diff options
Diffstat (limited to 'drivers/dma/amba-pl08x.c')
-rw-r--r-- | drivers/dma/amba-pl08x.c | 2167 |
1 files changed, 2167 insertions, 0 deletions
diff --git a/drivers/dma/amba-pl08x.c b/drivers/dma/amba-pl08x.c new file mode 100644 index 000000000000..b605cc9ac3a2 --- /dev/null +++ b/drivers/dma/amba-pl08x.c | |||
@@ -0,0 +1,2167 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 ARM Ltd. | ||
3 | * Copyright (c) 2010 ST-Ericsson SA | ||
4 | * | ||
5 | * Author: Peter Pearse <peter.pearse@arm.com> | ||
6 | * Author: Linus Walleij <linus.walleij@stericsson.com> | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify it | ||
9 | * under the terms of the GNU General Public License as published by the Free | ||
10 | * Software Foundation; either version 2 of the License, or (at your option) | ||
11 | * any later version. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
14 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
15 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
16 | * more details. | ||
17 | * | ||
18 | * You should have received a copy of the GNU General Public License along with | ||
19 | * this program; if not, write to the Free Software Foundation, Inc., 59 | ||
20 | * Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
21 | * | ||
22 | * The full GNU General Public License is iin this distribution in the | ||
23 | * file called COPYING. | ||
24 | * | ||
25 | * Documentation: ARM DDI 0196G == PL080 | ||
26 | * Documentation: ARM DDI 0218E == PL081 | ||
27 | * | ||
28 | * PL080 & PL081 both have 16 sets of DMA signals that can be routed to | ||
29 | * any channel. | ||
30 | * | ||
31 | * The PL080 has 8 channels available for simultaneous use, and the PL081 | ||
32 | * has only two channels. So on these DMA controllers the number of channels | ||
33 | * and the number of incoming DMA signals are two totally different things. | ||
34 | * It is usually not possible to theoretically handle all physical signals, | ||
35 | * so a multiplexing scheme with possible denial of use is necessary. | ||
36 | * | ||
37 | * The PL080 has a dual bus master, PL081 has a single master. | ||
38 | * | ||
39 | * Memory to peripheral transfer may be visualized as | ||
40 | * Get data from memory to DMAC | ||
41 | * Until no data left | ||
42 | * On burst request from peripheral | ||
43 | * Destination burst from DMAC to peripheral | ||
44 | * Clear burst request | ||
45 | * Raise terminal count interrupt | ||
46 | * | ||
47 | * For peripherals with a FIFO: | ||
48 | * Source burst size == half the depth of the peripheral FIFO | ||
49 | * Destination burst size == the depth of the peripheral FIFO | ||
50 | * | ||
51 | * (Bursts are irrelevant for mem to mem transfers - there are no burst | ||
52 | * signals, the DMA controller will simply facilitate its AHB master.) | ||
53 | * | ||
54 | * ASSUMES default (little) endianness for DMA transfers | ||
55 | * | ||
56 | * Only DMAC flow control is implemented | ||
57 | * | ||
58 | * Global TODO: | ||
59 | * - Break out common code from arch/arm/mach-s3c64xx and share | ||
60 | */ | ||
61 | #include <linux/device.h> | ||
62 | #include <linux/init.h> | ||
63 | #include <linux/module.h> | ||
64 | #include <linux/pci.h> | ||
65 | #include <linux/interrupt.h> | ||
66 | #include <linux/slab.h> | ||
67 | #include <linux/dmapool.h> | ||
68 | #include <linux/amba/bus.h> | ||
69 | #include <linux/dmaengine.h> | ||
70 | #include <linux/amba/pl08x.h> | ||
71 | #include <linux/debugfs.h> | ||
72 | #include <linux/seq_file.h> | ||
73 | |||
74 | #include <asm/hardware/pl080.h> | ||
75 | #include <asm/dma.h> | ||
76 | #include <asm/mach/dma.h> | ||
77 | #include <asm/atomic.h> | ||
78 | #include <asm/processor.h> | ||
79 | #include <asm/cacheflush.h> | ||
80 | |||
81 | #define DRIVER_NAME "pl08xdmac" | ||
82 | |||
83 | /** | ||
84 | * struct vendor_data - vendor-specific config parameters | ||
85 | * for PL08x derivates | ||
86 | * @name: the name of this specific variant | ||
87 | * @channels: the number of channels available in this variant | ||
88 | * @dualmaster: whether this version supports dual AHB masters | ||
89 | * or not. | ||
90 | */ | ||
91 | struct vendor_data { | ||
92 | char *name; | ||
93 | u8 channels; | ||
94 | bool dualmaster; | ||
95 | }; | ||
96 | |||
97 | /* | ||
98 | * PL08X private data structures | ||
99 | * An LLI struct - see pl08x TRM | ||
100 | * Note that next uses bit[0] as a bus bit, | ||
101 | * start & end do not - their bus bit info | ||
102 | * is in cctl | ||
103 | */ | ||
104 | struct lli { | ||
105 | dma_addr_t src; | ||
106 | dma_addr_t dst; | ||
107 | dma_addr_t next; | ||
108 | u32 cctl; | ||
109 | }; | ||
110 | |||
111 | /** | ||
112 | * struct pl08x_driver_data - the local state holder for the PL08x | ||
113 | * @slave: slave engine for this instance | ||
114 | * @memcpy: memcpy engine for this instance | ||
115 | * @base: virtual memory base (remapped) for the PL08x | ||
116 | * @adev: the corresponding AMBA (PrimeCell) bus entry | ||
117 | * @vd: vendor data for this PL08x variant | ||
118 | * @pd: platform data passed in from the platform/machine | ||
119 | * @phy_chans: array of data for the physical channels | ||
120 | * @pool: a pool for the LLI descriptors | ||
121 | * @pool_ctr: counter of LLIs in the pool | ||
122 | * @lock: a spinlock for this struct | ||
123 | */ | ||
124 | struct pl08x_driver_data { | ||
125 | struct dma_device slave; | ||
126 | struct dma_device memcpy; | ||
127 | void __iomem *base; | ||
128 | struct amba_device *adev; | ||
129 | struct vendor_data *vd; | ||
130 | struct pl08x_platform_data *pd; | ||
131 | struct pl08x_phy_chan *phy_chans; | ||
132 | struct dma_pool *pool; | ||
133 | int pool_ctr; | ||
134 | spinlock_t lock; | ||
135 | }; | ||
136 | |||
137 | /* | ||
138 | * PL08X specific defines | ||
139 | */ | ||
140 | |||
141 | /* | ||
142 | * Memory boundaries: the manual for PL08x says that the controller | ||
143 | * cannot read past a 1KiB boundary, so these defines are used to | ||
144 | * create transfer LLIs that do not cross such boundaries. | ||
145 | */ | ||
146 | #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */ | ||
147 | #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT) | ||
148 | |||
149 | /* Minimum period between work queue runs */ | ||
150 | #define PL08X_WQ_PERIODMIN 20 | ||
151 | |||
152 | /* Size (bytes) of each LLI buffer allocated for one transfer */ | ||
153 | # define PL08X_LLI_TSFR_SIZE 0x2000 | ||
154 | |||
155 | /* Maximimum times we call dma_pool_alloc on this pool without freeing */ | ||
156 | #define PL08X_MAX_ALLOCS 0x40 | ||
157 | #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct lli)) | ||
158 | #define PL08X_ALIGN 8 | ||
159 | |||
160 | static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) | ||
161 | { | ||
162 | return container_of(chan, struct pl08x_dma_chan, chan); | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * Physical channel handling | ||
167 | */ | ||
168 | |||
169 | /* Whether a certain channel is busy or not */ | ||
170 | static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) | ||
171 | { | ||
172 | unsigned int val; | ||
173 | |||
174 | val = readl(ch->base + PL080_CH_CONFIG); | ||
175 | return val & PL080_CONFIG_ACTIVE; | ||
176 | } | ||
177 | |||
178 | /* | ||
179 | * Set the initial DMA register values i.e. those for the first LLI | ||
180 | * The next lli pointer and the configuration interrupt bit have | ||
181 | * been set when the LLIs were constructed | ||
182 | */ | ||
183 | static void pl08x_set_cregs(struct pl08x_driver_data *pl08x, | ||
184 | struct pl08x_phy_chan *ch) | ||
185 | { | ||
186 | /* Wait for channel inactive */ | ||
187 | while (pl08x_phy_channel_busy(ch)) | ||
188 | ; | ||
189 | |||
190 | dev_vdbg(&pl08x->adev->dev, | ||
191 | "WRITE channel %d: csrc=%08x, cdst=%08x, " | ||
192 | "cctl=%08x, clli=%08x, ccfg=%08x\n", | ||
193 | ch->id, | ||
194 | ch->csrc, | ||
195 | ch->cdst, | ||
196 | ch->cctl, | ||
197 | ch->clli, | ||
198 | ch->ccfg); | ||
199 | |||
200 | writel(ch->csrc, ch->base + PL080_CH_SRC_ADDR); | ||
201 | writel(ch->cdst, ch->base + PL080_CH_DST_ADDR); | ||
202 | writel(ch->clli, ch->base + PL080_CH_LLI); | ||
203 | writel(ch->cctl, ch->base + PL080_CH_CONTROL); | ||
204 | writel(ch->ccfg, ch->base + PL080_CH_CONFIG); | ||
205 | } | ||
206 | |||
207 | static inline void pl08x_config_phychan_for_txd(struct pl08x_dma_chan *plchan) | ||
208 | { | ||
209 | struct pl08x_channel_data *cd = plchan->cd; | ||
210 | struct pl08x_phy_chan *phychan = plchan->phychan; | ||
211 | struct pl08x_txd *txd = plchan->at; | ||
212 | |||
213 | /* Copy the basic control register calculated at transfer config */ | ||
214 | phychan->csrc = txd->csrc; | ||
215 | phychan->cdst = txd->cdst; | ||
216 | phychan->clli = txd->clli; | ||
217 | phychan->cctl = txd->cctl; | ||
218 | |||
219 | /* Assign the signal to the proper control registers */ | ||
220 | phychan->ccfg = cd->ccfg; | ||
221 | phychan->ccfg &= ~PL080_CONFIG_SRC_SEL_MASK; | ||
222 | phychan->ccfg &= ~PL080_CONFIG_DST_SEL_MASK; | ||
223 | /* If it wasn't set from AMBA, ignore it */ | ||
224 | if (txd->direction == DMA_TO_DEVICE) | ||
225 | /* Select signal as destination */ | ||
226 | phychan->ccfg |= | ||
227 | (phychan->signal << PL080_CONFIG_DST_SEL_SHIFT); | ||
228 | else if (txd->direction == DMA_FROM_DEVICE) | ||
229 | /* Select signal as source */ | ||
230 | phychan->ccfg |= | ||
231 | (phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT); | ||
232 | /* Always enable error interrupts */ | ||
233 | phychan->ccfg |= PL080_CONFIG_ERR_IRQ_MASK; | ||
234 | /* Always enable terminal interrupts */ | ||
235 | phychan->ccfg |= PL080_CONFIG_TC_IRQ_MASK; | ||
236 | } | ||
237 | |||
238 | /* | ||
239 | * Enable the DMA channel | ||
240 | * Assumes all other configuration bits have been set | ||
241 | * as desired before this code is called | ||
242 | */ | ||
243 | static void pl08x_enable_phy_chan(struct pl08x_driver_data *pl08x, | ||
244 | struct pl08x_phy_chan *ch) | ||
245 | { | ||
246 | u32 val; | ||
247 | |||
248 | /* | ||
249 | * Do not access config register until channel shows as disabled | ||
250 | */ | ||
251 | while (readl(pl08x->base + PL080_EN_CHAN) & (1 << ch->id)) | ||
252 | ; | ||
253 | |||
254 | /* | ||
255 | * Do not access config register until channel shows as inactive | ||
256 | */ | ||
257 | val = readl(ch->base + PL080_CH_CONFIG); | ||
258 | while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE)) | ||
259 | val = readl(ch->base + PL080_CH_CONFIG); | ||
260 | |||
261 | writel(val | PL080_CONFIG_ENABLE, ch->base + PL080_CH_CONFIG); | ||
262 | } | ||
263 | |||
264 | /* | ||
265 | * Overall DMAC remains enabled always. | ||
266 | * | ||
267 | * Disabling individual channels could lose data. | ||
268 | * | ||
269 | * Disable the peripheral DMA after disabling the DMAC | ||
270 | * in order to allow the DMAC FIFO to drain, and | ||
271 | * hence allow the channel to show inactive | ||
272 | * | ||
273 | */ | ||
274 | static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) | ||
275 | { | ||
276 | u32 val; | ||
277 | |||
278 | /* Set the HALT bit and wait for the FIFO to drain */ | ||
279 | val = readl(ch->base + PL080_CH_CONFIG); | ||
280 | val |= PL080_CONFIG_HALT; | ||
281 | writel(val, ch->base + PL080_CH_CONFIG); | ||
282 | |||
283 | /* Wait for channel inactive */ | ||
284 | while (pl08x_phy_channel_busy(ch)) | ||
285 | ; | ||
286 | } | ||
287 | |||
288 | static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) | ||
289 | { | ||
290 | u32 val; | ||
291 | |||
292 | /* Clear the HALT bit */ | ||
293 | val = readl(ch->base + PL080_CH_CONFIG); | ||
294 | val &= ~PL080_CONFIG_HALT; | ||
295 | writel(val, ch->base + PL080_CH_CONFIG); | ||
296 | } | ||
297 | |||
298 | |||
299 | /* Stops the channel */ | ||
300 | static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch) | ||
301 | { | ||
302 | u32 val; | ||
303 | |||
304 | pl08x_pause_phy_chan(ch); | ||
305 | |||
306 | /* Disable channel */ | ||
307 | val = readl(ch->base + PL080_CH_CONFIG); | ||
308 | val &= ~PL080_CONFIG_ENABLE; | ||
309 | val &= ~PL080_CONFIG_ERR_IRQ_MASK; | ||
310 | val &= ~PL080_CONFIG_TC_IRQ_MASK; | ||
311 | writel(val, ch->base + PL080_CH_CONFIG); | ||
312 | } | ||
313 | |||
314 | static inline u32 get_bytes_in_cctl(u32 cctl) | ||
315 | { | ||
316 | /* The source width defines the number of bytes */ | ||
317 | u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK; | ||
318 | |||
319 | switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) { | ||
320 | case PL080_WIDTH_8BIT: | ||
321 | break; | ||
322 | case PL080_WIDTH_16BIT: | ||
323 | bytes *= 2; | ||
324 | break; | ||
325 | case PL080_WIDTH_32BIT: | ||
326 | bytes *= 4; | ||
327 | break; | ||
328 | } | ||
329 | return bytes; | ||
330 | } | ||
331 | |||
332 | /* The channel should be paused when calling this */ | ||
333 | static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) | ||
334 | { | ||
335 | struct pl08x_phy_chan *ch; | ||
336 | struct pl08x_txd *txdi = NULL; | ||
337 | struct pl08x_txd *txd; | ||
338 | unsigned long flags; | ||
339 | u32 bytes = 0; | ||
340 | |||
341 | spin_lock_irqsave(&plchan->lock, flags); | ||
342 | |||
343 | ch = plchan->phychan; | ||
344 | txd = plchan->at; | ||
345 | |||
346 | /* | ||
347 | * Next follow the LLIs to get the number of pending bytes in the | ||
348 | * currently active transaction. | ||
349 | */ | ||
350 | if (ch && txd) { | ||
351 | struct lli *llis_va = txd->llis_va; | ||
352 | struct lli *llis_bus = (struct lli *) txd->llis_bus; | ||
353 | u32 clli = readl(ch->base + PL080_CH_LLI); | ||
354 | |||
355 | /* First get the bytes in the current active LLI */ | ||
356 | bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL)); | ||
357 | |||
358 | if (clli) { | ||
359 | int i = 0; | ||
360 | |||
361 | /* Forward to the LLI pointed to by clli */ | ||
362 | while ((clli != (u32) &(llis_bus[i])) && | ||
363 | (i < MAX_NUM_TSFR_LLIS)) | ||
364 | i++; | ||
365 | |||
366 | while (clli) { | ||
367 | bytes += get_bytes_in_cctl(llis_va[i].cctl); | ||
368 | /* | ||
369 | * A clli of 0x00000000 will terminate the | ||
370 | * LLI list | ||
371 | */ | ||
372 | clli = llis_va[i].next; | ||
373 | i++; | ||
374 | } | ||
375 | } | ||
376 | } | ||
377 | |||
378 | /* Sum up all queued transactions */ | ||
379 | if (!list_empty(&plchan->desc_list)) { | ||
380 | list_for_each_entry(txdi, &plchan->desc_list, node) { | ||
381 | bytes += txdi->len; | ||
382 | } | ||
383 | |||
384 | } | ||
385 | |||
386 | spin_unlock_irqrestore(&plchan->lock, flags); | ||
387 | |||
388 | return bytes; | ||
389 | } | ||
390 | |||
391 | /* | ||
392 | * Allocate a physical channel for a virtual channel | ||
393 | */ | ||
394 | static struct pl08x_phy_chan * | ||
395 | pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, | ||
396 | struct pl08x_dma_chan *virt_chan) | ||
397 | { | ||
398 | struct pl08x_phy_chan *ch = NULL; | ||
399 | unsigned long flags; | ||
400 | int i; | ||
401 | |||
402 | /* | ||
403 | * Try to locate a physical channel to be used for | ||
404 | * this transfer. If all are taken return NULL and | ||
405 | * the requester will have to cope by using some fallback | ||
406 | * PIO mode or retrying later. | ||
407 | */ | ||
408 | for (i = 0; i < pl08x->vd->channels; i++) { | ||
409 | ch = &pl08x->phy_chans[i]; | ||
410 | |||
411 | spin_lock_irqsave(&ch->lock, flags); | ||
412 | |||
413 | if (!ch->serving) { | ||
414 | ch->serving = virt_chan; | ||
415 | ch->signal = -1; | ||
416 | spin_unlock_irqrestore(&ch->lock, flags); | ||
417 | break; | ||
418 | } | ||
419 | |||
420 | spin_unlock_irqrestore(&ch->lock, flags); | ||
421 | } | ||
422 | |||
423 | if (i == pl08x->vd->channels) { | ||
424 | /* No physical channel available, cope with it */ | ||
425 | return NULL; | ||
426 | } | ||
427 | |||
428 | return ch; | ||
429 | } | ||
430 | |||
431 | static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, | ||
432 | struct pl08x_phy_chan *ch) | ||
433 | { | ||
434 | unsigned long flags; | ||
435 | |||
436 | /* Stop the channel and clear its interrupts */ | ||
437 | pl08x_stop_phy_chan(ch); | ||
438 | writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR); | ||
439 | writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR); | ||
440 | |||
441 | /* Mark it as free */ | ||
442 | spin_lock_irqsave(&ch->lock, flags); | ||
443 | ch->serving = NULL; | ||
444 | spin_unlock_irqrestore(&ch->lock, flags); | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * LLI handling | ||
449 | */ | ||
450 | |||
451 | static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded) | ||
452 | { | ||
453 | switch (coded) { | ||
454 | case PL080_WIDTH_8BIT: | ||
455 | return 1; | ||
456 | case PL080_WIDTH_16BIT: | ||
457 | return 2; | ||
458 | case PL080_WIDTH_32BIT: | ||
459 | return 4; | ||
460 | default: | ||
461 | break; | ||
462 | } | ||
463 | BUG(); | ||
464 | return 0; | ||
465 | } | ||
466 | |||
467 | static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth, | ||
468 | u32 tsize) | ||
469 | { | ||
470 | u32 retbits = cctl; | ||
471 | |||
472 | /* Remove all src, dst and transfersize bits */ | ||
473 | retbits &= ~PL080_CONTROL_DWIDTH_MASK; | ||
474 | retbits &= ~PL080_CONTROL_SWIDTH_MASK; | ||
475 | retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; | ||
476 | |||
477 | /* Then set the bits according to the parameters */ | ||
478 | switch (srcwidth) { | ||
479 | case 1: | ||
480 | retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT; | ||
481 | break; | ||
482 | case 2: | ||
483 | retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT; | ||
484 | break; | ||
485 | case 4: | ||
486 | retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT; | ||
487 | break; | ||
488 | default: | ||
489 | BUG(); | ||
490 | break; | ||
491 | } | ||
492 | |||
493 | switch (dstwidth) { | ||
494 | case 1: | ||
495 | retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; | ||
496 | break; | ||
497 | case 2: | ||
498 | retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; | ||
499 | break; | ||
500 | case 4: | ||
501 | retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; | ||
502 | break; | ||
503 | default: | ||
504 | BUG(); | ||
505 | break; | ||
506 | } | ||
507 | |||
508 | retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; | ||
509 | return retbits; | ||
510 | } | ||
511 | |||
512 | /* | ||
513 | * Autoselect a master bus to use for the transfer | ||
514 | * this prefers the destination bus if both available | ||
515 | * if fixed address on one bus the other will be chosen | ||
516 | */ | ||
517 | void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus, | ||
518 | struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus, | ||
519 | struct pl08x_bus_data **sbus, u32 cctl) | ||
520 | { | ||
521 | if (!(cctl & PL080_CONTROL_DST_INCR)) { | ||
522 | *mbus = src_bus; | ||
523 | *sbus = dst_bus; | ||
524 | } else if (!(cctl & PL080_CONTROL_SRC_INCR)) { | ||
525 | *mbus = dst_bus; | ||
526 | *sbus = src_bus; | ||
527 | } else { | ||
528 | if (dst_bus->buswidth == 4) { | ||
529 | *mbus = dst_bus; | ||
530 | *sbus = src_bus; | ||
531 | } else if (src_bus->buswidth == 4) { | ||
532 | *mbus = src_bus; | ||
533 | *sbus = dst_bus; | ||
534 | } else if (dst_bus->buswidth == 2) { | ||
535 | *mbus = dst_bus; | ||
536 | *sbus = src_bus; | ||
537 | } else if (src_bus->buswidth == 2) { | ||
538 | *mbus = src_bus; | ||
539 | *sbus = dst_bus; | ||
540 | } else { | ||
541 | /* src_bus->buswidth == 1 */ | ||
542 | *mbus = dst_bus; | ||
543 | *sbus = src_bus; | ||
544 | } | ||
545 | } | ||
546 | } | ||
547 | |||
548 | /* | ||
549 | * Fills in one LLI for a certain transfer descriptor | ||
550 | * and advance the counter | ||
551 | */ | ||
552 | int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x, | ||
553 | struct pl08x_txd *txd, int num_llis, int len, | ||
554 | u32 cctl, u32 *remainder) | ||
555 | { | ||
556 | struct lli *llis_va = txd->llis_va; | ||
557 | struct lli *llis_bus = (struct lli *) txd->llis_bus; | ||
558 | |||
559 | BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); | ||
560 | |||
561 | llis_va[num_llis].cctl = cctl; | ||
562 | llis_va[num_llis].src = txd->srcbus.addr; | ||
563 | llis_va[num_llis].dst = txd->dstbus.addr; | ||
564 | |||
565 | /* | ||
566 | * On versions with dual masters, you can optionally AND on | ||
567 | * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read | ||
568 | * in new LLIs with that controller, but we always try to | ||
569 | * choose AHB1 to point into memory. The idea is to have AHB2 | ||
570 | * fixed on the peripheral and AHB1 messing around in the | ||
571 | * memory. So we don't manipulate this bit currently. | ||
572 | */ | ||
573 | |||
574 | llis_va[num_llis].next = | ||
575 | (dma_addr_t)((u32) &(llis_bus[num_llis + 1])); | ||
576 | |||
577 | if (cctl & PL080_CONTROL_SRC_INCR) | ||
578 | txd->srcbus.addr += len; | ||
579 | if (cctl & PL080_CONTROL_DST_INCR) | ||
580 | txd->dstbus.addr += len; | ||
581 | |||
582 | *remainder -= len; | ||
583 | |||
584 | return num_llis + 1; | ||
585 | } | ||
586 | |||
587 | /* | ||
588 | * Return number of bytes to fill to boundary, or len | ||
589 | */ | ||
590 | static inline u32 pl08x_pre_boundary(u32 addr, u32 len) | ||
591 | { | ||
592 | u32 boundary; | ||
593 | |||
594 | boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1) | ||
595 | << PL08X_BOUNDARY_SHIFT; | ||
596 | |||
597 | if (boundary < addr + len) | ||
598 | return boundary - addr; | ||
599 | else | ||
600 | return len; | ||
601 | } | ||
602 | |||
603 | /* | ||
604 | * This fills in the table of LLIs for the transfer descriptor | ||
605 | * Note that we assume we never have to change the burst sizes | ||
606 | * Return 0 for error | ||
607 | */ | ||
608 | static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, | ||
609 | struct pl08x_txd *txd) | ||
610 | { | ||
611 | struct pl08x_channel_data *cd = txd->cd; | ||
612 | struct pl08x_bus_data *mbus, *sbus; | ||
613 | u32 remainder; | ||
614 | int num_llis = 0; | ||
615 | u32 cctl; | ||
616 | int max_bytes_per_lli; | ||
617 | int total_bytes = 0; | ||
618 | struct lli *llis_va; | ||
619 | struct lli *llis_bus; | ||
620 | |||
621 | if (!txd) { | ||
622 | dev_err(&pl08x->adev->dev, "%s no descriptor\n", __func__); | ||
623 | return 0; | ||
624 | } | ||
625 | |||
626 | txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, | ||
627 | &txd->llis_bus); | ||
628 | if (!txd->llis_va) { | ||
629 | dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); | ||
630 | return 0; | ||
631 | } | ||
632 | |||
633 | pl08x->pool_ctr++; | ||
634 | |||
635 | /* | ||
636 | * Initialize bus values for this transfer | ||
637 | * from the passed optimal values | ||
638 | */ | ||
639 | if (!cd) { | ||
640 | dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__); | ||
641 | return 0; | ||
642 | } | ||
643 | |||
644 | /* Get the default CCTL from the platform data */ | ||
645 | cctl = cd->cctl; | ||
646 | |||
647 | /* | ||
648 | * On the PL080 we have two bus masters and we | ||
649 | * should select one for source and one for | ||
650 | * destination. We try to use AHB2 for the | ||
651 | * bus which does not increment (typically the | ||
652 | * peripheral) else we just choose something. | ||
653 | */ | ||
654 | cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2); | ||
655 | if (pl08x->vd->dualmaster) { | ||
656 | if (cctl & PL080_CONTROL_SRC_INCR) | ||
657 | /* Source increments, use AHB2 for destination */ | ||
658 | cctl |= PL080_CONTROL_DST_AHB2; | ||
659 | else if (cctl & PL080_CONTROL_DST_INCR) | ||
660 | /* Destination increments, use AHB2 for source */ | ||
661 | cctl |= PL080_CONTROL_SRC_AHB2; | ||
662 | else | ||
663 | /* Just pick something, source AHB1 dest AHB2 */ | ||
664 | cctl |= PL080_CONTROL_DST_AHB2; | ||
665 | } | ||
666 | |||
667 | /* Find maximum width of the source bus */ | ||
668 | txd->srcbus.maxwidth = | ||
669 | pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >> | ||
670 | PL080_CONTROL_SWIDTH_SHIFT); | ||
671 | |||
672 | /* Find maximum width of the destination bus */ | ||
673 | txd->dstbus.maxwidth = | ||
674 | pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >> | ||
675 | PL080_CONTROL_DWIDTH_SHIFT); | ||
676 | |||
677 | /* Set up the bus widths to the maximum */ | ||
678 | txd->srcbus.buswidth = txd->srcbus.maxwidth; | ||
679 | txd->dstbus.buswidth = txd->dstbus.maxwidth; | ||
680 | dev_vdbg(&pl08x->adev->dev, | ||
681 | "%s source bus is %d bytes wide, dest bus is %d bytes wide\n", | ||
682 | __func__, txd->srcbus.buswidth, txd->dstbus.buswidth); | ||
683 | |||
684 | |||
685 | /* | ||
686 | * Bytes transferred == tsize * MIN(buswidths), not max(buswidths) | ||
687 | */ | ||
688 | max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) * | ||
689 | PL080_CONTROL_TRANSFER_SIZE_MASK; | ||
690 | dev_vdbg(&pl08x->adev->dev, | ||
691 | "%s max bytes per lli = %d\n", | ||
692 | __func__, max_bytes_per_lli); | ||
693 | |||
694 | /* We need to count this down to zero */ | ||
695 | remainder = txd->len; | ||
696 | dev_vdbg(&pl08x->adev->dev, | ||
697 | "%s remainder = %d\n", | ||
698 | __func__, remainder); | ||
699 | |||
700 | /* | ||
701 | * Choose bus to align to | ||
702 | * - prefers destination bus if both available | ||
703 | * - if fixed address on one bus chooses other | ||
704 | * - modifies cctl to choose an apropriate master | ||
705 | */ | ||
706 | pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus, | ||
707 | &mbus, &sbus, cctl); | ||
708 | |||
709 | |||
710 | /* | ||
711 | * The lowest bit of the LLI register | ||
712 | * is also used to indicate which master to | ||
713 | * use for reading the LLIs. | ||
714 | */ | ||
715 | |||
716 | if (txd->len < mbus->buswidth) { | ||
717 | /* | ||
718 | * Less than a bus width available | ||
719 | * - send as single bytes | ||
720 | */ | ||
721 | while (remainder) { | ||
722 | dev_vdbg(&pl08x->adev->dev, | ||
723 | "%s single byte LLIs for a transfer of " | ||
724 | "less than a bus width (remain %08x)\n", | ||
725 | __func__, remainder); | ||
726 | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); | ||
727 | num_llis = | ||
728 | pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1, | ||
729 | cctl, &remainder); | ||
730 | total_bytes++; | ||
731 | } | ||
732 | } else { | ||
733 | /* | ||
734 | * Make one byte LLIs until master bus is aligned | ||
735 | * - slave will then be aligned also | ||
736 | */ | ||
737 | while ((mbus->addr) % (mbus->buswidth)) { | ||
738 | dev_vdbg(&pl08x->adev->dev, | ||
739 | "%s adjustment lli for less than bus width " | ||
740 | "(remain %08x)\n", | ||
741 | __func__, remainder); | ||
742 | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); | ||
743 | num_llis = pl08x_fill_lli_for_desc | ||
744 | (pl08x, txd, num_llis, 1, cctl, &remainder); | ||
745 | total_bytes++; | ||
746 | } | ||
747 | |||
748 | /* | ||
749 | * Master now aligned | ||
750 | * - if slave is not then we must set its width down | ||
751 | */ | ||
752 | if (sbus->addr % sbus->buswidth) { | ||
753 | dev_dbg(&pl08x->adev->dev, | ||
754 | "%s set down bus width to one byte\n", | ||
755 | __func__); | ||
756 | |||
757 | sbus->buswidth = 1; | ||
758 | } | ||
759 | |||
760 | /* | ||
761 | * Make largest possible LLIs until less than one bus | ||
762 | * width left | ||
763 | */ | ||
764 | while (remainder > (mbus->buswidth - 1)) { | ||
765 | int lli_len, target_len; | ||
766 | int tsize; | ||
767 | int odd_bytes; | ||
768 | |||
769 | /* | ||
770 | * If enough left try to send max possible, | ||
771 | * otherwise try to send the remainder | ||
772 | */ | ||
773 | target_len = remainder; | ||
774 | if (remainder > max_bytes_per_lli) | ||
775 | target_len = max_bytes_per_lli; | ||
776 | |||
777 | /* | ||
778 | * Set bus lengths for incrementing busses | ||
779 | * to number of bytes which fill to next memory | ||
780 | * boundary | ||
781 | */ | ||
782 | if (cctl & PL080_CONTROL_SRC_INCR) | ||
783 | txd->srcbus.fill_bytes = | ||
784 | pl08x_pre_boundary( | ||
785 | txd->srcbus.addr, | ||
786 | remainder); | ||
787 | else | ||
788 | txd->srcbus.fill_bytes = | ||
789 | max_bytes_per_lli; | ||
790 | |||
791 | if (cctl & PL080_CONTROL_DST_INCR) | ||
792 | txd->dstbus.fill_bytes = | ||
793 | pl08x_pre_boundary( | ||
794 | txd->dstbus.addr, | ||
795 | remainder); | ||
796 | else | ||
797 | txd->dstbus.fill_bytes = | ||
798 | max_bytes_per_lli; | ||
799 | |||
800 | /* | ||
801 | * Find the nearest | ||
802 | */ | ||
803 | lli_len = min(txd->srcbus.fill_bytes, | ||
804 | txd->dstbus.fill_bytes); | ||
805 | |||
806 | BUG_ON(lli_len > remainder); | ||
807 | |||
808 | if (lli_len <= 0) { | ||
809 | dev_err(&pl08x->adev->dev, | ||
810 | "%s lli_len is %d, <= 0\n", | ||
811 | __func__, lli_len); | ||
812 | return 0; | ||
813 | } | ||
814 | |||
815 | if (lli_len == target_len) { | ||
816 | /* | ||
817 | * Can send what we wanted | ||
818 | */ | ||
819 | /* | ||
820 | * Maintain alignment | ||
821 | */ | ||
822 | lli_len = (lli_len/mbus->buswidth) * | ||
823 | mbus->buswidth; | ||
824 | odd_bytes = 0; | ||
825 | } else { | ||
826 | /* | ||
827 | * So now we know how many bytes to transfer | ||
828 | * to get to the nearest boundary | ||
829 | * The next lli will past the boundary | ||
830 | * - however we may be working to a boundary | ||
831 | * on the slave bus | ||
832 | * We need to ensure the master stays aligned | ||
833 | */ | ||
834 | odd_bytes = lli_len % mbus->buswidth; | ||
835 | /* | ||
836 | * - and that we are working in multiples | ||
837 | * of the bus widths | ||
838 | */ | ||
839 | lli_len -= odd_bytes; | ||
840 | |||
841 | } | ||
842 | |||
843 | if (lli_len) { | ||
844 | /* | ||
845 | * Check against minimum bus alignment: | ||
846 | * Calculate actual transfer size in relation | ||
847 | * to bus width an get a maximum remainder of | ||
848 | * the smallest bus width - 1 | ||
849 | */ | ||
850 | /* FIXME: use round_down()? */ | ||
851 | tsize = lli_len / min(mbus->buswidth, | ||
852 | sbus->buswidth); | ||
853 | lli_len = tsize * min(mbus->buswidth, | ||
854 | sbus->buswidth); | ||
855 | |||
856 | if (target_len != lli_len) { | ||
857 | dev_vdbg(&pl08x->adev->dev, | ||
858 | "%s can't send what we want. Desired %08x, lli of %08x bytes in txd of %08x\n", | ||
859 | __func__, target_len, lli_len, txd->len); | ||
860 | } | ||
861 | |||
862 | cctl = pl08x_cctl_bits(cctl, | ||
863 | txd->srcbus.buswidth, | ||
864 | txd->dstbus.buswidth, | ||
865 | tsize); | ||
866 | |||
867 | dev_vdbg(&pl08x->adev->dev, | ||
868 | "%s fill lli with single lli chunk of size %08x (remainder %08x)\n", | ||
869 | __func__, lli_len, remainder); | ||
870 | num_llis = pl08x_fill_lli_for_desc(pl08x, txd, | ||
871 | num_llis, lli_len, cctl, | ||
872 | &remainder); | ||
873 | total_bytes += lli_len; | ||
874 | } | ||
875 | |||
876 | |||
877 | if (odd_bytes) { | ||
878 | /* | ||
879 | * Creep past the boundary, | ||
880 | * maintaining master alignment | ||
881 | */ | ||
882 | int j; | ||
883 | for (j = 0; (j < mbus->buswidth) | ||
884 | && (remainder); j++) { | ||
885 | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); | ||
886 | dev_vdbg(&pl08x->adev->dev, | ||
887 | "%s align with boundardy, single byte (remain %08x)\n", | ||
888 | __func__, remainder); | ||
889 | num_llis = | ||
890 | pl08x_fill_lli_for_desc(pl08x, | ||
891 | txd, num_llis, 1, | ||
892 | cctl, &remainder); | ||
893 | total_bytes++; | ||
894 | } | ||
895 | } | ||
896 | } | ||
897 | |||
898 | /* | ||
899 | * Send any odd bytes | ||
900 | */ | ||
901 | if (remainder < 0) { | ||
902 | dev_err(&pl08x->adev->dev, "%s remainder not fitted 0x%08x bytes\n", | ||
903 | __func__, remainder); | ||
904 | return 0; | ||
905 | } | ||
906 | |||
907 | while (remainder) { | ||
908 | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); | ||
909 | dev_vdbg(&pl08x->adev->dev, | ||
910 | "%s align with boundardy, single odd byte (remain %d)\n", | ||
911 | __func__, remainder); | ||
912 | num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis, | ||
913 | 1, cctl, &remainder); | ||
914 | total_bytes++; | ||
915 | } | ||
916 | } | ||
917 | if (total_bytes != txd->len) { | ||
918 | dev_err(&pl08x->adev->dev, | ||
919 | "%s size of encoded lli:s don't match total txd, transferred 0x%08x from size 0x%08x\n", | ||
920 | __func__, total_bytes, txd->len); | ||
921 | return 0; | ||
922 | } | ||
923 | |||
924 | if (num_llis >= MAX_NUM_TSFR_LLIS) { | ||
925 | dev_err(&pl08x->adev->dev, | ||
926 | "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", | ||
927 | __func__, (u32) MAX_NUM_TSFR_LLIS); | ||
928 | return 0; | ||
929 | } | ||
930 | /* | ||
931 | * Decide whether this is a loop or a terminated transfer | ||
932 | */ | ||
933 | llis_va = txd->llis_va; | ||
934 | llis_bus = (struct lli *) txd->llis_bus; | ||
935 | |||
936 | if (cd->circular_buffer) { | ||
937 | /* | ||
938 | * Loop the circular buffer so that the next element | ||
939 | * points back to the beginning of the LLI. | ||
940 | */ | ||
941 | llis_va[num_llis - 1].next = | ||
942 | (dma_addr_t)((unsigned int)&(llis_bus[0])); | ||
943 | } else { | ||
944 | /* | ||
945 | * On non-circular buffers, the final LLI terminates | ||
946 | * the LLI. | ||
947 | */ | ||
948 | llis_va[num_llis - 1].next = 0; | ||
949 | /* | ||
950 | * The final LLI element shall also fire an interrupt | ||
951 | */ | ||
952 | llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN; | ||
953 | } | ||
954 | |||
955 | /* Now store the channel register values */ | ||
956 | txd->csrc = llis_va[0].src; | ||
957 | txd->cdst = llis_va[0].dst; | ||
958 | if (num_llis > 1) | ||
959 | txd->clli = llis_va[0].next; | ||
960 | else | ||
961 | txd->clli = 0; | ||
962 | |||
963 | txd->cctl = llis_va[0].cctl; | ||
964 | /* ccfg will be set at physical channel allocation time */ | ||
965 | |||
966 | #ifdef VERBOSE_DEBUG | ||
967 | { | ||
968 | int i; | ||
969 | |||
970 | for (i = 0; i < num_llis; i++) { | ||
971 | dev_vdbg(&pl08x->adev->dev, | ||
972 | "lli %d @%p: csrc=%08x, cdst=%08x, cctl=%08x, clli=%08x\n", | ||
973 | i, | ||
974 | &llis_va[i], | ||
975 | llis_va[i].src, | ||
976 | llis_va[i].dst, | ||
977 | llis_va[i].cctl, | ||
978 | llis_va[i].next | ||
979 | ); | ||
980 | } | ||
981 | } | ||
982 | #endif | ||
983 | |||
984 | return num_llis; | ||
985 | } | ||
986 | |||
987 | /* You should call this with the struct pl08x lock held */ | ||
988 | static void pl08x_free_txd(struct pl08x_driver_data *pl08x, | ||
989 | struct pl08x_txd *txd) | ||
990 | { | ||
991 | if (!txd) | ||
992 | dev_err(&pl08x->adev->dev, | ||
993 | "%s no descriptor to free\n", | ||
994 | __func__); | ||
995 | |||
996 | /* Free the LLI */ | ||
997 | dma_pool_free(pl08x->pool, txd->llis_va, | ||
998 | txd->llis_bus); | ||
999 | |||
1000 | pl08x->pool_ctr--; | ||
1001 | |||
1002 | kfree(txd); | ||
1003 | } | ||
1004 | |||
1005 | static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, | ||
1006 | struct pl08x_dma_chan *plchan) | ||
1007 | { | ||
1008 | struct pl08x_txd *txdi = NULL; | ||
1009 | struct pl08x_txd *next; | ||
1010 | |||
1011 | if (!list_empty(&plchan->desc_list)) { | ||
1012 | list_for_each_entry_safe(txdi, | ||
1013 | next, &plchan->desc_list, node) { | ||
1014 | list_del(&txdi->node); | ||
1015 | pl08x_free_txd(pl08x, txdi); | ||
1016 | } | ||
1017 | |||
1018 | } | ||
1019 | } | ||
1020 | |||
1021 | /* | ||
1022 | * The DMA ENGINE API | ||
1023 | */ | ||
1024 | static int pl08x_alloc_chan_resources(struct dma_chan *chan) | ||
1025 | { | ||
1026 | return 0; | ||
1027 | } | ||
1028 | |||
1029 | static void pl08x_free_chan_resources(struct dma_chan *chan) | ||
1030 | { | ||
1031 | } | ||
1032 | |||
1033 | /* | ||
1034 | * This should be called with the channel plchan->lock held | ||
1035 | */ | ||
1036 | static int prep_phy_channel(struct pl08x_dma_chan *plchan, | ||
1037 | struct pl08x_txd *txd) | ||
1038 | { | ||
1039 | struct pl08x_driver_data *pl08x = plchan->host; | ||
1040 | struct pl08x_phy_chan *ch; | ||
1041 | int ret; | ||
1042 | |||
1043 | /* Check if we already have a channel */ | ||
1044 | if (plchan->phychan) | ||
1045 | return 0; | ||
1046 | |||
1047 | ch = pl08x_get_phy_channel(pl08x, plchan); | ||
1048 | if (!ch) { | ||
1049 | /* No physical channel available, cope with it */ | ||
1050 | dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); | ||
1051 | return -EBUSY; | ||
1052 | } | ||
1053 | |||
1054 | /* | ||
1055 | * OK we have a physical channel: for memcpy() this is all we | ||
1056 | * need, but for slaves the physical signals may be muxed! | ||
1057 | * Can the platform allow us to use this channel? | ||
1058 | */ | ||
1059 | if (plchan->slave && | ||
1060 | ch->signal < 0 && | ||
1061 | pl08x->pd->get_signal) { | ||
1062 | ret = pl08x->pd->get_signal(plchan); | ||
1063 | if (ret < 0) { | ||
1064 | dev_dbg(&pl08x->adev->dev, | ||
1065 | "unable to use physical channel %d for transfer on %s due to platform restrictions\n", | ||
1066 | ch->id, plchan->name); | ||
1067 | /* Release physical channel & return */ | ||
1068 | pl08x_put_phy_channel(pl08x, ch); | ||
1069 | return -EBUSY; | ||
1070 | } | ||
1071 | ch->signal = ret; | ||
1072 | } | ||
1073 | |||
1074 | dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n", | ||
1075 | ch->id, | ||
1076 | ch->signal, | ||
1077 | plchan->name); | ||
1078 | |||
1079 | plchan->phychan = ch; | ||
1080 | |||
1081 | return 0; | ||
1082 | } | ||
1083 | |||
1084 | static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx) | ||
1085 | { | ||
1086 | struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan); | ||
1087 | |||
1088 | atomic_inc(&plchan->last_issued); | ||
1089 | tx->cookie = atomic_read(&plchan->last_issued); | ||
1090 | /* This unlock follows the lock in the prep() function */ | ||
1091 | spin_unlock_irqrestore(&plchan->lock, plchan->lockflags); | ||
1092 | |||
1093 | return tx->cookie; | ||
1094 | } | ||
1095 | |||
1096 | static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt( | ||
1097 | struct dma_chan *chan, unsigned long flags) | ||
1098 | { | ||
1099 | struct dma_async_tx_descriptor *retval = NULL; | ||
1100 | |||
1101 | return retval; | ||
1102 | } | ||
1103 | |||
1104 | /* | ||
1105 | * Code accessing dma_async_is_complete() in a tight loop | ||
1106 | * may give problems - could schedule where indicated. | ||
1107 | * If slaves are relying on interrupts to signal completion this | ||
1108 | * function must not be called with interrupts disabled | ||
1109 | */ | ||
1110 | static enum dma_status | ||
1111 | pl08x_dma_tx_status(struct dma_chan *chan, | ||
1112 | dma_cookie_t cookie, | ||
1113 | struct dma_tx_state *txstate) | ||
1114 | { | ||
1115 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | ||
1116 | dma_cookie_t last_used; | ||
1117 | dma_cookie_t last_complete; | ||
1118 | enum dma_status ret; | ||
1119 | u32 bytesleft = 0; | ||
1120 | |||
1121 | last_used = atomic_read(&plchan->last_issued); | ||
1122 | last_complete = plchan->lc; | ||
1123 | |||
1124 | ret = dma_async_is_complete(cookie, last_complete, last_used); | ||
1125 | if (ret == DMA_SUCCESS) { | ||
1126 | dma_set_tx_state(txstate, last_complete, last_used, 0); | ||
1127 | return ret; | ||
1128 | } | ||
1129 | |||
1130 | /* | ||
1131 | * schedule(); could be inserted here | ||
1132 | */ | ||
1133 | |||
1134 | /* | ||
1135 | * This cookie not complete yet | ||
1136 | */ | ||
1137 | last_used = atomic_read(&plchan->last_issued); | ||
1138 | last_complete = plchan->lc; | ||
1139 | |||
1140 | /* Get number of bytes left in the active transactions and queue */ | ||
1141 | bytesleft = pl08x_getbytes_chan(plchan); | ||
1142 | |||
1143 | dma_set_tx_state(txstate, last_complete, last_used, | ||
1144 | bytesleft); | ||
1145 | |||
1146 | if (plchan->state == PL08X_CHAN_PAUSED) | ||
1147 | return DMA_PAUSED; | ||
1148 | |||
1149 | /* Whether waiting or running, we're in progress */ | ||
1150 | return DMA_IN_PROGRESS; | ||
1151 | } | ||
1152 | |||
1153 | /* PrimeCell DMA extension */ | ||
1154 | struct burst_table { | ||
1155 | int burstwords; | ||
1156 | u32 reg; | ||
1157 | }; | ||
1158 | |||
1159 | static const struct burst_table burst_sizes[] = { | ||
1160 | { | ||
1161 | .burstwords = 256, | ||
1162 | .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) | | ||
1163 | (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT), | ||
1164 | }, | ||
1165 | { | ||
1166 | .burstwords = 128, | ||
1167 | .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) | | ||
1168 | (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT), | ||
1169 | }, | ||
1170 | { | ||
1171 | .burstwords = 64, | ||
1172 | .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) | | ||
1173 | (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT), | ||
1174 | }, | ||
1175 | { | ||
1176 | .burstwords = 32, | ||
1177 | .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) | | ||
1178 | (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT), | ||
1179 | }, | ||
1180 | { | ||
1181 | .burstwords = 16, | ||
1182 | .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) | | ||
1183 | (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT), | ||
1184 | }, | ||
1185 | { | ||
1186 | .burstwords = 8, | ||
1187 | .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) | | ||
1188 | (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT), | ||
1189 | }, | ||
1190 | { | ||
1191 | .burstwords = 4, | ||
1192 | .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) | | ||
1193 | (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT), | ||
1194 | }, | ||
1195 | { | ||
1196 | .burstwords = 1, | ||
1197 | .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | | ||
1198 | (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT), | ||
1199 | }, | ||
1200 | }; | ||
1201 | |||
1202 | static void dma_set_runtime_config(struct dma_chan *chan, | ||
1203 | struct dma_slave_config *config) | ||
1204 | { | ||
1205 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | ||
1206 | struct pl08x_driver_data *pl08x = plchan->host; | ||
1207 | struct pl08x_channel_data *cd = plchan->cd; | ||
1208 | enum dma_slave_buswidth addr_width; | ||
1209 | u32 maxburst; | ||
1210 | u32 cctl = 0; | ||
1211 | /* Mask out all except src and dst channel */ | ||
1212 | u32 ccfg = cd->ccfg & 0x000003DEU; | ||
1213 | int i = 0; | ||
1214 | |||
1215 | /* Transfer direction */ | ||
1216 | plchan->runtime_direction = config->direction; | ||
1217 | if (config->direction == DMA_TO_DEVICE) { | ||
1218 | plchan->runtime_addr = config->dst_addr; | ||
1219 | cctl |= PL080_CONTROL_SRC_INCR; | ||
1220 | ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT; | ||
1221 | addr_width = config->dst_addr_width; | ||
1222 | maxburst = config->dst_maxburst; | ||
1223 | } else if (config->direction == DMA_FROM_DEVICE) { | ||
1224 | plchan->runtime_addr = config->src_addr; | ||
1225 | cctl |= PL080_CONTROL_DST_INCR; | ||
1226 | ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; | ||
1227 | addr_width = config->src_addr_width; | ||
1228 | maxburst = config->src_maxburst; | ||
1229 | } else { | ||
1230 | dev_err(&pl08x->adev->dev, | ||
1231 | "bad runtime_config: alien transfer direction\n"); | ||
1232 | return; | ||
1233 | } | ||
1234 | |||
1235 | switch (addr_width) { | ||
1236 | case DMA_SLAVE_BUSWIDTH_1_BYTE: | ||
1237 | cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) | | ||
1238 | (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT); | ||
1239 | break; | ||
1240 | case DMA_SLAVE_BUSWIDTH_2_BYTES: | ||
1241 | cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) | | ||
1242 | (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT); | ||
1243 | break; | ||
1244 | case DMA_SLAVE_BUSWIDTH_4_BYTES: | ||
1245 | cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) | | ||
1246 | (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT); | ||
1247 | break; | ||
1248 | default: | ||
1249 | dev_err(&pl08x->adev->dev, | ||
1250 | "bad runtime_config: alien address width\n"); | ||
1251 | return; | ||
1252 | } | ||
1253 | |||
1254 | /* | ||
1255 | * Now decide on a maxburst: | ||
1256 | * If this channel will only request single transfers, set | ||
1257 | * this down to ONE element. | ||
1258 | */ | ||
1259 | if (plchan->cd->single) { | ||
1260 | cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | | ||
1261 | (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT); | ||
1262 | } else { | ||
1263 | while (i < ARRAY_SIZE(burst_sizes)) { | ||
1264 | if (burst_sizes[i].burstwords <= maxburst) | ||
1265 | break; | ||
1266 | i++; | ||
1267 | } | ||
1268 | cctl |= burst_sizes[i].reg; | ||
1269 | } | ||
1270 | |||
1271 | /* Access the cell in privileged mode, non-bufferable, non-cacheable */ | ||
1272 | cctl &= ~PL080_CONTROL_PROT_MASK; | ||
1273 | cctl |= PL080_CONTROL_PROT_SYS; | ||
1274 | |||
1275 | /* Modify the default channel data to fit PrimeCell request */ | ||
1276 | cd->cctl = cctl; | ||
1277 | cd->ccfg = ccfg; | ||
1278 | |||
1279 | dev_dbg(&pl08x->adev->dev, | ||
1280 | "configured channel %s (%s) for %s, data width %d, " | ||
1281 | "maxburst %d words, LE, CCTL=%08x, CCFG=%08x\n", | ||
1282 | dma_chan_name(chan), plchan->name, | ||
1283 | (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", | ||
1284 | addr_width, | ||
1285 | maxburst, | ||
1286 | cctl, ccfg); | ||
1287 | } | ||
1288 | |||
1289 | /* | ||
1290 | * Slave transactions callback to the slave device to allow | ||
1291 | * synchronization of slave DMA signals with the DMAC enable | ||
1292 | */ | ||
1293 | static void pl08x_issue_pending(struct dma_chan *chan) | ||
1294 | { | ||
1295 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | ||
1296 | struct pl08x_driver_data *pl08x = plchan->host; | ||
1297 | unsigned long flags; | ||
1298 | |||
1299 | spin_lock_irqsave(&plchan->lock, flags); | ||
1300 | /* Something is already active */ | ||
1301 | if (plchan->at) { | ||
1302 | spin_unlock_irqrestore(&plchan->lock, flags); | ||
1303 | return; | ||
1304 | } | ||
1305 | |||
1306 | /* Didn't get a physical channel so waiting for it ... */ | ||
1307 | if (plchan->state == PL08X_CHAN_WAITING) | ||
1308 | return; | ||
1309 | |||
1310 | /* Take the first element in the queue and execute it */ | ||
1311 | if (!list_empty(&plchan->desc_list)) { | ||
1312 | struct pl08x_txd *next; | ||
1313 | |||
1314 | next = list_first_entry(&plchan->desc_list, | ||
1315 | struct pl08x_txd, | ||
1316 | node); | ||
1317 | list_del(&next->node); | ||
1318 | plchan->at = next; | ||
1319 | plchan->state = PL08X_CHAN_RUNNING; | ||
1320 | |||
1321 | /* Configure the physical channel for the active txd */ | ||
1322 | pl08x_config_phychan_for_txd(plchan); | ||
1323 | pl08x_set_cregs(pl08x, plchan->phychan); | ||
1324 | pl08x_enable_phy_chan(pl08x, plchan->phychan); | ||
1325 | } | ||
1326 | |||
1327 | spin_unlock_irqrestore(&plchan->lock, flags); | ||
1328 | } | ||
1329 | |||
1330 | static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan, | ||
1331 | struct pl08x_txd *txd) | ||
1332 | { | ||
1333 | int num_llis; | ||
1334 | struct pl08x_driver_data *pl08x = plchan->host; | ||
1335 | int ret; | ||
1336 | |||
1337 | num_llis = pl08x_fill_llis_for_desc(pl08x, txd); | ||
1338 | |||
1339 | if (!num_llis) | ||
1340 | return -EINVAL; | ||
1341 | |||
1342 | spin_lock_irqsave(&plchan->lock, plchan->lockflags); | ||
1343 | |||
1344 | /* | ||
1345 | * If this device is not using a circular buffer then | ||
1346 | * queue this new descriptor for transfer. | ||
1347 | * The descriptor for a circular buffer continues | ||
1348 | * to be used until the channel is freed. | ||
1349 | */ | ||
1350 | if (txd->cd->circular_buffer) | ||
1351 | dev_err(&pl08x->adev->dev, | ||
1352 | "%s attempting to queue a circular buffer\n", | ||
1353 | __func__); | ||
1354 | else | ||
1355 | list_add_tail(&txd->node, | ||
1356 | &plchan->desc_list); | ||
1357 | |||
1358 | /* | ||
1359 | * See if we already have a physical channel allocated, | ||
1360 | * else this is the time to try to get one. | ||
1361 | */ | ||
1362 | ret = prep_phy_channel(plchan, txd); | ||
1363 | if (ret) { | ||
1364 | /* | ||
1365 | * No physical channel available, we will | ||
1366 | * stack up the memcpy channels until there is a channel | ||
1367 | * available to handle it whereas slave transfers may | ||
1368 | * have been denied due to platform channel muxing restrictions | ||
1369 | * and since there is no guarantee that this will ever be | ||
1370 | * resolved, and since the signal must be aquired AFTER | ||
1371 | * aquiring the physical channel, we will let them be NACK:ed | ||
1372 | * with -EBUSY here. The drivers can alway retry the prep() | ||
1373 | * call if they are eager on doing this using DMA. | ||
1374 | */ | ||
1375 | if (plchan->slave) { | ||
1376 | pl08x_free_txd_list(pl08x, plchan); | ||
1377 | spin_unlock_irqrestore(&plchan->lock, plchan->lockflags); | ||
1378 | return -EBUSY; | ||
1379 | } | ||
1380 | /* Do this memcpy whenever there is a channel ready */ | ||
1381 | plchan->state = PL08X_CHAN_WAITING; | ||
1382 | plchan->waiting = txd; | ||
1383 | } else | ||
1384 | /* | ||
1385 | * Else we're all set, paused and ready to roll, | ||
1386 | * status will switch to PL08X_CHAN_RUNNING when | ||
1387 | * we call issue_pending(). If there is something | ||
1388 | * running on the channel already we don't change | ||
1389 | * its state. | ||
1390 | */ | ||
1391 | if (plchan->state == PL08X_CHAN_IDLE) | ||
1392 | plchan->state = PL08X_CHAN_PAUSED; | ||
1393 | |||
1394 | /* | ||
1395 | * Notice that we leave plchan->lock locked on purpose: | ||
1396 | * it will be unlocked in the subsequent tx_submit() | ||
1397 | * call. This is a consequence of the current API. | ||
1398 | */ | ||
1399 | |||
1400 | return 0; | ||
1401 | } | ||
1402 | |||
1403 | /* | ||
1404 | * Initialize a descriptor to be used by memcpy submit | ||
1405 | */ | ||
1406 | static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( | ||
1407 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, | ||
1408 | size_t len, unsigned long flags) | ||
1409 | { | ||
1410 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | ||
1411 | struct pl08x_driver_data *pl08x = plchan->host; | ||
1412 | struct pl08x_txd *txd; | ||
1413 | int ret; | ||
1414 | |||
1415 | txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT); | ||
1416 | if (!txd) { | ||
1417 | dev_err(&pl08x->adev->dev, | ||
1418 | "%s no memory for descriptor\n", __func__); | ||
1419 | return NULL; | ||
1420 | } | ||
1421 | |||
1422 | dma_async_tx_descriptor_init(&txd->tx, chan); | ||
1423 | txd->direction = DMA_NONE; | ||
1424 | txd->srcbus.addr = src; | ||
1425 | txd->dstbus.addr = dest; | ||
1426 | |||
1427 | /* Set platform data for m2m */ | ||
1428 | txd->cd = &pl08x->pd->memcpy_channel; | ||
1429 | /* Both to be incremented or the code will break */ | ||
1430 | txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; | ||
1431 | txd->tx.tx_submit = pl08x_tx_submit; | ||
1432 | txd->tx.callback = NULL; | ||
1433 | txd->tx.callback_param = NULL; | ||
1434 | txd->len = len; | ||
1435 | |||
1436 | INIT_LIST_HEAD(&txd->node); | ||
1437 | ret = pl08x_prep_channel_resources(plchan, txd); | ||
1438 | if (ret) | ||
1439 | return NULL; | ||
1440 | /* | ||
1441 | * NB: the channel lock is held at this point so tx_submit() | ||
1442 | * must be called in direct succession. | ||
1443 | */ | ||
1444 | |||
1445 | return &txd->tx; | ||
1446 | } | ||
1447 | |||
1448 | struct dma_async_tx_descriptor *pl08x_prep_slave_sg( | ||
1449 | struct dma_chan *chan, struct scatterlist *sgl, | ||
1450 | unsigned int sg_len, enum dma_data_direction direction, | ||
1451 | unsigned long flags) | ||
1452 | { | ||
1453 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | ||
1454 | struct pl08x_driver_data *pl08x = plchan->host; | ||
1455 | struct pl08x_txd *txd; | ||
1456 | int ret; | ||
1457 | |||
1458 | /* | ||
1459 | * Current implementation ASSUMES only one sg | ||
1460 | */ | ||
1461 | if (sg_len != 1) { | ||
1462 | dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n", | ||
1463 | __func__); | ||
1464 | BUG(); | ||
1465 | } | ||
1466 | |||
1467 | dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", | ||
1468 | __func__, sgl->length, plchan->name); | ||
1469 | |||
1470 | txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT); | ||
1471 | if (!txd) { | ||
1472 | dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); | ||
1473 | return NULL; | ||
1474 | } | ||
1475 | |||
1476 | dma_async_tx_descriptor_init(&txd->tx, chan); | ||
1477 | |||
1478 | if (direction != plchan->runtime_direction) | ||
1479 | dev_err(&pl08x->adev->dev, "%s DMA setup does not match " | ||
1480 | "the direction configured for the PrimeCell\n", | ||
1481 | __func__); | ||
1482 | |||
1483 | /* | ||
1484 | * Set up addresses, the PrimeCell configured address | ||
1485 | * will take precedence since this may configure the | ||
1486 | * channel target address dynamically at runtime. | ||
1487 | */ | ||
1488 | txd->direction = direction; | ||
1489 | if (direction == DMA_TO_DEVICE) { | ||
1490 | txd->srcbus.addr = sgl->dma_address; | ||
1491 | if (plchan->runtime_addr) | ||
1492 | txd->dstbus.addr = plchan->runtime_addr; | ||
1493 | else | ||
1494 | txd->dstbus.addr = plchan->cd->addr; | ||
1495 | } else if (direction == DMA_FROM_DEVICE) { | ||
1496 | if (plchan->runtime_addr) | ||
1497 | txd->srcbus.addr = plchan->runtime_addr; | ||
1498 | else | ||
1499 | txd->srcbus.addr = plchan->cd->addr; | ||
1500 | txd->dstbus.addr = sgl->dma_address; | ||
1501 | } else { | ||
1502 | dev_err(&pl08x->adev->dev, | ||
1503 | "%s direction unsupported\n", __func__); | ||
1504 | return NULL; | ||
1505 | } | ||
1506 | txd->cd = plchan->cd; | ||
1507 | txd->tx.tx_submit = pl08x_tx_submit; | ||
1508 | txd->tx.callback = NULL; | ||
1509 | txd->tx.callback_param = NULL; | ||
1510 | txd->len = sgl->length; | ||
1511 | INIT_LIST_HEAD(&txd->node); | ||
1512 | |||
1513 | ret = pl08x_prep_channel_resources(plchan, txd); | ||
1514 | if (ret) | ||
1515 | return NULL; | ||
1516 | /* | ||
1517 | * NB: the channel lock is held at this point so tx_submit() | ||
1518 | * must be called in direct succession. | ||
1519 | */ | ||
1520 | |||
1521 | return &txd->tx; | ||
1522 | } | ||
1523 | |||
1524 | static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, | ||
1525 | unsigned long arg) | ||
1526 | { | ||
1527 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | ||
1528 | struct pl08x_driver_data *pl08x = plchan->host; | ||
1529 | unsigned long flags; | ||
1530 | int ret = 0; | ||
1531 | |||
1532 | /* Controls applicable to inactive channels */ | ||
1533 | if (cmd == DMA_SLAVE_CONFIG) { | ||
1534 | dma_set_runtime_config(chan, | ||
1535 | (struct dma_slave_config *) | ||
1536 | arg); | ||
1537 | return 0; | ||
1538 | } | ||
1539 | |||
1540 | /* | ||
1541 | * Anything succeeds on channels with no physical allocation and | ||
1542 | * no queued transfers. | ||
1543 | */ | ||
1544 | spin_lock_irqsave(&plchan->lock, flags); | ||
1545 | if (!plchan->phychan && !plchan->at) { | ||
1546 | spin_unlock_irqrestore(&plchan->lock, flags); | ||
1547 | return 0; | ||
1548 | } | ||
1549 | |||
1550 | switch (cmd) { | ||
1551 | case DMA_TERMINATE_ALL: | ||
1552 | plchan->state = PL08X_CHAN_IDLE; | ||
1553 | |||
1554 | if (plchan->phychan) { | ||
1555 | pl08x_stop_phy_chan(plchan->phychan); | ||
1556 | |||
1557 | /* | ||
1558 | * Mark physical channel as free and free any slave | ||
1559 | * signal | ||
1560 | */ | ||
1561 | if ((plchan->phychan->signal >= 0) && | ||
1562 | pl08x->pd->put_signal) { | ||
1563 | pl08x->pd->put_signal(plchan); | ||
1564 | plchan->phychan->signal = -1; | ||
1565 | } | ||
1566 | pl08x_put_phy_channel(pl08x, plchan->phychan); | ||
1567 | plchan->phychan = NULL; | ||
1568 | } | ||
1569 | /* Stop any pending tasklet */ | ||
1570 | tasklet_disable(&plchan->tasklet); | ||
1571 | /* Dequeue jobs and free LLIs */ | ||
1572 | if (plchan->at) { | ||
1573 | pl08x_free_txd(pl08x, plchan->at); | ||
1574 | plchan->at = NULL; | ||
1575 | } | ||
1576 | /* Dequeue jobs not yet fired as well */ | ||
1577 | pl08x_free_txd_list(pl08x, plchan); | ||
1578 | break; | ||
1579 | case DMA_PAUSE: | ||
1580 | pl08x_pause_phy_chan(plchan->phychan); | ||
1581 | plchan->state = PL08X_CHAN_PAUSED; | ||
1582 | break; | ||
1583 | case DMA_RESUME: | ||
1584 | pl08x_resume_phy_chan(plchan->phychan); | ||
1585 | plchan->state = PL08X_CHAN_RUNNING; | ||
1586 | break; | ||
1587 | default: | ||
1588 | /* Unknown command */ | ||
1589 | ret = -ENXIO; | ||
1590 | break; | ||
1591 | } | ||
1592 | |||
1593 | spin_unlock_irqrestore(&plchan->lock, flags); | ||
1594 | |||
1595 | return ret; | ||
1596 | } | ||
1597 | |||
1598 | bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) | ||
1599 | { | ||
1600 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | ||
1601 | char *name = chan_id; | ||
1602 | |||
1603 | /* Check that the channel is not taken! */ | ||
1604 | if (!strcmp(plchan->name, name)) | ||
1605 | return true; | ||
1606 | |||
1607 | return false; | ||
1608 | } | ||
1609 | |||
1610 | /* | ||
1611 | * Just check that the device is there and active | ||
1612 | * TODO: turn this bit on/off depending on the number of | ||
1613 | * physical channels actually used, if it is zero... well | ||
1614 | * shut it off. That will save some power. Cut the clock | ||
1615 | * at the same time. | ||
1616 | */ | ||
1617 | static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) | ||
1618 | { | ||
1619 | u32 val; | ||
1620 | |||
1621 | val = readl(pl08x->base + PL080_CONFIG); | ||
1622 | val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE); | ||
1623 | /* We implictly clear bit 1 and that means little-endian mode */ | ||
1624 | val |= PL080_CONFIG_ENABLE; | ||
1625 | writel(val, pl08x->base + PL080_CONFIG); | ||
1626 | } | ||
1627 | |||
1628 | static void pl08x_tasklet(unsigned long data) | ||
1629 | { | ||
1630 | struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data; | ||
1631 | struct pl08x_phy_chan *phychan = plchan->phychan; | ||
1632 | struct pl08x_driver_data *pl08x = plchan->host; | ||
1633 | |||
1634 | if (!plchan) | ||
1635 | BUG(); | ||
1636 | |||
1637 | spin_lock(&plchan->lock); | ||
1638 | |||
1639 | if (plchan->at) { | ||
1640 | dma_async_tx_callback callback = | ||
1641 | plchan->at->tx.callback; | ||
1642 | void *callback_param = | ||
1643 | plchan->at->tx.callback_param; | ||
1644 | |||
1645 | /* | ||
1646 | * Update last completed | ||
1647 | */ | ||
1648 | plchan->lc = | ||
1649 | (plchan->at->tx.cookie); | ||
1650 | |||
1651 | /* | ||
1652 | * Callback to signal completion | ||
1653 | */ | ||
1654 | if (callback) | ||
1655 | callback(callback_param); | ||
1656 | |||
1657 | /* | ||
1658 | * Device callbacks should NOT clear | ||
1659 | * the current transaction on the channel | ||
1660 | * Linus: sometimes they should? | ||
1661 | */ | ||
1662 | if (!plchan->at) | ||
1663 | BUG(); | ||
1664 | |||
1665 | /* | ||
1666 | * Free the descriptor if it's not for a device | ||
1667 | * using a circular buffer | ||
1668 | */ | ||
1669 | if (!plchan->at->cd->circular_buffer) { | ||
1670 | pl08x_free_txd(pl08x, plchan->at); | ||
1671 | plchan->at = NULL; | ||
1672 | } | ||
1673 | /* | ||
1674 | * else descriptor for circular | ||
1675 | * buffers only freed when | ||
1676 | * client has disabled dma | ||
1677 | */ | ||
1678 | } | ||
1679 | /* | ||
1680 | * If a new descriptor is queued, set it up | ||
1681 | * plchan->at is NULL here | ||
1682 | */ | ||
1683 | if (!list_empty(&plchan->desc_list)) { | ||
1684 | struct pl08x_txd *next; | ||
1685 | |||
1686 | next = list_first_entry(&plchan->desc_list, | ||
1687 | struct pl08x_txd, | ||
1688 | node); | ||
1689 | list_del(&next->node); | ||
1690 | plchan->at = next; | ||
1691 | /* Configure the physical channel for the next txd */ | ||
1692 | pl08x_config_phychan_for_txd(plchan); | ||
1693 | pl08x_set_cregs(pl08x, plchan->phychan); | ||
1694 | pl08x_enable_phy_chan(pl08x, plchan->phychan); | ||
1695 | } else { | ||
1696 | struct pl08x_dma_chan *waiting = NULL; | ||
1697 | |||
1698 | /* | ||
1699 | * No more jobs, so free up the physical channel | ||
1700 | * Free any allocated signal on slave transfers too | ||
1701 | */ | ||
1702 | if ((phychan->signal >= 0) && pl08x->pd->put_signal) { | ||
1703 | pl08x->pd->put_signal(plchan); | ||
1704 | phychan->signal = -1; | ||
1705 | } | ||
1706 | pl08x_put_phy_channel(pl08x, phychan); | ||
1707 | plchan->phychan = NULL; | ||
1708 | plchan->state = PL08X_CHAN_IDLE; | ||
1709 | |||
1710 | /* | ||
1711 | * And NOW before anyone else can grab that free:d | ||
1712 | * up physical channel, see if there is some memcpy | ||
1713 | * pending that seriously needs to start because of | ||
1714 | * being stacked up while we were choking the | ||
1715 | * physical channels with data. | ||
1716 | */ | ||
1717 | list_for_each_entry(waiting, &pl08x->memcpy.channels, | ||
1718 | chan.device_node) { | ||
1719 | if (waiting->state == PL08X_CHAN_WAITING && | ||
1720 | waiting->waiting != NULL) { | ||
1721 | int ret; | ||
1722 | |||
1723 | /* This should REALLY not fail now */ | ||
1724 | ret = prep_phy_channel(waiting, | ||
1725 | waiting->waiting); | ||
1726 | BUG_ON(ret); | ||
1727 | waiting->state = PL08X_CHAN_RUNNING; | ||
1728 | waiting->waiting = NULL; | ||
1729 | pl08x_issue_pending(&waiting->chan); | ||
1730 | break; | ||
1731 | } | ||
1732 | } | ||
1733 | } | ||
1734 | |||
1735 | spin_unlock(&plchan->lock); | ||
1736 | } | ||
1737 | |||
1738 | static irqreturn_t pl08x_irq(int irq, void *dev) | ||
1739 | { | ||
1740 | struct pl08x_driver_data *pl08x = dev; | ||
1741 | u32 mask = 0; | ||
1742 | u32 val; | ||
1743 | int i; | ||
1744 | |||
1745 | val = readl(pl08x->base + PL080_ERR_STATUS); | ||
1746 | if (val) { | ||
1747 | /* | ||
1748 | * An error interrupt (on one or more channels) | ||
1749 | */ | ||
1750 | dev_err(&pl08x->adev->dev, | ||
1751 | "%s error interrupt, register value 0x%08x\n", | ||
1752 | __func__, val); | ||
1753 | /* | ||
1754 | * Simply clear ALL PL08X error interrupts, | ||
1755 | * regardless of channel and cause | ||
1756 | * FIXME: should be 0x00000003 on PL081 really. | ||
1757 | */ | ||
1758 | writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); | ||
1759 | } | ||
1760 | val = readl(pl08x->base + PL080_INT_STATUS); | ||
1761 | for (i = 0; i < pl08x->vd->channels; i++) { | ||
1762 | if ((1 << i) & val) { | ||
1763 | /* Locate physical channel */ | ||
1764 | struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; | ||
1765 | struct pl08x_dma_chan *plchan = phychan->serving; | ||
1766 | |||
1767 | /* Schedule tasklet on this channel */ | ||
1768 | tasklet_schedule(&plchan->tasklet); | ||
1769 | |||
1770 | mask |= (1 << i); | ||
1771 | } | ||
1772 | } | ||
1773 | /* | ||
1774 | * Clear only the terminal interrupts on channels we processed | ||
1775 | */ | ||
1776 | writel(mask, pl08x->base + PL080_TC_CLEAR); | ||
1777 | |||
1778 | return mask ? IRQ_HANDLED : IRQ_NONE; | ||
1779 | } | ||
1780 | |||
1781 | /* | ||
1782 | * Initialise the DMAC memcpy/slave channels. | ||
1783 | * Make a local wrapper to hold required data | ||
1784 | */ | ||
1785 | static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, | ||
1786 | struct dma_device *dmadev, | ||
1787 | unsigned int channels, | ||
1788 | bool slave) | ||
1789 | { | ||
1790 | struct pl08x_dma_chan *chan; | ||
1791 | int i; | ||
1792 | |||
1793 | INIT_LIST_HEAD(&dmadev->channels); | ||
1794 | /* | ||
1795 | * Register as many many memcpy as we have physical channels, | ||
1796 | * we won't always be able to use all but the code will have | ||
1797 | * to cope with that situation. | ||
1798 | */ | ||
1799 | for (i = 0; i < channels; i++) { | ||
1800 | chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL); | ||
1801 | if (!chan) { | ||
1802 | dev_err(&pl08x->adev->dev, | ||
1803 | "%s no memory for channel\n", __func__); | ||
1804 | return -ENOMEM; | ||
1805 | } | ||
1806 | |||
1807 | chan->host = pl08x; | ||
1808 | chan->state = PL08X_CHAN_IDLE; | ||
1809 | |||
1810 | if (slave) { | ||
1811 | chan->slave = true; | ||
1812 | chan->name = pl08x->pd->slave_channels[i].bus_id; | ||
1813 | chan->cd = &pl08x->pd->slave_channels[i]; | ||
1814 | } else { | ||
1815 | chan->cd = &pl08x->pd->memcpy_channel; | ||
1816 | chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); | ||
1817 | if (!chan->name) { | ||
1818 | kfree(chan); | ||
1819 | return -ENOMEM; | ||
1820 | } | ||
1821 | } | ||
1822 | dev_info(&pl08x->adev->dev, | ||
1823 | "initialize virtual channel \"%s\"\n", | ||
1824 | chan->name); | ||
1825 | |||
1826 | chan->chan.device = dmadev; | ||
1827 | atomic_set(&chan->last_issued, 0); | ||
1828 | chan->lc = atomic_read(&chan->last_issued); | ||
1829 | |||
1830 | spin_lock_init(&chan->lock); | ||
1831 | INIT_LIST_HEAD(&chan->desc_list); | ||
1832 | tasklet_init(&chan->tasklet, pl08x_tasklet, | ||
1833 | (unsigned long) chan); | ||
1834 | |||
1835 | list_add_tail(&chan->chan.device_node, &dmadev->channels); | ||
1836 | } | ||
1837 | dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", | ||
1838 | i, slave ? "slave" : "memcpy"); | ||
1839 | return i; | ||
1840 | } | ||
1841 | |||
1842 | static void pl08x_free_virtual_channels(struct dma_device *dmadev) | ||
1843 | { | ||
1844 | struct pl08x_dma_chan *chan = NULL; | ||
1845 | struct pl08x_dma_chan *next; | ||
1846 | |||
1847 | list_for_each_entry_safe(chan, | ||
1848 | next, &dmadev->channels, chan.device_node) { | ||
1849 | list_del(&chan->chan.device_node); | ||
1850 | kfree(chan); | ||
1851 | } | ||
1852 | } | ||
1853 | |||
1854 | #ifdef CONFIG_DEBUG_FS | ||
1855 | static const char *pl08x_state_str(enum pl08x_dma_chan_state state) | ||
1856 | { | ||
1857 | switch (state) { | ||
1858 | case PL08X_CHAN_IDLE: | ||
1859 | return "idle"; | ||
1860 | case PL08X_CHAN_RUNNING: | ||
1861 | return "running"; | ||
1862 | case PL08X_CHAN_PAUSED: | ||
1863 | return "paused"; | ||
1864 | case PL08X_CHAN_WAITING: | ||
1865 | return "waiting"; | ||
1866 | default: | ||
1867 | break; | ||
1868 | } | ||
1869 | return "UNKNOWN STATE"; | ||
1870 | } | ||
1871 | |||
1872 | static int pl08x_debugfs_show(struct seq_file *s, void *data) | ||
1873 | { | ||
1874 | struct pl08x_driver_data *pl08x = s->private; | ||
1875 | struct pl08x_dma_chan *chan; | ||
1876 | struct pl08x_phy_chan *ch; | ||
1877 | unsigned long flags; | ||
1878 | int i; | ||
1879 | |||
1880 | seq_printf(s, "PL08x physical channels:\n"); | ||
1881 | seq_printf(s, "CHANNEL:\tUSER:\n"); | ||
1882 | seq_printf(s, "--------\t-----\n"); | ||
1883 | for (i = 0; i < pl08x->vd->channels; i++) { | ||
1884 | struct pl08x_dma_chan *virt_chan; | ||
1885 | |||
1886 | ch = &pl08x->phy_chans[i]; | ||
1887 | |||
1888 | spin_lock_irqsave(&ch->lock, flags); | ||
1889 | virt_chan = ch->serving; | ||
1890 | |||
1891 | seq_printf(s, "%d\t\t%s\n", | ||
1892 | ch->id, virt_chan ? virt_chan->name : "(none)"); | ||
1893 | |||
1894 | spin_unlock_irqrestore(&ch->lock, flags); | ||
1895 | } | ||
1896 | |||
1897 | seq_printf(s, "\nPL08x virtual memcpy channels:\n"); | ||
1898 | seq_printf(s, "CHANNEL:\tSTATE:\n"); | ||
1899 | seq_printf(s, "--------\t------\n"); | ||
1900 | list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) { | ||
1901 | seq_printf(s, "%s\t\t\%s\n", chan->name, | ||
1902 | pl08x_state_str(chan->state)); | ||
1903 | } | ||
1904 | |||
1905 | seq_printf(s, "\nPL08x virtual slave channels:\n"); | ||
1906 | seq_printf(s, "CHANNEL:\tSTATE:\n"); | ||
1907 | seq_printf(s, "--------\t------\n"); | ||
1908 | list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) { | ||
1909 | seq_printf(s, "%s\t\t\%s\n", chan->name, | ||
1910 | pl08x_state_str(chan->state)); | ||
1911 | } | ||
1912 | |||
1913 | return 0; | ||
1914 | } | ||
1915 | |||
1916 | static int pl08x_debugfs_open(struct inode *inode, struct file *file) | ||
1917 | { | ||
1918 | return single_open(file, pl08x_debugfs_show, inode->i_private); | ||
1919 | } | ||
1920 | |||
1921 | static const struct file_operations pl08x_debugfs_operations = { | ||
1922 | .open = pl08x_debugfs_open, | ||
1923 | .read = seq_read, | ||
1924 | .llseek = seq_lseek, | ||
1925 | .release = single_release, | ||
1926 | }; | ||
1927 | |||
1928 | static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) | ||
1929 | { | ||
1930 | /* Expose a simple debugfs interface to view all clocks */ | ||
1931 | (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO, | ||
1932 | NULL, pl08x, | ||
1933 | &pl08x_debugfs_operations); | ||
1934 | } | ||
1935 | |||
1936 | #else | ||
1937 | static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) | ||
1938 | { | ||
1939 | } | ||
1940 | #endif | ||
1941 | |||
1942 | static int pl08x_probe(struct amba_device *adev, struct amba_id *id) | ||
1943 | { | ||
1944 | struct pl08x_driver_data *pl08x; | ||
1945 | struct vendor_data *vd = id->data; | ||
1946 | int ret = 0; | ||
1947 | int i; | ||
1948 | |||
1949 | ret = amba_request_regions(adev, NULL); | ||
1950 | if (ret) | ||
1951 | return ret; | ||
1952 | |||
1953 | /* Create the driver state holder */ | ||
1954 | pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL); | ||
1955 | if (!pl08x) { | ||
1956 | ret = -ENOMEM; | ||
1957 | goto out_no_pl08x; | ||
1958 | } | ||
1959 | |||
1960 | /* Initialize memcpy engine */ | ||
1961 | dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); | ||
1962 | pl08x->memcpy.dev = &adev->dev; | ||
1963 | pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources; | ||
1964 | pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; | ||
1965 | pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; | ||
1966 | pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; | ||
1967 | pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; | ||
1968 | pl08x->memcpy.device_issue_pending = pl08x_issue_pending; | ||
1969 | pl08x->memcpy.device_control = pl08x_control; | ||
1970 | |||
1971 | /* Initialize slave engine */ | ||
1972 | dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); | ||
1973 | pl08x->slave.dev = &adev->dev; | ||
1974 | pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources; | ||
1975 | pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources; | ||
1976 | pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; | ||
1977 | pl08x->slave.device_tx_status = pl08x_dma_tx_status; | ||
1978 | pl08x->slave.device_issue_pending = pl08x_issue_pending; | ||
1979 | pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; | ||
1980 | pl08x->slave.device_control = pl08x_control; | ||
1981 | |||
1982 | /* Get the platform data */ | ||
1983 | pl08x->pd = dev_get_platdata(&adev->dev); | ||
1984 | if (!pl08x->pd) { | ||
1985 | dev_err(&adev->dev, "no platform data supplied\n"); | ||
1986 | goto out_no_platdata; | ||
1987 | } | ||
1988 | |||
1989 | /* Assign useful pointers to the driver state */ | ||
1990 | pl08x->adev = adev; | ||
1991 | pl08x->vd = vd; | ||
1992 | |||
1993 | /* A DMA memory pool for LLIs, align on 1-byte boundary */ | ||
1994 | pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, | ||
1995 | PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0); | ||
1996 | if (!pl08x->pool) { | ||
1997 | ret = -ENOMEM; | ||
1998 | goto out_no_lli_pool; | ||
1999 | } | ||
2000 | |||
2001 | spin_lock_init(&pl08x->lock); | ||
2002 | |||
2003 | pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); | ||
2004 | if (!pl08x->base) { | ||
2005 | ret = -ENOMEM; | ||
2006 | goto out_no_ioremap; | ||
2007 | } | ||
2008 | |||
2009 | /* Turn on the PL08x */ | ||
2010 | pl08x_ensure_on(pl08x); | ||
2011 | |||
2012 | /* | ||
2013 | * Attach the interrupt handler | ||
2014 | */ | ||
2015 | writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); | ||
2016 | writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); | ||
2017 | |||
2018 | ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED, | ||
2019 | vd->name, pl08x); | ||
2020 | if (ret) { | ||
2021 | dev_err(&adev->dev, "%s failed to request interrupt %d\n", | ||
2022 | __func__, adev->irq[0]); | ||
2023 | goto out_no_irq; | ||
2024 | } | ||
2025 | |||
2026 | /* Initialize physical channels */ | ||
2027 | pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)), | ||
2028 | GFP_KERNEL); | ||
2029 | if (!pl08x->phy_chans) { | ||
2030 | dev_err(&adev->dev, "%s failed to allocate " | ||
2031 | "physical channel holders\n", | ||
2032 | __func__); | ||
2033 | goto out_no_phychans; | ||
2034 | } | ||
2035 | |||
2036 | for (i = 0; i < vd->channels; i++) { | ||
2037 | struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; | ||
2038 | |||
2039 | ch->id = i; | ||
2040 | ch->base = pl08x->base + PL080_Cx_BASE(i); | ||
2041 | spin_lock_init(&ch->lock); | ||
2042 | ch->serving = NULL; | ||
2043 | ch->signal = -1; | ||
2044 | dev_info(&adev->dev, | ||
2045 | "physical channel %d is %s\n", i, | ||
2046 | pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); | ||
2047 | } | ||
2048 | |||
2049 | /* Register as many memcpy channels as there are physical channels */ | ||
2050 | ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, | ||
2051 | pl08x->vd->channels, false); | ||
2052 | if (ret <= 0) { | ||
2053 | dev_warn(&pl08x->adev->dev, | ||
2054 | "%s failed to enumerate memcpy channels - %d\n", | ||
2055 | __func__, ret); | ||
2056 | goto out_no_memcpy; | ||
2057 | } | ||
2058 | pl08x->memcpy.chancnt = ret; | ||
2059 | |||
2060 | /* Register slave channels */ | ||
2061 | ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, | ||
2062 | pl08x->pd->num_slave_channels, | ||
2063 | true); | ||
2064 | if (ret <= 0) { | ||
2065 | dev_warn(&pl08x->adev->dev, | ||
2066 | "%s failed to enumerate slave channels - %d\n", | ||
2067 | __func__, ret); | ||
2068 | goto out_no_slave; | ||
2069 | } | ||
2070 | pl08x->slave.chancnt = ret; | ||
2071 | |||
2072 | ret = dma_async_device_register(&pl08x->memcpy); | ||
2073 | if (ret) { | ||
2074 | dev_warn(&pl08x->adev->dev, | ||
2075 | "%s failed to register memcpy as an async device - %d\n", | ||
2076 | __func__, ret); | ||
2077 | goto out_no_memcpy_reg; | ||
2078 | } | ||
2079 | |||
2080 | ret = dma_async_device_register(&pl08x->slave); | ||
2081 | if (ret) { | ||
2082 | dev_warn(&pl08x->adev->dev, | ||
2083 | "%s failed to register slave as an async device - %d\n", | ||
2084 | __func__, ret); | ||
2085 | goto out_no_slave_reg; | ||
2086 | } | ||
2087 | |||
2088 | amba_set_drvdata(adev, pl08x); | ||
2089 | init_pl08x_debugfs(pl08x); | ||
2090 | dev_info(&pl08x->adev->dev, "ARM(R) %s DMA block initialized @%08x\n", | ||
2091 | vd->name, adev->res.start); | ||
2092 | return 0; | ||
2093 | |||
2094 | out_no_slave_reg: | ||
2095 | dma_async_device_unregister(&pl08x->memcpy); | ||
2096 | out_no_memcpy_reg: | ||
2097 | pl08x_free_virtual_channels(&pl08x->slave); | ||
2098 | out_no_slave: | ||
2099 | pl08x_free_virtual_channels(&pl08x->memcpy); | ||
2100 | out_no_memcpy: | ||
2101 | kfree(pl08x->phy_chans); | ||
2102 | out_no_phychans: | ||
2103 | free_irq(adev->irq[0], pl08x); | ||
2104 | out_no_irq: | ||
2105 | iounmap(pl08x->base); | ||
2106 | out_no_ioremap: | ||
2107 | dma_pool_destroy(pl08x->pool); | ||
2108 | out_no_lli_pool: | ||
2109 | out_no_platdata: | ||
2110 | kfree(pl08x); | ||
2111 | out_no_pl08x: | ||
2112 | amba_release_regions(adev); | ||
2113 | return ret; | ||
2114 | } | ||
2115 | |||
2116 | /* PL080 has 8 channels and the PL080 have just 2 */ | ||
2117 | static struct vendor_data vendor_pl080 = { | ||
2118 | .name = "PL080", | ||
2119 | .channels = 8, | ||
2120 | .dualmaster = true, | ||
2121 | }; | ||
2122 | |||
2123 | static struct vendor_data vendor_pl081 = { | ||
2124 | .name = "PL081", | ||
2125 | .channels = 2, | ||
2126 | .dualmaster = false, | ||
2127 | }; | ||
2128 | |||
2129 | static struct amba_id pl08x_ids[] = { | ||
2130 | /* PL080 */ | ||
2131 | { | ||
2132 | .id = 0x00041080, | ||
2133 | .mask = 0x000fffff, | ||
2134 | .data = &vendor_pl080, | ||
2135 | }, | ||
2136 | /* PL081 */ | ||
2137 | { | ||
2138 | .id = 0x00041081, | ||
2139 | .mask = 0x000fffff, | ||
2140 | .data = &vendor_pl081, | ||
2141 | }, | ||
2142 | /* Nomadik 8815 PL080 variant */ | ||
2143 | { | ||
2144 | .id = 0x00280880, | ||
2145 | .mask = 0x00ffffff, | ||
2146 | .data = &vendor_pl080, | ||
2147 | }, | ||
2148 | { 0, 0 }, | ||
2149 | }; | ||
2150 | |||
2151 | static struct amba_driver pl08x_amba_driver = { | ||
2152 | .drv.name = DRIVER_NAME, | ||
2153 | .id_table = pl08x_ids, | ||
2154 | .probe = pl08x_probe, | ||
2155 | }; | ||
2156 | |||
2157 | static int __init pl08x_init(void) | ||
2158 | { | ||
2159 | int retval; | ||
2160 | retval = amba_driver_register(&pl08x_amba_driver); | ||
2161 | if (retval) | ||
2162 | printk(KERN_WARNING DRIVER_NAME | ||
2163 | "failed to register as an amba device (%d)\n", | ||
2164 | retval); | ||
2165 | return retval; | ||
2166 | } | ||
2167 | subsys_initcall(pl08x_init); | ||