;
353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
354 struct intel_framebuffer *intel_fb;
355 struct drm_i915_gem_object *obj_priv;
356 struct drm_gem_object *obj;
357 int pipe = intel_crtc->pipe;
358 unsigned long Start, Offset;
359 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
360 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
361 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
362 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
363 u32 dspcntr, alignment;
364
365 /* no fb bound */
366 if (!crtc->fb) {
367 DRM_DEBUG("No FB bound\n");
368 return;
369 }
370
371 intel_fb = to_intel_framebuffer(crtc->fb);
372 obj = intel_fb->obj;
373 obj_priv = obj->driver_private;
374
375 switch (obj_priv->tiling_mode) {
376 case I915_TILING_NONE:
377 alignment = 64 * 1024;
378 break;
379 case I915_TILING_X:
380 if (IS_I9XX(dev))
381 alignment = 1024 * 1024;
382 else
383 alignment = 512 * 1024;
384 break;
385 case I915_TILING_Y:
386 /* FIXME: Is this true? */
387 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
388 return;
389 default:
390 BUG();
391 }
392
393 if (i915_gem_object_pin(intel_fb->obj, alignment))
394 return;
395
396 i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
397
398 Start = obj_priv->gtt_offset;
399 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
400
401 I915_WRITE(dspstride, crtc->fb->pitch);
402
403 dspcntr = I915_READ(dspcntr_reg);
404 /* Mask out pixel format bits in case we change it */
405 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
406 switch (crtc->fb->bits_per_pixel) {
407 case 8:
408 dspcntr |= DISPPLANE_8BPP;
409 break;
410 case 16:
411 if (crtc->fb->depth == 15)
412 dspcntr |= DISPPLANE_15_16BPP;
413 else
414 dspcntr |= DISPPLANE_16BPP;
415 break;
416 case 24:
417 case 32:
418 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
419 break;
420 default:
421 DRM_ERROR("Unknown color depth\n");
422 return;
423 }
424 I915_WRITE(dspcntr_reg, dspcntr);
425
426 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
427 if (IS_I965G(dev)) {
428 I915_WRITE(dspbase, Offset);
429 I915_READ(dspbase);
430 I915_WRITE(dspsurf, Start);
431 I915_READ(dspsurf);
432 } else {
433 I915_WRITE(dspbase, Start + Offset);
434 I915_READ(dspbase);
435 }
436
437 intel_wait_for_vblank(dev);
438
439 if (old_fb) {
440 intel_fb = to_intel_framebuffer(old_fb);
441 i915_gem_object_unpin(intel_fb->obj);
442 }
443
444 if (!dev->primary->master)
445 return;
446
447 master_priv = dev->primary->master->driver_priv;
448 if (!master_priv->sarea_priv)
449 return;
450
451 switch (pipe) {
452 case 0:
453 master_priv->sarea_priv->pipeA_x = x;
454 master_priv->sarea_priv->pipeA_y = y;
455 break;
456 case 1:
457 master_priv->sarea_priv->pipeB_x = x;
458 master_priv->sarea_priv->pipeB_y = y;
459 break;
460 default:
461 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
462 break;
463 }
464}
465
466
467
468/**
469 * Sets the power management mode of the pipe and plane.
470 *
471 * This code should probably grow support for turning the cursor off and back
472 * on appropriately at the same time as we're turning the pipe off/on.
473 */
474static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
475{
476 struct drm_device *dev = crtc->dev;
477 struct drm_i915_master_private *master_priv;
478 struct drm_i915_private *dev_priv = dev->dev_private;
479 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
480 int pipe = intel_crtc->pipe;
481 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
482 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
483 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
484 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
485 u32 temp;
486 bool enabled;
487
488 /* XXX: When our outputs are all unaware of DPMS modes other than off
489 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
490 */
491 switch (mode) {
492 case DRM_MODE_DPMS_ON:
493 case DRM_MODE_DPMS_STANDBY:
494 case DRM_MODE_DPMS_SUSPEND:
495 /* Enable the DPLL */
496 temp = I915_READ(dpll_reg);
497 if ((temp & DPLL_VCO_ENABLE) == 0) {
498 I915_WRITE(dpll_reg, temp);
499 I915_READ(dpll_reg);
500 /* Wait for the clocks to stabilize. */
501 udelay(150);
502 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
503 I915_READ(dpll_reg);
504 /* Wait for the clocks to stabilize. */
505 udelay(150);
506 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
507 I915_READ(dpll_reg);
508 /* Wait for the clocks to stabilize. */
509 udelay(150);
510 }
511
512 /* Enable the pipe */
513 temp = I915_READ(pipeconf_reg);
514 if ((temp & PIPEACONF_ENABLE) == 0)
515 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
516
517 /* Enable the plane */
518 temp = I915_READ(dspcntr_reg);
519 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
520 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
521 /* Flush the plane changes */
522 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
523 }
524
525 intel_crtc_load_lut(crtc);
526
527 /* Give the overlay scaler a chance to enable if it's on this pipe */
528 //intel_crtc_dpms_video(crtc, true); TODO
529 break;
530 case DRM_MODE_DPMS_OFF:
531 /* Give the overlay scaler a chance to disable if it's on this pipe */
532 //intel_crtc_dpms_video(crtc, FALSE); TODO
533
534 /* Disable the VGA plane that we never use */
535 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
536
537 /* Disable display plane */
538 temp = I915_READ(dspcntr_reg);
539 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
540 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
541 /* Flush the plane changes */
542 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
543 I915_READ(dspbase_reg);
544 }
545
546 if (!IS_I9XX(dev)) {
547 /* Wait for vblank for the disable to take effect */
548 intel_wait_for_vblank(dev);
549 }
550
551 /* Next, disable display pipes */
552 temp = I915_READ(pipeconf_reg);
553 if ((temp & PIPEACONF_ENABLE) != 0) {
554 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
555 I915_READ(pipeconf_reg);
556 }
557
558 /* Wait for vblank for the disable to take effect. */
559 intel_wait_for_vblank(dev);
560
561 temp = I915_READ(dpll_reg);
562 if ((temp & DPLL_VCO_ENABLE) != 0) {
563 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
564 I915_READ(dpll_reg);
565 }
566
567 /* Wait for the clocks to turn off. */
568 udelay(150);
569 break;
570 }
571
572 if (!dev->primary->master)
573 return;
574
575 master_priv = dev->primary->master->driver_priv;
576 if (!master_priv->sarea_priv)
577 return;
578
579 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
580
581 switch (pipe) {
582 case 0:
583 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
584 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
585 break;
586 case 1:
587 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
588 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
589 break;
590 default:
591 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
592 break;
593 }
594
595 intel_crtc->dpms_mode = mode;
596}
597
598static void intel_crtc_prepare (struct drm_crtc *crtc)
599{
600 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
601 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
602}
603
604static void intel_crtc_commit (struct drm_crtc *crtc)
605{
606 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
607 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
608}
609
610void intel_encoder_prepare (struct drm_encoder *encoder)
611{
612 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
613 /* lvds has its own version of prepare see intel_lvds_prepare */
614 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
615}
616
617void intel_encoder_commit (struct drm_encoder *encoder)
618{
619 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
620 /* lvds has its own version of commit see intel_lvds_commit */
621 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
622}
623
624static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
625 struct drm_display_mode *mode,
626 struct drm_display_mode *adjusted_mode)
627{
628 return true;
629}
630
631
632/** Returns the core display clock speed for i830 - i945 */
633static int intel_get_core_clock_speed(struct drm_device *dev)
634{
635
636 /* Core clock values taken from the published datasheets.
637 * The 830 may go up to 166 Mhz, which we should check.
638 */
639 if (IS_I945G(dev))
640 return 400000;
641 else if (IS_I915G(dev))
642 return 333000;
643 else if (IS_I945GM(dev) || IS_845G(dev))
644 return 200000;
645 else if (IS_I915GM(dev)) {
646 u16 gcfgc = 0;
647
648 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
649
650 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
651 return 133000;
652 else {
653 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
654 case GC_DISPLAY_CLOCK_333_MHZ:
655 return 333000;
656 default:
657 case GC_DISPLAY_CLOCK_190_200_MHZ:
658 return 190000;
659 }
660 }
661 } else if (IS_I865G(dev))
662 return 266000;
663 else if (IS_I855(dev)) {
664 u16 hpllcc = 0;
665 /* Assume that the hardware is in the high speed state. This
666 * should be the default.
667 */
668 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
669 case GC_CLOCK_133_200:
670 case GC_CLOCK_100_200:
671 return 200000;
672 case GC_CLOCK_166_250:
673 return 250000;
674 case GC_CLOCK_100_133:
675 return 133000;
676 }
677 } else /* 852, 830 */
678 return 133000;
679
680 return 0; /* Silence gcc warning */
681}
682
683
684/**
685 * Return the pipe currently connected to the panel fitter,
686 * or -1 if the panel fitter is not present or not in use
687 */
688static int intel_panel_fitter_pipe (struct drm_device *dev)
689{
690 struct drm_i915_private *dev_priv = dev->dev_private;
691 u32 pfit_control;
692
693 /* i830 doesn't have a panel fitter */
694 if (IS_I830(dev))
695 return -1;
696
697 pfit_control = I915_READ(PFIT_CONTROL);
698
699 /* See if the panel fitter is in use */
700 if ((pfit_control & PFIT_ENABLE) == 0)
701 return -1;
702
703 /* 965 can place panel fitter on either pipe */
704 if (IS_I965G(dev))
705 return (pfit_control >> 29) & 0x3;
706
707 /* older chips can only use pipe 1 */
708 return 1;
709}
710
711static void intel_crtc_mode_set(struct drm_crtc *crtc,
712 struct drm_display_mode *mode,
713 struct drm_display_mode *adjusted_mode,
714 int x, int y,
715 struct drm_framebuffer *old_fb)
716{
717 struct drm_device *dev = crtc->dev;
718 struct drm_i915_private *dev_priv = dev->dev_private;
719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
720 int pipe = intel_crtc->pipe;
721 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
722 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
723 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
724 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
725 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
726 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
727 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
728 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
729 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
730 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
731 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
732 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
733 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
734 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
735 int refclk;
736 intel_clock_t clock;
737 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
738 bool ok, is_sdvo = false, is_dvo = false;
739 bool is_crt = false, is_lvds = false, is_tv = false;
740 struct drm_mode_config *mode_config = &dev->mode_config;
741 struct drm_connector *connector;
742
743 drm_vblank_pre_modeset(dev, pipe);
744
745 list_for_each_entry(connector, &mode_config->connector_list, head) {
746 struct intel_output *intel_output = to_intel_output(connector);
747
748 if (!connector->encoder || connector->encoder->crtc != crtc)
749 continue;
750
751 switch (intel_output->type) {
752 case INTEL_OUTPUT_LVDS:
753 is_lvds = true;
754 break;
755 case INTEL_OUTPUT_SDVO:
756 case INTEL_OUTPUT_HDMI:
757 is_sdvo = true;
758 if (intel_output->needs_tv_clock)
759 is_tv = true;
760 break;
761 case INTEL_OUTPUT_DVO:
762 is_dvo = true;
763 break;
764 case INTEL_OUTPUT_TVOUT:
765 is_tv = true;
766 break;
767 case INTEL_OUTPUT_ANALOG:
768 is_crt = true;
769 break;
770 }
771 }
772
773 if (IS_I9XX(dev)) {
774 refclk = 96000;
775 } else {
776 refclk = 48000;
777 }
778
779 ok = intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, &clock);
780 if (!ok) {
781 DRM_ERROR("Couldn't find PLL settings for mode!\n");
782 return;
783 }
784
785 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
786
787 dpll = DPLL_VGA_MODE_DIS;
788 if (IS_I9XX(dev)) {
789 if (is_lvds)
790 dpll |= DPLLB_MODE_LVDS;
791 else
792 dpll |= DPLLB_MODE_DAC_SERIAL;
793 if (is_sdvo) {
794 dpll |= DPLL_DVO_HIGH_SPEED;
795 if (IS_I945G(dev) || IS_I945GM(dev)) {
796 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
797 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
798 }
799 }
800
801 /* compute bitmask from p1 value */
802 dpll |= (1 << (clock.p1 - 1)) << 16;
803 switch (clock.p2) {
804 case 5:
805 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
806 break;
807 case 7:
808 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
809 break;
810 case 10:
811 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
812 break;
813 case 14:
814 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
815 break;
816 }
817 if (IS_I965G(dev))
818 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
819 } else {
820 if (is_lvds) {
821 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
822 } else {
823 if (clock.p1 == 2)
824 dpll |= PLL_P1_DIVIDE_BY_TWO;
825 else
826 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
827 if (clock.p2 == 4)
828 dpll |= PLL_P2_DIVIDE_BY_4;
829 }
830 }
831
832 if (is_tv) {
833 /* XXX: just matching BIOS for now */
834/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
835 dpll |= 3;
836 }
837 else
838 dpll |= PLL_REF_INPUT_DREFCLK;
839
840 /* setup pipeconf */
841 pipeconf = I915_READ(pipeconf_reg);
842
843 /* Set up the display plane register */
844 dspcntr = DISPPLANE_GAMMA_ENABLE;
845
846 if (pipe == 0)
847 dspcntr |= DISPPLANE_SEL_PIPE_A;
848 else
849 dspcntr |= DISPPLANE_SEL_PIPE_B;
850
851 if (pipe == 0 && !IS_I965G(dev)) {
852 /* Enable pixel doubling when the dot clock is > 90% of the (display)
853 * core speed.
854 *
855 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
856 * pipe == 0 check?
857 */
858 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
859 pipeconf |= PIPEACONF_DOUBLE_WIDE;
860 else
861 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
862 }
863
864 dspcntr |= DISPLAY_PLANE_ENABLE;
865 pipeconf |= PIPEACONF_ENABLE;
866 dpll |= DPLL_VCO_ENABLE;
867
868
869 /* Disable the panel fitter if it was on our pipe */
870 if (intel_panel_fitter_pipe(dev) == pipe)
871 I915_WRITE(PFIT_CONTROL, 0);
872
873 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
874 drm_mode_debug_printmodeline(mode);
875
876
877 if (dpll & DPLL_VCO_ENABLE) {
878 I915_WRITE(fp_reg, fp);
879 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
880 I915_READ(dpll_reg);
881 udelay(150);
882 }
883
884 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
885 * This is an exception to the general rule that mode_set doesn't turn
886 * things on.
887 */
888 if (is_lvds) {
889 u32 lvds = I915_READ(LVDS);
890
891 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
892 /* Set the B0-B3 data pairs corresponding to whether we're going to
893 * set the DPLLs for dual-channel mode or not.
894 */
895 if (clock.p2 == 7)
896 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
897 else
898 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
899
900 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
901 * appropriately here, but we need to look more thoroughly into how
902 * panels behave in the two modes.
903 */
904
905 I915_WRITE(LVDS, lvds);
906 I915_READ(LVDS);
907 }
908
909 I915_WRITE(fp_reg, fp);
910 I915_WRITE(dpll_reg, dpll);
911 I915_READ(dpll_reg);
912 /* Wait for the clocks to stabilize. */
913 udelay(150);
914
915 if (IS_I965G(dev)) {
916 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
917 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
918 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
919 } else {
920 /* write it again -- the BIOS does, after all */
921 I915_WRITE(dpll_reg, dpll);
922 }
923 I915_READ(dpll_reg);
924 /* Wait for the clocks to stabilize. */
925 udelay(150);
926
927 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
928 ((adjusted_mode->crtc_htotal - 1) << 16));
929 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
930 ((adjusted_mode->crtc_hblank_end - 1) << 16));
931 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
932 ((adjusted_mode->crtc_hsync_end - 1) << 16));
933 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
934 ((adjusted_mode->crtc_vtotal - 1) << 16));
935 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
936 ((adjusted_mode->crtc_vblank_end - 1) << 16));
937 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
938 ((adjusted_mode->crtc_vsync_end - 1) << 16));
939 /* pipesrc and dspsize control the size that is scaled from, which should
940 * always be the user's requested size.
941 */
942 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
943 I915_WRITE(dsppos_reg, 0);
944 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
945 I915_WRITE(pipeconf_reg, pipeconf);
946 I915_READ(pipeconf_reg);
947
948 intel_wait_for_vblank(dev);
949
950 I915_WRITE(dspcntr_reg, dspcntr);
951
952 /* Flush the plane changes */
953 intel_pipe_set_base(crtc, x, y, old_fb);
954
955 drm_vblank_post_modeset(dev, pipe);
956}
957
958/** Loads the palette/gamma unit for the CRTC with the prepared values */
959void intel_crtc_load_lut(struct drm_crtc *crtc)
960{
961 struct drm_device *dev = crtc->dev;
962 struct drm_i915_private *dev_priv = dev->dev_private;
963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
964 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
965 int i;
966
967 /* The clocks have to be on to load the palette. */
968 if (!crtc->enabled)
969 return;
970
971 for (i = 0; i < 256; i++) {
972 I915_WRITE(palreg + 4 * i,
973 (intel_crtc->lut_r[i] << 16) |
974 (intel_crtc->lut_g[i] << 8) |
975 intel_crtc->lut_b[i]);
976 }
977}
978
979static int intel_crtc_cursor_set(struct drm_crtc *crtc,
980 struct drm_file *file_priv,
981 uint32_t handle,
982 uint32_t width, uint32_t height)
983{
984 struct drm_device *dev = crtc->dev;
985 struct drm_i915_private *dev_priv = dev->dev_private;
986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
987 struct drm_gem_object *bo;
988 struct drm_i915_gem_object *obj_priv;
989 int pipe = intel_crtc->pipe;
990 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
991 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
992 uint32_t temp;
993 size_t addr;
994 int ret;
995
996 DRM_DEBUG("\n");
997
998 /* if we want to turn off the cursor ignore width and height */
999 if (!handle) {
1000 DRM_DEBUG("cursor off\n");
1001 temp = CURSOR_MODE_DISABLE;
1002 addr = 0;
1003 bo = NULL;
1004 goto finish;
1005 }
1006
1007 /* Currently we only support 64x64 cursors */
1008 if (width != 64 || height != 64) {
1009 DRM_ERROR("we currently only support 64x64 cursors\n");
1010 return -EINVAL;
1011 }
1012
1013 bo = drm_gem_object_lookup(dev, file_priv, handle);
1014 if (!bo)
1015 return -ENOENT;
1016
1017 obj_priv = bo->driver_private;
1018
1019 if (bo->size < width * height * 4) {
1020 DRM_ERROR("buffer is to small\n");
1021 ret = -ENOMEM;
1022 goto fail;
1023 }
1024
1025 /* we only need to pin inside GTT if cursor is non-phy */
1026 if (!dev_priv->cursor_needs_physical) {
1027 ret = i915_gem_object_pin(bo, PAGE_SIZE);
1028 if (ret) {
1029 DRM_ERROR("failed to pin cursor bo\n");
1030 goto fail;
1031 }
1032 addr = obj_priv->gtt_offset;
1033 } else {
1034 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
1035 if (ret) {
1036 DRM_ERROR("failed to attach phys object\n");
1037 goto fail;
1038 }
1039 addr = obj_priv->phys_obj->handle->busaddr;
1040 }
1041
1042 temp = 0;
1043 /* set the pipe for the cursor */
1044 temp |= (pipe << 28);
1045 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1046
1047 finish:
1048 I915_WRITE(control, temp);
1049 I915_WRITE(base, addr);
1050
1051 if (intel_crtc->cursor_bo) {
1052 if (dev_priv->cursor_needs_physical) {
1053 if (intel_crtc->cursor_bo != bo)
1054 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
1055 } else
1056 i915_gem_object_unpin(intel_crtc->cursor_bo);
1057 mutex_lock(&dev->struct_mutex);
1058 drm_gem_object_unreference(intel_crtc->cursor_bo);
1059 mutex_unlock(&dev->struct_mutex);
1060 }
1061
1062 intel_crtc->cursor_addr = addr;
1063 intel_crtc->cursor_bo = bo;
1064
1065 return 0;
1066fail:
1067 mutex_lock(&dev->struct_mutex);
1068 drm_gem_object_unreference(bo);
1069 mutex_unlock(&dev->struct_mutex);
1070 return ret;
1071}
1072
1073static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1074{
1075 struct drm_device *dev = crtc->dev;
1076 struct drm_i915_private *dev_priv = dev->dev_private;
1077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1078 int pipe = intel_crtc->pipe;
1079 uint32_t temp = 0;
1080 uint32_t adder;
1081
1082 if (x < 0) {
1083 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1084 x = -x;
1085 }
1086 if (y < 0) {
1087 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1088 y = -y;
1089 }
1090
1091 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1092 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1093
1094 adder = intel_crtc->cursor_addr;
1095 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1096 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1097
1098 return 0;
1099}
1100
1101/** Sets the color ramps on behalf of RandR */
1102void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1103 u16 blue, int regno)
1104{
1105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1106
1107 intel_crtc->lut_r[regno] = red >> 8;
1108 intel_crtc->lut_g[regno] = green >> 8;
1109 intel_crtc->lut_b[regno] = blue >> 8;
1110}
1111
1112static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1113 u16 *blue, uint32_t size)
1114{
1115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1116 int i;
1117
1118 if (size != 256)
1119 return;
1120
1121 for (i = 0; i < 256; i++) {
1122 intel_crtc->lut_r[i] = red[i] >> 8;
1123 intel_crtc->lut_g[i] = green[i] >> 8;
1124 intel_crtc->lut_b[i] = blue[i] >> 8;
1125 }
1126
1127 intel_crtc_load_lut(crtc);
1128}
1129
1130/**
1131 * Get a pipe with a simple mode set on it for doing load-based monitor
1132 * detection.
1133 *
1134 * It will be up to the load-detect code to adjust the pipe as appropriate for
1135 * its requirements. The pipe will be connected to no other outputs.
1136 *
1137 * Currently this code will only succeed if there is a pipe with no outputs
1138 * configured for it. In the future, it could choose to temporarily disable
1139 * some outputs to free up a pipe for its use.
1140 *
1141 * \return crtc, or NULL if no pipes are available.
1142 */
1143
1144/* VESA 640x480x72Hz mode to set on the pipe */
1145static struct drm_display_mode load_detect_mode = {
1146 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
1147 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1148};
1149
1150struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
1151 struct drm_display_mode *mode,
1152 int *dpms_mode)
1153{
1154 struct intel_crtc *intel_crtc;
1155 struct drm_crtc *possible_crtc;
1156 struct drm_crtc *supported_crtc =NULL;
1157 struct drm_encoder *encoder = &intel_output->enc;
1158 struct drm_crtc *crtc = NULL;
1159 struct drm_device *dev = encoder->dev;
1160 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1161 struct drm_crtc_helper_funcs *crtc_funcs;
1162 int i = -1;
1163
1164 /*
1165 * Algorithm gets a little messy:
1166 * - if the connector already has an assigned crtc, use it (but make
1167 * sure it's on first)
1168 * - try to find the first unused crtc that can drive this connector,
1169 * and use that if we find one
1170 * - if there are no unused crtcs available, try to use the first
1171 * one we found that supports the connector
1172 */
1173
1174 /* See if we already have a CRTC for this connector */
1175 if (encoder->crtc) {
1176 crtc = encoder->crtc;
1177 /* Make sure the crtc and connector are running */
1178 intel_crtc = to_intel_crtc(crtc);
1179 *dpms_mode = intel_crtc->dpms_mode;
1180 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1181 crtc_funcs = crtc->helper_private;
1182 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1183 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1184 }
1185 return crtc;
1186 }
1187
1188 /* Find an unused one (if possible) */
1189 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
1190 i++;
1191 if (!(encoder->possible_crtcs & (1 << i)))
1192 continue;
1193 if (!possible_crtc->enabled) {
1194 crtc = possible_crtc;
1195 break;
1196 }
1197 if (!supported_crtc)
1198 supported_crtc = possible_crtc;
1199 }
1200
1201 /*
1202 * If we didn't find an unused CRTC, don't use any.
1203 */
1204 if (!crtc) {
1205 return NULL;
1206 }
1207
1208 encoder->crtc = crtc;
1209 intel_output->load_detect_temp = true;
1210
1211 intel_crtc = to_intel_crtc(crtc);
1212 *dpms_mode = intel_crtc->dpms_mode;
1213
1214 if (!crtc->enabled) {
1215 if (!mode)
1216 mode = &load_detect_mode;
1217 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
1218 } else {
1219 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1220 crtc_funcs = crtc->helper_private;
1221 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1222 }
1223
1224 /* Add this connector to the crtc */
1225 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
1226 encoder_funcs->commit(encoder);
1227 }
1228 /* let the connector get through one full cycle before testing */
1229 intel_wait_for_vblank(dev);
1230
1231 return crtc;
1232}
1233
1234void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
1235{
1236 struct drm_encoder *encoder = &intel_output->enc;
1237 struct drm_device *dev = encoder->dev;
1238 struct drm_crtc *crtc = encoder->crtc;
1239 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1240 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1241
1242 if (intel_output->load_detect_temp) {
1243 encoder->crtc = NULL;
1244 intel_output->load_detect_temp = false;
1245 crtc->enabled = drm_helper_crtc_in_use(crtc);
1246 drm_helper_disable_unused_functions(dev);
1247 }
1248
1249 /* Switch crtc and output back off if necessary */
1250 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
1251 if (encoder->crtc == crtc)
1252 encoder_funcs->dpms(encoder, dpms_mode);
1253 crtc_funcs->dpms(crtc, dpms_mode);
1254 }
1255}
1256
1257/* Returns the clock of the currently programmed mode of the given pipe. */
1258static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
1259{
1260 struct drm_i915_private *dev_priv = dev->dev_private;
1261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1262 int pipe = intel_crtc->pipe;
1263 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
1264 u32 fp;
1265 intel_clock_t clock;
1266
1267 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1268 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
1269 else
1270 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
1271
1272 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1273 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1274 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1275 if (IS_I9XX(dev)) {
1276 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
1277 DPLL_FPA01_P1_POST_DIV_SHIFT);
1278
1279 switch (dpll & DPLL_MODE_MASK) {
1280 case DPLLB_MODE_DAC_SERIAL:
1281 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
1282 5 : 10;
1283 break;
1284 case DPLLB_MODE_LVDS:
1285 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
1286 7 : 14;
1287 break;
1288 default:
1289 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
1290 "mode\n", (int)(dpll & DPLL_MODE_MASK));
1291 return 0;
1292 }
1293
1294 /* XXX: Handle the 100Mhz refclk */
1295 i9xx_clock(96000, &clock);
1296 } else {
1297 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
1298
1299 if (is_lvds) {
1300 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1301 DPLL_FPA01_P1_POST_DIV_SHIFT);
1302 clock.p2 = 14;
1303
1304 if ((dpll & PLL_REF_INPUT_MASK) ==
1305 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1306 /* XXX: might not be 66MHz */
1307 i8xx_clock(66000, &clock);
1308 } else
1309 i8xx_clock(48000, &clock);
1310 } else {
1311 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1312 clock.p1 = 2;
1313 else {
1314 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1315 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1316 }
1317 if (dpll & PLL_P2_DIVIDE_BY_4)
1318 clock.p2 = 4;
1319 else
1320 clock.p2 = 2;
1321
1322 i8xx_clock(48000, &clock);
1323 }
1324 }
1325
1326 /* XXX: It would be nice to validate the clocks, but we can't reuse
1327 * i830PllIsValid() because it relies on the xf86_config connector
1328 * configuration being accurate, which it isn't necessarily.
1329 */
1330
1331 return clock.dot;
1332}
1333
1334/** Returns the currently programmed mode of the given pipe. */
1335struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
1336 struct drm_crtc *crtc)
1337{
1338 struct drm_i915_private *dev_priv = dev->dev_private;
1339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1340 int pipe = intel_crtc->pipe;
1341 struct drm_display_mode *mode;
1342 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1343 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1344 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1345 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1346
1347 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1348 if (!mode)
1349 return NULL;
1350
1351 mode->clock = intel_crtc_clock_get(dev, crtc);
1352 mode->hdisplay = (htot & 0xffff) + 1;
1353 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1354 mode->hsync_start = (hsync & 0xffff) + 1;
1355 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1356 mode->vdisplay = (vtot & 0xffff) + 1;
1357 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1358 mode->vsync_start = (vsync & 0xffff) + 1;
1359 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1360
1361 drm_mode_set_name(mode);
1362 drm_mode_set_crtcinfo(mode, 0);
1363
1364 return mode;
1365}
1366
1367static void intel_crtc_destroy(struct drm_crtc *crtc)
1368{
1369 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1370
1371 drm_crtc_cleanup(crtc);
1372 kfree(intel_crtc);
1373}
1374
1375static const struct drm_crtc_helper_funcs intel_helper_funcs = {
1376 .dpms = intel_crtc_dpms,
1377 .mode_fixup = intel_crtc_mode_fixup,
1378 .mode_set = intel_crtc_mode_set,
1379 .mode_set_base = intel_pipe_set_base,
1380 .prepare = intel_crtc_prepare,
1381 .commit = intel_crtc_commit,
1382};
1383
1384static const struct drm_crtc_funcs intel_crtc_funcs = {
1385 .cursor_set = intel_crtc_cursor_set,
1386 .cursor_move = intel_crtc_cursor_move,
1387 .gamma_set = intel_crtc_gamma_set,
1388 .set_config = drm_crtc_helper_set_config,
1389 .destroy = intel_crtc_destroy,
1390};
1391
1392
1393static void intel_crtc_init(struct drm_device *dev, int pipe)
1394{
1395 struct intel_crtc *intel_crtc;
1396 int i;
1397
1398 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
1399 if (intel_crtc == NULL)
1400 return;
1401
1402 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
1403
1404 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
1405 intel_crtc->pipe = pipe;
1406 for (i = 0; i < 256; i++) {
1407 intel_crtc->lut_r[i] = i;
1408 intel_crtc->lut_g[i] = i;
1409 intel_crtc->lut_b[i] = i;
1410 }
1411
1412 intel_crtc->cursor_addr = 0;
1413 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
1414 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
1415
1416 intel_crtc->mode_set.crtc = &intel_crtc->base;
1417 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
1418 intel_crtc->mode_set.num_connectors = 0;
1419
1420 if (i915_fbpercrtc) {
1421
1422
1423
1424 }
1425}
1426
1427struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1428{
1429 struct drm_crtc *crtc = NULL;
1430
1431 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1432 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1433 if (intel_crtc->pipe == pipe)
1434 break;
1435 }
1436 return crtc;
1437}
1438
1439static int intel_connector_clones(struct drm_device *dev, int type_mask)
1440{
1441 int index_mask = 0;
1442 struct drm_connector *connector;
1443 int entry = 0;
1444
1445 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1446 struct intel_output *intel_output = to_intel_output(connector);
1447 if (type_mask & (1 << intel_output->type))
1448 index_mask |= (1 << entry);
1449 entry++;
1450 }
1451 return index_mask;
1452}
1453
1454
1455static void intel_setup_outputs(struct drm_device *dev)
1456{
1457 struct drm_i915_private *dev_priv = dev->dev_private;
1458 struct drm_connector *connector;
1459
1460 intel_crt_init(dev);
1461
1462 /* Set up integrated LVDS */
1463 if (IS_MOBILE(dev) && !IS_I830(dev))
1464 intel_lvds_init(dev);
1465
1466 if (IS_I9XX(dev)) {
1467 int found;
1468
1469 if (I915_READ(SDVOB) & SDVO_DETECTED) {
1470 found = intel_sdvo_init(dev, SDVOB);
1471 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1472 intel_hdmi_init(dev, SDVOB);
1473 }
1474 if (!IS_G4X(dev) || (I915_READ(SDVOB) & SDVO_DETECTED)) {
1475 found = intel_sdvo_init(dev, SDVOC);
1476 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1477 intel_hdmi_init(dev, SDVOC);
1478 }
1479 } else
1480 intel_dvo_init(dev);
1481
1482 if (IS_I9XX(dev) && IS_MOBILE(dev))
1483 intel_tv_init(dev);
1484
1485 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1486 struct intel_output *intel_output = to_intel_output(connector);
1487 struct drm_encoder *encoder = &intel_output->enc;
1488 int crtc_mask = 0, clone_mask = 0;
1489
1490 /* valid crtcs */
1491 switch(intel_output->type) {
1492 case INTEL_OUTPUT_HDMI:
1493 crtc_mask = ((1 << 0)|
1494 (1 << 1));
1495 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
1496 break;
1497 case INTEL_OUTPUT_DVO:
1498 case INTEL_OUTPUT_SDVO:
1499 crtc_mask = ((1 << 0)|
1500 (1 << 1));
1501 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1502 (1 << INTEL_OUTPUT_DVO) |
1503 (1 << INTEL_OUTPUT_SDVO));
1504 break;
1505 case INTEL_OUTPUT_ANALOG:
1506 crtc_mask = ((1 << 0)|
1507 (1 << 1));
1508 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1509 (1 << INTEL_OUTPUT_DVO) |
1510 (1 << INTEL_OUTPUT_SDVO));
1511 break;
1512 case INTEL_OUTPUT_LVDS:
1513 crtc_mask = (1 << 1);
1514 clone_mask = (1 << INTEL_OUTPUT_LVDS);
1515 break;
1516 case INTEL_OUTPUT_TVOUT:
1517 crtc_mask = ((1 << 0) |
1518 (1 << 1));
1519 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
1520 break;
1521 }
1522 encoder->possible_crtcs = crtc_mask;
1523 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
1524 }
1525}
1526
1527static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
1528{
1529 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1530 struct drm_device *dev = fb->dev;
1531
1532 if (fb->fbdev)
1533 intelfb_remove(dev, fb);
1534
1535 drm_framebuffer_cleanup(fb);
1536 mutex_lock(&dev->struct_mutex);
1537 drm_gem_object_unreference(intel_fb->obj);
1538 mutex_unlock(&dev->struct_mutex);
1539
1540 kfree(intel_fb);
1541}
1542
1543static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
1544 struct drm_file *file_priv,
1545 unsigned int *handle)
1546{
1547 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1548 struct drm_gem_object *object = intel_fb->obj;
1549
1550 return drm_gem_handle_create(file_priv, object, handle);
1551}
1552
1553static const struct drm_framebuffer_funcs intel_fb_funcs = {
1554 .destroy = intel_user_framebuffer_destroy,
1555 .create_handle = intel_user_framebuffer_create_handle,
1556};
1557
1558int intel_framebuffer_create(struct drm_device *dev,
1559 struct drm_mode_fb_cmd *mode_cmd,
1560 struct drm_framebuffer **fb,
1561 struct drm_gem_object *obj)
1562{
1563 struct intel_framebuffer *intel_fb;
1564 int ret;
1565
1566 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1567 if (!intel_fb)
1568 return -ENOMEM;
1569
1570 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
1571 if (ret) {
1572 DRM_ERROR("framebuffer init failed %d\n", ret);
1573 return ret;
1574 }
1575
1576 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
1577
1578 intel_fb->obj = obj;
1579
1580 *fb = &intel_fb->base;
1581
1582 return 0;
1583}
1584
1585
1586static struct drm_framebuffer *
1587intel_user_framebuffer_create(struct drm_device *dev,
1588 struct drm_file *filp,
1589 struct drm_mode_fb_cmd *mode_cmd)
1590{
1591 struct drm_gem_object *obj;
1592 struct drm_framebuffer *fb;
1593 int ret;
1594
1595 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
1596 if (!obj)
1597 return NULL;
1598
1599 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
1600 if (ret) {
1601 drm_gem_object_unreference(obj);
1602 return NULL;
1603 }
1604
1605 return fb;
1606}
1607
1608static const struct drm_mode_config_funcs intel_mode_funcs = {
1609 .fb_create = intel_user_framebuffer_create,
1610 .fb_changed = intelfb_probe,
1611};
1612
1613void intel_modeset_init(struct drm_device *dev)
1614{
1615 int num_pipe;
1616 int i;
1617
1618 drm_mode_config_init(dev);
1619
1620 dev->mode_config.min_width = 0;
1621 dev->mode_config.min_height = 0;
1622
1623 dev->mode_config.funcs = (void *)&intel_mode_funcs;
1624
1625 if (IS_I965G(dev)) {
1626 dev->mode_config.max_width = 8192;
1627 dev->mode_config.max_height = 8192;
1628 } else {
1629 dev->mode_config.max_width = 2048;
1630 dev->mode_config.max_height = 2048;
1631 }
1632
1633 /* set memory base */
1634 if (IS_I9XX(dev))
1635 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
1636 else
1637 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
1638
1639 if (IS_MOBILE(dev) || IS_I9XX(dev))
1640 num_pipe = 2;
1641 else
1642 num_pipe = 1;
1643 DRM_DEBUG("%d display pipe%s available.\n",
1644 num_pipe, num_pipe > 1 ? "s" : "");
1645
1646 for (i = 0; i < num_pipe; i++) {
1647 intel_crtc_init(dev, i);
1648 }
1649
1650 intel_setup_outputs(dev);
1651}
1652
1653void intel_modeset_cleanup(struct drm_device *dev)
1654{
1655 drm_mode_config_cleanup(dev);
1656}
1657
1658
1659/* current intel driver doesn't take advantage of encoders
1660 always give back the encoder for the connector
1661*/
1662struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
1663{
1664 struct intel_output *intel_output = to_intel_output(connector);
1665
1666 return &intel_output->enc;
1667}