diff options
Diffstat (limited to 'drivers/edac/i5000_edac.c')
-rw-r--r-- | drivers/edac/i5000_edac.c | 1477 |
1 files changed, 1477 insertions, 0 deletions
diff --git a/drivers/edac/i5000_edac.c b/drivers/edac/i5000_edac.c new file mode 100644 index 000000000000..4d7e786065aa --- /dev/null +++ b/drivers/edac/i5000_edac.c | |||
@@ -0,0 +1,1477 @@ | |||
1 | /* | ||
2 | * Intel 5000(P/V/X) class Memory Controllers kernel module | ||
3 | * | ||
4 | * This file may be distributed under the terms of the | ||
5 | * GNU General Public License. | ||
6 | * | ||
7 | * Written by Douglas Thompson Linux Networx (http://lnxi.com) | ||
8 | * norsk5@xmission.com | ||
9 | * | ||
10 | * This module is based on the following document: | ||
11 | * | ||
12 | * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet | ||
13 | * http://developer.intel.com/design/chipsets/datashts/313070.htm | ||
14 | * | ||
15 | */ | ||
16 | |||
17 | #include <linux/module.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/pci.h> | ||
20 | #include <linux/pci_ids.h> | ||
21 | #include <linux/slab.h> | ||
22 | #include <asm/mmzone.h> | ||
23 | |||
24 | #include "edac_mc.h" | ||
25 | |||
26 | /* | ||
27 | * Alter this version for the I5000 module when modifications are made | ||
28 | */ | ||
29 | #define I5000_REVISION " Ver: 2.0.11.devel " __DATE__ | ||
30 | |||
31 | #define i5000_printk(level, fmt, arg...) \ | ||
32 | edac_printk(level, "i5000", fmt, ##arg) | ||
33 | |||
34 | #define i5000_mc_printk(mci, level, fmt, arg...) \ | ||
35 | edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg) | ||
36 | |||
37 | #ifndef PCI_DEVICE_ID_INTEL_FBD_0 | ||
38 | #define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5 | ||
39 | #endif | ||
40 | #ifndef PCI_DEVICE_ID_INTEL_FBD_1 | ||
41 | #define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6 | ||
42 | #endif | ||
43 | |||
44 | /* Device 16, | ||
45 | * Function 0: System Address | ||
46 | * Function 1: Memory Branch Map, Control, Errors Register | ||
47 | * Function 2: FSB Error Registers | ||
48 | * | ||
49 | * All 3 functions of Device 16 (0,1,2) share the SAME DID | ||
50 | */ | ||
51 | #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0 | ||
52 | |||
53 | /* OFFSETS for Function 0 */ | ||
54 | |||
55 | /* OFFSETS for Function 1 */ | ||
56 | #define AMBASE 0x48 | ||
57 | #define MAXCH 0x56 | ||
58 | #define MAXDIMMPERCH 0x57 | ||
59 | #define TOLM 0x6C | ||
60 | #define REDMEMB 0x7C | ||
61 | #define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF) | ||
62 | #define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF) | ||
63 | #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00) | ||
64 | #define MIR0 0x80 | ||
65 | #define MIR1 0x84 | ||
66 | #define MIR2 0x88 | ||
67 | #define AMIR0 0x8C | ||
68 | #define AMIR1 0x90 | ||
69 | #define AMIR2 0x94 | ||
70 | |||
71 | #define FERR_FAT_FBD 0x98 | ||
72 | #define NERR_FAT_FBD 0x9C | ||
73 | #define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3) | ||
74 | #define FERR_FAT_FBDCHAN 0x30000000 | ||
75 | #define FERR_FAT_M3ERR 0x00000004 | ||
76 | #define FERR_FAT_M2ERR 0x00000002 | ||
77 | #define FERR_FAT_M1ERR 0x00000001 | ||
78 | #define FERR_FAT_MASK (FERR_FAT_M1ERR | \ | ||
79 | FERR_FAT_M2ERR | \ | ||
80 | FERR_FAT_M3ERR) | ||
81 | |||
82 | #define FERR_NF_FBD 0xA0 | ||
83 | |||
84 | /* Thermal and SPD or BFD errors */ | ||
85 | #define FERR_NF_M28ERR 0x01000000 | ||
86 | #define FERR_NF_M27ERR 0x00800000 | ||
87 | #define FERR_NF_M26ERR 0x00400000 | ||
88 | #define FERR_NF_M25ERR 0x00200000 | ||
89 | #define FERR_NF_M24ERR 0x00100000 | ||
90 | #define FERR_NF_M23ERR 0x00080000 | ||
91 | #define FERR_NF_M22ERR 0x00040000 | ||
92 | #define FERR_NF_M21ERR 0x00020000 | ||
93 | |||
94 | /* Correctable errors */ | ||
95 | #define FERR_NF_M20ERR 0x00010000 | ||
96 | #define FERR_NF_M19ERR 0x00008000 | ||
97 | #define FERR_NF_M18ERR 0x00004000 | ||
98 | #define FERR_NF_M17ERR 0x00002000 | ||
99 | |||
100 | /* Non-Retry or redundant Retry errors */ | ||
101 | #define FERR_NF_M16ERR 0x00001000 | ||
102 | #define FERR_NF_M15ERR 0x00000800 | ||
103 | #define FERR_NF_M14ERR 0x00000400 | ||
104 | #define FERR_NF_M13ERR 0x00000200 | ||
105 | |||
106 | /* Uncorrectable errors */ | ||
107 | #define FERR_NF_M12ERR 0x00000100 | ||
108 | #define FERR_NF_M11ERR 0x00000080 | ||
109 | #define FERR_NF_M10ERR 0x00000040 | ||
110 | #define FERR_NF_M9ERR 0x00000020 | ||
111 | #define FERR_NF_M8ERR 0x00000010 | ||
112 | #define FERR_NF_M7ERR 0x00000008 | ||
113 | #define FERR_NF_M6ERR 0x00000004 | ||
114 | #define FERR_NF_M5ERR 0x00000002 | ||
115 | #define FERR_NF_M4ERR 0x00000001 | ||
116 | |||
117 | #define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \ | ||
118 | FERR_NF_M11ERR | \ | ||
119 | FERR_NF_M10ERR | \ | ||
120 | FERR_NF_M8ERR | \ | ||
121 | FERR_NF_M7ERR | \ | ||
122 | FERR_NF_M6ERR | \ | ||
123 | FERR_NF_M5ERR | \ | ||
124 | FERR_NF_M4ERR) | ||
125 | #define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \ | ||
126 | FERR_NF_M19ERR | \ | ||
127 | FERR_NF_M18ERR | \ | ||
128 | FERR_NF_M17ERR) | ||
129 | #define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \ | ||
130 | FERR_NF_M28ERR) | ||
131 | #define FERR_NF_THERMAL (FERR_NF_M26ERR | \ | ||
132 | FERR_NF_M25ERR | \ | ||
133 | FERR_NF_M24ERR | \ | ||
134 | FERR_NF_M23ERR) | ||
135 | #define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR) | ||
136 | #define FERR_NF_NORTH_CRC (FERR_NF_M21ERR) | ||
137 | #define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \ | ||
138 | FERR_NF_M14ERR | \ | ||
139 | FERR_NF_M15ERR) | ||
140 | |||
141 | #define NERR_NF_FBD 0xA4 | ||
142 | #define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \ | ||
143 | FERR_NF_CORRECTABLE | \ | ||
144 | FERR_NF_DIMM_SPARE | \ | ||
145 | FERR_NF_THERMAL | \ | ||
146 | FERR_NF_SPD_PROTOCOL | \ | ||
147 | FERR_NF_NORTH_CRC | \ | ||
148 | FERR_NF_NON_RETRY) | ||
149 | |||
150 | #define EMASK_FBD 0xA8 | ||
151 | #define EMASK_FBD_M28ERR 0x08000000 | ||
152 | #define EMASK_FBD_M27ERR 0x04000000 | ||
153 | #define EMASK_FBD_M26ERR 0x02000000 | ||
154 | #define EMASK_FBD_M25ERR 0x01000000 | ||
155 | #define EMASK_FBD_M24ERR 0x00800000 | ||
156 | #define EMASK_FBD_M23ERR 0x00400000 | ||
157 | #define EMASK_FBD_M22ERR 0x00200000 | ||
158 | #define EMASK_FBD_M21ERR 0x00100000 | ||
159 | #define EMASK_FBD_M20ERR 0x00080000 | ||
160 | #define EMASK_FBD_M19ERR 0x00040000 | ||
161 | #define EMASK_FBD_M18ERR 0x00020000 | ||
162 | #define EMASK_FBD_M17ERR 0x00010000 | ||
163 | |||
164 | #define EMASK_FBD_M15ERR 0x00004000 | ||
165 | #define EMASK_FBD_M14ERR 0x00002000 | ||
166 | #define EMASK_FBD_M13ERR 0x00001000 | ||
167 | #define EMASK_FBD_M12ERR 0x00000800 | ||
168 | #define EMASK_FBD_M11ERR 0x00000400 | ||
169 | #define EMASK_FBD_M10ERR 0x00000200 | ||
170 | #define EMASK_FBD_M9ERR 0x00000100 | ||
171 | #define EMASK_FBD_M8ERR 0x00000080 | ||
172 | #define EMASK_FBD_M7ERR 0x00000040 | ||
173 | #define EMASK_FBD_M6ERR 0x00000020 | ||
174 | #define EMASK_FBD_M5ERR 0x00000010 | ||
175 | #define EMASK_FBD_M4ERR 0x00000008 | ||
176 | #define EMASK_FBD_M3ERR 0x00000004 | ||
177 | #define EMASK_FBD_M2ERR 0x00000002 | ||
178 | #define EMASK_FBD_M1ERR 0x00000001 | ||
179 | |||
180 | #define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \ | ||
181 | EMASK_FBD_M2ERR | \ | ||
182 | EMASK_FBD_M3ERR) | ||
183 | |||
184 | #define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \ | ||
185 | EMASK_FBD_M5ERR | \ | ||
186 | EMASK_FBD_M6ERR | \ | ||
187 | EMASK_FBD_M7ERR | \ | ||
188 | EMASK_FBD_M8ERR | \ | ||
189 | EMASK_FBD_M9ERR | \ | ||
190 | EMASK_FBD_M10ERR | \ | ||
191 | EMASK_FBD_M11ERR | \ | ||
192 | EMASK_FBD_M12ERR) | ||
193 | #define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \ | ||
194 | EMASK_FBD_M18ERR | \ | ||
195 | EMASK_FBD_M19ERR | \ | ||
196 | EMASK_FBD_M20ERR) | ||
197 | #define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \ | ||
198 | EMASK_FBD_M28ERR) | ||
199 | #define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \ | ||
200 | EMASK_FBD_M25ERR | \ | ||
201 | EMASK_FBD_M24ERR | \ | ||
202 | EMASK_FBD_M23ERR) | ||
203 | #define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR) | ||
204 | #define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR) | ||
205 | #define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \ | ||
206 | EMASK_FBD_M14ERR | \ | ||
207 | EMASK_FBD_M13ERR) | ||
208 | |||
209 | #define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \ | ||
210 | ENABLE_EMASK_FBD_NORTH_CRC | \ | ||
211 | ENABLE_EMASK_FBD_SPD_PROTOCOL | \ | ||
212 | ENABLE_EMASK_FBD_THERMALS | \ | ||
213 | ENABLE_EMASK_FBD_DIMM_SPARE | \ | ||
214 | ENABLE_EMASK_FBD_FATAL_ERRORS | \ | ||
215 | ENABLE_EMASK_FBD_CORRECTABLE | \ | ||
216 | ENABLE_EMASK_FBD_UNCORRECTABLE) | ||
217 | |||
218 | #define ERR0_FBD 0xAC | ||
219 | #define ERR1_FBD 0xB0 | ||
220 | #define ERR2_FBD 0xB4 | ||
221 | #define MCERR_FBD 0xB8 | ||
222 | #define NRECMEMA 0xBE | ||
223 | #define NREC_BANK(x) (((x)>>12) & 0x7) | ||
224 | #define NREC_RDWR(x) (((x)>>11) & 1) | ||
225 | #define NREC_RANK(x) (((x)>>8) & 0x7) | ||
226 | #define NRECMEMB 0xC0 | ||
227 | #define NREC_CAS(x) (((x)>>16) & 0xFFFFFF) | ||
228 | #define NREC_RAS(x) ((x) & 0x7FFF) | ||
229 | #define NRECFGLOG 0xC4 | ||
230 | #define NREEECFBDA 0xC8 | ||
231 | #define NREEECFBDB 0xCC | ||
232 | #define NREEECFBDC 0xD0 | ||
233 | #define NREEECFBDD 0xD4 | ||
234 | #define NREEECFBDE 0xD8 | ||
235 | #define REDMEMA 0xDC | ||
236 | #define RECMEMA 0xE2 | ||
237 | #define REC_BANK(x) (((x)>>12) & 0x7) | ||
238 | #define REC_RDWR(x) (((x)>>11) & 1) | ||
239 | #define REC_RANK(x) (((x)>>8) & 0x7) | ||
240 | #define RECMEMB 0xE4 | ||
241 | #define REC_CAS(x) (((x)>>16) & 0xFFFFFF) | ||
242 | #define REC_RAS(x) ((x) & 0x7FFF) | ||
243 | #define RECFGLOG 0xE8 | ||
244 | #define RECFBDA 0xEC | ||
245 | #define RECFBDB 0xF0 | ||
246 | #define RECFBDC 0xF4 | ||
247 | #define RECFBDD 0xF8 | ||
248 | #define RECFBDE 0xFC | ||
249 | |||
250 | /* OFFSETS for Function 2 */ | ||
251 | |||
252 | /* | ||
253 | * Device 21, | ||
254 | * Function 0: Memory Map Branch 0 | ||
255 | * | ||
256 | * Device 22, | ||
257 | * Function 0: Memory Map Branch 1 | ||
258 | */ | ||
259 | #define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5 | ||
260 | #define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6 | ||
261 | |||
262 | #define AMB_PRESENT_0 0x64 | ||
263 | #define AMB_PRESENT_1 0x66 | ||
264 | #define MTR0 0x80 | ||
265 | #define MTR1 0x84 | ||
266 | #define MTR2 0x88 | ||
267 | #define MTR3 0x8C | ||
268 | |||
269 | #define NUM_MTRS 4 | ||
270 | #define CHANNELS_PER_BRANCH (2) | ||
271 | |||
272 | /* Defines to extract the vaious fields from the | ||
273 | * MTRx - Memory Technology Registers | ||
274 | */ | ||
275 | #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8)) | ||
276 | #define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4) | ||
277 | #define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4) | ||
278 | #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2) | ||
279 | #define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1) | ||
280 | #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIM_RANKS(mtr) ? 2 : 1) | ||
281 | #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) | ||
282 | #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) | ||
283 | #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) | ||
284 | #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) | ||
285 | |||
286 | #ifdef CONFIG_EDAC_DEBUG | ||
287 | static char *numrow_toString[] = { | ||
288 | "8,192 - 13 rows", | ||
289 | "16,384 - 14 rows", | ||
290 | "32,768 - 15 rows", | ||
291 | "reserved" | ||
292 | }; | ||
293 | |||
294 | static char *numcol_toString[] = { | ||
295 | "1,024 - 10 columns", | ||
296 | "2,048 - 11 columns", | ||
297 | "4,096 - 12 columns", | ||
298 | "reserved" | ||
299 | }; | ||
300 | #endif | ||
301 | |||
302 | /* Enumeration of supported devices */ | ||
303 | enum i5000_chips { | ||
304 | I5000P = 0, | ||
305 | I5000V = 1, /* future */ | ||
306 | I5000X = 2 /* future */ | ||
307 | }; | ||
308 | |||
309 | /* Device name and register DID (Device ID) */ | ||
310 | struct i5000_dev_info { | ||
311 | const char *ctl_name; /* name for this device */ | ||
312 | u16 fsb_mapping_errors; /* DID for the branchmap,control */ | ||
313 | }; | ||
314 | |||
315 | /* Table of devices attributes supported by this driver */ | ||
316 | static const struct i5000_dev_info i5000_devs[] = { | ||
317 | [I5000P] = { | ||
318 | .ctl_name = "I5000", | ||
319 | .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16, | ||
320 | }, | ||
321 | }; | ||
322 | |||
323 | struct i5000_dimm_info { | ||
324 | int megabytes; /* size, 0 means not present */ | ||
325 | int dual_rank; | ||
326 | }; | ||
327 | |||
328 | #define MAX_CHANNELS 6 /* max possible channels */ | ||
329 | #define MAX_CSROWS (8*2) /* max possible csrows per channel */ | ||
330 | |||
331 | /* driver private data structure */ | ||
332 | struct i5000_pvt { | ||
333 | struct pci_dev *system_address; /* 16.0 */ | ||
334 | struct pci_dev *branchmap_werrors; /* 16.1 */ | ||
335 | struct pci_dev *fsb_error_regs; /* 16.2 */ | ||
336 | struct pci_dev *branch_0; /* 21.0 */ | ||
337 | struct pci_dev *branch_1; /* 22.0 */ | ||
338 | |||
339 | int node_id; /* ID of this node */ | ||
340 | |||
341 | u16 tolm; /* top of low memory */ | ||
342 | u64 ambase; /* AMB BAR */ | ||
343 | |||
344 | u16 mir0, mir1, mir2; | ||
345 | |||
346 | u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */ | ||
347 | u16 b0_ambpresent0; /* Branch 0, Channel 0 */ | ||
348 | u16 b0_ambpresent1; /* Brnach 0, Channel 1 */ | ||
349 | |||
350 | u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */ | ||
351 | u16 b1_ambpresent0; /* Branch 1, Channel 8 */ | ||
352 | u16 b1_ambpresent1; /* Branch 1, Channel 1 */ | ||
353 | |||
354 | /* DIMM infomation matrix, allocating architecture maximums */ | ||
355 | struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS]; | ||
356 | |||
357 | /* Actual values for this controller */ | ||
358 | int maxch; /* Max channels */ | ||
359 | int maxdimmperch; /* Max DIMMs per channel */ | ||
360 | }; | ||
361 | |||
362 | /* I5000 MCH error information retrieved from Hardware */ | ||
363 | struct i5000_error_info { | ||
364 | |||
365 | /* These registers are always read from the MC */ | ||
366 | u32 ferr_fat_fbd; /* First Errors Fatal */ | ||
367 | u32 nerr_fat_fbd; /* Next Errors Fatal */ | ||
368 | u32 ferr_nf_fbd; /* First Errors Non-Fatal */ | ||
369 | u32 nerr_nf_fbd; /* Next Errors Non-Fatal */ | ||
370 | |||
371 | /* These registers are input ONLY if there was a Recoverable Error */ | ||
372 | u32 redmemb; /* Recoverable Mem Data Error log B */ | ||
373 | u16 recmema; /* Recoverable Mem Error log A */ | ||
374 | u32 recmemb; /* Recoverable Mem Error log B */ | ||
375 | |||
376 | /* These registers are input ONLY if there was a | ||
377 | * Non-Recoverable Error */ | ||
378 | u16 nrecmema; /* Non-Recoverable Mem log A */ | ||
379 | u16 nrecmemb; /* Non-Recoverable Mem log B */ | ||
380 | |||
381 | }; | ||
382 | |||
383 | /****************************************************************************** | ||
384 | * i5000_get_error_info Retrieve the hardware error information from | ||
385 | * the hardware and cache it in the 'info' | ||
386 | * structure | ||
387 | */ | ||
388 | static void i5000_get_error_info(struct mem_ctl_info *mci, | ||
389 | struct i5000_error_info * info) | ||
390 | { | ||
391 | struct i5000_pvt *pvt; | ||
392 | u32 value; | ||
393 | |||
394 | pvt = (struct i5000_pvt *)mci->pvt_info; | ||
395 | |||
396 | /* read in the 1st FATAL error register */ | ||
397 | pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value); | ||
398 | |||
399 | /* Mask only the bits that the doc says are valid | ||
400 | */ | ||
401 | value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK); | ||
402 | |||
403 | /* If there is an error, then read in the */ | ||
404 | /* NEXT FATAL error register and the Memory Error Log Register A */ | ||
405 | if (value & FERR_FAT_MASK) { | ||
406 | info->ferr_fat_fbd = value; | ||
407 | |||
408 | /* harvest the various error data we need */ | ||
409 | pci_read_config_dword(pvt->branchmap_werrors, | ||
410 | NERR_FAT_FBD, &info->nerr_fat_fbd); | ||
411 | pci_read_config_word(pvt->branchmap_werrors, | ||
412 | NRECMEMA, &info->nrecmema); | ||
413 | pci_read_config_word(pvt->branchmap_werrors, | ||
414 | NRECMEMB, &info->nrecmemb); | ||
415 | |||
416 | /* Clear the error bits, by writing them back */ | ||
417 | pci_write_config_dword(pvt->branchmap_werrors, | ||
418 | FERR_FAT_FBD, value); | ||
419 | } else { | ||
420 | info->ferr_fat_fbd = 0; | ||
421 | info->nerr_fat_fbd = 0; | ||
422 | info->nrecmema = 0; | ||
423 | info->nrecmemb = 0; | ||
424 | } | ||
425 | |||
426 | /* read in the 1st NON-FATAL error register */ | ||
427 | pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value); | ||
428 | |||
429 | /* If there is an error, then read in the 1st NON-FATAL error | ||
430 | * register as well */ | ||
431 | if (value & FERR_NF_MASK) { | ||
432 | info->ferr_nf_fbd = value; | ||
433 | |||
434 | /* harvest the various error data we need */ | ||
435 | pci_read_config_dword(pvt->branchmap_werrors, | ||
436 | NERR_NF_FBD, &info->nerr_nf_fbd); | ||
437 | pci_read_config_word(pvt->branchmap_werrors, | ||
438 | RECMEMA, &info->recmema); | ||
439 | pci_read_config_dword(pvt->branchmap_werrors, | ||
440 | RECMEMB, &info->recmemb); | ||
441 | pci_read_config_dword(pvt->branchmap_werrors, | ||
442 | REDMEMB, &info->redmemb); | ||
443 | |||
444 | /* Clear the error bits, by writing them back */ | ||
445 | pci_write_config_dword(pvt->branchmap_werrors, | ||
446 | FERR_NF_FBD, value); | ||
447 | } else { | ||
448 | info->ferr_nf_fbd = 0; | ||
449 | info->nerr_nf_fbd = 0; | ||
450 | info->recmema = 0; | ||
451 | info->recmemb = 0; | ||
452 | info->redmemb = 0; | ||
453 | } | ||
454 | } | ||
455 | |||
456 | /****************************************************************************** | ||
457 | * i5000_process_fatal_error_info(struct mem_ctl_info *mci, | ||
458 | * struct i5000_error_info *info, | ||
459 | * int handle_errors); | ||
460 | * | ||
461 | * handle the Intel FATAL errors, if any | ||
462 | */ | ||
463 | static void i5000_process_fatal_error_info(struct mem_ctl_info *mci, | ||
464 | struct i5000_error_info * info, | ||
465 | int handle_errors) | ||
466 | { | ||
467 | char msg[EDAC_MC_LABEL_LEN + 1 + 90]; | ||
468 | u32 allErrors; | ||
469 | int branch; | ||
470 | int channel; | ||
471 | int bank; | ||
472 | int rank; | ||
473 | int rdwr; | ||
474 | int ras, cas; | ||
475 | |||
476 | /* mask off the Error bits that are possible */ | ||
477 | allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK); | ||
478 | if (!allErrors) | ||
479 | return; /* if no error, return now */ | ||
480 | |||
481 | /* ONLY ONE of the possible error bits will be set, as per the docs */ | ||
482 | i5000_mc_printk(mci, KERN_ERR, | ||
483 | "FATAL ERRORS Found!!! 1st FATAL Err Reg= 0x%x\n", | ||
484 | allErrors); | ||
485 | |||
486 | branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd); | ||
487 | channel = branch; | ||
488 | |||
489 | /* Use the NON-Recoverable macros to extract data */ | ||
490 | bank = NREC_BANK(info->nrecmema); | ||
491 | rank = NREC_RANK(info->nrecmema); | ||
492 | rdwr = NREC_RDWR(info->nrecmema); | ||
493 | ras = NREC_RAS(info->nrecmemb); | ||
494 | cas = NREC_CAS(info->nrecmemb); | ||
495 | |||
496 | debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d " | ||
497 | "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", | ||
498 | rank, channel, channel + 1, branch >> 1, bank, | ||
499 | rdwr ? "Write" : "Read", ras, cas); | ||
500 | |||
501 | /* Only 1 bit will be on */ | ||
502 | if (allErrors & FERR_FAT_M1ERR) { | ||
503 | i5000_mc_printk(mci, KERN_ERR, | ||
504 | "Alert on non-redundant retry or fast " | ||
505 | "reset timeout\n"); | ||
506 | |||
507 | } else if (allErrors & FERR_FAT_M2ERR) { | ||
508 | i5000_mc_printk(mci, KERN_ERR, | ||
509 | "Northbound CRC error on non-redundant " | ||
510 | "retry\n"); | ||
511 | |||
512 | } else if (allErrors & FERR_FAT_M3ERR) { | ||
513 | i5000_mc_printk(mci, KERN_ERR, | ||
514 | ">Tmid Thermal event with intelligent " | ||
515 | "throttling disabled\n"); | ||
516 | } | ||
517 | |||
518 | /* Form out message */ | ||
519 | snprintf(msg, sizeof(msg), | ||
520 | "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d " | ||
521 | "FATAL Err=0x%x)", | ||
522 | branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas, | ||
523 | allErrors); | ||
524 | |||
525 | /* Call the helper to output message */ | ||
526 | edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg); | ||
527 | } | ||
528 | |||
529 | /****************************************************************************** | ||
530 | * i5000_process_fatal_error_info(struct mem_ctl_info *mci, | ||
531 | * struct i5000_error_info *info, | ||
532 | * int handle_errors); | ||
533 | * | ||
534 | * handle the Intel NON-FATAL errors, if any | ||
535 | */ | ||
536 | static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci, | ||
537 | struct i5000_error_info * info, | ||
538 | int handle_errors) | ||
539 | { | ||
540 | char msg[EDAC_MC_LABEL_LEN + 1 + 90]; | ||
541 | u32 allErrors; | ||
542 | u32 ue_errors; | ||
543 | u32 ce_errors; | ||
544 | u32 misc_errors; | ||
545 | int branch; | ||
546 | int channel; | ||
547 | int bank; | ||
548 | int rank; | ||
549 | int rdwr; | ||
550 | int ras, cas; | ||
551 | |||
552 | /* mask off the Error bits that are possible */ | ||
553 | allErrors = (info->ferr_nf_fbd & FERR_NF_MASK); | ||
554 | if (!allErrors) | ||
555 | return; /* if no error, return now */ | ||
556 | |||
557 | /* ONLY ONE of the possible error bits will be set, as per the docs */ | ||
558 | i5000_mc_printk(mci, KERN_WARNING, | ||
559 | "NON-FATAL ERRORS Found!!! 1st NON-FATAL Err " | ||
560 | "Reg= 0x%x\n", allErrors); | ||
561 | |||
562 | ue_errors = allErrors & FERR_NF_UNCORRECTABLE; | ||
563 | if (ue_errors) { | ||
564 | debugf0("\tUncorrected bits= 0x%x\n", ue_errors); | ||
565 | |||
566 | branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); | ||
567 | channel = branch; | ||
568 | bank = NREC_BANK(info->nrecmema); | ||
569 | rank = NREC_RANK(info->nrecmema); | ||
570 | rdwr = NREC_RDWR(info->nrecmema); | ||
571 | ras = NREC_RAS(info->nrecmemb); | ||
572 | cas = NREC_CAS(info->nrecmemb); | ||
573 | |||
574 | debugf0 | ||
575 | ("\t\tCSROW= %d Channels= %d,%d (Branch= %d " | ||
576 | "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", | ||
577 | rank, channel, channel + 1, branch >> 1, bank, | ||
578 | rdwr ? "Write" : "Read", ras, cas); | ||
579 | |||
580 | /* Form out message */ | ||
581 | snprintf(msg, sizeof(msg), | ||
582 | "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d " | ||
583 | "CAS=%d, UE Err=0x%x)", | ||
584 | branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas, | ||
585 | ue_errors); | ||
586 | |||
587 | /* Call the helper to output message */ | ||
588 | edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg); | ||
589 | } | ||
590 | |||
591 | /* Check correctable errors */ | ||
592 | ce_errors = allErrors & FERR_NF_CORRECTABLE; | ||
593 | if (ce_errors) { | ||
594 | debugf0("\tCorrected bits= 0x%x\n", ce_errors); | ||
595 | |||
596 | branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); | ||
597 | |||
598 | channel = 0; | ||
599 | if (REC_ECC_LOCATOR_ODD(info->redmemb)) | ||
600 | channel = 1; | ||
601 | |||
602 | /* Convert channel to be based from zero, instead of | ||
603 | * from branch base of 0 */ | ||
604 | channel += branch; | ||
605 | |||
606 | bank = REC_BANK(info->recmema); | ||
607 | rank = REC_RANK(info->recmema); | ||
608 | rdwr = REC_RDWR(info->recmema); | ||
609 | ras = REC_RAS(info->recmemb); | ||
610 | cas = REC_CAS(info->recmemb); | ||
611 | |||
612 | debugf0("\t\tCSROW= %d Channel= %d (Branch %d " | ||
613 | "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", | ||
614 | rank, channel, branch >> 1, bank, | ||
615 | rdwr ? "Write" : "Read", ras, cas); | ||
616 | |||
617 | /* Form out message */ | ||
618 | snprintf(msg, sizeof(msg), | ||
619 | "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d " | ||
620 | "CAS=%d, CE Err=0x%x)", branch >> 1, bank, | ||
621 | rdwr ? "Write" : "Read", ras, cas, ce_errors); | ||
622 | |||
623 | /* Call the helper to output message */ | ||
624 | edac_mc_handle_fbd_ce(mci, rank, channel, msg); | ||
625 | } | ||
626 | |||
627 | /* See if any of the thermal errors have fired */ | ||
628 | misc_errors = allErrors & FERR_NF_THERMAL; | ||
629 | if (misc_errors) { | ||
630 | i5000_printk(KERN_WARNING, "\tTHERMAL Error, bits= 0x%x\n", | ||
631 | misc_errors); | ||
632 | } | ||
633 | |||
634 | /* See if any of the thermal errors have fired */ | ||
635 | misc_errors = allErrors & FERR_NF_NON_RETRY; | ||
636 | if (misc_errors) { | ||
637 | i5000_printk(KERN_WARNING, "\tNON-Retry Errors, bits= 0x%x\n", | ||
638 | misc_errors); | ||
639 | } | ||
640 | |||
641 | /* See if any of the thermal errors have fired */ | ||
642 | misc_errors = allErrors & FERR_NF_NORTH_CRC; | ||
643 | if (misc_errors) { | ||
644 | i5000_printk(KERN_WARNING, | ||
645 | "\tNORTHBOUND CRC Error, bits= 0x%x\n", | ||
646 | misc_errors); | ||
647 | } | ||
648 | |||
649 | /* See if any of the thermal errors have fired */ | ||
650 | misc_errors = allErrors & FERR_NF_SPD_PROTOCOL; | ||
651 | if (misc_errors) { | ||
652 | i5000_printk(KERN_WARNING, | ||
653 | "\tSPD Protocol Error, bits= 0x%x\n", | ||
654 | misc_errors); | ||
655 | } | ||
656 | |||
657 | /* See if any of the thermal errors have fired */ | ||
658 | misc_errors = allErrors & FERR_NF_DIMM_SPARE; | ||
659 | if (misc_errors) { | ||
660 | i5000_printk(KERN_WARNING, "\tDIMM-Spare Error, bits= 0x%x\n", | ||
661 | misc_errors); | ||
662 | } | ||
663 | } | ||
664 | |||
665 | /****************************************************************************** | ||
666 | * i5000_process_error_info Process the error info that is | ||
667 | * in the 'info' structure, previously retrieved from hardware | ||
668 | */ | ||
669 | static void i5000_process_error_info(struct mem_ctl_info *mci, | ||
670 | struct i5000_error_info * info, | ||
671 | int handle_errors) | ||
672 | { | ||
673 | /* First handle any fatal errors that occurred */ | ||
674 | i5000_process_fatal_error_info(mci, info, handle_errors); | ||
675 | |||
676 | /* now handle any non-fatal errors that occurred */ | ||
677 | i5000_process_nonfatal_error_info(mci, info, handle_errors); | ||
678 | } | ||
679 | |||
680 | /****************************************************************************** | ||
681 | * i5000_clear_error Retrieve any error from the hardware | ||
682 | * but do NOT process that error. | ||
683 | * Used for 'clearing' out of previous errors | ||
684 | * Called by the Core module. | ||
685 | */ | ||
686 | static void i5000_clear_error(struct mem_ctl_info *mci) | ||
687 | { | ||
688 | struct i5000_error_info info; | ||
689 | |||
690 | i5000_get_error_info(mci, &info); | ||
691 | } | ||
692 | |||
693 | /****************************************************************************** | ||
694 | * i5000_check_error Retrieve and process errors reported by the | ||
695 | * hardware. Called by the Core module. | ||
696 | */ | ||
697 | static void i5000_check_error(struct mem_ctl_info *mci) | ||
698 | { | ||
699 | struct i5000_error_info info; | ||
700 | debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__); | ||
701 | i5000_get_error_info(mci, &info); | ||
702 | i5000_process_error_info(mci, &info, 1); | ||
703 | } | ||
704 | |||
705 | /****************************************************************************** | ||
706 | * i5000_get_devices Find and perform 'get' operation on the MCH's | ||
707 | * device/functions we want to reference for this driver | ||
708 | * | ||
709 | * Need to 'get' device 16 func 1 and func 2 | ||
710 | */ | ||
711 | static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx) | ||
712 | { | ||
713 | //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx]; | ||
714 | struct i5000_pvt *pvt; | ||
715 | struct pci_dev *pdev; | ||
716 | |||
717 | pvt = (struct i5000_pvt *)mci->pvt_info; | ||
718 | |||
719 | /* Attempt to 'get' the MCH register we want */ | ||
720 | pdev = NULL; | ||
721 | while (1) { | ||
722 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | ||
723 | PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); | ||
724 | |||
725 | /* End of list, leave */ | ||
726 | if (pdev == NULL) { | ||
727 | i5000_printk(KERN_ERR, | ||
728 | "'system address,Process Bus' " | ||
729 | "device not found:" | ||
730 | "vendor 0x%x device 0x%x FUNC 1 " | ||
731 | "(broken BIOS?)\n", | ||
732 | PCI_VENDOR_ID_INTEL, | ||
733 | PCI_DEVICE_ID_INTEL_I5000_DEV16); | ||
734 | |||
735 | return 1; | ||
736 | } | ||
737 | |||
738 | /* Scan for device 16 func 1 */ | ||
739 | if (PCI_FUNC(pdev->devfn) == 1) | ||
740 | break; | ||
741 | } | ||
742 | |||
743 | pvt->branchmap_werrors = pdev; | ||
744 | |||
745 | /* Attempt to 'get' the MCH register we want */ | ||
746 | pdev = NULL; | ||
747 | while (1) { | ||
748 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | ||
749 | PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); | ||
750 | |||
751 | if (pdev == NULL) { | ||
752 | i5000_printk(KERN_ERR, | ||
753 | "MC: 'branchmap,control,errors' " | ||
754 | "device not found:" | ||
755 | "vendor 0x%x device 0x%x Func 2 " | ||
756 | "(broken BIOS?)\n", | ||
757 | PCI_VENDOR_ID_INTEL, | ||
758 | PCI_DEVICE_ID_INTEL_I5000_DEV16); | ||
759 | |||
760 | pci_dev_put(pvt->branchmap_werrors); | ||
761 | return 1; | ||
762 | } | ||
763 | |||
764 | /* Scan for device 16 func 1 */ | ||
765 | if (PCI_FUNC(pdev->devfn) == 2) | ||
766 | break; | ||
767 | } | ||
768 | |||
769 | pvt->fsb_error_regs = pdev; | ||
770 | |||
771 | debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n", | ||
772 | pci_name(pvt->system_address), | ||
773 | pvt->system_address->vendor, pvt->system_address->device); | ||
774 | debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", | ||
775 | pci_name(pvt->branchmap_werrors), | ||
776 | pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device); | ||
777 | debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n", | ||
778 | pci_name(pvt->fsb_error_regs), | ||
779 | pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device); | ||
780 | |||
781 | pdev = NULL; | ||
782 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | ||
783 | PCI_DEVICE_ID_I5000_BRANCH_0, pdev); | ||
784 | |||
785 | if (pdev == NULL) { | ||
786 | i5000_printk(KERN_ERR, | ||
787 | "MC: 'BRANCH 0' device not found:" | ||
788 | "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", | ||
789 | PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0); | ||
790 | |||
791 | pci_dev_put(pvt->branchmap_werrors); | ||
792 | pci_dev_put(pvt->fsb_error_regs); | ||
793 | return 1; | ||
794 | } | ||
795 | |||
796 | pvt->branch_0 = pdev; | ||
797 | |||
798 | /* If this device claims to have more than 2 channels then | ||
799 | * fetch Branch 1's information | ||
800 | */ | ||
801 | if (pvt->maxch >= CHANNELS_PER_BRANCH) { | ||
802 | pdev = NULL; | ||
803 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | ||
804 | PCI_DEVICE_ID_I5000_BRANCH_1, pdev); | ||
805 | |||
806 | if (pdev == NULL) { | ||
807 | i5000_printk(KERN_ERR, | ||
808 | "MC: 'BRANCH 1' device not found:" | ||
809 | "vendor 0x%x device 0x%x Func 0 " | ||
810 | "(broken BIOS?)\n", | ||
811 | PCI_VENDOR_ID_INTEL, | ||
812 | PCI_DEVICE_ID_I5000_BRANCH_1); | ||
813 | |||
814 | pci_dev_put(pvt->branchmap_werrors); | ||
815 | pci_dev_put(pvt->fsb_error_regs); | ||
816 | pci_dev_put(pvt->branch_0); | ||
817 | return 1; | ||
818 | } | ||
819 | |||
820 | pvt->branch_1 = pdev; | ||
821 | } | ||
822 | |||
823 | return 0; | ||
824 | } | ||
825 | |||
826 | /****************************************************************************** | ||
827 | * i5000_put_devices 'put' all the devices that we have | ||
828 | * reserved via 'get' | ||
829 | */ | ||
830 | static void i5000_put_devices(struct mem_ctl_info *mci) | ||
831 | { | ||
832 | struct i5000_pvt *pvt; | ||
833 | |||
834 | pvt = (struct i5000_pvt *)mci->pvt_info; | ||
835 | |||
836 | pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */ | ||
837 | pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */ | ||
838 | pci_dev_put(pvt->branch_0); /* DEV 21 */ | ||
839 | |||
840 | /* Only if more than 2 channels do we release the second branch */ | ||
841 | if (pvt->maxch >= CHANNELS_PER_BRANCH) { | ||
842 | pci_dev_put(pvt->branch_1); /* DEV 22 */ | ||
843 | } | ||
844 | } | ||
845 | |||
846 | /****************************************************************************** | ||
847 | * determine_amb_resent | ||
848 | * | ||
849 | * the information is contained in NUM_MTRS different registers | ||
850 | * determineing which of the NUM_MTRS requires knowing | ||
851 | * which channel is in question | ||
852 | * | ||
853 | * 2 branches, each with 2 channels | ||
854 | * b0_ambpresent0 for channel '0' | ||
855 | * b0_ambpresent1 for channel '1' | ||
856 | * b1_ambpresent0 for channel '2' | ||
857 | * b1_ambpresent1 for channel '3' | ||
858 | */ | ||
859 | static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel) | ||
860 | { | ||
861 | int amb_present; | ||
862 | |||
863 | if (channel < CHANNELS_PER_BRANCH) { | ||
864 | if (channel & 0x1) | ||
865 | amb_present = pvt->b0_ambpresent1; | ||
866 | else | ||
867 | amb_present = pvt->b0_ambpresent0; | ||
868 | } else { | ||
869 | if (channel & 0x1) | ||
870 | amb_present = pvt->b1_ambpresent1; | ||
871 | else | ||
872 | amb_present = pvt->b1_ambpresent0; | ||
873 | } | ||
874 | |||
875 | return amb_present; | ||
876 | } | ||
877 | |||
878 | /****************************************************************************** | ||
879 | * determine_mtr(pvt, csrow, channel) | ||
880 | * | ||
881 | * return the proper MTR register as determine by the csrow and channel desired | ||
882 | */ | ||
883 | static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel) | ||
884 | { | ||
885 | int mtr; | ||
886 | |||
887 | if (channel < CHANNELS_PER_BRANCH) | ||
888 | mtr = pvt->b0_mtr[csrow >> 1]; | ||
889 | else | ||
890 | mtr = pvt->b1_mtr[csrow >> 1]; | ||
891 | |||
892 | return mtr; | ||
893 | } | ||
894 | |||
895 | /****************************************************************************** | ||
896 | */ | ||
897 | static void decode_mtr(int slot_row, u16 mtr) | ||
898 | { | ||
899 | int ans; | ||
900 | |||
901 | ans = MTR_DIMMS_PRESENT(mtr); | ||
902 | |||
903 | debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row, mtr, | ||
904 | ans ? "Present" : "NOT Present"); | ||
905 | if (!ans) | ||
906 | return; | ||
907 | |||
908 | debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); | ||
909 | debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); | ||
910 | debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single"); | ||
911 | debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]); | ||
912 | debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]); | ||
913 | } | ||
914 | |||
915 | static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel, | ||
916 | struct i5000_dimm_info *dinfo) | ||
917 | { | ||
918 | int mtr; | ||
919 | int amb_present_reg; | ||
920 | int addrBits; | ||
921 | |||
922 | mtr = determine_mtr(pvt, csrow, channel); | ||
923 | if (MTR_DIMMS_PRESENT(mtr)) { | ||
924 | amb_present_reg = determine_amb_present_reg(pvt, channel); | ||
925 | |||
926 | /* Determine if there is a DIMM present in this DIMM slot */ | ||
927 | if (amb_present_reg & (1 << (csrow >> 1))) { | ||
928 | dinfo->dual_rank = MTR_DIMM_RANK(mtr); | ||
929 | |||
930 | if (!((dinfo->dual_rank == 0) && | ||
931 | ((csrow & 0x1) == 0x1))) { | ||
932 | /* Start with the number of bits for a Bank | ||
933 | * on the DRAM */ | ||
934 | addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr); | ||
935 | /* Add thenumber of ROW bits */ | ||
936 | addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); | ||
937 | /* add the number of COLUMN bits */ | ||
938 | addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); | ||
939 | |||
940 | addrBits += 6; /* add 64 bits per DIMM */ | ||
941 | addrBits -= 20; /* divide by 2^^20 */ | ||
942 | addrBits -= 3; /* 8 bits per bytes */ | ||
943 | |||
944 | dinfo->megabytes = 1 << addrBits; | ||
945 | } | ||
946 | } | ||
947 | } | ||
948 | } | ||
949 | |||
950 | /****************************************************************************** | ||
951 | * calculate_dimm_size | ||
952 | * | ||
953 | * also will output a DIMM matrix map, if debug is enabled, for viewing | ||
954 | * how the DIMMs are populated | ||
955 | */ | ||
956 | static void calculate_dimm_size(struct i5000_pvt *pvt) | ||
957 | { | ||
958 | struct i5000_dimm_info *dinfo; | ||
959 | int csrow, max_csrows; | ||
960 | char *p, *mem_buffer; | ||
961 | int space, n; | ||
962 | int channel; | ||
963 | |||
964 | /* ================= Generate some debug output ================= */ | ||
965 | space = PAGE_SIZE; | ||
966 | mem_buffer = p = kmalloc(space, GFP_KERNEL); | ||
967 | if (p == NULL) { | ||
968 | i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n", | ||
969 | __FILE__, __func__); | ||
970 | return; | ||
971 | } | ||
972 | |||
973 | n = snprintf(p, space, "\n"); | ||
974 | p += n; | ||
975 | space -= n; | ||
976 | |||
977 | /* Scan all the actual CSROWS (which is # of DIMMS * 2) | ||
978 | * and calculate the information for each DIMM | ||
979 | * Start with the highest csrow first, to display it first | ||
980 | * and work toward the 0th csrow | ||
981 | */ | ||
982 | max_csrows = pvt->maxdimmperch * 2; | ||
983 | for (csrow = max_csrows - 1; csrow >= 0; csrow--) { | ||
984 | |||
985 | /* on an odd csrow, first output a 'boundary' marker, | ||
986 | * then reset the message buffer */ | ||
987 | if (csrow & 0x1) { | ||
988 | n = snprintf(p, space, "---------------------------" | ||
989 | "--------------------------------"); | ||
990 | p += n; | ||
991 | space -= n; | ||
992 | debugf2("%s\n", mem_buffer); | ||
993 | p = mem_buffer; | ||
994 | space = PAGE_SIZE; | ||
995 | } | ||
996 | n = snprintf(p, space, "csrow %2d ", csrow); | ||
997 | p += n; | ||
998 | space -= n; | ||
999 | |||
1000 | for (channel = 0; channel < pvt->maxch; channel++) { | ||
1001 | dinfo = &pvt->dimm_info[csrow][channel]; | ||
1002 | handle_channel(pvt, csrow, channel, dinfo); | ||
1003 | n = snprintf(p, space, "%4d MB | ", dinfo->megabytes); | ||
1004 | p += n; | ||
1005 | space -= n; | ||
1006 | } | ||
1007 | n = snprintf(p, space, "\n"); | ||
1008 | p += n; | ||
1009 | space -= n; | ||
1010 | } | ||
1011 | |||
1012 | /* Output the last bottom 'boundary' marker */ | ||
1013 | n = snprintf(p, space, "---------------------------" | ||
1014 | "--------------------------------\n"); | ||
1015 | p += n; | ||
1016 | space -= n; | ||
1017 | |||
1018 | /* now output the 'channel' labels */ | ||
1019 | n = snprintf(p, space, " "); | ||
1020 | p += n; | ||
1021 | space -= n; | ||
1022 | for (channel = 0; channel < pvt->maxch; channel++) { | ||
1023 | n = snprintf(p, space, "channel %d | ", channel); | ||
1024 | p += n; | ||
1025 | space -= n; | ||
1026 | } | ||
1027 | n = snprintf(p, space, "\n"); | ||
1028 | p += n; | ||
1029 | space -= n; | ||
1030 | |||
1031 | /* output the last message and free buffer */ | ||
1032 | debugf2("%s\n", mem_buffer); | ||
1033 | kfree(mem_buffer); | ||
1034 | } | ||
1035 | |||
1036 | /****************************************************************************** | ||
1037 | * i5000_get_mc_regs read in the necessary registers and | ||
1038 | * cache locally | ||
1039 | * | ||
1040 | * Fills in the private data members | ||
1041 | */ | ||
1042 | static void i5000_get_mc_regs(struct mem_ctl_info *mci) | ||
1043 | { | ||
1044 | struct i5000_pvt *pvt; | ||
1045 | u32 actual_tolm; | ||
1046 | u16 limit; | ||
1047 | int slot_row; | ||
1048 | int maxch; | ||
1049 | int maxdimmperch; | ||
1050 | int way0, way1; | ||
1051 | |||
1052 | pvt = (struct i5000_pvt *)mci->pvt_info; | ||
1053 | |||
1054 | pci_read_config_dword(pvt->system_address, AMBASE, | ||
1055 | (u32 *) & pvt->ambase); | ||
1056 | pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), | ||
1057 | ((u32 *) & pvt->ambase) + sizeof(u32)); | ||
1058 | |||
1059 | maxdimmperch = pvt->maxdimmperch; | ||
1060 | maxch = pvt->maxch; | ||
1061 | |||
1062 | debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n", | ||
1063 | (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); | ||
1064 | |||
1065 | /* Get the Branch Map regs */ | ||
1066 | pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm); | ||
1067 | pvt->tolm >>= 12; | ||
1068 | debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm, | ||
1069 | pvt->tolm); | ||
1070 | |||
1071 | actual_tolm = pvt->tolm << 28; | ||
1072 | debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm); | ||
1073 | |||
1074 | pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0); | ||
1075 | pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1); | ||
1076 | pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2); | ||
1077 | |||
1078 | /* Get the MIR[0-2] regs */ | ||
1079 | limit = (pvt->mir0 >> 4) & 0x0FFF; | ||
1080 | way0 = pvt->mir0 & 0x1; | ||
1081 | way1 = pvt->mir0 & 0x2; | ||
1082 | debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0); | ||
1083 | limit = (pvt->mir1 >> 4) & 0x0FFF; | ||
1084 | way0 = pvt->mir1 & 0x1; | ||
1085 | way1 = pvt->mir1 & 0x2; | ||
1086 | debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0); | ||
1087 | limit = (pvt->mir2 >> 4) & 0x0FFF; | ||
1088 | way0 = pvt->mir2 & 0x1; | ||
1089 | way1 = pvt->mir2 & 0x2; | ||
1090 | debugf2("MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0); | ||
1091 | |||
1092 | /* Get the MTR[0-3] regs */ | ||
1093 | for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { | ||
1094 | int where = MTR0 + (slot_row * sizeof(u32)); | ||
1095 | |||
1096 | pci_read_config_word(pvt->branch_0, where, | ||
1097 | &pvt->b0_mtr[slot_row]); | ||
1098 | |||
1099 | debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where, | ||
1100 | pvt->b0_mtr[slot_row]); | ||
1101 | |||
1102 | if (pvt->maxch >= CHANNELS_PER_BRANCH) { | ||
1103 | pci_read_config_word(pvt->branch_1, where, | ||
1104 | &pvt->b1_mtr[slot_row]); | ||
1105 | debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row, | ||
1106 | where, pvt->b0_mtr[slot_row]); | ||
1107 | } else { | ||
1108 | pvt->b1_mtr[slot_row] = 0; | ||
1109 | } | ||
1110 | } | ||
1111 | |||
1112 | /* Read and dump branch 0's MTRs */ | ||
1113 | debugf2("\nMemory Technology Registers:\n"); | ||
1114 | debugf2(" Branch 0:\n"); | ||
1115 | for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { | ||
1116 | decode_mtr(slot_row, pvt->b0_mtr[slot_row]); | ||
1117 | } | ||
1118 | pci_read_config_word(pvt->branch_0, AMB_PRESENT_0, | ||
1119 | &pvt->b0_ambpresent0); | ||
1120 | debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0); | ||
1121 | pci_read_config_word(pvt->branch_0, AMB_PRESENT_1, | ||
1122 | &pvt->b0_ambpresent1); | ||
1123 | debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1); | ||
1124 | |||
1125 | /* Only if we have 2 branchs (4 channels) */ | ||
1126 | if (pvt->maxch < CHANNELS_PER_BRANCH) { | ||
1127 | pvt->b1_ambpresent0 = 0; | ||
1128 | pvt->b1_ambpresent1 = 0; | ||
1129 | } else { | ||
1130 | /* Read and dump branch 1's MTRs */ | ||
1131 | debugf2(" Branch 1:\n"); | ||
1132 | for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { | ||
1133 | decode_mtr(slot_row, pvt->b1_mtr[slot_row]); | ||
1134 | } | ||
1135 | pci_read_config_word(pvt->branch_1, AMB_PRESENT_0, | ||
1136 | &pvt->b1_ambpresent0); | ||
1137 | debugf2("\t\tAMB-Branch 1-present0 0x%x:\n", | ||
1138 | pvt->b1_ambpresent0); | ||
1139 | pci_read_config_word(pvt->branch_1, AMB_PRESENT_1, | ||
1140 | &pvt->b1_ambpresent1); | ||
1141 | debugf2("\t\tAMB-Branch 1-present1 0x%x:\n", | ||
1142 | pvt->b1_ambpresent1); | ||
1143 | } | ||
1144 | |||
1145 | /* Go and determine the size of each DIMM and place in an | ||
1146 | * orderly matrix */ | ||
1147 | calculate_dimm_size(pvt); | ||
1148 | } | ||
1149 | |||
1150 | /****************************************************************************** | ||
1151 | * i5000_init_csrows Initialize the 'csrows' table within | ||
1152 | * the mci control structure with the | ||
1153 | * addressing of memory. | ||
1154 | * | ||
1155 | * return: | ||
1156 | * 0 success | ||
1157 | * 1 no actual memory found on this MC | ||
1158 | */ | ||
1159 | static int i5000_init_csrows(struct mem_ctl_info *mci) | ||
1160 | { | ||
1161 | struct i5000_pvt *pvt; | ||
1162 | struct csrow_info *p_csrow; | ||
1163 | int empty, channel_count; | ||
1164 | int max_csrows; | ||
1165 | int mtr; | ||
1166 | int csrow_megs; | ||
1167 | int channel; | ||
1168 | int csrow; | ||
1169 | |||
1170 | pvt = (struct i5000_pvt *)mci->pvt_info; | ||
1171 | |||
1172 | channel_count = pvt->maxch; | ||
1173 | max_csrows = pvt->maxdimmperch * 2; | ||
1174 | |||
1175 | empty = 1; /* Assume NO memory */ | ||
1176 | |||
1177 | for (csrow = 0; csrow < max_csrows; csrow++) { | ||
1178 | p_csrow = &mci->csrows[csrow]; | ||
1179 | |||
1180 | p_csrow->csrow_idx = csrow; | ||
1181 | |||
1182 | /* use branch 0 for the basis */ | ||
1183 | mtr = pvt->b0_mtr[csrow >> 1]; | ||
1184 | |||
1185 | /* if no DIMMS on this row, continue */ | ||
1186 | if (!MTR_DIMMS_PRESENT(mtr)) | ||
1187 | continue; | ||
1188 | |||
1189 | /* FAKE OUT VALUES, FIXME */ | ||
1190 | p_csrow->first_page = 0 + csrow * 20; | ||
1191 | p_csrow->last_page = 9 + csrow * 20; | ||
1192 | p_csrow->page_mask = 0xFFF; | ||
1193 | |||
1194 | p_csrow->grain = 8; | ||
1195 | |||
1196 | csrow_megs = 0; | ||
1197 | for (channel = 0; channel < pvt->maxch; channel++) { | ||
1198 | csrow_megs += pvt->dimm_info[csrow][channel].megabytes; | ||
1199 | } | ||
1200 | |||
1201 | p_csrow->nr_pages = csrow_megs << 8; | ||
1202 | |||
1203 | /* Assume DDR2 for now */ | ||
1204 | p_csrow->mtype = MEM_FB_DDR2; | ||
1205 | |||
1206 | /* ask what device type on this row */ | ||
1207 | if (MTR_DRAM_WIDTH(mtr)) | ||
1208 | p_csrow->dtype = DEV_X8; | ||
1209 | else | ||
1210 | p_csrow->dtype = DEV_X4; | ||
1211 | |||
1212 | p_csrow->edac_mode = EDAC_S8ECD8ED; | ||
1213 | |||
1214 | empty = 0; | ||
1215 | } | ||
1216 | |||
1217 | return empty; | ||
1218 | } | ||
1219 | |||
1220 | /****************************************************************************** | ||
1221 | * i5000_enable_error_reporting | ||
1222 | * Turn on the memory reporting features of the hardware | ||
1223 | */ | ||
1224 | static void i5000_enable_error_reporting(struct mem_ctl_info *mci) | ||
1225 | { | ||
1226 | struct i5000_pvt *pvt; | ||
1227 | u32 fbd_error_mask; | ||
1228 | |||
1229 | pvt = (struct i5000_pvt *)mci->pvt_info; | ||
1230 | |||
1231 | /* Read the FBD Error Mask Register */ | ||
1232 | pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD, | ||
1233 | &fbd_error_mask); | ||
1234 | |||
1235 | /* Enable with a '0' */ | ||
1236 | fbd_error_mask &= ~(ENABLE_EMASK_ALL); | ||
1237 | |||
1238 | pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD, | ||
1239 | fbd_error_mask); | ||
1240 | } | ||
1241 | |||
1242 | /****************************************************************************** | ||
1243 | * i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels) | ||
1244 | * | ||
1245 | * ask the device how many channels are present and how many CSROWS | ||
1246 | * as well | ||
1247 | */ | ||
1248 | static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev, | ||
1249 | int *num_dimms_per_channel, | ||
1250 | int *num_channels) | ||
1251 | { | ||
1252 | u8 value; | ||
1253 | |||
1254 | /* Need to retrieve just how many channels and dimms per channel are | ||
1255 | * supported on this memory controller | ||
1256 | */ | ||
1257 | pci_read_config_byte(pdev, MAXDIMMPERCH, &value); | ||
1258 | *num_dimms_per_channel = (int)value *2; | ||
1259 | |||
1260 | pci_read_config_byte(pdev, MAXCH, &value); | ||
1261 | *num_channels = (int)value; | ||
1262 | } | ||
1263 | |||
1264 | /****************************************************************************** | ||
1265 | * i5000_probe1 Probe for ONE instance of device to see if it is | ||
1266 | * present. | ||
1267 | * return: | ||
1268 | * 0 for FOUND a device | ||
1269 | * < 0 for error code | ||
1270 | */ | ||
1271 | static int i5000_probe1(struct pci_dev *pdev, int dev_idx) | ||
1272 | { | ||
1273 | struct mem_ctl_info *mci; | ||
1274 | struct i5000_pvt *pvt; | ||
1275 | int num_channels; | ||
1276 | int num_dimms_per_channel; | ||
1277 | int num_csrows; | ||
1278 | |||
1279 | debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n", | ||
1280 | __func__, | ||
1281 | pdev->bus->number, | ||
1282 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | ||
1283 | |||
1284 | /* We only are looking for func 0 of the set */ | ||
1285 | if (PCI_FUNC(pdev->devfn) != 0) | ||
1286 | return -ENODEV; | ||
1287 | |||
1288 | /* Ask the devices for the number of CSROWS and CHANNELS so | ||
1289 | * that we can calculate the memory resources, etc | ||
1290 | * | ||
1291 | * The Chipset will report what it can handle which will be greater | ||
1292 | * or equal to what the motherboard manufacturer will implement. | ||
1293 | * | ||
1294 | * As we don't have a motherboard identification routine to determine | ||
1295 | * actual number of slots/dimms per channel, we thus utilize the | ||
1296 | * resource as specified by the chipset. Thus, we might have | ||
1297 | * have more DIMMs per channel than actually on the mobo, but this | ||
1298 | * allows the driver to support upto the chipset max, without | ||
1299 | * some fancy mobo determination. | ||
1300 | */ | ||
1301 | i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel, | ||
1302 | &num_channels); | ||
1303 | num_csrows = num_dimms_per_channel * 2; | ||
1304 | |||
1305 | debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n", | ||
1306 | __func__, num_channels, num_dimms_per_channel, num_csrows); | ||
1307 | |||
1308 | /* allocate a new MC control structure */ | ||
1309 | mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels); | ||
1310 | |||
1311 | if (mci == NULL) | ||
1312 | return -ENOMEM; | ||
1313 | |||
1314 | debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci); | ||
1315 | |||
1316 | mci->dev = &pdev->dev; /* record ptr to the generic device */ | ||
1317 | |||
1318 | pvt = (struct i5000_pvt *)mci->pvt_info; | ||
1319 | pvt->system_address = pdev; /* Record this device in our private */ | ||
1320 | pvt->maxch = num_channels; | ||
1321 | pvt->maxdimmperch = num_dimms_per_channel; | ||
1322 | |||
1323 | /* 'get' the pci devices we want to reserve for our use */ | ||
1324 | if (i5000_get_devices(mci, dev_idx)) | ||
1325 | goto fail0; | ||
1326 | |||
1327 | /* Time to get serious */ | ||
1328 | i5000_get_mc_regs(mci); /* retrieve the hardware registers */ | ||
1329 | |||
1330 | mci->mc_idx = 0; | ||
1331 | mci->mtype_cap = MEM_FLAG_FB_DDR2; | ||
1332 | mci->edac_ctl_cap = EDAC_FLAG_NONE; | ||
1333 | mci->edac_cap = EDAC_FLAG_NONE; | ||
1334 | mci->mod_name = "i5000_edac.c"; | ||
1335 | mci->mod_ver = I5000_REVISION; | ||
1336 | mci->ctl_name = i5000_devs[dev_idx].ctl_name; | ||
1337 | mci->ctl_page_to_phys = NULL; | ||
1338 | |||
1339 | /* Set the function pointer to an actual operation function */ | ||
1340 | mci->edac_check = i5000_check_error; | ||
1341 | |||
1342 | /* initialize the MC control structure 'csrows' table | ||
1343 | * with the mapping and control information */ | ||
1344 | if (i5000_init_csrows(mci)) { | ||
1345 | debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n" | ||
1346 | " because i5000_init_csrows() returned nonzero " | ||
1347 | "value\n"); | ||
1348 | mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */ | ||
1349 | } else { | ||
1350 | debugf1("MC: Enable error reporting now\n"); | ||
1351 | i5000_enable_error_reporting(mci); | ||
1352 | } | ||
1353 | |||
1354 | /* add this new MC control structure to EDAC's list of MCs */ | ||
1355 | if (edac_mc_add_mc(mci, pvt->node_id)) { | ||
1356 | debugf0("MC: " __FILE__ | ||
1357 | ": %s(): failed edac_mc_add_mc()\n", __func__); | ||
1358 | /* FIXME: perhaps some code should go here that disables error | ||
1359 | * reporting if we just enabled it | ||
1360 | */ | ||
1361 | goto fail1; | ||
1362 | } | ||
1363 | |||
1364 | i5000_clear_error(mci); | ||
1365 | |||
1366 | return 0; | ||
1367 | |||
1368 | /* Error exit unwinding stack */ | ||
1369 | fail1: | ||
1370 | |||
1371 | i5000_put_devices(mci); | ||
1372 | |||
1373 | fail0: | ||
1374 | edac_mc_free(mci); | ||
1375 | return -ENODEV; | ||
1376 | } | ||
1377 | |||
1378 | /****************************************************************************** | ||
1379 | * i5000_init_one constructor for one instance of device | ||
1380 | * | ||
1381 | * returns: | ||
1382 | * negative on error | ||
1383 | * count (>= 0) | ||
1384 | */ | ||
1385 | static int __devinit i5000_init_one(struct pci_dev *pdev, | ||
1386 | const struct pci_device_id *id) | ||
1387 | { | ||
1388 | int rc; | ||
1389 | |||
1390 | debugf0("MC: " __FILE__ ": %s()\n", __func__); | ||
1391 | |||
1392 | /* wake up device */ | ||
1393 | rc = pci_enable_device(pdev); | ||
1394 | if (rc == -EIO) | ||
1395 | return rc; | ||
1396 | |||
1397 | /* now probe and enable the device */ | ||
1398 | return i5000_probe1(pdev, id->driver_data); | ||
1399 | } | ||
1400 | |||
1401 | /************************************************************************** | ||
1402 | * i5000_remove_one destructor for one instance of device | ||
1403 | * | ||
1404 | */ | ||
1405 | static void __devexit i5000_remove_one(struct pci_dev *pdev) | ||
1406 | { | ||
1407 | struct mem_ctl_info *mci; | ||
1408 | |||
1409 | debugf0(__FILE__ ": %s()\n", __func__); | ||
1410 | |||
1411 | if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) | ||
1412 | return; | ||
1413 | |||
1414 | /* retrieve references to resources, and free those resources */ | ||
1415 | i5000_put_devices(mci); | ||
1416 | |||
1417 | edac_mc_free(mci); | ||
1418 | } | ||
1419 | |||
1420 | /************************************************************************** | ||
1421 | * pci_device_id table for which devices we are looking for | ||
1422 | * | ||
1423 | * The "E500P" device is the first device supported. | ||
1424 | */ | ||
1425 | static const struct pci_device_id i5000_pci_tbl[] __devinitdata = { | ||
1426 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16), | ||
1427 | .driver_data = I5000P}, | ||
1428 | |||
1429 | {0,} /* 0 terminated list. */ | ||
1430 | }; | ||
1431 | |||
1432 | MODULE_DEVICE_TABLE(pci, i5000_pci_tbl); | ||
1433 | |||
1434 | /************************************************************************** | ||
1435 | * i5000_driver pci_driver structure for this module | ||
1436 | * | ||
1437 | */ | ||
1438 | static struct pci_driver i5000_driver = { | ||
1439 | .name = __stringify(KBUILD_BASENAME), | ||
1440 | .probe = i5000_init_one, | ||
1441 | .remove = __devexit_p(i5000_remove_one), | ||
1442 | .id_table = i5000_pci_tbl, | ||
1443 | }; | ||
1444 | |||
1445 | /************************************************************************** | ||
1446 | * i5000_init Module entry function | ||
1447 | * Try to initialize this module for its devices | ||
1448 | */ | ||
1449 | static int __init i5000_init(void) | ||
1450 | { | ||
1451 | int pci_rc; | ||
1452 | |||
1453 | debugf2("MC: " __FILE__ ": %s()\n", __func__); | ||
1454 | |||
1455 | pci_rc = pci_register_driver(&i5000_driver); | ||
1456 | |||
1457 | return (pci_rc < 0) ? pci_rc : 0; | ||
1458 | } | ||
1459 | |||
1460 | /************************************************************************** | ||
1461 | * i5000_exit() Module exit function | ||
1462 | * Unregister the driver | ||
1463 | */ | ||
1464 | static void __exit i5000_exit(void) | ||
1465 | { | ||
1466 | debugf2("MC: " __FILE__ ": %s()\n", __func__); | ||
1467 | pci_unregister_driver(&i5000_driver); | ||
1468 | } | ||
1469 | |||
1470 | module_init(i5000_init); | ||
1471 | module_exit(i5000_exit); | ||
1472 | |||
1473 | MODULE_LICENSE("GPL"); | ||
1474 | MODULE_AUTHOR | ||
1475 | ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>"); | ||
1476 | MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - " | ||
1477 | I5000_REVISION); | ||