diff options
Diffstat (limited to 'drivers/cpufreq')
-rw-r--r-- | drivers/cpufreq/Kconfig | 24 | ||||
-rw-r--r-- | drivers/cpufreq/Makefile | 1 | ||||
-rw-r--r-- | drivers/cpufreq/cpufreq.c | 8 | ||||
-rw-r--r-- | drivers/cpufreq/cpufreq_conservative.c | 586 | ||||
-rw-r--r-- | drivers/cpufreq/cpufreq_ondemand.c | 180 | ||||
-rw-r--r-- | drivers/cpufreq/cpufreq_stats.c | 47 |
6 files changed, 736 insertions, 110 deletions
diff --git a/drivers/cpufreq/Kconfig b/drivers/cpufreq/Kconfig index 95882bb1950e..60c9be99c6d9 100644 --- a/drivers/cpufreq/Kconfig +++ b/drivers/cpufreq/Kconfig | |||
@@ -46,6 +46,10 @@ config CPU_FREQ_STAT_DETAILS | |||
46 | This will show detail CPU frequency translation table in sysfs file | 46 | This will show detail CPU frequency translation table in sysfs file |
47 | system | 47 | system |
48 | 48 | ||
49 | # Note that it is not currently possible to set the other governors (such as ondemand) | ||
50 | # as the default, since if they fail to initialise, cpufreq will be | ||
51 | # left in an undefined state. | ||
52 | |||
49 | choice | 53 | choice |
50 | prompt "Default CPUFreq governor" | 54 | prompt "Default CPUFreq governor" |
51 | default CPU_FREQ_DEFAULT_GOV_USERSPACE if CPU_FREQ_SA1100 || CPU_FREQ_SA1110 | 55 | default CPU_FREQ_DEFAULT_GOV_USERSPACE if CPU_FREQ_SA1100 || CPU_FREQ_SA1110 |
@@ -115,4 +119,24 @@ config CPU_FREQ_GOV_ONDEMAND | |||
115 | 119 | ||
116 | If in doubt, say N. | 120 | If in doubt, say N. |
117 | 121 | ||
122 | config CPU_FREQ_GOV_CONSERVATIVE | ||
123 | tristate "'conservative' cpufreq governor" | ||
124 | depends on CPU_FREQ | ||
125 | help | ||
126 | 'conservative' - this driver is rather similar to the 'ondemand' | ||
127 | governor both in its source code and its purpose, the difference is | ||
128 | its optimisation for better suitability in a battery powered | ||
129 | environment. The frequency is gracefully increased and decreased | ||
130 | rather than jumping to 100% when speed is required. | ||
131 | |||
132 | If you have a desktop machine then you should really be considering | ||
133 | the 'ondemand' governor instead, however if you are using a laptop, | ||
134 | PDA or even an AMD64 based computer (due to the unacceptable | ||
135 | step-by-step latency issues between the minimum and maximum frequency | ||
136 | transitions in the CPU) you will probably want to use this governor. | ||
137 | |||
138 | For details, take a look at linux/Documentation/cpu-freq. | ||
139 | |||
140 | If in doubt, say N. | ||
141 | |||
118 | endif # CPU_FREQ | 142 | endif # CPU_FREQ |
diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile index 67b16e5a41a7..71fc3b4173f1 100644 --- a/drivers/cpufreq/Makefile +++ b/drivers/cpufreq/Makefile | |||
@@ -8,6 +8,7 @@ obj-$(CONFIG_CPU_FREQ_GOV_PERFORMANCE) += cpufreq_performance.o | |||
8 | obj-$(CONFIG_CPU_FREQ_GOV_POWERSAVE) += cpufreq_powersave.o | 8 | obj-$(CONFIG_CPU_FREQ_GOV_POWERSAVE) += cpufreq_powersave.o |
9 | obj-$(CONFIG_CPU_FREQ_GOV_USERSPACE) += cpufreq_userspace.o | 9 | obj-$(CONFIG_CPU_FREQ_GOV_USERSPACE) += cpufreq_userspace.o |
10 | obj-$(CONFIG_CPU_FREQ_GOV_ONDEMAND) += cpufreq_ondemand.o | 10 | obj-$(CONFIG_CPU_FREQ_GOV_ONDEMAND) += cpufreq_ondemand.o |
11 | obj-$(CONFIG_CPU_FREQ_GOV_CONSERVATIVE) += cpufreq_conservative.o | ||
11 | 12 | ||
12 | # CPUfreq cross-arch helpers | 13 | # CPUfreq cross-arch helpers |
13 | obj-$(CONFIG_CPU_FREQ_TABLE) += freq_table.o | 14 | obj-$(CONFIG_CPU_FREQ_TABLE) += freq_table.o |
diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c index 8e561313d094..03b5fb2ddcf4 100644 --- a/drivers/cpufreq/cpufreq.c +++ b/drivers/cpufreq/cpufreq.c | |||
@@ -258,7 +258,7 @@ void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state) | |||
258 | (likely(cpufreq_cpu_data[freqs->cpu]->cur)) && | 258 | (likely(cpufreq_cpu_data[freqs->cpu]->cur)) && |
259 | (unlikely(freqs->old != cpufreq_cpu_data[freqs->cpu]->cur))) | 259 | (unlikely(freqs->old != cpufreq_cpu_data[freqs->cpu]->cur))) |
260 | { | 260 | { |
261 | printk(KERN_WARNING "Warning: CPU frequency is %u, " | 261 | dprintk(KERN_WARNING "Warning: CPU frequency is %u, " |
262 | "cpufreq assumed %u kHz.\n", freqs->old, cpufreq_cpu_data[freqs->cpu]->cur); | 262 | "cpufreq assumed %u kHz.\n", freqs->old, cpufreq_cpu_data[freqs->cpu]->cur); |
263 | freqs->old = cpufreq_cpu_data[freqs->cpu]->cur; | 263 | freqs->old = cpufreq_cpu_data[freqs->cpu]->cur; |
264 | } | 264 | } |
@@ -814,7 +814,7 @@ static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, unsigne | |||
814 | { | 814 | { |
815 | struct cpufreq_freqs freqs; | 815 | struct cpufreq_freqs freqs; |
816 | 816 | ||
817 | printk(KERN_WARNING "Warning: CPU frequency out of sync: cpufreq and timing " | 817 | dprintk(KERN_WARNING "Warning: CPU frequency out of sync: cpufreq and timing " |
818 | "core thinks of %u, is %u kHz.\n", old_freq, new_freq); | 818 | "core thinks of %u, is %u kHz.\n", old_freq, new_freq); |
819 | 819 | ||
820 | freqs.cpu = cpu; | 820 | freqs.cpu = cpu; |
@@ -923,7 +923,7 @@ static int cpufreq_suspend(struct sys_device * sysdev, u32 state) | |||
923 | struct cpufreq_freqs freqs; | 923 | struct cpufreq_freqs freqs; |
924 | 924 | ||
925 | if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) | 925 | if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) |
926 | printk(KERN_DEBUG "Warning: CPU frequency is %u, " | 926 | dprintk(KERN_DEBUG "Warning: CPU frequency is %u, " |
927 | "cpufreq assumed %u kHz.\n", | 927 | "cpufreq assumed %u kHz.\n", |
928 | cur_freq, cpu_policy->cur); | 928 | cur_freq, cpu_policy->cur); |
929 | 929 | ||
@@ -1004,7 +1004,7 @@ static int cpufreq_resume(struct sys_device * sysdev) | |||
1004 | struct cpufreq_freqs freqs; | 1004 | struct cpufreq_freqs freqs; |
1005 | 1005 | ||
1006 | if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) | 1006 | if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) |
1007 | printk(KERN_WARNING "Warning: CPU frequency" | 1007 | dprintk(KERN_WARNING "Warning: CPU frequency" |
1008 | "is %u, cpufreq assumed %u kHz.\n", | 1008 | "is %u, cpufreq assumed %u kHz.\n", |
1009 | cur_freq, cpu_policy->cur); | 1009 | cur_freq, cpu_policy->cur); |
1010 | 1010 | ||
diff --git a/drivers/cpufreq/cpufreq_conservative.c b/drivers/cpufreq/cpufreq_conservative.c new file mode 100644 index 000000000000..e1df376e709e --- /dev/null +++ b/drivers/cpufreq/cpufreq_conservative.c | |||
@@ -0,0 +1,586 @@ | |||
1 | /* | ||
2 | * drivers/cpufreq/cpufreq_conservative.c | ||
3 | * | ||
4 | * Copyright (C) 2001 Russell King | ||
5 | * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. | ||
6 | * Jun Nakajima <jun.nakajima@intel.com> | ||
7 | * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk> | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License version 2 as | ||
11 | * published by the Free Software Foundation. | ||
12 | */ | ||
13 | |||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/smp.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/ctype.h> | ||
20 | #include <linux/cpufreq.h> | ||
21 | #include <linux/sysctl.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/fs.h> | ||
24 | #include <linux/sysfs.h> | ||
25 | #include <linux/sched.h> | ||
26 | #include <linux/kmod.h> | ||
27 | #include <linux/workqueue.h> | ||
28 | #include <linux/jiffies.h> | ||
29 | #include <linux/kernel_stat.h> | ||
30 | #include <linux/percpu.h> | ||
31 | |||
32 | /* | ||
33 | * dbs is used in this file as a shortform for demandbased switching | ||
34 | * It helps to keep variable names smaller, simpler | ||
35 | */ | ||
36 | |||
37 | #define DEF_FREQUENCY_UP_THRESHOLD (80) | ||
38 | #define MIN_FREQUENCY_UP_THRESHOLD (0) | ||
39 | #define MAX_FREQUENCY_UP_THRESHOLD (100) | ||
40 | |||
41 | #define DEF_FREQUENCY_DOWN_THRESHOLD (20) | ||
42 | #define MIN_FREQUENCY_DOWN_THRESHOLD (0) | ||
43 | #define MAX_FREQUENCY_DOWN_THRESHOLD (100) | ||
44 | |||
45 | /* | ||
46 | * The polling frequency of this governor depends on the capability of | ||
47 | * the processor. Default polling frequency is 1000 times the transition | ||
48 | * latency of the processor. The governor will work on any processor with | ||
49 | * transition latency <= 10mS, using appropriate sampling | ||
50 | * rate. | ||
51 | * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) | ||
52 | * this governor will not work. | ||
53 | * All times here are in uS. | ||
54 | */ | ||
55 | static unsigned int def_sampling_rate; | ||
56 | #define MIN_SAMPLING_RATE (def_sampling_rate / 2) | ||
57 | #define MAX_SAMPLING_RATE (500 * def_sampling_rate) | ||
58 | #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (100000) | ||
59 | #define DEF_SAMPLING_DOWN_FACTOR (5) | ||
60 | #define TRANSITION_LATENCY_LIMIT (10 * 1000) | ||
61 | |||
62 | static void do_dbs_timer(void *data); | ||
63 | |||
64 | struct cpu_dbs_info_s { | ||
65 | struct cpufreq_policy *cur_policy; | ||
66 | unsigned int prev_cpu_idle_up; | ||
67 | unsigned int prev_cpu_idle_down; | ||
68 | unsigned int enable; | ||
69 | }; | ||
70 | static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); | ||
71 | |||
72 | static unsigned int dbs_enable; /* number of CPUs using this policy */ | ||
73 | |||
74 | static DECLARE_MUTEX (dbs_sem); | ||
75 | static DECLARE_WORK (dbs_work, do_dbs_timer, NULL); | ||
76 | |||
77 | struct dbs_tuners { | ||
78 | unsigned int sampling_rate; | ||
79 | unsigned int sampling_down_factor; | ||
80 | unsigned int up_threshold; | ||
81 | unsigned int down_threshold; | ||
82 | unsigned int ignore_nice; | ||
83 | unsigned int freq_step; | ||
84 | }; | ||
85 | |||
86 | static struct dbs_tuners dbs_tuners_ins = { | ||
87 | .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, | ||
88 | .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, | ||
89 | .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, | ||
90 | }; | ||
91 | |||
92 | static inline unsigned int get_cpu_idle_time(unsigned int cpu) | ||
93 | { | ||
94 | return kstat_cpu(cpu).cpustat.idle + | ||
95 | kstat_cpu(cpu).cpustat.iowait + | ||
96 | ( !dbs_tuners_ins.ignore_nice ? | ||
97 | kstat_cpu(cpu).cpustat.nice : | ||
98 | 0); | ||
99 | } | ||
100 | |||
101 | /************************** sysfs interface ************************/ | ||
102 | static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) | ||
103 | { | ||
104 | return sprintf (buf, "%u\n", MAX_SAMPLING_RATE); | ||
105 | } | ||
106 | |||
107 | static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf) | ||
108 | { | ||
109 | return sprintf (buf, "%u\n", MIN_SAMPLING_RATE); | ||
110 | } | ||
111 | |||
112 | #define define_one_ro(_name) \ | ||
113 | static struct freq_attr _name = \ | ||
114 | __ATTR(_name, 0444, show_##_name, NULL) | ||
115 | |||
116 | define_one_ro(sampling_rate_max); | ||
117 | define_one_ro(sampling_rate_min); | ||
118 | |||
119 | /* cpufreq_conservative Governor Tunables */ | ||
120 | #define show_one(file_name, object) \ | ||
121 | static ssize_t show_##file_name \ | ||
122 | (struct cpufreq_policy *unused, char *buf) \ | ||
123 | { \ | ||
124 | return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ | ||
125 | } | ||
126 | show_one(sampling_rate, sampling_rate); | ||
127 | show_one(sampling_down_factor, sampling_down_factor); | ||
128 | show_one(up_threshold, up_threshold); | ||
129 | show_one(down_threshold, down_threshold); | ||
130 | show_one(ignore_nice, ignore_nice); | ||
131 | show_one(freq_step, freq_step); | ||
132 | |||
133 | static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, | ||
134 | const char *buf, size_t count) | ||
135 | { | ||
136 | unsigned int input; | ||
137 | int ret; | ||
138 | ret = sscanf (buf, "%u", &input); | ||
139 | if (ret != 1 ) | ||
140 | return -EINVAL; | ||
141 | |||
142 | down(&dbs_sem); | ||
143 | dbs_tuners_ins.sampling_down_factor = input; | ||
144 | up(&dbs_sem); | ||
145 | |||
146 | return count; | ||
147 | } | ||
148 | |||
149 | static ssize_t store_sampling_rate(struct cpufreq_policy *unused, | ||
150 | const char *buf, size_t count) | ||
151 | { | ||
152 | unsigned int input; | ||
153 | int ret; | ||
154 | ret = sscanf (buf, "%u", &input); | ||
155 | |||
156 | down(&dbs_sem); | ||
157 | if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) { | ||
158 | up(&dbs_sem); | ||
159 | return -EINVAL; | ||
160 | } | ||
161 | |||
162 | dbs_tuners_ins.sampling_rate = input; | ||
163 | up(&dbs_sem); | ||
164 | |||
165 | return count; | ||
166 | } | ||
167 | |||
168 | static ssize_t store_up_threshold(struct cpufreq_policy *unused, | ||
169 | const char *buf, size_t count) | ||
170 | { | ||
171 | unsigned int input; | ||
172 | int ret; | ||
173 | ret = sscanf (buf, "%u", &input); | ||
174 | |||
175 | down(&dbs_sem); | ||
176 | if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || | ||
177 | input < MIN_FREQUENCY_UP_THRESHOLD || | ||
178 | input <= dbs_tuners_ins.down_threshold) { | ||
179 | up(&dbs_sem); | ||
180 | return -EINVAL; | ||
181 | } | ||
182 | |||
183 | dbs_tuners_ins.up_threshold = input; | ||
184 | up(&dbs_sem); | ||
185 | |||
186 | return count; | ||
187 | } | ||
188 | |||
189 | static ssize_t store_down_threshold(struct cpufreq_policy *unused, | ||
190 | const char *buf, size_t count) | ||
191 | { | ||
192 | unsigned int input; | ||
193 | int ret; | ||
194 | ret = sscanf (buf, "%u", &input); | ||
195 | |||
196 | down(&dbs_sem); | ||
197 | if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || | ||
198 | input < MIN_FREQUENCY_DOWN_THRESHOLD || | ||
199 | input >= dbs_tuners_ins.up_threshold) { | ||
200 | up(&dbs_sem); | ||
201 | return -EINVAL; | ||
202 | } | ||
203 | |||
204 | dbs_tuners_ins.down_threshold = input; | ||
205 | up(&dbs_sem); | ||
206 | |||
207 | return count; | ||
208 | } | ||
209 | |||
210 | static ssize_t store_ignore_nice(struct cpufreq_policy *policy, | ||
211 | const char *buf, size_t count) | ||
212 | { | ||
213 | unsigned int input; | ||
214 | int ret; | ||
215 | |||
216 | unsigned int j; | ||
217 | |||
218 | ret = sscanf (buf, "%u", &input); | ||
219 | if ( ret != 1 ) | ||
220 | return -EINVAL; | ||
221 | |||
222 | if ( input > 1 ) | ||
223 | input = 1; | ||
224 | |||
225 | down(&dbs_sem); | ||
226 | if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */ | ||
227 | up(&dbs_sem); | ||
228 | return count; | ||
229 | } | ||
230 | dbs_tuners_ins.ignore_nice = input; | ||
231 | |||
232 | /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */ | ||
233 | for_each_online_cpu(j) { | ||
234 | struct cpu_dbs_info_s *j_dbs_info; | ||
235 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
236 | j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); | ||
237 | j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up; | ||
238 | } | ||
239 | up(&dbs_sem); | ||
240 | |||
241 | return count; | ||
242 | } | ||
243 | |||
244 | static ssize_t store_freq_step(struct cpufreq_policy *policy, | ||
245 | const char *buf, size_t count) | ||
246 | { | ||
247 | unsigned int input; | ||
248 | int ret; | ||
249 | |||
250 | ret = sscanf (buf, "%u", &input); | ||
251 | |||
252 | if ( ret != 1 ) | ||
253 | return -EINVAL; | ||
254 | |||
255 | if ( input > 100 ) | ||
256 | input = 100; | ||
257 | |||
258 | /* no need to test here if freq_step is zero as the user might actually | ||
259 | * want this, they would be crazy though :) */ | ||
260 | down(&dbs_sem); | ||
261 | dbs_tuners_ins.freq_step = input; | ||
262 | up(&dbs_sem); | ||
263 | |||
264 | return count; | ||
265 | } | ||
266 | |||
267 | #define define_one_rw(_name) \ | ||
268 | static struct freq_attr _name = \ | ||
269 | __ATTR(_name, 0644, show_##_name, store_##_name) | ||
270 | |||
271 | define_one_rw(sampling_rate); | ||
272 | define_one_rw(sampling_down_factor); | ||
273 | define_one_rw(up_threshold); | ||
274 | define_one_rw(down_threshold); | ||
275 | define_one_rw(ignore_nice); | ||
276 | define_one_rw(freq_step); | ||
277 | |||
278 | static struct attribute * dbs_attributes[] = { | ||
279 | &sampling_rate_max.attr, | ||
280 | &sampling_rate_min.attr, | ||
281 | &sampling_rate.attr, | ||
282 | &sampling_down_factor.attr, | ||
283 | &up_threshold.attr, | ||
284 | &down_threshold.attr, | ||
285 | &ignore_nice.attr, | ||
286 | &freq_step.attr, | ||
287 | NULL | ||
288 | }; | ||
289 | |||
290 | static struct attribute_group dbs_attr_group = { | ||
291 | .attrs = dbs_attributes, | ||
292 | .name = "conservative", | ||
293 | }; | ||
294 | |||
295 | /************************** sysfs end ************************/ | ||
296 | |||
297 | static void dbs_check_cpu(int cpu) | ||
298 | { | ||
299 | unsigned int idle_ticks, up_idle_ticks, down_idle_ticks; | ||
300 | unsigned int freq_step; | ||
301 | unsigned int freq_down_sampling_rate; | ||
302 | static int down_skip[NR_CPUS]; | ||
303 | static int requested_freq[NR_CPUS]; | ||
304 | static unsigned short init_flag = 0; | ||
305 | struct cpu_dbs_info_s *this_dbs_info; | ||
306 | struct cpu_dbs_info_s *dbs_info; | ||
307 | |||
308 | struct cpufreq_policy *policy; | ||
309 | unsigned int j; | ||
310 | |||
311 | this_dbs_info = &per_cpu(cpu_dbs_info, cpu); | ||
312 | if (!this_dbs_info->enable) | ||
313 | return; | ||
314 | |||
315 | policy = this_dbs_info->cur_policy; | ||
316 | |||
317 | if ( init_flag == 0 ) { | ||
318 | for ( /* NULL */; init_flag < NR_CPUS; init_flag++ ) { | ||
319 | dbs_info = &per_cpu(cpu_dbs_info, init_flag); | ||
320 | requested_freq[cpu] = dbs_info->cur_policy->cur; | ||
321 | } | ||
322 | init_flag = 1; | ||
323 | } | ||
324 | |||
325 | /* | ||
326 | * The default safe range is 20% to 80% | ||
327 | * Every sampling_rate, we check | ||
328 | * - If current idle time is less than 20%, then we try to | ||
329 | * increase frequency | ||
330 | * Every sampling_rate*sampling_down_factor, we check | ||
331 | * - If current idle time is more than 80%, then we try to | ||
332 | * decrease frequency | ||
333 | * | ||
334 | * Any frequency increase takes it to the maximum frequency. | ||
335 | * Frequency reduction happens at minimum steps of | ||
336 | * 5% (default) of max_frequency | ||
337 | */ | ||
338 | |||
339 | /* Check for frequency increase */ | ||
340 | |||
341 | idle_ticks = UINT_MAX; | ||
342 | for_each_cpu_mask(j, policy->cpus) { | ||
343 | unsigned int tmp_idle_ticks, total_idle_ticks; | ||
344 | struct cpu_dbs_info_s *j_dbs_info; | ||
345 | |||
346 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
347 | /* Check for frequency increase */ | ||
348 | total_idle_ticks = get_cpu_idle_time(j); | ||
349 | tmp_idle_ticks = total_idle_ticks - | ||
350 | j_dbs_info->prev_cpu_idle_up; | ||
351 | j_dbs_info->prev_cpu_idle_up = total_idle_ticks; | ||
352 | |||
353 | if (tmp_idle_ticks < idle_ticks) | ||
354 | idle_ticks = tmp_idle_ticks; | ||
355 | } | ||
356 | |||
357 | /* Scale idle ticks by 100 and compare with up and down ticks */ | ||
358 | idle_ticks *= 100; | ||
359 | up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) * | ||
360 | usecs_to_jiffies(dbs_tuners_ins.sampling_rate); | ||
361 | |||
362 | if (idle_ticks < up_idle_ticks) { | ||
363 | down_skip[cpu] = 0; | ||
364 | for_each_cpu_mask(j, policy->cpus) { | ||
365 | struct cpu_dbs_info_s *j_dbs_info; | ||
366 | |||
367 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
368 | j_dbs_info->prev_cpu_idle_down = | ||
369 | j_dbs_info->prev_cpu_idle_up; | ||
370 | } | ||
371 | /* if we are already at full speed then break out early */ | ||
372 | if (requested_freq[cpu] == policy->max) | ||
373 | return; | ||
374 | |||
375 | freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; | ||
376 | |||
377 | /* max freq cannot be less than 100. But who knows.... */ | ||
378 | if (unlikely(freq_step == 0)) | ||
379 | freq_step = 5; | ||
380 | |||
381 | requested_freq[cpu] += freq_step; | ||
382 | if (requested_freq[cpu] > policy->max) | ||
383 | requested_freq[cpu] = policy->max; | ||
384 | |||
385 | __cpufreq_driver_target(policy, requested_freq[cpu], | ||
386 | CPUFREQ_RELATION_H); | ||
387 | return; | ||
388 | } | ||
389 | |||
390 | /* Check for frequency decrease */ | ||
391 | down_skip[cpu]++; | ||
392 | if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor) | ||
393 | return; | ||
394 | |||
395 | idle_ticks = UINT_MAX; | ||
396 | for_each_cpu_mask(j, policy->cpus) { | ||
397 | unsigned int tmp_idle_ticks, total_idle_ticks; | ||
398 | struct cpu_dbs_info_s *j_dbs_info; | ||
399 | |||
400 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
401 | total_idle_ticks = j_dbs_info->prev_cpu_idle_up; | ||
402 | tmp_idle_ticks = total_idle_ticks - | ||
403 | j_dbs_info->prev_cpu_idle_down; | ||
404 | j_dbs_info->prev_cpu_idle_down = total_idle_ticks; | ||
405 | |||
406 | if (tmp_idle_ticks < idle_ticks) | ||
407 | idle_ticks = tmp_idle_ticks; | ||
408 | } | ||
409 | |||
410 | /* Scale idle ticks by 100 and compare with up and down ticks */ | ||
411 | idle_ticks *= 100; | ||
412 | down_skip[cpu] = 0; | ||
413 | |||
414 | freq_down_sampling_rate = dbs_tuners_ins.sampling_rate * | ||
415 | dbs_tuners_ins.sampling_down_factor; | ||
416 | down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) * | ||
417 | usecs_to_jiffies(freq_down_sampling_rate); | ||
418 | |||
419 | if (idle_ticks > down_idle_ticks) { | ||
420 | /* if we are already at the lowest speed then break out early | ||
421 | * or if we 'cannot' reduce the speed as the user might want | ||
422 | * freq_step to be zero */ | ||
423 | if (requested_freq[cpu] == policy->min | ||
424 | || dbs_tuners_ins.freq_step == 0) | ||
425 | return; | ||
426 | |||
427 | freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; | ||
428 | |||
429 | /* max freq cannot be less than 100. But who knows.... */ | ||
430 | if (unlikely(freq_step == 0)) | ||
431 | freq_step = 5; | ||
432 | |||
433 | requested_freq[cpu] -= freq_step; | ||
434 | if (requested_freq[cpu] < policy->min) | ||
435 | requested_freq[cpu] = policy->min; | ||
436 | |||
437 | __cpufreq_driver_target(policy, | ||
438 | requested_freq[cpu], | ||
439 | CPUFREQ_RELATION_H); | ||
440 | return; | ||
441 | } | ||
442 | } | ||
443 | |||
444 | static void do_dbs_timer(void *data) | ||
445 | { | ||
446 | int i; | ||
447 | down(&dbs_sem); | ||
448 | for_each_online_cpu(i) | ||
449 | dbs_check_cpu(i); | ||
450 | schedule_delayed_work(&dbs_work, | ||
451 | usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); | ||
452 | up(&dbs_sem); | ||
453 | } | ||
454 | |||
455 | static inline void dbs_timer_init(void) | ||
456 | { | ||
457 | INIT_WORK(&dbs_work, do_dbs_timer, NULL); | ||
458 | schedule_delayed_work(&dbs_work, | ||
459 | usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); | ||
460 | return; | ||
461 | } | ||
462 | |||
463 | static inline void dbs_timer_exit(void) | ||
464 | { | ||
465 | cancel_delayed_work(&dbs_work); | ||
466 | return; | ||
467 | } | ||
468 | |||
469 | static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | ||
470 | unsigned int event) | ||
471 | { | ||
472 | unsigned int cpu = policy->cpu; | ||
473 | struct cpu_dbs_info_s *this_dbs_info; | ||
474 | unsigned int j; | ||
475 | |||
476 | this_dbs_info = &per_cpu(cpu_dbs_info, cpu); | ||
477 | |||
478 | switch (event) { | ||
479 | case CPUFREQ_GOV_START: | ||
480 | if ((!cpu_online(cpu)) || | ||
481 | (!policy->cur)) | ||
482 | return -EINVAL; | ||
483 | |||
484 | if (policy->cpuinfo.transition_latency > | ||
485 | (TRANSITION_LATENCY_LIMIT * 1000)) | ||
486 | return -EINVAL; | ||
487 | if (this_dbs_info->enable) /* Already enabled */ | ||
488 | break; | ||
489 | |||
490 | down(&dbs_sem); | ||
491 | for_each_cpu_mask(j, policy->cpus) { | ||
492 | struct cpu_dbs_info_s *j_dbs_info; | ||
493 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
494 | j_dbs_info->cur_policy = policy; | ||
495 | |||
496 | j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); | ||
497 | j_dbs_info->prev_cpu_idle_down | ||
498 | = j_dbs_info->prev_cpu_idle_up; | ||
499 | } | ||
500 | this_dbs_info->enable = 1; | ||
501 | sysfs_create_group(&policy->kobj, &dbs_attr_group); | ||
502 | dbs_enable++; | ||
503 | /* | ||
504 | * Start the timerschedule work, when this governor | ||
505 | * is used for first time | ||
506 | */ | ||
507 | if (dbs_enable == 1) { | ||
508 | unsigned int latency; | ||
509 | /* policy latency is in nS. Convert it to uS first */ | ||
510 | |||
511 | latency = policy->cpuinfo.transition_latency; | ||
512 | if (latency < 1000) | ||
513 | latency = 1000; | ||
514 | |||
515 | def_sampling_rate = (latency / 1000) * | ||
516 | DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; | ||
517 | dbs_tuners_ins.sampling_rate = def_sampling_rate; | ||
518 | dbs_tuners_ins.ignore_nice = 0; | ||
519 | dbs_tuners_ins.freq_step = 5; | ||
520 | |||
521 | dbs_timer_init(); | ||
522 | } | ||
523 | |||
524 | up(&dbs_sem); | ||
525 | break; | ||
526 | |||
527 | case CPUFREQ_GOV_STOP: | ||
528 | down(&dbs_sem); | ||
529 | this_dbs_info->enable = 0; | ||
530 | sysfs_remove_group(&policy->kobj, &dbs_attr_group); | ||
531 | dbs_enable--; | ||
532 | /* | ||
533 | * Stop the timerschedule work, when this governor | ||
534 | * is used for first time | ||
535 | */ | ||
536 | if (dbs_enable == 0) | ||
537 | dbs_timer_exit(); | ||
538 | |||
539 | up(&dbs_sem); | ||
540 | |||
541 | break; | ||
542 | |||
543 | case CPUFREQ_GOV_LIMITS: | ||
544 | down(&dbs_sem); | ||
545 | if (policy->max < this_dbs_info->cur_policy->cur) | ||
546 | __cpufreq_driver_target( | ||
547 | this_dbs_info->cur_policy, | ||
548 | policy->max, CPUFREQ_RELATION_H); | ||
549 | else if (policy->min > this_dbs_info->cur_policy->cur) | ||
550 | __cpufreq_driver_target( | ||
551 | this_dbs_info->cur_policy, | ||
552 | policy->min, CPUFREQ_RELATION_L); | ||
553 | up(&dbs_sem); | ||
554 | break; | ||
555 | } | ||
556 | return 0; | ||
557 | } | ||
558 | |||
559 | static struct cpufreq_governor cpufreq_gov_dbs = { | ||
560 | .name = "conservative", | ||
561 | .governor = cpufreq_governor_dbs, | ||
562 | .owner = THIS_MODULE, | ||
563 | }; | ||
564 | |||
565 | static int __init cpufreq_gov_dbs_init(void) | ||
566 | { | ||
567 | return cpufreq_register_governor(&cpufreq_gov_dbs); | ||
568 | } | ||
569 | |||
570 | static void __exit cpufreq_gov_dbs_exit(void) | ||
571 | { | ||
572 | /* Make sure that the scheduled work is indeed not running */ | ||
573 | flush_scheduled_work(); | ||
574 | |||
575 | cpufreq_unregister_governor(&cpufreq_gov_dbs); | ||
576 | } | ||
577 | |||
578 | |||
579 | MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>"); | ||
580 | MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for " | ||
581 | "Low Latency Frequency Transition capable processors " | ||
582 | "optimised for use in a battery environment"); | ||
583 | MODULE_LICENSE ("GPL"); | ||
584 | |||
585 | module_init(cpufreq_gov_dbs_init); | ||
586 | module_exit(cpufreq_gov_dbs_exit); | ||
diff --git a/drivers/cpufreq/cpufreq_ondemand.c b/drivers/cpufreq/cpufreq_ondemand.c index 8d83a21c6477..c1fc9c62bb51 100644 --- a/drivers/cpufreq/cpufreq_ondemand.c +++ b/drivers/cpufreq/cpufreq_ondemand.c | |||
@@ -34,13 +34,9 @@ | |||
34 | */ | 34 | */ |
35 | 35 | ||
36 | #define DEF_FREQUENCY_UP_THRESHOLD (80) | 36 | #define DEF_FREQUENCY_UP_THRESHOLD (80) |
37 | #define MIN_FREQUENCY_UP_THRESHOLD (0) | 37 | #define MIN_FREQUENCY_UP_THRESHOLD (11) |
38 | #define MAX_FREQUENCY_UP_THRESHOLD (100) | 38 | #define MAX_FREQUENCY_UP_THRESHOLD (100) |
39 | 39 | ||
40 | #define DEF_FREQUENCY_DOWN_THRESHOLD (20) | ||
41 | #define MIN_FREQUENCY_DOWN_THRESHOLD (0) | ||
42 | #define MAX_FREQUENCY_DOWN_THRESHOLD (100) | ||
43 | |||
44 | /* | 40 | /* |
45 | * The polling frequency of this governor depends on the capability of | 41 | * The polling frequency of this governor depends on the capability of |
46 | * the processor. Default polling frequency is 1000 times the transition | 42 | * the processor. Default polling frequency is 1000 times the transition |
@@ -55,9 +51,9 @@ static unsigned int def_sampling_rate; | |||
55 | #define MIN_SAMPLING_RATE (def_sampling_rate / 2) | 51 | #define MIN_SAMPLING_RATE (def_sampling_rate / 2) |
56 | #define MAX_SAMPLING_RATE (500 * def_sampling_rate) | 52 | #define MAX_SAMPLING_RATE (500 * def_sampling_rate) |
57 | #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000) | 53 | #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000) |
58 | #define DEF_SAMPLING_DOWN_FACTOR (10) | 54 | #define DEF_SAMPLING_DOWN_FACTOR (1) |
55 | #define MAX_SAMPLING_DOWN_FACTOR (10) | ||
59 | #define TRANSITION_LATENCY_LIMIT (10 * 1000) | 56 | #define TRANSITION_LATENCY_LIMIT (10 * 1000) |
60 | #define sampling_rate_in_HZ(x) (((x * HZ) < (1000 * 1000))?1:((x * HZ) / (1000 * 1000))) | ||
61 | 57 | ||
62 | static void do_dbs_timer(void *data); | 58 | static void do_dbs_timer(void *data); |
63 | 59 | ||
@@ -78,15 +74,23 @@ struct dbs_tuners { | |||
78 | unsigned int sampling_rate; | 74 | unsigned int sampling_rate; |
79 | unsigned int sampling_down_factor; | 75 | unsigned int sampling_down_factor; |
80 | unsigned int up_threshold; | 76 | unsigned int up_threshold; |
81 | unsigned int down_threshold; | 77 | unsigned int ignore_nice; |
82 | }; | 78 | }; |
83 | 79 | ||
84 | static struct dbs_tuners dbs_tuners_ins = { | 80 | static struct dbs_tuners dbs_tuners_ins = { |
85 | .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, | 81 | .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, |
86 | .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, | ||
87 | .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, | 82 | .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, |
88 | }; | 83 | }; |
89 | 84 | ||
85 | static inline unsigned int get_cpu_idle_time(unsigned int cpu) | ||
86 | { | ||
87 | return kstat_cpu(cpu).cpustat.idle + | ||
88 | kstat_cpu(cpu).cpustat.iowait + | ||
89 | ( !dbs_tuners_ins.ignore_nice ? | ||
90 | kstat_cpu(cpu).cpustat.nice : | ||
91 | 0); | ||
92 | } | ||
93 | |||
90 | /************************** sysfs interface ************************/ | 94 | /************************** sysfs interface ************************/ |
91 | static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) | 95 | static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) |
92 | { | 96 | { |
@@ -115,7 +119,7 @@ static ssize_t show_##file_name \ | |||
115 | show_one(sampling_rate, sampling_rate); | 119 | show_one(sampling_rate, sampling_rate); |
116 | show_one(sampling_down_factor, sampling_down_factor); | 120 | show_one(sampling_down_factor, sampling_down_factor); |
117 | show_one(up_threshold, up_threshold); | 121 | show_one(up_threshold, up_threshold); |
118 | show_one(down_threshold, down_threshold); | 122 | show_one(ignore_nice, ignore_nice); |
119 | 123 | ||
120 | static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, | 124 | static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, |
121 | const char *buf, size_t count) | 125 | const char *buf, size_t count) |
@@ -126,6 +130,9 @@ static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, | |||
126 | if (ret != 1 ) | 130 | if (ret != 1 ) |
127 | return -EINVAL; | 131 | return -EINVAL; |
128 | 132 | ||
133 | if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1) | ||
134 | return -EINVAL; | ||
135 | |||
129 | down(&dbs_sem); | 136 | down(&dbs_sem); |
130 | dbs_tuners_ins.sampling_down_factor = input; | 137 | dbs_tuners_ins.sampling_down_factor = input; |
131 | up(&dbs_sem); | 138 | up(&dbs_sem); |
@@ -161,8 +168,7 @@ static ssize_t store_up_threshold(struct cpufreq_policy *unused, | |||
161 | 168 | ||
162 | down(&dbs_sem); | 169 | down(&dbs_sem); |
163 | if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || | 170 | if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || |
164 | input < MIN_FREQUENCY_UP_THRESHOLD || | 171 | input < MIN_FREQUENCY_UP_THRESHOLD) { |
165 | input <= dbs_tuners_ins.down_threshold) { | ||
166 | up(&dbs_sem); | 172 | up(&dbs_sem); |
167 | return -EINVAL; | 173 | return -EINVAL; |
168 | } | 174 | } |
@@ -173,22 +179,35 @@ static ssize_t store_up_threshold(struct cpufreq_policy *unused, | |||
173 | return count; | 179 | return count; |
174 | } | 180 | } |
175 | 181 | ||
176 | static ssize_t store_down_threshold(struct cpufreq_policy *unused, | 182 | static ssize_t store_ignore_nice(struct cpufreq_policy *policy, |
177 | const char *buf, size_t count) | 183 | const char *buf, size_t count) |
178 | { | 184 | { |
179 | unsigned int input; | 185 | unsigned int input; |
180 | int ret; | 186 | int ret; |
187 | |||
188 | unsigned int j; | ||
189 | |||
181 | ret = sscanf (buf, "%u", &input); | 190 | ret = sscanf (buf, "%u", &input); |
191 | if ( ret != 1 ) | ||
192 | return -EINVAL; | ||
182 | 193 | ||
194 | if ( input > 1 ) | ||
195 | input = 1; | ||
196 | |||
183 | down(&dbs_sem); | 197 | down(&dbs_sem); |
184 | if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || | 198 | if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */ |
185 | input < MIN_FREQUENCY_DOWN_THRESHOLD || | ||
186 | input >= dbs_tuners_ins.up_threshold) { | ||
187 | up(&dbs_sem); | 199 | up(&dbs_sem); |
188 | return -EINVAL; | 200 | return count; |
189 | } | 201 | } |
202 | dbs_tuners_ins.ignore_nice = input; | ||
190 | 203 | ||
191 | dbs_tuners_ins.down_threshold = input; | 204 | /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */ |
205 | for_each_online_cpu(j) { | ||
206 | struct cpu_dbs_info_s *j_dbs_info; | ||
207 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
208 | j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); | ||
209 | j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up; | ||
210 | } | ||
192 | up(&dbs_sem); | 211 | up(&dbs_sem); |
193 | 212 | ||
194 | return count; | 213 | return count; |
@@ -201,7 +220,7 @@ __ATTR(_name, 0644, show_##_name, store_##_name) | |||
201 | define_one_rw(sampling_rate); | 220 | define_one_rw(sampling_rate); |
202 | define_one_rw(sampling_down_factor); | 221 | define_one_rw(sampling_down_factor); |
203 | define_one_rw(up_threshold); | 222 | define_one_rw(up_threshold); |
204 | define_one_rw(down_threshold); | 223 | define_one_rw(ignore_nice); |
205 | 224 | ||
206 | static struct attribute * dbs_attributes[] = { | 225 | static struct attribute * dbs_attributes[] = { |
207 | &sampling_rate_max.attr, | 226 | &sampling_rate_max.attr, |
@@ -209,7 +228,7 @@ static struct attribute * dbs_attributes[] = { | |||
209 | &sampling_rate.attr, | 228 | &sampling_rate.attr, |
210 | &sampling_down_factor.attr, | 229 | &sampling_down_factor.attr, |
211 | &up_threshold.attr, | 230 | &up_threshold.attr, |
212 | &down_threshold.attr, | 231 | &ignore_nice.attr, |
213 | NULL | 232 | NULL |
214 | }; | 233 | }; |
215 | 234 | ||
@@ -222,9 +241,8 @@ static struct attribute_group dbs_attr_group = { | |||
222 | 241 | ||
223 | static void dbs_check_cpu(int cpu) | 242 | static void dbs_check_cpu(int cpu) |
224 | { | 243 | { |
225 | unsigned int idle_ticks, up_idle_ticks, down_idle_ticks; | 244 | unsigned int idle_ticks, up_idle_ticks, total_ticks; |
226 | unsigned int total_idle_ticks; | 245 | unsigned int freq_next; |
227 | unsigned int freq_down_step; | ||
228 | unsigned int freq_down_sampling_rate; | 246 | unsigned int freq_down_sampling_rate; |
229 | static int down_skip[NR_CPUS]; | 247 | static int down_skip[NR_CPUS]; |
230 | struct cpu_dbs_info_s *this_dbs_info; | 248 | struct cpu_dbs_info_s *this_dbs_info; |
@@ -238,38 +256,25 @@ static void dbs_check_cpu(int cpu) | |||
238 | 256 | ||
239 | policy = this_dbs_info->cur_policy; | 257 | policy = this_dbs_info->cur_policy; |
240 | /* | 258 | /* |
241 | * The default safe range is 20% to 80% | 259 | * Every sampling_rate, we check, if current idle time is less |
242 | * Every sampling_rate, we check | 260 | * than 20% (default), then we try to increase frequency |
243 | * - If current idle time is less than 20%, then we try to | 261 | * Every sampling_rate*sampling_down_factor, we look for a the lowest |
244 | * increase frequency | 262 | * frequency which can sustain the load while keeping idle time over |
245 | * Every sampling_rate*sampling_down_factor, we check | 263 | * 30%. If such a frequency exist, we try to decrease to this frequency. |
246 | * - If current idle time is more than 80%, then we try to | ||
247 | * decrease frequency | ||
248 | * | 264 | * |
249 | * Any frequency increase takes it to the maximum frequency. | 265 | * Any frequency increase takes it to the maximum frequency. |
250 | * Frequency reduction happens at minimum steps of | 266 | * Frequency reduction happens at minimum steps of |
251 | * 5% of max_frequency | 267 | * 5% (default) of current frequency |
252 | */ | 268 | */ |
253 | 269 | ||
254 | /* Check for frequency increase */ | 270 | /* Check for frequency increase */ |
255 | total_idle_ticks = kstat_cpu(cpu).cpustat.idle + | 271 | idle_ticks = UINT_MAX; |
256 | kstat_cpu(cpu).cpustat.iowait; | ||
257 | idle_ticks = total_idle_ticks - | ||
258 | this_dbs_info->prev_cpu_idle_up; | ||
259 | this_dbs_info->prev_cpu_idle_up = total_idle_ticks; | ||
260 | |||
261 | |||
262 | for_each_cpu_mask(j, policy->cpus) { | 272 | for_each_cpu_mask(j, policy->cpus) { |
263 | unsigned int tmp_idle_ticks; | 273 | unsigned int tmp_idle_ticks, total_idle_ticks; |
264 | struct cpu_dbs_info_s *j_dbs_info; | 274 | struct cpu_dbs_info_s *j_dbs_info; |
265 | 275 | ||
266 | if (j == cpu) | ||
267 | continue; | ||
268 | |||
269 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 276 | j_dbs_info = &per_cpu(cpu_dbs_info, j); |
270 | /* Check for frequency increase */ | 277 | total_idle_ticks = get_cpu_idle_time(j); |
271 | total_idle_ticks = kstat_cpu(j).cpustat.idle + | ||
272 | kstat_cpu(j).cpustat.iowait; | ||
273 | tmp_idle_ticks = total_idle_ticks - | 278 | tmp_idle_ticks = total_idle_ticks - |
274 | j_dbs_info->prev_cpu_idle_up; | 279 | j_dbs_info->prev_cpu_idle_up; |
275 | j_dbs_info->prev_cpu_idle_up = total_idle_ticks; | 280 | j_dbs_info->prev_cpu_idle_up = total_idle_ticks; |
@@ -281,13 +286,23 @@ static void dbs_check_cpu(int cpu) | |||
281 | /* Scale idle ticks by 100 and compare with up and down ticks */ | 286 | /* Scale idle ticks by 100 and compare with up and down ticks */ |
282 | idle_ticks *= 100; | 287 | idle_ticks *= 100; |
283 | up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) * | 288 | up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) * |
284 | sampling_rate_in_HZ(dbs_tuners_ins.sampling_rate); | 289 | usecs_to_jiffies(dbs_tuners_ins.sampling_rate); |
285 | 290 | ||
286 | if (idle_ticks < up_idle_ticks) { | 291 | if (idle_ticks < up_idle_ticks) { |
292 | down_skip[cpu] = 0; | ||
293 | for_each_cpu_mask(j, policy->cpus) { | ||
294 | struct cpu_dbs_info_s *j_dbs_info; | ||
295 | |||
296 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | ||
297 | j_dbs_info->prev_cpu_idle_down = | ||
298 | j_dbs_info->prev_cpu_idle_up; | ||
299 | } | ||
300 | /* if we are already at full speed then break out early */ | ||
301 | if (policy->cur == policy->max) | ||
302 | return; | ||
303 | |||
287 | __cpufreq_driver_target(policy, policy->max, | 304 | __cpufreq_driver_target(policy, policy->max, |
288 | CPUFREQ_RELATION_H); | 305 | CPUFREQ_RELATION_H); |
289 | down_skip[cpu] = 0; | ||
290 | this_dbs_info->prev_cpu_idle_down = total_idle_ticks; | ||
291 | return; | 306 | return; |
292 | } | 307 | } |
293 | 308 | ||
@@ -296,23 +311,14 @@ static void dbs_check_cpu(int cpu) | |||
296 | if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor) | 311 | if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor) |
297 | return; | 312 | return; |
298 | 313 | ||
299 | total_idle_ticks = kstat_cpu(cpu).cpustat.idle + | 314 | idle_ticks = UINT_MAX; |
300 | kstat_cpu(cpu).cpustat.iowait; | ||
301 | idle_ticks = total_idle_ticks - | ||
302 | this_dbs_info->prev_cpu_idle_down; | ||
303 | this_dbs_info->prev_cpu_idle_down = total_idle_ticks; | ||
304 | |||
305 | for_each_cpu_mask(j, policy->cpus) { | 315 | for_each_cpu_mask(j, policy->cpus) { |
306 | unsigned int tmp_idle_ticks; | 316 | unsigned int tmp_idle_ticks, total_idle_ticks; |
307 | struct cpu_dbs_info_s *j_dbs_info; | 317 | struct cpu_dbs_info_s *j_dbs_info; |
308 | 318 | ||
309 | if (j == cpu) | ||
310 | continue; | ||
311 | |||
312 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 319 | j_dbs_info = &per_cpu(cpu_dbs_info, j); |
313 | /* Check for frequency increase */ | 320 | /* Check for frequency decrease */ |
314 | total_idle_ticks = kstat_cpu(j).cpustat.idle + | 321 | total_idle_ticks = j_dbs_info->prev_cpu_idle_up; |
315 | kstat_cpu(j).cpustat.iowait; | ||
316 | tmp_idle_ticks = total_idle_ticks - | 322 | tmp_idle_ticks = total_idle_ticks - |
317 | j_dbs_info->prev_cpu_idle_down; | 323 | j_dbs_info->prev_cpu_idle_down; |
318 | j_dbs_info->prev_cpu_idle_down = total_idle_ticks; | 324 | j_dbs_info->prev_cpu_idle_down = total_idle_ticks; |
@@ -321,38 +327,37 @@ static void dbs_check_cpu(int cpu) | |||
321 | idle_ticks = tmp_idle_ticks; | 327 | idle_ticks = tmp_idle_ticks; |
322 | } | 328 | } |
323 | 329 | ||
324 | /* Scale idle ticks by 100 and compare with up and down ticks */ | ||
325 | idle_ticks *= 100; | ||
326 | down_skip[cpu] = 0; | 330 | down_skip[cpu] = 0; |
331 | /* if we cannot reduce the frequency anymore, break out early */ | ||
332 | if (policy->cur == policy->min) | ||
333 | return; | ||
327 | 334 | ||
335 | /* Compute how many ticks there are between two measurements */ | ||
328 | freq_down_sampling_rate = dbs_tuners_ins.sampling_rate * | 336 | freq_down_sampling_rate = dbs_tuners_ins.sampling_rate * |
329 | dbs_tuners_ins.sampling_down_factor; | 337 | dbs_tuners_ins.sampling_down_factor; |
330 | down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) * | 338 | total_ticks = usecs_to_jiffies(freq_down_sampling_rate); |
331 | sampling_rate_in_HZ(freq_down_sampling_rate); | ||
332 | 339 | ||
333 | if (idle_ticks > down_idle_ticks ) { | 340 | /* |
334 | freq_down_step = (5 * policy->max) / 100; | 341 | * The optimal frequency is the frequency that is the lowest that |
335 | 342 | * can support the current CPU usage without triggering the up | |
336 | /* max freq cannot be less than 100. But who knows.... */ | 343 | * policy. To be safe, we focus 10 points under the threshold. |
337 | if (unlikely(freq_down_step == 0)) | 344 | */ |
338 | freq_down_step = 5; | 345 | freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks; |
346 | freq_next = (freq_next * policy->cur) / | ||
347 | (dbs_tuners_ins.up_threshold - 10); | ||
339 | 348 | ||
340 | __cpufreq_driver_target(policy, | 349 | if (freq_next <= ((policy->cur * 95) / 100)) |
341 | policy->cur - freq_down_step, | 350 | __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L); |
342 | CPUFREQ_RELATION_H); | ||
343 | return; | ||
344 | } | ||
345 | } | 351 | } |
346 | 352 | ||
347 | static void do_dbs_timer(void *data) | 353 | static void do_dbs_timer(void *data) |
348 | { | 354 | { |
349 | int i; | 355 | int i; |
350 | down(&dbs_sem); | 356 | down(&dbs_sem); |
351 | for (i = 0; i < NR_CPUS; i++) | 357 | for_each_online_cpu(i) |
352 | if (cpu_online(i)) | 358 | dbs_check_cpu(i); |
353 | dbs_check_cpu(i); | ||
354 | schedule_delayed_work(&dbs_work, | 359 | schedule_delayed_work(&dbs_work, |
355 | sampling_rate_in_HZ(dbs_tuners_ins.sampling_rate)); | 360 | usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); |
356 | up(&dbs_sem); | 361 | up(&dbs_sem); |
357 | } | 362 | } |
358 | 363 | ||
@@ -360,7 +365,7 @@ static inline void dbs_timer_init(void) | |||
360 | { | 365 | { |
361 | INIT_WORK(&dbs_work, do_dbs_timer, NULL); | 366 | INIT_WORK(&dbs_work, do_dbs_timer, NULL); |
362 | schedule_delayed_work(&dbs_work, | 367 | schedule_delayed_work(&dbs_work, |
363 | sampling_rate_in_HZ(dbs_tuners_ins.sampling_rate)); | 368 | usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); |
364 | return; | 369 | return; |
365 | } | 370 | } |
366 | 371 | ||
@@ -397,12 +402,9 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | |||
397 | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 402 | j_dbs_info = &per_cpu(cpu_dbs_info, j); |
398 | j_dbs_info->cur_policy = policy; | 403 | j_dbs_info->cur_policy = policy; |
399 | 404 | ||
400 | j_dbs_info->prev_cpu_idle_up = | 405 | j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); |
401 | kstat_cpu(j).cpustat.idle + | 406 | j_dbs_info->prev_cpu_idle_down |
402 | kstat_cpu(j).cpustat.iowait; | 407 | = j_dbs_info->prev_cpu_idle_up; |
403 | j_dbs_info->prev_cpu_idle_down = | ||
404 | kstat_cpu(j).cpustat.idle + | ||
405 | kstat_cpu(j).cpustat.iowait; | ||
406 | } | 408 | } |
407 | this_dbs_info->enable = 1; | 409 | this_dbs_info->enable = 1; |
408 | sysfs_create_group(&policy->kobj, &dbs_attr_group); | 410 | sysfs_create_group(&policy->kobj, &dbs_attr_group); |
@@ -422,6 +424,7 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | |||
422 | def_sampling_rate = (latency / 1000) * | 424 | def_sampling_rate = (latency / 1000) * |
423 | DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; | 425 | DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; |
424 | dbs_tuners_ins.sampling_rate = def_sampling_rate; | 426 | dbs_tuners_ins.sampling_rate = def_sampling_rate; |
427 | dbs_tuners_ins.ignore_nice = 0; | ||
425 | 428 | ||
426 | dbs_timer_init(); | 429 | dbs_timer_init(); |
427 | } | 430 | } |
@@ -461,12 +464,11 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | |||
461 | return 0; | 464 | return 0; |
462 | } | 465 | } |
463 | 466 | ||
464 | struct cpufreq_governor cpufreq_gov_dbs = { | 467 | static struct cpufreq_governor cpufreq_gov_dbs = { |
465 | .name = "ondemand", | 468 | .name = "ondemand", |
466 | .governor = cpufreq_governor_dbs, | 469 | .governor = cpufreq_governor_dbs, |
467 | .owner = THIS_MODULE, | 470 | .owner = THIS_MODULE, |
468 | }; | 471 | }; |
469 | EXPORT_SYMBOL(cpufreq_gov_dbs); | ||
470 | 472 | ||
471 | static int __init cpufreq_gov_dbs_init(void) | 473 | static int __init cpufreq_gov_dbs_init(void) |
472 | { | 474 | { |
diff --git a/drivers/cpufreq/cpufreq_stats.c b/drivers/cpufreq/cpufreq_stats.c index 2084593937c6..741b6b191e6a 100644 --- a/drivers/cpufreq/cpufreq_stats.c +++ b/drivers/cpufreq/cpufreq_stats.c | |||
@@ -19,6 +19,7 @@ | |||
19 | #include <linux/percpu.h> | 19 | #include <linux/percpu.h> |
20 | #include <linux/kobject.h> | 20 | #include <linux/kobject.h> |
21 | #include <linux/spinlock.h> | 21 | #include <linux/spinlock.h> |
22 | #include <asm/cputime.h> | ||
22 | 23 | ||
23 | static spinlock_t cpufreq_stats_lock; | 24 | static spinlock_t cpufreq_stats_lock; |
24 | 25 | ||
@@ -29,20 +30,14 @@ static struct freq_attr _attr_##_name = {\ | |||
29 | .show = _show,\ | 30 | .show = _show,\ |
30 | }; | 31 | }; |
31 | 32 | ||
32 | static unsigned long | ||
33 | delta_time(unsigned long old, unsigned long new) | ||
34 | { | ||
35 | return (old > new) ? (old - new): (new + ~old + 1); | ||
36 | } | ||
37 | |||
38 | struct cpufreq_stats { | 33 | struct cpufreq_stats { |
39 | unsigned int cpu; | 34 | unsigned int cpu; |
40 | unsigned int total_trans; | 35 | unsigned int total_trans; |
41 | unsigned long long last_time; | 36 | unsigned long long last_time; |
42 | unsigned int max_state; | 37 | unsigned int max_state; |
43 | unsigned int state_num; | 38 | unsigned int state_num; |
44 | unsigned int last_index; | 39 | unsigned int last_index; |
45 | unsigned long long *time_in_state; | 40 | cputime64_t *time_in_state; |
46 | unsigned int *freq_table; | 41 | unsigned int *freq_table; |
47 | #ifdef CONFIG_CPU_FREQ_STAT_DETAILS | 42 | #ifdef CONFIG_CPU_FREQ_STAT_DETAILS |
48 | unsigned int *trans_table; | 43 | unsigned int *trans_table; |
@@ -60,12 +55,16 @@ static int | |||
60 | cpufreq_stats_update (unsigned int cpu) | 55 | cpufreq_stats_update (unsigned int cpu) |
61 | { | 56 | { |
62 | struct cpufreq_stats *stat; | 57 | struct cpufreq_stats *stat; |
58 | unsigned long long cur_time; | ||
59 | |||
60 | cur_time = get_jiffies_64(); | ||
63 | spin_lock(&cpufreq_stats_lock); | 61 | spin_lock(&cpufreq_stats_lock); |
64 | stat = cpufreq_stats_table[cpu]; | 62 | stat = cpufreq_stats_table[cpu]; |
65 | if (stat->time_in_state) | 63 | if (stat->time_in_state) |
66 | stat->time_in_state[stat->last_index] += | 64 | stat->time_in_state[stat->last_index] = |
67 | delta_time(stat->last_time, jiffies); | 65 | cputime64_add(stat->time_in_state[stat->last_index], |
68 | stat->last_time = jiffies; | 66 | cputime_sub(cur_time, stat->last_time)); |
67 | stat->last_time = cur_time; | ||
69 | spin_unlock(&cpufreq_stats_lock); | 68 | spin_unlock(&cpufreq_stats_lock); |
70 | return 0; | 69 | return 0; |
71 | } | 70 | } |
@@ -90,8 +89,8 @@ show_time_in_state(struct cpufreq_policy *policy, char *buf) | |||
90 | return 0; | 89 | return 0; |
91 | cpufreq_stats_update(stat->cpu); | 90 | cpufreq_stats_update(stat->cpu); |
92 | for (i = 0; i < stat->state_num; i++) { | 91 | for (i = 0; i < stat->state_num; i++) { |
93 | len += sprintf(buf + len, "%u %llu\n", | 92 | len += sprintf(buf + len, "%u %llu\n", stat->freq_table[i], |
94 | stat->freq_table[i], stat->time_in_state[i]); | 93 | (unsigned long long)cputime64_to_clock_t(stat->time_in_state[i])); |
95 | } | 94 | } |
96 | return len; | 95 | return len; |
97 | } | 96 | } |
@@ -107,16 +106,30 @@ show_trans_table(struct cpufreq_policy *policy, char *buf) | |||
107 | if(!stat) | 106 | if(!stat) |
108 | return 0; | 107 | return 0; |
109 | cpufreq_stats_update(stat->cpu); | 108 | cpufreq_stats_update(stat->cpu); |
109 | len += snprintf(buf + len, PAGE_SIZE - len, " From : To\n"); | ||
110 | len += snprintf(buf + len, PAGE_SIZE - len, " : "); | ||
111 | for (i = 0; i < stat->state_num; i++) { | ||
112 | if (len >= PAGE_SIZE) | ||
113 | break; | ||
114 | len += snprintf(buf + len, PAGE_SIZE - len, "%9u ", | ||
115 | stat->freq_table[i]); | ||
116 | } | ||
117 | if (len >= PAGE_SIZE) | ||
118 | return len; | ||
119 | |||
120 | len += snprintf(buf + len, PAGE_SIZE - len, "\n"); | ||
121 | |||
110 | for (i = 0; i < stat->state_num; i++) { | 122 | for (i = 0; i < stat->state_num; i++) { |
111 | if (len >= PAGE_SIZE) | 123 | if (len >= PAGE_SIZE) |
112 | break; | 124 | break; |
113 | len += snprintf(buf + len, PAGE_SIZE - len, "%9u:\t", | 125 | |
126 | len += snprintf(buf + len, PAGE_SIZE - len, "%9u: ", | ||
114 | stat->freq_table[i]); | 127 | stat->freq_table[i]); |
115 | 128 | ||
116 | for (j = 0; j < stat->state_num; j++) { | 129 | for (j = 0; j < stat->state_num; j++) { |
117 | if (len >= PAGE_SIZE) | 130 | if (len >= PAGE_SIZE) |
118 | break; | 131 | break; |
119 | len += snprintf(buf + len, PAGE_SIZE - len, "%u\t", | 132 | len += snprintf(buf + len, PAGE_SIZE - len, "%9u ", |
120 | stat->trans_table[i*stat->max_state+j]); | 133 | stat->trans_table[i*stat->max_state+j]); |
121 | } | 134 | } |
122 | len += snprintf(buf + len, PAGE_SIZE - len, "\n"); | 135 | len += snprintf(buf + len, PAGE_SIZE - len, "\n"); |
@@ -197,7 +210,7 @@ cpufreq_stats_create_table (struct cpufreq_policy *policy, | |||
197 | count++; | 210 | count++; |
198 | } | 211 | } |
199 | 212 | ||
200 | alloc_size = count * sizeof(int) + count * sizeof(long long); | 213 | alloc_size = count * sizeof(int) + count * sizeof(cputime64_t); |
201 | 214 | ||
202 | #ifdef CONFIG_CPU_FREQ_STAT_DETAILS | 215 | #ifdef CONFIG_CPU_FREQ_STAT_DETAILS |
203 | alloc_size += count * count * sizeof(int); | 216 | alloc_size += count * count * sizeof(int); |
@@ -224,7 +237,7 @@ cpufreq_stats_create_table (struct cpufreq_policy *policy, | |||
224 | } | 237 | } |
225 | stat->state_num = j; | 238 | stat->state_num = j; |
226 | spin_lock(&cpufreq_stats_lock); | 239 | spin_lock(&cpufreq_stats_lock); |
227 | stat->last_time = jiffies; | 240 | stat->last_time = get_jiffies_64(); |
228 | stat->last_index = freq_table_get_index(stat, policy->cur); | 241 | stat->last_index = freq_table_get_index(stat, policy->cur); |
229 | spin_unlock(&cpufreq_stats_lock); | 242 | spin_unlock(&cpufreq_stats_lock); |
230 | cpufreq_cpu_put(data); | 243 | cpufreq_cpu_put(data); |