diff options
Diffstat (limited to 'drivers/crypto/padlock-aes.c')
-rw-r--r-- | drivers/crypto/padlock-aes.c | 468 |
1 files changed, 468 insertions, 0 deletions
diff --git a/drivers/crypto/padlock-aes.c b/drivers/crypto/padlock-aes.c new file mode 100644 index 000000000000..ed708b4427b0 --- /dev/null +++ b/drivers/crypto/padlock-aes.c | |||
@@ -0,0 +1,468 @@ | |||
1 | /* | ||
2 | * Cryptographic API. | ||
3 | * | ||
4 | * Support for VIA PadLock hardware crypto engine. | ||
5 | * | ||
6 | * Copyright (c) 2004 Michal Ludvig <michal@logix.cz> | ||
7 | * | ||
8 | * Key expansion routine taken from crypto/aes.c | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of the GNU General Public License as published by | ||
12 | * the Free Software Foundation; either version 2 of the License, or | ||
13 | * (at your option) any later version. | ||
14 | * | ||
15 | * --------------------------------------------------------------------------- | ||
16 | * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | ||
17 | * All rights reserved. | ||
18 | * | ||
19 | * LICENSE TERMS | ||
20 | * | ||
21 | * The free distribution and use of this software in both source and binary | ||
22 | * form is allowed (with or without changes) provided that: | ||
23 | * | ||
24 | * 1. distributions of this source code include the above copyright | ||
25 | * notice, this list of conditions and the following disclaimer; | ||
26 | * | ||
27 | * 2. distributions in binary form include the above copyright | ||
28 | * notice, this list of conditions and the following disclaimer | ||
29 | * in the documentation and/or other associated materials; | ||
30 | * | ||
31 | * 3. the copyright holder's name is not used to endorse products | ||
32 | * built using this software without specific written permission. | ||
33 | * | ||
34 | * ALTERNATIVELY, provided that this notice is retained in full, this product | ||
35 | * may be distributed under the terms of the GNU General Public License (GPL), | ||
36 | * in which case the provisions of the GPL apply INSTEAD OF those given above. | ||
37 | * | ||
38 | * DISCLAIMER | ||
39 | * | ||
40 | * This software is provided 'as is' with no explicit or implied warranties | ||
41 | * in respect of its properties, including, but not limited to, correctness | ||
42 | * and/or fitness for purpose. | ||
43 | * --------------------------------------------------------------------------- | ||
44 | */ | ||
45 | |||
46 | #include <linux/module.h> | ||
47 | #include <linux/init.h> | ||
48 | #include <linux/types.h> | ||
49 | #include <linux/errno.h> | ||
50 | #include <linux/crypto.h> | ||
51 | #include <linux/interrupt.h> | ||
52 | #include <asm/byteorder.h> | ||
53 | #include "padlock.h" | ||
54 | |||
55 | #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */ | ||
56 | #define AES_MAX_KEY_SIZE 32 /* ditto */ | ||
57 | #define AES_BLOCK_SIZE 16 /* ditto */ | ||
58 | #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */ | ||
59 | #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t)) | ||
60 | |||
61 | struct aes_ctx { | ||
62 | uint32_t e_data[AES_EXTENDED_KEY_SIZE+4]; | ||
63 | uint32_t d_data[AES_EXTENDED_KEY_SIZE+4]; | ||
64 | uint32_t *E; | ||
65 | uint32_t *D; | ||
66 | int key_length; | ||
67 | }; | ||
68 | |||
69 | /* ====== Key management routines ====== */ | ||
70 | |||
71 | static inline uint32_t | ||
72 | generic_rotr32 (const uint32_t x, const unsigned bits) | ||
73 | { | ||
74 | const unsigned n = bits % 32; | ||
75 | return (x >> n) | (x << (32 - n)); | ||
76 | } | ||
77 | |||
78 | static inline uint32_t | ||
79 | generic_rotl32 (const uint32_t x, const unsigned bits) | ||
80 | { | ||
81 | const unsigned n = bits % 32; | ||
82 | return (x << n) | (x >> (32 - n)); | ||
83 | } | ||
84 | |||
85 | #define rotl generic_rotl32 | ||
86 | #define rotr generic_rotr32 | ||
87 | |||
88 | /* | ||
89 | * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) | ||
90 | */ | ||
91 | static inline uint8_t | ||
92 | byte(const uint32_t x, const unsigned n) | ||
93 | { | ||
94 | return x >> (n << 3); | ||
95 | } | ||
96 | |||
97 | #define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x)) | ||
98 | #define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from)) | ||
99 | |||
100 | #define E_KEY ctx->E | ||
101 | #define D_KEY ctx->D | ||
102 | |||
103 | static uint8_t pow_tab[256]; | ||
104 | static uint8_t log_tab[256]; | ||
105 | static uint8_t sbx_tab[256]; | ||
106 | static uint8_t isb_tab[256]; | ||
107 | static uint32_t rco_tab[10]; | ||
108 | static uint32_t ft_tab[4][256]; | ||
109 | static uint32_t it_tab[4][256]; | ||
110 | |||
111 | static uint32_t fl_tab[4][256]; | ||
112 | static uint32_t il_tab[4][256]; | ||
113 | |||
114 | static inline uint8_t | ||
115 | f_mult (uint8_t a, uint8_t b) | ||
116 | { | ||
117 | uint8_t aa = log_tab[a], cc = aa + log_tab[b]; | ||
118 | |||
119 | return pow_tab[cc + (cc < aa ? 1 : 0)]; | ||
120 | } | ||
121 | |||
122 | #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0) | ||
123 | |||
124 | #define f_rn(bo, bi, n, k) \ | ||
125 | bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ | ||
126 | ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ | ||
127 | ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
128 | ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | ||
129 | |||
130 | #define i_rn(bo, bi, n, k) \ | ||
131 | bo[n] = it_tab[0][byte(bi[n],0)] ^ \ | ||
132 | it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ | ||
133 | it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
134 | it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | ||
135 | |||
136 | #define ls_box(x) \ | ||
137 | ( fl_tab[0][byte(x, 0)] ^ \ | ||
138 | fl_tab[1][byte(x, 1)] ^ \ | ||
139 | fl_tab[2][byte(x, 2)] ^ \ | ||
140 | fl_tab[3][byte(x, 3)] ) | ||
141 | |||
142 | #define f_rl(bo, bi, n, k) \ | ||
143 | bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ | ||
144 | fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ | ||
145 | fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
146 | fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | ||
147 | |||
148 | #define i_rl(bo, bi, n, k) \ | ||
149 | bo[n] = il_tab[0][byte(bi[n],0)] ^ \ | ||
150 | il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ | ||
151 | il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | ||
152 | il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | ||
153 | |||
154 | static void | ||
155 | gen_tabs (void) | ||
156 | { | ||
157 | uint32_t i, t; | ||
158 | uint8_t p, q; | ||
159 | |||
160 | /* log and power tables for GF(2**8) finite field with | ||
161 | 0x011b as modular polynomial - the simplest prmitive | ||
162 | root is 0x03, used here to generate the tables */ | ||
163 | |||
164 | for (i = 0, p = 1; i < 256; ++i) { | ||
165 | pow_tab[i] = (uint8_t) p; | ||
166 | log_tab[p] = (uint8_t) i; | ||
167 | |||
168 | p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); | ||
169 | } | ||
170 | |||
171 | log_tab[1] = 0; | ||
172 | |||
173 | for (i = 0, p = 1; i < 10; ++i) { | ||
174 | rco_tab[i] = p; | ||
175 | |||
176 | p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); | ||
177 | } | ||
178 | |||
179 | for (i = 0; i < 256; ++i) { | ||
180 | p = (i ? pow_tab[255 - log_tab[i]] : 0); | ||
181 | q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); | ||
182 | p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); | ||
183 | sbx_tab[i] = p; | ||
184 | isb_tab[p] = (uint8_t) i; | ||
185 | } | ||
186 | |||
187 | for (i = 0; i < 256; ++i) { | ||
188 | p = sbx_tab[i]; | ||
189 | |||
190 | t = p; | ||
191 | fl_tab[0][i] = t; | ||
192 | fl_tab[1][i] = rotl (t, 8); | ||
193 | fl_tab[2][i] = rotl (t, 16); | ||
194 | fl_tab[3][i] = rotl (t, 24); | ||
195 | |||
196 | t = ((uint32_t) ff_mult (2, p)) | | ||
197 | ((uint32_t) p << 8) | | ||
198 | ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24); | ||
199 | |||
200 | ft_tab[0][i] = t; | ||
201 | ft_tab[1][i] = rotl (t, 8); | ||
202 | ft_tab[2][i] = rotl (t, 16); | ||
203 | ft_tab[3][i] = rotl (t, 24); | ||
204 | |||
205 | p = isb_tab[i]; | ||
206 | |||
207 | t = p; | ||
208 | il_tab[0][i] = t; | ||
209 | il_tab[1][i] = rotl (t, 8); | ||
210 | il_tab[2][i] = rotl (t, 16); | ||
211 | il_tab[3][i] = rotl (t, 24); | ||
212 | |||
213 | t = ((uint32_t) ff_mult (14, p)) | | ||
214 | ((uint32_t) ff_mult (9, p) << 8) | | ||
215 | ((uint32_t) ff_mult (13, p) << 16) | | ||
216 | ((uint32_t) ff_mult (11, p) << 24); | ||
217 | |||
218 | it_tab[0][i] = t; | ||
219 | it_tab[1][i] = rotl (t, 8); | ||
220 | it_tab[2][i] = rotl (t, 16); | ||
221 | it_tab[3][i] = rotl (t, 24); | ||
222 | } | ||
223 | } | ||
224 | |||
225 | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) | ||
226 | |||
227 | #define imix_col(y,x) \ | ||
228 | u = star_x(x); \ | ||
229 | v = star_x(u); \ | ||
230 | w = star_x(v); \ | ||
231 | t = w ^ (x); \ | ||
232 | (y) = u ^ v ^ w; \ | ||
233 | (y) ^= rotr(u ^ t, 8) ^ \ | ||
234 | rotr(v ^ t, 16) ^ \ | ||
235 | rotr(t,24) | ||
236 | |||
237 | /* initialise the key schedule from the user supplied key */ | ||
238 | |||
239 | #define loop4(i) \ | ||
240 | { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \ | ||
241 | t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \ | ||
242 | t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \ | ||
243 | t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \ | ||
244 | t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \ | ||
245 | } | ||
246 | |||
247 | #define loop6(i) \ | ||
248 | { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \ | ||
249 | t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \ | ||
250 | t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \ | ||
251 | t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \ | ||
252 | t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \ | ||
253 | t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \ | ||
254 | t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \ | ||
255 | } | ||
256 | |||
257 | #define loop8(i) \ | ||
258 | { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \ | ||
259 | t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \ | ||
260 | t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \ | ||
261 | t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \ | ||
262 | t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \ | ||
263 | t = E_KEY[8 * i + 4] ^ ls_box(t); \ | ||
264 | E_KEY[8 * i + 12] = t; \ | ||
265 | t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \ | ||
266 | t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \ | ||
267 | t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \ | ||
268 | } | ||
269 | |||
270 | /* Tells whether the ACE is capable to generate | ||
271 | the extended key for a given key_len. */ | ||
272 | static inline int | ||
273 | aes_hw_extkey_available(uint8_t key_len) | ||
274 | { | ||
275 | /* TODO: We should check the actual CPU model/stepping | ||
276 | as it's possible that the capability will be | ||
277 | added in the next CPU revisions. */ | ||
278 | if (key_len == 16) | ||
279 | return 1; | ||
280 | return 0; | ||
281 | } | ||
282 | |||
283 | static int | ||
284 | aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags) | ||
285 | { | ||
286 | struct aes_ctx *ctx = ctx_arg; | ||
287 | uint32_t i, t, u, v, w; | ||
288 | uint32_t P[AES_EXTENDED_KEY_SIZE]; | ||
289 | uint32_t rounds; | ||
290 | |||
291 | if (key_len != 16 && key_len != 24 && key_len != 32) { | ||
292 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | ||
293 | return -EINVAL; | ||
294 | } | ||
295 | |||
296 | ctx->key_length = key_len; | ||
297 | |||
298 | ctx->E = ctx->e_data; | ||
299 | ctx->D = ctx->d_data; | ||
300 | |||
301 | /* Ensure 16-Bytes alignmentation of keys for VIA PadLock. */ | ||
302 | if ((int)(ctx->e_data) & 0x0F) | ||
303 | ctx->E += 4 - (((int)(ctx->e_data) & 0x0F) / sizeof (ctx->e_data[0])); | ||
304 | |||
305 | if ((int)(ctx->d_data) & 0x0F) | ||
306 | ctx->D += 4 - (((int)(ctx->d_data) & 0x0F) / sizeof (ctx->d_data[0])); | ||
307 | |||
308 | E_KEY[0] = uint32_t_in (in_key); | ||
309 | E_KEY[1] = uint32_t_in (in_key + 4); | ||
310 | E_KEY[2] = uint32_t_in (in_key + 8); | ||
311 | E_KEY[3] = uint32_t_in (in_key + 12); | ||
312 | |||
313 | /* Don't generate extended keys if the hardware can do it. */ | ||
314 | if (aes_hw_extkey_available(key_len)) | ||
315 | return 0; | ||
316 | |||
317 | switch (key_len) { | ||
318 | case 16: | ||
319 | t = E_KEY[3]; | ||
320 | for (i = 0; i < 10; ++i) | ||
321 | loop4 (i); | ||
322 | break; | ||
323 | |||
324 | case 24: | ||
325 | E_KEY[4] = uint32_t_in (in_key + 16); | ||
326 | t = E_KEY[5] = uint32_t_in (in_key + 20); | ||
327 | for (i = 0; i < 8; ++i) | ||
328 | loop6 (i); | ||
329 | break; | ||
330 | |||
331 | case 32: | ||
332 | E_KEY[4] = uint32_t_in (in_key + 16); | ||
333 | E_KEY[5] = uint32_t_in (in_key + 20); | ||
334 | E_KEY[6] = uint32_t_in (in_key + 24); | ||
335 | t = E_KEY[7] = uint32_t_in (in_key + 28); | ||
336 | for (i = 0; i < 7; ++i) | ||
337 | loop8 (i); | ||
338 | break; | ||
339 | } | ||
340 | |||
341 | D_KEY[0] = E_KEY[0]; | ||
342 | D_KEY[1] = E_KEY[1]; | ||
343 | D_KEY[2] = E_KEY[2]; | ||
344 | D_KEY[3] = E_KEY[3]; | ||
345 | |||
346 | for (i = 4; i < key_len + 24; ++i) { | ||
347 | imix_col (D_KEY[i], E_KEY[i]); | ||
348 | } | ||
349 | |||
350 | /* PadLock needs a different format of the decryption key. */ | ||
351 | rounds = 10 + (key_len - 16) / 4; | ||
352 | |||
353 | for (i = 0; i < rounds; i++) { | ||
354 | P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0]; | ||
355 | P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1]; | ||
356 | P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2]; | ||
357 | P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3]; | ||
358 | } | ||
359 | |||
360 | P[0] = E_KEY[(rounds * 4) + 0]; | ||
361 | P[1] = E_KEY[(rounds * 4) + 1]; | ||
362 | P[2] = E_KEY[(rounds * 4) + 2]; | ||
363 | P[3] = E_KEY[(rounds * 4) + 3]; | ||
364 | |||
365 | memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B); | ||
366 | |||
367 | return 0; | ||
368 | } | ||
369 | |||
370 | /* ====== Encryption/decryption routines ====== */ | ||
371 | |||
372 | /* This is the real call to PadLock. */ | ||
373 | static inline void | ||
374 | padlock_xcrypt_ecb(uint8_t *input, uint8_t *output, uint8_t *key, | ||
375 | void *control_word, uint32_t count) | ||
376 | { | ||
377 | asm volatile ("pushfl; popfl"); /* enforce key reload. */ | ||
378 | asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ | ||
379 | : "+S"(input), "+D"(output) | ||
380 | : "d"(control_word), "b"(key), "c"(count)); | ||
381 | } | ||
382 | |||
383 | static void | ||
384 | aes_padlock(void *ctx_arg, uint8_t *out_arg, const uint8_t *in_arg, int encdec) | ||
385 | { | ||
386 | /* Don't blindly modify this structure - the items must | ||
387 | fit on 16-Bytes boundaries! */ | ||
388 | struct padlock_xcrypt_data { | ||
389 | uint8_t buf[AES_BLOCK_SIZE]; | ||
390 | union cword cword; | ||
391 | }; | ||
392 | |||
393 | struct aes_ctx *ctx = ctx_arg; | ||
394 | char bigbuf[sizeof(struct padlock_xcrypt_data) + 16]; | ||
395 | struct padlock_xcrypt_data *data; | ||
396 | void *key; | ||
397 | |||
398 | /* Place 'data' at the first 16-Bytes aligned address in 'bigbuf'. */ | ||
399 | if (((long)bigbuf) & 0x0F) | ||
400 | data = (void*)(bigbuf + 16 - ((long)bigbuf & 0x0F)); | ||
401 | else | ||
402 | data = (void*)bigbuf; | ||
403 | |||
404 | /* Prepare Control word. */ | ||
405 | memset (data, 0, sizeof(struct padlock_xcrypt_data)); | ||
406 | data->cword.b.encdec = !encdec; /* in the rest of cryptoapi ENC=1/DEC=0 */ | ||
407 | data->cword.b.rounds = 10 + (ctx->key_length - 16) / 4; | ||
408 | data->cword.b.ksize = (ctx->key_length - 16) / 8; | ||
409 | |||
410 | /* Is the hardware capable to generate the extended key? */ | ||
411 | if (!aes_hw_extkey_available(ctx->key_length)) | ||
412 | data->cword.b.keygen = 1; | ||
413 | |||
414 | /* ctx->E starts with a plain key - if the hardware is capable | ||
415 | to generate the extended key itself we must supply | ||
416 | the plain key for both Encryption and Decryption. */ | ||
417 | if (encdec == CRYPTO_DIR_ENCRYPT || data->cword.b.keygen == 0) | ||
418 | key = ctx->E; | ||
419 | else | ||
420 | key = ctx->D; | ||
421 | |||
422 | memcpy(data->buf, in_arg, AES_BLOCK_SIZE); | ||
423 | padlock_xcrypt_ecb(data->buf, data->buf, key, &data->cword, 1); | ||
424 | memcpy(out_arg, data->buf, AES_BLOCK_SIZE); | ||
425 | } | ||
426 | |||
427 | static void | ||
428 | aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in) | ||
429 | { | ||
430 | aes_padlock(ctx_arg, out, in, CRYPTO_DIR_ENCRYPT); | ||
431 | } | ||
432 | |||
433 | static void | ||
434 | aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in) | ||
435 | { | ||
436 | aes_padlock(ctx_arg, out, in, CRYPTO_DIR_DECRYPT); | ||
437 | } | ||
438 | |||
439 | static struct crypto_alg aes_alg = { | ||
440 | .cra_name = "aes", | ||
441 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, | ||
442 | .cra_blocksize = AES_BLOCK_SIZE, | ||
443 | .cra_ctxsize = sizeof(struct aes_ctx), | ||
444 | .cra_module = THIS_MODULE, | ||
445 | .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), | ||
446 | .cra_u = { | ||
447 | .cipher = { | ||
448 | .cia_min_keysize = AES_MIN_KEY_SIZE, | ||
449 | .cia_max_keysize = AES_MAX_KEY_SIZE, | ||
450 | .cia_setkey = aes_set_key, | ||
451 | .cia_encrypt = aes_encrypt, | ||
452 | .cia_decrypt = aes_decrypt | ||
453 | } | ||
454 | } | ||
455 | }; | ||
456 | |||
457 | int __init padlock_init_aes(void) | ||
458 | { | ||
459 | printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); | ||
460 | |||
461 | gen_tabs(); | ||
462 | return crypto_register_alg(&aes_alg); | ||
463 | } | ||
464 | |||
465 | void __exit padlock_fini_aes(void) | ||
466 | { | ||
467 | crypto_unregister_alg(&aes_alg); | ||
468 | } | ||